Skip to content
This repository has been archived by the owner on Dec 8, 2021. It is now read-only.

Latest commit

 

History

History
284 lines (218 loc) · 10.1 KB

File metadata and controls

284 lines (218 loc) · 10.1 KB

Converters

The following converters are used to convert between machine learning data formats for models and datasets. Their purpose is to make the life easier for developers by providing complete converters. However, the converters might be adapted for other purposes. All converters are either written by the devlopers of the repository or parts are used from other open source converters. Within each converter file, each source has been provided. For each converter, the goal is also to provide sample data as part of the converter documentation.

Pre-requisites

Tensorflow object detection api 2.4 is necessary

VOC to Coco

Source: https://github.com/yukkyo/voc2coco

Script: convert_voc_to_coco.py

Example:

python convert_voc_to_coco.py ^
--ann_dir samples/annotations/xml ^
--ann_ids samples/annotations/train.txt ^
--labels samples/annotations/labels.txt ^
--output samples/annotations/coco_train_annotations.json ^
--ext xml

Notes:

  • ann_dir: XML directory
  • ann_ids: txt file with filenames without extensions. If this file is None, all files of ann_dir are used.
  • labels: labels file
  • output: Output JSON
  • ext: File extension to filter

Coco to VOC

Source: https://gist.github.com/jinyu121

Script: convert_coco_to_voc.py

Example:

python convert_coco_to_voc.py --annotation_file="samples/annotations/cvml_xml/annotations/cvml_Milan-PETS09-S2L1_coco.json"

CVML to Coco

Source: CVML Annotation — What it is and How to Convert it?

Script: convert_cvml_to_coco.py

Example:

python convert_cvml_to_coco.py --annotation_file="samples/annotations/cvml_xml/cvml_Milan-PETS09-S2L1.xml" --image_dir="samples/cvml_images" --label_name="predestrian"

3DMOT2015 Yololike format to Coco

Source: Inspired from here

Script: convert_3DMOT2015_yololike_to_coco.py

Notice: The format from which is connected looks like the yolo format, but is not the same. This format was used in MOT Challenge 2015. However. This script can easily be transformed into a yolo converter.

Example:

python C:\Projekte\21_SoC_EML\public_content\scripts-and-guides\scripts\conversion\convert_3DMOT2015_yololike_to_coco.py ^
--annotation_file="samples/annotations/3DMOT2015_yololike_ground_truth.txt" ^
--image_dir="samples/yolo_images" ^
--label_name="pedestrian" ^
--image_name_prefix=""

Coco to TFRecords

Source: Tensorflow Object Detection API

Script modified: convert_coco_to_tfrecord.py

Examples:

python convert_coco_to_tfrecord_mod.py --logtostderr --image_dir="samples/images" --annotations_file="samples/annotations/coco_train_annotations.json" --output_path="samples/prepared-records/train_coco.record" --number_shards=2

VOC to TFRecords

Source: Tensorflow Object Detection API

Script original:

Script modified: convert_voc_to_tfrecord_mod.py

Examples:

python convert_voc_to_tfrecord_mod.py -x "samples/annotations/xml" -i "samples/images" -l "samples/annotations/sw_label_map.pbtxt" -o "samples/prepared-records/train_voc.record" -n 2

VOC to Yololike format CustomText

Source: https://github.com/david8862/keras-YOLOv3-model-set

Data annotation file format: One row for one image in annotation file; Row format: image_file_path box1 box2 ... boxN; Box format: x_min,y_min,x_max,y_max,class_id (no space). Example: path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3

Script: convert_voc_to_customtext.py

Example:

echo Convert training data
set TYPE=train
python %SCRIPTPREFIX%\conversion\convert_voc_to_customtext.py ^
--annotations_dir=annotations/xmls ^
--image_dir=images/%TYPE% ^
--output_path=annotations/yolo/yolo_%TYPE%.txt ^
--classes_path=annotations/labels.txt ^
--include_difficult ^
--include_no_obj

TF CSV to PASCAL VOC

Tensorflow uses a csv format that looks like the yolo format for intermediate representations. This script converts from the intermediate format to Pascal VOC.

Source: This script was inspired by Shubham Gupta

Script: convert_tfcsv_to_voc.py

Examples:

python %SCRIPTPREFIX%\conversion\convert_tfcsv_to_voc.py ^
--annotation_file="results/tf2oda_efficientdetd2_768_576_coco17_pedestrian_all/detections.csv" ^
--output_dir="results/tf2oda_efficientdetd2_768_576_coco17_pedestrian_all/xml" ^
--labelmap_file="annotations/pedestrian_label_map.pbtxt"

TF CSV to COCO JSON Detections

Convert Tensorflow CSV detection format to the Coco JSON detection format.

