-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
483 lines (378 loc) · 17.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#!/usr/bin/env python3
'''
This module contains our Dataset classes and functions to load the 3 datasets we're using.
You should only need to call load_multitask_data to get the training and dev examples
to train your model.
'''
import csv
import json
import torch
from torch.utils.data import Dataset
from tokenizer import BertTokenizer
import random
import numpy as np
def preprocess_string(s):
return ' '.join(s.lower()
.replace('.', ' .')
.replace('?', ' ?')
.replace(',', ' ,')
.replace('\'', ' \'')
.split())
class InferenceDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def tokenize(self, string):
string = re.sub(r'\(|\)', '', string)
return string.split()
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sent1 = [x[0] for x in data]
sent2 = [x[1] for x in data]
sent_ids = [x[2] for x in data]
labels = [x[3] for x in data]
encoding1 = self.tokenizer(sent1, return_tensors='pt', padding=True, truncation=True)
encoding2 = self.tokenizer(sent2, return_tensors='pt', padding=True, truncation=True)
token_ids1 = torch.LongTensor(encoding1['input_ids'])
attention_mask1 = torch.LongTensor(encoding1['attention_mask'])
token_type_ids1 = torch.LongTensor(encoding1['token_type_ids'])
token_ids2 = torch.LongTensor(encoding2['input_ids'])
attention_mask2 = torch.LongTensor(encoding2['attention_mask'])
token_type_ids2 = torch.LongTensor(encoding2['token_type_ids'])
labels = torch.LongTensor(labels)
return (token_ids1, token_type_ids1, attention_mask1,
token_ids2, token_type_ids2, attention_mask2,
labels,sent_ids)
def collate_fn(self, all_data):
(token_ids1, token_type_ids1, attention_mask1,
token_ids2, token_type_ids2, attention_mask2,
labels,sent_ids) = self.pad_data(all_data)
batched_data = {
'token_ids_1': token_ids1,
'token_type_ids_1': token_type_ids1,
'attention_mask_1': attention_mask1,
'token_ids_2': token_ids2,
'token_type_ids_2': token_type_ids2,
'attention_mask_2': attention_mask2,
'labels': labels,
'sent_ids': sent_ids
}
return batched_data
class SingleLineDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
encoding = self.tokenizer(data, return_tensors='pt', padding=True, truncation=True)
labels = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
# 15% of the token positions at random for prediction
batch_size, _ = encoding["input_ids"].shape
token_ids = []
chosen = []
for sent_id in range(batch_size):
token_ids.append([])
endOfSequence = int((labels[sent_id] == self.tokenizer.sep_token_id).nonzero())
indicies = random.sample(range(1, endOfSequence), round((endOfSequence-1)*.15))
for i in range(len(labels[sent_id])):
if i not in indicies:
token_ids[sent_id].append(int(labels[sent_id][i]))
else:
num = random.randint(1,10)
if num <=8:
# then in 80% of these cases the token is replaced [MASK],
token_ids[sent_id].append(self.tokenizer.mask_token_id)
elif num <= 9:
# in 10% of cases the token is replaced with a random token,
token_ids[sent_id].append(np.random. randint(0, 30521))
else:
# and in another 10% of cases, the token will remain unchanged.
token_ids[sent_id].append(labels[sent_id][i])
for val in indicies:
chosen.append([sent_id, val])
token_ids = torch.LongTensor(token_ids)
token_ids = torch.reshape(token_ids, (batch_size,-1))
chosen = torch.LongTensor(chosen)
return labels, token_ids, attention_mask, data, chosen
def collate_fn(self, all_data):
labels, token_ids, attention_mask, sents, chosen = self.pad_data(all_data)
#add in label array for original tokens that were masked out
batched_data = {
'labels' : labels,
'token_ids': token_ids, #15 percent are masked , etc.
