forked from NREL/ReEDS-2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc_supplyobjective.gms
332 lines (254 loc) · 16.8 KB
/
c_supplyobjective.gms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
$ontext
No globals needed for this file
$offtext
scalar cost_scale "scaling parameter for the objective function" /1/ ;
Equation
* objective function calculation
eq_ObjFn "--$s-- Objective function calculation"
eq_ObjFn_inv(t) "--$s-- Calculation of investment component of the objective function"
eq_Objfn_op(t) "--$s-- Calculation of operations component of the objective function"
;
* note these are not restricited to positive domain
Variable Z "--$-- total cost of operations and investment, scale varies based on cost_scale"
Z_op(t) "--$-- total cost of operations",
Z_inv(t) "--$-- total cost of operations"
;
* objective function is the sum over modeled years of the investment
* and operations components
eq_ObjFn.. Z =e= cost_scale * sum{t$tmodel(t), Z_inv(t) + Z_op(t) } ;
*=======================================================
* -- Investment component of the objective function --
*=======================================================
eq_ObjFn_inv(t)$tmodel(t)..
Z_inv(t)
=e=
pvf_capital(t) *
(
* --- investment costs ---
+ sum{(i,v,r)$valinv(i,v,r,t),
cost_cap_fin_mult(i,r,t) * cost_cap(i,t) * INV(i,v,r,t)
}
* --- growth penalties ---
+ sum{(gbin,i,st)$[sum{r$[r_st(r,st)], valinv_irt(i,r,t) }$stfeas(st)],
cost_growth(i,st,t) * growth_penalty(gbin) * (yeart(t) - sum{tt$[tprev(t,tt)], yeart(tt) }) * GROWTH_BIN(gbin,i,st,t)
}$[(yeart(t)>=model_builds_start_yr)$Sw_GrowthPenalties$(yeart(t)<=Sw_GrowthConLastYear)]
* --- cost of upgrading---
+ sum{(i,v,r)$[upgrade(i)$valcap(i,v,r,t)$Sw_Upgrades],
cost_upgrade(i,v,r,t) * cost_cap_fin_mult(i,r,t) * UPGRADES(i,v,r,t) }
* --- costs of resource supply curve spur line investment if not modeling explicitly---
*Note that cost_cap for hydro, pumped-hydro, and geo techs are zero
*but hydro and geo rsc_fin_mult is equal to the same value as cost_cap_fin_mult
+ sum{(i,v,r,rscbin)$[m_rscfeas(r,i,rscbin)$valinv(i,v,r,t)$rsc_i(i)$(not spur_techs(i))],
m_rsc_dat(r,i,rscbin,"cost") * rsc_fin_mult(i,r,t) * sum{ii$rsc_agg(i,ii), INV_RSC(ii,v,r,rscbin,t) } }
* ---cost of demand response---
+ sum{(i,v,r,rscbin)$[m_rscfeas(r,i,rscbin)$valinv(i,v,r,t)$dr(i)],
rsc_dr(i,r,"cost",rscbin,t) * rsc_fin_mult(i,r,t) * INV_RSC(i,v,r,rscbin,t) }
* ---cost of adopted EVMC---
+ sum{(i,v,r,rscbin)$[m_rscfeas(r,i,rscbin)$valinv(i,v,r,t)$evmc(i)],
rsc_evmc(i,r,"cost",rscbin,t) * rsc_fin_mult(i,r,t) * INV_RSC(i,v,r,rscbin,t) }
* ---cost of spur lines modeled explicitly---
* NOTE: no rsc_fin_mult(i,r,t) here, but it's 1 for upv and wind-ons anyway
+ sum{x$[Sw_SpurScen$xfeas(x)],
spurline_cost(x) * Sw_SpurCostMult * INV_SPUR(x,t) }
* --- cost of intra-zone network reinforcement (a.k.a. point-of-interconnection capacity or POI)
* Sw_TransIntraCost is in $/kW, so multiply by 1000 to convert to $/MW
