Skip to content

Latest commit

 

History

History
323 lines (223 loc) · 14.3 KB

README.md

File metadata and controls

323 lines (223 loc) · 14.3 KB

Examples

These are some example scripts to demonstrate the various simulations that can be done, and to verify the simulator by reproducing results of already-published works.

Wikipedia

Likelihood of a Condorcet cycle

Wikipedia's analytical example of likelihood of a Condorcet paradox in an impartial culture model

3 101 201 301 401 501 601
WP 5.556 8.690 8.732 8.746 8.753 8.757 8.760
Sim 5.553 8.682 8.748 8.743 8.747 8.759 8.752
Diff 0.003 0.008 0.016 0.003 0.006 0.002 0.008

Source: wikipedia_condorcet_paradox_likelihood.py

Niemi and Weisberg 1968, Klahr 1966

Niemi, R. G., & Weisberg, H. F. (1968). A mathematical solution for the probability of the paradox of voting. Behavioral Science, 13(4), 322.

Reproduction of Condorcet paradox likelihood column and table:

Table 1: Probability That There Is No Majority Winner

2 3 4 5 6 7 10 23 49
Niemi 0.000 0.088 0.175 0.251 0.315 0.369 0.489 0.712 0.841
Sim 0.002 0.095 0.179 0.253 0.321 0.372 0.488 0.728 0.843
Diff 0.002 0.008 0.004 0.002 0.006 0.003 0.001 0.015 0.003

Source: niemi_1968_table_1.py

Table 2: Probabilities of No Majority Winner, P(m, n), for Equally Likely Rank Orders

3 5 7 9 11 13 15 17 19 21 23 25 27 29 59
3 0.0558 0.0698 0.0755 0.0779 0.0799 0.0812 0.0819 0.0826 0.0831 0.0830 0.0842 0.0839 0.0845 0.0840 0.0864
4 0.1110 0.1388 0.1506 0.1556 0.1599 0.1625 0.1641 0.1653 0.1662 0.1678 0.1675 0.1687 0.1697 0.1697 0.1728
5 0.1599 0.1996 0.2146 0.2230 0.2288 0.2331 0.2347 0.2367 0.2387 0.2395 0.2406 0.2416 0.2421 0.2437 0.2480
6 0.2023 0.2518 0.2707 0.2814 0.2884 0.2925 0.2948 0.2974 0.2993 0.3012 0.3030 0.3038 0.3036 0.3052 0.3110

(This also covers the same values as Figure 6. of Klahr, D. (1966). A Computer Simulation of the Paradox of Voting. American Political Science Review, 60(2), 388.)

Source: niemi_1968_table_2.py

Weber 1977/1978

Weber, R. J. (1978). Comparison of Public Choice Systems. Cowles Foundation Discussion Papers.

Reproduction of utility and effectiveness tables and formulas:

Table 4: The expected social utility of the elected candidate

Reproduce Table 4 from p. 17 of Comparison of Voting Systems: The expected social utility of the elected candidate, under three voting systems.

Standard Borda Approval
2 1.2505 1.2922 1.2920
3 1.8330 1.8748 1.8644
4 2.3889 2.4236 2.4210
5 2.9171 2.9768 2.9727
10 5.5970 5.6701 5.6714
15 8.2248 8.3207 8.3246
20 10.8325 10.9470 10.9537
25 13.4320 13.5583 13.5659
30 16.0177 16.1577 16.1669

Source: weber_1977_table_4.py

The Effectiveness of Several Voting Systems

Reproduce table from p. 19 of Reproducing Voting Systems using Monte Carlo methods (incomplete)

Standard Vote-for-half Borda
2 81.37 81.71 81.41
3 75.10 75.00 86.53
4 69.90 79.92 89.47
5 65.02 79.09 91.34
6 61.08 81.20 92.61
10 50.78 82.94 95.35
255 12.78 86.37 99.80

Source: weber_1977_effectiveness_table.py

Closed-form effectiveness expressions

Reproduce table from p. 19 of Reproducing Voting Systems using Weber's closed-form expressions to verify them.

m Standard Vote-for-half Best Vote-for-or-against-k Borda
2 81.65% 81.65% 81.65% 81.65%
3 75.00% 75.00% 87.50% 86.60%
4 69.28% 80.00% 80.83% 89.44%
5 64.55% 79.06% 86.96% 91.29%
6 60.61% 81.32% 86.25% 92.58%
10 49.79% 82.99% 88.09% 95.35%
0.00% 86.60% 92.25% 100.00%

Source: weber_1977_expressions.py

Vote-for-k effectiveness

Compare Monte Carlo method with closed-form expressions for Vote-for-k method

1 2 3 4 half
2 81.6 81.6
3 75.0 75.2 75.0
4 69.4 80.1 69.2 80.1
5 64.4 79.1 79.1 64.9 79.1
6 60.8 76.6 81.4 76.6 81.4
7 57.1 74.0 81.1 81.1 81.1
8 54.4 71.3 79.7 82.3 82.3
9 51.8 68.5 77.8 82.0 82.0
10 49.7 66.4 75.9 81.5 83.0

Source: weber_1977_verify_vote_for_k.py

Merrill 1984

Merrill, S. (1984). A Comparison of Efficiency of Multicandidate Electoral Systems. American Journal of Political Science, 28(1), 23–48.

