From a05635d87f3806cb1f8b723b78ae0428efef1ef3 Mon Sep 17 00:00:00 2001 From: ecmerkle Date: Thu, 21 Dec 2023 03:24:25 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20ecmerkle?= =?UTF-8?q?/blavaan@72fd52d83fb94a5894006ef04bbdb70361c39782=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- articles/approx_fi.html | 34 ++-- .../approx_fi_files/figure-html/plpi-1.png | Bin 116635 -> 117350 bytes articles/convergence_efficiency.html | 32 ++-- articles/convergence_loop.html | 2 +- .../figure-html/unnamed-chunk-4-1.png | Bin 262129 -> 263456 bytes articles/cross_loadings_strong_priors.html | 62 +++---- articles/mod_indices.html | 48 ++--- articles/model_comparison.html | 96 +++++----- .../figure-html/unnamed-chunk-4-1.png | Bin 84841 -> 85448 bytes .../figure-html/unnamed-chunk-5-1.png | Bin 57813 -> 59231 bytes .../figure-html/unnamed-chunk-9-1.png | Bin 83975 -> 85087 bytes articles/probability_direction.html | 164 +++++++++--------- pkgdown.yml | 2 +- search.json | 2 +- 14 files changed, 221 insertions(+), 221 deletions(-) diff --git a/articles/approx_fi.html b/articles/approx_fi.html index 39f4096b..7be307c6 100644 --- a/articles/approx_fi.html +++ b/articles/approx_fi.html @@ -154,10 +154,10 @@

Noncentrality-Based Fit Indices## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices: ## ## EAP Median MAP SD lower upper -## BRMSEA 0.097 0.097 0.097 0.005 0.089 0.105 -## BGammaHat 0.957 0.957 0.957 0.004 0.950 0.964 -## adjBGammaHat 0.909 0.910 0.910 0.009 0.895 0.924 -## BMc 0.903 0.904 0.904 0.010 0.888 0.919 +## BRMSEA 0.098 0.098 0.098 0.005 0.090 0.107 +## BGammaHat 0.956 0.957 0.957 0.005 0.949 0.964 +## adjBGammaHat 0.907 0.908 0.908 0.010 0.892 0.922 +## BMc 0.903 0.903 0.904 0.010 0.887 0.918
##       BRMSEA BGammaHat adjBGammaHat       BMc      BCFI      BTLI      BNFI
-## 1 0.09364011 0.9598691    0.9158342 0.9102194 0.9353669 0.8936325 0.9143308
-## 2 0.09245393 0.9608398    0.9178700 0.9123775 0.9370113 0.8963387 0.9159170
-## 3 0.09959237 0.9548428    0.9052926 0.8990570 0.9273769 0.8804833 0.9067833
-## 4 0.10686339 0.9483614    0.8916992 0.8846941 0.9163406 0.8623207 0.8961614
-## 5 0.09558574 0.9582545    0.9124478 0.9066314 0.9340923 0.8915350 0.9135371
-## 6 0.10690035 0.9483275    0.8916281 0.8846191 0.9169959 0.8633992 0.8969571
+## 1 0.09860905 0.9563606 0.9070059 0.9024256 0.9299327 0.8834168 0.9095942 +## 2 0.09803424 0.9568460 0.9080403 0.9035032 0.9307577 0.8847896 0.9103906 +## 3 0.08908232 0.9640973 0.9234925 0.9196249 0.9428911 0.9049781 0.9220822 +## 4 0.09114743 0.9624766 0.9200389 0.9160180 0.9401730 0.9004554 0.9194548 +## 5 0.10016009 0.9550392 0.9041901 0.8994928 0.9277791 0.8798335 0.9075414 +## 6 0.10249460 0.9530185 0.8998840 0.8950108 0.9247248 0.8747516 0.9046940

Once we have saved the posterior distributions, we can explore the the histogram and scatterplots between indices.

diff --git a/articles/approx_fi_files/figure-html/plpi-1.png b/articles/approx_fi_files/figure-html/plpi-1.png
index 1ca3f537a264094c4815bb631c9e6e71ab88ff01..436cc827e7b6941894dd4165846dd49d72dac7b4 100644
GIT binary patch
literal 117350
zcmdqI^;2BI7A=e=NN^7t91=9RyM^Em1B6U)3k>cM+}$O(LvWXb;O_1+_~0(@+lb*v|ii*lCHlF(%)=+#$rY^#&FH`4@OrXLc|EfwRF)X
z1mn5tH1@HWYwBM4sl~?C+f4EdmAeQ-FP@*z_+55KztN}4o6@IlKY0q-?q+!;d7KPv
zdx^Sbk3pZ{!4Vw2#Q$&nQSi+;z+(qyvnx-u;ZcD$-D~9a7=-YnSqPdr^;)cvE&jv7
z?fqa3xLgBay(`aTlx4cf&dLjCY>610^gg_`m$qXo9+0u;uw>jI2R>U3LAT
ztD+0)`*h)G?Mt=ZSp)VVbloFf5+S&~c{{s;@(APaa4Cbr>6_^^k`W8`b|k}lb=CSZ
zAeQ;ztS@!>AQ&NZ$R83xCzQ4qN45#N`gVVLAqh#`#)+bo!#@gThI1%PD6Lbkzh0+@
zV_lr5IS>hhC?|Mw6y`nP3=oy7yG-j<{M{RGUM!xGpL*byH|muXqyQ~X@%E-@I6#=zfe
z|4g=*v1CF_gwru?DscT-3m11(6zQ3yiO`j7Bdr3-`<3g5Q-YtLczDn^g&npV1dZyS1)MSWH
z_m2K~xYr;M*L>Y&?%tFh6Z<*h_-Z8BWOa7T7yR|jq&b&{wpCB5fc$;UF0r8oJ2>wb
z+Gv&lDRZpT$|Rc?^FfEQs?qPBHISztZ?6TjjOb{2iYTh?45zMEk6%BN-WFKjd3E9W
zQE#kCA~6rm`p|eB7X)OrDQE7wLfW0DguT6;DQ_5kgiP)*7+lG~qn{VO$yG1a0&puuG)ZFjjhW
z7w)%4b-7((^58CU7b=JvI@g)q%|EicsK}7n-Jn?JXI0oXc7ZZr0Y=xS7B`Ft*P3WP
z>axB;i(EB9{yt%8e~)|QF-Z(I9r*uO8}+P21ip41-&OF`-?)>U0FT-@IbdNN;g
z+PEI>zDl5mnod3otRog}M?~;vmXkine}^itYA1timGI=`SdD0s?ab3EbIhh{Gk+02
zs%w}eqEPJMR5|b-oP05Q>3(yC6Tx9B&%e+_D*fpoOF|i@C5ANk4$C993Wwok6j3mU
zXm1z@szptcRfL5x>S}E_je1fm^laWqg5TfN%|APB#~Ta2%7l90o*}@!NwRjHm!38e
z3*M*a2(K;L%FUah4|e<}r}5mwk9X``Sm|$L%2GgZ)OQgR3D{A#X|7PWKB`lw*~LNx
zKg6v$p+AvJn=yObI@iAPbz)!WDZG_b7y10#`b#}{~!A3z?UgG9A<2u)T_I>K5GVcJ8>v
zkZTpN*M2X%&yNOSSFVJTH7@AibT5n{qtNkY#jtcz++M{C2-Z%^+1bIkN1L_r=utjv
zUhzPeAMPI>U};sn`^U##agYDm1sc14%RZ#z_a--eoHi+LI61bkvebv|Z`}b%ya8)Z-n)&Up07IM#RiXv
z5*87KE_FgaIFRhRQD)USBOkBIsw%s5NTrd~s_4g$H8ncSSq#)qrT3KSymrs)k-V#}
zYSrFP_gD5tMr%tM5K%Z*y5$VMN*4VF$3FYV;t=asQQHp9W=3v1i3Zw+ZYB(;)HrSe
zzaSU8BX**x7wJjKUhlXqrlAgaC_&MnpQW#WWPO~80pi*!MheYMFe$s1@4((z9&2i-
zp3A&+BLypY5W1ML2RD@+(8#=I!|u0&o=bf?W_s_xj>BIXmA`$?os?ax?{G(OkSj8K
zWs`Mt!P}eBz8rUacG4Qz#Q3tZk!s4X4SV;N{r7dX8*nkS^LnF`+bsf7HF!
zBXE7KlDbtbboy!i+WIcq*9CrRg=qxmVB-X-VeHH+%^UC5`}#2%#mVy}N~Q5ycG&26
zvBZZ>UAj-lg_&*Cy8}FU$g8aT%uSzc%WhWu^l;;YKhH=_3T&^=>6(KnFE6hl&8w%I
zRS%fRpKsxi28*de1?g{s*x~($8dt&);h>O5u#eA6I-JPM-59Tt_xk-|mCvppBC>Po
zf&Tsd{Rt&8@$GbI##UY3v90G_2#+N+zA#p5!XBJGJ4l|!vq(3}|LNG5HY6dsKAKPU
z*zoQbnZWnzQjzTN2a(ZHzxIo3{s@jD^6*y96oqASa>E=T?hS5CNorzUf-#Gq?X`0m
zXHHD8Ah+Xpaa@Ka+J?=U9w!#VOLsv0^?~?*0qW+|ANSL&w+<}PC86C)UxdFC0zLDiRcS`T!MTCr9U$r%A}_J!d$l*_R&R!q%AbrZ2aI<{deH*GShnHf=LWqi;{e?u>P13vYWzaDb-IUU~D25hO04w1$AKS
zbTFS#bb~f+D<)a6CuURO)~ASty_XX~CDhFl{tzPjz2y(P$IFo%MJ(a1egBIKtCt`u
zw|8L}>cF@eu6uC@r$-yf?E^pAi;krF3C(9$=NGalUh-F!$Q^MkFCwR%em~Slx7q_H
zkzSnRU^mxrq56%s6*pH`D+oet*<+pPDGeKL%%jak%ML><
z4{+`tP#%W$*$Vw&K5v@qjw9&#zawk%F#Lv+figjZ$K2#no}_Q3vf^UC&vtszPj1s+
zwwPw(H`sQqREH!-$TRClnXqTdP~-Mn7NfvD6QvcjztL`ElC%?ZZmwUh`?z~Ew1CJh
zS#MU-%PX~yDJ1-0RMVi*c$LGG-c%MiiE?GxdhtxMR=bZ7oE2^U+rtIrQslb93%Oym
zFN7OBY|*uOQvDC^aOq;L7T6VLm80g!9+>%t`ynnI^5UHMj`k}3N!GmBK&dxqgu_^O
zkoa@O&)~4B{)l{foV3%ZsQWT`)NVBJn4nsW-SMc6gPT)@{0tf75e_)y?q6nL5j4cw
z!n;Fw>^_2enCbZN#xoQ@JmI-w)jFc!(FqnlpER`KiAfoHM%b86TOYCFKN>
z7(V>%Uuv;)Vey@_jL+c6P0<9tdx-r>{G@twWR@b^?m5ey+mm%~iu&)(
zlQW(F;zJK-Vyep+n|qYn4An=+N$v!eSC
z0{;HQm7&-%c`k$ng7@5_jdDTG**&bnv&DbJz;n@7o^JGQMd5aUx1~)`xK)&3+0f43
zJ~PXcX<}V_cX{B&c6x5TqSz(MsoHt-%`>)n#>idu`htzm8MdyB;ImNk=(!Gt2y)lr
zCk*W*js|)-%Et}!4J$}R6-T+a!{Byp7TuxHmZ4qm|7cGN}`ueC5Q$v4y;J!
zNHfLcB{5Dka>8z+b6P%e8?aJC>|BfFQD+dSV-pqwqfA=qqDU)V`e%xitn8)VgFn>o
zvJvh4n5;d!Ta~5+*WGecEC~o0Q7#a3z5u20clBmvDI7(%f71`C2{5(8vb+bE;^^;(
znS&`ZC85BmACvWuvGS26*Oii7B(G#Jv#YKSYH0^-lIux310cuiW$zw@pAXADFDcR)
z`%|W}dsg^=HCYYoj^VbMMVH7A4DmH1v2{_htG28QtSfd6VA{EH=g8Vz+&!QUY*pd9
zpRyLJuD{S+9(hSzFS5bO65JSlktilWKh+Ls>EcXX{P3cT${hgBD-Yz443RUtaI4lS
zAFInO)k+(i;0b&tTCF`?06a?ZeJJHFxae*Svd)!neH!tYK?8hK=LJiH!JW1}^%V(jOAvs7g5m
zrZMZ+!-}uKk{?PEv~xv@Lb`h}q1weV`chA9lUm*?bGG-ynFZ1IYqM`(M1ZUx)w7b9
zsj{pYq`6IyMk~Cz43EQq^0&FP1F@SmQnF45#1o_oqx=b?B6r?Pm1v};+Ba7
zi^Z8V7Vfd-hwY1vjqOvmSGHBBB||A>cF9sir734Rl|IU({Jo6oea&@v(z3_)}_
z3yQjfzWYHu6*-H)&r1(axacd&73DWkBQ(#igiBSl(+4*9!s`SVUTVA3xUm~aJ%2bF
zK5z$@^FvLu>p)_Mb5(5g^5-V&U+|@s*IJyeG1^*T9S?VXI_>e_)wljSCf&a!e_*lE
zsG1#=Yy3bi{N}7~kOpcI7qb0EQZ2*$w)7?{N0P`g%~6gOx~HewC%t&yiOHr4dS}!x
zKj0w~JZF*V#F{Lk?7_2|H~NIv+VI55z{8ZsVVb48oH>iyV*uOE{`)YJ(8oF}VXxs3
zco0Ea)R0_+ZbB+7Gng)nzDLG}>s-L`m+Vi*p18>g17!RBP|199q8ZxJueNGz
z>;jKSiX?V%6V=I|#tLm#?<$U3uF7=AK7y4
zDOywHOT#nrt;EndY_yw0-w9rnKlqrpQRrn=DEo~VYB3&tS$ZknEyfq@+hOKtmk<@f
zru|00hIoE)$o;^ML$H39%SfF;9PN-^LwfZ61cOO;5JuqW=%}FIS0I+ncf0Ax%2)i6
zt#(!hu`V&RSRaMj7PWg#+bR{kzwME+MB}SeIaauuPY%ZZYlH=8vt5|=4f>?xNvlLg
za#nM;vFF6+&gIa0z%rM8y{Qy2dxS
z^{NQWmU+Z3dt7>xYx`dD7d{u`101i
zLuw9FaCGjn*09OD7|Q^t&|JuDE~l@V8y4DFEuo2||nXwofKu
zp`ahl_J_L7cvU
zp;^VaB-(5uftL6)0*f?cf*6!oVj@&lv@@QloZ2_`I6sv@Alk5O+CN&2wp)t7R%HZ8
zAYs6kHv_s_{ybg(n_;>x2Z^sR`1Qx5D~@&Pi$}v3jOB$IAI$5Pz0x
zk2S>}Ou@I^Wb2jVr7Ia38R=JOJ*1WHTGlUWK0Q4ZwYl^}Tmy(#q}{LXjHMz;*6DNt
za#f9(yq_b>I@ui!Do4ICD*X|xZC>GklKn`O8;z?->jGb_)#9h4aLhESc+#9+$ln$%
zCI&J;lChUNm*H5P#l#gaQQX(7-2MusY5voEe$%wgPlWsR2Z!kyFm0oQ8(W{&_b^(E
z<*JuA$`zHIi0PNm}3smt4>xpbhD3laKEe7*Mh#5*x&UdYkE&(JC2!ozFm
z;;;r%jOa4*{jssGZFUjSl?RRGL8&5k!CaR&5ka`i$mCEPffDiB3|h93C$U%ZaA4hO
z5D+@rAvnSTJ-_)l1wJ71ak+M<5nOYYI9?Mt<($fpEGyn=>RdU$FZleJSuQ%tF^o$^
z4I9Ynh_HzB{zpYbSxboH-1SpuEzjdIbG%lgE`%1cv_R)v?PqaigBlGb+#I@`I
zmJ&1>Yw($sv5n6kF#5FEBuP4xsaJ9|=kA0R*(-dz?ZL+@A$voE+cThwe7b6(W+#~u
z^C5urEC)#`KyHtpex$QB4;F2agTyKUS28E1{)%yZFEItCK(okp*wJj{?hbRX;(cZk
z_R?lv-eK?kY+~=S3baML=q3j1$w|v(hHQAa@i%y%K6-`@p!Ub}Upt<>I)SeoPRcu)
zcqC6h;TxG#+Lr1544v^@OFeqE3fGqUy>bl6J4q$JF_qaZB-C)A5q@oVK5$L>dU3>b
zt(ojlswz_Vt8Md666NL9l^2EU>h4JT+|A96PqWh#z(E*F+zR^4b#-;AI@R*nF1s4y
zOS^=~)oYa*K$dJ8$+KEU1{T}gAZGP?Pf4W|pQbL88*Nwg(v7D;_|iq%W78`xT7JqN
zw_MA6P3u_%e??4S*HkvwyFQOWthg29<{)gt!9S@t{L)fUrLBjOpYc)KNeXl15#x}g
zq~Hd2Bx!VnZ)s;~b@NI)=~r*|rQ2cPx$DL+@#@62jLavjF#u}m4~|u*Tp#=ZL9a9z
z{SMl#t^nKGz^rD@UfWDB(u$7ci&>;0;%tIAG0_YqeVtSlY>n@u->afq_=lm4Qf_$Q;1kbabRSgN2yQNEmLHYP-f5=8f0{(gZ3e8`874$XG>HRh6P+&Gx_YZq#PhoS2ZURZ`4#h#T
zFmEsYC_q+bhyV9ML1RBjgLNvLw>>FyiSTPB3i$Jz@YXlO010P?q;N_C9>#3|_eCxK
zV-QDHT-H|Jw4G&noGeT%ETrPPA6NZjxX?H+Pd>+ObJ~-2;ueSYLkpJ*8yj!*pvz(n
ze5*TL*<+%Mb8}F5sqKU3=Vv?R6>UvQ25KU+@F>nY<`|cIdHMLFj~`t-cG19_8AP<=
z1R4xM#U(*n9|F$N)o046nm=GJ3Q`%R$ekeY4cKl-MUC!g4kUjK!Xo0bc(kmmycsGv
z5M6HyH)uT3J;kya)*aqFpfFFv?ddpPGphUWC4yg{MQOQxZ$Xrf#3zBzrP`52^j%NGL}(&~@NIvAtBu)Av(sdq
zZwR{u@g*1cyL1}*O)^K*JUS4PJk5tZJjBJ%Z%usOqm$z*9)yJ_%Cx^1c{1xXd$@XY
zy#OdHAH!RL8lE~k+1dIHP<1o(4j}v4G4wa)^&s$RwbQ}oYx7S|<#h37AE#_ID>TQs
z0zGjCpxxoN2fYgpW7@@!$j)6w`rfq$)s!hSX5ZbCk#VG~YS~&z453
zytToDkIM#8e6f$MIifmNI54@ft6^en_eBHK$)WbLi
z)HHf*=pQ-M*exs;%z-ylVN_ugwD5}E`C|P9n~y{VMGjpROP7u1#|9$Vlq`c|IusY;zh9u1pYFeHixpJtg^R(>R&E$8qMB^}_v#
z@nvPC@$q#<^^mW$`OcD*#;D}(wZ?WhdCkFE|MLR$k9{f?+~0rFo~>YG{VNN|ywcTH
z>&}tq>2!)Oelq7qdL?AD6B|KMQCxoyapLkv_hN#maMC_X8hunepepQL@RS`%5o8*b
z7*g5z{$rG3ed^bmD;DQ~ZB=NubeYCB_vUt|?%YF7U<*2+%bEi?y7rq6h9TepFbh-H
z{Ndsb2ui;FFHv1if6qQKHE1%{v2-`{(Hhlyl&|I?Q%Zo)hqO$964CsUMxTR2ChZ&0
zYg?--U5ZisMpi58bpnQ0)l}}5BJ|gkVNMi34CHwszS0;
z9}B|p_u!1x{~-mH$0rKeR8ePEtfjJw9LIB+ahqarnF+R`J4{_lTb7=nL5}5;POgwZ
z>tT{ytr=L52_DxYn3Tft5^MKB_Gt9-scYq)V~?weSgBjr%fFe!^hUd
z_;;Agk4xGM0mYF;^3(B#8|3L$N|b#yo>}qFSHd6lAJM=xRH~|$SW7cj>^x+)#U`zB
zJoqyn+%w4+>lJJIM`gwl{4~1D^#He1$NbwWf@AlyeHyo`KCtypGCHJUBfHpWSQ$`A
zq~-9LEJ!+{wX+aev)b%x&)(!{SK{KfDT)OCmW&zteGW+ztS9^OwLd)ylV&HDJxqyK
ze2UU)abc)q?Ai5Mw2ot!`MZ1XN>-!~?dB>Y^~wQ=7T2^wLu@m{GUJD(ZvOadgB9J3
zE93B4!*B6%=$O>VC_s)qB*?dVwfzPUR`%_%G$dR?jm8E}&uOsz{Rt-QN?Z>16&CeS
zO<~%b(hN{4K&`gW^`9dK52tQkTAwP>m#;j&87&ah00sZ$pSZRqSQ8rpOL#C$&hl5+
zD@&%n>bE>FZTHqcxV5ZDPptlBJ63`Mo$pOL{X6(hrNK9X;$QAcLsJ9{MHm!57H6m2
z*632m5(s<3;eXrVUnmYwaxFvqflOubvsq~ReaL%~RT_fWusDiXjgAwVJ1b|KhuyD6
zWZ>aAQ~NofPE6Iv&jMLBr6=#`xO0f%oOZ&oisxXk-#AB&&@(KdPolk=3j?o;JHAyF
zNr{WgQ(u6>HCp3C4i1Q!1MHy9jczP>ZqA5Gg>yiL+hdL|Nb8=4ef-r11_nJ^CA0i-
zV((1}%=dy5o572e1lpU|>bmhrLVw
zdo1QCFgOnvPPOb$TvTr8k(rN1x<+8O^AirEQk!M8Xa4p
zbq7!6zjkkEFG#0$tJi!!*|&WIK)0y2f$pR1u*u
zUzvuVDR#uwxfEmEh5s(If0E4Hx~{9R;k>b_VB0MKgl>6&I{_GE^e?FYNn24l4n^b@hr@#cgu7vzWBh3jeHIYI`z8)jBDl>|CT*!1OfH6vBb5XRicvV}i59aPqaq6^CB^O(?
z>V_M4spRQ#+t@jpdrrTk6#w}U=5LvMVD|+UtH>(7OL>^KzuANp{mU
zmGBd_J?q~YF6nmJgPAi`>^c{!0-nMryXkSNIzve`y1l(DAu9R+FFltF3Yn+?uQplD
zD034>mgp7!7T@f7;@UdhWgCFZO0oY>O@tKc++!H}a_fI$C3!$5xYGn_AZ@BB`-KiL
zaM3~v^6&(b%>%T@!-tS
zN(Y2WwBw(%L~`?_H`_6`O(_$Ec!D5BHc}Hqozte6@gvG4W{Be$quw2ZTmauvgw;rx
z<0AsUz%0+r6;nROWq%Gfq&t#F`Y!gJi^l|fLVGbpN>6qhP7wLpxVDQF!c*I{^bHuk
z{Qq*UDVJ+H>xq82vJsw}E{t3mX;Iq#J@rU$>2^4k+Z(c(Q*v^NGLyYMiLhh5sv>!w
z>cAiUibn@t=ER5^z2oPMQmW=wyb1!vvWZXlhuUY|Y{G57h`NYtkuv1%wfFYDa*I2V
zV~vn3B(WV{<>$R|xMM#eO5vGccR;Gp$|)mdsx#poAf~hwDv5})Bvh~U6nDd~h~O}U
z2#;)5Ye$<)e$RVP249iuoxE;)1ujrNpVvCH2doKwo3`-)vp{cObdU7U)yEl`iRiK5
zbx1k|98WE6{qV^uT=K#KWWT}zDX?>?JBDhEr^O~WOy88nR`H||uYNF>cySR23g^d1
zNzy_64ijh8W#&=x(%Ka+#kBAZfT`jVgqL7*wCyuk|8ZDu|IR1MSoXZLdywPw1YTa3OG7JC!&`IkoBND-6o?x}*q?(sni)I{_o
zovdl*w>%!4d_-}r)a$wIInsHrBS|)M+3ltAX>fB!H~tz>3%5J59z0Csf)Ig$qhnzu
zc+t2AGE$0rX-)xQhRZB$0L!Fv@S<@{o8?jUZrLed)o=;Q;0GV$gg}hzq$gmxAKaVb7xh)TDB?bT#3IL!u+5WR}dYNBg9T8u9yf!S`
zb1HtJL}giG-&maQpIG7@Vy|PBoW&!G`gGF5xHK9Z^h>UIZD|2RmGzSFHJ8Jdu&*?k
z($kiKa#fA#)C1w=1u1y=tDEc3qZ{-#acQ6UY3C55P@7LnK
znP+ZKGHev4Nf5ikzsDV{4F5SAiIuOS$z>shV#9ay4W~KO$xAt7Zp4D8?^Uc-G%^J6n-Q?2J11)r!rK`og-FwxhamD#ogKUd<
zG(YWI-`3v3t-JlXa{_`YnJJMiEK6>hLdZ9_fAB)Go7+Zl*K~&{Enb1^Fg=ntm*6#4
z?iMGO)n0R%$YqRqW`d%V=O(YJCM<96SJlhs&gWj8WsK3srdDV5Y!qIcKB&4S5mS9&
z*StFzT^fr5Wy4{i^i-`@d%?BMdQ}Kwyl1bT7Str@%Kmqb&%epH7e}okH%*C_M*~%O
zQ7D(hkWh8}$vuF9v+k*%8iWH@A_#Bw>oNG}L6HrQ?hFO$_SDSPoKf~tr_aksS5-)V
z;l{=WQMqCJqGs6)wCupgdbRD2vZ`q_Onb$3EAm-t4gAk#V`c`;hVyZLA8ky3cGP@T
z65Stph{`A%2*e(s2TD^u;J~T<=Cr>WB2BwrYu&^>}2v^FH?8o+=ROrD
z<*2>pJ1$n(99%`b&h@)c^6|W(7K9EteD7bgUKZ!%F6g;%3M4sLQy}S22WJ(m3i3
zF+zh%@H!fk1}x4gRPyyuB?DWNB%RPJG$kiN14*s7B#xA|3LxXr3KnPzc4?D@ZBw-CRRyJ)G1fT+P+)BS^dL~P
z%x-Q{&-gKFB3FVDnahlN^r^B)yV-S0oA4lyv^ItLB&)~y>SY|Z;Qd2@$71mCZxJO?
zc2tOV^!rUT6xPqP@!vQcaWgZ%y-R4Cuq04Cl3qPSuEi_$X(8oM^SKJb1s6RfE^i9}8jpy!lpdO|xAP?Z}g@KGS*9zXOVrwAc{qN{oN
zY;8?iSI)gsShnh?VVpvurH=Y@#+7CAUZ2
ztF$*o9?8}I`cX8xdL%XzWv60Qf!kfWHW+AZEr0pm
z-CbDdg5f_a@5_9WHsHK^FWTa<1eqRsEk`M%DNUe=>$uGxfgYUlW~5}k`ywBn<_Eg~
zzKo8eV~z#MS4cI>w4!L1sT(;Cqf^o+
zf-FJ;Ry$ZF;$PP}Nq7)R**7ePUgE>@ig+_$qOFJjR5w|f*10ToS{zhL-?c~(v&Pbz
zyAfjwqsdad;ay1Ma5?3u(?gBFY9eN;r>VCjmIpD8JbTsV^r@M@QH~d2)(_l%vre6#
zYBP?1W-%`g5+5g$SAL+FwQ=o50AYZ4BYO-uX@Gf>_29MvbsH&hXy>eDUOoU)jXq6
zjK?-RoWX`1&V27K(?NfM+0A~xly9oyfu<-FV=%E^%1Hi%@Z(As%Oyp`upbJ2lZ=qY
zZWjA)l;o6-IoP831RT~tzy$`qN+X8E{kz4#>_s~(y$q!CcR2gjB5Z`=oP-%_GoLQp
z(h6<5A|kg60B*kO5n)_#ML;u>(sdm^C^(qtt~@Cua|w1j-YY%Vp~CgdSNiI&$(;^r
z_fVVw_8@QZeYuywoGRH?ZDZg-gr+1-%QOYaqAz}!N?DGGcpI#+Xs&E}ZRmup{e&2q
zXE))$b^vvuUt1hlcAI}jU_CQFGdNGLNZcudzKIbkU%bj657O$Tw*?qs_b5ncbH$8Y
zUp#?G#81Zh?mc!1G
zTfnX%7zpI2UR^Ap`_uJryV+uiwXAoa4#1m|kK6uS+<5M#`Seoc5fK%o75{g)p0CoN
z@hSXd)o?n&CH&@7sd*mZAk$BC9`V3@3Qc&?bfc;yo3#2-u1mPy=5ijpgsazt=7+un
zWs-M6e6MkEMqUhy$2>;xpch*toJPziddr#hUQbxH&~VCA)n_%S7sWW*8Fvg%GSmWDY0jFd=ayMxC(}dSoOu0Wt&IJvn
zr9L&?LjMk!=`OXJc(a9YF!XL#0uHHvrj#pyVN5BIlhU(WB8sXukgt^qhg7zWL+i&+
znxR>Z6yPhR_1qqTWIDUGYthrwzVgGT+>3p88y-CZu?bVe2Gt*r5uIOIYC@Scx~KAE
z>72LDW;Waq6@}IMX$qoLs$5(dFLyNw_Crr@I_7HaT4%;NivZj-1*|2r=<}aE_q(J>
z0ksDwsyncJvxaI>N$`PA@k}uVQ?xi)o`pY`WsKPeVKcnV6;4A
z+Q4uL;Y&W`yzXM)x-Y*JZjqvI{BVfI07}`v`MBN_y`3-T4Q_o1#1JQ=i8r>
zg$~2ZtzIg-3i44m$=;(;6l+QM!Hl*lA-&
zTB}ocu|F!!C=9~w2Z=v`4%1y+q?rQ(^ne*L4-K<^(fd34A{F2~?e!fee<7o`-cMog
z%=5BlB#__lY%!3eb%zIHYY)*F|CR1wxA^qg9@jm*dABTwHNQAlq&1Xb;cQy+pu6GE
z7VT#I;*fe+HKXIjO32-fnX=WjvM1h4fq>O}Spq9f6
zo4e_D6bLeK8cxTbm!wr4nS4V$%?@WP_NgSHY?ET;+fgr*db?d`EBMB`CX|*6aQ>60@{^jQ#B7uCKoC_D;n=$
zDR>=;siD!j)I80G2-=OkBl%!_i}HShn+d-=vI#^HxfN4)syiv}RDsvZt4Nv
zo#&}d@%1;t^d19<8gRGTfBU+x0PVvfDiY
zQ0mV8%WE-GBO7zQ{bf2gD^oYk`PxpqA97asvZdzrBRA%K1V)}x%;YqCcB0AYzLY^t
z?1qYej*dTQmfnUZjMPca@AnU5N4*TJ_$q=WDodX41oEUR6#=QyUhi4Yt4@VUebR*+
z4POiW(n;=4VFE^WS6%iJjFt?U2ofne=`Jm&m+xxECY42wHSgI@T}h0ABUb*{^qt0b
z4<)C;&1{GfRRTf6sf{8ZQ{?q%;9m)S!R@du;Q=XvQcVDS7}|(T-)IyBd@n(ZCc0(m
z?R8dAhIP76bb@axkO}uKQ)_{MaEks5h%XS3T3kV6U45agJmRIQIF4{dsnvL4ueaZ)
zF;WhzIz^C$*p{wo!d)#*OO~3CBfZD2{r?z?Pt^UZ`;L4Hlcth`le9t_lDa_~;&rOB
zo5TW1iezI&IZ0K@IEoUTYakq5d)CR-MDCO+X4RwGG?PqYhcFPl6DEUFzS&f?PUCd@ltMsmyL>mL_ljJAc+<4n@e-ry
zoVZxlARsAN0%UU-uv3
zzNcMh*BYRUhChV2?xLIO@&jo+_dohKTsHEoEuhstO5}AmhVj(#E${M!0
zW>bBs^c$wboyw@(=CeL`m@58bhoc;WERX64;q=
zdzQo2j*#<1AK^<&N^N3~LG2gkeV6ynZ6sGbt8PUp_c!qyk
zBF9cigp-94Z&*jAKbip$&Ga__!_BaV9dSX
z`0Zbkw(t_OsbA}Y_Br|fO~jjghk@xc$1|rsEKCW2GVD%=u4x5BGa;RHYzzM5+RZCJ
zK0ys;cAns=iHwF_;jrn+DPWM!>IU=eFaTTLZ7{
zsV1nLQMUkAX2vhH
z`+~4v9fMwH4oOH72Ug=a-pUmt9+Ar7o6;qLD00b2g2s39&GL%OrZS86N&yMQQ_b1t
zC4YA^8{3t%)JZ;GWvtCmvTO(2<#2|5F{c7i*GpXPBizB1HRJaopF6G(r;Mx-3Fgza
zEqfm%;;7Qii}@|+eWmzmlV$TjjLGUOFQV5c!lRY7%$K(?x4Ff}X6Ph+yNNQJ?{YqF
z<-PbDIR(>?H0w;}IsURN{uFkUsv6Ub&=BounpbDO{o;OLze(Eox>sE9L&Vg@S^dS*
zGY#Vmekxn7&*(4@gf_%=uc=0M1ZA3t$XxtR9P${4ZXeOxr
zi}B?yC8e6d3BfN4>zov}1s|_<33Vj^1{4ZBfMrThgKAhyd%zOyzS4!k`_f~0Jy~&yiLo=fRZzI
z-iav}hvR-8s%iabaPg>^4gHW-xWtMR4BDXHiMo9kCL~K%mGC>qtK;nxJyw?9%QPUk
z1CNf4y#H$CI?L{|B`BKzzPo7cQ)|*@yOM_fyU8j22&2wMnDB5N>l&QOlTM@Pd@F6}1<
zR)tp6yCk-EtP)dNd(#wS;jJSwvjiO<{;m$3#bC{@WGj9gp2L9{;5XoiTX9k$l}XkU
zG^p=3NYf|Z6w4v@gK7a`4hua=4aaCkh{TV9K(EnwzRuO)3tFG-IWu=p*s!DhI-Vfe8*UM
zM_m-|%176)_6snW!zC9H^ftL{_Q!7)XLN15)8w?-l~llomt(Sje1ZQ
z@Ng+0^K=iE=P^vuCjm@lSmRV#tD@pe?F|V
zAb97^998LbCt5|RLAGZzET%*bQpC65*&w^9ry@i56)pRT%n<9o2kSU-iO9bEz|Wb!
ztC6}E8Bsx^zFY?zn>yN1T1mm#(f>o!SB7QLwO!K)NJ(5sH%Ll%cXyX`cQ;CRcZYO$
zqjYz7gLHR%!~MLU|2*`Vx%TWmXRNi(HR(p5s{BmQDr5ub&J>VnorAGxz9f+s(VDRe
zdEYRnT9(7%kUE^3RzI_pl5`0fPppl&=mHzm0@MKqM9&U&lA$|eYmdccZJU_1X|IFI
zBb<~UBx%#x^P(-~3yi;zSY|RUKh}+GmS0w9%a9f-zdS)0wHY-H$Bedq<6`$W$o15r
zC=(1EBG3d+He&U+UBYZ3O_7u|;TgqM{C^=~=j3
z(!us&g^3t>P&sADDeBlw6|MCJK!>*K=hN2~wpr&p@soBh~
z1s{v+OSW;MIb}yYa}PB4Ez$Z8-tdg@Zq;pVGLqxQsh;|}Fg0V6yyc8l~^Ml$hVp)H`ZDwRXQxQF$-CplL6L$
z_pAaG5$C?v>mqh>g0Ph-QQ)>a
z{Pi=4(7XwA_Xq1)t*!wf*KwN1B|w6)X9~Pqj*S8DUXC+uj&XA56f)FB9Rdq2yvo1=
z_fKACK*bRpBJYqgiOi{Z4;E?sby58-^6_lu_rDGY$7Pi2=lJv3XYsXSf=+@i4fR7a
z*b8Q%y>VjSA}6{0obHJpiG>-6*}t9NXtQeToXG)6huSdt;LZD83po-)d0J0INI+DA
zXWP42NjFopH&8RO)oiaxLlJ>x;@j<*FZpxHcOE3Bc>VVlZs1}c*Oi%MLNTz`nTpFp=Zgm8L5jEf&!Qo2dfA8gJKtAtPbMOu1>^Ky(otN%?#TQ+*
zDe(1U=W=S#zrxGo%L<1IV%oyb{gcmDgTo6ojmPNbSB)2aXplFWGC{8(=VZZ`%uQ^~
zZDX4i7V6$)yV8hUr!!N|<%Bes>Q$J&iYdCus&YYhGPsSHMFoIF=;!k1Spq|yXw;~P7xo)>8Dq1UI&tSrCzK$
z3qVayJwX1UPQ!BKWfwIbHLtnDRH-U}ODl{aADneNWIe&~YV1WEvq;Wd4iPMyDYh8=
zad@P$S;2{|*lVv|t4f*c{faUGWM(>1c?ux)xEDA60iueDGv~`x)zMZ>-2IbfG1XB|
zfY5Y6YUp?OO_sJmc3ir0<7G4$Uc~q>}j{S&8U71ok;IJ$PR#Y}mNyx6eLEAzt*jQJ(G@$o
zq<98`(7XxH?7YhFOgI7TRt%{O|6-oef7(~%j!T~z=|=>huE>gI1eT7xu=k
zMFeC!vCE^{Goed=Et4+6GBhWo4{C|`ukj;m$!sNli85>xC&*(9s-R|zGP0j|Q}c{N
zHreV{Mq2|h~r85nVZ1-(-^XqLb
zQ@_cc6SJ1h$?9qkHsds@gIVb&e@M5(7LAq+^D#6jl5j?;Zwu+?lHHmKKd#rh6Tr{69!|`UU2FZ!
z7H9=Sk(&XjVO_g4q?6iqz5=;+xZ5PoQ;e)-lG@H#4Xzw>SKBO#SD`k=j2gOB0K8$w
zCse@f1UuaR3owIFE)#tB+R~lv_-~x8h5Z#$QJAGy1T`2PKBhiri9fwTzDohlnS|*0
zsB;p!KB_hLnqVXe2d!`L4`xW-MPVc-bLp0;=ZZG|kcfQQfkga*B>H&)_luU#_0)UM
zU;m0kc9H!Ip#PdD2fCF|K$=^Z2bJ4~LhC`jf8r})h##G9)B24K@CI4nXwnk4$x2IG
zR;Iyh3LCUhdA&J2JOs=!8jiW1f}O`$7J5lYNV@hip0O{W2=CRaH2xVfANRgKvzZx>
zmc#_jLhz|&vzZIV5uT2Bn@g&i(Y#bH8J_;MF@>o@j&BPIcxscaE#I`_imi?ek6{ls
zisnF#y}D@nhD=87Nj%yD;N|5A_vf!9zGgI6r37N1q+I9n$6$_l(#QvQ*)=nf8i-bi
z=IE7i*0Pn^zI>`uKtw}RShc^Tecn)nB2Jd!7hbC5UM|jSpwc`NbZ}QTisyV(x<5>E
zWqPRnxyQ$_uMJE&&qD*H5|@!i91!lq0L}TXtsfEUQjO>RnVb{%ZEkFAEMlq0H89cO
zO>i+^xAZ=q$(2n=Y{*YT+?7-6>(YsruMvzC*#}Qw$o&F$pak@0NK3#^`NpARtP*bq|3zH3|1ab4@Lb4Nyf%n0%NVPSC;
zYMyq+K@dGvu9cm~xX-PLdY)Jis9H2tV&7Y&pQD-nlQb1)HjA-ED(Rn;+qh@F0xT-2
z-Y2Q8egY9K8Pc$vHe^;^u=J)sg$P0mTZ(dKPvo*t-c);;|Aw>S>pnny=YO4YtG^RF
zI3l<81nbVYi1mqyWCZ`EnIKM+&Wgxs>2m-&N^3$(kEKeSR2OcT*|K7=N8;t;T#BgN
zG4d~clQXb5tUdd*gZ&7xorvOUuEiYx;xBY%W8{UeN*Gf;W2mb-tVAZFHB^D+w|)>a
z(CHs+m!4fMoD)M79QhUr|%UH&OwDwYMvnbiI4A;x;~<1sMOQa%?G)|7z1%Y7e;X0I
z@LPGAjUy-QC<_$kmE9QhuYDNYOeSA}bakB8r*qA|_%RnzE(_7l+4jCPW91447-V>-
zSz|f_gI{Z|tW_iBgACY^{KhnQ!TofK%4Axyg%XVs6|X8%TwRX;R?h`fR;`s$K>{VP
zVmcdl0X2@3Y<|7&D4$EfeG(k7_5X2vVki*KLfHY0@}tk2X({&v-ymC
z0(13FR(D)$mhRfxC2(8TUovPZ8T@5Rln}2tld6z1TH>83Fl}|5wL~UN6wCf5aQ^F*
z!`Pa=At8gC{d@*?i^Htt;AOxRXOJPYW$)Aq^5d|2dE8qoWf)Z)OZjX8bo_w+QSYjv
z{yBImVyb339GP7l6g-*TFAMlU#X)=oE!vCz)6mFr1$jBX?Yzks#wZ0)pn7GPB)Sx7
z7wu5I1ta?lB22JPw3Lf>D^NVqB+jACsP-_Vv2<@&x__QG8p}|_&m2nIEt_I9D#4lc8%9OeY=c{df>?nIoDf;FxPJCA0$!yayZ;?s@kyKhRXqmer@+LERBzmBmBAjmdT?rhv_2qw_Wx3l<
zwv4imxzK5>jwK<3q;h>c)Z_-qEoUc50S(MkoCI;fKQxiGsyL|)%Dt`Vr`~r~j)ggrpT50On
zsB72H7nRO0-_J0g8bHIgkJv|;r@g^dJLVo_-4swniWZcX3
zBvVlUfQXW6sXPZ=2*CnyIo%z>h`Mogb_e&rG8
zkX?7
z;~Ysi*{@u*PjyzWhcKSmEbs}!+dee!z;ug=0PA1NajA3&&@8{=+=vB>3oVMykj{!<
zmx#MR_#ne2)FW
zx3nVP&(+{n8jId-b+w2jp=Q|TBSM@UD>;H?O5(X?`8R^ke0Y$$b1k7i>?!!z>~XDG
zQBdp4ki+_7wy5c(9~xoX8qAr^iFhL$+Gmt3JFGP5Wtc=iS>-iqqupVJ>JBLx7Vn{FM=jwUO@9xA_8k7Ph)WFRMzy
zwtQLMm}ZKTd^9_#5h2wa^(dQ8cAa?d%=CFRN^f85nU?m78}Ly0?=FD4xO^xLNCJ|8
z3c_vRwX?5LD$Xd!u&rc|w^Fuj3kyKMm(Y%LYt9u_5}8Gq5jEPFW^%oRk^+T}2?W!{(*bJXG67Y{%>GWcfMT}b@<&^f_%c{)Mm2TO1LoLz(o
zUW@65n6pVM$W441G+3JoAv055zu;+ylsSf}MOagV=Sh}cZpKn40rNA<=Wqq=(I8~w
zH04;^jCi&S)dNOwOdM4iLlcn_JysByeJS23jLNLsdrLW8u{Q2=H~RlKscCMj{J*Uv
zcz+n6@cRa)vevlhqJYi=&M(~QHbUD}en>iP!7f^7KgZ&T=RCachy*0=M+k8!cH!Bf&FZ4|na+#M0aYPs
zt&a?nDuyHtpaW&eH-UtlE1`IZnX5$A8T@)2Pj-nins`Xn&@InGlhz_ZOq{Sewpsmq+
zwK|m|a1p6B$F(pyEe-k=v2*^x3yftlg5JjcP2kFdQW~*=4o585hA$_v
zLpIPiqeFCGsa`{DAR1gFNzK~ijAdB?vNrRlYE`gkN{g2|M$KYhy)4A^n*T2RQdk&n
zFUKrL{rV@+bp~NUGUpVZsof!Hsd48StG%$fp5kvt;Qyto+rjO#RsgE}C_qC8vyEN#
zMj(_V+18wtklaKXPoGsUCQUwaXwY!hqFTRhPO;>&U_534oMw8ECan=$fyOn
zu*S3yNAXUq+OH|e{7b6=x#9^i}6G==Sq0b)ltwqhDDQ3gPBlMk>V{&FpKY9!NG67sh2McM%
zUHNt$HoLzVVaOjy=AE5xZ%2o^5ZLW)=^d2ffoL}17^02;{}BWTSeyTqSc-toePzKf
z8hi!tGpb5`f0@b`vxOqwyuUwLx;}h42o4HrjEacxGInyhsXVT1v)Orci|8-Uk#jT~
zb+1xsS5p>(4EuLE$)L{3=(@7hCPDrA*N&H%QX`Y?dc`9|8e#&A-mi5;@eD}tB3@9f
zd-g4w)Wg>?*Fm7#lG}eVsb-as&7fXan}0)uo-F2mTs$uMxp2Kz_jTN9jNLf#fFr
zM3W)2Ngv+&LIv1f>}-i^TKx|X2y={Fb$DY8<(?mNMO&SY0qDU@*{jedmbYOG)yfr3
zuzfwV>}lkmh(GH-;LpXnDlHirHeLsO{P02VXCIxVTg*nh_O(#oP(jMr`1&6f#7^et
zM{p}9#tyTVW@g`_2AGDx0K5Ka3gK6Vpp#7NHE_nSaghS#Ks|&
zv7P^$$v2SO0h@G#o5J*ABR~cOSeZI{1nPgzY_`A2^teu;D)*H63NI}n_)9izoQM&!