+ sum{r$[rb(r)$Sw_TransIntraCost],
trans_cost_cap_fin_mult(t) * Sw_TransIntraCost * 1000 * INV_POI(r,t) }
* --- cost of water access---
+ [ (8760/1E6) * sum{ (i,v,w,r)$[i_w(i,w)$valinv(i,v,r,t)], sum{wst$i_wst(i,wst),
m_watsc_dat(wst,"cost",r,t) } * water_rate(i,w,r) *
( INV(i,v,r,t) + INV_REFURB(i,v,r,t)$[refurbtech(i)$Sw_Refurb] ) }
+ sum{(rscbin,i,v,r)$[m_rscfeas(r,i,rscbin)$psh(i)],
sum{wst$i_wst(i,wst), m_watsc_dat(wst,"cost",r,t) } *
( INV_RSC(i,v,r,rscbin,t) * water_req_psh(r,rscbin) ) }$Sw_PSHwatercon
]$Sw_WaterMain
*slack variable to update water source type (wst) in the unit database
*Note that existing wst data is not consistent with availability of water source in the region
+ sum{(wst,r)$rb(r), 1E6 * WATER_CAPACITY_LIMIT_SLACK(wst,r,t) }$[Sw_WaterMain$Sw_WaterCapacity]
* --- cost of refurbishments of RSC tech---
+ sum{(i,v,r)$[Sw_Refurb$valinv(i,v,r,t)$refurbtech(i)],
cost_cap_fin_mult(i,r,t) * cost_cap(i,t) * INV_REFURB(i,v,r,t)
}
* --- cost of transmission---
*costs of transmission lines
+ sum{(r,rr,trtype)$routes_inv(r,rr,trtype,t),
trans_cost_cap_fin_mult(t) * transmission_line_capcost(r,rr,trtype) * INVTRAN(r,rr,trtype,t) }
* LCC and B2B AC/DC converter stations (each interface has two, one on either side of the interface)
+ sum{(r,rr,trtype)$[lcclike(trtype)$routes_inv(r,rr,trtype,t)],
trans_cost_cap_fin_mult(t) * cost_acdc_lcc * 2 * INVTRAN(r,rr,trtype,t) }
*cost of VSC AC/DC converter stations
+ sum{r$rb(r),
trans_cost_cap_fin_mult(t) * cost_acdc_vsc * INV_CONVERTER(r,t) }
* --- storage capacity credit---
*small cost penalty to incentivize solver to fill shorter-duration bins first
+ sum{(i,v,r,ccseason,sdbin)$[valcap(i,v,r,t)$(storage(i) or hyd_add_pump(i))$(not csp(i))],
bin_penalty(sdbin) * CAP_SDBIN(i,v,r,ccseason,sdbin,t) }
* cost of capacity upsizing
+ sum{(i,v,r,rscbin)$allow_cap_up(i,v,r,rscbin,t),
cost_cap_fin_mult(i,r,t) * INV_CAP_UP(i,v,r,rscbin,t) * cost_cap_up(i,v,r,rscbin,t) }
* cost of energy upsizing
+ sum{(i,v,r,rscbin)$allow_ener_up(i,v,r,rscbin,t),
cost_cap_fin_mult(i,r,t) * INV_ENER_UP(i,v,r,rscbin,t) * cost_ener_up(i,v,r,rscbin,t) }
* H2 transport network investment costs
+ sum{(r,rr)$h2_routes_inv(r,rr), cost_h2_transport_cap(r,rr,t) * H2_TRANSPORT_INV(r,rr,t) }$(Sw_H2 = 2)
* H2 storage investment costs
+ sum{(h2_stor,r)$h2_stor_r(h2_stor,r), cost_h2_storage_cap(h2_stor,t) * H2_STOR_INV(h2_stor,r,t) }$(Sw_H2 = 2)
* CO2 pipeline investment costs
+ sum{(r,rr)$co2_routes(r,rr), cost_co2_pipeline_cap(r,rr,t) * CO2_TRANSPORT_INV(r,rr,t)
}$[Sw_CO2_Detail$(yeart(t)>=co2_detail_startyr)]
+ sum{(r,cs)$[csfeas(cs)$r_cs(r,cs)], cost_co2_spurline_cap(r,cs,t) * CO2_SPURLINE_INV(r,cs,t)
}$[Sw_CO2_Detail$(yeart(t)>=co2_detail_startyr)]
*end to multiplier by pvf_capital
)
;
*=======================================================
* -- Operational component of the objective function --
*=======================================================
eq_Objfn_op(t)$tmodel(t)..
