-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtraining.sh
46 lines (40 loc) · 1.4 KB
/
training.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/bin/bash
#SBATCH --time=2-23:59:59
##SBATCH --time=03:59:59
#SBATCH --mem=30G
#SBATCH --cpus-per-task=4
#SBATCH --job-name=filter_score_model
#SBATCH --gres=gpu:a100:1
##SBATCH --gres=gpu:1 --constraint=volta
#SBATCH --output=/scratch/work/%u/projects/ddpm/diffusion_autumn_2022/A-diffusion/experiments/%a/train_%j.out
#SBATCH --array=[50]
module load anaconda
source activate /scratch/work/molinee2/conda_envs/cqtdiff
module load gcc/8.4.0
export TORCH_USE_RTLD_GLOBAL=YES
#export HYDRA_FULL_ERROR=1
#export CUDA_LAUNCH_BLOCKING=1
n=$SLURM_ARRAY_TASK_ID
n=cqtdiff+_MAESTRO #original CQTDiff (with fast implementation) (22kHz)
if [[ $n -eq CQTdiff+_MAESTRO ]]
then
ckpt="/scratch/work/molinee2/projects/ddpm/audio-inpainting-diffusion/experiments/cqtdiff+_MAESTRO/22k_8s-750000.pt"
exp=maestro22k_8s
network=paper_1912_unet_cqt_oct_attention_adaLN_2
dset=maestro_allyears
tester=inpainting_tester
CQT=True
fi
PATH_EXPERIMENT=experiments/$n
mkdir $PATH_EXPERIMENT
#python train_w_cqt.py path_experiment="$PATH_EXPERIMENT" $iteration
python train.py model_dir="$PATH_EXPERIMENT" \
dset=$dset \
exp=$exp \
network=$network \
tester=$tester \
tester.checkpoint=$ckpt \
tester.filter_out_cqt_DC_Nyq=$CQT \
logging=huge_model_logging \
exp.batch=1 \
exp.resume=False