-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
156 lines (122 loc) · 5.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
from scipy import linalg
import cvxpy as cp
import utils
from plotter import plot_trajectories
def continuous_dynamics():
"""Computes the continuous-time dynamics of the Dragon vehicle.
State: x = [r_x, r_y, r_z, v_x, v_y, v_z]
Controls: u = [t_x, t_y, t_z]
where r is the relative position of the Dragon spacecraft with respect to the ISS,
v is the relative velocity, and t is the thrust on the spacecraft.
Returns:
- A(np.ndarray): The state matrix [6x6]
- B(np.ndarray): The input matrix [6x3]
"""
# Parameters
mu = 3.986004418e14 # Standard gravitational parameter
a = 6971100.0 # Semi-major axis of ISS
n = np.sqrt(mu/a**3) # Mean motion
# Continuous time dynamics ẋ = Ax + Bu
A = np.array([[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[3*n**2, 0, 0, 0, 2*n, 0],
[0, 0, 0, -2*n, 0, 0],
[0, 0, -n**2, 0, 0, 0]])
B = np.vstack((np.zeros((3,3)), 0.1*np.eye(3)))
return A, B
def discretize_dynamics(A, B, dt):
"""Computes the discrete-time dynamics of the Dragon vehicle.
x_{k+1} = Ad*x_k + Bd*u_k
Since the continuous-time system is linear, we'll use the matrix exponential
to discretize the dynamics.
Inputs:
- A(np.ndarray): The continuous-time state matrix [6x6]
- B(np.ndarray): The continuous-time input matrix [6x3]
- dt(float): The discretization step
Returns:
- Ad(np.ndarray): The discrete-time state matrix [6x6]
- Bd(np.ndarray): The discrete-time input matrix [6x3]
"""
nx, nu = B.shape
M1 = np.hstack((A, B))
M2 = np.zeros((nu, nx+nu))
M = linalg.expm(np.vstack((M1, M2))*dt) # Matrix exponential
# Extract matrices from matrix exponential
Ad = M[:nx, :nx]
Bd = M[:nx, nx:]
return Ad, Bd
def convex_mpc(A, B, X_ref_window, xic, x_goal, u_min, u_max, N_mpc):
"""Solves OCP as convex optimization problem for a time-horizon N_mpc.
Inputs:
- A(np.ndarray): The discrete-time state matrix [nxn]
- B(np.ndarray): The discrete-time input matrix [nxm]
- X_ref_window(np.ndarray): The reference trajectory for the current window [nxN]
- xic(np.ndarray): The current 'initial' state (n,)
- x_goal(np.ndarray): The goal state (n,)
- u_min(np.ndarray): The min input bound (m,)
- u_max(np.ndarray): The max input bound (m,)
- N_mpc(int): The MPC time horizon
Returns:
- (np.ndarray): The first control input to be applied to the robot (m,)
"""
nx, nu = B.shape # State and controls size
# Cost function weights
Q = np.eye(nx)
R = np.eye(nu)
# Decision variables
X = cp.Variable((nx, N_mpc))
U = cp.Variable((nu, N_mpc-1))
# Objective function (quadratic)
objective = 0
for i in range(N_mpc-1):
objective += (1/2)*cp.quad_form(X[:, i]-X_ref_window[:, i], Q) + (1/2)*cp.quad_form(U[:, i], R)
objective += (1/2)*cp.quad_form(X[:, N_mpc-1]-X_ref_window[:, N_mpc-1], Q)
# Constraints
constraints = [X[:, 0] == xic] # Initial conditions
constraints += [X[:, -1] == x_goal] # Final condition
for i in range(N_mpc-1):
constraints += [u_min <= U[:, i]] # Control bounds
constraints += [U[:, i] <= u_max] # Control bounds
constraints += [X[:, i+1] == A@X[:, i] + B@U[:, i]] # Dynamics
for i in range(N_mpc):
constraints += [X[1, i] <= x_goal[1]] # State constraints
prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve(solver='ECOS', verbose=False)
return U.value[:, 0]
def simulation_MPC(x0, x_goal, X_ref, Ad, Bd, N, N_mpc, u_min, u_max):
"""Simulation with MPC controller."""
N_sim = N + N_mpc # Simulation timesteps
nx, nu = Bd.shape # State and controls size
X_sim = np.zeros((nx, N_sim))
X_sim[:, 0] = x0
U_sim = np.zeros((nu, N_sim-1))
for i in range(N_sim-1):
# Get state estimate
xi_estimate = utils.state_estimate(X_sim[:, i], x_goal)
# Given a window of N_mpc timesteps, get current reference trajectory
X_ref_tilde = X_ref[:, i:(i+N_mpc)]
# Call convex mpc controller with state estimate
u_mpc = convex_mpc(Ad, Bd, X_ref_tilde, xi_estimate, x_goal, u_min, u_max, N_mpc)
# Commanded control goes into thruster model where it gets modified
U_sim[:, i] = utils.thruster_model(X_sim[:, i], x_goal, u_mpc)
# Simulate one step
X_sim[:, i+1] = Ad@X_sim[:, i] + Bd@U_sim[:, i]
return X_sim, U_sim
if __name__ == "__main__":
Ts = 1.0 # Discretization step
N_mpc = 20 # MPC window size
N = 100 # Simulation timesteps
x0 = np.array([-2.0, -4.0, 2.0, 0, 0, 0]) # Initial state
x_goal = np.array([0, -0.68, 3.05, 0, 0, 0]) # Goal state
u_max = 0.4*np.ones(3) # Upper bound for control inputs
u_min = -u_max # Lower bound for control inputs
X_ref = utils.desired_trajectory_long(x0, x_goal, 2*N, Ts).T # Reference trajectory to track (nx x 2N)
# Discretize the dynamics
A, B = continuous_dynamics()
Ad, Bd = discretize_dynamics(A, B, Ts)
# Simulate with MPC control
X_sim, U_sim = simulation_MPC(x0, x_goal, X_ref, Ad, Bd, N, N_mpc, u_min, u_max)
# Plot state & control trajectories
plot_trajectories(X_sim, U_sim)