zq^qbJ3ZqL3v%%hs$)YDx66<~6-})o
zMeu=#Mw%l$I
z6lN8_9o99`w2qzXc_)zU$oRZG)9K!H@V-{qcltO5E%3e*J4|)gt?9M;hSB4u?LM7q
z9n#Z!MQ%Sxhey9Y_v8SUNt+XI*Lk*P5gJlw;B>I-pW2Uc3Bom`V5+Rc_8s|E{TBk4
z_31`B$3VHZhOA~fqb2@2CWS(4Ot<1SI8Uqr130;lfo5UT<6ajbYTQR95t(O^5gNd_
z;n?(Y
zlgrH8GZ$}Z9d)1bG;fEG*|}XtzIYoL;?n~qoVmuT4ik;u4elX*pViqAz1zxcCf7o+
z=?8i(8+2hd!WPkY*YGr7`h}UY3T-yqeVmb#3Ayj3Z*zS2OjI0j
z)vkztr+w$&@cY>hfRwY?+uxfSrZGJCVj9)N>eaXcq;&Naa}@aeGoAZ&MbaCpXVtX_
zWsgY%2G9YPMJg#aN&*HXdCi}U_UgIRczvwRP-`v0TL%nJOJTY$eEw*=0kD??EwLju
z?DbtQ5!te
z&`y?=3S9_|l}>Yh!U}*A&yo^`7xzjX$kvPgoH#S6{3#mDV`%EQ9E$&3Ogxurr$DR6
z%|Sy!%YI22SHEwOe-H+YrnY!BgDtG{hRK6|?nuNH2Cr^L0hWSMQpr!B0b#~)ZF3vu
ze~}#cODbpm0f%ybhM-_to;kKf{9KuasEwx|mv0V29myVZU@F{27_m4VtUaC6H+)}o
z8Eo-RunzCRKPFgVL6*G}pGxaG
zXfT+q|L(%cMm1&HH#x@roNQ;5=tgSw++WXM5~PRp%FpKb#G
z=48C*Fdc<~BP)MT5*OYn;eJ40F{uIUIDqrGs?_~A%-WwaP*%%Ulvs1Fa2w`P++RBN
z|Fr<(Xii7M#U-A@{2&tw*L3|aYF=T*L7JUBuS5uLSHi^&S|>s4k>Z``Fny)DL8)pX
z4wFn^JUHD2)qchMf~@CEx(!zp-2j5W#AA4VlUS4C;Z0eNKi`62383~bP?!;I>pi{p
z^|~Y5mY`jPt$)lSMNvfSBx@a$Y+x;3De`7|H19;xb!Yd8L;Sj!p?hkas
z3%Z>z6urQeQ~TCbhW^KF7>n)Oq4iaEy0ZB!g>unI(AO26vyy?OyDXE_|%#7Ni
zaKDIb{mL*&wKzfroGOGfj%Rw`!$=wPlA}7)o?YJu;Ir_6yLe!_sv)Lt>PWJ^?4eyO
z*BxGWlR4@wek`r7Q29>OW69Z94*i`inV9O^>2J$zC=9p;$7_+pGk?m@J@p!heBnAF
zwsL1C`Np7HmsD<~NDr*p*n{;?-VL7nborDEZrw#~u4zKm^_4m6m7%PYmSx3GauyC$YCd!?ockn!4&CD=Hz#i$ZdHwS3qjAf;CKQ
z6#1gPR3l^&kkhp*Lydm-c^`AI!$;ym?eI^U@21OJ${KB0mQ!^%p;`nF4u%Z
z*e@ae%hIev@}EJwoXG@i$MTt?T4V9Z`8ps*>S2F5g#&rJ5YNaE?TWoEz9PmuUMq_lX5)ujAACh
zlg4}GO!Sr=;Zt|kq_o%;F)hqtMHE*}RTIMOu@bF9Q6$pFYE~`kaar@u6}6>MNx>Gw
zX^25Z?Tew$Q)o=6nEO?Ln$-IE0cSlYJu@Pox%b0o!vc%-3ATCH#cMXc%d8Kpn&A8pJ=zWIiI9G=#h{Ps2!8OUt_K}>hhwUX>wm^5Y?p%LGY9C6GZi*)v4U38*&oAXQj
zVR}Ph3wId}sV-K1Qk6uTklJ~S77-?e{U_^j?v$J>fgFH*XNz4Uv*;iE5(~fUXQ%hK;=OaeD@Z0P+}W@WsHV`(V(-;9Yr`U
z5SMe5yCmFtU6*P!ZIuhLi{SWNDw|tTj`Rc^ah5&^OC~(=TEc4?Z8B3Cw5%Zi=C@i~n6@ZUsIKU}josVwX_v^6@d{HF(#RB{FC1IYRoNoumj{ix
zgdm^i5yq+6SH&Bg&1mzs8vo;K1J;j#={iC7f0dVpd18$^a%6`%Dgf|^3rPeH*>_vn
zdTy)9dRted(Hb8I4ca?Ugs~dCT&ZhgF($i+_JYmZcgkGW++#8z!_TcT9S-!w4*^zyg{&I!3
zcGWv%s>q_863J=78K`OW3Kjh;D6_OVYp7-WCJkf^0x6v(A54pMo|QHCGa`HW6A04T
zfRi(S87)D?AxfmG%dn7~LDp}(_{J+2cY9Aaz%E|_y$kbyGS;$ezyd(;IKvb2LXc2p
zjw{3Qe6hpx-gG?p^?b2r=NBNNk1u^<+%*4FU-|}laR&U`8ydp<9;=Brdp$*!d_lXT
z=yb1nk5C-pBXKEqT0sL7s9kIZDpXrNij^;2pY^Z6eyyLe4Nj=zmTVlMH(3ZSr~T(I
zBE4MSkV{-0K=)BRo=bf9M}U`1%3Sf)(7Uo75P*GqpR>`S0MU@HkR~njI63$SY}R8G
zKr;JN`@4TRttD0gC&AP!_AIpoLd6&%FXG5@DN{^6;TU$+5JY^N*}!h)1Wfz&o4X`>r%t2gOY5grj~+P;
z^uO*|#!Kzt00lIPEx+`vw4Bn8B9WdGQkcsjmycOHXu&jDY%1lkGUkm*9URY-#qv2V
zvMr9~aVQBUzMfDbw}{UvaDtqIG(G2&yYY)_XsMow-QkfjA8gsj$4lk`WPD_t5s=lG
zU~oC?4sL)65!e1F4>)u?5&~9-qkOynVIa)AS#eKHO6h!zlvjCy$g5`EmO+y1QQ<7u+QT
z%vm=xH~eH~tdQL3dep8&LQLd0bjg7c#(eH_sy9bK0@Y6To>BHOQ9U1$|9%w`459Y2
zX&b-q3SNik4tU%g8MzG>>9<^bSVp+IqGo&6yA4_l9c><
z=DeWObcuVSr+j-}`)q5D?7~GRakYMO770KTYTWC?cplGCPef}116
zQc7Wjpg^sDNw{6C-Ne43B0rQY00ZsxfUB*eDNVo3OjkDXlOiP{UBWV)
zjNkT!+ag#Dc<4*T=cvw~eG3#-KoZ{jmmn^m=Qc?s&)Ja?yrJ0DNZO8z((aHoCgN
zy)gf9xX$eGh#Jn%a
zWGC=(rDN6%zuxkx!C|!ylmQX{{({{X5)yw^t%&bF5$1h&o$#@*#b~e;^^B_W$!`fc
zAx7~C>%nt~4XIXhLeIa_{M5u}?EK|H9oKo9TmATwhY<}gi1xPTHNT9vl{YbxB70L=KfXq!t&Gz`8
z-bvvwxp=liW%NRdJCvKV%X?kX(ixavNc$7>3eCtHfHyVXy=v3BzA!&Oc-&pHM4zKX
zYEV#l8tR3v?@r05vzZ6(qt2B~#t@quqqS*h1W|Hwq~}&>1dHO?$0Ztv95jwtBuhNE
zStt0vjZMyETT^^`qo6$JCSx+k1BjSWP1ke0^UFl971G|70*s@S
zru1jw%ORGDc-4@mxIV3eT5DNZcqQmwBAt%!cHnXJ0TGN%aHZ2
zCpmm{CzL$_?BhiqTjB=KLa=#+24CsiQQ_SysRTLZimb4#)5~&Q+;eo^;oIFSvkV(e
zBeDvf)yDbR*%{9a@KWoPo(!2ApA6wE&*oRaNaG`;HGf}Ww@&&sUzS_%e=nXJg5D-O
zWD=wLu>S3o%-VXKDDX?%1krddk(OXVYJ28Y)Ut#3=ymMJZlngk8H!RH)~Mb4T$+b8
zp-}*3oE9ec!YsuLl(q8IrI`GAtQYFHgzm;`vpUpysnO^b`v{lYfKa&X90_XXPA4Rk
zS&8V7cD-RCf~~9ED+iyKYd}V5I1j{)4b(OVC-Qbolr4-6M+
z>k9k8@T>T`=8`!A@~C^+A9swUj%PJTo^JuAo!+@CeIUK|8sGy{L%G;>tjhgiZjd!%%_!OjZN99si~Z6_8bR3GaUDEfi@dY^G#8zWu`Bvks8$a
zIkgk+b3v4w-bppolWW0N%_vW-qsIGL%q_?IM^MWaL@i!}UWWB5j(1*XbC%0naC7tb
zk4XsE`{TIfnNk%I6B^~0G<6q?1=Zjd@|0JceS@l0
zkByt#!|QlUw%S}3@YNFWg^e5@+&*gcqKQYyZR$tYL0o1Yh8ml~z|2rO&1AK3np+Fh@Ek{kI30zOt
ztc@}(E2lJM5M&G3Zr^C1`dV3?5MCG}@H9CdjGKmjBED)e_3-LXft~}z{(3$`a7B;c
z)*j;I@~MK`?4Nb#@=IX7QmSatb6tN_nnRB!8GnjzL(PdP)PG{*biPb>atoq_+-wj;F=>ipBbQg
zMfAVf`{>r1u?}GYpIk}tgT{d-LV{r>qQDnPhj-(bkNvdg4&htkFJ!wv*}0N*-c$7%
z$Q>#1fUOfP^%NlZFN+Tw3iXl?~S_+4yiYz-(4%uV%HITK)Gd9%G=0Jnpve
z>Lyc^0{&C#-g6H1IM8eC8zG;S9OZgLtGsg&ZlaNnS%}P+5#2qJCJg=i=N}2m;vCxK
zqWD@H8mjs+d2xMRLn^=4IYqtMsNTqvdI60
z0gA*|rb}xJj9rT;xo4n@FsqgO%<$Lfs3@f9hzMN0!&|)P2RKxY6k{F$e3mq}EfCfd
z7Wo_elakOLssrao?vUnr&%~019`yOtvNYBPrc_ZUOn28sxnoUE2)i;ak~?fNvTvM-
z!5<4iXo*#q)AQ_7BAu+f`**U6BE0D|EgFZ8Uy=ub_1%2HBm)edDYqRdu$*DvVB77k
zTho(TL_Q_oE~E@2hsRE9waE>U0tRVSz-r#e9X-C&PGPN)Ih*;1tgu$ILRLG
zV5L-lf~KaXppWf=|9zAEvpuBU>k^oQ;jm0x+sFr~f0cH#;{37-s6ttqc5lx=)JuM#
z9~QXnVqt3tMl4Q)AQVupnb{zwNb#qh+yl7WyBHE*644!o_YArtT~*
z)m2tFk1df9*9>nLH?8|a$PAgMi^xLQ=7E1r+aNz^AqGFKYl6!-CM;4})b2P{K05~}
z*%(X|0J)X{i(91oXWhgRR?I7{C-}#{#>ed~iEMW7BT4*Z1~7@ZRg{6tl+rUiJiN8b
zQB&UQ8DPNQ4ltqXDSgu2gzN)IXoL>du)GB@ITaO$mR0JXUE0I16Lp?uW@bhko!)v7
zSlHOhUqq&=N{*;ScE5e__1+tQ&A<0^Cjpa1u)*&`C7t}<#F}NqN4cIk`SU43L1@;z
z09H~zCkS|GXWRGypYhq(9(+>~KoFUv%F8L0OTvV`EybhX)p|bH>z8Xi0mx26SzBKr
z>RqRm3x;5V$@;(uK5WL}+R-ZhIu$f*0~2fP)Knx;{}XG5Ca)>@_I3;p`LAA%g1w$R
zMEjURcl$SQ&WG9q`@@}`k*CbjZBeWUicaNkzK^=YePW^o^0B8Gr
ze{O5F(fO*W@`|eRI_D3IEPH!*hfl%m)@%aw-&H#0UxfiW8Kx83O9fz)XP;pgJH4NI
z4_5C>jw%$;z1@tA3V4CmoF;0=6(YOkFfY9E6zKl6HZDVf$I>Wd$hS!il)3H_X!WW>
za@@F#PRA-{EJBS!b#OCib}y*)bHacqaHIL+OH=&eP}jc0rgrfV&cUA{m1(E7G712U_}5T`wSooclawpTH2$rY)6MVq$!LozL3n*;PQTK53!J}ac>DJ-axFg)=n(f^~IJ@~b>4xXtpS%^X&5bBKd*7cRzQ=?)syg16zokPnOH&_P;0J=g0gC4{C2N-{*cd`qo%ru5k@g8>t=DZGnRq({S8&!+DKMo5v?V
zNKlv%Dc0&!nNe!<7mH+PTE(u2yMC}QNo{ysVdOG^XE+@&Y*q?@D;jt|ZfV({v?PYDGqjAe_fD(Qu}T7(8AgL4$7K5L(E+
z**ky)gO}!NN1-szDP#PGf8%4>n&YlM?@GF@OWXT^sF-Syb}EhkhwPQJ>2>XxzUDF%
zg#kuzXv{Ko0wuv-NK4Jot)3Hvj%=Qt8e-nqjdDuN<^hG4fy9a*pkX&Z=lDTLJ~i0@
zJ{$X$i50g+gvK$_sc%%a)#u`c)(3PzC(at}csd=a|LxLHmN7#bJCeo*fsrY&`P0xr
zt~zjuSOerZ`jB3G5Zx1g=w9|$T+M3Pascc2cKrQJ6L2g~;*Yb~jae8j+qm^FTA@>U
zOF{13>Y;Yl{^0H2P0z=7cG-`)qJ4c-)|hybWk-^%^oRVct2t83l$3qTyAHqv1I8GwcR<0nd9??8lTcaR?h5>z!}5SEp}$QAgPMk_o=
zIoCPc_u?}J%UPbZe9ud_iXhja%W!;l
zScl-NH2g5W0G0F;U8(DM_)3$ce6W#v;#NQk%)
z-eTs}b=6w{>KlxGKy;)5t^}2(e+ey)Y~`x45z6+bCiHq&ee2V{E4vbT?e;h5zMqt%
zgwh-%ss>^NQY{DB20vd@tq;9za2ve+f?Xr&RzVPjnLroy}TYYG=4?fHw`v`?yhnm6lx+XT_@3kGD
z++$@(2I{zVl)X6wkIf{<4(hAar!}&)$_D?90H^;7&COG6+Sf)N*J>W&p%;pk6Y3Ez
zWZUQ>%n701HRf}xDz@Ef+%FsRH6!$KpU+`#%8Em1
zfTDv1+?D4qz1t&`Kf5pN{!h@AgmKS11f^=PIU^8z
zJPX>H@uQ9TgES;C9hbFxe5Q_4e)|$|rGv`BM05GE)Nv+*#fzJ3&QdyuiwE{#*lPr=
z1R9Y*EUhHCmF#N98C~mC$mmE0_M|QYqMa|OsHw#Je}C5V)f}K0
zMjal)Jow7C`jwC9K7cUdyxSW(@Kdzd53kP0jR>jDnyrk4=y0Ghv6(2g4+dF4F+3sF3Kh!3EE9
zI<->-z5w{1iXMbga6y^fsA7p^w|n7^d9ZP0*|^c0-xh>=nqbwGFfRm+0c66Vr5i83^;7}2H8222+jv=^xM&ll}Z+~ph
zapHeJA8x-*s_oakGl3`O;`x@qEmA}#0)ulGA@G(f{>6fI3BE-0R``!A^Gtf;Usm6z9^
zS!TT(MAdbYi3nMeWEK6IOcHzDhjy3W;H#(ocrnolPTI(V?yAt8bZ7}@WX&xqwwLddh53Ubv*ZDf)_}3$T9vlUjI972%>x^HL+rPw89$!ese4g-340)D1hpPeFH
znesR-{YAgT?@BaJbi)ZlPUkJ^Um+O$)MHp~*aYVeuXF9&`
z)BF2;(pf4}FzP*c{r$4|b`X?hs}&c*i7nC5!WQScltnw7888a>!Ac-x_Re)!pXoGqHoS1N!
zSdqdMwED}ZuGSyR&;wV&i?^Qn2q_#lJMV?%!i``!6zMl=1=7_S20uo#7jB>xxs(Kr}0U{9cXx8DBg
z&M)8Xi4IT^6LU^l?ZO`-q2K=YFXbg!Z15pGns}z8I?{KmHZ+=jLR#hpT!$Mpo6K
zbXUFmWPd?Fb6#_S@V3?D!@J-n0(@7??Z-LD%lp1V{e=wv(ed;l7Clo31u7`9fx-^V
zaa*u=lHoekzKIa`x8>dhIJZmPRBj^v0AF~Io1Rc-c!+pio9ns#X7o0K$9WUw6IRav
zSID(!;mk#d(v{ADw-;q&u7G1oj^(3(RMCI{ka7kiXnuLQUaDSnzV+atw`MWC3UuOQSp)g}G0L`mpE3OE|FQR;;c#|s|EQ86K}gYSnl6am
zBZ;UX5xomW^lpe@NP;ASAbLxpMelW#i4xri(Tx#ZFj_E-G5_VhpXc50r@cSyFZ;v3
zjvR+X#^t)!I_vNJo$Jhk9x{2Js7K_Q4VX>Ov{k?UeQoAPSH`;vB$_%=GpgKW{{dt8
z<&YS5tH)nN-LRNla;wv)*{yMJ)t@2Yhs3=-1YIiA>6BXd_%zO6P?%*e(Xftt2^(vo
z|CWUTf?N^@&D48~`OjwpVVEj|DS@7MXZ8P6JU+F1z~NJTJm8oVaKh)|Go?!M
zm3uA|L0J?Wd@>|Tvjon}{QU6B+|KVG0qx8EK8~7Wo9l}h}u_1Y>%>@Z_4V9
zElqS@eOKXl-x8Pn;EUe+73@ueB$hy*kM}qHQ0T70JL0ex%v^#VDD(q^B-!I`D)y|o
z{6m`f!r{>F?3kGEKgF=E(2un~OJSGjmVU2_(qWZm=Pu3IenaZUqoaP^tQF11ecF=B
zckDw91kYybRAr6lk8G?E)`XUEO!x{bi87ec>*9eCRVIs$k*w3dBO?A3jkx*9fT@wp
zu~pI3;b)n<*X}g`9exz?^Hb*WuY9kb+es2~G$!eH&bQ32ay!|K78#Of0P(-xR)nw0B&an+!c4Hgoq=zQktp6M=;1
z;Jz*sE3v3HY=P_S7cOXiTvoaGUJWPO)2Bg_x>HmwEMw9Xf}NG?0y=$FZHt9
zlj9E#{G?o`I;Luz**G-Ye<32n+mQ{vvuY1&>gwo7*fj2%@{f#-`B8gFd6;C|I!dKz
zFR$O@-QIZAHSA()X6AnTXlLyxD%zfP6dx4(D3D=jc$ItE8QtjHdJ*OWzPN+(zPeTR
zf@6-pfUkonNzx7T)?h*z0S6FY2>1xe65_E_=X-`AqwhA?vb7m%HAyUGu$c0zdWFCw*8@E;HKU7gISb^ikZ9;tH6uWPHXl4AR`uZ%m`seDtk^4{d
z2Liye7*JJ{p$UYk|G6SR37q-R|6Gjx2HS)22rkNKDY8a)D~Fo6*P$(+
z>mrQ<7}o}6qP
zxHllJJgdDU>4n)-PfIOUR(qTxWme~AaW(vRWdDXe(mRxw6arE9JQN`xKN|;PRfJpo
zU^Kq>nR7fG^toUps)*ztd+f$GzyT8zumwBP-Pa9yod=uK?G+UjKSx|KXgFwWL1%qa
z`4%~!JORc7ILl?sVzI4c=A_jmhsl%ouBj3wL`6Nuwd-z2KC*}z0Ojh)Hc?o7ip3I^
ziS)8Z3}P$#>uMt)Un#*Fag7K>U4#vebnZE~$D!w(;hgTW8E587gDo13HVU)BDTg|c
zU;hX_bU&w3UUgw`v!}HrrMUw=9k~|>hBX{Y-K{M#t1AUk7nwq6OtB#KA+5*9a#J0n
z2{FrNchYoW@=z>I%VG1Dg$u-8yvj@@8j&Wg{=R8K}q
zl*Pn$pkRmMAWiOkBi(Y}0xqy}+-u&PsJNLi0D)4f3^_o!xY*gvGr+Q@nq(m`seMbO
z=mzhV^bwnuX%wWYOea?_VulbFcK>$*n2?;2q7BJT2^#Hh$sB;VPgK~dy)4}s6+cLs
zsI=D-NE)Mt
zEqO@~)+i`sdFL}v-(wCZM^+68QTvd&i&Z5x;!CD$UGa9=gPZ*DX_
z>r=123jIlTiUq^D@6p;k@g~hLeGw@^Lud@u2By|^n&|WpMpB0f#>>Cv#(@_|ObJ@V
z?JV?Bhuvq}mV#nvPB1{8)v6{ps+iZW|)pbr5s_h#l~tv
zX+T{7Y_t2BO{W=hg_z-wk6ZK(elmgIs0k(FIG{5-^rHEiSw}9)Nqqz+C^2yE^!xYk
z8vy;kNP_U&WIbQn2dOGScF}Pv_;YNBH*^@4O*nk5t2?|e&PJjKIY3}fe?s1u#o{yF
zr~09UqZbF&VpX~a`}@sIbKrmlk%1OyS2Tx+tk3FDFcc1#N+W2%;Y1ATw$kNqTmS5S
zMeYEJ$2nu!>Eyx!Xz-JwYW4h)6-zi_pK|3&yS8w+?b&Zj!3I-qhlBaJC{i%Fn6v{q
z4z{ug9dzij5Wj4QvaJH22|yCLWy4E1*4Nqi<@17nfj01YQ5rh3tc|s`qbV@e`1Ilq
zElCn-1Q3lZE4h|XAoG)#<`%G-X<7mPEh{==o3&)gCc0Kun50OqpgU;;exzJ63piou
zjAz$tiMg3O1lQ2420V3d-(&14=NyVHV~Zr&WDC$0|1MRUa1B7JE^jA+iMAp@Is9vv
zDp@-ZkLQW*o9pX{QkPSQ%1IXl0-l~zc~S&MTbNk*xr`~c6s)-J$OYfDAKw8(f}rGE
zX^z@8AIj{mmzHTgu3G64B@liA=1EK=J|0a#0aKH9_teXv7ilEre5`9^2=>N3$2ejI
zi{bB!ck<;@D#Pj41p}RkT;$KtzovRPDtBtS=p0r2x-cxSB%n0x%nF8#lTZRVaLYUn
z;E6xFrs2J=-14We$WVCuU;y3vBt00OOZMQ)6FvqBOU%f~UdQAQqpk^uj{X)~NERDA
zdlTRLucwg6vn|)1`t_X9U`pe7RrM#aK!ONPeH}mq79@0c$#^$@i)Ag^3wV;`+>XQH
z0@XPy0!M`w3Y>r?Pt8^R^5pGGIg!PTrmF)OiwEM<)H4_ihIpjeS6y2hoI4CNY5EhC
znK~&L8DIDJ@GwT300VWZh!A{apQY^n-Wen3`J6oo_7q#t1?6v^>j<>WFjBe5ti=sJdtHh-U1{91r{WltHf)A;40=95+jcAnrvDS%)=~UEmya;
zh=_|j30#4Fa&mHmR^M;}8FdMz3!d!6!`$E?3#U{?-8%(-%KO{xbXFwQOyh9DXM@v_
zcdh2R-d$)qN!zo%5af`@27eoFarQaehJ3SDW}+b9a?!JK_i%jpqcN4y-nh~^+V*W|
zWPDcMePuSFU8y8)WG@^Y0~YSP!NIZnE2L~B^D?K0n$sANb<1qKhHz8)^-Hy^{gQVj
zdByDy0g_4Su;+Yu|HpWD5Q^8;sp8aJ(tGO6NgBi9t+X^WCw8fwSb@`4FZ{t~-}03#
zbw$+cm*#9hSvs+&*P-yoKqmTmGQk~{U;Op;l45KZ6O)shqAey@GUflFmk#Xy7}$sA
z$qv2&XVSiBKP9qcLsBxlFtM7sJZ4;t_`3W^ItVlqbvVPXCI9VX@H1PpRd2+#ECkUP
z=rxzFu(ayaUqdins#nqvhOd15(={s{>2B1YXKomY(_C|az?B}u;-zsQFnmDGfcdrO
z*SL<;Yi+qBIgrVlg$;JnZ1L|U=w~lv6;3tSLaaVt7=brdnwn(pLlb(PBulwc+>f&=
zgC{G*jU5S)diNK09Qq|fOBXH4EzQ!Ea*@Umu8@>wzf^mt7D8fTVvkkm$l6~Yay7KY
z3DLLegS*_m4%q`HxCtKstbCKy{q|#A#xC@Nz7n{Z5Ly;mwDoc#!SkZ
z7Acp>%G*oWzz~rwQ1A?&?C@gsMbWXsGSZ_|J+-fyP0e8$sGBQq33vD+{u&cTfoAt;
z6Fk6fI*0I{MYa0{?BZ2MpJuhaVOxS}nL7bWDDQlQ&Cf57AOEODf`(lf#7|Q&yI@C>
z8f03|0p&K^RI(59XQt|cnqMin1!>keh|{!SE6$Ya$WuN=a{=3j4vP8H-p?^yrKNf-n2fj78vA47b%2t
z+CVfgvk}1IB)tp_M6Ad^X?rfi^B%v>@3zG>Ztgu0557$V@x-i=b_~M1VTRbUoa!t!
zC~?OznA$V*00f7mC#<5wqockfz@ui~^NP0vK^ar7UO`%DJN9(GKzWXFVO<8Tq`AW|
zQ2&nySJ-^tr>_m{0ORhA+X2jhap!T~4oJGXQm?mU$U`a0{5u85?5idZQ%x=*(MA$~
z+yl?Vu;pJdMDd({eSi3D;0p1VH!n^5U}a2E=`_;$`Dmr-og}v39Tm^^yULGdBT&+W
zq7pbb`b=o0qr$s->Nu*&-T0y}NBJ8;f3-)C43qMx!`dpG`cfuiE9){w6N~l_+C^dY
z5*(^eM@ijhf@~cd0sF!^Z|8CT|6b>NQ_R~|kt17fcHEWzqj-gHOEuS%`V`6i%Mh)8
z*4A_Cx%SIWXHk+Bud)rqYQXL;3fM1qk!u%|k|(7HT;>j@-CNg}MBqn%1lBXgz+yjo
z^eFME&>o0}9G+f7vz$}0;)xIV1A-*^{$eKor@$nDfDAe)A?4^s?Tf|&W7wt5<9%ma
zoxO_=?43;7z>m(S)$YRAF0Mm?7PvR!J|FKW-fm$@idgZ+YDblr9zTwXIxkn3rie+g
zfl)N&n9NVN1O+A!K(fKJDE6-GDO1k6Kw2w?b`rW6Re#Ds{5Y)Q&cd6?y~UA~R1v+U
z;6j%9GChh+g)y*bJ5K9T+o{Gi#S{w7)#-?>5<|nH&LA8R>EYw2*B<{^!nW$W5+2P;
z3xzgbvc6!nojSS5B^ckMt#3AnR?`}JdaXv}*MSIPqmnXoq0?0{f4H&JN)g`h7f5Mp
z^;`*bs^945g7ZPOV@_wLl%k@d5t%N)*aqLmo&B$lXsMn?zY_;x~*?DYW|Hd*J
z0VVEfA1Xhij^+A=lM7G`PojQvR>CPsryGnrT3991UvE
zpCxd^=y7Q+7;rD|kMa0+FeuIX`Sa&B2)IP_LaW6puGg0O)ttC^L$t`~`nul8M!>Gi
zymVEI)8VtI=vGsf2{dmOv!lB^%E+ws=??H~kqh}yPC&SYM&gwEwo5a+q?
zC8J~Ri$U$r%hvf!DjAxVf{H&xMH#Sb+ZEpbBD(O?3|JJPY(F3eX&*l{nH2;af@t$6
zb@iuNN|h(^N)OgEr1nO;ajA-~td3&&1ASJfyH&5b>p5{xfpi9CFT{2h&911Fl+pqv
zA+i~ZD=D3_7Seo^ceG8YvBCM)e*@2252fm8d9Ey;Bh
z5A+8)Vgf}K>v<)882(+#58eUi>w_bp0p~7=ULOIlg8J;#jS&lkpDJ*ef*`aclt1A!
zzf^p;YRhH1c5`iMJ+X^&G{zkYw>iS6fEeQ+d7m8IgrJ~0OjafhE|rmyJnvENEl0~;
zKsgAW)|KbWQU>aC4QXSVNB{RKuO(0Zsa#`G+#Gp}D@q7O2i;A)|7FN$?JSi$neaSp
z71Gf$GfeCIN6x2!oOjyql%@CV)D0a?JuhA7s{_V+ptuPPS(WIkNyvN6&1}-Wc_wfO^+6d8NkGB%gg;8ZPlef>;1$l;`b
zkA-=B731(N7)De*dRZllT6u}pen(rFV-+y#|=$dzZ}v=)|A>7-ZuMgrsQQQmtkq>
z+Hn6%`B#?)7OQ%v>Yy!P0ykx%MJS^Yc(`4ai845TLlJvA%uSWKfrXozAH;(99nCrK
z-aG3l>)1S-Y;!?4|-AeUvY24AEJ
zi6^^}ODCl@1phuh$)Repr;DX;0jTrM(daF{_p|!74U?HG-g3~qXrzTOp?9RTe&$vB
z+4AZ~x;r%#KjC|0-zTZiQqVgh61^Y|(smnWolB-5d6jmk%+7uJZ=_qA=QB&8B6=hf
zDEZ=W|q=-+WbWc@I(+9B7{>-4byZpl`$ajh4=2C
zMkI`7xu2*~zqEMaW1)6it5!Lk4J?SUR2s**#u)-^PAwskx_$dTw5vb3+FUw37-$i&4hV2W@hHk
zZ971Qhlvfy(tD;vvP05ezfXdb)#iox_YZ1?2ohcf#3*}QvM^(kyYq>g?(
z?9sTde$^*&GwCXL$QoQyXn&mn=$?^Tp2{>OvcHz(;ZuqH{i3iM`U=#8|2RO^c&SO3
z+8`M0#0;Cs$;H*$R92>&fY1|s?8&K*kTO3@#3O^|P2g~N-!G<~d#_2fwYAeNQk5gp
z+Va#XlZn2=Xc2)^B3d?l=$fOLg&fF61icQ27lL&`f~j#$)md`{r5mBBHtqJhKiG=Fg@xHKYVp;tq845z$PxC+)J9T`SixF2ClE8-GazX2RkMRscUS
zFh<(@-!=Rj>tsLos1u%AX?j$#cT#DrD^N7RtDE6|l5f&_k}4-VH}z|w?E4|@V^52W
zvRw1;ktspdGDnZ%tju*QZM&i+w%^ZJW?8Oof)SU5uS!8%o-llc{Q2LW
zEawdUk`LW#47?uSqi~pL<|dmv7dHTj`TO^;`Dn8X8AWxEwviTo+Q5GDp9QKuqH(q!>Z
zfQ!-s3kr9>hg&mwa%nUXxN3b3KLE23HH15R=L5MIuv)zfjyhX?!{It8xVW-9di@SG@TL6ad}K@`8g`hrW!*ONMz*pS=;-TuPkJB8sVU|LFORALlg;#j7SYspQ6stQfFWfI=4{2?+?@N4-
zzB1!C?K&OGfP4+WGotZMqGBF5q;K^N-tnr
znud>SzNvld^o^t#JwqY3A^>#U#FL;&TaU+@->KU-LA@L+0r3xYV`JmX8G_uLHz<@5
z62<^n;fu`0>d0lB8q8g-nF&s50r=5IreYxW+$t8U1d=1-GPczTk~9OFf9VFqSp*89
zQxbPu9$^Eo59h_EN`iB*0p>*{@&B6AS)lJEnx?p9S-$v*I
zkN~(}1YqY(LzkM$K-8ZoaQ*bWM>7I`BdL!86b6+MaN_A4C_V<2Agml9*~mQ2E@(3<
zhYR3lb1T7LQ4_5>p+`EN+v)jC
z7|T>p$m%_gr=3we_dKrm)iaRZ2bB06ngLYCd92hTa6uP-{Oqhm)fWlJ49DL=larI<
zneMhYt++CWiwFwG_t>2p)ofLNIs*m8S9+@Iv%I)%A-dB*1cgDGDsD;RY^GgRO^OrR7%hc;$Wt%)i27;TK~r^!H9Sa+>O1fjI8wB
z9g^??7l8brf&UxxieIu8&c&!sw~n{;;&Tz{!borLI=e>)RSdNnXH>3kORE#)QHvJ
z4fuzm1({h_2q`aSy7QVKpI}1TAC75QpFMS~-&p}HUMJt`O4m->z=rHSUJcf0Qe~3T
zKD)cbvmofp#q~Sg6;N>E@;Z6R+W;Us|}aI#B-o*2iui*vV;-XVP<
zI@ZkfY`E*&?#Q}Od?Y?`St@>EO=oV>KuMm=CmljaxYhNxTd$5yh7LzxUi7`BIYUls5&TaqCQ?BgI{Kz8TvR`H>7w%lb=<4;zUyTTj
zAlA^crI;n2>Zy
za@V>01E6R-Qan!HqNthr2q=OX?6;0ohC_H02QXGrt$#0u-igyJJFT?GkON979&t{F
zU@nVYWogVgDGE5pM
zgRY}LE>5Jc#n9cjQ7IAjJv?(=NFDx8G^oLTDzU;v)w&4fDeufttkmT)`3Gq_JuI^+
z1=}!Jeu-0vL6a0aFWnp)lYPW&&fedYe(Q!8kMq+fRjYCO}>0
zUwAj2>BiRBx)9nNs$V$LXn1esV%?Y&ueLm+OsI-hjQf
z76WLUPmSm^v2C8YQj_AFKu^71uGf{_U=J!2JJz}BvM1U>()HPvrMmhaJ2^$Tii>q-
z6L*2j+bB^9tJ=0r+=63xblI1hAS&c=icQ^u1LcJHGF~R~ZFgKb)t*JoKQFnF&c8)x
zXyV4PU1YzdEEf?(V6KN#^s#Ka%$+G+_N~{!=yOfcBXo1;w|%Xj_pWPoqR6b}wyGF@y*=488fw?N9WIBZJmP_)NV>>rClG1Hc63qr)@ghw0V(G(;naSqD6#PHr
z4%35nMEL#TL7{>dd^J3;7XiIr-68$H()PQZOIrE7aSSuxFH--dRehM+ccuG`xBBp5
zVyYB4??#!dOkfZ}S^qNCx7TcIRx~CE{&w+?WkIe7+qOmA#TNHieXrU$^T=rp0ktij
zg6$K5?GKIz-m0F;DU|__hOZoOTDy88O77A1eD)wggc=}$a*(Vf3PTw*)^*iQm;5Au
z27jqts~Z9@6MCzJ*57&Z#35loqp9&dX8
zsPv2&WLNR>F0XQ;C3izxG>P(!f+4~+jq~%lNLzzi+gk~Cw}~eC{#pm*B4k+Zchef2
zqeLDLmhF3<4Qr;AiJy}AUaFhAVY$}=CnBdYBF29p^E<+quf5rXIb%U
zWVIwo@ztCqd6DsD5&Lev&
zkBGPq6UGDybBha(JY|!G4jVvNWx~vd_Oc+qBgCj@X!IO~MlNOa*-Q!;*IrrQXfrj9
ze;;=Lv_p_eM_;P`f%zJ=mA|CtE0u==4K*jju#(hFSXacmVJoY*B0``gN$W1gfXfx!
