forked from IntelRealSense/librealsense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrs-pose-apriltag.cpp
316 lines (274 loc) · 13.6 KB
/
rs-pose-apriltag.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// License: Apache 2.0. See LICENSE file in root directory.
// Copyright(c) 2019 Intel Corporation. All Rights Reserved.
#include <librealsense2/rs.hpp>
#include <librealsense2/rsutil.h>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <chrono>
#include <future>
#include <math.h>
#include "apriltag.h"
#include "apriltag_pose.h"
#include "common/homography.h"
#include "tag36h11.h"
#define FORMAT_VALUE std::fixed << std::right << std::setprecision(3) << std::setw(6)
void homography_compute2(const double c[4][4], matd_t* H);
typedef rs2_extrinsics transformation;
static transformation to_transform(const double R[9], const double t[3]) {
transformation tf;
for(int r=0; r<9; ++r){ tf.rotation[r] = static_cast<float>(R[r]); }
for(int i=0; i<3; ++i){ tf.translation[i] = static_cast<float>(t[i]); }
return tf;
}
static transformation to_transform(const rs2_quaternion& q, const rs2_vector& t) {
transformation tf;
tf.rotation[0] = q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z;
tf.rotation[1] = 2 * (q.x * q.y - q.w * q.z);
tf.rotation[2] = 2 * (q.x * q.z + q.w * q.y);
tf.rotation[3] = 2 * (q.x * q.y + q.w * q.z);
tf.rotation[4] = q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z;
tf.rotation[5] = 2 * (q.y * q.z - q.w * q.x);
tf.rotation[6] = 2 * (q.x * q.z - q.w * q.y);
tf.rotation[7] = 2 * (q.y * q.z + q.w * q.x);
tf.rotation[8] = q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z;
tf.translation[0] = t.x;
tf.translation[1] = t.y;
tf.translation[2] = t.z;
return tf;
}
static transformation operator*(const transformation& a, const transformation& b) {
transformation tf;
tf.rotation[0] = a.rotation[0] * b.rotation[0] + a.rotation[1] * b.rotation[3] + a.rotation[2] * b.rotation[6];
tf.rotation[1] = a.rotation[0] * b.rotation[1] + a.rotation[1] * b.rotation[4] + a.rotation[2] * b.rotation[7];
tf.rotation[2] = a.rotation[0] * b.rotation[2] + a.rotation[1] * b.rotation[5] + a.rotation[2] * b.rotation[8];
tf.rotation[3] = a.rotation[3] * b.rotation[0] + a.rotation[4] * b.rotation[3] + a.rotation[5] * b.rotation[6];
tf.rotation[4] = a.rotation[3] * b.rotation[1] + a.rotation[4] * b.rotation[4] + a.rotation[5] * b.rotation[7];
tf.rotation[5] = a.rotation[3] * b.rotation[2] + a.rotation[4] * b.rotation[5] + a.rotation[5] * b.rotation[8];
tf.rotation[6] = a.rotation[6] * b.rotation[0] + a.rotation[7] * b.rotation[3] + a.rotation[8] * b.rotation[6];
tf.rotation[7] = a.rotation[6] * b.rotation[1] + a.rotation[7] * b.rotation[4] + a.rotation[8] * b.rotation[7];
tf.rotation[8] = a.rotation[6] * b.rotation[2] + a.rotation[7] * b.rotation[5] + a.rotation[8] * b.rotation[8];
tf.translation[0] = a.rotation[0] * b.translation[0] + a.rotation[1] * b.translation[1] + a.rotation[2] * b.translation[2] + a.translation[0];
tf.translation[1] = a.rotation[3] * b.translation[0] + a.rotation[4] * b.translation[1] + a.rotation[5] * b.translation[2] + a.translation[1];
tf.translation[2] = a.rotation[6] * b.translation[0] + a.rotation[7] * b.translation[1] + a.rotation[8] * b.translation[2] + a.translation[2];
return tf;
}
static std::string print(const transformation& tf) {
std::stringstream ss; ss << "R:";
for(const auto& r : tf.rotation){ ss << FORMAT_VALUE << r << ","; }
ss << "|t:";
for(const auto& t : tf.translation){ ss << FORMAT_VALUE << t << ","; }
return ss.str();
}
class apriltag_manager {
public:
apriltag_manager(const rs2_intrinsics& _intr, const rs2_extrinsics _extr_b2f, double tagsize)
: intr(_intr), tf_body_to_fisheye(_extr_b2f) {
tf = tag36h11_create();
td = apriltag_detector_create();
apriltag_detector_add_family(td, tf);
td->quad_decimate = 1.0;
td->quad_sigma = 0.0;
td->nthreads = 1;
td->debug = 0;
td->refine_edges = 1;
info.tagsize = tagsize;
