This repository was archived by the owner on Jul 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoshap_models.py
570 lines (500 loc) · 30.3 KB
/
autoshap_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from autoshap.version import __version__
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report, accuracy_score
import xgboost
import shap
import os
from datetime import date
import itertools
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
import matplotlib as mpl
import seaborn as sns
import ipywidgets as widgets
from ipywidgets import interactive
from IPython.display import display
plt.rc('axes', axisbelow=True)
mpl.rc('figure', max_open_warning = 0)
class SHAPPipeline:
"""SHapley Additive Explanations automatization
with xgboost model
Parameters
----------
ml_model_params : dict
Contains all the following parameters
binary_output_feature : str
Name of a binary variable which will predicted by the machine learning model
dt_begin : str, yyyy-MM-dd
Date to be used to compute Shapley Values
dt_end : str, yyy-MM-dd
Not implemented yet
train_samples : int
Number of observations used in the model
shap_calculates_samples : int
Number of observations used to compute Shapley Values. Must be less
or equal to 'train_samples'
interaction : bool, default = False
If set to True the model can compute the Shapley Interaction Values.
This can take extremely long times for larger datasets, use with caution
tuning_params : dict
Dictionary containing the lists of values for hyperparameter optimization.
Must have a list for each of the following xgboost parameters:
'learning_rate', 'max_depth' and 'min_child_weight'
"""
def __init__(self, ml_model_params):
self.binary_output_feature = ml_model_params['binary_output_feature']
self.dt_begin = ml_model_params.get('dt_begin', None)
self.dt_end = ml_model_params.get('dt_end', None)
self.train_samples = ml_model_params['train_samples']
self.shap_calculate_samples = int(ml_model_params['shap_calculate_samples'])
self.interaction = ml_model_params['interaction']
self.tuning_params = ml_model_params['tuning_params']
self.best_params = {'max_depth':6,
'min_child_weight': 1,
'learning_rate':0.1,
'objective':'reg:squarederror'}
self.path_to_data = ml_model_params['path_to_data']
self.best_model = None
self.shap_interaction_values = None
self.verbose = ml_model_params['verbose']
def validate_dt_col(self, df):
try:
df['dt']
return df
except:
current_date = str(date.today())
if self.verbose == 1:
print(f'No "dt" column in dataframe. Setting it as {current_date}')
df['dt'] = [current_date]*df.shape[0]
self.dt_begin = current_date
return df
def validate_dataset_balance(self, df):
df = self.validate_dt_col(df)
min_count = df[df['dt']==self.dt_begin] \
.groupby(by=self.binary_output_feature)[self.binary_output_feature] \
.value_counts() \
.values \
.min()
if int(self.train_samples /2) > min_count:
if self.verbose == 1:
print(f'Chosen n_samples ({self.train_samples}) for dataset has insufficient counts for one of the classes.')
print(f'n_samples will be set as {int(min_count*2)}')
return False, int(2*min_count)
else:
return True, None
def set_n_samples(self, df):
balanced, n_samples = self.validate_dataset_balance(df)
if balanced == False:
return n_samples
else:
return self.train_samples
def transform_dataset(self, df):
self.train_samples = self.set_n_samples(df)
sampled_df = df[
(df[self.binary_output_feature]==0)&\
(df['dt']==self.dt_begin)] \
.sample(int(self.train_samples / 2))
sampled_df = pd.concat(
[sampled_df, df[df[self.binary_output_feature]==1] \
.sample(int(self.train_samples / 2))])
sampled_df = sampled_df.sample(frac=1.0, random_state=None)
sampled_df = sampled_df.drop('dt', axis=1)
sampled_df.reset_index(drop=True, inplace=True)
feature_names = list(sampled_df.drop(self.binary_output_feature, axis=1).columns)
return feature_names, sampled_df
def set_data(self, feature_names, sampled_df):
X = sampled_df[feature_names].copy()
y = sampled_df[self.binary_output_feature].copy()
dtrain = xgboost.DMatrix(X, label=y.values)
self.X = X.reset_index(drop=True)
