-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxillary_functions.py
216 lines (193 loc) · 9.14 KB
/
auxillary_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Functions for main file
# Author: Edmund Dable-Heath
# Here are the various functions necessary for the main implementation of the lattice-discontinuous-hamiltonian-MC over
# the integers.
import numpy as np
import math
import klein_sampler as ks
import random as rn
# Functions for the main algorithm -------------------------------------------------------------------------------------
def potential_energy(basis, point, zero_point_energy):
"""
computing the potential energy for an intger point, generalised to the neighbourhood of an integer
(the voronoi cell around the point)
:param basis: lattice basis, a numpy array of integers
:param point: point from algorithm, numpy array, usually integers
:param zero_point_energy: relatively arbitrary zero point energy to remove zero from equation
:return: the potential energy associated with the particular point
"""
lattice_point = np.dot(basis.T, np.around(point))
point_norm = np.linalg.norm(lattice_point)
return abs(point_norm)
# if abs(point_norm) > 0:
# return abs(math.log2(point_norm))
# else:
# return abs(math.log2(zero_point_energy))
def non_zero_init_point(basis):
"""
using klein sampler to pick a nonzero starting vector
:param basis: lattice basis, numpy array
:return: integer coefficients for the picked lattice vector
"""
while True:
klein_sample = ks.klein_sampler(basis, 64)
if np.linalg.norm(klein_sample) > 0:
return np.linalg.solve(basis.T, klein_sample)
else:
continue
# Functions for post processing ---------------------------------------------------------------------------------------
def find_min_vector(vectors):
"""
Given an array of 2D arrays, find which of the sub arrays has the minimum euclidean norm
:param vectors: array of 2D arrays
:return: minimum array
"""
unique_vectors = np.unique(vectors, axis=1)
return unique_vectors[np.argmin(np.linalg.norm(unique_vectors, axis=1))]
# Misc extra functions -------------------------------------------------------------------------------------------------
def range_calc(basis):
"""
computing the integer range to ensure the shortest vector is within the scope - for visualisation
:param basis: lattice basis, numpy array
:return: return bound on integer range such that the shortest vector is assured to be within the enumerated space
"""
dimension = basis.shape[0]
return dimension * math.log2(dimension) + math.log2(abs(np.linalg.det(basis)))
# Metropolis Filter-----------------------------------------------------------------------------------------------------
def metropolis_filter(current_state, proposal_state, lattice_basis, target_function, propagator):
"""
A metropolis filter return a simple bool for accept or reject based on give function and proposal state.
:param current_state: current state of the markov chain, tuple of integer point and graph numbering
:param proposal_state: proposal state generated by the quantum walk algorithm, tuple as above
:param lattice_basis: the basis of the number theoretic lattice
:param target_function: what function is being used to define the metropolis filter.
:param propagator: the proposal distribution from the quantum walk.
:return: Bool for accept or reject proposal step
"""
backward_prop = np.absolute(propagator[proposal_state[1]])**2
forward_prop = np.absolute(propagator[current_state[1]])**2
alpha = min(1,
(target_function(lattice_basis, current_state[0], proposal_state[0]))
* (backward_prop[current_state[1]] / forward_prop[proposal_state[1]]))
if np.random.uniform(0, 1) <= alpha:
return True
else:
return False
def metropolis_filter_simple(current_state, proposal_state, lattice_basis, sigma):
"""
A metropolis filter return a simple bool for accept or reject based on give function and proposal state, simpler
version ignoring propsoal function.
:param current_state: current state of the markov chain, tuple of integer point and graph numbering
:param proposal_state: proposal state generated by the quantum walk algorithm, tuple as above
:param lattice_basis: the basis of the number theoretic lattice
:param sigma: the standard deviation for the lattice gaussian, float
:return: Bool for accept or reject proposal step
"""
alpha = min(1, (lattice_gaussian(lattice_basis, current_state, proposal_state, sigma)))
if np.random.uniform(0, 1) <= alpha:
return True
else:
return False
def metropolis_filter_log_cost(current_state, proposal_state, lattice_basis):
"""
Alternative Metropolis filter with log based cost function (not a well defined distribution so this is more like
a SGD algorithm):
|log(||Bx||)|
This makes the length of the shortest vector the global minimum in integral lattices.