z)OeFJQ{N`|qVa{Mb2z~`B~RixfBEfq7yEQezOj|rd{}x^aO{lL2!0|(kbp>eupzm(
ztrJk3{AtnOW;KsICjWLmuEo5}x2joiluHmO5-fn8Ju2>;%W8AycG9iaWv?l(k4;_V
z=!@^AkU9GEvw=N4qC9rNUmqDkSy9TMVgI`8R!PtNV#WODmu7eRVt&(`Xsz>gamvTY
z1pj)jw55#rGBpAS=UU(62LF|M#-jS(6S8f-ZMs|JK?$adr?lIt7yDN7o7^*gpTeWo
zxG-7klC>v4iIdgyC*LKq65w5kf=s_9Wo4+uQE*X;^RYps>-7Oizsr|Rv@?hH$fk#$
zi7woJ!!M-HiLa@>WZZIbShyz}$q>w19j#;R$H>Ujs*AVn#OU#w#m83jL>8Hk?Oy$e
zvQ-iNzGJ(B>*)BVx>Glwh?{DJ8G#M~4~oVAn0}X!Iqnm2y53Ha=r8XdfjP
zzp1Ul^E%CD?K$;bYF*Ql#i{UlA7|>>1_hQ*MdeG`*&3Y>CvS8-y-W3koheJ&^DXs{
zxu-Xy(bQp|bU$!b@g2W3S8t6BJRDoUzyl6bk+a>k@CD5kH?+{wy?JKp6#96b$tHjl
zPME`#M@lcW7{d~LJe=%38%S`X+kxUUr!E84h>(;!<1Y9T=<(>t^Jt5Q51njm4+F{T
z=xmac47evIUU-GMxJQ(m;)~|3m2mI&?{13T{h(&+u_2l>4m1bbsTM)#h@9A-U{(lU
z;Y9{9$H1RYV7k^;uPT(AB_M88{yl4F`^N+nu%+*w-q0zXJCEbl(ceB5*jDqNK&^4^
z5V?5;aGWHkf*PH>L!W#_<`xsv)>XL1lF2^3pl;N`zF9uU0+ew5v?vuy$lEjd*
zhetnPx81ZbkkT)7;R{T2eBCC)*)s8s9L9N@4yjF%md`}SKHs|Ds>L=a9&e5=mzN~A2|4@Y3w7w(4-bH0onVyi!UFg?=i8JeOf
z8vG%bq#{6TBXFclbzNNre;0%>ZS-7Rk4+N{ByRWBk(B2InV1FY5$GAV>qBB@I_Eaoc{Dn^
z*EqZxv^#r{%Xp7TpY>0u;0QZpZQY=U8R%0IT(KfxUePL6gq@Pk#C5$gy9~f
z)^LZ^&h+5@w}ju7Yf(sO-z@R2hV-o^JP6iaPE8Qfk(<+&r`egLGM3%8T`_aQt{Rb*
z@vN^CX0LG(X`cIb^JH>pK*4BS@
z$nAF(J*PJWy&@_u$NhYzQ1Aj7f4F>p52yQdsr0RoWG}Qx?`*pz5Wcr!(sfCenEH8>
zfaAY-i=ikc{%?U<;S7Ptk6RoD)Y+PbzY|ph?kurk07wbuO3;MkCW&PoyJp
zAl)h`N7s>J_;j*pXYT8*ZFCaYxz`xK=DTFjB?Z+j+3yjXWZZLHW(9i_n?K8JMcMCZ
zTAE93#mzSv85(0ND+6+qS!=AmSsV{6`lpt9{Z$W3zAjs|7H@
z()WlRxpxM%_Vu7;K=x9iSb?`Vn3%e7(>#hLN6*+B$Z#(O(xZ#@}o)WTsdL_yDf`ltey2qF3=EKOAbB}UwyjSaJk$3x@?Rx|cpNaYk
zgPQ*Ns`Bt5-C=2I>tP5G7rWF%hqH})-@`e*Au7H-RBN4f^wgsiuP~Ba)#V`b?n|YFMR5}c$De4y)s4}_3^vgf6W>(~v
z6hQ~7@YqO6)5t_ws70W_e&hBQ&zjC+2C_;+Gr2BKp9b!my8rN@ol>UH5=1bk)#2$5
zCk82mG@Jfhg$taqqb{HSwk}-Knc$$@j*7mz0AIhg9TgW_=u%PK_g6eg@2u_UA4Tj8@2XV9wQVwm!v!vNDfge2
zaTd8hS10GkB#1}sqD`JspS2Z&D^^p=UB}yh(}C9VG5x*dHq*QQ&JmwKl>pk7r(T7b)v(6xQ!-G^Bte20PV$qw>Mnun0K$zcWJ0T3|3(I
zt{5G!87>;qO-+#%l|6?#`P~x8q!0xB+~Xr``nR)y`|PqS+zXVNwjpwcUw&ikOd*%Z
zOHlgJ8S2}nulE~R+NTb8y#lYt&~j-VzoyaUIQTIwXR}K6Atv+N3lgda-D>{V3(U7G
zVsqlNhO@h{xlXiHF0UrGw)tj%gC?w>{PG|u`S59LFy((Z@;t8YHVfT9k&fi;uj!o~
zwM-*YGMHsK-V>S3BE$HNJsJHrL^Dyg?Ok7-m-u6-&9nsTGvtzEx!+E6uY@phov#(8
zwGiayyEIGQdCH_%;8UKX%JNZPK*;QTjPm=K7#r8CAKerKq&qdwMShK60S*JiAcB?p
zRE)0}xZlTPc@$YAGcYTmp{=Fva=>9+TSC-$IU(%-vv=Y>N6o}>DWAoG6Ag{NG7{?h
zRL}e!cyrq3)z=f7+O|8am9QFCQMXmz*3^*BEo671np_+@*D4tyN^)=LIK%kp))n_^Q6!6>pphSkbi=WTeclA?z7m3vlJ|Msrie$Cyp)(2T`<
z@?A@2KR
z{43zGEK`6SE|)fdz4Yocs$WS-My6gazNc8SN(tI3nbc>20F@HiqzXU*D|%M&3$PGv
zzC7`_2L(k3p7_ZZ5G%>5GEmEA^V^t+RYLm#RQ&&$@cmvW7|6gzL)VxPURERFzSn~8
zux9@>!s9S!o;%sJhlJNa;f>9(K(R!x+`U5o)E_(VmfmMq;=4sTJ2h^1RCMW7OLP2j$#IPf2HnP#OB^Va#Q^8?$Dea^(KC=F2xm4dGVT)YF7P_
zDnT@1;fxsk07>b9*aXEMs~N&pD4vp%vg(XVLITR5&e!SziMW=G>x@6(i)1Tw&Hulr
zGG8^hn_0e(W<19w^`4-ZdOPNP{)m4tnO5EXKuV>%#)er>q`v9iR`K|%ni3ZB8o1pSzX+W04LwX@nEZcpV3IF5I_9hd@*-n8LwZ>=v-6>GEX`%9`^(Y6@
zwOo+pa5qIaRzd2d%gDlaw9v$Dc7{ORxptT&z|zZbF>L*PeA(98TEO$%C~$a;qD1tP
z*vfyo09DOMP+cKpl~rqlij9%L0F%k?Aj;B-4Y9yYqohp_bomuGi$&0+rg}}td4IFO
zU3GW*x!j+>#B_oxTU;{F_u%#VKx?%Ci)IWZrA;NSd+zKUjrNVkLisKDxDvGRX&j}C
zxIYOQX{bo}%QF7yJk;!pa6V!#BLOZWm|@Oyw9K5$iP@X06xToraqPD+e8CEyOSW+Y4mK-B&4{B!cO?
z637QSn+D0DWWSth#Rcvw&&{!hFfU+4Bq4x$(fk3dX}++S)GMeZRF4({}ky4KF3)G
zlQM~|QpxlGb~EKWAf0>1vlKe(6-gimsn0&hYLplv8u5*$C7eo~LuH>@Tm1@NLk=iN
zpjLN_=^MJ4$D0-j_DKh%bk}_~w$=p?1853f6$?HZK1Tm4?{bd%`>s{edj`y^A#Gf1
z`?}R&TQVtew`i_v!~;h%n;Djz54q2%w{QH{q;8%?p?uvCklwH^3U7S1_e#5uvjYy<
ze{%lk$;9s7y*uGnM@ibh@qOt>%H;SA2ej4G&h8c)2Zyks7lC=<{Y8;}m%(S^vAiy`
zO%0X)8av(H>SJzob&2DFi}oUclh1Y)KrNn@G=`E>w94Z88|C_iX!(PZMZ&|e5<&Pz
z%9mLj*^=J}oyh`4Ic;6?=+T!W6K=0FKmPU+6$znn{@b=8(O+j1e939we%8ekH;3D}
zCWUFU?SSNa9D4Os4zBo$I?N9dQ7W+4}vyWLAk2fCjUF@eVvwPysPR&9hz~Y0H=P1_G
zLZk80$VHoExmUF2WHnR6TWQCC=k~lOHY6;stvTyP1@}LTO|_+u4DiMipJx)ZIA_HJ
zYq@$}<^~+vr9zjQasm#UK8O4hT`WrUyL`qs{(R9dB0Y#ULyxOI{ae}g`8VkKfO`Ov
zXgu8r5pF2}^07Lc?DG+DSYKAo!73aj~!*
z#rh!#ZxKY5s>zcL!1LkN@wK}C2ELA+PL%TlJlpM>vY^K*uhW%Fr;pjL?+UJEH|NtG
ze2HT{_DREbkjZiIu@Q2DSQXD-8kOrGwB9sXT{}-xB>mZ)BrD}r&+DPph}jk&?EC;%
zBs+wsqQUPX3rST78@~tlD>EBNU8nI$rE)c%&G{5I#xj859cdC=;TS-y&~APgJgXRa
zv5Nf&)4jIo7pNK~v#U@y5~B$`*5!eXDA0zG7#kbA(IIvSYQ|F5Uq0M^<6+(fg<2VR
zy?|h5K$%t}&=A;)+7OITD{OoX+lPjC^;_2cDx>6rZOfM!uKOg>%T9kNN^`$BPSemp
zc+XZqCRAiSDo5keai^K=PV<#J0qo{}48ICLATVJXSBuc+vC3AUkYiPF%sCCdtSZjt^9v&+6$p(qCC0HXhM+1uc}#lhLslMlM?n
zAiQRWn*uri6IgXSCQmMY6-k<=za+lCc8B58_4J=tkbtQ~Cy_S5MKb%#txj1%LE%LF
zj8+9aLi5WxWT-G!$q7=2!1sZEK1d#87C0)o%jNp?M8gce9^cjLiDG48nG}_iYjmlZ
z23@9m70+gNiR9)jZOWP5e*)WLtlSg+Sn|DkaFM2$cuvU9pU7>v#oszUKuLT5{9Y3c
zEBo8Ek8FS4L*BJd{5ofBZ{t`l`SQzH$e2WR-@WU)2A?di6rvC|>
z^r_+@W2{?<90lCk?+yM==0}^F7qbkq
zs28(}Wd;9+^@|c%VBX$As$|d8)Z<5yD@m+L_LI;CdC0+Jf}fZ2PcSy@fUL~y&%_y9
z-W8HOnU&#RtXIH3u%{6BUgocNi+OV9uM-aH&a{eTrHP1;FdBi;Ygb6F1(;&j#eAPD
z%h8dim1kB41~y06IDA&5j+(uu*Fom-_OkQeIS8)*R=@W54Vqu9{<&lii`DTOFK0DY
zI+NdzR)$2-p!TA_Q_hpi6DJ!2)R`y-5I0sX3?SBD{U<}vK@Ds?0Ln6BPub8)!u4eGdHmO+aG@6z)L*Ipq=QxQK
z>6f>t)c?IW;Ui1qrrj!K5pHoTQ|!(iMkkgRy|HJXRccBrV9+%3-Avqmfit>H
zXhl?#O%#Pr$BKguV!iM0VdZlEwa|9wu}yn}BBXVsM!<=KZB;7kWf&75%jj;K)2!Kzxp?p`p^p#6BAvb
zx@1W$e{)3$6<1^2Co6L=ov4M-w<%j;qg$u)ErLsYKKDYkvdLe1=ubezq@+oaG#|@$Hg`;pVb9#RNfEB#OM|1`!(PP!3zjW
z&v>-+9&AirrJ$gwZNvwL9D*UVRu+F|g!(M075dNxhDBv$vo-zGAHZaD$*soq(m>Mi
z@bJ>^%8ev6!2oj554!F5zC4@xnl?FrJ*{9~C}X%i
zS^(~#Qu!5WvaCB+R+sq1K*cw9e<=}q>Q>X{tRpQXazeyW2A?K4dun-|PJ;{#_cvd;
zd9**6af0R=(u%BA88GJI#>?bgiNa=?#s&JPtjXk3S;nrlfY7*|f`ToB2{mODZe*q8
zkbajK1bnrysI-xQ-U@~~+&%<@7~*QCH+i;2LYPPl<}Bynoy?djKvKCGvy2LUh3^eK
z37E?$@=$D8b#?RbMO~*Jb6!##wIzz>ZuuwLu-%DxNst&fZStA0X^G-`tQEGo%lqkz
zYJh@V@G8mT9>3k{9rA-~UdDX#HGv(&htUsLcmrOHt35@Q^GIyn8EO(N(%!>{-Ty}i
z%|Es|V~(7Wm0AL%GX(y$
z@Zfh<6>~KH>)uH3T*K-qm;bhGE1mrOA0?7lhM(Yx)b_CFRm~*M685kje|sxoe2XB3
zbKj)~qIKk~=^THONX?>90PaPaTHfFf+V^j%bSGbCFP-v>*Hv=}&GCYjWEl
zD2xOn8tsOkJtzW<0O?
zm0-o`FPmtkLPga72{{*E`7T*UF)6u@RCcxc<}`;xfm%>!ivF#BQW2<_?^&#curWEm
zwe~tQSSUw8MCe{(D2MZMu=(3^&}$QIhZc}%UzsuvWK@`cmdRF~@Yb_9{`{(>)O{Ap8UUyVV&Oh0r
z=GVf(|4IgN-Gz*;G4f7pG^E`(ce8!>Z0^=_OlWaW97$>VTYcH3
zgdi$5M7C>f|Lp5BUy=}hoNo^AeB?bgks!5{gtH~2h+Py^Wq?nb_*vE-~cDZohE^G=kO?==)T`Y
z;hLvV-F)A2^i1DeBb!C}Lnep0!3K{(1^C}6j)}>vpES+o_GC^-K=me-Lhv2cJPFhb
zD^n(~U%Lz}l0iRQ?wjTb%1^4KzToVU%g%0$oGUlz$Ib5wr?u^U_R-ahU}e=ln&|$l
z$uF2tjZc@+#l?FmsXpA^dP=%~GcP6wiY*-N3uNX>oSJWLc-bct
zm9_aVCoa$fG9hCX#rFerKUhSb+$+$J^lspde9I8jB74s`w<(Cq;E&zLNYtWqY<>r;
zQz7o$I)tKZtHLJLrvroGY{o(ijX1Uv#N~$B|Ggj8aTU(GMw
zf6I-{?^?mL>u+iL)1g(X#~2V=Xap3`;@@0H%D9qhoNpJ8zT|k3wdD?X+ia;OhWo`Y
z3}&7q!FM=$E%H#sXMQamvSnRurHM>x)IJg7N*o9S?~dLtzwTF341?
zYQ><1A;55%}IQqY}Qw>ac>g$_eWq+r9!RAa2mv{z0bp2x1
zi;7(~)3Bwi)L?KfiUMw!e}}DZ_11*z-5$BNqX!@bt>tT4I|^!~$A=ayl)(+3-xZW9
z#dxug&BZy_%fBnupc*YBWvpU87x(GEk8=C*aWh!ga&Qh?`uw{stkqYcMFJ}h>ZL>G
zI``^=livH*IaV1=7m63-5*0+q%(vIYx?b}#w5b%8d3+)X-Ah^@nH9a&xys0?H~?;Y
zW%z2|-TD;r8hP~v`Nb-W8XK&pS+t_a(X+yGvM1>@WhmRXC`G1y-v_
z@k3dBkT|2%cWhc85&S7KUt15Ee4HqN9*{C*U$;9XTH=|CnV8(Zs%f5A8W6Ypd)+!m
zq=Q|g^kP?`<{r}~h>JAP{&|?4TU*U$e%+RF3Q+zWUOnaUt>BDiti^5ZRMb3WqS2vuDuc+E{7t%bq)y57XE>KRVc?wnbWUqUHWB%Co
zqxrgBC03-^``#>QMlL7&U6{a^_`ArXIJz0pZM3k(Lq~OwDs2i{F6@2@_j>gOdhZ}?
zmnQ4Tw5ZU|4Ul7+J^Sn93dLL6xJ#&U`fHu-Cc`I@UJj_+mOb>Ts?2}-RAvsM#C4ow
z>?IpX!qYta;<|%>=}n2Z&3i4b88y-YLvWnM;L{K^)kvoOqIUMa+{PGvIT?rX-MJ)$
z$A!``os5A56op^hsnkZ#(iVK6-uW$;&@$U*%c_pH99K*@sWoKm4K6hlgL985h)h>^
zoRwEZ4~JHhYod3i`Eb$l`d=M#BP08pLw#+PVq=DPv|Rrx>W)mZAirBc^e7?};6n6s
z^b(#4^)xSPbB$^ljN+f$`sCB5z+_1Ei=4M+h=xdht7q-cmNFXWu|hjO6dicLT%OQw
zt_Qf^-^QD?S#%??w@H86TlzyUi)JpVZDzJtjIvj^_i9m3kTUv}l=0~Mxwx0F{)(&9
z{LYc`RopzP#>B^F>a2Fx&X`ZHTZ@EP&;wSpU0?V|k1xD%x)af}XMqucx!^jlkBhk$
zjFn|)P*y(mk!tuldUm4>D%&DiedumVH%i6s~iV5No^zWe_gK|6GaPv25Di!qXp%qUtgpBGgpz@mQ3HHNvX9E$$aG
zc$B}Mq_ePfY_$_?eQEJ$n8q0Tg^n&jFQo^!cYGGB8Z%*
zEQN1#pZ$XhXHp*-n-kmWJ}a{7bDSyWg|!CRd?%8)`%D>5$7wjFSI!;s{9LHx!)qk2
z>N93^k+t~QUspy9FVTR3S4(y=iF^F7E3OqV5iwsw78=>M%b-bC5?o#7#S+H6?s{6N
z`!hF6B0igI$7DjG#nLI!GFz`w2;p;GedIK`f7NaUU!C?fiqu_O51KS*8A3LQ%%f#g
z-4XQ7xD`g_x0gZ?96R
zg6%WZ3mg;jL=TNCm1lEkF3`(D0@rc4PxTMT;Nn0NcgDUmAe9!V9uqE7EjOvxk
zt;P+0EB~d}>(`5Ckl4^=1|(BMSF_vr>i9xe=h>^n;zA$r@}ao73^(})6BA^*+O~u*
zr8ku^kc<1GEiW%mmL{?z&XjLuCyk1p-WwT3Crp3bKhbM?$jlb^3(dvnIc&9rmVsf{
zmWO&gc~UQFQjb5S7yK{tx}v=%`D~|7f0&=wzW->fJ=-9xej?ptL65EuXH}W7do^jr
zoTaCM$vV22a;kn8VoVN?V!yIJTHJZ!W}JR_ZeO?h&e^%&F;OhsWo3^k-J_V{AC`fRRRX51*^f-i$R(nkyKi8vv
z-_&V{_QtpyPxkiq2*
z2k_Rn#fLp&@Md_Y=cqhSkh3DsWOSwie#igz!kCbtvh$C5o-Lxf1l>BOlE{A=!NrT}
zS{?F^dP&#>jW5vS_VKZ03u{C)=05G~5Wvi^27GdJEnI
z@xP^6F|H?oDmN05`IFRfY*5>NLxBc*To@vjlpU=nGgwv*a
z7^2BO=uU>4+88Ie!yW(L;lgL}Cbk@UO$iTAjA-fTQn7b#eIKMM^PNK}>9b-c`U{KHzl)UxV2+fBZ^6kmNK--bfbNnM_k{%T@qVR-L_
z{CUKDGHY|i`+gZ^s`>nxPK4Z
zSu{1oc{Z}{hwP173j?*LefN(|b8yFM$nm`DQu;WJp>J9u_%rb{05=NiOA1CeekK18)e~meeV?P!t?LSSI?yEFCUr7HTy<8d!_EW(T^NkYm>low7$%O
zDK1|}uc$XNV-jG{CAoWT8@C?povBtF>xY#gvB*(sJinIKUFPq+-&`PRss3G=3VF}vZ8y+&
zO$LbY8n~k?&4!y|r0t>Qof2{%eOC8Uw(4aW1E8{p#a~x}?Q#33sP@(NdNddoj?YtW
zf-U0t!5iP!%*pzKIRR5^Wuhs7{d$8fSMwq3YIqX<2R%^6F+ri%U9_HeWw5ww7!255
z9gmCG00{h*{y+~5Z^q|OB3Qx~2#(bB{le+vzOs0?xR0l&r-6LeP4x}k)|M|N#Fucz
z?HUP2ka>4F#J$(ypL1QDp1E?9rAtXls@+Hrp*IBh4UdnIU^i6z@Ds8&L~H$eF*X}z
zA04A&pidh3+M=dnpiET7)2%VqKX{BsnG*S3la`NG+)|?vEe@AfRGsfIDP%ot1b>b$
z+J11?6ev+aNSr~SdfP>2#tExUbrMpI>rl)O;2m>ijfMwEUwAx
zw;1IV)J~;7yD7Qjo{*a3t#rCJphA>fryceJ*9`vAkv-$1M?NC&!Y}{aQg!8-jxI{U-b;Zd5r@
zh8QW|od4+UOSgd3?MyH+sXYQ6nibCLX%Mi9I`zl4&?zwq=ggpTHjnIJd|h;q
zl-VNI)S-%E3L478!$n+HN9a+#In5cWCAp5GIdB7aCMR9-sOPX;qhV6>NiM81xCm?y
zD}C8iuj4Ex1@%?Wdx80MB~b!P@IH9zhHt>Q-u@pH1T?X64O;Q#`l7isQ=eWcE&`mA
z1GM9d)ep(-Faz?!xbA|JEFI{To37}+!+lZl(s7&g`-IUfRacGk3gy|on3(^#0REJy
z*)n|%--@@Toh1Cp%cg48TitZNj
zewGMVc$K>>xRk2QYl^l>)2_v>(C)xkhSC21l0F_qxROtJ(I%`UIQ>dECHyN4ZF*jqE3T3dG_ti?6Zt&g`Ewx`eNyM6
zdvma#hJk)9KRAtxU?;&={eRq|VsndVjgnGSHYOH2l;2WBIM{ajlIG5|zTFZYGk(3q
z1=s?X^1!JoosZxDTh$_eQZdi2*93b=y>SDX;WlK@Ud(YfUW3SL%(TMIHP4c>?pi)&
za;|)8>j8)rm4L)O79DoM7^*1Xfgw1I4ZCl4-;E8B+BUT}IWFsABgGM}PZ^)7zP%7V
z!8Z(`DQkH2VfQ#*W$%oS_L|@geT%U5
z_p$V926uPHf~@8k#x{5C(rdItq456xIN8A7{nP5X&L%C!fI>dtta5<3g>wEziyAcI
z$8*8tMVzGDzm)JDJ%7@bN{quVkb%8YZ7Em$YMq#S8b?IE
zWE{1Mi&`rmE1o_OikS4^A_UaY(mS?C&l<4{#+01(!v@+cx!j1#5
zp!1Ai@!5wR(r6l3DI9I4W_x2iJ(c>!ajb}6Pg;9RW3q9%ITfkism9cDul709Z(Tt|
z>azEla&O|dk054V{l`*IB_>htX)aIYYR@fvYMLr<6RWf}#J7FD)U)K~Et{=4xx6C`
z26j{f90EUWqQXob%!`=V*x5y!n}5&a?Ud(O0rgwJiN&NBOakF&bj%>3l7p*m#Eo=I&-2wb!~x1=%et
zcUtEo;k;i3yq|@N`YX$7Rqyh-;<8A@$DdJP2L4FMIzGv6WSp*WwWM~G*ZI?H$M!8Q
z*X!QwE6P8cb4h26^mC4i-yfAH1GUh|c2naZnz~_@N{x;1CLHZ~$#3bMBy^rx-SA#+
z{41D|XyJlF0_Z=Lnu-C)o1;iV*e+>bMP5+$^M8VP<|4d-_V7>@z%
z78|kRn+DfFAzRT6d$0P2mo#c*l)Do;Yg3)ZVB{H=7cE^4`wI_xL@`$1c2rfhtXty(nl{(nw$zHvO=B
zKQRf_jvuXcvYL~cc0usc)Y0aur69hs57Fe1ctKEgy1puIFv$RKa?lT!_grLI@uW@E
z+R@w*dzHDbbh$1s&wdfiWH#>wcY^n0?1~_e<#N`=cGmNpiHFmPK|e0}vpBXeXwo%{
zo!2;KgOtxy$jmkDU`C_VRt;Yk#in}Yek+kCq8-yW@P0n=+}cLCUnt!}%cJix+PDUm
zQIp#>Hkb7&@*q5z#-=YY#b++yiUPSkqXT1SvXnjCF#k36eVR@2
zPbRVmxMOPP{m+L_=FjmLV3m!M#2UP6{I>WM^HCSywBqyYdrDv5r41yd(5lPLFQFP%
zoCokNX~@uA^zi4rp~8Z>fZjKMq~CE6SN#}YJbEA|959+s^efuG3@+@b(EbBqbf${6
z(~;%o2`>{CA!As%X1GM(0~34Jd0^|uRUh?yY-nM!
zWy-vDJJ(*WPzyX=^A)}a6u$8Av5dgrA5mIS{{*9GPa4~PeNnHNIELMFT${TwMu*!Y
zr@4c8!=wNjuyu-Rt`c6ro0j)qz2%YMajJI>KSlUG)jsXiaAyJ7LoCpn|3N$ir(rV<
z$!pEV^gew(`B4S}FcXDszcW=_4AyQhsR~fyjm-@&e@*UwZeYslWW6g~WgQvxR6Nw}
z{6!@$4ad(YZ<>DL<%7i?6MVwESguEc_fe6qC>>kTdO|6wB`7E^QWF0MLzul>*hpun
z&_^Y!gIWtew@9E-kX9uYky5CFp102d<_paiwD;T53y`f_${^?Ab3wG!_j(xCMjPik
zTA?~|q734Nsyz6u_5^HoXDA9T$19GX0jT3CNY>u{R}U+n0+A)>k*ZJstPR?3%hNq&
zLDOUUM9becu9=i6sju@Sv+Mlvv{*^+=Rg<>e1k@^a)lqH>5YUVzVQb2_hv_JGcNck
zN3Q6%z}f2%uPRPkCi+lxgq|NJA4M}Ufl&wb4#Z0T*51mKVFyFZ8grBDeMl02jqi}C
zMfFBPclZ4=lj8
zC<^P4!DRj=z5cuHq|i>GbT_rEf3SM``n1bMHt3R`v(es{MQw3JcqiuCe(#*Z^0?@E
zQKF8&$Gt33hF&yUiQtr$qX(|-zu2jJm4@j#9SXUzk2{hYUFI}uuz>3m@<-szno5|)
z1U*f#Lo7B>o>0)&ZB{FcCjPDPNk?V=4W3k=ui}Qh?QbYg^LtUX6nf&>(m0>2yLbW0
zr`@o+YQKql(BYc@8lreQ`BkKcoe0H3a6JaazJRQO9{(jN*D1@z&bfdl
z36yCw39us`{#V}=B<-ip3(A|U7T7nNwZdSO9o3>Jg^8`vKxq!3_q)IO+~*VZ>#r^a
zn7z*pooa*_&@&YB*nPaA_xcUoNjMLbRaD7*B|k<@uFfphcTM}WR9_>B$3N*4YwQB>
z>g#`)QtYtXK?Fb1rk2DH%JZWhS`!;u@
zd=Aai88?c)!{ee9cKsP6f(fyz`9wICwNoU=q*ZF>EWW-m>EzOe{%oyh(w&Tn$x;IF
zDZ~FemWJ-aMp3o8fw&}&{9e8&F{?_?uPZ9L1HqZ6YnyM0+rk9f{*=uIFk-kA&IM2k
zdLI$pvGH%hKivYHp5GPR>P4!~f&87T`+Xv0#D==MU1-A8lJ=xXuO%hRqc`BPKLXSk
zGnv2jcL0Ga+BB3=6X=|&R`0zo-+NGSteQ8D5yuMMIuuA_ZHDTPTAa^ih@klr4Jpo1
zDZwF+J#ovo
z|6SvlH=>A4T~ntRnv0TtH|LjKylaAVcDd&p!YY6%y;=a9EFgax+KG81zs!FLGg3=Z
zYPJ{BA*lCp7LhH_apIKEDg{^|6v>%1=JK5xpV5P$v_6e7*^M+2B9WWAnV$?y^PcwH
zudWo?}`;)*jl{+OCfG9ef6$Jq^%$`u~`?OghoFC&BKX5%tYs
zg^GuBXwWYzhKxpx>T9fE%rkLCxkZmC?{7wE{-cT?xkm4@N&!8F4Hpg&)_mSXOGz%h
z;5&G>Bv>)YJF)x7UBZkqCG$4JsFUZLF{dbISfr(Z({xy+^l
z81^U37x%pbbnL5kF+9yaxUB@n)$;*;lhVQ_9vg1{r
zqTCluap#|zDioCx5qo3yh70kN=&)I
z#u>?lv;(5u2O~{8ZUnXcq*svnsVjEzye|NVo4p}n{{x0}<~6PmHc^6Z5B#ecJNh*;
zuExE+3xG0y&ZU}aE!SJ<_clc(&m?xbJ1s`45a{hYIC^AixzfwU#hmCKIpb}9*aOgF
zb@Zav4+el#B&G(-(WF@#jJj)be9V33mxvzx(?h1NZHouCx)4>n$`#D8lA?Ld#zZLq
zw7)=(VFX0HOFXSA&z2|0?+hvF)FuB}_z=R$kf<>|T_^LlH{0Sf8nbf*KF0cve2ser*&8KPj4Ls#Pq=S8vQy3cIQnG3
zO*IiJPv4Of_2-JF^!4#XQ;fn6;UqhH#DK-`qNF4G39Fv15Ldg^M$6-ul*EF}HwK6N
zFE(#1U0h!nf-fqIT2m07P=wcaz>r_?wa4_d4kna^S2@M5I;rOerGJ9aKJH35zgK-3
zFmYX)g#-6)#?du<6;jTZn{+RO5}{trMYr!RTF&g15u5?c5<0YXC6kq|ww^wD!F@sJ
z`y$i+4D2^=H)`y6+O12sEX3J8j1g_KsEj;1p^2jo?6I#7GHEJ<=j877fs}*Ds)5JJ
zNc>$9fmZ+^5b`-a*uFhEoZuf;SkEIMVMaeyaeC=__vvY%nyc9S#BmU>4;IsA$jU69
zAJFEC7yoE;C$2R}pX$z=67(~ETBSp
z@{EJ3pZM*|Brx{0|4?n`W?3yLn?*X;d*SVkgZ!coaGflc{*s-t$7wNf^4~u377kkSV4){Hk9Xp?dedAhnSB$0nLgSZyTfNs
z#ivuXbR9D`oFEZ&KRWAS+o2<(u4>Wso$pKN3%h6m)S9uRr_tp#uLnKT=0`v+lmS*J
z`QHemTmmfTMKQo*lC1C2&|Gv&hg>&ITG==t#T!6Aa#b`&<$5ctZ)A+ww@K7v7OD(uk3LQ
znkN+_l>l+DdlPFk{Mpwaj@1T@+mS_R0l9e1PjS^;6JovJl4`5kdC$QD&<8whCD5^-=$VpI8rQLf4$c`t&
zI*vfk)_1N`cD!ZZk?DzkzR(zlUH-v0jdO8RbxR-Jh^}aA5fW`|v2c2S^g`mHKkya>
zl}6-7(n}L021AMqJ7wxw^A)(t1+LJ0X{+iJ3Z}P7L-wi43jO;l(^)bQr(C(`_vbb|
zOTo@N
zV`tN%(*2Z7vRU!^dP+&h_Hd<_+@%@sv=dApwiW;Ep|LAbh@!mTFtFDx(tnYdbVtnX
zmbm+XfcroLZ`@FzO=paW$u}aUQT6KlLK>(-6UPCWfU=^aWPi6|GgHX=D*=ZmDxWah
z4&7J|1YJ;qKKkR)6}x>t3$f9Cdo0wvVcPAW@q`rkygt$YYQQ%=9yoW<6DI?@Be^R|
zz;2XCa2Y2Z7Ujr{vV)lFt|w3SR2RayIX2`PPv0M~z$pae;T
zg`@G)f;V#xZh;Rq9!TQXtO$NNQ)d~#j*0u?F3*>FZeM8w3<9p4ta~pKMZy_o2t%3!
zs&n?$v#v$m=pTpQr(eV&+;Qi}rIey4zu_bU^*szsE(9ZJZaCq8!Ic@BC;f*e$X)J=
z`#X4PY!`my+sA-g%^#5g0Tku`Z}&#lBQeBXa4ng4t{G;$jK_<0nCZkx`@MD?)6~hN
z=M@o6r$0GWLB%U{{~d3!9vuic?d>vt-Dj{4DX4B7E#p_n8(H55Lm|O1QTun2FgffT
zg6#Q-KkD}xWMl(GbM$8Awsm2;d9*YP-CWXW=_yQK0M~l3Y
zsn4(Uh~%ApB{Ce2WY9M~!F9JV9k-&}(@)UM9_wG|kSU_Kmn&W>P%XQDdpa1Pt{aS>
zlwI0_PQ)mLXO?q^=_kGh){c5?t{vm89wn0`x1QP4ufokO81*)QJ<1fF^uL{mvSPgP
z%ABHY_xFfA*9OT|JCw4XD$_*c{AkjqTJ0!J3byKe{ths9g#UnwD$VTG)j!P`pjRsw#X^pIZ<0|(3~Xd_lq8=|3jpasD$nS5%LI?#8O4p2*&3up^iv|OzaPL}eV
zGrfm$8(6l%E-RVBC|&mTLCJBqSn=XP88%G!0dGYg;*W9*jf*1bq}&+H*RUU
zv(<&EhGbSSd%=inzb8)qamX`4J#X)Euagau#Hlblpa&&YhWEgeK^pRAZG2pT@iFV@
z=%BxugnJD4!_b=X8tJidK_+1I^z^)87i*rhy1uuE2N!PyWmfsoC+~lr?95&;=L%dt
z)wlK!E~plpbnwVE`>mmxckH$ce_p^(Uj}9KJm`#TpTug!h<(kECLmox%w0GbQEmE7
z6hrh1!FgAAtNpvF>6AS};-Nd&e9M)QNNK_CuWiReOq3uakR56$0O8;(i}FW+6w$D@
zp0KyruYNx6B3g{po`-b`R@bz-S8CE}+i1g9X(%I8G;L;{{$DW?FqXSwkCPK@Q^>l#JwDOU`Z@P=^aNddy|wL>QYhQKR!Pu^GW)jHQ=FNNj#V^G}Yiw=tFuVmW3%a4qrOr?V=*QYWCOU4BrsTG
zbpLmB#N&_ReBA#59r-yAIwfnfhS#-CO*w7&QXFN!)|Gl!&Dt|NlZpgL?f1XCAFa+pV*tAc28%=0KdGvTvWAuyszQ1JrEal
zbxUKS9iDR`r|GM{L|#!&Oqit)?~2;&Z2GE6w>cjwPus3FJfV%3&)cBc23?>p6Cv#B
z=WSqt<6#q!E_%_Q$&1u%mh}Bf(~znIlEu4`>_h9D87_dfj}BG_Eq9Msw1=Gk-T3)WTMgeyin!g?+pRf
zW(F4MX(H%KFK4xegIrdG$Wq(dPYG2|eUNfRc`?t8twAr%O~_m*`LDE87r+v}OAL{@BaQYV+e066!UN
zT-^NnJcO6q`1u=-|UDt+~q759$3OY5UHEqL3G
zHlgxu4YNE__CT3zK3OikOm2qnWA`a={jr%8$oz3rGon0T@{zq(kr@w^d08AdI5
zI}+OCqL}dE$!bi76Vfm#O#loj9qO2krVb*}jk@$6XK6*6hsbc>i$_QM_W0KGTYmF}
zVO?_eLOy!$$)`qmqQaC5-n^Yqr|9#fFv>>LBfdp|uICFOdY+TccyXLHJjq;pkz_a|
z>w$A=ro6@fJB;0hLy>@JkXC(1^=`LL1}O=RD+p}l)K6#_PnEmu2SUGFNlHqh`MRF)
z+TI|#7z?$Ig-FDt+RyT8wvha?;$#6wI5{4JqER22u$8$|_w(B!1kbDpsi|Cbskn!8
zEiHbv9*y80UlC2!!$^$$XGUdeOlXIdbdu$&e=Ql%6m8S{_SD4WQ}EzGTnFym3PQVw
zgRXx-)QTH(sHoes`&>G!xtlZLPK=*s@$l=FN{yrLx>D|<;t{H~~M=Alq}nO{O^=$cecc&L(RAl5YN>A-uTcPw%(
zD*T0yg~a`NY`hV3(jP-{1nR4GM9x^CmiSXbXxzW1iGBbxiwP9OleWGhQ
zI?6J)5&iJyDdLr(#;Ogi(1+khIrl%k2_z1K#M8kYOc$_;@f8h{lFSD`{PN%3CK;U$
z7>g&Y@be3mbA`Hu$+=oBJOnmVs3oi6zKi1AN5#lfbBLPHiG$~2sul$!lnLVdD#da%
zv693lDONG^4n(S5t$Qnkp-@V;KC%s)E-6_+B_$al-NUumA3DsFsncilRIo{cbhw*K
z&_MEmuMDa06CRnojpw&oj4bxtygYdbq6{RZn9<_vrI^L|_DBGLovJ_Ny)v~PWI1K`
zxlk|lm0z55lq%(H+il3S?TGPnb`?iu+dr)3l+Rb!G4cHQX1E8oBRAUjx@<`YTW
zNY5&b7*~-Nej3e@^LZrvglO!;3*5d#bmwpBKcBoem>t1`6iVw0>FYnYgH1$nR*9A{
z4@ZRNmm%-%jlJ(Qm$c}JZCfn((dLd@^%-3%y{RZKi2~RVDWPS?J%+J+r@lLL=d;v4
z&zLf>+8h$rjN7qvnV2%NWsV=l$5yTuT0EYDU$kG}?aA^ttOyIWFk23$7+z}7bz0%|
z)wsT6yt
zApIBSo-Mm?&7IFj?7s^OrA7x=^)vO~s~Z13#`-crBscRt#_s7GYVOB#_%Ed*tgKNC
zID4!~m-JS5^X;zpy9y-Rn9_Fp?k*br>#CGihaxOpW3I<=yQ*lc1
zi6S^FODpCJl;{rg^dlgGWhF&h>>2`Y+W(|Y@bQuih`
z_LH_G7zp;q+C6x-S&lHXy-fj0jtY!@&4DozOocH@;W{T&xs6yIp7{2B3N7Xf+=|dS
z+Vf8*$`T2T4K+=-4ioy{!%)kAOY@E0T#;ib)EaK>-4SK7ZQ)JxaM}+fdA5W?jL*BH
zGTNnO$7=`qUag6@JT-geIQ`>?lZb~lb+=rYjOMWU%l52$evuFZ*Xz3$DLRg`e9%1Q
z2&@)m{Vx}QRRKQem*I^~f43M0wZ%UxxekykQ1=&Rn2G+!SkBGH%JH9giepI4=9|OXbK^^{vNsx4~J&V29ntnkT#~)`z
zi=YgT0~@m85%q|KeL$bTbu8Kv`6@It9t+5i=O2@W-%0X~SNoF3S_+=B_??b
z&Zy!M0^pz`D;{D<-egIa>dcE{-qJUeQ}Lp@PpvJd#UA7eKj9^RQPUM-;xTY9@ZOs8
zpcfNjKJ}X)ZU3I-Qg@i0XSk=4c-!em|>xEZ&Ia*Yf)+*PQit1eUP>56^68hQQGG
zVZaee2~Gq6;|Bh)k`-cXl}`2bc*3sVYYLy_tqLb6uYZ!fpbbp%RhWR6OF(k`-e3eg
z%AGc`_(OKwaQpPS1fA2BA4Z>Ay#A7rNs~lh9@W$o@zww#6A25bGTv)-M5n
zZ+=8)!w#Mg-cOp>+3)aGecM=w2NeyCY4g!|ScG7XEk8A<2;XO&J?TJ}47Ptz7j?s8
z`s|CPAbJlj`urQ0m&0b1W{{lJj|ae#XVCtAI8CYi^Zc>WO7FL3HSd$>#keu{Zd*wG
z$U2pWI7NNe1F}uDTcCz
zoXcjv8$D6dq-{7V{NuDgi%l|05E=TtN>g*UZRtqtEwgIdp;ei+ZBs=4uHZ&Clfsqg
z$(uQBt2AUe@N(?`>zw1>Crsa+G`o1hd1Dqd;9o4fyqwf3W-D{J6?s}PJ*`*b_CU9{%Rhe0!|^!uQQz}HWeUe$TKX?}V8n+VYlg0i`pNzKETJb!t_XXtx0jGI)#t32?)|GKT
z>q~1<&6-tFzCBo&AY0Mw-KtxW;~savmB?m1x;6i2dUyuaPy9Ll&HY0er6TLNGML~Y
zvExc5J%3rLt0}VeQ`&YXYIW}A%JF2@kvsZ#G&}Zh7(TZbsnbS~FoVISY<3UCn19
zrr5J$}q}uDl9vrsT1l`
zKYMz}S*Bk|@$AkmT$%MW9y0Xr(eN~^5xu~~u=n0$e#7QXm(B@r%tB>2
zzJ28h2cJfxv(UaejcF*TfSEr9bLr4mO#X*`!i1!xq&GaE#x{*lOtCm)C3?|b7bm|b
z&C-fo1S0Q!@ro<>BzId`IH5$hQ3wqGFRuh^4=m&!eTIgFqJc2zxMqdQ<*w>GVqCzZVDv2tUZpq!;8+gPDSKv@|VtTW=WxTEs2hf
z&MByFhbXhE?Ak?Dcwf1z#|OP+@cJ>APKzjqf(_<^R16G=VR_2Ng0y8DqdHo60;GZJ
znd6Gy%kEha0}C#G2c0LQ~ia{M(^?!2uT*k&Md(0Tuuz~nhd
zpG4lgefztMIjzuz#l+IWq7@W(_rStpSdqBbrZ`eJZw?8F=*
z=8GH=j?eC-TIAv9_ZclO^tjo@mFJGAAgipbEV8t*xpp-(Tczt4yV&v>5r#dq%9%q`
zc;2iDWF?=Hk}?h=^(M}wH+(bX1}|SC5YTQROt{u2ovc`QIa68L^%ku$LGLU(*-W@dV7>KulFP4ID480JYwM>ifJ!{+NU
zCLHhi+peavw)X6WQIDv+_|?&B_yeQb=|peLg%Y$vD32ppq%{jZYIl8W>vCK&gkZL@
zCS9etqT;X;eAgxurnE9NIJnO^T{VvGYSd_?5ejxvYSALx7J#f8n&!&B6ciP0Z-M8E
z{^0EFZ8_iMRSg~iGynUH3Gi=&VGq$3QjQ5S-l@kQb3x3X$Ws_!ogW)O^zcL4Jm4bQ
zF@UAnq@W@`2cG|4V#o({3kwT(bO=zjW+&A3RdX>oBlxuH{Hk=c=w|TBbIIWeZNK+y
zc=SEN8uqV>qkrX558AqeBTBNfmw)C@d7Mm|MPFX7ird!gIK-PYGWZ5zUD|NgEch2I
zvpN|mDGe{aho8QelcupzE7le)%D*{$1F{T3ujMdrEi2m{1etjun%nc!{%bXc0KP1;
z=G>iyjJl2FqYv0xp8z?P@$k67Q1{zux4px6{m+fXn{R4}VDg
zHN$^>S1531f1UpgyAu2vBrzEmh5-Lay+KJ_DQ^-G;=q`V>Nryle{gzKD5OsLrj$KaXgfXzS
z`9%mJ@jvJNF!Y-U|9`%ck|p~aR{eYYc$R-6^M8)d{+|>6KZV%zH6|&uo-iY2}0rfBmX*q%k(?-
znVPw0#e7j{gQ7}G1&SdQu{gbPSIgFRH?Jd+p4crQR2%mjK1BKW8`q=ae1<5*V)Q6m
zQ+hh1<8C7o#>Qkz9xF~6tCG(OQDi!>gz$&7{Vq{)fR&87L}VhiIf!c^zN(o74kTaa
zX;j+cyKaP~8Gp>obYKDTxwQZVT8ApipGUJ(5~25Lc(=&;sQTJQV=VlGkk_mG2)+Ei
zRkyiB6OG2o&_?S01kIaeDwFnKS9x7i>sQ7xD_iM-QBsCQ=ybQh2p{qt*yL#BePa&Z%GC6-(U)+VPhIeX#-8X85x{dCF
zzR0|d`baLqnqm+8hxS8Zd1Dtfn{^D}^%xj)Ji`W+j%hGqs_r9~Em>@V)wK7J(=2~N
zI45=FoSDX0Ge+X;++i~h*tqdWw}Q}y*HTRkkuP>xatr$+Y+Dd|d{ytd%U_^1$Vh2J
ziXd}PrV_Yw4BqKFEY-(5`b!89o7l^F-CvN3IodDdS8o
zQ^yA+VNkuM1`R2({QPmWiAwX~oaoW}Vvq??q!EtfY9@|tCX1D)7xS!XJ8XCau~iwh
zfuO$1Jb*drAf+Sd^wJkqrF5Z8vz;G?9B2`F$lAR0{@uv@*zToC@RMLP+7Gm=Z_eBNswg?tg!te)Br6!QB9HnjWPKh(42h0|F0AI{1K
zu9eE)cCOW2rdjVcXCmx%6l4`!%4Z?Y#<}vCr6mU-&R8@4UAMyyDW-^>Q-_|UHn`bh
z+XaMPT0%U9+>
zc_B>Hl}41X!fiz`%5loNdX}#$hRUL7@Q?@shMjN_#pfK^rk;A(zQ^E=%^-?M;tfaQr}
zOZ4{z5!g@q%Z1dk5%X4aXwST_mpiHkE(;7jAAno-fxbjWNN@gm7-;H3@+w{ikqJ5b
zW-KetE^?}@c8fAImh`Db3R!0F_g6M-*3DztnWQh%WcTT8Zu)ClPQ;sm;)(t7@o{Rv
z8%z@@MZ|29xHw7JCEL^LHc#Wljz}H6iNNn0?33$+6m=|zBDN=nJ5FGzVSkckP?zyR
zNlfkA?R?C3B`4X(grfa;6s1?mTDWck0s`;DI{6^cKNt5)D5qouXs>tB4KqJKD?-{6
zpH*xv>6}qIKuQ6;-3X!Y&Y6u7N0oPT2va6?=zQPsIE;>+JT13fRZ(3HR_oeN`0Vn`
z@3K46+V4!Q=oB5oF9(+EEnawgI(rk{(rasNo(}IW2J4h6(4MKJv6t_9anT6J)Gl!3
zF24J@Z*sV6sB-*g|1<%wJ)wTLviir5ueIv?VDFh#0~28vDijGT-L+uYSv08<|i5-5?r`Af$K7~OTq82U4!TjK0r
zOo2Ur1rbMs81>jUk~v6c4mzqFFXp>f?p_ck(8#kxD@ClNWEly~Oij-rg;;y*5?p;9
zccT$OjV_P%ije!X-eGRI5GIEirx5Gum+lPt8}hGzVt-NVQ+B^xUZPXDhdM98F59R$iS6oNgiV)qT1W)tzoOoXfF*qs{}{l4tBuVwi#LT6xgf&e`J+b|x?