self.y = y.reset_index(drop=True)
self.dtrain = dtrain
return self.X, self.y, self.dtrain
def train(self):
params = {
'max_depth':6,
'min_child_weight': 1,
'learning_rate':0.1,
'objective':'reg:squarederror'}
min_accuracy = 0.0
best_params = [None, None, None]
for max_depth in self.tuning_params['max_depth']:
for min_child_weight in self.tuning_params['min_child_weight']:
for learning_rate in self.tuning_params['learning_rate']:
params['max_depth'] = max_depth
params['min_child_weight'] = min_child_weight
params['learning_rate'] = learning_rate
model = xgboost.train(params=params, dtrain=self.dtrain,
evals=[(self.dtrain, 'test'), (self.dtrain, 'train')], early_stopping_rounds=2000, verbose_eval=0)
y_pred = np.round(model.predict(self.dtrain), 0)
acc = accuracy_score(y_pred, self.y)
if acc > min_accuracy:
min_accuracy = acc
best_params = (max_depth, min_child_weight, learning_rate)
self.best_params = {"max_depth":best_params[0], "min_child_weight":best_params[1], "learning_rate":best_params[2]}
return self.best_params
def set_best_model(self):
self.best_model = xgboost.train(params=self.best_params, dtrain=self.dtrain, evals=[(self.dtrain, 'test'), (self.dtrain, 'train')],
early_stopping_rounds=1000, verbose_eval=0)
return self.best_model
def best_model_log(self):
class_report = classification_report(self.y_pred, self.y.values)
curr_date = date.today()
text_file = open(f'{self.path_to_data}/train_log_{curr_date}.txt', "a")
text_file.write("########################################\n"\
f"log from {curr_date}\n"\
f"trained with : {self.best_model.__class__}\n"\
f"parameters : {self.best_params}\n"\
f"train_samples : {self.train_samples}\n"\
f"shap_calculate_samples: {self.shap_calculate_samples}\n"\
f"data date : {self.dt_begin}\n"\
"classification report:\n"
f"{class_report}\n\n")
text_file.close()
def calc_predictions(self):
self.y_pred = np.round(self.best_model.predict(self.dtrain), 0)
def select_correct_predictions(self):
correct_preds_indices = np.where(self.y.values == self.y_pred)[0]
self.X = self.X.loc[correct_preds_indices].copy()
self.y = self.y.loc[correct_preds_indices].copy()
self.y_pred = self.y_pred[correct_preds_indices]
def save_model(self):
joblib.dump(self.best_model, f'{self.path_to_data}/xgboost_model_{self.binary_output_feature}.joblib')
def validate_shap_calculate_samples(self):
if self.shap_calculate_samples > min(self.train_samples, self.X.shape[0]):
print(f'shap_calculate_samples is less than train_samples.')
print(f'Setting shap_calculate_samples = {self.train_samples}')
return min(self.train_samples, self.X.shape[0])
else:
return self.shap_calculate_samples
def build_shap_df(self):
self.shap_calculate_samples = self.validate_shap_calculate_samples()
shap_df = pd.DataFrame(data=self.shap_values, columns=list(self.X.columns))
shap_df = shap_df.iloc[:self.shap_calculate_samples].copy()
shap_df[self.binary_output_feature] = self.y_pred[:self.shap_calculate_samples]
self.shap_df = shap_df
def explainer(self):
return shap.TreeExplainer(self.best_model)
def compute_shap_values(self):
self.shap_values = self.explainer().shap_values(self.X)
return self.shap_values
def compute_shap_interaction_values(self):
self.shap_interaction_values = self.explainer().shap_interaction_values(self.X)
return self.shap_interaction_values
def save_shap_data(self):
joblib.dump(self.explainer(), f'{self.path_to_data}/model_explainer_{self.binary_output_feature}.joblib')
np.save(f'{self.path_to_data}/shap_values_{self.binary_output_feature}.npy', self.shap_values[:self.shap_calculate_samples])
if self.interaction:
np.save(f'{self.path_to_data}/shap_interaction_values_{self.binary_output_feature}.npy', self.shap_interaction_values[:self.shap_calculate_samples])
np.save(f'{self.path_to_data}/y_{self.binary_output_feature}.npy', self.y[:self.shap_calculate_samples].values)
self.X.iloc[:self.shap_calculate_samples].to_csv(f'{self.path_to_data}/X_shap_data_{self.binary_output_feature}.csv', index=False)
self.shap_df.to_csv(f'{self.path_to_data}/shap_df_data_{self.binary_output_feature}.csv', index=False)