:param current_state: current integer vector state, int (m, )-ndarray
:param proposal_state: proposed integer vector state, int (m, )-ndarray
:param lattice_basis: lattice basis, int (m, m)-ndarray
:return: acceptance or rejection of proposal state, Bool
"""
alpha = min(1,
np.where(np.linalg.norm(lattice_basis.T @ proposal_state) != 1,
np.where(np.linalg.norm(lattice_basis.T @ proposal_state) != 0,
np.log(np.linalg.norm(lattice_basis.T @ current_state)) /
np.log(np.linalg.norm(lattice_basis.T @ proposal_state)),
0),
np.inf)
)
if np.random.uniform(0, 1) <= alpha:
return True
else:
return False
# Lattice Gaussian------------------------------------------------------------------------------------------------------
def lattice_gaussian(lattice_basis, old_vector, new_vector, sigma):
"""
Implementation of a lattice gaussian function
:param lattice_basis: basis for the lattice
:param old_vector: previous vector in markov chain, for comparison
:param new_vector: current vector for finding the gaussian value
:param sigma: standard deviation of lattice gaussian, float
:return: gaussian density value for given vector
"""
factor = -(np.linalg.norm(np.dot(lattice_basis.T, new_vector))**2
- np.linalg.norm(np.dot(lattice_basis.T, old_vector))**2)/(2 * sigma**2)
try:
ans = math.exp(factor)
except OverflowError:
ans = float('inf')
return ans
# Functions for met within Gibbs adaptation ----------------------------------------------------------------------------
def split_dim_3(dimension, random=False):
"""
split the dimension into a dictionary with the correct split of 2 and 3 subdims.
:param dimension: dimension of the lattice problem.
:return: dictionary with relevant indices for subdims.
"""
if not random:
if dimension % 2 == 0:
return [(i*2, i*2+1) for i in range(int(dimension/2))]
else:
inds = [(i*2, i*2+1) for i in range(int(dimension/2) - 1)]
inds.append((dimension-3, dimension-2, dimension-1))
return inds
else:
indices = [i for i in range(dimension)]
rn.shuffle(indices)
if dimension % 2 == 0:
return [(indices[i*2], indices[i*2+1]) for i in range(int(dimension/2))]
else:
inds = [(indices[i*2], indices[i*2+1]) for i in range(int(dimension/2)-1)]
inds.append((indices[-3], indices[-2], indices[-1]))
return inds
def split_dim(dimension, random=False):
"""
split the dimension into a dictionary with the correct split of 2 and 1 subdims.
:param dimension: dimension of the lattice problem.
:param random: whether to randomly split up the dimensions
:return: list of tuples with relevant indices for subdims.
"""
if not random:
if dimension % 2 == 0:
return [(i*2, i*2+1) for i in range(int(dimension/2))]
else:
inds = [(i*2, i*2+1) for i in range(int(dimension/2))]
inds.append((dimension-1))
return inds
else:
indices = [i for i in range(dimension)]
rn.shuffle(indices)
if dimension % 2 == 0:
return [(indices[i*2], indices[i*2+1]) for i in range(int(dimension/2))]
else:
inds = [(indices[i*2], indices[i*2+1]) for i in range(int(dimension/2))]
inds.append(indices[-1])
return inds
# Testing
if __name__ == "__main__":
x=1
# basis = np.array([[32, 0],
# [10, 1]])
# sv = np.array([2, -3])
# prop = np.array([4, 3])
# cur = np.array([1, -2])
# alpha = min(1, np.where(np.linalg.norm(sv) != 1,
# np.where(np.linalg.norm(sv) != 0,
# np.log(np.linalg.norm(basis @ cur)) /
# np.log(np.linalg.norm(sv)),
# 0),
# np.inf))
# print(np.linalg.norm(sv))
# print(np.linalg.norm(basis@cur))
# print(alpha)