-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorph_scripts.py
168 lines (133 loc) · 4.8 KB
/
morph_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
#import ADEUtils as ADE
import ADESALT as sa
#import gc
#import Salty2 as salty
import moment_tests as mt
#import bottleneck as bn
from datetime import datetime
import matplotlib
plt = matplotlib.pyplot
rc = matplotlib.rc
import pyfits
from glob import glob
from matplotlib.backends.backend_pdf import PdfPages as PDF
'''This file is for making grid plots of data and various morphologies.
'''
def grid_plot(msfiles, flips, sims, simleg):
font = {'size':4}
rc('font',**font)
for msfile, flip, simfiles in zip(msfiles,flips,sims):
print msfile
height = int(msfile.split('_')[1][1:])
if height == 5:
height = 0.5
name = msfile.split('.ms.fits')[0] + '_binplot.pdf'
simname = '_'.join(simfiles[0].split('_')[0:2]) + '_binplot.pdf'
pp = PDF(name)
simpp = PDF(simname)
tempr, _, _ = sa.openslay(msfile.split('.ms')[0] + '.slay.fits',
flip=flip)
print tempr
tmphead = pyfits.open(msfile)[0].header
ap = 1
fig0 = plt.figure(figsize=(11,8.5))
fig1 = plt.figure(figsize=(11,8.5))
for radius in np.sort(tempr):
print '\t{}'.format(radius)
tmprstr = tmphead['APNUM{}'.format(ap)].split(' ')
tmpwidth = int(tmprstr[3]) - int(tmprstr[2])
tmpwidth *= 0.118*8*34.1e3/206265
#############
ax0 = fig0.add_subplot(3,4,ap)
ax0.set_title('{}\n{}'.\
format(msfile,datetime.now().isoformat(' ')),
fontsize=4)
ax0.set_xlabel('Velocity [km/s]')
ax0.set_ylabel('ADU/s')
ax0.text(0.1,0.95,'z ~ {:}$h_z$\nr = {:5.3f}kpc\ndr = {:5.3f}kpc'\
.format(height,radius,tmpwidth),
transform=ax0.transAxes,
ha='left',va='top')
ax0.set_xlim(-600,600)
sa.plot_line(msfile,radius,ax=ax0,plot=False,flip=flip,velo=True,
baseline=1,linewidth=0.4)
#############
ax1 = fig1.add_subplot(3,4,ap)
ax1.set_title('{}\n{}'.\
format(simname.split('_binplot')[0]
,datetime.now().isoformat(' ')),
fontsize=4)
ax1.text(0.1,0.65,'z = {:}$h_z$\nr = {:5.3f}kpc\ndr = {:5.3f}kpc'\
.format(height,radius,tmpwidth),
transform=ax1.transAxes,
ha='left',va='top')
ax1.set_xlabel('Velocity [km/s]')
ax1.set_ylabel('Normalized flux')
ax1.set_xlim(-600,600)
'''The negative 1 is there because all my sims are created
backwards, by convention
'''
for simfile in simfiles:
variable = pyfits.open(simfile)[0].header[simleg.upper()]
mt.do_line(simfile,-1*radius,1,ax=ax1,plot=False,
label=str(variable),rwidth=tmpwidth,linewidth=0.8)
ax1.legend(loc=0,title=simleg)
ap += 1
pp.savefig(fig0)
pp.close()
simpp.savefig(fig1)
simpp.close()
return
def linear_flare_script():
mslist = glob('*_bin??.ms.fits')
simlist1 = glob('sim*083.fits')
simlist2 = glob('sim*290.fits')
simlist3 = glob('sim*025.fits')
mslist.sort()
simlist1.sort()
simlist2.sort()
simlist3.sort()
print mslist, simlist1, simlist2, simlist3
grid_plot(mslist,[True,False,False,False],
zip(simlist1, simlist2, simlist3),
'h_zR')
return
def ring_script():
mslist = glob('*_bin??.ms.fits')
simlist1 = glob('sim*w010.fits')
simlist2 = glob('sim*w085.fits')
mslist.sort()
simlist1.sort()
simlist2.sort()
print mslist, simlist1, simlist2
grid_plot(mslist,[True,False,False,False],
zip(simlist1,simlist2),
'r_w')
return
def ring_script_radius():
mslist = glob('*_bin??.ms.fits')
simlist1 = glob('sim*R0100.fits')
simlist2 = glob('sim*R2100.fits')
mslist.sort()
simlist1.sort()
simlist2.sort()
print mslist, simlist1, simlist2
grid_plot(mslist,[True,False,False,False],
zip(simlist1,simlist2),
'r_R')
return
def spiral_script():
mslist = glob('*_bin??.ms.fits')
simlist1 = glob('sim*p0100.fits')
simlist2 = glob('sim*p1147.fits')
simlist3 = glob('sim*p2194.fits')
mslist.sort()
simlist1.sort()
simlist2.sort()
simlist3.sort()
print mslist, simlist1, simlist2, simlist3
grid_plot(mslist,[True,False,False,False],
zip(simlist1,simlist2,simlist3),
'pitch')
return