zAc^$*qSmwsK?SCD$;sw%3fY0-VWWZ#Rml9^yLW3FXVfi>Uo9I1Xp*=kZZl%2u&Zl4
zWK9QaOMEA%H#osQ->{|rt?g}5a=0S|PDR?E!p`Kdyp=+N=sfwl?v}s}d}FN}Hd%l3
z{j#_epV4r6si;kpFAVcc2{)2vSMW?xNlJ;G_$2dn~JD;N*J
zjhCP|tsYO)8QzC5S^*6#YJ)9k#-;ePsio^$yGJ@2zRhd&vg+YGlBf#no~pfKPc
zKwKC9HifU~`3lo3u*0vf%=$tOa-n=o4!}gW@@Jmxj@CweO@$fDZ<=05HP1A3=R8jI
zsr^TIB^2}4gX9-0PisXz+jv^Tf4CD-wQ=t+R1QE$lQF-=!fCCNh%iUMBtcZ^FCUGHOfOe_l4%A3}`UP8~=_<~$yBs~X_t<#jyTdEdW$
z1fj|bhofR*SbDNd`9XZDYGGraid1A@0>K~Nw}aqhm!*#H2mZ@4p6!=)dH5@hzVp12
z%0M8Tlxs@iQT3>Uvy*7SihCT}_`pq_mt6>&R`;C>;9-bvsmd5x{!&YKA`V@&K*AK+
z^I)FW34$j}SMk7Kqj@${b6zNVFu*ac(vD9pdv|-5Tf3L({p&e?*&6esWLCy+U9EQQ
zx{>G_BCBEF*-KEF!<$1qe0<(vw+ln)W8mIq3prE8*Yddg)>j<0v@+}zUA%}m7cXM+
z=`%{C4{?tD%frZDQ?YBSh$UventyL6WFnBRrd@lvXh)mD=Nh=3;9FdMTCfrs$!ofF
z``{f@R&~dp^T_^e-jX3)QM3JL!Aj5CNA$_}1&6s$#QYPa(=P5l$6(iq9HYYiMl?bmo8~mHzqj=LG0E2xp-d6(iR1UU6++h^4dV
zEzR47RyXJ0&WS6tOtZ1;7OWJ3fA4Y8=K+nDJ3KT#B1~i$!9YUoGumM{eqK(Q+ZDVW
zGGq|2_VWWN^Cr}{=ZBfN$6>Di@S!;SGgx3ZsIYv2y?cAkYg($5e1-k9=LgBhbn_d!E82PQ^oX)
zdv$Hs62F+*c|ns^JJEs%)P^kxw~hAOGWO9IF#coyvrgm#4k}z$hQz*|re}!KXwY7i
zQ$)cm5l$w{G-+V;z!{RW*>4tHOff_NRmgKfWC6&hcGO;V+RZ$PQavUDDpD-`;{FaE
z9tW-1;yBZ5`}_N{{G2Thcwb3r4Q{S|3|j-i@#Zc?Aw9&}*K#H=vDF{$D7e1`UVA%A
zdRzfec9^t)6sruHvS%07Q-$7|E@H`;BwIz%zXp_wwDWxFjI0``bdLs;msdI7Z31W6bp1r;7xZ?(2`PTp+Gkj|L)zpPLRt7{Ial~#yp+N2h9sR
z1s7*ijj%G$CCnLPSS++zC==0Jgn
zKDncInz=KIp=mTSjGA*5EWhY1(Ike=qi8Pk#h2Q;kI@MmZ@8ORjPOF|xJcJa;a_UO
zoBaR+tLjykqVK*hyv@U|%%UfB>((tn$@PW}Rx9qZvPQrxsgV9Mr3Kk@$->6whQ{D{
zrSp`AlW(FPk=OExzY}>vy!p7sU}IH6A1f2n+6}S0w*`4W$?z54K9Ngo{VHR8Ob3p$
zB*`=@Xwn7qCx@Zo;3Ym6^r(OKE%g;kfL8@f>Cb8F4&!RqP1r7aU0I~%3&J;L-%bm;
zS(f19dNhqGpG6OL)c|6t*;a72J6cs6bKtwe1_};RP;eyw92mItXz;4^*ud}S{q7&U
zJ4_4DouX1RGJ%!-+f%Dm=8Jr~(Q*l=t*1zy1YBysI
z`wK?kol@e7<>St$W05(aLep1ksO00R6k&;NHgKHlTe$(vw+>{5=`c1z8
zMFwI+=GLw1XE4E^g!w}!o+1p!q|?+8L2$MizYNHl>!V*IjfbV5Nm@AhcBH7&NZtj}
z(xP|e8?QCZ^V0>{phms(g+*gg<9aK__N~G4)4~U%iHxSs&dzluC61DTVOILIo(SuO
z4@EwJN!#Hk2p;CY>zic7>}8WExEQ)KO3{Z_QFx#HwY`U>wj*WY$_EC%^ZFHZp|_3u
zZEB*+%-zkDz2RL&I}5#4jwfB^N=I%j55ApV95r9m(Yfxcq%x87VkK#Q9)XUuSx@nc
z_w+(2^y#o0C-kvkB^6@1@us)3c&U&}aXuMDwR8DeF`&wNNv@3;bR2^sm2lX%_eL?`
zu({<7{C=!BuU)!&otVdcK3F9F-kOK87zBzcPaYaZ1DlKmn_VfRY^Ae)FAxG9$3vz1
zh~vI84vpsXRHHhTEK}_k`RlR#AdgI$V0g8yK-^AczlR?TPSHf{C&#g+_5w59tZqg|8npO8|Um%^P^kdsYdrU
zo~Eni0Yb({{e6e2+S%m6nUB%%Ue&nt;z)t+Y0iqT*Gcd1b{(VpsiwB4IZ1tyt@S^)
z6Fai(1$&7TJM_4l^w`+nwdb-wD=Iu!s?qJVX;U11O8bKC@b25AK{j@2X!_(l-todh
z*rLnm%jNlo4R5FsVoQ8bl0QH}Mw%JApfTvGh*NmHQ-~)Tt19NrLPk!00`kCBb}C#K
z_lgC-DOopn1MPz$E;WN^b`7zHNp1oJLZ4S~?`V9iRY56DY4sLY&SKM;^uE!YKa`|0
z6b%X9TIkRz5;8A6T+#PWyn%@g?{k|(0}_h0pz!|n1llRLVdKZqVD+s6ePw48Q5e%{
zdZPuP(B~oyXPWL)Cnug#=e70S^Fwzk1zVf}-@{r+uUl~V?NR5B&wIOFp(DD|RnaBZ
z+KYQW$Den;adOV7tgMVtzuGRVoXPJo>*izb=zy37*S-Q}mb#=?%-~T&
z&XwMx#Mv@iZ~~VB(>D5bRU=!d#%l+Tk4zl>XsX{O`mW!mb+rMXs6^J95!3;hqo&?V
z*ADK$*4NkFP8Qt3nObc)AOpbl{m5}>NJvze5h2u(QpU&8@c`5?A|0ofpnSW43ODF5
zVQnhQs#EzYmd3c>>FG`%Mp}scQE-@%5sxtiPF1ueIlyQZ-VqC54q!lw|7$ck@@(PF
zpqy2wshYzD?uvB0W2Kll%Y8T*@_8oWTiJu|(u_kCG`&=~qQo9Ao8~z2ef&V?2Vl>h
z3eHvWtcI-3n^GGnpC1rU*PMz}N0j~YNH@g)n!9l1M|e?14}nU8n~15leyg$6M*vgj
z_~wxKtF${$cLNb=3I?1t2``NGXzRtDE2+|9z!-J+b?~!00nqxkx0w!bLVwDa=b%(Q
zA{C-lvA+AhA8~qgA)n1GRI6#s8rykr*+3bndvFcA1u#e7^>CP|tKbf3fg_T}>7(!R
z^L#u7zUNcKY#i*mTAPnn;NWJ4jj(Scz!mI4vOZE_L4g#48UYC$Kz*8hOUss}H!(nN
z!HX`k-Jf8Z6H0O(`}jNYXs61e*AIdKmg>n;=d3l@nEPjb|<_jfaNFe|#S&fSi7muA>
zeIr2SozvfK2?1KmF@r^maIf8h)_^IGWJAxR6CA?luH$T*N4Ah`JGRV^OVyV
z;MKMFu0y7vux90{X|mD>Jbp{zr>7ai(4l<%hl-XK8IRSWk^^ix@JJqXSDqVan_gw_
z8wYC?34@sDkrv_eGsnPa-Lc_IZ&{3!m@$4Lw%AJDYgyXW{{_pzivDQh7##mc>KynWaSm0I5)GFnrBgBXisSPK6aKVkdZQd}+K!I#n1^{79QvF7Tm6+f!1)NUs>(!A1~^
z2a9w{8s_4aS^7bZ$6YyvUNgS!2Qoq9vt<1>wEKQtHP7l`l`VUGS7(IZb;J~-?$zY4
zAo>)o@WZ5(6|u%^IE@bKriKE0T&_`49(@M2W+TJ3bD`60${kkMUq`-ErZ?G%*m4T<
zNJvRj?S@W3Kq_5Ovh)+RHBh8l_|kgMZ6l(rWTj-8?%K`|QZr@uV=ahuG+0$pG1}h7
zrVEIRyf;-u5oP12Mi!v44j%$0jsFcDx)fM-kc`)~lCu$Jb7GQz0oHgY()4sTHkhrB
z2#E)+!XAcqxobDO?X3*fPI=Bn|33QiyJ6!dgy?OlcG)GPV@)O2Qe=-G@&*I(&sdyB
z%HM*Ph)T2|Bdm!U$qL!P%4w0YaRnTXMF$E*G-;u(3sY+iMHQ@MWMl^6il1;d;Sj%a
z?wxsmXo@I!Iv30{zqqC=$5{>DMW`H9xJ$TqHt$;QZ@I!i=FTp30(c@9NEXXH;;K18
zw_`2g8!cKJ0OJ)8MXbc2t_Bfgq`YX%ZdmI
zZDaEYUQ2fTUgn+WOTuwBqYK=bJM
zjyh(ni1%{8VDn4}Gs4QgoGSGYI=mK`4jyUA1$@FyGJfOd4CIy0I#N6UP=e&NwH4v5
zOYht$z~eT2pY(Nsr54)2-8==Hlxe|nBb?=p71SeQaFLvA90RUps
zj|OEO=5Kpk8`e?L7ZYNA2+Po1()+hJ0{*6Uo9W*vhl`*6UwcK`C85Q}u|0ZVX@&Cz
z=0%SuI0k<%H|?(qLqpJ^J>*=Z$)l*K(k=we?U4ol`
ze6aug|6l*>9nfOcL_`1Hz_15#=jZ379VxXiPh7}U8!gh|D@qf2mj5&HV1FM0PEfk`
z-ZLnGz)Vvcjknnj7++TChk5s(*TEcK>X^UM2;fM7PoUS4Lf6zjyV6bN4w|^^0MfttG^uN8yS5eW?
zlO);diryCx-xcl$BCVQs^GwUhh7T1|x!c%7guySh&>tIV0b2eW`|IP<5D)-Fz+4hm
z8=gR77ymoX^j^-;f_SfOEs&|us~4o8)W-JtXTT1$@g9Bty}Bxij~s-+8#R)7v;(?3
zt?a@^pOrm--*7!qRMdWapB!}y
zLS<&2GeQZ8p$dwM*UBfr>|kN$AcVMawHeD34|ohJ2LpS*N_^9KT(|~@$q3v4{04-G-N>469{DK`0c$?=!vhvkuq=9^v-_j#G
zS+2k1^6W)&N0+6GP`5xGh&TH~nJ#H$%n8>MostW-XxTQ&ZOxC{*c{Io5i#f@I9;O1
zW+^0KIC9QB@$g!}`W`jKR~=y=RBAg`zMQRrh1gYd;NCIj(z|I&JIJRrsC^DA}H@*cX#Af$TJAicEiWJV9Uzna)(d+Az97AG85me_9=P>
zhFJl=*IXS@WYi
zw4Nz9Ok_4%Kp{!3$#2vC)_U0fHZvYX`RF-M08x@#1VcSuUSF9}3i;ozJZ}cpp-rz3
zeyT}n`$w!geC4uszPq^<9(*?;U6`jCOpuCKg8kVC!CO?}A0hy)n|eX;rY|*~6Z1E@
zh*eq`M0QL
z)s|wj=;)ZZ47ZNcjg)qM89FSCrE0YM>ZYSFLpn^!wg;YfP}dk9u+=%qFO}g@?=b#GQcT
z3zUSL49=ndoNKX{`Zv(Okni`2{U{)JGPiPrmj>c{-oZW
zCM${G-y8!60rW3rBjCex(bEoCZzzq4j+QPiEEDR;C@BocQayQCfnWSxNs$ExXS`f-cleApaz+Fj`AUGAha@
z*G;d;9koE1@lWE<_f>^@u{LWVyefctOsaqzx4uS32h{S;`}PHz6XnYd`7_frQFC*_lefZ_AUEVlIB?&ZZ!K0>E^8q2Jx}&w3
zmw2%*#~TLyls47gTYxBV+QjTAUxw{Mf#?%rlh#5+!r93V*DEE(!Dovdt5%KyY{=16
zQ3I$j^$K0n^F`M9>qx5n3g{mEe2uu1l+xdKwd|{usVdeK7Np8)kex!5z2nuj()15W
z3~pS$2mzuZc*##T|(u9X;H*Z8G(i_8|>{LXvGPPIld-%`%6uB43
zuAW~)IH)K26UHU#pD*$VxZcgW&n!be_5AoqBFhkCJ-lf&B!xX)qBJx&->g2wKEfX1
z7cxrAI;Kc!3)DzkVJ?h;!r%j|pPyc+R+6Q%-Y5mIwsUf20?hk-bDK0(e&5f`DCQ)!
zflsG>8Oj7W`jhe
z(6;lE8h~87f*tkLCnP(W>RMs|Q3J_@{K6Q(d7>iu8kP~DRgn(n7X7uG36aA9AmJ19
z+UpNhLx{3M7pA3KP>Y78@c+Ups8rx{_8Lr$jWzIsMx8Jdne1&TsWoSSEw5398@(?y
z#VPLwAoHRPMf@F~y)amKlF}mBUt2CZXoT#?5aCPWjMve)wsyGes&QKiKYo#jY+eZ^
zhq{xj8GNlnT?wR+BNEa+uK8F6IN6)mQf-FjpVRqob|Xi!iWikF$p3xF-yT9E89V3P
z;w_yU95IgfjI~#@!_;stN-SS{U9tcR>Dy(;Z>OAzr|7bF1}pImz?0V>53P2|L>dmtoix;X(>XR
z&G>_!=njjDDczl`H1tg7CJnH)F14%(E}5g~urMMp0t|Rf@gXcvDao@NflIv>si16r
zhQd$=W-a6#(Ff96=gC6TbHwCN)rgNs_Kf%`zdOu(#1Obm6)D0FY
z_WbUtF#Z^OWchYfXDkE$Se8_JlV>_FNaNB6`}Y3O@^ClHjLEBt)W6>>f4Kwn<8ZcL
z$^|g#ZQogoK$q@!TK?y8sLnUb=E
zTAH&lKyxR;3cS>Ar`h-nG03I3OnZe=pSv9&
z4smZPo;uBwPHU+8b}{^^mlwviQL;L0-!FBEY@4L}VcenNc6y-$9&=0@Lc3UcWYZR1
zB8MBPOQL`tZd%)we7dGE4g$5B+UiNiwK#XVw@J89<>d@%r{^ahzQ<$7BM?()=CCwp
zx-CI=89Q9$vfkEO9C4L%?EZ>2XNK(!GORFyUn&aOErkYWI@&1X<6mKkg${Ndc@Rab}itjOf50YlhC%@4EiB(~pZ^pshY7h|9<
zw5h$PX3=8}aB3`sW|@_q6k-1
z1E`KA%buQ{Yrqx%oc`vS3ZWufnr+}^?2r8TYgnoXbLbGFrgFlH3W{QVsm6jOe+8*`
zO)L+ApD)iQ_l)88cpc**BtnmDWKy3v$~5r(RsWybf15B+4bp`?sgWydm^{enR%c}^
zY!eH@hZRGc0)c&32FibBB$U!4BOwQv!0WTA*vj$ZQE`98XiG2v7PH!LwId}ZY(hX#
zutJI|yqGFJr4R+UW@oUqY2Y#*vf5Bq?dVfh*fO!xBpcZ|R|1A7GsAq<6cSKl*nvvWp~7bEr~LgrBmQdGlHhnu;dq#gbL3dyjezcf9aop_JqZu}7}uWBMC%!bVV^hAxK+>eIutD(B(;rXxdVZOvjLs-VEo*%>(Ru25IX=$hdGQyr#
zfmq~o`$eK3s!s(dlD-K(JG1|HH9RL6kShGse6CbV5vMF=qQ&H8
zk94=Qps*1;5)NvtvBtpO$AOEY_v+|>P7nbwXUrW~qZUTFyvrfrwYlsa^;Kja?@sPg
zDP7o{C4a1*SURT3R?=={cezV$O2pQ26y(-1tEI2A{1Vr+4$o`_)o<;MZ
z%5l8r!)k*pY?I2O2M(e6t9!wiZ)u^wk#-qL@br^zgD&Trif{5R*`FLRs)l2wK6Q1(
zw?V(uyCUa0t`mzWJ#}%W8si(
zLC=Pjnjt<$$Ai^#4qZA-#S~!$C8v^Mv86&}tidd&(jtkFFDub~T=l5i(L;5_e~VqP
zJlF#oXOe;cLC
zDT$dCxvi|^b@Z1j%Pq}6{49QK`K8Vtte`?X#|zLo#2
z(%>GtrdN2>L}J*&196sADa^UBuF}WCpZTFc%CIFXhS;}(Sa#))Sy`LwhFF_4|Dts8
zA=%j-s|MolacJ{o7P9<)y>#NggRwxP-mi-HouC4;JoZU-U%#`wU!(9NX1)0O?{J<%
zZNG{40&489po5qNoS235u>?A&+3R}-Po1Pq^2FWK>S_lvem!HpRXA{M{86ML6)af9
zN(@dV*{k&7^@!WV?IfK0qBh2!ZEmJ;)Y7RSHdQc073UfBWy-olKP4JW)TFA$863}y
z_I2OJMqOwfS6o$&>4DDR?pHUvz6pXp&`ekSRc8ZlW(!}n5FsfkBU{mQ{GPQRU%q@n
zmo1H1yM87WTZ6e5yRU6^vZ5uQ&f=`^r#XjqMGhlTzj`h~weR|zrgUy3Mt+)@rIiru
zHoWx`$NS{1W;;A)E^^1~aC~rQqP}}Us@r(9w~g6Zbf;V#XMz-;q;rerF~0Zchs%xJ
z1xhdeycS^&T!I|~Zl1seC9%&~RyQqo)r7?5`E!x9(GzImOrfaSL)?3J*(AGi_x8)p
zjBM+tPq(IEy440HwN)!ipT#;R13D&UTgLXk>9%ZtGbq`Y=f6@}-*k#^{Rycdvhz~o
zQ_psG4TdOxXxpSdhXZ4G1)Z2~<&|X=2qZSgU(;^z_1qcLUtkZhIIN$kG^zwU1`o4#ivhqO9g@F^4_;CD5HHR;tK=;?}S70#d0M0_WCy;)2{suG#2U(NVU
zTMC{>tLP)zch$s@=0%O+k-VdRM7@RJtkdI%s(3A1$hOE`mJBhwKMEiqil#rPHImP9mZynh6I=mP*9*DoHe7?pL8ZhT;tUUjkVI-YF@N2gd
zsXVgqR#ybk_zIUJO;XCjI(?-`*{tezD+V=)ok=s~q>zJ`x>Ul%Bi9%$srP#Ra!aJE
zrz_=8YALF%u3tfJ{6FjH|4M99#;Y!zpP*&6%Z9CkWIU!|zFyT&@4s#uniQ;RWnyGB
z)UT=KOGrpi4)iED-Y*YKymX^s2Js|gBiP*Q#>1#1
z8Y~^Yh60|wQDeIWIlS*jO{5Bq;nitgMIk8*_66EBAxFncrY@K@71e*mAj85OM4jLV
zbtgU(XLrq>4c^%hgMFcs^}FKqsmC4LQh&er2rR{*Y!R6<(kjg+0hc!gst6qs@**CZHFX97_+^xDA*L<#g{cIe2bV%VM+%s3z
zry_YI&t*CL>F+Fnojx9Aged{#7TIHbt|rBNFk$!Sa<~nz`Sp6*U5D^7kgxlOG>oXo
z8d*LC3Rd|hWvr%-8&*4*52?&I3w?)qyDJBZB=!ytWXryp$0xrGYA#r3YMScl5xkLD
zaqb9?XA;d|O`<`+-SGCe@qr}mb%cNO=|bh!MvBk5H1W|p2bL#Jc$I20vC2&5zRz2?
zmQ^?>aQ`YKvsV%VbdD}UHX~#1zOV3E*aD&;&5=!)KPiJX7=($JuZzoO8jxa7y!(D@
znzwf1S^KxS4JTv`P(z%w8+Uv{XMRd^YcUFg?*GyY3unhKa-5F`0m~wY5j>YauP_ty(r2|=lCiagnsJr
zZDHFmD7Nfr>Q-A@+c7ZyJtr~)AAg18zJL4VlpTDk*?Fp^lfP#myotK`e2L!ks8z6s
zAn=;mbbtA?%MYyBu#$AgKczO+Xtt#@+whr9Hn)rE>TL0C2~WjRrbX6CT2e}$Q(N9-
z5hmd@xZU|a^q6l#*wp*4L!_eRBTnt
zd*vnLJ47h8!{zypn&JhjuzcZvdXd-L^h$_?H*g)Q=|O*eAOXVGZw-3OQ%;cq-3JkJxe-f6=cBd&+x>EpZraC@@lDNGUc?~=tStgB
zzGnoM=q~zs)jD*7yqZboK6^9&*X9FUVk?2Z)+vK8lIv0eF_fL`k5Bj`-ARi6HIw?M
zWL~Oq&9_o(@7a7uTPoq@xq4IMCLUjPhbY0d2~8f=w?;P&xaS=iii?PEt2PaEs7Yg=
zjc?c2IEA)*`92XX+jQhz6y~e;*bMXH2o}EO!+6>cEGC>g7T^B0Jq5RF$bEqvrL4ZL
z{KA3-%c(=N2)Fae6Be4qY@_xXhtQvzf+cf<3?I{f7`=Q@oj?CweA4c%2eGJ!P+6Ds
zIfu?_kR31jyW#KPMXBd$KQ^WXKfjw>WN99NuK<;4=FfKj+IRi)7Ovoh2nl1+Y{r=-
za+wr7$%GDd;G-*)76sAOrC1Uyc
zrXyX;#dVps-`ORfGKGdIu{8UR3l{$?a0>na2RQJAc$Datk-M
z8kC@|z761h^G#`;FL2>xQaaAPJT<|q%V+kc!^xmm
ziaiXy(Y~nG*0a@g7Oc-QVSt4QQqFg`SYSZeK3Uf>*<-w_v%B_vT+sK(-E(b2WiQD=
zXJ!KQoc~;WEueM(tl4CWRh~|)N)m2uT{~=7ZQtWCG1>aVMq~qcpZTFi?}FF3M2m~r
z^&tJH$XNy0dqf$O)C}~cI|n|Rju{;tMS~@>Wv6Nb
z$;mS^4@>|M<$Ap5eTJ5v@}aI@HaYuDE+9Y`ttU$CRcBbxR#TL%b%nptc&urJN493~
zL9ym{@=V{A-8Vynq}6;)ITXpDkUT-X(;P^
z=t3kQDq2G@0m_6TB=f+)fCmgMGj0T&x-b{9c=+ckK8vRrOI?{s*%X;C!{G!leXHd+
zR
z%$piV8NU8*4|0MVay;las6Q0AW5IKp0@`)0zc*ML7Lp7%#KETg7U@Ihjq?I?%!?x2
zGTStiHdo>Xgt{dnB61t3L2fd*p7kxvY&^@+{N0*oOY~!EV4ww^#ojFcQue$j
z>iHEMw&_KU^l#TSuwBGu4Qe)0BAre4UcE@VrfT;>wRU!LxMsSn)TS&H7HM{yNmGdV{_(fS02)TUX|nj5!z-ZTgiz=A
z3rSJYq0-^ilfYUnuEg=6fL2ufg{A
zQJcRkFFqE#IYSfZ`}WojPpeZ@$_%CR_HxjkkrvV4G&uimbm;LcYYTiltrK&&%9&!j
z@^~#6hQ6`i`aJ1rXi#m+sN{$o(h%6#f1!ijNba^SIz409#GB46rrIq1>Ad{tHzdj$i$x0O-UGdY;N)(vy;6Gr6;D*smHXnxnLax1a3js$7v@a_p2^x!
zU*DY`fo=ukiKiY+-KUSLEj(p*bN_|^UAX{gO-wn6p1^w6DylnDM~9`!L*2ow04Erv
zAN5|06)d%XA}VZOFNx%KN281l)X66SfZZGpI2+dWxScsZd8Qj=+PIize|OkbIzH0e
z%(*igCx-KW%MF7*8c>X-EJh-(!LlTRUgfm^GV{BF7J@51a>j`WtQ~y0DD|c8S89-r
z_~V2reBYxc={c+a5dpb~iHXM*x`anWRMksv_4cSy!+7NQ%NIu$z+-0b-sTbSu5?6x
z9qgz->CHI`-7UkqHqL^bDkc$MFLSA5Rqp|b*k*hML)KIE#-PCMc83zPinkiq41
zm(Rjb!`nuFa*Mg2Xyt7UkAhD_8CJx_CBpM=ol>)RS?I7)MlVMb;@r3ArUg~9X2KP8
zGttV;6MrS>LG|C>bDXqqUv1!1@^qu6?qimfzSt^>XIbM$LuU+=gb?;_`e-!rDt9MX
z%?be}Pm?V$l-Vk#fAB~;19I=?t##l|?yha8!_@WL`1Vgu2?+{r?bdIA%Ey=$&&gf(?XG1`(Wr#DqvGf7ePTR~Qh78D@`jFhw=(Tf38z)p?H{&xs%t8^
zYsTv&;jo`HJ$#>jzO(z%#Qgc!hi6}RER9+31BU#ct6tAMDo+ImL`+v2JwsK1Y|qyY
zfrhk5)d5iB4Fy{?35galEYc0M`8>^JSBh&TKC<3^zU)~6jRXHr49wTj)3fd%gR=qS
zj7--V2b&d*53Vgdsl0>zqJWfySy=4qn{oqMozmGWL8$YlR;Sl;1zNjbc|V!pH#F>=
zEpG3@lKFFMXhPfHk-ktqohNLnhio~WYfqMghO=D`ntrC={1d9!(btV
zLxfJz9?WdlVJ?3aoa;q+-w^BWDu#bZZK7CsM<8yL#r$NVg%MBt&%khjz-oL{$&l^|KJ#*
zg=a^Hm1pPG9XYlQZliV4c;zzS>ADJbFb2|lU>-D^9Dp_@=Jy6j>z>h#7;nM-uX{Y@
zH4MThWzdGqwr?-(Xg1o??1q7+cfFy2d>}_#gLehODj@N}!l2=AzP+)%rs2{9$L<$n
zsR=(!j22#A9^>`hS42g$ZF^*Xr5X#q7O$-dT;+YEAl<|
z%WAz>dyRJV>|pBRe)eJcZM0w?Zrja)H_H*VG;m(I9Mt&a{|;W4gvI2dwg|fws_gZr
zmd2G3SwU?gX5rW`sdR46*+yKuwmho&vKFz_aDTcdcCPZ(fc)#wDwZ~?;v&YMqB64h
zoa$zij>{XoV-h@b^gVrTvrHduhFqEi#iA*h?}>RcZZh{@3|48&l%@W3iDCM^H6yLO
zr%-TVn@Ph&&&JaO09>Py^Mx-aoUwqI>9ITzGhN36`rWU3T1yUZzxZTaPf>c_uUwo&
z7MRL-#BPU&aNkZMzW*A(hJ)g@RBv>JxR+9wefuIJi;-%1JS`wo@>O5or&%c-zO3J)
z={cTbz1)6PB%PDeCwQ^U-s?GD3VeU%R2Ao6F`j=fx}k02x_{^C_-O1B<>#T&O3dLN
zzoBbeF+OYhOj)Z$9wy5#T)1k=<=_CS#l{3*o>}hdy65HXeazcFqVDh7NDOh{OcvtwK@1h^gGoij9e=K38dJ#~(ZZfFV
z`c~vzMXhe=*)#nm;m2g8+d(irqNZXXv5}joJ3;eN`)ZsO1=i32el?%?xd@_Wi$~fO
zv6K#@)XXJ&!{46%RAL~2;t#x-$E`B>Z4$f1ipct^*DN+)`FZ;%upw?K8(Q7-391!g
zh@J$3yM1IQKnGuLa+^
zUPKjRrLNw0=^|}zZo24JjWXfL5LzOq=jZ1?_o0m`^x6_KZqEV#>~voNX3eh@wONE
zS74~zvNuwO;wO4}6
zwpf+`c*=raY5P=3zSKz|*e!NL-bC`!ue3WJVm0FU
z>q;ZumqlHf#(2f|9-1r|g3M^9kEf51{;1x!x}o;^oR3^~Ge%`6q|4xc089r4S%EKd
z2QMjkolDcq5{Y)5zAKC`%A@?=8u{(pwjm$HUA|IA|B|DuDcTlQCiaHy{-((HrIAWz
z=UWv=sel7a3s#n*c`HDP&5nAqB8NNr=70WjJnX%mur?m&PN3PWNqAhdFjMNoGA)mC
zpV24j*+Dhwr-e4%|J`G5tDl4p{Xh_OmE%6@bFJ2=izuF~yX&p<(V~3$@yTG!lZ3za
zSnT{wf;S3k1RocV%WJHU0k2CtiYC`fc7`#c^6
z^8%HA#Gi8?`K`x1VkXhPR_mbj7QE%MMD>W^UFCovUqN0_pDhOjT*B7%?L|&B>(NEO
zLpw(3V^wchXK8ZH*y5`^&c{JyZZk}KHHJhWl<1S8|kq1s)*sZf-`PaB6a2)vypFEjng{BBoQqQ6r
z1MuqX!AlxX>m9pIb*o&A*mF}uYa+x2-v5yY_^2*uvh0VRCUt54lU6|*tlxZaI@vjeKf=vV^4nu$D+<@lx%_sn-SND$3DL&Pu
zP6|p&Ha6=N8C$@Cu=*=NUM>MEmz`eGmAzv}fZ|dbrvTL$tNQTaF5uTP;rkN8C%yoz
zgDt@iO=I<7p~DbFi3GSPUIqXxvX!88JvVN2--9^|SEUDrGDdfVW}(l%s{ATCkYU0L
znPBtO{KR!@c|6#0lFYCyn7cHDyY!pFWE{1h$H2go5^X!LS5EeVrqqtNYTn>=o=)({
zM~$35M4_(adZx)oDY^taKhM*sJ9(G$$F-i4Qi9uOsk5`qBg-vrz;9@dR^N!r;AA{`
zeW6Bjs2IsH^4NF9`h0hGBGKX3{|4L5K3}nW-|zXpF@V9-(%rqr|8R4L+6;)aQ`P~9
zs2e1io0o^iLNyOb!S}O3FbtrdM){zPkN2lyqM}ZxfjujW`vEx!nyslRDTlitVVjtH
z`!Ca!7BhcbUW6ZE*+@5QtbVn3nv9gIS?01xqFoB%Ah)Wbevs2NR@=y$CHV@lYL4TP
zLu5sw^Sr?`1g=${dB(fbxL3Vjiay4-qg~~VBUZTF^e=|jfp4)k6_-tToO$e))TdSy
zaJ3@Rcx6J?)~=2mrZM`4djvc`xz?<&KM0JUR|9LY2S5rB)nO?cv};vGmCh&t!n*r1
zV+LyC>~Z@!e)6Zu1wg+Rjra`%N${fKv>V-(0j*;P7v`fejTpPF?f1oqmahxu*@#y~
zg;|2GFXBQQo6q$6l6+iK^
z!x2LXx87VdM-2}%cbaG1rl8(v5&2Jb+WR~0oU3fAzjkq}^?Y&S+x58QH?*u)=i!W{
zGH3S}5?N$XvyoHcgpR}J^646{Iney>vTa;`F2G%8Y|q<|bu;Nf&NIn!yB`f{(mwl5
zSad+*zSN-2Z*#g$r`ZHUwHZS3iD0vvyEGue71M)>on5T~o%!=wruvLErenB^PyJjS
zF2VhCg~tVQ2V9t3KJEPu@Lr+pmiU>KgLhMM(ewBZC!~ZTx
ziN|rl)$*q2mo~qZ?pmZpmfuGELi>ZiPYH-Y8glm=8vCtstp|0;C8&Qcur}MrX%WEB
zB%^uXnAf+t4B)`Y&-a+L{}bpZ-vytWf}dX#+ef%47c(j^0GfcWwc7?uIIxxCCs|HBh)wVS+FOOWj0&$e=
zM1I%_PVkWHCq~p}NNH+ns`iVO)}!=R!j0a_rNr-Wvt@n~r>-J56}@^Q<4FP8NUxV0
zGELQCugu?mw7RmM=3Qf!NrrGQPf%alNi1rYK&U_BdAFG9ZqmLQ3P9lFr_GZSy*y18E79y43l^AFq*=B_CK_8mkR(5?rKlV=Jbii48X
zVsu+jIhJLTSS!gSlwxR7;b6$n*-t+$_W;YZbkGiMfc8St2EH03%K(Qnf8h77gBf4_
z=7Tjlhg2^liEF0>;@G4E=RRcSH3VFR-bjIBP4&{NQ
zG==Y918hzFL9j-HAJtxT3BfYq_}qpC+&!ytibz0KR<;r0;&W>%<}_QqAN{cJfNBGWPavzXrF#tBd8GUz|!!O
z>?Dq_2a^Gqv!ea|MB0j=x2)wsZ*4Yoy{O7RL}_!y(Y*}x*rRczi}*JFjwRJTCnJ-yai@hDryhX`={fb3F;>6?jB5Uun&1M6A5-AnEJM6o
ze?m6hT@(%4Ytq{Xoy#DNl19%cplhw0<##O7pYI+SyIDN;D{KP=&Z(0Hh1=v
zHe$|C#2Cc87j>SP*$nk?>jl5UY4F}I(ds~)(m2IvBMe=f7KlEM|F8wU^aUc6t;J5&
zk17Mx1*>MSWCN+5@6)#U@8$$QPlU(Sj|md|R2LIUC#;=hJ@G^}czRSYsK{rrB4*}rvw+QynpdYan
zp!;q@jltHRr~sL|gusJz%X+&No6x=&3-`(Rykg!5GDA1a;Eq1RGQZDJ23Q1#c
zqR#hoWNEPUPd?Fv5`J`i8zwC3hfHCePSwIsw5xsYyC}rTlC_B$5@Kq&?093TE$Q8|
zHVX&5grc0kcPw!Fph$<+qQEFAslxw=+QS4pU#ESh@0&0kdXdbuQe*^PsW>Kdds5=V
ze+p%j64Tn=#G5K)Z!KD)4aHAa&D!JlpMp0ip;(NGf`U5@9Iu%KK1L-Q7jkf;8E|lV
zgc(C*ss&)EPP8$m&yf@eX6H_{MdNV$hA%`ldV?5)tw3=Pj1}Nxx(4@|H=zxH5j~0R
z(?CHGY8+qV;Ov}V*7(B%MP~o{<}Vijl2??>pY$M#Ct&7zz_{URe}i^K)7rqZh7(^n
ziXD&pm*2d9QQlVQUF)U@+^>25M$tx!T#V80DpegmP{(<%6vvFm_~GCcJ5ArM4@PfV
zJ5pp};W_R>iMI_i|NCu?#LkoAY}+T)Gbi<6J*$hEdJf$r8n{JD3@t3q6MV|tU^-aX
z$gbEJ1yFUq^>t{WCR4uBDir{ZSMaroSV`Cbq_kb2vV=Tz9e^0#C;wFVz8U&)JSR_sz1HzJmdqQr%zD;!x%K0{rxHf)`J#CnKvw(#SMvu0-P@)Z8
z`p5;X#{QFe-mq}2U0~F4dPbzo^vET)VAZc%HM_6&&q#n&gZzF$r2*7$^smK@vV0*d&yp>naZ-(L?qkD)
zAR0diC!<(^wKjSQ}CL8n%~yC^nJ39&iRB_dIVTnv`G?DStA
zSVAUTu>P6(fn7tf0*im-h=h&Sis>z(L8*}a7BLCWjTQ^Se{GLk7x~s|_lpwlu{p>;
z2n#9Xy+1s#AXH6i)aD5n9j1Qe0EK@Ow%Y5FeqprL`Z}}Gq>7$KC(`C^=SwY}EqZ{j
zz`?nkf54b9eB#CF#4O#vBlh-XN&ufU
zjYq@fT)y5jQ6rAH@{j-vE3U|*996xr0we3}HxmvlNog&4o(a8G#SLaCsHe3;Ao7oF`lJx@f&
zSfiz{|5ND0>OudDC7z0DCxnHCxt_SRBe{Iw<}@Yz_7OfFKEAzimXtuCz-biMHkIZ<
zlQ}?UAz-)pnDAvlg;Qm6bwBCP;mp}j@Y~XsjJcx
zaB%$Wxqy)`*URxDklfUJR+|8!$=|7LNE^DHj1H;=MQ9lb2|Z<^BIv6U>ziNO1Cp=?
