-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBasic_corr_Meta-Analysis.R
105 lines (73 loc) · 3.55 KB
/
Basic_corr_Meta-Analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
## ------------------------------------------------------------------------
## Specify the file containing your data
filename <- "corr_dat.csv"
### Specify the columns containing the Study ID, rs and Ns within the file
col.corr <- "r"
col.n <- "n"
col.study.id <- "Study.ID"
### Specify the effect size measure
## Options in this template are ZCOR (Fisher's r-to-z transformed correlation
## coefficient), COR (raw correlations), and UCOR (Raw correlations corrected
## for negative bias). In most cases ZCOR is most appropriate.
measure <- "ZCOR"
### Specify the model type.
## In most cases REML should be the default
## Options in this template are
# method <- "FE" # Fixed effect meta-analysis
# method <- "REML" # Default random effects meta-analysis
# method <- "DL" # DerSimonian-Laird estimator
# method <- "HE" # Hedges estimator
# method <- "HS" # Hunter-Schmidt estimator
# method <- "SJ" # Sidik-Jonkman estimator
# method <- "ML" # maximum-likelihood estimator
# method <- "REML" # restricted maximum-likelihood estimator
# method <- "EB" # empirical Bayes estimator
# method <- "PM" # Paule-Mandel estimator
# method <- "GENQ" # generalized Q-statistic estimator
method <- "REML"
## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
library(metafor)
library(DT)
library(knitr)
library(RCurl)
library(dplyr)
library(rmarkdown)
## These lines of code download and run the metafor_tidiers functions that implement broom type tidy data functions for rma objects
source("metafor_tidiers.R")
# Set so that long lines in R will be wrapped:
opts_chunk$set(tidy.opts = list(width.cutoff = 80), tidy = TRUE)
## ----read_data-----------------------------------------------------------
dat <- read.csv(filename, stringsAsFactors = FALSE)
## ----calculate_ES--------------------------------------------------------
dat_ES <-
escalc(
measure = measure,
ri = get(col.corr),
ni = get(col.n),
data = dat
)
## ----dat_es_html, echo = FALSE, warning = FALSE--------------------------
datatable(dat_ES %>%
select(-one_of(c("X", "Timestamp"))), rownames = FALSE) %>%
formatRound('yi', 3) %>%
formatRound('vi', 3)
## ----run_MA--------------------------------------------------------------
dat_MA <- rma(yi, vi, data = dat_ES, slab = get(col.study.id), method=method)
dat_MA
## ----convenience, echo=FALSE---------------------------------------------
##These are some convenience functions that help put things into tables for easier interpretation.
model <- tidy.rma(dat_MA)
het.small <- glance.rma(dat_MA) %>%
select(one_of(c("k", "tau2", "se.tau2", "QE", "QEp", "I2")))
## ----summary_table, echo=FALSE-------------------------------------------
kable(model, col.names=c("*r*", "se", "z", "*p*", "95% CI LB", "95% CI UB"), row.names=FALSE, digits = 3, caption="Effect Size")
## ----het_table, eval=dat_MA$method!="FE", echo=FALSE---------------------
kable(het.small, col.names=c("k", "$\\tau$^2^", "se", "Q", "*p*", "I^2^"), digits = 3, caption="Heterogeneity")
## ----forest, warning = FALSE---------------------------------------------
forest(dat_MA, slab= attr(dat_MA$yi, "slab"))
## ----funnel--------------------------------------------------------------
funnel(dat_MA, back="white")
## ----include=FALSE-------------------------------------------------------
citPkgs <- names(sessionInfo()$otherPkgs)
write_bib(citPkgs, file="R-Pckgs.bib")