def plot_shap_values(self, df, title='Shapley Values', figsize=(15, 4),
save_name=None, absolute=True, max_display=None, show_plots=True):
if max_display is None:
max_display = len(df.columns)
plt.figure(figsize=figsize)
plt.title(title)
if absolute:
df = df.sort_values(by='shapley_values', ascending=False)
ax = sns.barplot(x="shapley_values",
y="features",
data=df[:max_display], color='#1E88E5', ci=95)
plt.xlabel("Mean (|Shap value|): average impact on model output magnitude", fontsize=12)
plt.xlim([-0.001, df['shapley_values'].max()*1.05])
else:
col = "shapley_values_non_abs"
if max_display < len(df.features.unique()):
df['abs_val'] = df[col].abs()
df = df.sort_values(by='abs_val', ascending=False)[:max_display]
df = df.sort_values(by=col, ascending=False)
col_xlabel = "Mean (Shap value)"
ax = sns.barplot(x="shapley_values_non_abs",
y="features",
data=df,
color='#1E88E5')
plt.xlabel("Mean (Shap value): average impact on model output magnitude", fontsize=12)
plt.xlim([df['shapley_values_non_abs'].min()*1.05, df['shapley_values_non_abs'].max()*1.05])
plt.ylabel("Features", fontsize=12)
plt.yticks(fontsize=12)
plt.grid(True)
if show_plots == True:
plt.show()
if save_name:
plt.savefig(save_name+".png", bbox_inches='tight',dpi=300)
plt.close()
def _make_shap_values_stats(self, shap_values, X):
shap_values_df = pd.DataFrame(data=shap_values, columns=X.columns)
shap_values_stats_df = pd.DataFrame(
{
"shapley_values":np.mean(abs(shap_values_df), axis=0),
"shapley_values_std":np.std(abs(shap_values_df), axis=0),
"shapley_values_non_abs":np.mean(shap_values_df, axis=0),
"features":shap_values_df.columns})
return shap_values_stats_df.reset_index(drop=True)
def make_shap_values_stats(self, shap_values, X, samples):
a = self._make_shap_values_stats(shap_values, X)
df = pd.DataFrame(data=[], columns=a.columns)
for i in range(X.shape[0]//samples):
df = pd.concat([df, self._make_shap_values_stats(shap_values[i*samples:(i+1)*samples], X[i*samples:(i+1)*samples])])
return df
def make_summary_plots(self, shap_values, X, max_display, label="", show_plots=True):
plt.figure()
plt.title(f'Summary plot - {self.binary_output_feature}: {label}')
shap.summary_plot(shap_values, X, plot_type="dot", show=False, max_display=max_display)
if show_plots == True:
plt.show()
plt.savefig(f'{self.path_to_data}/summary_plot_dots_{self.binary_output_feature}_{label}.png', bbox_inches='tight',dpi=300)
plt.close()
def make_summary(self, n_high_contribution_cols = 10, n_high_contribution_interaction_cols = 3,
max_display=None, show_plots=True):
if self.verbose == 1:
print('Loading data...')
explainer = joblib.load(f'{self.path_to_data}/model_explainer_{self.binary_output_feature}.joblib')
model = joblib.load(f'{self.path_to_data}/xgboost_model_{self.binary_output_feature}.joblib')
shap_values = np.load(f'{self.path_to_data}/shap_values_{self.binary_output_feature}.npy')
if self.interaction:
shap_interaction_values = np.load(f'{self.path_to_data}/shap_interaction_values_{self.binary_output_feature}.npy', allow_pickle=True)
y = np.load(f'{self.path_to_data}/y_{self.binary_output_feature}.npy', allow_pickle=True)
X = pd.read_csv(f'{self.path_to_data}/X_shap_data_{self.binary_output_feature}.csv')
shap_df = pd.read_csv(f'{self.path_to_data}/shap_df_data_{self.binary_output_feature}.csv')
if self.verbose == 1:
print('Building dataframes...')
shap_values_df = pd.DataFrame(data=shap_values, columns=X.columns)
shap_values_df = pd.concat([shap_df[self.binary_output_feature].iloc[:self.shap_calculate_samples].copy(),
shap_values_df], axis=1)
list0 = list(shap_df[shap_df[self.binary_output_feature]==0].reset_index(drop=True).index)
list1 = list(shap_df[shap_df[self.binary_output_feature]==1].reset_index(drop=True).index)
shap_values_stats_df = self._make_shap_values_stats(shap_values, X)
shap_values_stats_0_df = self._make_shap_values_stats(shap_values[list0, :], X.iloc[list0])
shap_values_stats_1_df = self._make_shap_values_stats(shap_values[list1, :], X.iloc[list1])
if self.verbose == 1:
print('Making summary plots...')
