-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathC4_Naive_Bayes.R
49 lines (33 loc) · 1.21 KB
/
C4_Naive_Bayes.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
library(tidyverse)
library(ISLR)
library(e1071)
library(caret)
set.seed(913)
dfDefault <- Default
#tst <- subset(dfDefault, default == 'No')
#dfDefault <- Default
#ProbDef = nrow(filter(dfDefault, default == "Yes"))/nrow(dfDefault)
p = ggplot(dfDefault, aes(balance, fill = default)) +
geom_histogram(binwidth = 500)
p
dfDefault <- dfDefault %>% rownames_to_column("SampleID")
xTrain <- sample_n(dfDefault, round(nrow(dfDefault)*.6))
xTest <- dfDefault %>% anti_join(xTrain, by = "SampleID")
model <- naiveBayes(default ~ student + balance + income, data = xTrain)
xTest$pred <- predict(model, xTest, prob = TRUE)
confusionMatrix(factor(xTest$pred), (xTest$default), positive = "Yes")
# ROC Curve https://en.wikipedia.org/wiki/Receiver_operating_characteristic
# it measures the true positive vs false positive *rate*
probs <- predict(model, xTest, type = 'raw')
library(ROCR)
pred <- prediction(probs[, "Yes"], xTest$default)
perf_nb <- performance(pred, measure = 'tpr', x.measure = 'fpr')
plot(perf_nb)
auc<- performance(pred,"auc")
auc
# compare
pred <- prediction(probs[, "No"], xTest$default)
perf_nb <- performance(pred, measure = 'tpr', x.measure = 'fpr')
plot(perf_nb)
auc<- performance(pred,"auc")
auc