Z_op(t)
=e=
pvf_onm(t) * (
* --- variable O&M costs---
* all technologies except hybrid PV+battery and DAC
sum{(i,v,r,h)$[valgen(i,v,r,t)$cost_vom(i,v,r,t)$(not pvb(i))],
hours(h) * cost_vom(i,v,r,t) * GEN(i,v,r,h,t) }
* hybrid PV+battery (PV)
+ sum{(i,v,r,h)$[valgen(i,v,r,t)$cost_vom_pvb_p(i,v,r,t)$pvb(i)],
hours(h) * cost_vom_pvb_p(i,v,r,t) * GEN_PVB_P(i,v,r,h,t) }$Sw_PVB
* hybrid PV+battery (Battery)
+ sum{(i,v,r,h)$[valgen(i,v,r,t)$cost_vom_pvb_b(i,v,r,t)$pvb(i)],
hours(h) * cost_vom_pvb_b(i,v,r,t) * GEN_PVB_B(i,v,r,h,t) }$Sw_PVB
* --- fixed O&M costs---
* generation
+ sum{(i,v,r)$[valcap(i,v,r,t)],
cost_fom(i,v,r,t) * CAP(i,v,r,t) }
* transmission lines
+ sum{(r,rr,trtype)$routes(r,rr,trtype,t),
transmission_line_fom(r,rr,trtype) * CAPTRAN_ENERGY(r,rr,trtype,t) }
* LCC and B2B AC/DC converter stations
+ sum{(r,rr,trtype)$[lcclike(trtype)$routes(r,rr,trtype,t)],
cost_acdc_lcc * 2 * trans_fom_frac * CAPTRAN_ENERGY(r,rr,trtype,t) }
* VSC AC/DC converter stations
+ sum{r$rb(r),
cost_acdc_vsc * trans_fom_frac * CAP_CONVERTER(r,t) }
* spur lines modeled as part of supply curve
+ sum{(i,v,r,rscbin)
$[m_rscfeas(r,i,rscbin)$valcap(i,v,r,t)
$rsc_i(i)$(not spur_techs(i))$(not sccapcosttech(i))],
m_rsc_dat(r,i,rscbin,"cost_trans") * trans_fom_frac * CAP_RSC(i,v,r,rscbin,t) }
* spur lines modeled explicitly
+ sum{x$[Sw_SpurScen$xfeas(x)],
spurline_cost(x) * trans_fom_frac * CAP_SPUR(x,t) }
* intra-zone network reinforcement (only for new capacity; don't include it for existing POI
* capacity because it's not a great estimate of the actual FOM cost of all existing transmission)
+ sum{r$[rb(r)$Sw_TransIntraCost],
Sw_TransIntraCost * 1000 * trans_fom_frac
* sum{tt$[(yeart(tt)<=yeart(t))$(tmodel(tt) or tfix(tt))], INV_POI(r,tt) } }
* --- penalty for retiring a technology (represents friction in retirements)---
- sum{(i,v,r)$[valcap(i,v,r,t)$retiretech(i,v,r,t)],
cost_fom(i,v,r,t) * retire_penalty(t) *
(CAP(i,v,r,t)
- INV(i,v,r,t)$valinv(i,v,r,t)
- INV_REFURB(i,v,r,t)$[valinv(i,v,r,t)$refurbtech(i)$Sw_Refurb] )
}
* ---operating reserve costs---
+ sum{(i,v,r,h,ortype)$[Sw_OpRes$valgen(i,v,r,t)$cost_opres(i,ortype,t)$opres_model(ortype)$opres_h(h)],
hours(h) * cost_opres(i,ortype,t) * OpRes(ortype,i,v,r,h,t) }
* --- cost of coal, nuclear, and other fuels (except coal used for cofiring)---
* includes H2 fuel costs when using exogenous fuel price (Sw_H2 = 0 and Sw_H2CT = 1)
+ sum{(i,v,r,h)$[valgen(i,v,r,t)$(not gas(i))$heat_rate(i,v,r,t)
$(not bio(i))$(not cofire(i))],
hours(h) * heat_rate(i,v,r,t) * fuel_price(i,r,t) * GEN(i,v,r,h,t) }
* --- startup/ramping costs
+ sum{(i,v,r,h,hh)$[Sw_StartCost$startcost(i)$numhours_nexth(h,hh)$valgen(i,v,r,t)],