info.fx = info.fy = 1; //undistorted image with focal length = 1
info.cx = info.cy = 0; //undistorted image with principal point at (0,0)
}
~apriltag_manager() {
apriltag_detector_destroy(td);
tag36h11_destroy(tf);
}
struct apriltag_array_t {
std::shared_ptr<zarray_t> det;
std::vector<std::shared_ptr<apriltag_pose_t>> pose_raw; //tag pose from library
std::vector<transformation> pose_in_camera; //tag pose in camera coordinate
std::vector<transformation> pose_in_world; //tag pose in world coordinate
apriltag_detection_t* get(int t) const { apriltag_detection_t* ptr; zarray_get(det.get(), t, &ptr); return ptr; }
int get_id(int t) const { return get(t)->id; }
int size() const { return pose_in_camera.size(); }
};
static void apriltag_pose_destroy(apriltag_pose_t* p){ matd_destroy(p->R); matd_destroy(p->t); delete p;}
apriltag_array_t detect(unsigned char* gray, const rs2_pose* camera_pose) const {
image_u8_t img{ intr.width, intr.height, intr.width, gray};
apriltag_array_t tags;
tags.det = std::shared_ptr<zarray_t>(apriltag_detector_detect(td, &img), apriltag_detections_destroy);
tags.pose_in_camera.resize(zarray_size(tags.det.get()));
tags.pose_raw.resize(tags.size());
auto info_ = info;
for(int t=0, num_of_tags=(int)tags.size(); t<num_of_tags; ++t)
{
tags.pose_raw[t] = std::shared_ptr<apriltag_pose_t>(new apriltag_pose_t(), apriltag_pose_destroy);
undistort(*(info_.det = tags.get(t)), intr); //recompute tag corners on an undistorted image focal length = 1
//estimate_tag_pose(&info_, tags.pose_raw[t].get()); //(alternative) estimate tag pose in camera coordinate
estimate_pose_for_tag_homography(&info_, tags.pose_raw[t].get()); //estimate tag pose in camera coordinate
for(auto c : {1,2,4,5,7,8}){ tags.pose_raw[t]->R->data[c] *= -1; }
tags.pose_in_camera[t] = to_transform(tags.pose_raw[t]->R->data, tags.pose_raw[t]->t->data);
}
if(camera_pose){ compute_tag_pose_in_world(tags, *camera_pose); }
return tags;
}
protected:
apriltag_family_t *tf;
apriltag_detector_t *td;
apriltag_detection_info_t info;
rs2_intrinsics intr;
transformation tf_body_to_fisheye;
void compute_tag_pose_in_world(apriltag_array_t& tags, const rs2_pose& camera_world_pose) const {
tags.pose_in_world.resize(tags.size());
for(int t=0, num_of_tags=tags.size(); t<num_of_tags; ++t){
auto tf_fisheye_to_tag = tags.pose_in_camera[t];
auto tf_world_to_body = to_transform(camera_world_pose.rotation, camera_world_pose.translation);
tags.pose_in_world[t] = tf_world_to_body * tf_body_to_fisheye * tf_fisheye_to_tag;
}
}
static void undistort(apriltag_detection_t& src, const rs2_intrinsics& intr) {
deproject(src.c, intr, src.c);
double corr_arr[4][4];
for(int c=0; c<4; ++c){
deproject(src.p[c], intr, src.p[c]);
corr_arr[c][0] = (c==0 || c==3) ? -1 : 1; // tag corners in an ideal image
corr_arr[c][1] = (c==0 || c==1) ? -1 : 1; // tag corners in an ideal image
corr_arr[c][2] = src.p[c][0]; // tag corners in undistorted image focal length = 1
corr_arr[c][3] = src.p[c][1]; // tag corners in undistorted image focal length = 1
}
if(src.H == nullptr) { src.H = matd_create(3, 3); }
homography_compute2(corr_arr, src.H);
}
static void deproject(double pt[2], const rs2_intrinsics& intr, const double px[2]) {
float fpt[3], fpx[2] = { (float)px[0], (float)px[1] };
rs2_deproject_pixel_to_point(fpt, &intr, fpx, 1.0f);
pt[0] = fpt[0];
pt[1] = fpt[1];
}
};
int main(int argc, char * argv[]) try
{
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Create a configuration for configuring the pipeline with a non default profile
rs2::config cfg;
// Add pose stream
cfg.enable_stream(RS2_STREAM_POSE, RS2_FORMAT_6DOF);
// Enable both image streams
// Note: It is not currently possible to enable only one
cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8);
cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8);
// replay
if(argc > 1){ cfg.enable_device_from_file(argv[1]); }
// Start pipe and get camera calibrations
const int fisheye_sensor_idx = 1; //for the left fisheye lens of T265