self.plot_shap_values(shap_values_stats_df,
figsize=(8, 10),
absolute=True,
save_name=f'{self.path_to_data}/summary_plot_{self.binary_output_feature}_absolute',
title=f'Shapley values - {self.binary_output_feature}: absolute', max_display=max_display,
show_plots=show_plots)
self.plot_shap_values(shap_values_stats_df,
figsize=(8, 10),
absolute=False,
save_name=f'{self.path_to_data}/summary_plot_{self.binary_output_feature}_non_absolute',
title=f'Shapley values - {self.binary_output_feature}: non absolute', max_display=max_display,
show_plots=show_plots)
self.plot_shap_values(shap_values_stats_0_df,
figsize=(8, 10),
absolute=True,
save_name=f'{self.path_to_data}/summary_plot_{self.binary_output_feature}_absolute_label0',
title=f'Shapley values - {self.binary_output_feature}: absolute labels 0', max_display=max_display,
show_plots=show_plots)
self.plot_shap_values(shap_values_stats_1_df,
figsize=(8, 10),
absolute=True,
save_name=f'{self.path_to_data}/summary_plot_{self.binary_output_feature}_absolute_label1',
title=f'Shapley values - {self.binary_output_feature}: absolute labels 1', max_display=max_display,
show_plots=show_plots)
self.make_summary_plots(shap_values = shap_values,
X = X, max_display=max_display,
label="", show_plots=show_plots)
self.make_summary_plots(shap_values = shap_values[list0],
X = X.iloc[list0].copy(), max_display=max_display,
label="label0", show_plots=show_plots)
self.make_summary_plots(shap_values = shap_values[list1],
X = X.iloc[list1].copy(), max_display=max_display,
label="label1", show_plots=show_plots)
if self.verbose == 1:
print('Making dependence plots...')
high_contribution_cols = list(shap_values_df \
.drop(self.binary_output_feature, axis=1) \
.abs() \
.mean(axis=0) \
.sort_values(ascending=False) \
.keys())[:n_high_contribution_cols]
for item in high_contribution_cols:
plt.figure()
shap.dependence_plot(item, shap_values, X, x_jitter=0.2, show=False, interaction_index=None)
plt.axhline(y=0.0, color='deeppink', linestyle='--',zorder=0.2)
plt.grid(True)
plt.savefig(f'{self.path_to_data}/dependence_{self.binary_output_feature}_{item}.png', bbox_inches='tight',dpi=300)
if show_plots == True:
plt.show();
plt.close();
if self.interaction:
if self.verbose == 1:
print('Making dependence interaction plots...')
high_contribution_cols = list(shap_values_df \
.drop(self.binary_output_feature, axis=1) \
.abs() \
.mean(axis=0) \
.sort_values(ascending=False) \
.keys())[:n_high_contribution_interaction_cols]
for item in itertools.combinations(high_contribution_cols, 2):
plt.figure()
shap.dependence_plot((item[0], item[1]), shap_interaction_values, X, x_jitter=0.2, show=False)
plt.axhline(y=0.0, color='deeppink', linestyle='--',zorder=0.2)
plt.grid(True)
plt.savefig(f'{self.path_to_data}/dependence_{self.binary_output_feature}_{item[0]}_{item[1]}.png', bbox_inches='tight',dpi=300)
if show_plots == True:
plt.show();
plt.close();
if self.verbose == 1:
print('We are done!')
