-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path#graphs.py#
258 lines (236 loc) · 11.3 KB
/
#graphs.py#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
cimport MDAnalysis
import numpy as np
from pygraph.classes.graph import graph
from pygraph.readwrite.dot import write
import MDAnalysis.KDTree.NeighborSearch as ns
import igraph
import sys
class graphs(object):
def __init__(self, universe):
"""
To initialize a graph object, provide an MDAnalysis universe object.
You have several choices where to go from here. Different types of
graph can be constructed by issuing the appropriate function call.
Calling a graph of any type will result in a graph instance called
'graff' for all graph types, for ease of function reuse.
"""
self.universe=universe
def calphas(self,distance=6,start_res=0,take_connected=False):
self.graff=igraph.Graph()
self.distance=distance
self.take_connected=take_connected
ca=self.universe.selectAtoms("name CA")
ca_coords=ca.coordinates()
ca_neighbors=ns.CoordinateNeighborSearch(ca_coords)
for resid in ca.resids():
self.graff.add_vertex("{0} {1}".format(ca.resnames()[resid],
resid+start_res))
if self.take_connected==False:
for resid in ca.resids():
neighbors=ca_neighbors.search(ca_coords[resid],self.distance,
distances=True)
for index in range(len(neighbors[0])):
if resid==neighbors[0][index] or \
resid==neighbors[0][index]+1 or \
resid==neighbors[0][index]-1:
continue
self.graff.add_edge(resid,neighbors[0][index],
weight=neighbors[1][index])
if self.take_connected==True:
for resid in ca.resids():
neighbors=ca_neighbors.search(ca_coords[resid],self.distance,
distances=True)
for index in range(len(neighbors[0])):
if resid==neighbors[0][index]:
continue
self.graff.add_edge(resid,neighbors[0][index],
weight=neighbors[1][index])
def dagget_residue(self,start_res=0,psf=False,
C_distance=5.4,non_C_distance=4.6):
self.graff=igraph.Graph()
self.C_distance=C_distance
self.non_C_distance=non_C_distance
protein=self.universe.selectAtoms("protein")
carbons=self.universe.selectAtoms("protein and name C*")
for resid in protein.resids():
residue=self.universe.selectAtoms("resid {0}".format(resid))
self.graff.add_vertex("{0} {1}".format(
residue.resnames()[0],resid+start_res))
search=ns.CoordinateNeighborSearch(protein.coordinates())
neighbors=search.search_all(self.non_C_distance)
if psf == True:
offset=start_res
else:
offset=0
for index in range(len(neighbors)):
atom1,atom2=neighbors[index]
atom1_type=protein[atom1].name
atom1_resnum=protein[atom1].resid - offset
atom2_type=protein[atom2].name
atom2_resnum=protein[atom2].resid - offset
# if atom1_resnum == "C" and atom2_resnum == "C"
# continue
if atom1_resnum == atom2_resnum:
continue
eid=self.graff.get_eid(atom1_resnum,atom2_resnum,error=False)
if eid < 0:
self.graff.add_edge(atom1_resnum,atom2_resnum,weight=1)
else:
self.graff.es[eid]["weight"]+=1
search=ns.CoordinateNeighborSearch(carbons.coordinates())
neighbors=search.search_all(self.C_distance)
for index in range(len(neighbors)):
atom1,atom2=neighbors[index]
atom1_type=protein[atom1].name
atom1_resnum=protein[atom1].resid - offset
atom2_type=protein[atom2].name
atom2_resnum=protein[atom2].resid - offset
if atom1_resnum == atom2_resnum:
continue
eid=self.graff.get_eid(atom1_resnum,atom2_resnum,error=False)
if eid < 0:
self.graff.add_edge(atom1_resnum,atom2_resnum,weight=1)
else:
self.graff.es[eid]["weight"]+=1
def compute_graph_properties(self,graff):
ceb=graff.community_edge_betweenness()
clustering=ceb.as_clustering()
modularity=clustering.modularity
graff["modularity"]=modularity
graff["assortativity degree"]=graff.assortativity_degree(directed=False)
graff["avg_path_len"]=graff.average_path_length()
graff.vs['authority score']=graff.authority_score(graff.es['weight'])
graff["top authority"]=np.argmax(graff.vs['authority score'])
graff["top authority index"]=np.max(graff.vs['authority score'])
graff.vs['evcent']=graff.evcent(directed=False,scale=False,
weights=graff.es['weight'])
graff['max evcent']=np.argmax(graff.vs['evcent'])
graff['max evcent index']=np.max(graff.vs['evcent'])
graff.vs['knn']=graff.knn(weights=graff.es['weight'])[0]
graff['max knn']=np.argmax(graff.vs['knn'])
graff['max knn index']=np.max(graff.vs['knn'])
# graff.vs['pagerank']=graff.pagerank(directed=False,
# weights=graff.es['weight'])
# graff['max pagerank']=np.argmax(graff.vs['pagerank'])
# graff['max pagerank index']=np.max(graff.vs['pagerank'])
degree_distribution=graff.degree_distribution()
