-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverify.py
35 lines (26 loc) · 1.06 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from torchvision import datasets
from common import ModelClass, transform
from constants import BATCH_SIZE, DIRECTORY, MODEL_PATH, NUM_WORKERS
# use gpu
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def verify(model=None):
if not model:
model = ModelClass().to(device)
model.load_state_dict(torch.load(MODEL_PATH))
model.eval()
test_data = datasets.ImageFolder(f'{DIRECTORY}/test', transform=transform)
testloader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
# test model
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data[0].to(device), data[1].to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
if __name__ == '__main__':
verify()