startcost(i) * numhours_nexth(h,hh) * RAMPUP(i,v,r,h,hh,t) }
* --cofire coal consumption---
* cofire bio consumption already accounted for in accounting of BIOUSED
+ sum{(i,v,r,h)$[valgen(i,v,r,t)$cofire(i)$heat_rate(i,v,r,t)],
(1-bio_cofire_perc) * hours(h) * heat_rate(i,v,r,t)
* fuel_price("coal-new",r,t) * GEN(i,v,r,h,t) }
* --- cost of natural gas---
*Sw_GasCurve = 2 (static natural gas prices)
*first - gas consumed for electricity generation
+ sum{(i,v,r,h)$[valgen(i,v,r,t)$gas(i)$heat_rate(i,v,r,t)$(Sw_GasCurve = 2)],
hours(h) * heat_rate(i,v,r,t) * fuel_price(i,r,t) * GEN(i,v,r,h,t) }
*second - gas consumed by gas-powered DAC
+ sum{(v,r,h)$[valcap("dac_gas",v,r,t)$(Sw_GasCurve = 2)],
hours(h) * dac_gas_cons_rate("dac_gas",v,t) * PRODUCE("DAC","dac_gas",v,r,h,t) }$Sw_DAC_Gas
*Sw_GasCurve = 0 (census division supply curves natural gas prices)
+ sum{(cendiv,gb), sum{h,hours(h) * GASUSED(cendiv,gb,h,t) }
* gasprice(cendiv,gb,t)
}$(Sw_GasCurve = 0)
*Sw_GasCurve = 3 (national supply curve for natural gas prices with census division multipliers)
+ sum{(h,cendiv,gb), hours(h) * GASUSED(cendiv,gb,h,t)
* gasadder_cd(cendiv,t,h) + gasprice_nat_bin(gb,t)
}$(Sw_GasCurve = 3)
*Sw_GasCurve = 1 (national and census division supply curves for natural gas prices)
*first - anticipated costs of gas consumption given last year's amount
+ (sum{(i,r,v,cendiv,h)$[valgen(i,v,r,t)$gas(i)],
gasmultterm(cendiv,t) * szn_adj_gas(h) * cendiv_weights(r,cendiv) *
hours(h) * heat_rate(i,v,r,t) * GEN(i,v,r,h,t) }
*second - adjustments based on changes from last year's consumption at the regional and national level
+ sum{(fuelbin,cendiv),
gasbinp_regional(fuelbin,cendiv,t) * VGASBINQ_REGIONAL(fuelbin,cendiv,t) }
+ sum{(fuelbin),
gasbinp_national(fuelbin,t) * VGASBINQ_NATIONAL(fuelbin,t) }
)$[Sw_GasCurve = 1]
* ---cost of biofuel consumption and biomass transport---
+ sum{(r,bioclass)$[sum{(i,v)$(bio(i) or cofire(i)), valgen(i,v,r,t) }],
BIOUSED(bioclass,r,t) *
(sum{usda_region$r_usda(r,usda_region), biosupply(usda_region, bioclass, "price") } + bio_transport_cost) }
* --- hurdle costs for transmission flow ---
+ sum{(r,rr,h,trtype)$[routes(r,rr,trtype,t)$cost_hurdle(r,rr)],
cost_hurdle(r,rr) * FLOW(r,rr,h,t,trtype) * hours(h) }
* --- taxes on emissions---
+ sum{(e,r)$rb(r), EMIT(e,r,t) * emit_tax(e,r,t) }
* --cost of CO2 transport and storage from CCS--
+ sum{(i,v,r,h)$[valgen(i,v,r,t)],
hours(h) * capture_rate("CO2",i,v,r,t) * GEN(i,v,r,h,t) * CO2_storage_cost }$[not Sw_CO2_Detail]
* --cost of CO2 transport and storage from SMR CCS--
+ sum{(p,v,r,h)$[i_p("smr_ccs",p)$valcap("smr_ccs",v,r,t)],
hours(h) * smr_capture_rate * smr_co2_intensity * PRODUCE(p,"smr_ccs",v,r,h,t) * CO2_storage_cost }$[Sw_H2$(not Sw_CO2_Detail)]
