-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathvseCheck.R
138 lines (122 loc) · 6.32 KB
/
vseCheck.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
library(data.table)
library(scatterD3)
#
# vse = fread("full1.csv")
# vse = rbind(vse,fread("full2.csv"))
# vse[,mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# vse[chooser=="honBallot",mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# ovse = fread("lowDks2.csv")
# ovse[,mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# ovse[chooser %in% c("honBallot","Oss.hon_strat.","Prob.strat50_hon50."),mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# mvse = fread("media413.csv")
# mvse = rbind(mvse,fread("media41.csv"), fill=T)
# mvse[,mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# mvse[chooser %in% c("honBallot","Oss.hon_strat.","Prob.strat50_hon50."),mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
#
#
#
#
#
#
#
#
#
#
# fvse = fread("fuzzy5.csv")
# fvse[,mean(util-rand)/mean(best-rand),by=list(method,chooser)]
#
# fvse = fread("wtf1.csv")
#
# fvse = rbind(fvse,fread("wtf2.csv"))
fvse = fread("target3.csv")
fuzVses = fvse[,mean(util-rand)/mean(best-rand),by=list(method,chooser)]
etype = fvse[method=="Schulze" & chooser=="honBallot",tallyVal0,by=eid]
names(etype) = c("eid","scenario")
setkey(etype,eid)
setkey(fvse,eid)
fvse=fvse[etype]
interestingStrats = c("honBallot","smartOss","stratBallot","Oss.hon_strat.","Oss.hon_Prob.strat50_hon50..","Prob.strat50_hon50.")
honestScenarios = fvse[chooser %in% interestingStrats,list(vse=mean(util-rand)/mean(best-rand),frequency=.N/dim(etype)[1]),by=list(scenario,chooser,method)]
honestScenarios2 = fvse[chooser %in% interestingStrats,list(vse=mean(util-rand)/mean(best-rand),frequency=.N/dim(etype)[1]),by=list(chooser,method)]
write.csv(honestScenarios,"byScenario.csv")
hmethodlist = honestScenarios2[,method]
methods = unique(hmethodlist)
# methodOrder = methods[c(8,9,14,15,10,#15, #IRNR
# 11,12, #rp
# 5,4,3,2,1,6,7,13
# #,15 #IRNR at end
# )]
allMethodOrder = c("Plurality", "Borda", "Mav", "Mj", "Irv", "Schulze", "Rp",
"BulletyApproval60", "IdealApproval", "Score0to2", "Score0to10",
"Score0to1000", "Srv0to10", "Srv0to2", "V321")
methodOrder = c("Plurality", "Irv", "BulletyApproval60", "Srv0to10", "V321")
allMethodOrder= unique(c(methodOrder,allMethodOrder))
methodNames = c("Plurality", "IRV", "Approval", "SRV", "3-2-1",
allMethodOrder[(length(methodOrder)+1):length(allMethodOrder)])
scenarios = c("cycle", "easy", "spoiler", "squeeze", "chicken", "other")
scenarioFreq = honestScenarios[,list(freq=mean(frequency)),by=scenario]
setkey(scenarioFreq,scenario)
scenarioLabelBase2 = c("2. Easy\n(Cond #1 = Plur #1)",
"5. Chicken dilemma\n(Cond #3 = Plur3 #1)",
"6. Other\n",
"4. Center squeeze\n(Cond #1 = Plur3 #3)",
"3. Spoiler\n(Cond #1 = Plur3 #1)",
"1. Condorcet cycle\n"
)
scenarioLabelBase = c(
"1.Cond. cycle",
"2.Easy",
"3.Spoiler",
"4.Ctr. squeeze",
"5.Chicken dilem.",
"6.Other"
)
scenarioLabel = paste0(scenarioLabelBase," (~",round(scenarioFreq[scenarios,freq]*100),"%)")
stratLabel = c("a.100% honest",
"d.Smart 1-sided strat.",
"f.100% strat.",
"e.100% 1-sided strat.","b.50% 1-sided strat.","c.50% strat.")
methodOrder = methods #comment out
honestScenarios[,method:=factor(hmethodlist,levels=allMethodOrder,
labels=paste(c(paste0(" ",as.character(1:9)),as.character(10:length(allMethodOrder))),allMethodOrder,sep=". "))]
honestScenarios[,strategy:=factor(chooser, levels=interestingStrats,labels=stratLabel)]
honestScenarios[,`Scenario type`:=factor(scenario,levels=scenarios,labels=scenarioLabel)]
honestScenarios[vse<0,vse:=vse/10]
scatterD3(data = honestScenarios[!is.na(method),], x = vse, y = method, col_var = strategy, symbol_var = `Scenario type`, left_margin = 90, xlim=c(-.2,1.0), size_var=frequency)
numbers = paste0(c(paste0(" ",as.character(1:9)),as.character(10:99)),".")
spaces = c(" ", "\U00a0", "\U2000", "\U2001", "\U2002", "\U2003", "\U2004")
binarycount = expand.grid(1:7,1:7)
invisnumbers = rep(NA,dim(binarycount)[1])
for (i in 1:length(invisnumbers)) {
invisnumbers[i] = paste0(spaces[as.numeric(binarycount[i,2:1])],collapse="")
}
numbers = invisnumbers
numberedNames = paste(numbers[1:length(methodNames)],methodNames,sep=" ")
honestScenarios2[,method:=factor(hmethodlist,levels=allMethodOrder,labels=numberedNames)]
honestScenarios2[,strategy:=factor(chooser, levels=interestingStrats,labels=stratLabel)]
#honestScenarios2[,`Scenario type`:=factor(scenario,levels=scenarios,labels=scenarioLabel)]
honestScenarios2[vse<0,vse:=vse/10]
#[-grep("IRNR",honestScenarios2[,as.character(method)])]
scatterD3(data = honestScenarios2[as.character(method) %in% levels(honestScenarios2[,method])[1:5],], x = vse, y = method, col_var = strategy, left_margin = 90, xlim=c(.7,1.0))
fvse[,works:=as.integer(tallyVal1)]
#strategic function
stratWorks = fvse[chooser=="Oss.hon_strat.",list(stratWorks=mean(works==1,na.rm=T),
stratBackfire=mean(works==-1,na.rm=T),
frequency=.N/dim(etype)[1]),by=list(method,scenario)]
stratWorks[,`Scenario type`:=factor(scenario,levels=scenarios,labels=scenarioLabel)]
scatterD3(data = stratWorks, x = stratWorks, y = stratBackfire, xlim=c(0,1.0),ylim=c(0,1.0), symbol_var = `Scenario type`, size_var=frequency, col_var=method)
stratWorksAg = fvse[chooser=="Oss.hon_strat.",list(stratWorks=mean(works==1,na.rm=T),
stratBackfire=mean(works==-1,na.rm=T)),
by=list(method)]
scatterD3(data = stratWorksAg, x = stratWorks, y = stratBackfire, xlim=c(0,1.0),ylim=c(0,1.0), col_var=method, lab=method)
honestScenarios2[,VSE:=vse*100]
library(ggplot2)
library(ggthemes)
ggplot(data = honestScenarios2[as.character(method) %in% levels(honestScenarios2[,method])[c(1:3,5)],], aes(x = VSE, y = method, group = method)) + geom_line(size=3) + xlim(70,100) + theme_gdocs() + theme(axis.title.y=element_blank()) + xlab("% Voter Satisfaction Efficiency (VSE)")
#(I think that refining the strategies can improve the function:backfire balance, but it's a)