zV`X1~76?nn0G39)EgamZI^fFj^Z@F#;kBu_FMWlcou$1BL~8#r!^KwUh!54cKHfy^
zvD(!Uhx%99zqPqMI|CL47CWI*=g(4FH?#g`@23Xefy5fgd`=Rh1e`~jxz8^IfF`67
z_=#U#pP~=&js6;mx;qg?p*xJlfRg_f2$%FjfIO|*SfPK7#UaZ3)YMuQUz!OO^j^}+
z;L=Cm5f*^v9~V~*r(CCn)G9T85dS^LAN4ry0x+;j2%P_iviIR7Q{L0dmnI816{i=u
zZ-2!s5S}|bD7bxlJO&>y>q5%3U5~yaA|aInw!pXlCaHI%QviF4xX+C_3rHdYKL-{z
zIH}saKHL>M6)!9;TZ7%sj@V@r3&pi%I`|uvY!`yoPopBan87skAPIxP6t$H)Tfd-P
zn(6r(%^LRXTe;j`{LMJX<1(?&2G9O6ZqD-|xw9l2Z!B=EaSlBUQ_5KrmXkKM%BJzRUh^vLFautSZ;O6
z?5*s8t>tuzgEKx9dpPs*0m>KY;F>Ql)S6Hd8A1fb7xqGLjaKhQ
zc5d|Aj+MMhQ;60P@-X}xLV_$3$Z%4axBgqo-Zv6N1VV0ADu?-O%#3)g;TlKB7**^7
z@7L0?&nnEE4!j^s_^QBK^7USb4nN*5D_&H0o{t+?cluy2Y$(PVCKG{t}V0Z-oEcH}+h41yKK299=&LEq2Em;{)yWGp
zWEs->+}jaclbKfXVfKQmD=Z_3#VRV
zME2o3`hKcOUxLn?4grj4u?$qy$Gd~$?MV61u^LL%Jg`NMU`zCVDMZ(GR8FrL$i8#dBHOldECe>Dz0_H(Wr8
z31XBDQJ~gC_>j$3PmMoL%?A40@8tk$Q9>8~U}n5sb>oFdC|2J$ekw9g?de9mj#lmX
zbH%*o!+%Y&U&-u-&;BVQ@*baQl_8r4=a3MR{)?bidn1N=rSS<2g)jpWne!$`g|&L5
zx@%?_bpl{Qf+)ciIOG$cnF&BW5mV)9U|#~B_2gI{`T1Nto#VEzN-?6$M!{#{L!YC0
z>b|A6c@m6Y;p9=bi%0DUtjvHT)o(81>+?qLb_j^Ldm1@8iz&*#W*cVgfA&IukXX!>
z)O4#g3Cj(BkCMYh8mu9=8+#`WA5(5Cl{Vk~@3qJHH}qd4Ivdw$)VGAb*>B<3C4rez
zsdg&Ad;?RM`KQ7y`7jh5O&wr&@oYQJAW_%_1k+LQC%0&T+k%=}c@wFLu%L{AMe|Iv!4$%B1SKMilF)H-B3Jc)!V)w&@(x4i@wJ}dxbOFl0kVgGw
zuk3Myd^pDQf5?3QC*Jnm1CRb>y}}QN>
z-*|4c%nL|U(VZR}E63O^%VuUo1Ljl@Rt4qkK0klBGJtm=KJt;1-J0w5=4Mq3)ADr-
zy}DL|k?H0B%RVdUY7}DFp!j-tMbhSF=Pwr<)7e!IdUErw=NusWx$|1s+Wg(=|K$Jl
za${n7Q9WTpu9?1xQLCz#Mby$HfY9Y8VsDq0mP?$++)TqQG1XQNRYG7E^OX04mW9qG
z#TNf}_3sKrHuCT3r7sz~a*C|F>aX8E&Ybi*B<8^UPs4LZHHFYj{AZ0@MTd$rpGqg^
zj7z=nV6T6QsKy>yG^{;mih9fuvY=Tx|0b!-&&xx&_@8Ehzgfy1+vC|Bk?HNt;hpk7
zcsO?8V;D|)p%}~m6HnXc)^x&@Pr|uhTS$UDJ|wQy@Y;k@8>g=D_p_6
zeicz<8?ZFTGSn^wr3C$gT{JZ0x!4(r-VMXynJalVI7Ng%|LG|Jy*T*HbK9??IzXEN
zNTVpAM7$_GV+BzJ{uL)
zHNgpVwZdCbC%6Y%9hMjUheF|A$!RIA
zGxsZb@IT;-xTf*Mr-{=CJJ4~>}T^(j{lVL=nYnGIe<
zwwV~7ePiQ7!g-K)=QFfLiRFpayCLgbGmy#dVGNW
zJu`KjlfQ2cV=9qfCv5)1v96BWdC(_|{RRJIWQnL#-{bi3>KnHS#nYEl?R*Ks$aWHG
zQ9M1nO!s?MQ}uFIEk4-&x16lF
z`a{+2^^ICl7%Bh&cX=UxP=y5w%?y;2`6|KO+D`0~QBZ6Uz4Y?cxLxV$u6pK*ZH+}V
zV7dLFK5zveu!!)XkX$yJikDMdKU%Blm?4-$k`EB#KPTW;-jl^v!wlTi8lFI`Hu!pC(G+|vVVtStHs?`MlL(#^*)}Dd%6Nr
zz*f!&^%swxY*Dp{_I>?6fJ0;OI(dT-#JTcOP3(XABQAT;7r3jt#r-U@yWU(1<`D(g<;u%p%yRir7RT!y$(kbq7^e4EoGy
z=HU3(10-oC5&r=DgI4Jm6;?bUK05O)I9_)McEnCN?o!JE^EUanS$8#`rHiVfZoY1a
zpSmP|wy8yR^xP#4YDu=RUrSSft=YP8<0L9hP{Z*K*db*E$6Tc5GsqxVf84Ygo~bXU8gj4eu%Aoh)>
zAvaI0z#oU%3Dx#ieI(WO?4{KxM8{4PF752mA9~Zi+)eBf9c(-|yup-oju|cdbLMKo
zckaIN=99&8D_8CuwK_0(9CtLSSm6>b$wo#)`rAw28xW_*JYnaYOuD~^K`x(s^QiRF
z$vSrOdh^Oh8%cyg(0cT2%Xa@gx~&-v~oU7ae>75xfISrEc!rlY*YDWA>qp
zV69^EWDt9{4qFxQNZi!8Y;C6GW;|frYH+Nr%%Jv$rjKV6maq4yK92VJ+AKWI^nsX=I{nPDC2~RCncs;RR(K;q#R2H?(VtD=3k9^JUsLa`--Y1Bg-SdQnyD%29^(hZ*WVhbO
z8%gc`7k+Fhpe%%D+fl(b{7~svHxs;eAHF?YQ&^H9)bS-LFpv4C|I~1H=0$O#w`gJ&
zdrC!7Op5HasML4zP`$TcN?u-fWfi7jw0plmtRAuDls>9etFZU3)|QvQ^*DL<*G#nd
zgz^E=@crV9E6jffWbQSQ>-j~H1F~9{mX_I5cS$O`P`xvu;y`_*$*7Q0bA(F11@Ix{OhAJGA`4t@jldllxa6h9A0h
z7qrH=ywK|$PUMtwYSVD>+x%X+FzKFS^WvRQRLy)QSK(mJT1JF^Pjk;R9UXP`EdHQ&
z(QRS+R~}2t{-DDqXAfC0uJV!4^m&;7ys(&VVcpX>)au&3yI#xR&In&%c_Ixel3Xty
zXC3Bha_<{Wg!}ZSZL-Bmp*VUmP}cf;DBG-#L`aK2tm#^rCoR%G+o;HbbZPdNx}Edq
znf2=C?$vtUumsaW(d_j%g1zy428r;UmL~BE=l*x?TEeNVZ6lM^b>_)o@n-xf^Axd%T*=`jDPdTH9tlCjH@kQX@eOX*b*g+Qw
zrb)Yn)-!1}6XfC9;JiF6^Pwm!D*#9a$MHxJG^#lRb#1lQ_YoN2mmcPemwA``%rFS9H
z%O_s2=ObDZ8tRg8C}%`9?)V3Vo}(3Yp@jVoi~fUW!lz)0o)}5kF^%v(l2Vj@rt(jR
z!0wSSy*9c63E6bRVaa1r^r_*PfD>c&nLgxXIQZw@mIdQ9KHSh6m$g_%Mz7Ln+3$P(za$=A2Z12(5
z*l5N4GlgsGK=;QP&|Usq7vR;mHVHZ8b-DH}EHmFaDU$0n4|ptspRW3&Gb|Ylo4nf}
zmm|Sc_-N2ns}KOlI${XE>zK}}Z6|&QAY)~Vgd?Xv8YfxR
ztRF4HD&L1)x711E3+q9dVM6CF-hb!+SyJlI$2NP{Xu|@|q9!O$ifD7Ql$Au1(CMb&
z@AVlUw&`0RI-#lJAw3WNy~q!|BVs>}^I@y!c6zhDhsBkyo@Vw)q#2KOZZV)ar~~HG$o0
zbt^76J8!gl*qL*^K=0|wY1q6S+WpY_=W#Dw-3R?msV0#lI$YHL=NAnG6tZmPvu9gw
z4wgTJ=O`YZnk8Ik&Gx6ICi=oRb6%kbdt$R>3QB%t_cDx}-z&yi-$pWrudhKx
z-%vm!#oLSu!$jina6k&Wg`nKk{My^womTd2!G&T|^e!|-qV2x=RLi^loh{Fgx0Wdx
zy0~{1$-@P+iBFs%pUPbHkJURg@Ltuj_g^~vOk>)EEp@hC*uh^tG5Kv~j-pnkB#hLv
z6wpu3;A17>PUBAez2KWlJ0nfh2tkWWI@(-q)bqgx4M}VtGaFho_c;x#r3{V4RsV{on7R+7QkMz6lWpBMdwTqI#(gqVyPCUL6bCkn?L5zT8lCxq;HJImic*#;
zYrGq6|Ha=WUsE;{($dNCdil1za)AEp|0c%HFvj&~NO)
z@GeUu$L-$@g?QbotCiaY4c6`xBi;!Gdo%3|x;Y6;5%&2>ZB;|hXUFP!2YlLWWwsJK
z1Vzd8&&JCOyQvrOcLa3`slK`9_tL5#IT2NCUGlW~WGZbYuE_gLo{oy1j>|GGFy;~_
zXbPpe#%idaNzg34lb9HPH@a;?HZEI`;H@ElgH+VCbiw>%4RZ$&-1-wNtc^Lc?ax%f
zxa8&Tnw2^jeA3@9Y6A)(3
z^aU6q+C|^p#$SSgpG?93r{VD52!%r!`_B5dICnL(?rrM?3pez_U2wS}b`tJ=<O3Ablnv7`Uwya?4`E2u1N9d94?E%p=^KtBZ7|4&g&hOvpX{(m&R?G2T`{E
zIooD(uF<5z>Je<^rApA`>7>MDpG~9ooiu(f?YLlrq&M8%A62Qm_qb1No&L)OV6uPn
zZ}`IW!~_T$U{&Vj=9e{}wsZ!t&o;YpLHqsgJv1yZ1gYuLs%Nu`w~d`m@R*p629i)dK&y>O>c7
za&Iczc%4*IUU1k}9U^+Rx%nY!;-|=sfF&W8(L64dK%1!eR~k!1LF8thFp5PqU!1k>
zH<@-lFlTDT#iZhQ?ZqRhB&bYrudP@D!
zY>op@fMbfLT+9BJ>?!5xRAuKvyw-~`Hg9rm?)-t`>VF-SY{gXS&WF>x>h013=>3*G
zhPziDp6gdQ*CFt#^P#Uyen<6VEoJI+$3+qq*PcTrPEQr>)*0
z`Dv+@1zeq6c(Fpwsb9&kq*A!0PBUK&xFF(5RrK
z#g_ew{*Y~Hw|`~fSV(62R~FzL#*&HgM|a1g*q1IrU{$n_H_zNqllgEfKRet0-pPYY
z?^Y*JrxAGQk>_kcA(dXQXEaJ81*x42bCbcOP=Z419F`BuilG1-X5@@$FP>xgU;42E)!*m{=sWEqIgYRJ_$;g
z;M~)^K!Xc7<)D7}%^nPv}vL7`{f{`k}riQGF+lup08b@N;pId1hDEC|@1c`%J;5X?>;
zZeNH(Yfk^X8ZmmKQ-1Vai|q;A_L@649*EQww#-mDlLmpaTLQ0M0G-ho`^1uT$r^R|
zVrzL+2eEg^h!5KKdb{_Xq`ybjr!=8B#kT2W@W
z6mD2UA(>!dnOL3oNaRg>3g|JQ*P|%nWuylV>=b%S_o`bv2coUPJy648MHGm5C5TDe
z7!<-<^!(&4gN#tNg9{l2!#f|&zTW))e*Raiaa8n6Wx3Jmp4hxV4`(fTf9p>w-W#V=
zWUDNG_twX6g?ERqlO9$OnBtEs`7#27FIh6Avn>nkRGBYITfGWFx?*m35UyDdrLRloVO^pi7zOb*%$!JtefIt-rUYHpf5j`PFIw&v$z%ervOpF%z
zbag8t!|3p>V$*K7WUEHG=S`EdU-)|#S0CK8Q0BL69tHA;OHt51W&OUY!Zq!a$`M
zTlhVV27Q>x6$9-0!v`W9DkLzD7zs*BIz5s>S0mC_29c+me&hKrTu99S;(RVF8q%Vv
zBnLySq23rc&QLfzwTmojs#LqX9Q_#B3eYml@zui5qz2?WTgFww;a9WkX7Odk#x;+TE}_QSRY
z(i4V!TiEh~78|JL8nG~b{VN7D%xHsSm^{v!UCc|^G0oPOefUJhxJq<}bAfb8(x9RX
z3Vn&&LuyD<&^1TH1wH37{#_KEt%a&;m?f0ww+fa^#%1YOI6pa-@8LcaB!DQ8MoFH>
z+3nXq_s|W>jyv>BNIy?&oa0IA%%_$&YdO*%{mOKjU~>`r#_cop_7Z&)kHl9uAN|<7
zubCXEsk1ZY#Nr^|WD1E&{pR7_Gd#R)4c)GS*kJ})T=Bc>Kh+mO#vnzZM{N%E4QN-O
zcP(LiC`gMbz;t$tK>zzoZyz6vDN0&Q?@tPjK}#Nz9R=axw~wmfZ`9``F*3jzjv8jR
zS7szbK+
z(qtgPVOU+|cx*eo%zNGtfaJe6eye%EHuWh)D_r5HdYKKDdgndASp4(nTp4SEBsS#4
zb>TsHZg1AO+(W(G$zC(!?V;~b6{%s7$wx+xu`RY<02ZH}Y>7=&^vM^BUJG<77aQY7
z%^~tRyW!8o-mVV4d2^z`99IrruU7AL$RW|>To@_?R9X-9VJ2iPdT$7yJ*Kiq*@p0R
z%utCy>-!yFGI9=#8WW3cQM7_v4g-d#6gbG6@XZyld=4LVeG_oxISSve`FXDQ3U|IM
z(MEdm^xTb5&o91r^9?J?Y1JYFa+uhg3E!FwCk+)nMQQ34hrV2c!6+`7Il!Q}z*Ar>
z*s5;w_4qZT{-H9bzOJs1O?*hRo*skwUM(juv$YkD@n0xuy1+B_+RXQ7XyW_#KVo&t
zEmYFY#Ii+A%YS`;bw=KO{LZI|&C0#li%N7n%EyNY8ouSTF+<+(vg;LLo+^>
z&26OecP5yl69C5e^ICqr%#yobTo5W;)ctTbS`2C`rQm!E$Y`8+pj-PH*9pi$D%l{|
zyl~-y{3*4ry|=4;J(9ccGZH#npt7pB=}^=%|D
z-w;Ego4^23rGQ?*3IhzmEph53-2f(@FA1(-VjSo=Q9yw;68y3!(dnPq5q6x*qSmTD
zjFV3#cn1o|LS?Qd#CKo~^qQwUxcCAVN}^>LU!=-=Ui@`*w93|GtPaJ^E55KD#A{Y*OW2vzc;Qm~*dg)CZW6iJ
zl~mQKv4x20@D%XCjtE0s9?qw#f}t|vH4CL}^f3xe^bH
zM_P7A7FDmbl9fUKaK(ib`;wK-9RrkMo?6iv)M$xgUoO&+Wg1DRrtNvaionj&|IL_2
zbn_Eca{s@{Bh!zE42jK&2WO+6z*$EkAwd{D+;vuQ1OiM{nK==y8;LGRTHH)(v2~16
z@tg~L;?7+Z|F9%s8F1lF!2F#u{c37zh-frn;S8A8&J=k{Ql1f7GckSTc7<2KP&jYmDxly&-Mw_o4ELzLKB>%R*|??aCY4?>$S7TlpdT_
zG8eKmZcLNGsAgK!GU+1zY!N1=n>~X7%hiOr_p{#YDD*#XlR@oIWkXK4`)}lkj+!g_Zj7OrgM0GZ@zR)LJQpOrUgND@q
zU`2o6AD1}N!4UpWecf4qaeOiuW-jm~O>J%7mMM=VcUloRgQs_D(NkPJN#*?8n7d%L<~?r$Y$EP~i;iQg~NZbG(JG`3|Y
zJp%^a)(jN@=rPidF&739b{A3WcOQ6VX7m#1gCrURrZ<2`BKwG=z~QZv1D0x360>Hx
z>aSOeMx<*%q7n!9A@GYp4imZ5E<;wVnLJR!1Yg%eAazb2w6u7&*k^k3AV|}moIF?`
z)!`vPSU_U8v+mA3dTtrl3uXIU9BTgp8{qf9H6HNelL!CVKA_~F_IF!?C&xK>F<$uL=p!&T;myS(qe8Py
z{QQ()d!X-lft!0LJhQMGXu(8WXC=GB6-c|sV6QTksMkBxzhC7G
z{6e(?XmXuBM6s-2L4Y?qQNIk>b=mwix4WtQX!LF*Zm%rE6zuH-ZD^#>HW2^h;|3L-
zV=xtgSwVht!P!8VAb(IjfdbSGaNa=Y<#;m87ELmTc&byT08Hew$yFLQO3h%DKJIH-~eevz^?U7x3NR7Il
zb~mEk*^;}d-s+r>=)HCS$)d6y5QH?94lWq9Zz$`-jV;sKUhy)jrLx(JpdP}d)-`(Z
z$l>;dERc>yZ3fa6pI6H0dSJgS0m{9K%p|;3!9<8Xf(zxKe5A@yADMYPC>cedPyd=*ZPA`
zPGP_RZ&&X^aTeV{z!U_u`=0=WqvaG7T}=<4kp$T6h1WPD7Xc5C6Qt)9x{9EnVA|EQ
z$1I&2XFi}n!FmQg7%u6_YX?PZ_N1!Xm9lIc?UbCren6Am5`UUJh^Dn+r)&FBkj*xD
zhb73$JFX!bC4p0Q`=<*32N-CCec
z91yjTe}M#akg?vioKGMrkLz5bP?W`4>#bnmC~tzb!nsl8fw_#X+D?FwR3s!k8bC%l
zE_Z(KLAM6~u2#vTogDvZ%dvGNcw3aKC`Y7Q!Iw9o+%_`W@
zkL*T692^}TCsGijo2wqFsv7NNkgNEBTm_64SOS0n$#aHLGE-1g4Aj)a;r70b)&wAH
zQa9&I*fK{EeCnvlRxn2p=|sfD2bb|xeH7Z4`e**!tfA@+rwl!Q34^2XG$WqB&Q%{xRcPscW
ztIL8w8cVFep1xTw4s+)w>m>%ZjVvbE<@>+p53=&H28|IEEHt5#O`}5`249zg;=IA2
z^9TqmVu~8S$(^ea45~(xFXDptny*BgUCuEF*)ykP_8DDhvMN8h;NeId1c7|);}1ss
zD0t4uw0T~40&FssC)0ULZpphTI9g6i=SRI^ubAO`FqUfaeaDfqbc@Y41HS?u*TxBO
zmpBs#-)3w_HjE3l&a|g0P=YJF%jch_Sa{G)+7edq+R%EbC4qJU#YTJs+HQ23_
zih0C7J!)q~5F=KAaX?GJYd|wQ%qi&}QxN?-Q}(1GjENaW$A?TQ)ziaPVEHc905f-AVQH6&ztTAm)?JO}2ikxNMes+GljHv@a`To)>l6ss3>{GuL9hY#g?PrG|LkLZG;k
zyGf4923xc~pq1O%nKIbdS7zLui8_1mmOEv~ObpSr;Kc|wI~Mde+nv`BY$gfY%IZ2|
ze(g}5@gvSfE!g3-rE>|LMRC8sDpG}WRfA#O46LJYbzAmL!Wwt35&c4{_YOZJ`N(E3
z=^OBT0%nf6UDZNPVbXRNVy-Qocy~c&L2jTnD4>x<)7Y8^YDU53w_^KEpJ{Tjf4
zi5xSI(=T3nBM_D`Ew+?*s~NaG-^|O_Aa>ld5bqS9eKJd)aVFO)=@;#kl>-s(*tl{P
z@{Lpsn*lU+R#`-9FHjylzPz6K;W3jIu)`m;2>RSF6cp3LQdIi@U4XeLfHdDBe)ia&
zv7QAAcqM#J2|Y}OnTLl5e`U5#Qp@eLB%ZzF5+WK5igSCF{;T$CL?bBWLn6}g3qa-D
zbvlVn%0#%DEFy`7k&4*Y2r9HPjEu^A(0A%QvEaqs)Rb2S
z#eA}3BR+I8Vi;C09kJJGMnSR5kJ9gLfK(|vlk#-
z<}@iMX$0su=hPl}fM!`+U>-^&wUDkpqoAKwzc1ct)l(OQwlS+*l;8=F3B2h@5icXi
zt)2pNR=~w&JrXHzau19{2XztFc|hQiX1P5?H1yX>qniBO&5Dn!G`zpoVmVdjGdB`F
zv2mx&jw=ocx@`3`x6Do+#3w*nWS(C(;QM4qFK}M$nVrT}lK4qf}Aa?^bH7P3RYo1l#(^YxUT#)tZ7298NQsE2EwHv%$pD
zEQKe~lzL!=va5{-Jd#!0Qt&$)NrR8UjnT{WiBb%oz5wV+5e?Qr1ms0dPEM5nw9_}w
zfZ4u3h6%8jW+>b33mxEe(GAL6%9`a?b3rbM1Ui=5>MNlA;0$nFeBFfhR~9Fmej9ND
zN~2lVu_YOncDxxe0)$cPCZ4oDOb^(CJz&c`qys-Tr@{h?5fpk4cxf8LqN?|Jc@I{D
zxKi-J*_zzZ!2}e(e+59_T;r32z`ebfQ$=#8xl1|
z-JGWZ8fOjAU7G|2g5LlGPysM}O2%>cdKs9Qv-@LY3Iu2R(0~L8cAL2sfBI1>88nUc
z+&cMi_t=azl{iGt51?SPjr0n;*Jl(Or>LBX?l-oJdv~brG&`m6cm+J#MI@>Sn^g6AU>O?3nO0x%coO5pGE-(wKV;D9(|4
zKyGObX_mNiUkM{Fg)Eqgg}~ZYiY%KqiO$Hp-YXO8fAIGZPZT;1sf8)Hi!)$+tJk9N
zGZf`v-12Uw!gZB4z}-6v+f!vg|Bo``fP!hTUU%C4sz4CA6anX92y+DLVQ~!vN^%M>
zFf2Lx^u%FuO#q@CoSu=OuLNz<_1wU15ai2I^WbK!$|C%Gf!&g#ZaD6lAEi^EDTuQQCXxAcQgpa-{FT3Q?}dEA;kPpWkZs~;+zSZWfBY%1}fOSwJ*7c~HlnT0w#SI{!>jS)gAq0*`H7(b}z0uaOXw`OhJXBRj|?wfh)4aW?&~D)nIz3p{%)
zl*;dd0(?f{b^lmU6wytr7K=z%x7?&MP!5o!$9mN^Mu%kUbIdS{y#gkpwX7B8uxyX25BJ)2dizF
z_1|8S=`7VFMgYsVR5nd%f@gbT&H8R+0Ta~Wy%nju$Su-0r5y;Bx1
z-pP0Hn~H%+aL%Si{GwZ&JlxFibreXpLp-~A@*eE-{L2MEjJPXCq@RNEP=aGJ+zcH#
z!+uUt#Gu<-U%%cg{jrubC{IJXZ2>w%uFT?FuiX3RntnTiGGFMzzZ9i-x62Xf6DWCz
zx%tqv;2a|nRLKO+LmsN&!dR7+&CDHkXul0#2V^g>v9VG6OGSnFFu3Oyn_yI)Apquu$c=2fjCbZzv2@t>lrU6m1n7|}226|D@rzqa`~4^G
ziKhbiJpu1UEkSzGWYaqFG4b3og@m%Y?Wo@OPHIY2BR#qa
zOZ{?`W8DNeA0Q9I(FpBEJ`0wXTQsN48}13oHN2ZMroqy9v|3!e+v>Ka-(69lPV+Yr
zaAJ_J`ZaI;`d?u=sO92L4KN&&Bbxy0no)bOS^$diPiHz(xLRj`az-`^?zXXNsm^yI
z)ea2N$>ZNOnf)1X%}#{08}NshrA|l2+rrn$;EP@w7I&GbL3zN}0bB?C4?vx>m097K
zLC(GazW79>G9x<>Mgk%5_wV1!{-QKZ$OiX;T){VU2eo2#PI>-?3&@mEr4);jrWA;l
zj!ptua@Lc*pS(QtcwdC$xMwo~WUx*kWG~tf9ecsdwhl89oc##oF?EbgJF)rfqiz?x
z3qBjsL!Z)El74T1q$K!3w-Ll;1XMM2;yZ6nY0J7bt-8G#0FHF@zCa^M?Hl
z$?$>UjYT+?psuH9NoEwv|95zPs<_
zz!k$=%}U|zi5~%p)@^8LDERvI>u6VT+aO9o1n0g%V7?c?L=CJobzqEQ)^&i2rewfi!+C3S1K{2p0Cdv4`vlBLUA=uFjTD3g
z?3V?w>fcNTDS+E%l;N<|*u9c)|AG{#90U&oLF~Oj7O~2U#)Ug9gLDQYYA%Z0^mnvd
zSX!!>8VL8F1Ol>y=MUa0S-sv1CBM{!fYdSUr!W9yKMbzW*4Hgu;pDtBq~}NhI%!?1
zU9K18mvXH2X>Y%LT3sVY@)yLfzRU=KkWxEm_EzTdig=y+J)an!RZD^>8T$JUVJ9h|
zbd)9>wKgERi2%zk53sOnN1mskg70**NKv`D<5$@dg#uZnCZfUQ@g0?qr~3J`N~A>mmrlrktFDk}p3@k*o;!cYRZ4*sAKl4WlzGVfvA
zz+AZlyveLP>#+SkATdug2WNnZX<6j;HwNj5@eqyp5AhCgI6nK6Y(-I$dfDFlZeoV7
zINX}Z7rg?i%^m#hPe}}hc4D`lYpG9M#xP`8H>H&6X5J&gS>FTYZQh(;vAGZay!(e)
z(af*HFeiQ`z37WfKW>XXoH%ye46!dc@`B%=_xSUv|3CXD`3wLM3u9Mp0EshR61ytP
z6mp@Gvj1!Acon!0A($a)n8ns$@0bYFQ?W7dC*ep2#4bD$2-A<;K)+ip&bS1_>zUM|
zR31(GbFSF15CUitJmFAd@eU94UFLsR^Q)XVu6dm^KG;HZHd;!buzS3Hr)eR7nYACM
zOD&-NU)5cARFm1Z&p4J*RAy|50x~1m5HJv`AczVC1Qd`Gni`N2ic$?l6bBikNf3|{
zPzfTC&_gFtk)V`-fh0o^P$`)N0wPUH$U7+E&VB3Nwch>Xy|rG};#*lC=gW7>-oI1!
zZ|{8`<=skj%xsGIM|m$BWo@JhE!TxiE*_gJ*Li~54rjuTr4ad|m}Rfz8J((E!Pmma
zH1j36dO#
zzRh?&?838m-(8&`x3?%H!7k0JKiHL`EtNQZ5&k1)S>L?O_ucK0)2l=)2&~Yv$4uST
zF$%}S6eU$$aY6pjepgu2^mk$DHKjf8v++22Ouvjf7AH8y`2*+VasK?{(zQy6=U%#X
zz&Kcs=7mv6_OG5^)JgVl+%mK-eaouN5K>X_3%ssXD%@UKJM@m<#drO}E`dp=@Rya^V=e3y9(7$~h{^KtxV$|j4L*j!SKMot
z?sgkrOs7UAyWy@7#@Z=Gj-S4?CI{sv{7BvLuMzEt
zu)83gPlba6(T(}exm@|Jzr)}Eo5IJs{`%ezz)<O!KzlTCkKYu>&%BN+lWo@u*&XZgJD3d?M93G=v`?OeP2%07i(C4!E
zmM6FUzHoKxck1E4H{|_CR=WTN6~rYkf&GvF8tAMz4lUMUfGH
z4tqk+RV~xV4xXmRb%evJ+d7%;(6xtj)7YTMBW6=p`lBHEoTTViFRUCYeieN2@XFeU
zWkg30eX)G{qWAZ;7R&!tPgUjrxqGybDi~tk6RXIgdx;As<im)Y$(
zNJ2-_{(76#Wn@7}9n|a*>_U!idKBHDy|4winHgjw6w3w41VooBR$IPy5u{g!7ay4
z3xm7w2Qq|M47m(9jqT`0W!I6sT!~NaHa|1h4)8^2`V210Xjeu|QUUvU6@j~(;tSQR
zB=>&3bGUhCenP9^DVnf}S_TE0Lc*9ACp%n_sgEf?8R4
zFMDhuYvg2jdC-+ie7FCymYrf+_iU>YB0
z=Z2docE*L5m3q|4C_nA(pMP=RSySZO&V8jXxgRMB_PMY=`?^HJ`IJM`(_g3C&i=e?
z(thuWu@8yk8}`XT$L5ZWe1Z^zODxrvZ{$6^W$`lf%+p|Ak87zq@Zro3{kU;hIa##p
zU8#-JG82iZ_uG&|gb7Fdg}F(-iN*%Sx@rrtq7G}Xz{Lgws}q)fELNgLhyq?+@h57Z
z6xH?qx(NXaWQ844Z#|hH=r0&glWL!iEvo!I_Jx}GU{jzL>w|N&HvGj^1-jCelcP3!
zB^cs6Fn#TB%W5RbLPm7A*Z6*bZ2$0jGy6JRZ>JqMJ<&7qL(l8=nQy9yH%flBT30D6
zas@8ck?UH^?bGSbd6QF+B|b;QPp~sj1>4P7(x=WR_v=W}>%Y7HLAv2)u12GET?Eq~
z*$-T##8+1}kP5kd-~E9hkOvoFLMf7d;9mk1_sHl
zHN55w2T7JQ2rGp?X@@}%et-#oRaYe+>GR-S@r-}%X%_T~rQu})`i81o;5Ep$RrI?o
zyHUY`?L9u~pHqo_WZP*irO6t52w|+f75BHdo?C;A9rrh`N(Mw`m*O{C38-S{9z8p8
zn<*(CiBFhJyk^xmj;$RGQ#OI){?Nd9KsQ7lS51Fr*q`c1Rp2~kPf=$MZ@0Iz?oh~wS7<@A?^46acY15;C
z%1GOF!AaN?pSjLhwMg2mny2GICN%L^ok!`+clq;&4sYxh6*j)Upke-%V{YGH$wmjl
zu7RQ15%-@|;
zVZ(6zF}^%1naH4c>Fc#0{~aS^P)k=g9okS?w&jdQ*=#kgLj~IKENAVp&12ye6i;%f
zaaFVkdfXX)_}ZTIwB6~KOWg&PYThS`9a5v~mxnvKeuB@LGBqaW39>?UkWQ39@)Dfh
zi}ikJ5Y!!Z`~2xrLMnb0dv*V=Dp#Xd;l3i(Zn?znv^5#Ovu-H@7h~xqcRl{Gur9MZ
zW|vZ8`5(%**&9cRt=(2d*41fde)+I_KQhGHNie=yG9+5;`4w>rIwmljMe(k>@;s9I
zbW2r3=W9H7O%u{x=Un@b^t|Mrt{k`#%LvLt9;6-3>OWU6Z9m3g*~#|p+wT_pFiT(p
zCl7qZ@4G9Mrt~9Ak8v5223I`K9x-6N)(O~*?*xs^d`?d_&nhtPE5Wy7
zvm8ohaU=gd&ylW+9A~EXhu6d130s6hdA#+_w0$)+r_eDYE>1jrY!lbCPEyQ^%l#t;
zz0~6lFWYALiw&_8VL%y6c{g5gM?YMK6RvW&kS-LkPVbEr^V$#fb}n=a73!Nr*psrO
z=e$MD^(BXOPSDWwgq=miCw|$neCAi_-c+R>wYg6(P8oNuCe(dOxe&N@?#1HBde*kPQr}Mdj2o$8Bcjb8P91RCmpT
zIV#wA1|iz#^QoYxIO@ZkZQ7I2D6@w{n)>V+%Bi8k97U?!PlQT5FE&m?mH60Pqni;h
z32n|3gJ~ad8)e0wZ!-(=D8eU|yLgTBEL-BXr(;E@8#x=ixSR{Fn!y3lk!AEL3t7U1
zDas^je@2&bGrOCaY^A#Mz|>eYCRo#ch7cXDI#sh%)`b?&uy(K30rjXrRUF+fC_m*}
zCUcOpMEaUNDEe%Kc%d@bBsqIV)Cti!ruSHc0bDl5l9XLcl3Q3b=22$!_F#8~&gh;E
z*leDq=59%gV^Iq)yX#eFamjE4fy5cq%=>5zg8(nAD{tvoxC!rxE$lD)nmtqAY+NRX
z{ws9kbz|_S!fd-!pO0rJ@8V~}wlRt=k`j|EN_TGt#_N0k=-&B-xtjUiVG_-y;Fzzn
zu(0sipv=cECeszT*4kwm0~LBOTr1#tW|Xa34bpy;?PA1eVgV?vK-Jp92N4PQCv^<
zmRxCcB@lD0ox)~jL_uV5OZn#ejxZr!cg_l767o+_D69?yviV;EeR^(rxu3#M5p}ZK
z@45ErAH0!mcL}CX-^D@~3B+bQtijIruCcZQT$z3Ch{bKlHod|rHyDZsJg^i}Tm1-a
zIZhZtsA{FsFA#Nu6BFxn{h$+IY4Vs?dUl0uy7H0PCB%gPXqJAl;~FshZEU^)s48Yg
zTkym=&G@N&a56m;oO#*J&8=>AO2-DMa|L!6Xa{}Kx#C5IpKAOljENztgI
zPb@kEhmv(T{&p{Nxd#!FfIAsBpi}V*#;T;M1AZXcGj{%w3^2E?961kd2{b;71vYXl
z7;+y1zXQ|%TmBhZ66H~}^iQOfG=}oq0ih1
z4LYf#q5r`T=V=K
z%A*L}Ajf}!2MRWTKU=t(I1(Jh`75L@UdN2aDuW=sn#i_1nOwPS7uj4YNJW1z-;xW6
z4zbXQ(TNEipVk!l{WAP}#95|9GrDc6UXp+(GBig6bYM@Y*~Yo%26!S91OX0OAPs>dCi82|08wM}
zz4ydGAU3UrYI)Gy_V#w{3Ca?@)JDP~cnqA)PlM3kS(OY&Y4@s$MJJ=H*o$B0>rbkw
z%{|944H1Xoplf-)W}go|p#rvOVJtMkFc=ifcB<7*ZQW*vYL?|cpI8)h-$$Sb=0?xOw1Eq|9iS;j&;AUd6;4JhUtvScnzO8F6%!0@1I|TG$2JbG=XK1LaS6`xy
z${gL==%e2R>=k4gaEL#oPPH|A#{|Ms1cXHhN31)E6?IC>`pMOBP?NEu9Tx4M$~OBP
z*t_@5@jj4IuNqD}2Of8uPSm4S*k*dzBCZQjcDfS6it$th)hzPWM=4c!=x8?dMpa&H6
zuZ-`-Rgk}(l986yQ=$$qxKwdmi6Wshi0Y8jNCnyeXiLS3{;;i$6X-0l;4HCPfG4=c
z*5NN308J*T_(P{Yt;3pf;Eyea=GYqhaU(d{ozMp;P&c#`6pX+Sr=@W&<*JRSQztf@
z{``DUy$QHspn(Oe3VQ7pI2v$M0CxA(X$Jayyg>$ZoI
z;3g&}xp7cycyI{7J0?)x0}i|!AYO>i1OI58;vy+L-159R7jVBM8LTkMqmUJ_4JNWp
z^#EuuOt+TCLe*?h1AzHMMjY8S0&*$60ux3bl}gQi0COSmacs1Yy9Hu1Zh1_G?7f$l?Mbi(A^BW)33X}s)d^V4U`7+9O?vs
z?YTtyMHGQqE;SdHGb*uvzepUEd>qbTiJp@W`P_L%G|rG~vox+w|FL0-h!7LkMUY%GfPnPh%d|BE8
zfJ%~oTR`9F)A$h0JL|hS=zb#QkyE07E3iG<@nkPdZkBmWmHufD^{b{-&<+%jd8|?H
z%Y5j7EgVK-ASQZi-_NyIKLZxd7z`kh(?GY8sl&c(V;TsjrwO_ZPuzfP&GY`@A^(C+1&Iw<TwTijLj=)|X2(0yR
zxHvPQcqJ%Fw8tdRkqwesEThn}}5
z=|bM1`hjE_6z{ra{BEZ8a_HkSE1vB>TNELHF?GvrTBUv1w=s*|@N>YJa=gGP4k~Ju
zb<4{Tph4dB7xW)OwGs)L8xPZ?IbbTmG)Se3BSo
zgds8v5kS3);xz?efpkhbzj5zWy#7$?L(Np`nd9H1{6SdyHTEQpWFr$BRI^{r`wuFB
zVk8(E!hy*yia-o9S_nOqG|#K%J21miadLQ~QC^ph97oyJdoE1Sq17>3#aO0+=)My(
zS`$_Sb7Vz0m>5%Qi|ig$=+icV<@NOuQWl#~$~g5K=Qrf}M@G5Nv^rvphw+CH=3IQ<
z`fm3)=t%<6Nu=@m)tfif)qr)s3b3+Xf^4k{KQ(?uUCx5D3vUmV!$EY%nJo$3e{q72A<*fYn=n*gZgD7~QWA@3=&&
z)toU`y7Xn6?9rsR(}4Flk7Izc3=ayt6Th-FiJ
zcOB%aaH0Ke$0a;b`llV&^WX+&9=_`34=)P;6e++f)Aia`SP$URY0m>2Hi*@8$8G(G
zNBt!rh7m-JDahfx_kk+gH8*YP~hu~CNx3_S3
zbH6Ul4-?pZR19KxKNaEcxbp0=Z_iq_*L~CF|J%!L7k>C#%M@!@wR4=6H^a}Fo-NY5
G9PwXDVf~5#

literal 116635
zcmdqIg;yM1@GS}if(3UE1a}DT!6j($ARo>^a2Xif-3bufU4pv=C%C)24({?gzkBan
z_x%fxwO|+)G^guS)!DW8?l2W488j4P6c`v7G&xyGH5eEKHyD_AMo900pXkF)8vrlw
zjTK}hfmh(;L88?MctN(8)p3G>Aq)BU2^+I}VFm;95k^k(i@IC-$*OxgnU>4J)B2Kz
z#ewQ7@eg-3g-p14SbsDlS#e1iLA5d|b}i(EugHJkWiOGC{V?CtoMVen@?shX@1y!{
zkbDgNV=ITxsfYQk>kpy0F^+#6&7yQX_l;YBY5N*QYs*vd?CMdHQsd0jqqoTZ^nQBj
zQc&BDe_w1Hr0Pn(mAaS
zjtx=2R^M^Br?eTKu8-$Xo#i(;A%UKj&JUhusb*<@ovGUvybzJ!z?;>sgAdCFXxFgg
z@4U&iVL!ZEN9;iJM84-G_HoEOP#;@$Hb8iuCY_7%4G1*64DnNdUC;O8Fy~l8D~B~e
z^+fXJKK77Y9dI~vh-d4sW8`5=+n%C5s3a
z1LxL<@$_rPhQ72cil_&E)~4UvyA_m`;pg;Ljw<+92lV4AgpQ^2$HOjR#U%n0{Jd>8
zH?1m`@CL7Vdhf!z2D&;h87^JI8%E5xs_yg2h&sK$o6}FT&3Cc+h{bbn5dq+F=h{I+
zlQAvD(AELgslS$)T<&5tcdS!KpH8gbIDW_xoX|&dm|y&EvX1-}FE}mupSg`FB_&(e
zE*cbS>*jNU1xwcT&9?&W_?6*Yrf9JN#yuO+4cyaWmww$c$y*4@`eC@vKI%$$MUtMf
z5=AUxT^cxoz0sK>d$xumgieqBDk>?a)$p8o(w>Y3xqQ9EJsrJSQ3UGY1pN-)hv)Dn
zE7Mr8KRvDPls5MuES^o^@I-`tyN{JP?=Yy&wN9aOBC5$E{76)O=T%47sdeQD&1c-K
zU9>Z{)h?1FVoYzVavqE=+29k<#VWpa)8n*Iw3yynlKwYi3a{%XL1bTA
z+;NGpr%*OF&0*3}pap%TuJExg0rDc>X6QE|FN26J6~{Nvz`~-By<4S8@RB5XmQZQ&
zLSkgorXphm+|t0wR%K~;;gI~4DcTx%n|@-g1o#ulNo){EM~SsVN&i}R=vY(pZtZvM
z|NMT)zm$VlIL~~-b+hO>CN+|ksr59SI^G|3Y>k1Hso9T?CC!W=fMfD|;|{Sw=~AfK
zfAUk#F!e%sjs3<%!Le?T^wLIT$sFx7O|(E@GA2?cljUn4x8uk?v|E@VCO%!4He(pB
z(#s#}sNvYh*xaV&Fj2FEG|c85J64Gm=2SK#)!3BT(CIgN`!r2xLOjZO7EhbJ@!}XL
zq`D)q!ZOppZEHPGspEQ~Tu?ua)fa;k*J-8!EkqE)Hi^_B{a56~3lzosApr>nY#`%h
zZgGBp4(0S+*BH3Y_47xT5${gpjdy|Y7ar!#Xk9dD<6wu&wGK=OQ>PDlmIGsl0{txe
z@?$Idy;HX2LB>l*u$f(tl{LvbgGzC|h&_~oLrqoa_lrY$$*ZQO=!p1>pyoD2Nw12J
zO6uXK8ZAl5)LPmFW9^Jb4`;%aMR!o`+E?D@9fV>0t=LG8y>gzirnGVxeSg`nxbv92
z9N`RFDj(NxiD~euIB76PKQl2tIEn*}`HzQpll|23i=u63
z^;a<$^ko~+0)b3Qz6}o#)?enfXq9l|2I5ZWs?&n)Jn39U1qss7#oD)pTcW@hABtF*
zw^pM?`Hhz8H9-^nPTRnPrig_hPY9(fIRRZLsg|ace!g$)V=nCtIglgWoJ)eAa+^j4
z?@Xhd*l=>e3Y873H`g6W$CbmQcVCE1Ms$AkH&6jGZ8a%(ql;fb*m>|Vpdhj!y2`!l72)#{-c
zk<=H@SQVN3{hE274{i5#w`0saQ_IU9?M`Rhfyi**G*%DOTkAVJ-@cDN#;&cc4G8X^
z!E4T2)&CR(p9w)~Z00JyH&TV?8sf$6!zv?I!bnPb=a(A7i?p~L&xNGc$81Z=sN7_K
zTN_k|F00r`k%p$bsh)VHz^j_^m!e~ZL||{}De5N3D)dl2h>PRy)~iF>9(Q6^Hh<1P
z4re_LoV;HCHytxT=+sc%B)BNI#VVqY(yK#7rN9~LJD$hqd8R24i$Vrb8PT8Pmmn+_)20j=86xds|DI9=s#h%aebDq@poCU28r!=CL8l<&-`q5
zZX)m}>D#xRHV5_ovG+pDFchRdN*i-E8PTSMJ=)HIQO*w~^C+4QxQT?;H_k5Wth6e>!K}
zV5_-f?5cv>(tFa6=``pa`^iU}WUFSHwv2*Y|eD4&!)amm!;CDk+Qwijp0$PN~?EL(E
zMJYuSwBw0>Z_`tGT$3*Uv^4PwiD}a3_K50=E?}-3W3gjQLS7LLzSTL8D^v1vK<>%
zwz|Nz`!_EEgK8ix2v#wp*FnEk>*S|N2t=J}eDC~kGUrq3Qh$n6|JE6od1z}X-^VO8
zy}y<9T)au9U1e77N0{o4eK=b+J6D;qLL%W|D+&7X&($GdE}Qiz4h!yx*6Dwz`TwLL
zT66HgPOlN-Z+thDoV$I!NE!wb3S>&T=g;Dfca-8ozNo$w=~HVV*hp`)=Z_WBjx(s<3dS=wjS3IWdmBecH_PJj=5X<-#6ib-sZ!sx*zcO>OIGe
zCJ7Z8S94W{KHQsceXqa=4rH7lqAvzBxawsWjdz88{_PDWbWoVe@#*~hd=`{yEBupZ
zipvYC4qbO$wsFxQYt?aJ8hsuUsVQJS;F)svoy^(&R*pr<_|@fG5m%zbm+%S!8?<$L
zHF#NWYX6KYXBMx-LH&>Cf^)-vQk)X{R*6Ok!Q3bmG$tJLQFKK1@*r&$4G<_pV6O!U
zmomI;ORte?yr{@dar$0=jt
zs;u;thc*^U_Z9n=oEE#VNZju`vB4Xb5qAC1(}lM<$p6iQI1AytDiHpRgs)=_%DGYB
zrMUs~JH)<2S9$Yu;S-q1;|E_5PnP&SZ#x-bhOzs0#-4&7T}HP>iWGHt?!1MvXg_Y)
zUzYC;GlN!o`&SRi$_64NW6g9ocXypm^OgETdX1|!X2Tmm?=yS4Jrzwgs(-4@T214z
zv9eN|85pv;zcyltse70@-*IF%;SGy!9h{Tr&(#Zu&#uoCvDq#`L6Nk5HcyajPQ}%g
ziL<1+IY>@(!tGC~4eML|HHr!L;?ozvcgj20oA_I-LN3+ot}9R|VxASGOIOm+K-SZ2
zO9zqod2fELSD|m6Zl)st+zaf%Khs18e;;JS&&pX)u
zwH8u5Qu?#)$jwlP9$+o=&{ufY%CYyu)ZxzbAAsRZ+7K4~;N*$17{k$;dy$Zkm|B0M
z^PgAGQ`Y{q0x>>cxuD;WicTebzdMVcBcF?)pM&ZPX*
zy2M}lN|+BTa?rwI1{$J_pM6w7pRXz*<)#1Ac1;Fx&9>G#(h
zLSfD`CvKl)u8yYFFM}u(m_;MM;)1Vy8*~68*!H9&-VA
z&$E%Oc8I>pnDVeNZE4fcz9)()wmWPoBY52cwO<eo$Y1j8Wiseo_GQ!}Yid|{^)dYunFO)d#=2wA^??>fT_Wbro9Mbv?AapY;
zdN3x!1%~feL?UjI|2TlP-Y7OSM%Nge%)d$AsWWE=*`1p=twrA*&|gXJ#e0rLe~70=3HZ^C7`;TH
zjlbm$J;66f`fF>M2z=`x1#B!zr}k
zvLV|$=$ogjh$&y^a#Hl<-;Uk)ZQNVP&AH&wRHe<^FXYK*F0ftD8j?+D0zlnSWvKVp
zW!EWZ)HtezvZG)5S+_
z3`2|2{xUg$B75cMyF30!RtFZ5{=Sbz$GJNpror|B!=QLpUNTi=!^`oQ;k1W4?J_dD
z(rHjv!<{p?tVXTto&VY~_k+jnY1bt}@#8=3n+39u
zawSoMREO{wqtfmt|Cl8P3!V?fwB7miX(MMe<3J!;o03^YgZ1=U%ruon2de^2dHKcmfV_~KKkeOq)(7#YwWhgmC0h{?9LE3CU
zH_%dnygAIVc`Fnqc@>}9In_1#i3@;vhu&S3?F5<*tTg6&?SV-gB
zb)raZkzJI;dSUnUtP~UGJi`_h9$s5+>3sMdo8-$ArgZ2EMp_WN(u!B;#4@-v@JjDhztH1rM_DViM`z}#9ZAlu9h%z_?$ZRlmE|3nWUVti%qO9q
z4%EYpO?BCEayb0UIAxlpaV7p!nu>~~NP};yYx=+Re)m>bDp#%T`KV6N>gDA%0P*m!