Reproduction of Condorcet efficiency (CE) and social utility efficiency (SUE) tables and figures:

Table 1 / Fig. 1: CE random society

Method 2 3 4 5 7 10
Plurality 100.0 79.1 68.4 61.8 51.4 41.1
Runoff 100.0 96.2 89.6 83.4 72.3 60.3
Hare 100.0 96.2 92.5 89.1 83.7 77.0
Approval 100.0 75.6 70.0 67.4 63.8 61.2
Borda 100.0 90.9 87.4 85.9 84.6 83.9
Coombs 100.0 96.9 93.4 91.0 86.4 81.7
Black 100.0 100.0 100.0 100.0 100.0 100.0
SU max 100.0 84.1 79.6 78.4 77.3 77.5
CW 100.0 91.7 83.1 75.6 64.3 52.9

Source: merrill_1984_table_1_fig_1.py

Table 2: CE spatial model

(Markdown can't handle colspan or multiple header rows)

Disp 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5
Corr 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0
Dims 2 4 2 4 2 4 2 4
Plurality 57.5 65.8 62.2 78.4 21.7 24.4 27.2 41.3
Runoff 80.1 87.3 81.6 93.6 35.4 42.2 41.5 61.5
Hare 79.2 86.7 84.0 95.4 35.9 46.8 41.0 69.9
Approval 73.8 77.8 76.9 85.4 71.5 76.4 73.8 82.7
Borda 87.1 89.3 88.2 92.3 83.7 86.3 85.2 89.4
Coombs 97.8 97.3 97.9 98.2 93.5 92.3 93.8 94.5
Black 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SU max 82.9 85.8 85.3 90.8 78.1 81.5 80.8 87.1
CW 99.7 99.7 99.7 99.6 98.9 98.6 98.7 98.5

Source: merrill_1984_table_2.py

Fig 2a 2b: Spatial model scatter plots

Source: merrill_1984_fig_2a_2b.py

Fig 2c 2d: CE spatial model

2.c

Method 2 3 4 5 6 7
Black 100.0 100.0 100.0 100.0 100.0 100.0
Coombs 100.0 99.4 98.6 97.8 96.9 96.0
Borda 100.0 91.4 89.2 87.1 85.7 84.6
Approval 100.0 85.9 79.8 73.9 70.1 66.8
Hare 100.0 94.1 86.6 78.9 71.7 65.2
Runoff 100.0 94.1 87.1 79.7 72.8 66.1
Plurality 100.0 80.6 67.6 57.4 49.3 42.6

2.d

Method 2 3 4 5 6 7
Black 100.0 100.0 100.0 100.0 100.0 100.0
Coombs 100.0 98.2 95.9 93.4 90.9 88.4
Borda 100.0 89.2 86.3 83.8 82.1 80.8
Approval 100.0 84.0 76.9 71.5 67.8 64.7
Hare 100.0 72.2 50.3 35.8 26.0 19.7
Runoff 100.0 72.2 50.6 35.3 24.4 16.9
Plurality 100.0 55.9 34.7 21.5 13.5 8.5

Source: merrill_1984_fig_2c_2d.py

Table 3 / Fig 3: SUE random society

Method 2 3 4 5 7 10
Plurality 100.0 83.3 75.1 69.5 62.5 54.9
Runoff 100.0 89.1 83.9 80.4 75.1 69.1
Hare 100.0 89.0 84.8 82.5 79.9 77.3
Approval 100.0 95.5 91.3 89.3 87.8 86.8
Borda 100.0 94.7 94.3 94.4 95.3 96.2
Coombs 100.0 90.2 86.8 85.2 84.0 82.9
Black 100.0 92.9 92.0 92.1 93.2 94.6

Source: merrill_1984_table_3_fig_3.py

Table 4: SUE spatial model

(Markdown can't handle colspan or multiple header rows)

Disp 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5
Corr 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0
Dims 2 4 2 4 2 4 2 4
Plurality 72.1 79.1 80.4 92.4 4.0 6.3 25.2 52.9
Runoff 90.5 94.2 92.0 97.5 36.6 43.6 53.3 75.3
Hare 91.7 94.7 94.3 98.4 46.4 57.7 58.7 83.6
Approval 96.2 97.0 96.8 98.5 95.6 96.8 95.8 98.0
Borda 97.8 98.6 98.3 99.4 96.6 97.7 97.4 99.0
Coombs 97.0 97.5 97.7 98.7 94.0 94.3 95.0 96.7
Black 97.3 97.8 98.0 99.0 95.5 96.1 96.5 98.0

Source: merrill_1984_table_4.py

Fig 4a 4b: SUE spatial model

4.a

Method 2 3 4 5 7
Black 100.0 97.1 97.1 97.3 97.8
Coombs 100.0 97.0 96.8 97.0 97.4
Borda 100.0 98.7 98.2 97.9 97.7
Approval 100.0 98.7 97.4 96.2 95.3
Hare 100.0 94.1 92.7 91.7 90.2
Runoff 100.0 94.1 92.0 90.5 87.4
Plurality 100.0 84.4 77.3 72.0 64.8

4.b

Method 2 3 4 5 7
Black 100.0 95.4 95.2 95.5 96.1
Coombs 100.0 94.9 94.1 94.0 94.1
Borda 100.0 97.9 97.1 96.6 96.2
Approval 100.0 98.5 96.8 95.5 94.5
Hare 100.0 70.2 55.8 46.7 34.7
Runoff 100.0 70.1 51.4 36.8 13.6
Plurality 100.0 50.0 23.2 4.0 -24.7

Source: merrill_1984_fig_4a_4b.py

Winner distribution plots

Somewhat similar to:

By method

Source: distributions_by_method.py

By number of candidates

Source: distributions_by_n_cands.py

By relative candidate dispersion

Source: distributions_by_dispersion.py

By method, in two-dimensional space

Source: distributions_by_method_2D.py

Tomlinson 2023

Kiran Tomlinson, Johan Ugander, Jon Kleinberg (2023) Moderation in instant runoff voting

Figure 3

Source: tomlinson_2023_figure_3.py

Figure 3 comparison with other systems

Source: tomlinson_2023_figure_3_updated.py