-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgenerator_rgb_with_of.py
275 lines (249 loc) · 11.4 KB
/
generator_rgb_with_of.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#
# This is a generator for combined [rgb, of] input tensors.
# It it based on the Kerase generator code, but useful for the two-stream network.
#
import os
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.keras.layers.preprocessing import image_preprocessing
from tensorflow.python.keras.preprocessing import dataset_utils
from tensorflow.python.keras.preprocessing import image as keras_image_ops
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import io_ops
ALLOWLIST_FORMATS = ('.bmp', '.gif', '.jpeg', '.jpg', '.png')
def merged_dataset_from_directories(rgb_directory,
of_directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
image_size=(256, 256),
shuffle=True,
seed=None,
validation_split=None,
subset=None,
interpolation='bilinear',
follow_links=False,
crop_to_aspect_ratio=False,
**kwargs):
"""Generates a `tf.data.Dataset` from image files in a directory.
If your directory structure is:
```
main_directory/
...class_a/
......a_image_1.jpg
......a_image_2.jpg
...class_b/
......b_image_1.jpg
......b_image_2.jpg
```
Then calling `image_dataset_from_directory(main_directory, labels='inferred')`
will return a `tf.data.Dataset` that yields batches of images from
the subdirectories `class_a` and `class_b`, together with labels
0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`).
Supported image formats: jpeg, png, bmp, gif.
Animated gifs are truncated to the first frame.
Args:
directory: Directory where the data is located.
If `labels` is "inferred", it should contain
subdirectories, each containing images for a class.
Otherwise, the directory structure is ignored.
labels: Either "inferred"
(labels are generated from the directory structure),
None (no labels),
or a list/tuple of integer labels of the same size as the number of
image files found in the directory. Labels should be sorted according
to the alphanumeric order of the image file paths
(obtained via `os.walk(directory)` in Python).
label_mode:
- 'int': means that the labels are encoded as integers
(e.g. for `sparse_categorical_crossentropy` loss).
- 'categorical' means that the labels are
encoded as a categorical vector
(e.g. for `categorical_crossentropy` loss).
- 'binary' means that the labels (there can be only 2)
are encoded as `float32` scalars with values 0 or 1
(e.g. for `binary_crossentropy`).
- None (no labels).
class_names: Only valid if "labels" is "inferred". This is the explict
list of class names (must match names of subdirectories). Used
to control the order of the classes
(otherwise alphanumerical order is used).
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
Whether the images will be converted to
have 1, 3, or 4 channels.
batch_size: Size of the batches of data. Default: 32.
image_size: Size to resize images to after they are read from disk.
Defaults to `(256, 256)`.
Since the pipeline processes batches of images that must all have
the same size, this must be provided.
shuffle: Whether to shuffle the data. Default: True.
If set to False, sorts the data in alphanumeric order.
seed: Optional random seed for shuffling and transformations.
validation_split: Optional float between 0 and 1,
fraction of data to reserve for validation.
subset: One of "training" or "validation".
Only used if `validation_split` is set.
interpolation: String, the interpolation method used when resizing images.
Defaults to `bilinear`. Supports `bilinear`, `nearest`, `bicubic`,
`area`, `lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic`.
follow_links: Whether to visits subdirectories pointed to by symlinks.
Defaults to False.
crop_to_aspect_ratio: If True, resize the images without aspect
ratio distortion. When the original aspect ratio differs from the target
aspect ratio, the output image will be cropped so as to return the largest
possible window in the image (of size `image_size`) that matches
the target aspect ratio. By default (`crop_to_aspect_ratio=False`),
aspect ratio may not be preserved.
**kwargs: Legacy keyword arguments.
Returns:
A `tf.data.Dataset` object.
- If `label_mode` is None, it yields `float32` tensors of shape
`(batch_size, image_size[0], image_size[1], num_channels)`,
encoding images (see below for rules regarding `num_channels`).
- Otherwise, it yields a tuple `(images, labels)`, where `images`
has shape `(batch_size, image_size[0], image_size[1], num_channels)`,
and `labels` follows the format described below.
Rules regarding labels format:
- if `label_mode` is `int`, the labels are an `int32` tensor of shape
`(batch_size,)`.
- if `label_mode` is `binary`, the labels are a `float32` tensor of
1s and 0s of shape `(batch_size, 1)`.
- if `label_mode` is `categorial`, the labels are a `float32` tensor
of shape `(batch_size, num_classes)`, representing a one-hot
encoding of the class index.
Rules regarding number of channels in the yielded images:
- if `color_mode` is `grayscale`,
there's 1 channel in the image tensors.
- if `color_mode` is `rgb`,
there are 3 channel in the image tensors.
- if `color_mode` is `rgba`,
there are 4 channel in the image tensors.