class FullPipeline(SHAPPipeline):
def __init__(self, ml_model_params):
super().__init__(ml_model_params)
def run_full_pipeline(self, df):
feature_names, sampled_df = self.transform_dataset(df=df)
_, _, _ = self.set_data(feature_names, sampled_df)
self.train()
self.set_best_model()
self.calc_predictions()
self.best_model_log()
self.select_correct_predictions()
_ = self.compute_shap_values()
self.build_shap_df()
if self.interaction:
_ = self.compute_shap_interaction_values()
self.save_shap_data()
self.save_model()
class SHAPViews:
def __init__(self,shap_df,data_df,interaction_values=None):
self.shap_df = shap_df
self.data_df = data_df
self.interaction_values = interaction_values
self.features_names = list(data_df.columns)
self.feature2id = {v:k for k,v in enumerate(list(data_df.columns))}
def _view_dependence_plot(self,col,width,height,alpha,s,c):
plt.figure(figsize=(width,height))
plt.scatter(x=self.data_df[col].values,y=self.shap_df[col].values,marker="." , c=c,alpha=alpha, s=s)
plt.xlabel(col,fontsize=12)
plt.ylabel(f"SHAP value for\n{col}",fontsize=12)
plt.grid(True)
plt.show()
def view_dependence_plot(self):
feature_choice = widgets.Dropdown(options=self.features_names,description='Feature:')
colors = widgets.Dropdown(options=['darkorchid','cornflowerblue','limegreen','darksalmon','black'],description='Color:')
width = widgets.IntSlider(description="Width", min=2, max=25, value=10, continuous_update=True)
height = widgets.IntSlider(description="Height", min=2, max=10, value=4, continuous_update=True)
alpha = widgets.FloatSlider(description="Alpha", min=0, max=1, value=0.7, continuous_update=False)
s = widgets.FloatSlider(description="Size", min=20, max=800, value=200, continuous_update=False)
out = widgets.interactive_output(self._view_dependence_plot, {'col': feature_choice,
'width':width,
'height':height,
'alpha':alpha,
's':s,
'c':colors})
feature_choice.layout.width, colors.layout.width, width.layout.width = ['400px','200px','300px']
height.layout.width, alpha.layout.width, s.layout.width = ['300px']*3
display(widgets.HBox([feature_choice,colors]),widgets.HBox([width,height]),widgets.HBox([alpha,s]),out)
def _view_dependence_plot_extra(self,col1,col2,width,height,alpha,s):
col1_id, col2_id = [self.feature2id[col1],self.feature2id[col2]]
fig, ax = plt.subplots(figsize=(width,height),ncols=1)
pos = ax.scatter(x=self.data_df[col1].values,
y=self.shap_df[col1].values,
marker=".", c=self.data_df[col2].values ,alpha=alpha, s=s,cmap=shap.plots.colors.red_blue)
plt.xlabel(col1,fontsize=12)
plt.ylabel(f"SHAP value for\n{col1}",fontsize=12)
ax.set_axisbelow(True)
plt.grid(True)
fig.colorbar(pos,ax=ax,label=f'{col2}')
def view_dependence_plot_extra(self):
col1 = widgets.Dropdown(options=self.features_names,description='Feature 1:', value=self.features_names[0])
col2 = widgets.Dropdown(options=self.features_names,description='Feature 2:', value=self.features_names[1])
width = widgets.IntSlider(description="Width", min=2, max=25, value=12, continuous_update=True)
height = widgets.IntSlider(description="Height", min=2, max=10, value=4, continuous_update=True)
alpha = widgets.FloatSlider(description="Alpha", min=0, max=1, value=0.7, continuous_update=False)
s = widgets.FloatSlider(description="Size", min=20, max=800, value=200, continuous_update=False)
out = widgets.interactive_output(self._view_dependence_plot_extra, {'col1': col1, 'col2':col2,
'width':width,
'height':height,
'alpha':alpha,
's':s})
col1.layout.width, col2.layout.width, width.layout.width = ['400px','400px','300px']
height.layout.width, alpha.layout.width, s.layout.width = ['300px']*3
display(widgets.HBox([col1,col2]),widgets.HBox([width,height]),widgets.HBox([alpha,s]),out)
def _view_interaction_plot(self,col1,col2,width,height,alpha,s):
col1_id, col2_id = [self.feature2id[col1],self.feature2id[col2]]
fig, ax = plt.subplots(figsize=(width,height),ncols=1)
pos = ax.scatter(x=self.data_df[col1].values,
y=self.interaction_values[:,col1_id,col2_id],
marker=".", c=self.data_df[col2].values ,alpha=alpha, s=s,cmap=shap.plots.colors.red_blue)
plt.xlabel(col1,fontsize=12)
plt.ylabel(f"SHAP interaction value for\n{col1} and {col2}",fontsize=12)
ax.set_axisbelow(True)
plt.grid(True)
fig.colorbar(pos,ax=ax,label=f'{col2}')
def view_interaction_plot(self):
col1 = widgets.Dropdown(options=self.features_names,description='Feature 1:', value=self.features_names[0])
col2 = widgets.Dropdown(options=self.features_names,description='Feature 2:', value=self.features_names[1])