auto pipe_profile = pipe.start(cfg);
auto fisheye_stream = pipe_profile.get_stream(RS2_STREAM_FISHEYE, fisheye_sensor_idx);
auto fisheye_intrinsics = fisheye_stream.as<rs2::video_stream_profile>().get_intrinsics();
auto body_fisheye_extr = fisheye_stream.get_extrinsics_to(pipe_profile.get_stream(RS2_STREAM_POSE));
const double tag_size_m = 0.144; // The expected size of the tag in meters. This is required to get the relative pose
// Create an Apriltag detection manager
apriltag_manager tag_manager(fisheye_intrinsics, body_fisheye_extr, tag_size_m);
// Main loop
while (true)
{
// Wait for the next set of frames from the camera
auto frames = pipe.wait_for_frames();
auto fisheye_frame = frames.get_fisheye_frame(fisheye_sensor_idx);
auto frame_number = fisheye_frame.get_frame_number();
auto camera_pose = frames.get_pose_frame().get_pose_data();
if(frame_number % 6 == 0)
{
fisheye_frame.keep();
std::async(std::launch::async, std::bind([&tag_manager](rs2::frame img, int fn, rs2_pose pose){
auto tags = tag_manager.detect((unsigned char*)img.get_data(), &pose);
if(tags.pose_in_camera.size() == 0) {
std::cout << "frame " << fn << "|no Apriltag detections" << std::endl;
}
for(int t=0; t<tags.pose_in_camera.size(); ++t){
std::stringstream ss; ss << "frame " << fn << "|tag id: " << tags.get_id(t) << "|";
std::cout << ss.str() << "camera " << print(tags.pose_in_camera[t]) << std::endl;
std::cout << std::setw(ss.str().size()) << " " << "world " <<
(pose.tracker_confidence == 3 ? print(tags.pose_in_world[t]) : " NA ") << std::endl << std::endl;
}
}, fisheye_frame, frame_number, camera_pose));
}
}
return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n " << e.what() << std::endl;
return EXIT_FAILURE;
}
catch (const std::exception& e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
//
// Re-compute homography between ideal standard tag image and undistorted tag corners for estimage_tag_pose().
//
// @param[in] c is 4 pairs of tag corners on ideal image and undistorted input image.
// @param[out] H is the output homography between ideal and undistorted input image.
// @see static void apriltag_manager::undistort(...)
//
void homography_compute2(const double c[4][4], matd_t* H) {
double A[] = {
c[0][0], c[0][1], 1, 0, 0, 0, -c[0][0]*c[0][2], -c[0][1]*c[0][2], c[0][2],
0, 0, 0, c[0][0], c[0][1], 1, -c[0][0]*c[0][3], -c[0][1]*c[0][3], c[0][3],
c[1][0], c[1][1], 1, 0, 0, 0, -c[1][0]*c[1][2], -c[1][1]*c[1][2], c[1][2],
0, 0, 0, c[1][0], c[1][1], 1, -c[1][0]*c[1][3], -c[1][1]*c[1][3], c[1][3],
c[2][0], c[2][1], 1, 0, 0, 0, -c[2][0]*c[2][2], -c[2][1]*c[2][2], c[2][2],
0, 0, 0, c[2][0], c[2][1], 1, -c[2][0]*c[2][3], -c[2][1]*c[2][3], c[2][3],
c[3][0], c[3][1], 1, 0, 0, 0, -c[3][0]*c[3][2], -c[3][1]*c[3][2], c[3][2],
0, 0, 0, c[3][0], c[3][1], 1, -c[3][0]*c[3][3], -c[3][1]*c[3][3], c[3][3],
};
double epsilon = 1e-10;
// Eliminate.
for (int col = 0; col < 8; col++) {
// Find best row to swap with.
double max_val = 0;
int max_val_idx = -1;
for (int row = col; row < 8; row++) {
double val = fabs(A[row*9 + col]);
if (val > max_val) {
max_val = val;
max_val_idx = row;
}
}
if (max_val < epsilon) {
fprintf(stderr, "WRN: Matrix is singular.\n");
}
// Swap to get best row.
if (max_val_idx != col) {
for (int i = col; i < 9; i++) {
double tmp = A[col*9 + i];
A[col*9 + i] = A[max_val_idx*9 + i];
A[max_val_idx*9 + i] = tmp;
}
}
// Do eliminate.
for (int i = col + 1; i < 8; i++) {
double f = A[i*9 + col]/A[col*9 + col];
A[i*9 + col] = 0;
for (int j = col + 1; j < 9; j++) {
A[i*9 + j] -= f*A[col*9 + j];
}
}
}
// Back solve.
for (int col = 7; col >=0; col--) {
double sum = 0;
for (int i = col + 1; i < 8; i++) {
sum += A[col*9 + i]*A[i*9 + 8];
}
A[col*9 + 8] = (A[col*9 + 8] - sum)/A[col*9 + col];
}
H->data[0] = A[8];
H->data[1] = A[17];
H->data[2] = A[26];
H->data[3] = A[35];
H->data[4] = A[44];
H->data[5] = A[53];
H->data[6] = A[62];
H->data[7] = A[71];
H->data[8] = 1;
}