'attention_mask': attention_mask,
'sents': sents,
'chosen': chosen
}
return batched_data
class SentenceClassificationDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
labels = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
labels = torch.LongTensor(labels)
return token_ids, attention_mask, labels, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, labels, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'labels': labels,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class SentenceClassificationTestDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attention_mask, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class SentencePairDataset(Dataset):
def __init__(self, dataset, args, isRegression =False):
self.dataset = dataset
self.p = args
self.isRegression = isRegression
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sent1 = [x[0] for x in data]
sent2 = [x[1] for x in data]
labels = [x[2] for x in data]
sent_ids = [x[3] for x in data]
encoding1 = self.tokenizer(sent1, return_tensors='pt', padding=True, truncation=True)
encoding2 = self.tokenizer(sent2, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding1['input_ids'])
attention_mask = torch.LongTensor(encoding1['attention_mask'])
token_type_ids = torch.LongTensor(encoding1['token_type_ids'])
token_ids2 = torch.LongTensor(encoding2['input_ids'])
attention_mask2 = torch.LongTensor(encoding2['attention_mask'])
token_type_ids2 = torch.LongTensor(encoding2['token_type_ids'])
if self.isRegression:
labels = torch.DoubleTensor(labels)
else:
labels = torch.LongTensor(labels)
return (token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
labels,sent_ids)
def collate_fn(self, all_data):
(token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
labels, sent_ids) = self.pad_data(all_data)
batched_data = {
'token_ids_1': token_ids,
'token_type_ids_1': token_type_ids,
'attention_mask_1': attention_mask,
'token_ids_2': token_ids2,
'token_type_ids_2': token_type_ids2,
'attention_mask_2': attention_mask2,
'labels': labels,
'sent_ids': sent_ids
}
return batched_data
class SentencePairTestDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sent1 = [x[0] for x in data]
sent2 = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding1 = self.tokenizer(sent1, return_tensors='pt', padding=True, truncation=True)
encoding2 = self.tokenizer(sent2, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding1['input_ids'])
attention_mask = torch.LongTensor(encoding1['attention_mask'])
token_type_ids = torch.LongTensor(encoding1['token_type_ids'])
token_ids2 = torch.LongTensor(encoding2['input_ids'])
attention_mask2 = torch.LongTensor(encoding2['attention_mask'])
token_type_ids2 = torch.LongTensor(encoding2['token_type_ids'])
return (token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
sent_ids)
def collate_fn(self, all_data):
(token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
sent_ids) = self.pad_data(all_data)
batched_data = {
'token_ids_1': token_ids,
'token_type_ids_1': token_type_ids,
'attention_mask_1': attention_mask,
'token_ids_2': token_ids2,
'token_type_ids_2': token_type_ids2,
'attention_mask_2': attention_mask2,
'sent_ids': sent_ids
}
return batched_data
def load_multitask_test_data():
paraphrase_filename = f'data/quora-test.csv'
sentiment_filename = f'data/ids-sst-test.txt'
similarity_filename = f'data/sts-test.csv'
sentiment_data = []
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sentiment_data.append(sent)
print(f"Loaded {len(sentiment_data)} test examples from {sentiment_filename}")
paraphrase_data = []
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
#if record['split'] != split:
# continue
paraphrase_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
))
print(f"Loaded {len(paraphrase_data)} test examples from {paraphrase_filename}")
similarity_data = []
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
similarity_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
))
print(f"Loaded {len(similarity_data)} test examples from {similarity_filename}")
return sentiment_data, paraphrase_data, similarity_data
#Loading data from JSON file as [(sent1, sent2, pairid, label)]
def load_inference_data(filename):
data = []
LABEL_MAP = {
"entailment": 0,
"neutral": 1,
"contradiction": 2,
"hidden": 0
}
with open(filename) as f:
for line in f:
loaded_example = json.loads(line)
if loaded_example["gold_label"] not in LABEL_MAP:
continue
sent1 = loaded_example['sentence1'].lower().strip()
sent2 = loaded_example["sentence2"].lower().strip()
pairid = loaded_example["pairID"].lower().strip()
label = LABEL_MAP[loaded_example["gold_label"]]
data.append((sent1, sent2, pairid, label))
random.seed(1)
random.shuffle(data)
print(f"load {len(data)} data from {filename}")
return data
def load_pretrain_data(sentiment_filename,paraphrase_filename,similarity_filename):
sentiment_data = []
num_labels = {}
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sentiment_data.append(sent)
print(f"Loaded {len(sentiment_data)} train examples from {sentiment_filename}")
paraphrase_data = []
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
paraphrase_data.append(preprocess_string(record['sentence1']))
paraphrase_data.append(preprocess_string(record['sentence2']))
print(f"Loaded {len(paraphrase_data)} train examples from {paraphrase_filename}")
similarity_data = []
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
similarity_data.append(preprocess_string(record['sentence1']))
similarity_data.append(preprocess_string(record['sentence2']))
print(f"Loaded {len(similarity_data)} train examples from {similarity_filename}")
return sentiment_data + paraphrase_data + similarity_data
def load_multitask_data(sentiment_filename,paraphrase_filename,similarity_filename,split='train'):
sentiment_data = []
num_labels = {}
if split == 'test':
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
sentiment_data.append((sent,sent_id))
else:
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
label = int(record['sentiment'].strip())
if label not in num_labels:
num_labels[label] = len(num_labels)
sentiment_data.append((sent, label,sent_id))
print(f"Loaded {len(sentiment_data)} {split} examples from {sentiment_filename}")
paraphrase_data = []
if split == 'test':
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
paraphrase_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
sent_id))
else:
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
try:
sent_id = record['id'].lower().strip()
paraphrase_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
int(float(record['is_duplicate'])),sent_id))
except:
pass
print(f"Loaded {len(paraphrase_data)} {split} examples from {paraphrase_filename}")
similarity_data = []
if split == 'test':
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
similarity_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2'])
,sent_id))
else:
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
similarity_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
float(record['similarity']),sent_id))
print(f"Loaded {len(similarity_data)} {split} examples from {similarity_filename}")
return sentiment_data, num_labels, paraphrase_data, similarity_data