zOEJFs+z(y7g}r$u0-c8Fl9wFC1rQwPyl5T91z2AX{u#bGe`O*PS}K{ngq2GmlXrAV
z`k0x1+4*
zs!a=eg}3H;&fTz^AFN35bl^VK&zNf0({6#&ffzBaGG%*($#!gnZX*p~58<&T7*~hr
zy&@lNC5LT)0|+b|y;_F#ozF&*zk-2(4jjHC{KJrQR@P?zHbW|ES|3UJp>vvOWwA`9
zb6{88x2je1T(z4vfzA_7UuV1I%SK8S{c9ZtI|Sf
zpzs~zBR#50cPpdj%guEzrThKNoZvP0{dYiYvk+}p06t*}82`3uMfmJDx)hM#_MmG3
zN3%J!TxHnlZH6mlh#x0kuiNguKbGMHb%$V+@Y`2AQHg8QB%vo
zV#OJw);YT|U?3M@ormR_fS6fD3hU+N_5+ybG32jUJW_i6HHq|En*%SOAV>9s8&f1nC}$PD%}n_$
z3TM))vS&(CR0q11oc5A+y3yyaWBpz1PEq&o8tsyjtm6g(V_`L7-_^)>R6grEI$UGpftzu|9S)iW
zB^(JvIhO4Qu&GOOO8xiuXPcR%UZB&{ty&o!aUo}qYM*b%2|oiQ%au*-K33{{4^VSN
zj6(WbdU12Ngj~Ftrstr@QbE=s7+(TiLCI1)F1gscz0fPEkIFe{@jKXxFC^OaXQ~2A
zZ$pqoqR*W`dhq^B57hFaEROyZr#{>N(9U%?BrMzvm8A2Fz)TKjkV9R3oIY{frxG8Q
z7#eV`nH=1^kO>Hyq!?*-Hj07p5yh0O;jo0@nL*b!M}KAP5JDHX~wP-rz8?=)teu73_}z6z32gTbiz50!Irb>J$PapMm&tNlGMqJrNB
zK#}}*+AH-y|478&T%`e&JoC8YW+NJ^GMc|qP4qLX8B&f~!=DbiDAn;C`STaT>*_z*
zWH7SW#E$cC-J?)0v6gv2_u}`NzfWv)0+d7KR+Ut~;^hNj@1|ZcU5N-W1(gt%Pr*e<
zuX}HiWl7*%Stwurgnyk&@WS%c*5GcHYS^n-`kLH$Fah&DEHS`h_X7~gBKW5zJD`%{
zr!tj`)dvll5!Bm;8wDjm&Z5yN3$QT1EDOfzWnP#$FvD!&vBZdhsFS$dDz^ZQ4NOQ~pvI{C-S%=!iD?w0EC7%>lR#3*pWuyY2&VGmdiU=KDbF)Mvj
zi76&vEU>MJ6!~&=xNfNot;)HSko>msk+mf`fE#QzGoXSXvxw#!cfzKiuz>V}H(l>2F*;uj!`dZXIooUlf*f
zMXk7pBRTeIXvFg`%yoOv8svCqVB~u&EBt%i4-UjHgSMA(Y8H;O7ih6}uLK0#g7SyT
z{7gd2U^Ut(erB#gAuEWBtv4MHLXswt{AEBHnSapUjt)jRxY=gqe^fgSK
z>GfV+T|;(GP2m>t*qV^^0`bFTo3NvOf985lL?s0uE}k=-yszTed(I9ODqLeadU1nR
z%ax^nRGgfWm8Gf!i{oZAjS)KN2s`72Il}FnzrsyjtI16d`_UB-j{2`}Y2I~^^DM6$
z0{Q$4UCGj4@#-Pwy!eJkMi%_%
zlL|xLSWuvSVgR4Cej>r9l&ye0BJnMqV|JCT^b>V2Bo$`6705k{ZD1x8>;z2
zq>vZ<@Zb3)IyD~-4g8pO(8&~H#j&D{C3oDXroZpSldxqJnQ--|d>$+FM25!5)#Lg>
zJc(O^n&}ZHF9N@8ufNWs_={Jju%tfIB?OaL{Zw@}#Z<#+7IJ3xJHw;gb7ct_I}5Af
z-;xZ(cX?#gv~yc;qi6yuoAMt5`^@~u8ZZf@!>;X$`aOo!srgw+(XzVI$;HR^L|tvV
zn4Idv?29{s59oEPf(
zzfA2o32-i;9OW0RDwBUHTnpfnq^1Uw;QXQbh;5ZL%V>02U%9&p*X%%s)=o|zBj(O^
z49jdXv?;4DDz6L;(RdJf$UzgjkCH%j!Ui&Xtpxm-yp>Q^Cj_YoMPfO1-)fTH!NzvE
zSMT3qC<*4|!!|<>kaPJsO`SN$fELoU(u_N_4~ksXW%x9!7P=lKse-HO7=5tqt+@Us
zmQYbwzixr^AF;{U|AhKod1Ew?A5MiQ&Bqa`MCuapIOhz9)
zey4T)>-7@g(^>U(u~bh(g&ywrF~IqVLTzA=eU?6JZD|Jo9^*@Du-h>$4Us2tJm#*N
z+v*g0l-&EQuIipm^VB<8)|k46FW+VGt$ThOxnME&ZoPaDJYeEfYYCYp@lIo!S4`zx
z16m~mun)|9Ok6gAo~c(&qW!K7|9*mKExB2zeX~*WMaDsuX)G+%SF)Hfeol2icFYXZ
zf?q4n9+nwymQ%nPcL*=rnuzY%sw#0})9<%V4w6j{OD@7wZ~Eti@S(J*U69xGuC!BB4jMrf!3VRrlFI*
zhX)YtoIWjy5r;ke4d_5;u7mokJ-*tEJM^Kko3Sa1!iL0T`*Bj($q8|$+1E;0Uv4+@$=S8pU
zG`w^$CX%qLU^02uN>CWFg(@j+iKPujE#@cp`
zLdwsUM+-V%{T~F;fXn{}@ZPmB<&uDD2}tBE;u;>3WVw}Dk`;DPuL{p0Lzot
z@~#c6I!&pTq%V~@k=m)*G8FHyOb-$0=D0|NK-OglY5LCcE<94v
z^f2N4b4eZurFrGLCm?1T)A>^fZVllnDW|K1O*t(MdMqBRJansOP0*;KPtRnexeovo
zivI(GfhFE=ye(GxdQgbs5V#W|+kt6L6>S`7nRi`YRSS8s*gFP-YyRgS&GYj>&h71;P{}=f
zg~r66Ja(bbxnoM!xw4IEb`Bab&v)$WQI=NC$A*i1GOb0r;VP8IpKCUP32Rr>iL)
zk|RXSs#2yQd%U^D9ZqY-F7;X6B$cuG*oz+Oiz>0GD;R6Wl;gqg%p%jGDFy&>!$5jz
zb)M!-gYlyqXv#nyZ+}YAmCDMu+`F+an)pgB0x
z9`!&tZ!J=Scf@hOe7B%4sXYrO0*|%7cjJjIJyP0Vsd#yLS+|-CxxT#>S>p%O
z{ch1Lt5|7v+MoP9+5cgzBGvRW4uq#oX`(S=kW-~-D^^^gSO;I~-~cHxINJ+(YKq5&
z2_zgT9kCVmXaeGSu27R6{$%u|=XbGbvpw`*(4&tKfX4&_p
zxLX>X$kD9|PL2f6)ULt*Qq<|gdn8lju(1h5R;!NI|E`fyq%AC@I7RoZ0w@-^>q1ju
z0LPkRweBW;cLc`z<#eYPs!PAk%}ujDV~2v!>#`$WUfUJ7<-O4~Wv02R|Bvh7Kc2qI
z)U{y#=o;{Hg|1cm%J$nAjgWJZ4>}}7Fwi(X`s$B2kBMmsXmUNxVMDY1@vW-xAmN#F
zJc2neYobl))^DNkoLWKZnA$r@`j(`#fbz3;ij>_ZeiM9xh}QjI?aQK7AjfvMxA}W#
zx+4q*>MhdLLRoh%5&=Dn{?3b95~EO4oEJA0DNk(3&)q9Dx%bGT{n$8L9}NR5cXPf*
z7phoF2qXu~g={@bZRKLL%(heXzjl1y{|H>1=pSIgW+DU*%7}&6mnTv5a)LM)V5<$S
zw69A5qR&?2rOWGX^^W~~>>J4E|7#E!lO!=G4rz$A51l^-(iFcc3t$$CeqzVZOwO?n
z|DO9B>Zk$bH$2JNWc9&2SHlM(4r^gzc@gYC)9
z&11YR^PLHPO5f_$#3#WR$i2tLi{A6I0!^}~>}ClZ6IThU@0_)4ywVICMV?6S`~|gy
z#E6E}@hrO|-#WV*Tt>=Q%kp_0wSXzh(8dxOndl&7e@yBzShbHOt5m}6RbmgNE%)v0
z_uRK9rOdqyoaQ1rE5aB6DQ`Y@qSW(XJ1vvsI9(x3=hb#HXJ!G>isBgf-s$}^+ojm`
zPvOrT?A`+5kSaHiCAt6;t)6U1gta{RWGh5LQI$A5|wQZ^8G^{lUiIIeH
zr*Ng;OT+}`i^N5`uu|I&aCI0Gqa+{`=ypq;?d()Cen8897c!|!qo+NsQbW?rzIUt0buZ3(9a6YXXT05loXbGaI-kgU@dC1SX1zR
z1vz$n-_V;eYct(L&By0W5PZ7yGyTY$ClBqjg6Qfk!fK;%)j2etwph7V*CfxffQv(t
zrRff={KoAAz7+5fL#Z*@pfx#TEHab^>JzDssJ{D
z`FH33UYlcJs-WQ(6rtmzN|4sWp7Q$zaJiaZS398hro-@BjCTt6Kw5oCq;||V+MQlv
z1)*(Mo6S(&t7Uel_}>=GY;HUQni
z*3dw{)EVbFCtkT&Px39HL}{4VCYV0B-Us_H`gZ6||XJQ?R6iX>@w`XQ!5^4UnmP9pfyzJwK+k8K<3HA+858jlgT4@|
ztf@r=hqJ(`54t5{z`&1{%9L9WS5DB2eQ*%yiMr#MV}O}=NPZf8@F-Ve$fM6lX6ss+h`vIqw+vHW=>U3&wjgJyrnE#GDY00L5Ps$p
ze0YTscGk8oD(_mIrXPf5WTi42w?m
zL*`01X?3h+-0Xtgm?}yjMsHlH*Y5iKRVdyu{#CgTxs?dam3}_b1J>
z-kYTMZJmVy{xxF&NIJ{~{BwR&VjU8C7%<~oPgfL`?pE)EQkC3uno{`oUq!JVhSX!M
zE1UPGZf|cBcpW<)hbk%Vy}Ql6Tox1&t@vPze=yYdW<$7f_4$uWsK_a`^$qi22cb#oUk^4_
z+)8A|pMS&jS&Cw*hjObLb4$NVnck@nqf>}HhwE0%HBUU%9h@A#SqF9Q#jh!1JEdhS
zsB5SYumU#BiAAzGvNS)!i8_1%iJdE>ZXRE81s=*iW+=fxvr6lH%&09XZ3U)APM?pQ
z#~hOfv;~Q8;d+~Aj|*u1ae&?Hxygs{Uh!1t&NS3kYRBQD!UVM%6boMQNVXo1#Rg|t
z4&QD7l2(AM_G8relyu9+8hCWW-)VDirOT*T3lo|@5-1F$%TLy3e
zc=KDrCs5irtv9jknrv(&9anqu2<
zTixZ*RP{Jrz$I+S!U$FyRO+;Yi5D0{MB^d
z!_%LB6Mn}g&ZQuqF+fPkxNMm(G(G
z4de1cYef|@qSXip(5#deff-P!jbhF_HZzHi{*1`~O;8;rbtWz+Z(c_v3m{Eo``Gv7}*pzD$cbDwy3q|Y#0B=!DQ6_?%i|*37qiLwEvEHf`Xh-#!J>V53
z%(CvwGVMytVJ-qNfJGx)mHZew{^07C!yYZlq0)r%*_w|}#*sSqfEGURpCRyU!$eML
zneSVQRXcrnrJ9E14&wKQ1qAvBwG(kIw}OQ>S>feDQz?v-Is>8D=d*mIgp0AYdF-TCWUj_oM)}
zx8rp<{s=#o&Z^>lfJ~exRyfOc7{Ud4dZ6hahVgW&P^2SL>^@6(++f5SC2MSHlP12h
zZ@+To$Zib8w8|y|noM$E`>qquw0NFbJQ}@P<>-1+5`fcODGS)v*Wd6^Dw;7Lh1m-2
z&~ajV8ebs|gUdg^pus5MNlXSTLvvPFMQv-*96oSu(`uh
z?F~8xOZm~0MA6XGOp&-+z~tsc0A&U6>;l)!u`t3>ZD*@`7k|EW-+eE^wy@hY?%y8E
z=0Iwf9KFN&Otj4Q<)oTHi+-Mn)IR-bp;qXlUHf&gg&;w@YDPyiq(XmMvN%y(hLeJ}
zOFarx(RXD<^wa3pwKhgwoC!N8N}Po5k~o@tTo{S#7N#nFa<))7ge`uU4dHY~_Z05p
z@Mnuv&ztdjgEH4PF5zcXe6Zpbu)q6!3g@f_74v#4{o8D*-tR{RJKnUvi4-Tf>0Yq{
z3Elt_J=rwDLywusf`q>`M{*R2Nv;)@R>2vdw*`cC#KEjM4zo1BJl(CQR9N>tjh>t?
zKYC+On9e?~D&276VaTSW8~@nbgrNQU#%6$KGsC#qjD#IEE1E_fp54xLT}mhvOv^1f
zTMc>f70(a`?<&82jQS-Q(OOtSzUV&FlT~g05~Au}aKH1@AJ7IB3dVwT59$T#MrbCp
zV`u&p$)*R?p_d*EBK2}iRpX-cseIy8unepb)Dh3Ez_~;q6bPTQo>(JFU~~OO3`(wh
z<8&fqFP52=&Ycyv$c!fc9vsx4gdoHrv08h)(LpK$+C$0ocnz=u2lpMo4sbv}!&K8@l1iJ$PdcmB^<2P$cD(Dl?-F|C90K
z!*|!k^cnHR5EZ8n47f$>y-)0NLDu)PdHw_$vdhg9>xE60jCRC4yHb;`zcB|jf;owuLf)nh?iV$gc&=9WIkNZz~9{_`mc|lIRoz#
ztJf$Q7Y#{RQFvFP$;1Kbf5P92p}VM)DU(1>8S3HXaopMjJaFf&6v_c$MtXEd3ppSA!ee=rj3m
zd|5v>Sm-+74VeGMm1r{pe8U>GeP1Sqr!A;a6#^I~um4{KclDJ!
zFG}ZsKc;uUwahuKGyCL<^=e#hUfJ6`@i~W2!*1oIY~RIm@Kv#=+GFm)v%)pg7n%%>Wf`y0i~CGal#RmQ9oR(%P09-|nc$*B}GknWQFTg7{zp|33X%
zr2nNo_K#?EXWFcGn5`D*9o#nOv+BxAIBHV$@~gk}QvW!@!qtf7!%#@dNLi`Sn3P9O
zN97*KC1gSCIgr(?YNQzvBHgDor@duJl#csLpGu8%Xtq>4w(V54z3Kgw2RyH13-~zj
zAUe=>ltbYoFD5ylI;HjCS)Y0gk@JXa9C@f0;YBNKRH{BL7Nh=`i*5=c#6rwiHB#?O
zfe1$yo`dM)rkBuz;AG)J{`XvUhO9wDzT%2Q{(Nr;ns?|5rEe!0D-o9(w>Ilu@5fRA
z)r}meNh|?(4lIB>?oTO61PgU%o{mL4qpvZ6;BIseGE}N^KxA^Yo0e;zkepdFASvHL
z^v^$zKMbwPGf;!|8x$?Hitm`v0_4&qbeD~WY9<2s!ZE3^k^!WH#z2?xdj^;#{yDXZ
z&Q{k7l?>@bDiVNkBwW*4ww;{zU=ml+E2YothqF{XW@$3h0NPDOV)w8y6BjLj^dw|@
z21Ap04h*oi%1nKDTIhvht|lhYPEWTJ5Q4%&^CdE#gt6`@9WL?ar=K$4vf2e>5{}E!
z+uj7n+v{&C``mgMhX~&}5PmRs9}-VD!a8EXG{#PX=Nw9*97;2dAECY)+Kc@qM?2j1
zFcL`f6{#&2{xTKD%0+=EI4u4*dV}9@TAl{^e%S?GNLl6S+J2jlP-Ba{S|fAXnOftc
zr|66f&1`$)S-ZB3vgn=AzWwNqMtiF&FgZ#CZCJ6N_MduAc$LA=`C?l!!soIQLa$TO
zTrQU?mJ=w6P}eSb`U6CKbk#!0a2@1l>mpJvPqO5?_mPj3&%=xXCrVd)uCPVVQ@*SD
zQd``;yxt%g;PHg-x<;0tt_1llix
zHJclQnqz-y{ykE16;+qWnGHM=8p#m1P!8N3vRtTKgX1;_m+Sro+=D@-S*yXg%e@
zMe!(k^M!ZTLi9ieoob#T0cW=cn?EqbI*R$VP_Ec8bJ$|h@K=5i&#~-Iw$J@Y)z@z+
zf?;DBl4)pSaf6hqxE=FS8+ygWi}lV#H~i=0c$+4P1Kz)mZ}sQWJWL}wtcSKL7w>=g
z1A{E^=J>!_DQ5Vl)S&O_$NAC+m%m2}IkonU)LbgluKH`zEQwCqWA+o3hP8>I58o_Z
zU||^00(XBbvxUTE3=X23S|U!(QxMn7QRfQCxsSX{uDY5fG5KmI^n8&3x!z#K^TGi^
zblb;ivAB9?^O03qh3u}#D_DXJ=?V#18dO9tiHLmU23~LYNq
z*^HeXepN$i;Qx35RN+Mq6N5rc4oD<}8!2@f0zYoK#*h^WC6&LSvG=EBs*tC<7ipR|
zl>JpadP!ETvc$JbfRCeBAD8=nN)~XB9lfXE76eZA6iksY8N|d_%Xq>)_~4
zNQ~|>vrTxeBmK*tk1O#Ei>gsZ|60az>+g8Y6W%A`CQ+b1=79P@8~R`MQR^K|4ymdd
z;nR3YDn(Qj$7xth$RS}5ME~QPfBFIO(5iQCY-yD1*wTc7S(#)JtKmw7;?I$yN(+_Lfau^e(XRru_0Vc2@Du<+7_zSlhfZmo>Q~0kTE}q#G#YZ$Ha~9yl3hPH_VGI#;oHop>~~`~(o5?H3Sj+tD=YueGwtDk8p%;e$N2d(q>d*y
z*N#Brr>ov*%~0Je3JyYrw8gH3$5gi9`y!S)RS7*@TB7dvlmX>ws2CH#P3$X$yyyk8
z4y>f?QV1f*3cDdV@W;*R3%Q?w=iUkd!AbxC%{;#M)w~>g)iegG1u^p-F9YMPIali&
zY(BT&gaufDlp;~c`1^J2t&HNqd(Ya3t)kE})ptf5^gcDmm58{;{jgLj*!0~FVAF{e
zZ%C}jK%N}4wP&4q(oaX@_Sq)YJ&|y1p0HmiveZP?PIIAFl=^F8cqJ=uw$v}xpQ6ya
z8TjcrveS0mPGR^>m}(popbK(7(gU-!exRDqf)r_NaEQ4o`cV#SVbY_Zj?wC(1zZ!M
zE}AoC;#wR%ItQ<9GGwHqs5+2`m~yTR>YRcYm$E)}+1p8ze6sl}5k+md$=t6*z+NkYU;h-9KqP}d+
z*O21rNb&EZ>~U%1A)@D*?AA=fH~q4@zxmS49?-vlvZrgii#}p=x}(zMSL1U2KRkVN
zSe{}3ci5_BEo0f{GVZvgW!JK8+upKm`%cR?mW^c_@744Cp7-xM?&CW7#Rn&GJeI6i
z{w_18#%{7Vq%b95YD2
z+&F4!30fD;ano@y7H4H`=+f%wRF)q3k^(0@_F+cfHVXUC$^2z<5$hFnmtf_a3~*04
z6|D%q2)A!0#?vba7L#I}G?xen@0sYE;$w#AAj($Y)sFmFAHoV?OEU+qYK=xUinHMPaBWyY_aXd{*V^J$~ofoIC3Y=1F3lx&V#RW;x5jtQ&kO=URG
z-SxhQYT?KjV7cJ|-39k?b6})oq^U7Mb2@RnV558>%t9*_l2s6Rmcob2O|b`&`?-I%
zn&nwGTd3MMWalns2o|Kf&EjqGxP3*1X<`(4f)NFno2YTC25&-cd|&r*fHhS2+Py6#
z;^!`@tk#?|6B6T3WuID1(2plclJLSCUJ)uHcwFqXL(|ZOzi5@`ej^u6Yep@53h5GC
zwBJR&YIypq5ZKE?%SbBqNS-8zOCU>;v|ONY%7IShGt`i`P__BGC)QQ
zP<_anv&h(F^L7}vMD<-{(35$CRIqCw4M-AHpW&}6q1es!!^4V5iJ39J~7?6QLM`~T+!W^26iOhD!{m?n_7}H^bQQ@6?2RU<~OX3
z+OOG|PozIvq|omKo6UdjYph`bCyWbdLZGOH!OXC!m!s*tMVn-}h!#<~o~03=4oTq}
zL@ufkHD5LHKXZZyWW#GS*!>O(*ezn|AmO86uCp3+Q*%os>>t=_?IyBUG1|1xlqW@4
z966#LLLZqYRm2qRYSwo}7lVtSRYFE_97^P)zsnse4rG$ZybuVSU}uR*oGI*g2a4n&
z+ePo%e^nEs_O>Xp1PnZL*s
z!*@*&U!YEth*x@ppHAMnx2ZaRhXrh>RN!))k1{$>&2)3j2`j~te+#%=Wrcl}$}BRTfp-YytMy3$sRlQtVW{R%*}Ry^_SW#7}GWaSxhFRvwY-%@m5
zhE+AMhz&*y0ZCaoN!kVnKLxxhBDTtlXHMMhxn*RF;o#rDe@D_CY+$@mC6#Xg-a?kF
zjEt9kMTeoK0fT8zIGdbqTCbPQ+qDwf_R@3@Yz30B;3ojx*j)RWUIU
z(a~ZHTzke~SMJ`GL#U*YL|5u{qqp9^
z;t#u3n$h4B#CmG+#I!b(C!>Mcdct)v+ggeAr^sdgTh2
z-x;B4e`^c|)}SN92RlkiO2DlG?r*)ly`0KkN9}iOPpIc$xt;s%?QOZwakzk|fv(b=
z;G*fiX=66oOx%6}Q(k(fXnbO^oG9+cu~fxbtT<1VVeO@WnL6)6^961Tl)yA6Tc{SO
z5p|R?9{N!R6S2?;5$CFS4ySMOH=%L{tNeRmsZCc=VDEaWyDlwuVBm?DlYj1xoSp>o
zEA9oqr9Ov0mVYv`Lc1WrkL+{H|K-$y=|}zZD_c3C+zk1%fQL|FRKa<6`J^>?D&^N?
z{|~jCoG;@fc8n3*fuC{B!XGW|MMcLPNwG`h*62IV?N|9do%rhj^Qw6lvR9$WBm0AeP
zx%D-*;;=I2M~YqPzb5&rc*>k3n^e+o5hNB|;kA~*x3*OH*Y3nHW${Mz^y5Kz9esY|
zjW-mIrlH$5|zjcm<&Dqk**IeK>Ym$~YW90gbiB{3jHS
z;^Q|IjTE#X=y>Aw%
zqm-Y;rkIRv)@2%F3ztut*4IAVLhoEXaPh^R*^cvDn42HEpb!hBTh2PLYpzW3R?d^L
zjgysRlemyb>20!;n-ysVm~+;oIUfEh5pjaF;*8}Me}w7IqLOj6V?_K78?0w2QS=Yb
zkuq3J&-MfEn%~Z4P9-j|@fC;j=BcmIf&0kPO`?#>>o7Aso}Ot_rY<>+6a2ICtXFHy
zT!@xrk2A45JoNR?arWZnx;SAe0!bsX4Fbo!_6ki^9&ie{gEy@XHY5jGMNyS!J$mUv
zLAh-*K#IIonD*%I?lYSDKBs&U;613t_rlv!7OIWW*QD~n?tn4ahPc7AuFj!O_#)?z#m3^r=2=Z+5mYz&l
zR7O{s8tF@c-<405oM_>Bmo3gSe6jDBkHZE;jh&@b3pVb508A8OJ-twXt(ijo(f&|@tp
zeC48jK0vyb%(e>P5~4TmUT{L7=*q^7(3PUn;zOBtn;6HZlcqb%hkIjg35Sxem$=ac
zcHR>Q0pm}#jT$06C_uL%@H2L5;R7>-N>*@zX@EBLnlXkIM;x`k-=Dco+9PTLm}w!#
z7(i%OKPQ+UchQ)P$^^0)>}Vj8@>0#PE#Z(>vG}b2^a6VbL%-~OS4#4
z$b9bDFA2IfIju0%yf{Xno}mo;QwDu)^@y-Nl^3u|tDXBfB_&Q^3ga=W;N(W!@hL4@pp3k#Bj$83Q3p#0h0z6H
zUhk^NX38p;q}MBF^e10wYG^EN)_y7>m)cWVmIcXL?3YYIR3A24Sn-cv09GxpH>IsV
zi{`7mPAq~nD#TNlT-`=I&NqlqN#xBuZ!(;dxj4>op|PCE}Pjzi1tiuU73&sXM*Gx}Hb-Xe{IF&jXTk2jFxATf*GZ|BlpkJ^{Ab
zczO8WSyb;;N5X)+r+9zzm^dg=5h0@Qr$fVuQp3D=R-qX&Kf!tBz}G^v$APYU=`8*e
zGr4WRD8j(o`!y`1y5(BQ_$Lb252AKe&<7MrPPMUpAn2uzl_#oEngx;ATL1nIlQqYc
zU}>+~3Nxynhai&>i=;qLa#d&A4sS+^-a@EBBv061ZN@azm-shfr!h#`Ip63=6~ydR&ogw)NppZr(ZjuO$U3gs^+
zTEY6UgehqBW6n${()j4%$-MQX^X-mxnnSGdvKR|u)R)7lM|AY)6Y7`(T7?KQMY_o1
zF>xciJ1t-tzINCxcwnyOfyD)nK$%q#QW3kOeFc3ENl+$8{^Zf)0vg3>m8}2`9AZ3(
zGU-qhk!aB`-J5;(rwtQ{c(%OAxoNTTL(ggN?!b!?SCZTH`4*mbySf3E%Y>2LLOQ^y
z83J00i}H!86`>xGRX!F@H%NKvuZQbi4O}Khqy1#0t1&04QXC)9Xd2$^T*etH?%XnN
zRxP}v?^YZpbhGxivmh+HEL5DY$ICuv^TojlOp|{an@5j5)H02S$$7Dy&)OmwNdQ~#
z4rw1a;$vYq-VuerOj>5InP3e0o2JeHbu0P{+V_`%hBl=-0s7NQfNG__I2FKjF6TYO
zMnUVT^9$7>L#U33$o2EG%skk?LYL&cP#a}VCGSh==Dh$?2>ne6jHtI8bTLzI3)Bxh
zxCScCij(Pe!76B`wUGegP75o>m2!#*FdeX-DuC*5M3aKQFF9fx#4$3jdZ(Zy&~k|I
z_St*uL{)dCj$>~NARZL8uAx*kYR8k4X)iOB-?=$0BfjS^!+vUXY)q$ApZ_M+vnE^(`g}mrUY{X%bkfy;OMo*g#;4h;Ew8COdOt0p?Y1Rs-E5@iWgY02%PIQ(Ki`TP0oF_f
z+73v4CUUX;SuF{wE3S*-RcCI}PwV}T1?C(5mY;|p1|{}h6ItXCL;YJS;I6N5h(&-9T=wcPI$0i
zh5ODD`wpRYFL0eto^&dgo6IQ-|7DD!&T#g8O=TF^I>j==XfqaFVu>}_7xL~~u>HsP
z?PKI3j}k}#BD<7H&53Ld8`AY`qG{Hm-7*-+OctkNkPhN-i#Ga-^nWyUVAi4^Dx1#t
zJdqF8;*Ybnlyyyu9H^x;2~C5rP5u<=|8#NXMYIWd%{j+g3Xar*c>xkJ`F&9Cz0|LP
zlaP)mi~q(h<1!weE7sqSpM?V0g^wDTS(sf&>5pVE@>@|=OOFhXc%7m+J*wn;gynO)
zY<23O+k5`siqirs9{%5)jDplBzTFF&?wQT=sG@1lmw3F<%LPTwY7vOk2HdO|4`fu<
z7sb+?U32V6DadOf^ucqfl?}@KQ~4hiB70d{xno?#VCz0ktW2p>kkRSUkUI6r-6
z@DeF06trk{{Rir66w;QTe+ODD<5dsXn_|zyub6B3zduW>WT_4*65Vu_xjVs*8UVTB
zC|=83mxNPxXXqixAl@}~tb4sqz{8@f!ARXUV_-pV9o3{Uh8V#A7v&X+yy=*E;kRFO
zOsgeuc!G)RfMgFBmAR&lI3u|ylcMvW`GEqDh`7c3ep#{h`21GP-*|D7Nc5VM2R`OAMRto(zPjnjA;V0_@!iFeq0DC+;Z{FX`5
zEC;nL^e4oqw?0)e=feZvPVIE08GMw6${UN4%mTH@6RgOJjD~NZGJ5P7Q#q;w&}$S&
zx(VO0CrKE4n#5tV;3M}fg&!pP?8fGCOSt(*^sS8Qu0Q=f`?cuZI;9x%Rs(vPGRKoS
zqEXA%;1i>F?+cvsviA^_^XJbW%w~k(tSl^>kf5E9ii(O^x-kyyd$}dwCEVx!zI{3Kk=2lyV)t`L`ivSU
z%f<-@z1iU{)D3|%`Ga_?uFx`uqh(p;P&5%slrsQB9^3pLKJJw03U&2QT*;IZ*w{h%
zeOCHuiJwxtoh#k?6nh&^MbSva64)Jms)B;~{2gB;=p<_bjgeRiCKrbIA_z$44-ZKI
zcmu9UNi3po5<>E`lfSF{zP!HMC8SZ>)g|ZKFXBh|^}lZ=H*JJ_Kr#^Z9=DmK5>HpY
zRe3Epz^(uF=s~VrRME0a5Z`iJH;KM@S%^BXr+ZZ8p9Kp%Fjy~f3`Q*=R<@3L2snMO
z>TDxlzxoxY-1Pphc5}9V*n$Q(bF{?wD|U~Uak2tOwaRZE59j;DIhn;Bdu~Zptz(3`
zU;orBQVKq_t5!T}XEpmIRuNZS24m|;F>18<5BAhKA$vWLgI>+r?)G1e<^pgH8dG6?
z`MV|{Y&r+`e=<_+UL=P0PZMqOgzR0);|am{RTD7Ch_(bDdJY~FE=>)sI7N@MHVoK4
zDzKXwYf78yZ1RVrzfxrm*E`{J;0FQ4=4~bJi>BSPEtRo!vgsf;N%WK_+R*M7si_CW
z9L1;e@kvw+q+M&qog9t2=l9MDCcZ?&l-6BJ6>EjL3^8cXJ}haJA_v+
zlBFF;{NnX60GczV;Ji
zzVr^H;W<8V|A+&*V|b`!w}7KgBd^wD0Z4<9w&-MNXOcXK1?7YkP%2bRJ>4FsKF3ZWGil6^=xHLCT_h(`21JxcqjT;Epb;X+^JK<|
zy~Ydc1wAsd-gTeA9ShtqvOfCa+#~%
z85@8Zu>r?HnUViufd)iX!#QenE^Q*p%ATf@BxVRVMDqD_h|Bz$&a`8bGHUh@wghp^
z2g;~2J?PCqU5ZAo3Sk$D0UA^!y6U=G*p!Z9+1q*?K9Q*)Sjx+tfKhIf@WeA0EDe_O
zyA^F1P(&-zL2>xl0+mW0xZ9;*YX3?9p+-_ojHMRZENPSmGkcbJ3jhW*;=1b!cB6lI
z@3PI`A4ahh-T|{H&G{d3HO^IF{!_^)chwRm`|O_bC)~C%9`cHEfyIyVL5CuylxX`&
zRPH^miyI3?)!ZTD0(dZUq^2rWszNKLH4{HFO)K_41D@bw4m%szp1awK#OU
zSvTE(kH>E!go4Ll$Ynz9W9hz(!DQ#y$v;5?;E2i5H=vJbKEK$mBZ}vwRL66y0LB6%
z^QP+VElpkAw0`WznNh@Y;rjibz!RfNH|8%v+c|Nx#@YFp_@f~9jpKEzs2uIxg5XB+
ztJ*olZjI78vXf-0h?9UJuHC?u9M2TH=?NkM86DON2c
z@(gcGExwaX?bjf>Q<8l__B;eo(Jf$Z28dGK>rPYJWTtmUNNW{mFs){R_}SONtgtbj
zFtC$QJ*)Ql5jHOWQw0oQ%eK{3B#9XUYj#zXR5weWgu=rA%ve5qZg!h3BlPhjRSALK
z#6i0GvjIU$Yr;TN;yYds@M_Zhfz(*Wq!R13Hs*SlDns)t2dzwOi#xhP)eF)&N;{t*
zaP~Bnj3}os|Eh{z{{yl?j<}WtW^MxW@Cx>kBd@_>t69|jNiDQQtnM#dsvzwBFE^o_
zB2=4xIkHp+bGzSlE@)=UOszgiDeB+dE-MZABn;O_-9)k^Wx^J9RM-M7^-Jtlt!o+?
z3^ffnmKq!8kq??cx9aHg4*r+_aRKz>|9Irj0%HBq3<#kon4FFezP&6wF0AE+gV=g{
z#dY+5i%2}af51b^=ZR@d{jz#Py;^PRE;*cs;t_Rgf8C|(ZmSA_SubiUtLK)JHk=hn
z0tO!JS{e_6n~HN-#E;Kp`~qa}1JyCw17l|MC5GO`HKsDV;0-BH{m@Nr{wzF$X~rQs
z1Ait8Bii9h&k(3#AiAt)Ml?%C4MN6U%QRv!3^4gus=7x?jr_%qNIN|wKPWpcaezRC6NE@dK-*?E>IbqiAN_xVo7m8`TRsbW(7$ty08XNo?ITUM*btjCc3@7z^kv|9l
z%8d9gK|hOqbokLkEa!zJrJ9B)6kKYkd^5(k89
zerY4n$Q2AZq=Orr^^0)0NF}h?JsY>odOC5=(p)l$#)o)>kB9;35CgC;9!RfILX7^bkui$T
zkp-b6BHHi8jGn++2$XlpBaOtvO2l##uYGH5FC@W|P#~8T=)UpLo!)-;tvCYm9dX0|
zyZw*0QGeqWrE(^MQHp5dDL30ydo7By(i&s6h;WyX$28R3=f_6@Y>jc?>uzsi8K#t4
zBNj}(WQibRdLCSq18QGral&Qt{!l{J@y$CboO$0b(OE80L?*LSbWtLmnr#MUhHxPO
znq(I)MKG)5u7@)tWxQSA9xWDw3#3}_dLnp`o(gvIO5VG
zmtN)ER=G;Jjao$6oDYsFEAn^j;LpM2~SKKTL;ZW+uMJa?aS0)3(;tz_F5;
z*#_7$G!0skmjGWwj()za+EJaa7WPfr0pC}Kp>_5}_;raX{R(_gQ;{a|O21Bm^2rze
zonHJRn@JqAh-_geeCRH}3<|y6VTyPZ{J^v!q80VY2%sMc^?VSHhxh_`4ObKD)-j%<
z9`aX8k~~Y|wD#>I9CYawi~hraV_>UGuJj)+{$)Q<&-cnnJJShquZ(O7Ku&<|UPS-@
zC2ZFkMwGX|AFE1Ba~B~RRm6@O=x0bqRJyWw{f_D=G2lRDh`a3g)6OSlUN5HL>i`E5
zT&Q%q7`NNVw^euTQkH%#$KNG_^TUq$v_-v7sKhgvSSF$v*~d8=9zTWKMea(&faZFg
zmQyZdBHKi5h|7=TvtLtojDb7cP~_y=_yFlCD&=`7T;8v4=PhvfUx9T23Z
zahToai`HcfDbXwOKV;03}^5ve8=H*H^
zqKZZc&WJx!Y{zG{Cm=x3Xvf&A`7sOuaO>c~F2wK73F*atQy4ZtsWZ7Qa=T41#mQt*53>?q!B^Txp1FSYQv;(w*n!!`O>IqB&`HT>6H8U-$3dzs~(gm6Co-DG4CC(j}^jc;s7)Fve*9Q6|!XN@=wGZBAum
zC5RbKOBa4*8eVL?Kr&s^T8N~Dlw68CJXErDV)D{ey3hP7^Zn5aPOja-QKVLj%L3Wy
zm|U9F{QB)m%1^TvKxe9VMft7Kkpo&o3l6Cv;>ARKclXB;OFps;e{DU4LSQ}=5xae{
z92!cfsJ3H+s~}Ji-92Uuto`C(S~`3$7+cg=v`zjGRjp`ROHE5oPIexb2^-YJ#=>&O
zjOe2S8A>Y)vV8seF#cZqej0de;C=<*R*Nlefyz=Qz`;!!&`jU};4@fk$AI+G1p@S<#4+$hoyFyuhwWTiI4}o{BoalZm%q)&Jzhr6VHZW&Z{#%*
z7Y#>hnpPtuz&e|LY4cb)01Gbg`X=jvPzwD}fbs^_B?#3e0gDz{dz{>1QGq|72rUeA
zjhc$FbNh!H&vOOomYm1g+ZOq8w^CZBix5k*+=(l#nZCIbsC?EZf%ual$h2L@ty)TK1%g&2>?e_S-7|$M$ud7qbJN4#hikF5TDJ*3K$rP#
zY%?(Lx!D^0Z{P4BTrqcz28#TkoBkRp@HaB4`f<>1h{a(}tM6=*eB2~q2QO!t1pW>E
zp15SC?;e6=2d4MgJ69nUiQO#d#9#u3K88i0M&4}ek6uLg4#
z)VkZ5bkB8$r**TNfA%vg_g^s;kyy)SDWuzG0~uXMCfGw#iN-gP>GlEd3KR)6!BE<;
zxH&mEoc0&901dq$6+M&3$XdHclWyR4MCq&Y?JL((z^b)Wd>fs|(>8F(76jISrbztl
zWX6K2QGZFibgFae5Bl-oR-i6nKRTEu9nJ7v#E7NLq3@Y&bU>z>6PslJzSZw$2(&~I
zfm~a9nt83F%4+ep9YEM;c+`_5*kZ?H0o6kU0?
z8u!P!kM#-xDi{?DB8sDmF@di1Kza$;!iK@_w8?&t8D?-m9GGJzSwejIAkV~_g)$Ns
z5}e~hT}DDve23cFPFDQolC0LkQxHtq5#x|(t+fQ4EC&D&2Nwb$mPp$kArrZ-R{m77
z?#*xe1q0&2>!nOWG3(}1pT30|rlzlMbuD5F*Aa`$E_K}reakkT?VpZe2luaR4sI^)
zPL^Fb`M~}HO>1hq3jl*LaM@IZ-&NNgp
z08&m~;U@#DibmC{K*utN@zz(&H0Ndz)&Ovo{F1&c98IFgKNvK$sk0)!%-h>7F5vX`
zTSER$S)Uw^EKXp`HeA#hJ7>0f#pLl|^_Xl7EDa9xw@M0vHCj!*nWR_?`b!`5!z5e?