* --cost of CO2 transport and storage from DAC--
+ sum{(p,i,v,r,h)$[dac(i)$valcap(i,v,r,t)$i_p(i,p)],
hours(h) * PRODUCE(p,i,v,r,h,t) * CO2_storage_cost }$[Sw_DAC$(not Sw_CO2_Detail)]
* ---State RPS alternative compliance payments---
+ sum{(RPSCat,st)$(stfeas(st) or sameas(st,"voluntary")), acp_price(st,t) * ACP_PURCHASES(RPSCat,st,t)
}$[(yeart(t)>=RPS_StartYear)$Sw_StateRPS]
* --- revenues from purchases of curtailed VRE---
- sum{(r,h)$rb(r), CURT(r,h,t) * hours(h) * cost_curt(t) }$Sw_CurtMarket
* --- dropped load (ONLY if before Sw_StartMarkets)
+ sum{(r,h)$[rb(r)$(yeart(t)<Sw_StartMarkets)], DROPPED(r,h,t) * hours(h) * cost_dropped_load }
* --- costs from producing products (for now DAC and/or H2)---
+ sum{(p,i,v,r,h)$[(h2(i) or dac(i))$valcap(i,v,r,t)$i_p(i,p)],
hours(h) * cost_prod(i,v,r,t) * PRODUCE(p,i,v,r,h,t) }$Sw_Prod
* --- H2 transport network fixed OM costs (compute cumulative sum of investments to get total capacity)
+ sum{(r,rr)$h2_routes_inv(r,rr), cost_h2_transport_fom(r,rr,t)
* sum{tt$[(tfix(tt) or tmodel(tt))$(yeart(tt)<=yeart(t))],
H2_TRANSPORT_INV(r,rr,t) } }$[Sw_H2 = 2]
* --- H2 storage fixed OM costs (compute cumulative sum of investments to get total capacity)
+ sum{(h2_stor,r)$h2_stor_r(h2_stor,r),
cost_h2_storage_fom(h2_stor,t) * H2_STOR_CAP(h2_stor,r,t) }$(Sw_H2=2)
* --- CO2 pipeline fixed OM costs
+ sum{(r,rr)$co2_routes(r,rr), cost_co2_pipeline_fom(r,rr,t)
* sum{tt$[(tfix(tt) or tmodel(tt))$(yeart(tt)<=yeart(t))],
CO2_TRANSPORT_INV(r,rr,tt) } }$[Sw_CO2_Detail$(yeart(t)>=co2_detail_startyr)]
* --- CO2 spurline fixed OM costs
+ sum{(r,cs)$[csfeas(cs)$r_cs(r,cs)], cost_co2_spurline_fom(r,cs,t)
* sum{tt$[(tfix(tt) or tmodel(tt))$(yeart(tt)<=yeart(t))],
CO2_SPURLINE_INV(r,cs,tt) } }$[Sw_CO2_Detail$(yeart(t)>=co2_detail_startyr)]
* --- CO2 injection break even costs
+ sum{(r,cs,h)$r_cs(r,cs), hours(h) * CO2_STORED(r,cs,h,t) * cost_co2_stor_bec(cs,t) }$[Sw_CO2_Detail$(yeart(t)>=co2_detail_startyr)]
* --- Tax credit for CO2 stored ---
* note conversion to 12-year CRF given length of CO2 captured incentive payments
- sum{(i,v,r,h)$[valgen(i,v,r,t)$co2_captured_incentive(i,v,r,t)],
(crf(t) / crf_co2_incentive(t)) * co2_captured_incentive(i,v,r,t) * hours(h) * capture_rate("CO2",i,v,r,t) * GEN(i,v,r,h,t)}
* --- Tax credit for CO2 stored for DAC ---
- sum{(p,i,v,r,h)$[dac(i)$valcap(i,v,r,t)$i_p(i,p)],
(crf(t) / crf_co2_incentive(t)) * co2_captured_incentive(i,v,r,t) * hours(h) * PRODUCE(p,i,v,r,h,t)}
* --- PTC value ---
- sum{(i,v,r,h)$[valgen(i,v,r,t)$ptc_value_scaled(i,v,t)],
hours(h) * ptc_value_scaled(i,v,t) * tc_phaseout_mult(i,v,t) * GEN(i,v,r,h,t) }
*end multiplier for pvf_onm
)
;