Source:

Script: convert_tfcsv_to_pycocodetections.py

Examples:

python %SCRIPTPREFIX%\conversion\convert_tfcsv_to_pycocodetections.py ^
--annotation_file="results/%MODELNAME%/validation_for_inference/detections.csv" ^
--output_file="results/%MODELNAME%/validation_for_inference/coco_pets_detection_annotations.json

TF2 Keras to TF1 Frozen - OBSOLETE

The following script converts a .h5 model to TF1 frozen model. Forced conversion should not be used. Therefore, this conversion method is obsolete. Instead, use convert_kerash5_to_tf2.py

Source:

Script: convert_tf2keras_to_tf1frozen.py

Examples:

TF2 Keras to TF2 Saved Model

Source:

Script: convert_kerash5_to_tf2.py

Examples:

python convert_kerash5_to_tf2.py ^
--input_path="exported-models/tf2ke_yolo3mobilenetlite_448x448_pets/saved_model.h5" ^
--output_dir="exported-models/tf2ke_yolo3mobilenetlite_448x448_pets"

Yolo to VOC

Convert Yolo annotations to Pascal VOC.

Source: https://gist.github.com/goodhamgupta/7ca514458d24af980669b8b1c8bcdafd

Script: convert_yolo_to_voc.py

Arguments:

optional arguments:
  -h, --help            show this help message and exit
  -ad ANNOTATION_DIR, --annotation_dir ANNOTATION_DIR
                        Annotation directory with txt files of yolo annotations of the same name format as image files
  -id IMAGE_DIR, --image_dir IMAGE_DIR
                        Image file directory
  -at TARGET_ANNOTATION_DIR, --target_annotation_dir TARGET_ANNOTATION_DIR
                        Target directory for xml files
  -cl CLASS_FILE, --class_file CLASS_FILE
                        File with class labels
  --create_empty_images
                        Generates xmls also for images without any found objects, i.e. empty annotations. It is useful to prevent overfitting.

Example:

python %SCRIPTPREFIX%\conversion\convert_yolo_to_voc.py ^
--annotation_dir "./annotations/yolo_labels" ^
--target_annotation_dir "./annotations/voc_from_yolo_labels" ^
--image_dir "images/train" ^
--class_file "./annotations/labels.txt" ^
--create_empty_images

Yolo Detections to Tensorflow Detections CSV File

Convert Yolo detection annotations to Tensorflow detection annotations as csv. It is used to get all detection formats to fit the common detection format, i.e. tensorflow detection csv.

Source: -

Script: convert_yolo_to_tfcsv.py

Arguments:

optional arguments:
  -h, --help            show this help message and exit
parser.add_argument("-ad", '--annotation_dir',
                    default=None,
                    help='Annotation directory with txt files of yolo annotations of the same name format as image files',
                    required=False)
parser.add_argument("-id", '--image_dir',
                    default="images",
                    help='Image file directory to get the image size from the corresponding image', required=False)
parser.add_argument("-out", '--output',
                    default="./detections.csv",
                    help='Output file path for the detections csv.', required=False)

Example:

python %SCRIPTPREFIX%\conversion\convert_yolo_to_tfcsv.py ^
--annotation_dir=results/pt_yolov5s_640x360_oxfordpets_e300/TeslaV100/labels ^
--image_dir=images/validation ^
--output=results/pt_yolov5s_640x360_oxfordpets_e300/TeslaV100/detections.csv

Darkent2caffe

Source: Darknet

VOC or COCO to Yolo

The conversion from VOC or Coco to yolo is added to this repository as a subrepository. Source: https://github.com/paulxiong/convert2Yolo/tree/8de035a4a003dcf6b5f383e8262ae4856646978c

Script: -

Example:

python C:\Projekte\21_SoC_EML\convert2Yolo\example.py ^
--datasets VOC ^
--img_path C:/Projekte/21_SoC_EML/scripts-and-guides-samples/oxford_pets_reduced/images/train ^
--label C:/Projekte/21_SoC_EML/scripts-and-guides-samples/oxford_pets_reduced/annotations/xmls ^
--convert_output_path C:/Projekte/21_SoC_EML/scripts-and-guides-samples/oxford_pets_reduced/annotations/yolo_labels ^
--img_type ".jpg" ^
--manifest_path C:/Projekte/21_SoC_EML/scripts-and-guides-samples/oxford_pets_reduced/annotations/ ^
--cls_list_file C:/Projekte/21_SoC_EML/scripts-and-guides-samples/oxford_pets_reduced/annotations/labels.txt

Notes:

  • see original repo for guide how to use the converter
  • makedirs is not used. Therefore, folders like yolo_labels have to be created manually

png to jpg

Convert png images to jpg to keep a uniform format

Source: -

Script: convert_png_to_jpg.py

Arguments:

optional arguments:
  -h, --help            show this help message and exit
  -id IMAGE_DIR, --image_dir IMAGE_DIR
                        Image file directory

Example:

python %SCRIPTPREFIX%\conversion\convert_png_to_jpg.py ^
--image_dir "images/train"

Issues

If there are any issues or suggestions for improvements, please add an issue to github's bug tracking system or please send a mail to Alexander Wendt