zV2mRoeTy!T2f;|hQp1ijB>hz|HK~>foq?|PI7U^C(OC!M+uH$%o-smoGnn#yIwajG
zHeRbNLLU5%nkw$yOJ%U|4BWr@E*PB&dS#v<1M-)n@w%~A0>P|_GxN>~01X*;h^#W{
z?0CJ%$Ys$SjEm{?8?L{K4ZjOi4G$G6A;w*VTxLXpUOR=cTx8`;#1eT~1xo3h@ekFK
z#WIP7`hr6+O$r3k!iIz)c8v5E80o(T_;zb_J0xAUegc@xsLJKWb=};APDN?B`5@dk
zMG${HQ`ZKk;ZuU1EqU*t^%&1+<_EO=Dq{7_z`-s0)Hz`}QG!HN1Daoxe{!mGN$K(e
zB19cSNo}n`z3tzBKCtgjWu0CSw&1+qufNq+UZVegINP>88Aq4%`mr8fMTN9W`~(3c
zc;eQ;vl=9N{~y_g%`WA7hr6-0L>(BS&)Pe)eGEYPaqaDoducX}OXu&MA|Uaodd^o>
zRwh0?;Y^%Vp+i&~N=$nAP{H))ABL$Fiy>(<+@)A-WoIerqPJl}v)#S22s8p{@-?U0
zhLM=kOANFTLmgw?dfL7I>3z+GQM@iSHNGBTA|qs%7T=lX1=r(kZYDP--ME|1>zyi@
zI{%wN<^A@O5iE@Qv;1x|$dRa2DzyE_p@bHJxv=$e*fomKFNF0eF1Vmv)PZHO6-}C$
zx9PqXmUe*9n9Kn9k75}60rCOPoPvS^LPihs6!M`J^X0HXvy6Afa)@LZch
zvt(}R8Ap6(@HC5(lgpDA;4SgR*1h4($li@zhQuo9(ZK5D4`U!=P+eN1QNBE=3_bd5
zGodzjiW3!O;;O+~Q|>3C%vALWx-~dJ5Dc)Z7FlW81P@%=&dqWEzQ(#T9r7Py$7*~Y
zWBmhqxqS3SgB=e-tUVQbtE7wgUMm&sAW|ii195|C)fnp+cdl2-6T@!KT+3!y$}ql9
zA@eHa5;MomdUcz*5<*nh?7;}Im`19bpPJPH!@+(_5mMH_-n#TyX=PSLr46@F>@rNv
ziK7|>Z~gc-eDI?t10H_>unc%I1o?j9WZmOz;%P%cc|Et3So@#TD)6w))Pl*b{V3Lt
zlyNg7G!&Hc0LnpS#nt*{
z#YAeyGgj#papYQn4@j8a`Bl6R|3VsAxB0BaQ6&}Gtw^L0;*Cv5w?Ejkq;ed7s;Sjp
zUdedS8*5?X?Qxl+Mt&+%=Q}$BUdK7FuGA5`EO1^Ol>F7y%5PxfhcKbFN>6_Z1P)EW
z7I>iVJ=rtHxLjj;D^sdkm@tE@i6@t0Y<}7Y2HUu7eMNd%hYC|l$B+UBG;;%fyT3&C
zSKMaMKsyu4H|tf`?)RG^a`Q(w2w#;A7%3!*2^@*m;nfj|#1yh}D<}c}|1@X`dewPP
zWR~OaZv-6V#ySt>I1%D_4%3-qHmb_?6QUcf*IbjzhtJliSS}0z<3wn;tGQ~Q5mt(X
zp180*kXtHy%2$Q0oXA>`&q2YJMtz$|-D&PaH9-<@&2o_Y5owO!KPs^GW>U!`gpLgaH2#>_KUEoB&VkDxasZGVk=qz@6H+o|7t_o03YFc1qGK?M{Yt
z6YviYsT2q6l7)e+)YQi^AS>91esgKpd0PfBA}$$#uJ|;sX){JB=MP3mDrDv%Ng-EN`qOfcoT$|6Tr3R
zls&jhBTK!0GxCQdW(;Rlr5o+d(;I>hmk0YL1fJuMI<{v())xmfw>i9?dSa-1k8$4&
z6kZC>ePx8}l4(i4eV>#Ew^i`o26NF7>-NO^d|p^2jRrd3#$>ZOmU5z@zNI}El#4Hm
zpKhM4^El7FiQ2tps>*>29(ex2*rK-iDH#y*)v>hCOM5+?*yKFAly#&(lLcW2+ObT`
zCD%E*{2SY~7cH{_9<-2LaNZ~UUO97d0{|$3XYD?W%vGhjnaRnMK*ID=SK870)g`0!
zRj2WU49KY({eSlJ*~Q4G*a^tsW$a<(v_aWL(wgQGr79ZUKuu_-<}jG~6-r|I8Db2m
zvvJbgko53o`%u#xII#HhrClb6ScEJ*xO)r($j%-CitJmh%4^F(PPB2uuxK(OuECgb
zQH@-xV?{c*&+%_#vQbrf7rzPC;aqOMdVCze6FHH_6JNhg*#(ys<*k)0X*086?QJHV
zrlV5;B?H{R)K;{A1B_vYGXBn|XZ{{OH^VvDM$dz*7>K3yv^v(kZqFSu;uIjmR)c_1
zcEUa{_}vJ&KbMq-hk9<_F5Ad4&0m-p8=pd|c*?U12)t^c34>lQMJ6V29Eea>6_f@Q
zh^#_Oiwk|B74mh0Jag)lPHHG!AOXn|nq3FVr@Z}fRxY$qhn#tv985fUCG1#sG#WvJ
z`H`8oNHW;BRbbfxn_G_l^5a*S-%sCKP1ZlG$pqm=(|pNMG0cNG`4oT<)-HvfhzF(~
z5t$jkRbNrw?-u1E?d^+Y5~+(;!k%OwikLYQy~kMPxLxPwsWW@a)O`QF(XCTy`T&3k
z2mKIw^3tNLi$483a?$j^Xg3|FS3z|sSDLMwhFZ?+Hf@dS=hC{IMECVBbqYt3+L5bmve65Yh;LeRw?Mw%
zv|M)4jog-#m5rA9{ykm8?5)z^`B&&lf)PKUikqHFvG6n!SGpKkMEVv1uwGBBd&
z^j{tS=KB;3Mix>%u^Q@9@G+3TzgCK1O%^=IIMWY_(hoN-iAQ
zXJO~C;SidbS9-3McoPgDp^5w|7y-8WPkTRY7BKhfg!hE|%klNA+tp$gv7qvJ^m&5C+W(`AxR6DkRrNo6+UowXyJh{AQ368>jCSWN1aSh>y^a=Ak{Kp
z4DHh{`wu@@J)XQOYTH#@xrmC2>W+W^>%>FvW>3iK#>Pf+X$OL}$b5!ae>H8`ztcl{-^g0AK;I9Zms;+%(DV_@%1v@#gm8cx+nhg_
zWY3sI>Cz2nh3Ka#?-9KWi45Q+^(?h6w9mV=x~aV&+USfl#12VtkBJ74H&FHKSNdtk
zgA>75E!{W#YUlq<%pg__`2TAB9MKRwu2sjG5v7{}r5n|=mi^2i0K!%bghAnY=Pn?X
zaRf-l??89Gbg6=N0xY~debcO4|7AOzdMMxY08R*cKY!*5u&~&%MsGJkX0=@o)42e#
zYxRwA9S)eBvQd!E1Jqgwq;(z9;W1FCmbGZvs5T1H{L=Jgu1TYm*A_~^LhqBz`Af4r
zNpvi|pvM&s$JW7UiT{;7yi1Hrisnwa68Gs;N9R_f2H47OTC|FtWjFH>_oew#q2L>e
z`o_?Ci{i&vLe6@mU>D;A#6ZLv_D@xP57oK3e;4MsL&tkKurnSq?2u8(qj_r7yomPu
z2?9F*=F#c0y>Gmj5v(XM_9V~4kD~6Fjw=oOe}{{sIy&J8Z=NStRoP6$70p8n9ooAI
zcVm~~_)G@-UBgD4|Ls+Nx?QUduxR|Ox>6YDx^|ah;Q8i6#&;6_sx0?UJL?&X>jZD7
z-vUN;b&o%br*J`6C;rTBc(8Q2?Tl@p*}S;Q2wK
zn5wkOZEd&A+F?Ld*4DCdNY49Axy*Zk>NIQjXrQcZGe|W)LdE;_yw8U5yoKy)#eQZN
zF-hgM^W+Z(hrsKNVx*u0)w>*G#n`!|5BAI}(C4N8M9V|nY|g=bfvTf`)*bbJwiKU6
zn)YlT+D4%E5NPk++(J~t-s5hZU_WR@E)oFp4Ix|PFniMyVw#&EzsmSI;w#f>M0Lb>
zoqPb<#?R30aXq!2(MLmsx`SyEpwYjt|Eh#@E^e2sB%9!-{Dwu#bnmml*?IUiH43nr
zVTl=V%6l7X*y*H&%Kd^C&m{5&v9lytcW`O{(`r6$=|^%T03x~a>Q85{vgq`X2k;*4
z7xuZ;^T0lk#{b?@fUD7Pl2UZzUr&F9i&-?Au@nLp&yBB9ex(5&smkNY!nc#>i~;M(
z#fDB%!EUe^L#JbjGt4}226AJ;!_^$O4o!B
zvw5VFjIds!`ttZjDD7T}vyRS`fa+njmK&SWKSR_j9MLAg9XSyzm|Vs?Mmy_?gdw^;
z&L_n!y9pb3iI?B`?a%sEQs=Suk3k=3oOhu|Kt9@GqJ*6a<3OGilxb*t!K*wgtca!d
z_!ozLSyqVq55L|e=qL$CrDxA?uWOof+7+jXhC?tT2=P%YX^;ph6rUi`y2KAFja~)Mks-RXM_`SSET!IMCnnv^iwlPkz$7xrklWG%|iv
zw&sO@Ke!O{xhPy=Y(WeJTAKHQWr`-zI}#e&iU%H;D!7b5#?sT~kNqcQtx$Gcl6EaE
zN!$9nhmBjFo_wSP5tZTyG!)r8Ka-@CPc<;3_Uyn(xPFX%@@TW-b#DWCv-de}?x={1
z|6p>WvFsLSv*`S9=$0YhV9J_4QIgM>BWd@Tppu=2MJX2kmWW&pvH<8Hk=n`MkXgQi
z@y}ov{>Y53T+@J%+YzkKRp${p?1QUWZ)R8MLZJMidC874n6=s~E<pJHF)lnnXHrVYv1eDKVGA
zADW8^fBf0p&mMPNfwGV`WAt8r(a>U7J;cMkW(!m2(pSkmuW!o3a(M$|>&L{ho1SE6
zdBotM^F$OEx5tbn{##)Se^ggBb1%4+WbutqcO?7lNm45WlnZ8fhXaPe^{^+a-aQ;H`z
z&D*4(pl#X#Mo^`G3y7`m>0cbX9V3H|x^(aZG2Wo(6vPZ=aKfASCujI&+f%8d+tqxB
z?2-xkM$Z?YvAep4*%}s14ZlQJUtkOoqVpfcTS*t}_&jhLPF(*w8$Af8UnN8jOwu5^
z#~F43eo3wUp_0`u&YijG8}ahUNTXok-g@wNTBt`2!qU*tK`8hY59V`fr`}bP=<{yJ
zAB!1g$w(&s^l6H}Bc*M((D-O6G1T(eq_(Z?c>aA-$kcaL;X(2(n2}AkAK-M?3$P@7
zF4$|=MvKD&zXi+Pw@a`QIh6IG5q-WW4(wB4rP=K@y&;~Z?L$j<#bNqg&D{0KDP+f!
zLQVZWsZQscwIFAJ$dFp6-ID*8pha0CuJcsm_a95t40@={BCfb8!xrd)HPL9
zJHU?v8>>%4jQ!Db2j7sIi_D!Huu7W#iaNi@+_fDMypBO7;{}L;@(Cjy&i-^UjUuNd
z)e=d_({Jg^pQgl)@_bhc{EO|ES^hsRKmrkh_R&VUOc7-v4)Hg4Q2vkDL+Spbisb5U
z$ht}XRYEonG&LOYQ*VJIN*xFS%S{h#G_ww3;@0uS2fNPVHv?gUGbc9s+k6T2lF*nS
zwPgRUFX0JNEZf{eK8j|4ZB^`>djA5G_ft4|6b41gn-H4YSU4Wd#e@`ohQv=d+fx-Z
zpRXK$R(T4uwxD%oe7xzSH*@HnHjUd4cn){z3>3~D?P*^C?IJjRE&#%P%-`C|#{3w+Y<_vkRz
z`Ww;0IEkTKufF#t1|006gQ<@By{m1sI&W-g{&k$IC&ov1J-Ki(q-{!kR#x8%0Kduy
z#xRI}@pvik(Rj~Ae?`G^w?IFPVB`%f9>12B3O1KrFlnv0lXnNWRa0QBu|Omu%VR1y
zRa9Zc&eA_*0Dde|dcOGYCJSIxbj@;PUU{{ex6Q|+)7%`U9~K%)Kdma>lGMdSz=!_f
z0wEpMAL3|uLp#M#4F)<~5x7^|iGIpasvPNNU9TYZ&dE8%3Aw4z;#23
zbNx-k>eNSzo5y=N%)5Xysj*tnzuJ(_%E)K!YHdAtK0YTvSyv%9Tiofn`?Or+K@&g
zNy3)Y{_VWy%bG-?t7BUjSWQG<`4UkaI=F=9FtJ(o?9VS(r*!@K
z=NXsuy(3~!_wi0rQNN1=eTJWt*Q7ELE+Z|4V0mA(oD7a}jZ;+w1U+NQ#EJ?K+dv<9
z*w?jhklIKy3@v#`t2bKOPQ9AO!MPp+uLo5xca%XCq@?z(Pn{1K`)MT0wOO^?9e7(i
zD)maC1#GUgzY!Nv3*$4vYz8;|QrduDb@an(>G
z$#hkrYQ=)k33Cy2Dm-11!<%ru#4-GNHM~VMFP_brwdHq35mzoR#>1?ksofOAXIb~}
zp-&%9UFwg$!b0oIz$n_-Jx+YD1x#eMG23fa5J!*kQof_{Xg0>~F_54*HWvRRX*E?<
z(E1~~uUvG&IW^^XIYrvY_b)8T6}{BvI1jH+k!d$`)^S%ETR>U6MKzeYz29&;ds3)y
zBA8EcW3omWbDE_%WJ1&@1l_(xG&4F@7|2i)hcK)-RSrs~rBSQnq-A0E`zKOhof=D-!RjRtIF
z(ks&|&n5?aSKYfc6Li?B3?GWOuk_V>AIPT(FoKemBo`?5%gesvF7wBHXVrGhbUkf-
z)i~l~SJ}v!+UjfDvw1^*ZFGmW*$DQ4@0QcEI}z7I5N|%UdaL<$M?y+kHroE+bBj><
z_*1Xs&XvVIFDZQW1EjUE*n_@oto`GB(!n?gvj|EyQ!>pX&dCeKqa-;;DV6ii=gLFC
zLGx%WGE@?_`DwEKb+&!N#PS(w?}C>fZ#`TlSra1Bal_WOj=8XjE4QdA5Le(U+S1>l
zUtnxWmnaW?T9pnu(posH^fS&@KQ1Ibw;@gbtIrd==>u=FtO52&G0!`eP@0{SmAPLw
z#(BjpIt1)33HrlV+)PeVDu}#X(Ph71<(i
z=%q$kaq!X(DkXEj=J8@Nb4`p(ZTP2&u{ica8Iz!l_-miyg&6}?oql;LU%B@XZT
zHg5NWqp;uOV2XyDrEgV`pnyu-s~}_`-1cYs(<#r;Q08IL1BfITgY0=H69bbtg{nd>
zedEs)(e8NMQc)hU;85OLUxp$-@BuMdJBB1<8FnYK4FwVsIQR(7Y~}oj-!?bVer%+1
zRaQN0_r*x`Q)B+*w5jw8<8$Tvdgr%Z(K1cb*|LE*;kC+}LiA)dwqOwRseCUm1mgd(
z_nuKrZC|`79TX5a3L+gFNR=+#22vEHHzCv@y%TysrAQSJkS+ppkS2s4N)YKKN^hZv
z5NQcLw7^}Q^Z(y5?uYx{8{>VsAMXA{bZ2Mnx#pVnH|NaqSG>WYw3)w9|Kp152*$=EHd1X^33ruXd@dy%D@IdYMR-
zN%Jc7tKep~y*u`PY<69h}CURawMKO29YTxQE
z25*_C{N`gGXCI!pq0i%whAAI>UG7VkGAolcu)%^SZ#4g-7S+(BO7iY?hZPXLP9xSQD5m{uMkhAi!}BGorDPmFqg&l)f=thp=joFpSh4
zP0l^B%{dw=s+EiVGNtGibh5||9wCL*buE5+yZ!uOXD2&moYDPmZAY$*6wY%k*)G$y
zQhcAN>QA=&rlk`sV*5mpv3!av>SdQ~CUbTR_&g@<(rV;l?U28dG|z7`<5V4%3W$n`
z4BKG~imj~#zf2%+XlZHTi;ayP;o7mHpQ^IcyySNV=Kh6X6Q6J$+LkOj@TEV!O@YJX
z@n=GtorYb*u3)nK*@OAQ^rz6Z-@k1)c&}!Z?AMD9IaW|LnsPqQ|1gPZZf=$#4>aS{
zEK%66OlT%KIQsl7^AvyHtv?<-K>!Py9B9qkBm}S9oE@}Lb2rtFZb^o1WA+WC<`j?D
z5oe4C8#`#_vtI6#d1@CKEjS~E^6JJ0k!3U5uuFU#1cZ)F=S4wx%qE#^Fp^oKEZ)8x
zhr_|e5OkYa;0_}sHV({6;3m&uc=2P^cp1D_-z`)tp!gx4%WpnR`N5&9d}dt>XsFo=
zqNfq`?AxdcY2hz&;)uYbqobBfOq5yUw8%Q{)5X57M75-@6Zk
z5iX4Vkga5W{rdHSISix18llJUGI-a^+&pNjDi?fo(AURyJY72`uJp1{8?F%
z)nf0ohu)gn4YUA+01HaHIxSKQ=5M-?s1@oiR$B#mX85lm!Nk6e@JYN*_K``g3s>ji)u++Q>Lg^ETJPuzr4frm7!S?uutg7!CuQ-4
z5sT2V)I$gV>*b60D@Q9w+^bH;eZdJ48YfIwS+GY~J=H~jaP|?>z1kJFWk_8~))iLU
zpMQ0Q;_lEYkD=w8--_N}bfzRLn3?{6UJhxfqDB7@Yj2rl?xxKv|
z;;?rL#tisq$z_McAR+WGsA3zAuZFhDgSnfnBo>jZ?0+3w)6>x@$kM!G4|NHDxG=-+
z*0lB0H>NVB%iQXy)bH5NvCqqXyxbi7#_E7fBJjfIi}|h4^hv@DQ36$S7<7sY=-_*J
zxjZ}|?K0q@R#)g5J5O>?mV~6Fchx1US{J!>3{oa5BO~L*%QM`m*?E`Pvy1J{)7~Et
z2{>=L=5Y+BisS9N5}
zT!W4Yc!rj(I5&l#{j-kH3Q2?)1{3-!ok+d80FL#Vp{`;1Zc~Zpz^ok#K*Ht2w@Lt*O0oZmbarcUWT34uk`2Nj_+R52qSrXx}W0^J5T;}M59o*Yle7OsJp^^7}O$~+~X{PK&MY$1>Y|M(mBn-H7G7NSj-nUlimwOoC(vs
z!jox}r0!Z|FxdzuAcuBMR`&Zw%dvwXg&|X*TTDIROmiUwmZ=
zxecf_+vJ~}-rR?oqnW9(N9QP;xjGBJWtdMjb3KgXp=oh~wmLxJQsUxOdHMo-ByK(g
zPSlwU05CoWi!(&nl=u#0OdX^b@y*HhMxHB1+eee`7V_Yj2S7S=u9lnyIZH2xr*aGhMpsEPR{s3V=ce+_
zoGb_9bkK%PyIaoEfvHG{7bppxWe_T9v%hr=zNd`Eag*b?I5`KnWIYQg?n+8ZUU-o?
z07Zs5#d9eJ2&*sEma}C`gF~r(7xDUjZ+}P^=ByE8?Y!h+l%cezHn-$R@apP61u?OM
z4U%yPoY+6CJX7a37ZVTmA`N+_Bb`aKP|7`<@ceZ-{pTO2yxFD44MhVF=I^=*6)}zgo*>L=KHc5F*dkL_t#LEm1kh0mx#W=0d-
zi;$3-cJ{Za3gE{9{ks;*ckjAy=`K21uE$tIArgo+kcShE`@}yNFIKxtOxO~!a
z$&aJ!%ttB>$lK%=Wnp=S9Gx}!5po6vcc!o9O&b+=v2reH2Z9Dj!x^G6^7Gk4pXzPd
zYQ%}sY4a@Js&GrRTJdWLlsA4cN3IKk_N*>;(cb$CW%Fyldy>8VEAnsgvCbbqo|D#-
zek>_jiyN3ZJ69FdwPfEtf;uTLx*u#VILw!j0PSMt7_{TyJw-zCU^5nM8BBP|2nX$&
z=v^$A3^r^ede-bToU20dT=X>1Y^^eA$GWt$+!{dDy`54%@d{N4?Vbo97?5xoL&V@t
zGx(!%FB}zWyiMgKHTVkJfB*jNYDv2}K5CuyRw5T|299H=uFd=XvF`x}l4z$(me8VL
z?&2unHxlTr-igpaONa3zjf&jpgO3_V18?2bSBw&z0&gq9&ZYq!i@esfb*=~>Bg`Fw
z9xygtOUelwQNp+Ahtzu%`yc{>YoYtto$oTocC95PPNkETI!f4O!7d}O!$vmA!@!NC
zo%!&VM*}_N=z~k6s|VOGK4l*!pE$JdMuxAwWX^3vGH~46+-s<)16|zu_fxRX87b^f
z-qj@?teM0Q{jMzvFcze5qH3ybIvMpJlP9x;R%F{}H{#EKY=3;tTTXGVKnM2ztkw1H
z)%#8b)XRV-{{$oAFq5B8__(;mM6o%CL
zJVhQ3BJuq~LN%^q1qT;_p!%hkdo=R8EXpO%Gl=<|DG@CY5g7)H?rZ+uacjFY)k>!g
z;~E@Yh`6^882br}drU9QPiRMePBom9N>$}l42^|RWLRhod>@alEowBrOy9HwNf{&m
zFd1AkCV}84sXvYf8doG>laPW_j$c#>z66yvw@`os;pB5ox#6dS9z$7l<>jHzDTa@Z
z>W|UyueSOQKa+{8lVn{n9;jzoHPPB75L#*LL520WeqeBeoG|B%qWrykelF6P&4QT&
zT2RC!b=BlL9~Ct_4SNelezEVbPkQn8q}@KZ#R`k{S5@b&U~sD?hK7{NfuifR14~6L
z<}wyNdlE7&rYka+A+nt+MG(&NjR+v2HIS6nna}2c^YBzyx>mKb4)kc6UlN5MraDU>
z`%3hY)*p8o7GfSQ9XJXDp$iR$o4Rr}y+7#t5)$c{c7U}Iv|`;iXnNs=H0*4RlAFq|
zcDUB^VS}2AD(Av(noW>b8M=ab>56v*iGyRYPI(rf
zUwT@g+@>!Kz5xz;0y;SOmfRiA-dQ(jZlA5VHX6ILrcpSg*T1d__1y&KMFY`JG;ng6
zZF->O@{pCawYB1soFya0nFN4zQa`wx)nl8}1WYgs33dt#MwOo!VC%@F{*_tX3Qd^<
z=QeDOYP1S$
z2@4Qc-CbmM5oJbG1D7*NMNPGwqW3V1&oX;ny3?1yWQUU8Z{vuIfC=9C$rLTvct3O!*8i
z+jz}W?+?w^E#5s0=$gYVz05CrOEnukUDs_Z9&WnUaQyq6#%mchXMLirCrXwDO%+)E
z>Dm(~tZ2VN{9?U`q91#<^xlsztn$1rrp3d<_P{pKnEz`&8N7X8S^N_@BMIPjyuTbs
zz-@RE9zlH&8zMy
zU%?}}?3`@IZ~Yb*YoB0c%>xx)%PXW-j!_a-Y`Ey3k0Y}7sJbIvCweJjluM13eshs$S`n?AqeUAp>
z+$vYF9G(v)Y84l}9wWVj8W>Z0f{M!&hH=
za2Q>Z-{h-VeOboeeiaeS(N&RQ!bkI}Xl$y5c}d?tGv0OaT)w2(ls$d+%phCMwp_Qk
z`j3g3QR5i^>vTc)*WUHlnw7;6fVnA0<2|5o>D5P(#c*jkm(@H2G2e$%)w+B|=st`6
zsxFEL?uzbax0C&YL6G2|bHKIq9q23w8TP5Rc54J%vSZofqJl?cV`|-r9Jp=bfzw_64tzFtkwSB!E?M+_Qau}7(<;_)B%82>LZ%V+=;1FNEL~gjANOUI#;w;n1sg&H
z7GEC~&1qC@sKU>Mi({q1$N)65?j>}#{(ex%Vw{Xp05~pAp_8*-(Aqy1WR(4j
z1dDqFm6ne>Jvcb{W4-9)y&gCAAJ*3!wg*x^9h@YU`Gvc5xsV)6J=@6)AK}u1tZpa*
zEo}510tfFhD6@d7@_8sH)Cr(#Hn7%~lg+d=HV9z!D=I0?hL=X
zV~27w+~YHl=%-(|yGDB_+anngNX}@1eqb<+Dbp9=Ea;SVg&GZFu)5`YOF$zIU2-gd
z*iE$!4Y}PK_m$Yrl`F(JR2qy8yy7{iS?V17`#^y5f%|m7XR&^O7sAGiFlYW$wuSA#
z{t&ipXAPK!y}0D?l0U~
z;sBHgJSbS>aSRYa-!XG~7KFANPvS=ksonC2KXaKf+wc`U6ZEk@TA!*ZLAJJ@(Y(9R
zzIiS8bhk*mTAa&-Gs90q(L9gKhmoSSFI0n?dM*RgQ-(6T@+<}oIrCqTG*cGGxnBaXR#K_2K
zz+>7h{gig}=W^Wm;8<$rwm*QezebPs(^>*7Y>5o+$PS>1F_9I|0SmB5eW0t
z*#`t1Y2s#`plR@<;au0uSYtUeL`8UE>SaYmMNo_OYZAKu%UN3990UPGhe0Ek1Y5);
zE2@81Q9+>zUg=R2C?_jwtw(8K0zpfKdIN?-F>S^!bMllr+J5ju3qcwed|%L$o&h}IZ#
zy|j(IZfjkCi$1VA7VTS`x2$tnIO$}rf)2hPf;F^hu$Vj*~6b=bF$T{rY
z@{EPo_j?AJYzcQW)6hdxVvwTJ8b~dlo*!Y%)vwR
z>I|6$tQ1Zl2Q^7x+<(_F%u_C%K?D=(ZkIg1f&N*fOk7dEm9BO{0{Lkyz=H!V`5u#q
z#@Yws^uOE&r`O*
zM8Z*#Eh9buG7!XdoRTD7{gOX$Cvx!b{F;A!HLqXFi^PguiI?88Q74|B_qtwLC_b3U
zlqldsM`jvL@^?BxG_ZO5R|D;ft0dn&PRa|v8x`%8uVPIX;B{YKIH>-!1Lf623ara#
zmkh2c_e@L{nHOy^o>|u)Q*LCOi{y*p-x5Nv-)D`$LskP{+MdKrhJfzV7M4)ISc%&v
zW)6xCKY`Iam9uK~EDmWXkYbUnQFy8GIP8T;-C8<2XgMu`L-sG=(=pT^*PwiWJCN|j
zg*{?nEwrdne#QI90Cnx^kj6g5$`3SAn|u^`DVW_7{FOl8zR8ILlQsf-|8cJ`Cg*(t
zj!lUT2n%MWD3uMBW3_;s!Q$q~M5Gb-QZ(X#UuasAtFsv;WN>*WI`#eKm{HypcO3|1
zZUIF0*fAK8V+I!4IcaB~-rh0QhDNmrW@{-|O!c=7s72mdj_Z3yErS3tTv`tfZVpz~
z?zn^m_-S|Ijh{J+fg(|h2aESx)9F(M8>@OHw>buY+1?LD$j=a6o+NNJivb?`fWZS=91vqnVL}W{}
zt+m?bC{6ftJPXNO{HH$|FGOHQ@+k{3GfI*O?uO%2K;#;#(d0G5c1tWO+3s^%()=3)#s;gVAZD
zs1%e6sy?05g8-ia>Bl0a%`k>5Mw??-N4l%8v9i_+(7XydwCXONU1U;Mxg-%d2%I4q
zcBVy*vfuRsYPkW0c+Z-}1_=>yYH!s?=cN}=hLS*O{e%lhbIiB;{mShqqS1oU?tnCvIVm#x*x51Q0v
zPI`qZCGBRCwNSpu1VLJlmoHzI_SQa=#k+#O@gQ{*(uaZ2&Es6561g6uo=w*r#{17*
zxLty#u?1Jt$l8?ys?8DKxA5}A)ux=MNz5e48?5K%uf5`$3Eyhe?YQLW
z6&U=OHaX@!KQgdV<49V_gD4LK++l|kL$fSiO2O=YhH>NZs3>nB!kqm
z^mH}%SeQsB}iz7j39smb~Q>Uj+p-CV*~TmJNSxV2^Y);nubSTxJ$&rSMKcU0zlV<3Hsk?}Q0
z+1;s249*38KUz;$KsF3+5H{+s)asUZO9cRJ|wtS(@8kvGQZr*sz
zyWcY}))N@6U#~J%blp^`t--HB7rHL!rX_1okEOH?VN@-{u14p@#eKea_%h9>FpJ*)
zY7<=V4W;?xLM~l%Qmf7HmRox_nG$Qtp6#4t^`g}H-Z}{xDalaHkgfAx%dzS_yXo*D
z8|^zUokTUoG;bfu;r^x|()IBWZ9UBi>%p12Yx41C(rkEjO!#0?VU%HgGr(y7a+yx8
zbRma)4b7x!-$-3qsie2JVn;{NXIi%3c3zYva!EmeGUQ}InqB4xL2opKZYY4G7~uP
zpY+9b%_|A6{8p)+5;VGN7uLheLIS}r7CqX==r{WUF*FnrB8T0I@E;>mYsHl{=Gy)p
z-Vq%pLs}i5>nks7n&Z9ELMd?pAe|lGU5=p-|T^kM()h
zr6jDl*m6W*gsl=OQ=(M4#D8~aKR$XXGwj%@l+YNxWEPs-r!cE5w0VRGbt8xHUDH1+
zz8_H#CQJR|$GAbV^`y580qVE^IyO&wyJ%rL+mdOk_7+ZI@xlTh
zG%t+GMhQ-@*GsIXgp@r`m?(Kx%JQ5j0mwfHb#7iAcUdb;hPIFkqBk7Wk4d;56^AAy
zw7reoD)#s@XvvQ56j!X5kIf4G<~=kmL_^Y!45XX+kU>YPK&LoaOm65niDYJSXpSF*
zjiLkrCi5AC`!#i&#gaZWrl(l7(@`K0AL2;a6(Xa)1t}|XXHZ|99S(()`@WO(qe98e
zAEG#K#^vOa=P02)a*UL;KL3)vv2r1h&)wC(6@wz_DR3vD4t<7t5{f6q8kEAA)$!VD
z0ZaRJKRxnVR>qz8qM9EkjZvLwbnKu@{X&-U^l^Td0pH!cik-DGgFOi=oQ(;mil8Pf
z7&6ut-F11BJ`1Lcs8>{dlT_H|d8&OMPgPnZ{XDFq5_aYdgkAXBOa)+^?i%(%D<`T7#WHt*NG#ts^6H5dTb@Ow(WOy?wI&v(L@mUgo%SXEkYxTgEg^|@bJx3m^I+O7k_7w0r0
z63WQuX!(Q2$=CMpesA9vZnL@=F#gC*IcxU2yM_QI`(USdbC2=6{H{FXS3YaWs^Kd=
zw#}0R#1T&`x$idZi@ARlwoY`{-MKy_ZD`d}at_2^(T8~~m#wG{ZSJ$qr-jC$&Pcc@
zW=(CBz1UYjvoi^)Yd^cOqN9-O23A=6hM17F`>t%cEqWYC*s(Mgh04DYL_4(85
zJ9lo)^CrD*x*V#tbud8MFTKp!1-h=-J_V)Hr=jc6P(#%EIYh
zecxGm&mErYLoZ4c<_yRIBa}k(QA(EeCkKyiHuDRzb9F5{d(DDUnXgULyJ$)ab#dPf
zyPM5%f`P9MFG>BZc|%lc+7!4ybYQMMpyZlARB=sC)|ZK?I5GwXvAWfw(UXM#^?>9-
zXgKd12h`n!P2CFw)=sVWU12ltB&EN53_WL5QGa&x!|=pAoQA7t{EZ+-vKu4{4j(sZ
zGBea}lL|Zq20?7pA~GldBkGBNo{zKq3qbLulJH-`j2=HWM8eCAao5wIZ#XfdJ5a)?
z`0d4xOV2hvv~uZ6(jesHBN;+Z;wcwIprZ+!1-ssRV*KdY~-
zNd*mNt~*oN-0;)akSk!mNNL@Q8Q#)tfc-tId>S299afWqcceR4L>sDDg_i1GxikIB
zlP`8$_IYL}a~;K0ErDSW66trlQ>7f^d%x_s;5BQ%ch`PTs64i{i!BR06_}VZySuLY
ziiF|YZ&5nl_^ryzccqhd|Dt_WAjX@b74XjGo?ru}?jF4jUvHpL1-bg`_G?d`-oCia
z|4Nq$!Q){2A?Inp2mjr79b0n&KSOf3xeOP}qe`Wn#Q&opoxaeQxN~miY;Ws@di{-m
zPDMn)%lv{UYa*pzMpjx*KjSNc@O1%(6ZGgQ-!Pz25QKORAj;^~!&=3Lz3G)bLr@4fnH{hpg(`^^_N!x>|v
zkikC(?T2C7jShnkr_EBq55!eP{8#ObD`U4X24ja}?uwh++l$I%A;@?!{Y%H21}w_1
zWjEzyiQvczHv#CTm8>h``P1#z!y6tiSU3)(^a%-*cQ{PBeIO==ztZ#3f*p4P9Rg
zWzbhR<=7l%Tg#!ac)oQ|f-;Cvh$ls7WB0iAg_No9!E=1h`mQH5q^i?3kC{=cT@il*U#eq~B`D{a!niKz=VjL*gdu&@H
zHZL@9hhhj5Ucz>T8Hs+~7!T`Hcg@F>DUk=U`0;*C*J~D||3jWbaU$o=uo)grJfSQ~
zC<-7uaPL?&3rl+^dH<0vmm8%LMUz#YOg)v)KkqOtkUB@To0OHTO#8bR4Y%=Mh>q$W
zTBo1P2<{%#P_$kSBj=*%ft}oa({fsX{b16e$Y~J>TRXZ-yY)@Kp=;u)4LKu)df-Dl
zQN*OVTx^b7ZH!Iq#K5oI0FG9<7VM^z-#jW|?XXUnl;b=zQ=)HO`0vymGIyhn
zoiu#~)}GsM3(DdrPZIPlXbN)$4T#!pOraie`HIPma{e^U{7M~l5(
zXL!^kid%mYZx#j@7FDLIe_QZ#vahQl($+XCEZXJt)30Wizx__peduTU3WV)wA5j5i
zLT5A<+Vu5TL(%)(K$Vm|kqST8+n)_Nudb$r#K`6@J8>vl+=8kNmZf6@u}y|(G?yjC
zLCN;EmSybktP_pHhPj1ZD-K|sFxBEtsi)<1#D5{gl3rlQqB!rW!5)1nQOL2mSZe(+
z$25)}`eT$H=a=Vq)VP%M(s1(ffMSD`-*25DPlfb@uG0AlBb&N3P^-A+#QpSfK|B9k
znR;^RTj0>Bi7p&oNP0Wc@ewzRVgWsX$Oc+!L
zJuYs`n>duf$=8n@B}AzO>b4+1rt~*8k=Hjg1zpOP%CGqcAYR&Uep8VE|JRRoc$K?i
zHU0VWvNtIst7Xqkg;b$rja!O6pRSj#bp?#wLZ@{_+!VMK_m@?420i`o<+}lYt*wO5
z?)4;x-#Phy!}!IwcF#v|x_VsNxE3o_pg*Z?zA<>yp~sj9dTX_1+{$%HjDXw#WaOv6l=-Tep>}?JTytF5%)A)dCNVu
z%a}hW??>J}Y{Xs8zpEG?PP*$Fs!J*we=ClS1*^#4lmi+tRBgTGy*@J>
zrp-B!f$G7gbdp%(4Opuf%_{-`cEauQ;;vSmW2}Z&cFkspj`QM{{g_sg6U=$EEnH=m
z>>PmgzXgD=w}7fu7xLt=WYVrXa~GZGJ!0b$9#)bl1|#UnC?fWDAHW#)f9N#nf7b{v
zs55!N#XY3x;2dQWrP)Jq|AC6rBaR0iY%=Xbn7aXFxBGUW&;Y9wTYsT$e(@7{2Z1Ai
z+G$Y^)O%I2fIX_UTmV(y;G(dcYYAQfU|W#Vv64VSy}iA?ZYRr*_eWreeITzv4gld0
zUrvBVJ=GORkz2;0MN>2?K)brKS>ts80AaBbp>#tjQ7
zKEAC*hPH$5^`~nj6uh&oyeqQON=dQg7j8E9oQ%}J(;E89n3Cj!v2vy$up$__6jOJv
z$7nFVPDuErcUeoH&4Vx(jh8*}o%))XcU}lp8qf<{yRQhOJGfZ>pK-=bPQ}NA|L-W{
z%?Q)uYaARw5y-iVO;#WjEEl@4V5O$|>G&Z?%HD!0e;qjhx|bFP?J~nIebdfa+vHDymqBR$**0rWwibL{-!~&Sm+PA
zyHN$N`T4tVVblxcc~>;e33g>z*s0%GdAYZdfe{~O)O>V~uvPi4!El-{BXZ<70I*m|>*r865|Xk8I&`p&RHOw?5DaaX#7i*|krz52WvQVi
zeXvm0RO?nOH+!Ve>t{xmU9E3r>?;G@R%8Dl8?u6oiF6Bz*MAJJ214W%>N21dwWz#A2!#*YKD|VB5?1b
z&EWHrQP*{)3d52vL)N3h?YVIwpCA1pY$#0HQ^P2=m56M7b>5m5tKkh>Kf|!nXeQmA
zoR$Z=_PMStuEjH1iC=ojW|cp*NXip`^QK(Pv3p+j`4%dhWj3Q73*DT&)-?QLf_A94
zSF9b0&Dox~wy=4m`m^fYf3W}>;#p6kk=NPZ{=!ifUi?RPCn8umIXNArGar#a_kVaU
z_OA=#;*oPoa&j4f;#W)3l{@Rde4~|c@;{p2=?6u6Ml7Ot&I^2&?&PC@YC+_J@AQieT8zODXK-Nq5(YQ!-j2+|JT<-b89+XJR-r9-Z|)V0FbO
zws?wmsC818J6Er&Z8i9=d^lFPf3cWK+3wRf5}B{17hh*?uH3oX)$78w<;_7`|AgT?
znk7%FH!ne$-A!7q!#t7xp$F{Q->-lp_xSN|q2=Y}@;^%Gos-|^Z*lM`jl3jVxv%O;
zBRb~OMAgha*xXp~?A)BNxk-H|Z|@xb5lySXl@9D9n#*8HpP3sdQ45inraZZ?bA=&3
zHuhx3vErGn4J+-8q=H@E8Nzaz*D{4ox>{E1SFzz%(`#~zHFdWOb_VGw%yu1~{_Rzt
zN=>yVV>$wrmb15;{n_+NzO6rX+`h~SgZ#}y?xheiX~S{n(nc^Z1d^*Bv7_Q)WZSGa
zW3Kt-UtKLrD`9r<98xhp-52LYIK=II;y((tOa3cH@eE9g{4?M7S`YOuy_wN(b5{)X
z-CY3xpga-GX%jSr-yU`JancE46h{DPAK|H%RtTGAP!Pv_Nq&C*+?=yCw-2FChApl&
zCoAjZx5oJ1tE)}(AR9}r$>}7WiB|Cb!-zm2N)B06L~_<(vojjGWvTwf;GDz|l>T63aPVRlU+GO##RO8FzK6zHAgr%S|Fe<~lpKMu{
zai)19(!RC(Q8Jw2d!e?wzs`(e@~`qz_GqM&)_>0hlg*0>n(|3!k;%tcZ~vT%#=OCa
z31dlw3_#mffRY?&QG)+`7_~2H4Q`F`Te4gWGEke)kgiw->SZMMOF6i?bE!iRL5JlC
z^E4!ZJTo=G)`X>hL_$r(3O#YC=sWz?tW%Ts7TpXPSJnIbAF?AB6Bf%3N2>V*;p;3R
z-}TE;Bk7NNd%$W{(Z-~AqQmFQ1@gpTH0?HhLLkGuLj>f%8$5*s%+
zq;_iKe1{vp-GX!0`=`w1bWb%b$7hyV5Tn!WaSQsNc!aw;1Pq#{lE1Xe34f5iPzF6>
zvs96ZG!h|=*qy~CEx4vku0&Tqo_LrlheV@4Qz?J_6TDRVvz4(jZTrV;1>__0EA9?X
zMBT$kVGBfptVQjo@0$%^-R42T1J#jrg^5`?f{@GGi_o;Nj`&odYo!I00C^<
z!Oj*KzX{_`YdzO(V%UjUA#tdxz-|M9l&(g!y}f;fY?srO25*;X3v8$P9NpgPxR^NK
zt!qNI#)Z)aUy64E5+8Z7xKC6wmyB&{(K-!$esRB~r}$?3r#BB}66^G(Ok(|t;?fre
z{GC@REUvJ|>)gIK;Nz#v^T@@a8EkT+uYp%n#;$G&!ehoW^PU=_HQZhZDexFZ<^_(PfGZL8tX~
zzwCUrb0%2d+AYy8{F?DAqdQ^bPV-FH&wy3G8tTl&>qWn4kwc4mmr$3y^zNiv-7idCzR}6LA@A>pzB+cYU#bUIoF?9Z(Tw|#
zf*TwhSbs!%j!A<^0GWEwK#HeWEkX$j1k%OUwMxzrNtSV9Eh4
z6*{)hFq@A=5t+-L5*CjOUyUAreP&iESP?E*-cjCksn&v?_^9Yh)3UwQaO!(+{_9V<
zBijZX-in6GO9xl2&$jfBRbX&9|9JGkuN}nm-+mSax4PSSMtIO-1c$nY5U$xklbhED
zZvgqKnFxrhe&Js|VQ?2QC!E`ob4&UaK-t5X{ZwT4o3V0d-QC@Ts`(zy#SK>n&Zs2h
zjSVxidEad2lFS5SJ$Fbjxb@u0R`}V7xXoh`P^As&tIhUe3BYxd>3=zxhq6x4DK=~4
z>T~Rj@g&a8Y$f{z5%R-)mX?)B#tC~xt@VW~SEA+zkKs+yozol3
zvoVyVx@}Z4HlsP7hd56>-PZ;r!A9NyPVf4y|D$Y-L7;9DihgaQ%jV5xZB!56=CZ=?