"""
if 'smart_resize' in kwargs:
crop_to_aspect_ratio = kwargs.pop('smart_resize')
if kwargs:
raise TypeError(f'Unknown keywords argument(s): {tuple(kwargs.keys())}')
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
raise ValueError(
'`labels` argument should be a list/tuple of integer labels, of '
'the same size as the number of image files in the target '
'directory. If you wish to infer the labels from the subdirectory '
'names in the target directory, pass `labels="inferred"`. '
'If you wish to get a dataset that only contains images '
'(no labels), pass `label_mode=None`.')
if class_names:
raise ValueError('You can only pass `class_names` if the labels are '
'inferred from the subdirectory names in the target '
'directory (`labels="inferred"`).')
if label_mode not in {'int', 'categorical', 'binary', None}:
raise ValueError(
'`label_mode` argument must be one of "int", "categorical", "binary", '
'or None. Received: %s' % (label_mode,))
if labels is None or label_mode is None:
labels = None
label_mode = None
if color_mode == 'rgb':
num_channels = 3
elif color_mode == 'rgba':
num_channels = 4
elif color_mode == 'grayscale':
num_channels = 1
else:
raise ValueError(
'`color_mode` must be one of {"rbg", "rgba", "grayscale"}. '
'Received: %s' % (color_mode,))
interpolation = image_preprocessing.get_interpolation(interpolation)
dataset_utils.check_validation_split_arg(
validation_split, subset, shuffle, seed)
if seed is None:
seed = np.random.randint(1e6)
of_image_paths, labels, class_names = dataset_utils.index_directory(
of_directory,
labels,
formats=ALLOWLIST_FORMATS,
class_names=class_names,
shuffle=shuffle,
seed=seed,
follow_links=follow_links)
dir_of = os.path.abspath(of_directory.rstrip("/"))
dir_rgb = os.path.abspath(rgb_directory.rstrip("/"))
#print("dir_of=", dir_of)
#print("dir_rgb=", dir_rgb)
rgb_image_paths = []
for of_path in of_image_paths:
rgb_path = of_path.replace(dir_of, dir_rgb)
# print("add path", rgb_path, "created from", of_path)
if not os.access(rgb_path, os.R_OK):
raise TypeError(f'no such file: {rgb_path}')
rgb_image_paths.append(rgb_path)
if label_mode == 'binary' and len(class_names) != 2:
raise ValueError(
'When passing `label_mode="binary", there must exactly 2 classes. '
'Found the following classes: %s' % (class_names,))
of_image_paths, labels = dataset_utils.get_training_or_validation_split(
of_image_paths, labels, validation_split, subset)
rgb_image_paths, _ = dataset_utils.get_training_or_validation_split(
rgb_image_paths, labels, validation_split, subset)
if not of_image_paths:
raise ValueError('No OF images found.')
if not rgb_image_paths:
raise ValueError('No RGB images found.')
num_classes=len(class_names)
of_dataset = paths_and_labels_to_dataset(
image_paths=of_image_paths,
image_size=image_size,
num_channels=num_channels,
num_classes=num_classes,
interpolation=interpolation,
crop_to_aspect_ratio=crop_to_aspect_ratio)
rgb_dataset = paths_and_labels_to_dataset(
image_paths=rgb_image_paths,
image_size=image_size,
num_channels=num_channels,
num_classes=num_classes,
interpolation=interpolation,
crop_to_aspect_ratio=crop_to_aspect_ratio)
img_dataset = dataset_ops.Dataset.zip((rgb_dataset, of_dataset))
if label_mode:
label_dataset = dataset_utils.labels_to_dataset(labels, label_mode, num_classes)
dataset = dataset_ops.Dataset.zip((img_dataset, label_dataset))
else:
dataset = img_dataset
if shuffle:
# Shuffle locally at each iteration
dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed)
dataset = dataset.batch(batch_size)
# Users may need to reference `class_names`.
dataset.class_names = class_names
# Include file paths for images as attribute.
dataset.file_paths = of_image_paths
return dataset
def paths_and_labels_to_dataset(image_paths,
image_size,
num_channels,
num_classes,
interpolation,
crop_to_aspect_ratio=False):
"""Constructs a dataset of images and labels."""
# TODO(fchollet): consider making num_parallel_calls settable
path_ds = dataset_ops.Dataset.from_tensor_slices(image_paths)
args = (image_size, num_channels, interpolation, crop_to_aspect_ratio)
img_ds = path_ds.map(
lambda x: load_image(x, *args))
return img_ds
def load_image(path, image_size, num_channels, interpolation,
crop_to_aspect_ratio=False):
"""Load an image from a path and resize it."""
img = io_ops.read_file(path)
img = image_ops.decode_image(
img, channels=num_channels, expand_animations=False)
if crop_to_aspect_ratio:
img = keras_image_ops.smart_resize(img, image_size,
interpolation=interpolation)
else:
img = image_ops.resize_images_v2(img, image_size, method=interpolation)
img.set_shape((image_size[0], image_size[1], num_channels))
return img