graff["degree distribribution mean"]=degree_distribution.mean
graff["degree distribribution sd"]=degree_distribution.sd
graff["density"]=graff.density(loops=True)
graff["diamter"]=graff.diameter()
graff["edge count"]=graff.ecount()
laplacian=graff.laplacian()
eigenvals=np.linalg.eigvals(laplacian)
graff["laplacian"]=graff.laplacian()
graff.vs["eigenvals"]=eigenvals
graff["max eigenval"]=np.max(eigenvals)
graff["maxdegree"]=graff.maxdegree()
graff["transitivity"]=graff.transitivity_avglocal_undirected(
weights=graff.es["weight"])
def draw_cricle(self):
color_dict = {"ach": "red", "aloop": "green", "ploop": "blue",
"cloop": "orange", "None": "white"}
all_verts=self.graff.vs
ach_verts=self.graff.vs[55:75]
aloop_verts=self.graff.vs[157:179]
ploop_verts=self.graff.vs[23:30]
cloop_verts=self.graff.vs[136:147]
ach_edges=self.graff.es.select(_between=(ach_verts,all_verts))
ach_edges["color"]="red"
ach_verts["region"]='ach'
aloop_edges=self.graff.es.select(_between=(aloop_verts,all_verts))
aloop_edges["color"]="green"
aloop_verts["region"]='aloop'
ploop_verts["region"]='ploop'
ploop_edges=self.graff.es.select(_between=(ploop_verts,all_verts))
ploop_edges["color"]="blue"
cloop_verts["region"]='cloop'
cloop_edges=self.graff.es.select(_between=(cloop_verts,all_verts))
cloop_edges["color"]="orange"
for index in range(self.graff.vcount()):
self.graff.vs[index]["color"]=color_dict["{0}".format(
self.graff.vs[index]["region"])]
layout=self.graff.layout_circle()
igraph.plot(self.graff,layout=layout)
def draw_single_node(self, node):
subgraph=self.graff.subgraph(self.neighborhood(node))
subgraph.vs["label"]=subgraph.vs["name"]
layout=subgraph.layout.kamada_kawai()
igraph.plot(subgraph,layout=layout)
def trajectory_graph(self,start_res=0,psf=False,
C_distance=5.4,non_C_distance=4.6,skip=None):
graph_trajectory=[]
for ts in self.universe.trajectory:
if skip:
self.universe.trajectory.skip=skip
sys.stdout.flush()
sys.stdout.write('\rgraph creation [step {0}] '.format(
self.universe.trajectory.frame))
self.dagget_residue(start_res,psf,C_distance,non_C_distance)
graph_trajectory.append(self.graff)
sys.stdout.write('\rtrajectory graph created ')
return graph_trajectory
def analyze_trajectory_graph(self,trajectory_graph):
for frame_num in range(len(trajectory_graph)):
sys.stdout.flush()
sys.stdout.write('\rgraph analysis [step {0}] '.format(frame_num))
graph=trajectory_graph[frame_num]
self.compute_graph_properties(graph)
sys.stdout.write('\rtrajectory analyzed ')
def graph_attribute_graphs(self,trajectory_graph,skip=None,display=True,
write_file=None):
self.write_file=write_file
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
attributes=trajectory_graph[0].attributes()
attributes_list={}
for attribute in attributes:
attributes_list[attribute]=[]
for frame_num in range(len(trajectory_graph)):
graph=trajectory_graph[frame_num]
for attribute in attributes:
attributes_list[attribute].append(graph[attribute])
laplacian_series=attributes_list["laplacian"]
attributes_list['delta laplacian frobenius']=[]
laplacian_prev=laplacian_series[0]
for laplacian_current_index in range(1,len(laplacian_series)):
delta=np.array(laplacian_series[laplacian_current_index]) \
-np.array(laplacian_prev)
frobenius_norm=np.linalg.norm(delta,ord='fro')
attributes_list['delta laplacian frobenius'].append(frobenius_norm)
laplacian_prev=laplacian_series[laplacian_current_index]
del attributes_list['laplacian']
if skip:
temp=attributes_list.copy()
attributes_list.clear()
for key in temp.keys():
attributes_list[key]=temp[key][::skip]
del temp
numplots=len(attributes_list.keys())
count=1
for key in attributes_list:
mean=float(np.mean(attributes_list[key])) #this sometimes thinks \\
std=float(np.std(attributes_list[key])) #that it is complex, so cast
fig=plt.subplot((numplots+1)/2,2,count)
fig.plot(attributes_list[key])
fig.set_title("{0} {1: 0.3f} $\pm$ {2: 0.3f}".format(key,mean,std))
fig.locator_params(axis='y',nbins=3)
count+=1
plt.tight_layout(pad=-0.1)
if display==True:
plt.show()
return attributes_list
if display==False:
try:
plt.savefig(self.write_file)
return attributes_list
except:
print "could not write file {0}".format(self.write_file)
return attributes_list
def pickle_trajectory_graph(self, trajectory_graph,filename):
import pickle
pickle.dump(trajectory_graph,open("{0}.pickle".format(filename),'wb'))
def unpickle_trajectory_graph(self,filename):
import pickle
trajectory_graph=pickle.load(open("{0}".format(filename),'rb'))
return trajectory_graph