width = widgets.IntSlider(description="Width", min=2, max=25, value=12, continuous_update=True)
height = widgets.IntSlider(description="Height", min=2, max=10, value=4, continuous_update=True)
alpha = widgets.FloatSlider(description="Alpha", min=0, max=1, value=0.7, continuous_update=False)
s = widgets.FloatSlider(description="Size", min=20, max=800, value=200, continuous_update=False)
out = widgets.interactive_output(self._view_interaction_plot, {'col1': col1, 'col2':col2,
'width':width,
'height':height,
'alpha':alpha,
's':s})
col1.layout.width, col2.layout.width, width.layout.width = ['400px','400px','300px']
height.layout.width, alpha.layout.width, s.layout.width = ['300px']*3
display(widgets.HBox([col1,col2]),widgets.HBox([width,height]),widgets.HBox([alpha,s]),out)
def view_interaction_plot(self):
col1 = widgets.Dropdown(options=self.features_names,description='Feature 1:', value=self.features_names[0])
col2 = widgets.Dropdown(options=self.features_names,description='Feature 2:', value=self.features_names[1])
width = widgets.IntSlider(description="Width", min=2, max=25, value=12, continuous_update=True)
height = widgets.IntSlider(description="Height", min=2, max=10, value=4, continuous_update=True)
alpha = widgets.FloatSlider(description="Alpha", min=0, max=1, value=0.7, continuous_update=True)
s = widgets.FloatSlider(description="Size", min=20, max=800, value=200, continuous_update=True)
out = widgets.interactive_output(self._view_interaction_plot, {'col1': col1, 'col2':col2,
'width':width,
'height':height,
'alpha':alpha,
's':s})
col1.layout.width, col2.layout.width, width.layout.width = ['400px','400px','300px']
height.layout.width, alpha.layout.width, s.layout.width = ['300px']*3
display(widgets.HBox([col1,col2]),widgets.HBox([width,height]),widgets.HBox([alpha,s]),out)
def _view_dependence_plot_filter(self,col1,col2,width,height,lower,higher,color,x_upper,x_lower,y_upper):
filtered_df = self.filter_dataframe(col2,lower,higher)
plt.figure(figsize=(width,height))
sns.distplot(filtered_df[col1],label=f'Count: {filtered_df.shape[0]}',kde_kws={"lw": 3},
color=color, hist=True, hist_kws={"alpha":0.7,"linewidth": 3, "histtype":'stepfilled'})
sns.distplot(self.data_df[col1],kde_kws={"lw": 3},
color='slategray',hist=True, hist_kws={"alpha":0.4,"linewidth": 3, "histtype":'stepfilled'})
plt.legend(loc=0)
plt.xlim(self.data_df[col1].min(),self.data_df[col1].max())
if x_upper != None:
plt.xlim(None,x_upper)
plt.ylim(0,y_upper)
plt.xlabel(col1,fontsize=12)
plt.grid(True)
plt.show()
def filter_dataframe(self,col,lower,higher):
filtered_ids = list(self.shap_df[(self.shap_df[col]>=lower)&(self.shap_df[col]<=higher)].index)
filtered_df = self.data_df.iloc[filtered_ids].copy()
return filtered_df
def filter_by_shap_values(self):
col1 = widgets.Dropdown(options=self.features_names,description='Feature:', value=self.features_names[0])
col2 = widgets.Dropdown(options=self.features_names,description='Filter Feature:', value=self.features_names[1])
color = widgets.Dropdown(options=['blueviolet','cornflowerblue','limegreen','darksalmon','black'],description='Color:')
lower = widgets.FloatSlider(description="Lower limit", min=-1., max=+1., value=-1., step=0.01, continuous_update=True)
higher = widgets.FloatSlider(description="Upper limit", min=-1., max=1., value=+1., step=0.01, continuous_update=True)
y_upper = widgets.FloatText(description="Y upper bound", value=None,step=0.1, continuous_update=True)
x_upper = widgets.FloatText(description="X upper bound", value=None,step=0.1, continuous_update=True)
x_lower = widgets.FloatText(description="X lower bound", value=None,step=0.1, continuous_update=True)
width = widgets.IntSlider(description="Width", min=2, max=25, value=12, continuous_update=True)
height = widgets.IntSlider(description="Height", min=2, max=10, value=4, continuous_update=True)
out = widgets.interactive_output(self._view_dependence_plot_filter, {'col1': col1, 'col2':col2,
'width':width,
'height':height,
'lower':lower,
'higher':higher,
'color':color,
'y_upper':y_upper,
'x_upper':x_upper,'x_lower':x_lower})
col1.layout.width, col2.layout.width, width.layout.width = ['300px','300px','300px']
color.layout.width, x_upper.layout.width,x_lower.layout.width, y_upper.layout.width = ["300px","100px","100px","100px"]
height.layout.width, lower.layout.width, higher.layout.width = ['300px','500px','500px']
display(widgets.HBox([col1,col2,color]),widgets.HBox([lower,higher]),widgets.HBox([width,height,y_upper]),widgets.HBox([x_lower,x_upper]),out)