z?CPiYSXTCW_$+Bk8;~=4{VKjqAZS-u7fV>%rH0Ht(ppMd*GL=#)=bU>5l~u&xC=^NaPs4`$0hf!f=j
zt%J_59h#7%p*5RWI0aqCBxn$Iy((lza{FTbPM2k|F>U)Jsy(H@^@m$xtr~C%EBwaUE`KwYguVFtV<;HTcMwRE;6IfT1nt?rLT{UW$Yvaki
zCc>}~a?p4%{8xFmNMKHbH1mrkbFff+tEsL@T!J!_GXpmM@!3
z)ox4+?FWZjri@r(hT3n~8aVGTGgj%}Nwv%R86JE`k8g8~gU;pI&eL4f5mg@M`_3ib
z4yj`CenlS#(ECB4uj-;<)+7EP`Vj6IM-k&vxZ?Nb17CZNsv*A1qp&c-+JK?I-4L1MMRorFGl@
zr~g~5be4951;>Q^HC5f3FaI=GEqnI$1H)(8Q;MH^B_!x_6Z~h|ZXBPTkj-9TdOnj<
z^RXT&;t&HG&7WTl)e4KpuGOobA2I56@|0NCuCUym%m
z^N;>at1u#_&6OGY?M+53g`b7P=k4L%!XoOAe^=EmMaonbW5v8Gt`*D3wS6>g52XI;
z=#y8h^{Xi9q6L(-H1nSEo$2R;R#YmcVfbw6D@=kJD-BOJqZ*2Sat&Wx+TCyUqHXP8
z=m{Le)`?!PTD}64p}2MKRQ%qy3+c0L4p@R&DA%vQ6Xnca`nfVzXR*&7_%`arOPTe?
zX>qtofR!H%{e-qy*ZGJ->6t0l%y6de1(gRHA`_n|9&6~7ez(bqu)8+q__-*19OgrHw+pK=1k$lSVJU5W`r~F)xB>k7rz$taY
zPsVYMy$u`?Q|t3kq$t(xIHt}sCGYzxWVU-da+#z5sg+pQg^3wDI%f^dK%1xP)N6*x
z!imoOo-fgbs){>^VtxQ`<;ol@>$bZ>XejWGlOGu)-Ue$63jL`azl#S{({W4K&
z4nZi){#lxhHWay_g_*2S>j^h52>?zn~++vp=p=iP!A>IDAOV8SBl~t*pvSjamzh2Te7afCZD^7Y{
zTUwW+)u!ftdenKd(XIqoQ+)6g<#H#?{mu*KZVn{?4tWS{yr=yC+IZKmUmcTpVqu-~
zYjK`Yz}T=YFhFm~xF}8r`*k+t?~z`SRm^Gyb7R%`s&O+zZmuS?m0s6J!^i-)2JV8Q
zhG;T5;U-xI|D63;A$E!e`8Oo*vAYx3J$WJycry;~C4|`eKEowMbsv7N4>ZyF@5_nA
zvRmvsKg8k(wgp&inM;cpj;MyVEkh?)-fR5X5LMny!%SnYO3j<7YI9d-6pJx3xyj^V
zo-$jfj`3#7t|B
zSC*7-RznXgZW|YQv$B;?f&16y@5<{F#
z1hN78TvdC+m-u)}b<424N2o1-&CKi~BC?GV|9x1#l1}Yv;%LLcgBb3DL7@(TY|Zq$
zJ8j*8H9e{}s8Z#QE_pfgbh<6qLF!K=2^qI#ZI}=m%ED?|*0EgE$t`ABMjo!-#AI9E
zXTg=EVACl&={)^s0z%B&8zT+YYfYvGO3V(=dly#LY^RO$bf=G_^5QO#>o(E7=&|T$
zWBo&f3i7->A}Gl>0aJfI*b6lAb8EQ=L!_jVCu-q;q@%!6g7v5p|Imx8H@ZbGS~}0|
zkVPwpC#W%g&TX`K4;qspA1pCoAA9z6vc)K;E~s!CU519;1T*n*{ulT6zaQOJx9q8j
zim}_og6R?|B_s?bx{qFmP8T;9S<#lySDkuITFE4ab$Gd;`zTx*;0$Qz1|@D2D#t$p
zCeTnecxINVl4(yUO?(5@q%8wVhPioY5AC%QGYUmk)CJO!?+$(FK5Gq4
z&am;(Ux-#RAAR@W!FbF}3sv!fP4yl;&Evn3WelaH^iUJK$U9`kp0XXs9k%$G4QPG4
zz@@)(2yU%C%ew6_DRXnpMOxOw%*O&$%Z
zZjnwPuXAqC_ErgC#W>$c)lwH=qncF=g0Wc2^tRlD6;o9x$S=NoiHN2AXM2~tTYaEe
zc$`vURBT(f%~|ggv1VBu7tg`w?DR@Z;LSx_d~apnJs=V$BC)?0kNx>_ddWhz5r7o~
zLmzs3XSeRS@991j{zt5}fo%jAflGHHc88@S^@4-(q?Xi8_T0S^akGz_&l#qz
z%??g;oGgpp-tXyeI(MCD%&Kw}t1r4%m5k)pifSY13uG#RfjYhmg2`Kk@}u|L3_aif
z&w!jYYf64CJH{agwt0&zbkEvWlLTJ>!A|{pJ>J*A$COIeaN-zUJ|AHkNLj
zA+EyTORSOlve=rEZ~g6Bky6;t>pR42fh7IPBewj)$aAP@?Y53GyTa8$W9Uiu?@(eQ
zO(>}sXuDgGGqnKefJz~4Vo6sgw;Q_F1IZRf&1jfN@ZqBq?PU7kDP51-lbRE9kS?MkQfUfWutf9i9?eH#;I(
zyA3m}q-TpKXfvFsyaip7B(P!z%K-d9K#KfJm@ZO^HHc8qdu4xrpAw*B`hrQ0M`{2S
zLkI~AAAW(s?H|%%zN_ajxE)cicwYVh5jW0(moK0rdU~V>-#kQth#7joJ*26#+Y#qm
z@hY|4Zl)))#kllzz|3P6OO1I|4i6_uZ3){yI66ipqgGbi9dR$7l&?qwlNlm8U_GxU
zNd#{o1VF5e-?cRHkcwq+>DDplX{vu>Rczd$;pc>3d{pwLB-_^dWE!Y}h$U5V(&=N@
z`ZwA86T_}_384`#WxR4XGjv^zri*N+g2GlnuZEomJM=5!M<8oGsy@RHz|YFcq6bx=
z9a!yf_)5UhL%K+&*%YNH22Zk`>e%I6?Y#cuolqH{#aD%odF3i*jFxt7wgp!>EJL6*
zKcMuR`@q;YE)JtV5i1p>$xQVjV}(R-VwUrrTVAKC6ZaPL+eZ-|F?^fsZ~d)U>k5(2
zM$A99hYWn5_HIsk-m`!Od$ade$G$5=%}Ga?q0O)g@-MVhLIi4ufm{ZcAu%DLa(jOP
ze1xMX-660GAT39DMGYm@z`prh-bdbUdF`3nkmYka2|5f&+hla^Nsgs@IJ=7=Pi}b6
zf6b)jYsx?OcgV?6>rik0Hl0*Ix^$1wG`1wryI8)YDMFKX^!WqHlZ(;hVBJ|!ZQ<=E
zK-Yiwul*dQ2f1szQ3mUuU1tBSFV#BVM6)UKQX`G@zbAe4?^@Rj=I-{Z_c=9+JN6fp
zmY&8#;bxCm7s|v}K{v;DpUvL!r&%!O6|w{s0X(xq5Y`~%ia3L!LntXMEB=-B50cTGsa1?Ak`>pF)HE+
z&5UJBa_f(=T6VGPU+k*(HhP{LxAkbsC|puj9Dnff?bqRLtcy{JnEz!<4o;n>f6^K~
zn0rIbQ}17}HvTq_>M>-CT+&JSj9z+|mCI+Don0j1$Qu{
zNl1BfC%juER?F0K)}o||egD7=T{@85Vk4!i=37;I$KnUGW!CN<#tqvfHaKd_GVT*~
zaiHm7-h?DmZ&s88V4A}&MXqC_F1)q;4ELI3yT-*!VO;`~QOP^OfpNe{Q4EDJ$vg(SKVg
zomvGd+Pc(L-eV!^iUC(joj9T5zv0j656-JIqn&ru=WFBR32`@!Rew!Nn_T!}rV#Z=
z#s_LrBc(*rm9%+B^Jtfx$-D{~H&ZgK*D*|b9Cf^17`xX&`R~Z=-{mZf?>ixeBvtlG
zYR-C|)DAt}CW|}t-e+@j7jc}I9IU_YijW+**NCPStdS8va;n^x)>ov(Kejg}j}+H$t3XZAqFS@5kV2{P6nM<)6$FXLfx
zc<`~hxVY#9eRRh1Oig=bpPa~eq|wce?{5L;jkB0wSE$M|dU?yh|E3Cn-tCYp7Z(?S
zjk^|^KJkflKcK^MRKm&K2TubEBBc-MJe
zNG=yo@Stw084xyeTah{G2&-
zl)-4bC0FWgGOerlKyq7>OAgixZhwKdro}biMWMtqed$uh`jsdHcal$9DST=@m4`mH
z++Z@qGb-;>2mce=^4e_`I(Luwb~9my$FvVl?0b>UZZjo>(@zstKFsJ2b;oE4ls2Kz
zUUkz(_Q^H<&@^g=K{(e<(tg+_npxaqXZF?ub4$K!Op?Am0EQO@zaVorhSTVr8eX0O
zgpB&|3j$zxw|1fwf9zh{X_D;6IG-JE%~ZeQ&>yp_Kptk2H$%DIHp4knEB8Q=)x)I8
zmy4hFBidur^?gQ*?JOyvDkBCK*p0IOmrY+B{hjaeF5U77t}Fdfx-m*Br8NXvGM`pLq}`m)5=Ni{SJ70`}f2;!bT*_*VT1DLh2_o
zXnbh+sNhUI$WieVAWLc!l9PY8Jqc;MYE+1MoU2}A@#f7cywBax@{k=>@0|l5Eik~h
zDVveG~3Y`A8!bvaz0Rd;y#w&IKAeZbY
zX?sg36yD$0mx>l<0zAab#`ki1tNlC%dXPgdIqW04VDZ(xb
zBJZZ?`FrH5ve+$drsQM$2I_WvbJk~l9hZS!NTWB7v~(nRU~5m8miFA3c&^7B=ep=}
z+$Z9nZFS|VcbC_aEj{)*Uvo-E!;+6-eVFGTBW0a*oS=pPP*Mphe?xwSC5e5oF7wK-
z(J?Cn2%!C|)Rm+fZ$<6A5trxJ{&EXY6yl_wyctL~0KKr#1q$aS2{s8?5jV_gsXWAX
z#wX%Vc;P*lSdBO9}10?R#v))Q^4$
zC9r5thjcp%-hFSj><8`9$Aq*n*E~ELj8Oqd+$WIEl7g$G^WQvuksAe?Z+?zcG@}E0
zeENU}L+e*@7X41pp3Op?sm=>m&?7{Opw>Re43uzr1%Uc>*s#na~CcY|3TqDCW>ioCpen6MVv
zD&Fht=`;bkOO@lr-R`W~60UnqP{sR&mo4q#B~A0x#X##!{u0lp0}v4LJ^_y#uKq7S
zx{2tKUPQ?lYMX2sI)6O-fb}|pxt5&T)N%?7lpA-UYtCGT@E>9F(C(%s?d{ki(mST;
z^Nb)aZ9)f;Bu3K&Kp_-
z$pB7Dtc^mH`7q+cGAuBWkvp%q53p;}HQ;Iz;ekdK
z7Z-z$P7ngt+U-|`FL|*lHY;1oeJ!VDFaKzAQ0=O6a!|bw6Z?pZV9e82D^n|Urxyf}
zJkF8EnS^>2?RYXBcCYGO?@+lwng7U{iKAfo+Ed#%#G^6^UM1d%Lj+i_TX({O7g|Nv
z24N%|w2SxD!J2*t5+|I$tZj_S`?}>LlrV9>fz!vcQK4#v7+he9w>=|77fFUwNJC3I
z0jzg+!`tA|Oj4)%EI58Ppx8D->Q*Q~+Ivej%`8W4%k-fLV3Y`_VunI-%0cg0N!aVx
z^DbEp7(h@oK!$rZm%0sqBx?D?O2N$xmV>u;v!p(NlgBjOvSuJ2c+>-N@xpaJ_)a(mnTekN*aRcXf}vAmJ>qbs>c+Pd#Y
zAq&KBbadn~5gDy+$cUG!n^`ojYgZi&vY32_rqL{s#*u;VtSak*v6D-;j!)}DiX@(#
z!8i5ioOwr??~B%Mde|`8^kxC&lDaU!g4kq)8fa0$H4}!K3kJvQ({aW>={e{DyZ!1K
zh*41gpbGKHR)!PZ6;fs<6AQ+k&j^jGL=U%TX6WeYYZflgwr2>>=Rw`>5!vEJbMuf9lToiIwE};Mv&TXvdNqAT7RtRiW|U
z6^mW-LglDKC8`oMrnEfaW>(r$*WlYR+6)cvVV(iPv<%AdHB$3x9Y8}eRV!v
z_n+O`(t!hH&yH8szUXqL2Khpk?-P6$9*W{sL6>DEn||$4LhM{u#YWA_c~eFHj=?q!2T6@
zP*mNLv>9{BPq+{rKhSOD2HY^+UeL(!vTiQ+##ZRWTFF4qpFeW|JCU}pX5+y>)J3f*
zTkmNgKUs$1-V*CcZY|bK*Dh@7d2&=MXc2SN7J6sK8Eg9;uv!3k7OCt%EGb)#pv*yhz;FmtNhPW;XInIX*
zOzd16wgz;1H@1n#OOq|(#jS_Z2eAIcB(Y_F*f0WP#juKr_HnB9t#=3pejXr_AO*V!
z#1VS*H8V&nmo_uhbj5t-2(=1$EH#m7&pgTreB=Vu^)t5ic5tduZHK8PSDUN|f!Z#+
zLC2p@#_FX^Jtk;yHw7ks9+XUE<4{G`pML8Z>L>~@Ul4r
z`nU@(>n~QCAGuKASEzMr@2e;?Msmn4vAJL@T^>Ts!B!GdUS}&f?FCvp%dK+iu2+Nn
z$6Cly9UJ0EOcV24&y0mpGPJ?pllwFN&pR?2oZqs@@{oSLz%0{p^xRwx4=s;DgC#Mi049Ltb%qXFsrOS6=q`#
z3WZ64AST&he)Yw?Nb@2#<{;8@15zK^JT{VO;{b4?*QVF#DC)v`9&Yl(QvzB{DhpfrX3;3`Ho&Y2S5-7vIUom
zN1{L_l4M$}d?r?IFfc@{$Fa4Qkg~*{tYqs>7mXWbTITiCvgdic-ZgyLIqlj={G$uH
zw>%|b9ajl*JpW&!53u5W@hh9>qXQ)}truyPiB$IT
zTTl{Ueb1_+mCBS4DBZ7*LMF@4m`vE!g&*wC7TghbW7wuw?hV*WST6fm{Ts(s{DBJ_
z$KChX#Bqnw$?UVLP_}ETgSlBBXASfaJ2Z^bYXGr3KWa~83_r^_s
zE^w@HM^R?Z`^~!8c>1!HMA%Jjm|CJ3nM%g=wF^8QWJafm_1sLuJX@!p+gj4~Pd$*p
zk@8hDI-Pn>XHL0F-@KfuF?OJ@_LQaPS%%pNU8=<+e_azGG<++^{YTwY5W%>2y|Shy
z>wIUBIVkY-$Hy>R67Vc)|1b<49PCT3#!gcsvGtRGRIr#+>;+Fw9AqWreaSL|_O^@=lz`mK>x$?m
z>q%`zOJ0!PRcst`wXf9k?8AN^W=3&Nz<;UJ&$T^2(E7v1!wPIi5-=R)e?)7E{*=32
zMaPt6kO3+4{^~~y4-C0>PU>WTvB4T8yY91;iQXmK?7wIAQ?Jp6Sg-RQMG
zFoaWZr{}p`UhJV~{xH?@zWYrg=xjIB=GdDFCQSPxqOIyN8`}zqxH|Oy8_QXEEc)=q
zGW08YyR(FzfBpJfLPzc3X=$piHY$g2H$HrMc$cU{`AGoHYCjk6%<@;5^Zihg07wOLB)T53iM
z4t#~98C>9IF+_bmQR2IHze{IU=)He)>&gp*+&U)f>3;_tXLs}SvhQ<`qP2PDxU
zdQYjqy59(u#Bcnw9DRR7cz2h8Nqt1Og5pI?3*w=)3~|!~;Kd1xNQ`PJ
zI#2R6W`fw881N||?CBW#_AjZbJaz!JFSB-&aZIYxNeJ4Yq*_^?Ioi8EkOe73
z{o`!SZ$km@H*?E0aYr@aR@koky8B<0b;I4FB`PznZx!EdP+um07rS;19+4Am^IWB{0pBu+^9Tc3Q)Knz#*a{EN&dj$sfbbz>?y8IQXRGojU
z3iQbnJmnO`#)0OpP{Y^QnyecXKsx<_P3uP+fkNunlUum0^G?xiNek(924BoScBjmv
z@G>j!J5T?kGVV*V(;2RE*XaKQSM6~-Mz9Oo_$aWgjQ#(_H;nX%{lfs&H9DDeR~Zdi
zES$y|^t?a1$)#hU7VTLRX+cSYsLnq9@Y{j?i??8$7k;`}+SfhJyccla|--Osty>kM4*^QC+9lVASMRVGPRTaG6^WkXVm(RU70?H%0qak%cV9oa_dy0
zqNHFKHu<~;Rh|?g;}AQ~(o{dfZT|afh=fsLJaP=ZUr0Mzz_RgMtvA-V*f`3gH@7?x%nah
zlSGggS_&_HPG0@8YNdFY3938vgHYdx3j`%7NtjS3rVn*=vKSH-Z5
zPDPJcd&JE#X}IZT5b0%{i`@SwzdqKD5t=I=7V
zxH)LQqIF~BToD({kvrYjCBOnNTx=rb2$WBK2EaNE1f`zJe@R;#=zvfD;F^gg8IK4k
zF9IE?Dy|gSKur%y0cN^;^R=XXm#=&twzBv^PbT`t1CXE=9MTCtAQtg;@8PL!;~Gh#
z8UIqew0=FQ{9(bg)##K1iG4`H*dt7)hPOsGy0C4aBjNmi~D>blz%cPy#=`@m-Z^S}rMf)cs%
zAGmM4?`%?rw$eLPKJt8dt6O*pbX5Ka)mMoGg3gocv+;8MVxtce2kEcsOynA5*)l;Q=L=d~Ite4wZ(
zC=G0=ht6mq#L|+Od41!+%e%@6RlhS=eD}Sy$;8jr*Z&{5eE+ebpR4QdQCs1o#0lRk
z0HNfoOW|To{YH&n<=yui@#2R&Eo5ZLqE7Erv(T<;E_0F_p(1(|esR{70Rhir^1o7)
z3@hLBs)m_5^?u0UMJc4-AhrCMqJ8soY=!R|L1C%j3Ip95(h(waAp{AUZ3~kC{dTvJ
zeHn!k-dHYNn)9wN$D66^s0O;FI{>maj9L2UfHY@Jw4;2hBik<>;AA_Y)T_FeJ5zJ<
z+IU-$!t6H+ZCP5CYmwraIyIrhafMFzOkbNtHPjCaEZ{SFm{7misK3sdJh8AlnmTh;b242jqmcE;964o=eaaH_`*O?-&pzm*
zUnP(NJDz4>lq4t$b)5F`+5-DHL7VUa|BpJ+&%Xm@E
zG|ts|k1Z!r>&;vV{HcL*I63wob@phCHbv9iVNwW9K40C)tdGQABEA|P_Smo8B|F{!
zk^a{q=pO__uFHlIuOJbz4)(nHkZNLED;
zXYm^;HeP7*#UGtNqnaSN1?~S?nOAwggyEkgX*8X_eBW{DkzJ?RP;YX-WMwX8Zpl+X
zbm_jlgY1>%OIVDjmCl<}K~bUMHZWbv_y8o^u~
z%|cmYcK{spR4#h)q#P(6m`wg4Wy*n&Vb?`+yX4BLy_51fCKTVCx;6tE=la3AQ5V?3JnzX+Q$`Dm%i}nre-rymnf*?^+a@5G2KkR
z&XF1`TOQCj-u}D%IQ|KW?@wKzq%HT-+VUMv9=k_=rRY|4|9>nAkdl@*;uc!AJwzeB
z$vu$j@T;f@Td<|)(s6gp+uOUsT|DJ}?`9}{q@qoD1+R~~y>OBm&<79ztXhnppZ`$v
zmkZ;Aq5{RRWIbYSXY~@+PdBbx^rged?~5OwbGz@+NEZ?2@ljw)$-4B_iOsO}H=tsU
z=6v2gdffCwvSfw+*X-TBFF?et0um?c@PC-RlEiuM2WMMPl~rcqZaCea{}d`OOe9iD
zR&}OUb4DD%afEg`qQ+^Zk?~;VZSE<@xuvlC^F-!+j*L0L!tYVQ6-2n>=I>tPd*J!%
zsn0!^ozEzK8rQ}RHEBGLhup_Ge~J|HLPE<;08MM!zfYKuq-r=Rhx@uBQH}n!6Lz#Q
zG}>Vy-B+!q=~Ec@3xpvI6twZ)_`6ihEtat&;xV7|N}t!MVAgkL7trSu@w}n^JkDZ*
zr890vX?R9t=X6(P;#s;ZIG>Hh}uwF~aPPl)X{
z3=IiMRS%x>GH*AHzD#MAg8he>yb)XJ&MopAV?eoCK6+FbFr#wrkOS1zF5T`{~ebfGwlr#WCQo!?3awC%V&?
zE1W07`Z#xAf7QPEjfD!?pe|;~?`FeCwM9I^!|C#-H-lPA>Om3hlxy%*W2W*0dO82|=4n}QE5bM>J^|Eq1h*N@f##V2*BdMm(lz^`c3PSB7%2y}D@I4;xd
z1<-ux#CbWySrlT~yFr0yC>m#5fBE4}5a~t&GQgL~1U&v%?(XSzl#IP)e+}RsnClyJk#5WgX=mpx6DO
z_HJH>v>e4Hk1?`gxIT%^ndu(tm*CaY{zEW>W=y|9dFAN%_&DRy3=E?>OAVScSHc_}
ziy+cOwrQZUj5zKs3b3uAT(MpB0da{JyKC^Pk~-fs0AbgQv>$hIcS~!cW<>w5`1Od9
z&5yy#8^?+#&YhMr0It5GW9ufx#!?D>7x|}z&u41yUh-wCzUrP`rqX46&&9ey&dsUL
z>K^eiz(SSVWc^yD#DQOydLsL{T#qW5fQaBD?s`<*1@=rrLd`fRoLYM11WmaLDDVCo
zP>SJ$tA`?in>nu>ypxjuO0vZ?#t^tMI#)Sw`Sg^fw#m(07`Hr6s~eFhND+2Bw?4(6
z(zMY+coVR4z98?sOT_L#SE{kB0H$w{OYd{l1nnfcfB(Cn98<&UF`u)?yaVsy5r?zb
zON1dP8dDhkt3TbtltNcbonI|gHO_2nx~cVZMVe215_wX-+ibZILrNGWXe&^v+3hay
z3XYf5%{EH@i9C+@_RZNFyib&|g=_eOghYXLDk~397Ys?W%=e9!oSv*2Y{EiF6==^SpTxFxxqsrMp>^zzO9B#
zUe}u9Xn%WC`P!)a8e)@3>Ufb(s_5t;>3Np;Pwq7&d(>2hqS3n{{M6}2DHb+s9&TuO
zl;>s>aPF3O%~v;!&U4V!bF6=S!=;ke%;D=VGfh`X1BqLdu`fmKLxZMnF&auY$7J~x
z+Z34anwqK3Bxo*V~ilmNZIeF35orZzvQP&X6LjZc0>@29{O9@D2b$+<|W0i8WKjS
zM^;COmv19pzTGAmn5O6$4*1yD>)H`em$g^hWrzjfbki-wUz4AIT5vUrmk3
zcq4cr*ZdMMAr@u=v3csJH*`g{iF-4&GuF&bzoX;keore;KMc_F+0ClK`tX8L?#Du3
zSfEg7D(+zE?FTTjv3!M}Lr;JD?mEO($KO$)_*0eWo+$0X7RL=EnZLt&=jVKyZs=@y
zm_B*8;r9g!dJmvjiPEBK=Pw$&80^H|J_2ko1iB@r*`J*q^@`n*)ccJFPV(>iq2Hmu
zv{HO&O;oXaoGW$l!c5#1ABfyvU3DIuUXr5{RjP@*ZQ=Lp`N|CyirYuB2=fbfuxf&@
zX7Ja4t0vd#V89dGN4`xA|Cb)Gy~lO?Y{N(jEbenp>Q2u=IStmt6sIEB6G;XUj00f=
zWQ!5YGLzwXkE_a0Un1+z-}kP;d>+YvX?Koat%Tzlv9W#EcI_ple!N8b5x3eTTbh{I
zeUODMw*)K^-go^?gek0c6d!(NkTpB`9Cx}XTyy**)pY*zerV=5G-2Qc?9JzCN*7#u
z`er+A%dA(oKQj{jc){>)HOdP`Me%azb(M;|2@W3x#mf($@*+F#$GeI>PQNuII9i-*
zJInF?RFrd)hwws2botrZYHAFM0|tQvSLg60-5&YKQsgN6o}-Qp3?w-84(F^{xBNBl
zHdH+-?*+j-mfM|c7P(C=qhB4y+-AbUK!j+>_SEd3k*pmAFVhSi)tm6meK(-q#b=E^
zQgUqH7ZRR~Zwx26WE3F#9||mH5U{MvvaW81980@OgQeW1prqCmD%-54sJSKm@*)aF
zhcV8R!6
zO!Pzq`p8g~*JtNullnJKgR1jFcL`bfVK%TdUs4^;0>^V}VI9~!7X@f;bel-(Cb{2B
zl_eF}x0~z^aG|tH_kbX6g_%gcx;6L#VTAsldaeF|j_?~%w_C;b!Z+Bya|z%m(7eD2
z!_{O>2z_cKt~2+a7J#OmqSEf&V)Ek$z#!Ys@@2MALLy<4esGzDR-6vDl1Tei;%(P9*X58N|iKl;Shp*-K5+
zk#z*Oze&S;qrlMl^Y8~06cBKwe2M&fxITaLq{hbB2PKd-aBkqYd+mnw6g0P8b4$^xY@@KA7PzZ@#4Hx`(xC7T-cpCmJE^#JBGX9&U=^AJ1+tNtVTbA7UWtTAw`NN{ta@d6oo9%}6C!+^QGIFPc(k13g(9VRi8cc}N9~_)
z#Q&@QQvFeCxe1*RZ~pnMcD>ohw>mq%E^T=XdIpCYA5W(EMB!4DCG`DbOh}!`>ulvZ
zuD}0lV@2go`?H)%GByJ3$9DMG8;@{wR#r&Pf6mU*g6HT!~R#a?jlx$sN`@HL<`KG?p5a0_2+YJU6cWb+<2Ce;7%J&Qv$
zt`=!{f;;XF?3Dg^yrX8_@o7p!(|viO8LI6Wi4QBuqmgK}E#8D>6&d6YP9DN;vHKE4
znI}zkXBs~?c*~Et6n^U2N|n4(&9gqmG*1m}9#Mxsp?=1$@H1z${HbpL_meOMw0`v0
zyL_oV9o@vJsktL+8Kw7=B6=QD+9P2x(C%)T%h7jJ0hPIj#N;R2xD}K^ej$bRhr0@F
z->ED(&c%u^zumFqeIfE2;d&@p^}@@k=XXl#dlNrPx?Bm{j;Pssp3evG&^$|?`Gi#
zD|7wKTxOj@kYlXhCz22o9)DVhOHM^=fRi{DKly6&LU`UIR)4&rCX#Qs@H?E}s||4C
zYI?&!OjB$_%5@id(v%3k9vj3<#i%PS&+j&|L8X&O2G`MDGm<{B6$a3CVt!DGxuBgZ
zT4E*Do7d9PvIuCj6hr@f>J#7KzV_H3$kTw6?j~x|Wp|1!sma04b4;tEiIL*6*Q#
ziHYzU6xT(~u|9EVizvEBaCh;u+B^`hLbx_a6w5S<5YIoeZPdH*K~Zz$
zD<_{mr{pxr)72l$Hm;Hd*`=junU=X7L!byeHThxoRsk3pjODFA^apbjr#(D0gjQqQ
z>rsS1_Pn5Ltbrtdk@!(jaby7m-0{G~2a_hxwrhf9H;}ioT6sR_c#H)BugYEJ}{O{1}pc-$+MIBrjOB_+57z%?)~pySkxwX0+m
zn8MRON6~X`$k;>hmkbRJIiaqu=O4=4(Kpp3cR3)Xkx}7$T)HSr(Ws%(!9l0b{L5C+
z(xC{J*!H=P*p@hcllC}}+0j6ud
z8Z}kih_7c|xxMUN3T!cHA-u+QUI!JIpeW<~dmlf~Q+a86qTtj=H;v+fXPzO%$OU}N
z%bmGU=K8Y1-9=}Hl{(1eV322p^HP^DWV*_A?a$Vm=Huo$;1!!1ekbB;F|J@A#{)C*
znt`C*L5jV&8d_k=Zp7)Iq+g5j*0_7idZOAYZ|s5r?#Zd%P-)wFESElD14$01ifnk5
zIf(UF;d-TVrFiN2H+}>m@zu}p_y6-hAr$c+$;)f1aHjd}^#Fk%tiJ5pSx{D9I_UKKlQiV(
zr9^sD@&BF#M(EeQB%Qzc#ozzwGyIKm{{}%}VfwfJkN@;#>Tl=-=@=Lo@G|S6htxtI
zeao$&HTxCa_F5*l9hi^fX$Q%sk7chfK~f1#^tBp@XElIJ?hO97jC==xjXY=DbAXVC
z%WFqOMl$9rCRC?b2Vok=Md7G;%GEQ`Y1r~OSDPyQ}td&kL<~$_pGd_)Tg*yPXV=#ZFvAoeews^=Y9z+Z2
z5D}iYF4MlSn-cln!PRvb0a{k9gmr8vEcPpyXXFz3ds3Y6`1e{Exwv%3o*K
z{9WW1-M}fr`AfgdTFf7sy*@)@=C|NEUHx>PTc-eB)O_yp5^+L}T?7M-BJ}K&3o@_6
zw|t`(5Rt?9e`4zE>rpv5ITq~+I^i8!zc!>dJ*RD`!tGvZ@o9_{K>F|;dHjvcdODZB
zAjNiLeU0o8mHf9N6*(E;i4ez_Fb_yIq*hVhC_fi!J6<#=xU_7XVWHSpER~&WsO*ap
zgb0hQe`TPh)dR=a&Gv-C4;^5n$Qb3@B|ay6*C{+3a*gn31Ay_U&o>14&Sa2shnY)D
zvz~2*MLvZ^cCaZ`d}bW*cf7Q=aCVr%K}nXnVyL-2zGqm<=3E@M&uTadJnR%_3cnuu
z%{*JzJi41l()TKhO#sgXcK4RoTVrEmHSnK^f1doJI)n^Nn)g@!OIha))MN5*CZo;0!8iLl&-J1C-9q}r>P;oSkn)Ty9mu$Wrzl8^Yj-8LyCJ`*
zVghuz4-1k#9j-YBhMoIzQ+dP0Hlh`O^y`dBKsJ-VeiirL7%lLtw}TwNmSk#hFFwfd
z&ORqvD^sfw$mh=w(M_k^*c#_vAUS#Q11y9;~!QpU15d*Yo#Kzox{TcUk|YXaxHxi<8XcS{Cpygc2
zI-v{QApW;_sd}mPqo?Ej_RF7Msh6R-mlBZd^(lqLmdMIGpm$6h2uW}n2T$UR4*9Tr
z9$xHy^^m-b^=gk#g>m}3L5yxj!yUMbxFOF}pFij6H-tr+Nz8xk)nVpu_i-G`e7?;q
zoN3)Yws~}BslHLI#9`sMEKV8I-}<^ZvT9?x(#h-%5JliaT(j3h;c)oO;IrM8&)fP~
zL~(M@DKM|yWctzd_}`ctjoTJ>qnCSZR;6mcEMc8*gJ(FgZa3~ddsEOCqyM&=%8CsD
zC?wafr$!Ek4j_wlH_H(xG0Kaj$`=gFzVU|c6D0z|thuL4`}^K|zT{|M88jA(Qch0J
zio3kIs;a7j{XnBEuL~G+>)*rp%v4y|He~9vVnAyd28s!66D#m_)axUEgX5(pVm$YI
zyQgj}T1|^u@(7$IDv&oeHutOebF@ZI5!5jFz8lLxr3iT^k-
zI&BITvyM~}-_mop3f1ZKjHP7$$cZVLm!mz=*%eEpOvBw-1DmrnkR{A&*}$eD4A1bh
zprD`?mVfSLdZXu2jw|BPdJ8lsB_`L&b}T2CIT|h#&spCBr+TCY0;Dy!sI4#?VPoG`
z{WF+HgM+DMGGlIOVDHzzd_xZ^e6}FdM6(Ov>KV#t
z9qY38MOhJ2C1gQZ*pz&jI^XwVMM)n{6k~ai-!0h8*{|(-PuB4n29B;Tuo2M}!QGs7
zupf@koMjMrj|Ylu{?MSUA>=Xr-*!BYTK2m$z`rk5_12o!_|CTcVheFA^ti=Ol!3Rp
zCwtx#dJ|%pE!}+P>yl@7Lj2_=UNpE2mu3lq2J+PL{TxMZkA{R{#^h8Z{9B1f-X1xVSf
ze`b!4ApT*STwhe>QMeGTEfBceTWew%o&1h+VH1c?mCR^pnCXqr1YJTeAgX1fMkx+{
zb!GaOIk_T|l0H9HJjpy#MK(OA*;7|8#y}Z`2|JVe0MSYO^z;ia!)Rl_lO?OGmbpFX
z+Or`~51of}7h}K_+2{E^CoL6laeiGfo>N!~g!q+=AN#^Tc_p9ididb`V{lEth~7gX
zr1YwC>vEs3j+m`#lpW+Scb!<+ZgStTew^wP<<#E3fdcc{)4snmX?&;NH9}#RuUL`OukR`G%MFeU??Re1zCmu
zF}PZaRjZ*@2%uN5h>H1)C23lKT=GmkknGP)%k>T2KFf-Vj&|U=
zWuRDZ1{}8i=c9c&RY`(GaVga3!X+rfF@)~d?t-I
zI|6P<;I6H0`$AaTb~)swl#ca^Jq~2FKj9#KdNR!5iY+>oS`w&B2x%_
zn}2+5U4hhhrLK++WnC?i4;^+_aXPofS=lhxN&M0$
zaDR>Li)K|@bjNk-a=S~Zlktm=fg~nw{H%nn;3EtK3Oj-H@{3$rzE8NR&JF<)dA_=u
z9ohE!sI08)g3$k-)f^
z7>`?xL+@BbId6nl0ykJz5EM767>@Zmf`nmSwm7^)^Az(V%GceNwvFj(0dF4rH=o4Q
z8yBDGtclI^jG6Nn1Ly1loe>S-qD{3M85xPY>wyS|FIf8d`Bmj!)|4G;EVb$sj7RXN
z@n!x!F>`gmiK&AZf1@F+b$<7lv6lvxUR{&xZkZ_|F8(RF9NBS9op+{ZQyR*643~9l
zP(-wR(3{pjD|tp|)+0#7Gm~9yCRI47{}&M#l0OvH1*>tp<%jc0z44!$WlBm)1!1*>
z%2K_OGiq-@*E4<+mSj)6i2p_2TgFAXMd73GfHVjgq@*ZHH%JSpgbJc`3JB88&faW|gh`N#d;_;Nqp_rs~*$YJ)o_g>F>)>_YV%Z#TK
zw3-AEl$bd
zlguSwVUzcvEgmhGb&{Tk)zBknXL(oj7WpouP6I7F98hO)gq*6eNgLX4
zT&3`SUZ4ZA&Rx?-br6tsfQ^Om5Q!6piwf^}V(4%SebDmKP$n#Jl2
zeS20Pa{rR+$xu03xA?zM&c;3_7j9#~YUE=%PAB|$#lx(0G!EuVjvN5FqByt|RG<>)
zxmFF({*kxxG31KBa!0yiaF)^xCP19@r$)4W#*lJc!>KBCaV1)Iy$=N_*6PW8{p+XQ$-gpcetl4xzD!_gU9IisDZ6(z&m}LvB$$+F*qf(!a-azeAz8C39EHeIAJ}3
z=h6fcDG%JTvDy%In{yA=Z>B?4r%I?QslI&J*dTKBO53d?DsJ;G%Fr>Y4QzKV^T>06
z-`V0<2kG9+ggqH(Y0{lC(xSA;`Znv->^#93e;PV;?6RRKfAV+fI8W-AOg^tfxF7jy
zTx?qy6$dPlXVtX#>g`@k7UY({vJCmZ=TDxKP=Bly($3F)aB~-Qka<8}a$yvdl*JdR
zL)znnHY%#B_|>kz=L~5NmFZ3FEFYbvOb5xKN-u^73TY=YFCBee<4lu3hAF=9j{8+}
zdArwr3cqo~AY(godBtwG>zhqVK*XHkc~-ly1E*W1UuyMP#Hsc25)QRKuhtT
zGjs}c7UZ4`J*2Kd4I4NnzrFjJ;-;%wcik5)Wf{7njM>B=5|zQLjCr+FnEJ`}g_Co7
z7vFpbdab^JEsD9j
z2oj;DNt^~-cy%ysxo_h>COIHHPih#4xm_VT6-)q9ABUU}-v?SIiRcc&Xz}QkOvtqG
zShewBh?V^qqB_?+Yd`6W>8^`DM8(D}dD+6GAqa!PaEh4{2WRy(Y38hqvEykSduibt
zSd@bu3E*}!h#l1co+N2KKVT)+w#d?QS10eQFFrBR01oCqS@Q1LwX_D`+2*sqpv9ahXJQ93xzgt%hw(dJSoJN>qmA;o
zj-tp6bKf@5#V@BLTom++`_4-=wmV~SKDyzCklgl<9YV&jpdHjsBDEw
zaQ{&uxCg8qxvUs}K6h)!)cYL_r&fgPgtqVPh&S9Jd4aUd^6~a&*zUIHo=;u!f&+Zn
zl-qX*;!}8tAqmv_u{I)job_7+77)n=Ig*LO7PXn|!*oZ*T9%}TL>Ge5}5QggO
z26ZE@fkghyjFjcx%57DuX!oFgJzHUlXK;}Dev^ThnfdquD8$5wAXDS53;fZOU$Bpm
zK8U+$(s352n?_6RZEbBwMdL3|aKnxawT_iJw(IZDIrMm8(ZGqkbA>*2PC`6`(!Hx70HO+Pk@<
z4sQ(w0~|2zyL!f7EPG8mf(TRD$yaBmhxUCSBX}m)Z5-uz00uVdDdcsPigHYK7(QLz
zR#!5lKA1Q;IjL`A7_YRSAVy?D9svLN$!tUnD|64A0BFR9NQHD8pMHByyU?Q^DUNl3
z1X}C4PE&>-W_syvtm-IDSNKlRg
z{HJ;HcHB`*qgE|@eo(q^TVw2!mbR~a%2DT^l(Is0iB_sI?@&nOcf#Zs>wyg|Q9_gm
zwCQ*H4xoauf@hSeaLBODIbz?mLDw#(b*UD8n!%~V=VAmwAp8TY!Icd6inNUl;9jcM
zW?<=?{Fe~Pd?o+^o(iqRUiv_ba?v<@Z0oA1#~$^FweWWnaxIw(Jq(CPGe<{9$Iv?n
zCDFsFHWjSjYSOh0M9e8+?c|ZpgNnlpM(~1G(eWEsJ_Q0o@(1=f-)JORV`%HSh@=x>
zwx>(oSG5PGrerem#PRmcI4*dpr!O$IdEG)-_#JK8|K&WF$LVLHajJML!2G#b~Ux8d=D1l
zC;^53Nd0le-(CQg-tKOS>^Xb{|3YVzcM_(ijRt9cI9OfEa_41H$IeT)lot_8@B8!y0;u1*0^ycD
z%QsEuW*l3O)VZ_JR?rc!jb;Q(kKgS^$?xKIPYJCv1hmHv%PsSzw7tW{RGYU{-uC@l
zC(W{{xz7G+SWr^Z1{@qQ4)$WAzQ{qM97p{9=YY(D(a_B~n3|%VjJP)unVy#qK#S)B
z`TRxNru`O7L4^)XmlBjr71_(Qw3;eyhVl$#kC)XsL*EQw>MuglvHr`bT$8Wol>Khp
z;kdAzhb4-$>}lFv9f7}ANLLFJjDzi)LrbvV=Sql>kx_Z9_SWHD)X~Ccy~!?DF+A-AcEF6`@6nODdIlyY
zQQ(?EN4ROM<#%3_;zMA_k*?P1Q$VTU4z`PpmwZJS{BkQi43)?uj=HS2fEo2tt68bZ
zAa~>J>}>X%cA3zY6gGBz5QYp|TD7fxm+cF{Cg(33Zq!#wAxk66JyL`AuOS$(Mz@au
z7A6bBV-SaNn5eW@Z2ef3vl0sOdo3lQHVH?+3}&wp(zEy8S$ps9t!GZTBR3IJFzL^F
zzj`Y)ri>m_b_hY1iGn9BEB>@bZaYN0hbauOb4;;y-C@Q6iIDg%1>+==I(
zg4@|&+n6H$^rZdsU;g(JT;6U}1tps(A2s#QE!0L7L;fGZAW)jhN$2uvAGe042~ZST
zZ-YW|w0H=dN`Bt{Th`L*e~EpX;a!@nov90oSV1%YcJ=&Q)%ySC-*T>J{Ey-%ul(!R
zuZJ1Ury&#pgs0WeP3H;<1Gq<-+$?l-y40jW#-H=z@I9|1thJ8$5b8jkBY*`#qwis1
z@m+=ELV2jYqSlO%tn5jLs`)kcA8jI%(7zSLPrhOflXTnCj+1m3FGe$FWo5+zh9rjl
z!s8(+aQL$Uxaf44*p%MjHyoJ)|Bu7QQ>!h{dhQEv3aFzuLfWy?y>-t(MJoM{_C>B=
zy*I`0vVUr+4nGerl|RpoRFIhjFeB4K$N>rOXw`j~x8&83=lu;dComIko@kCRh2Kpr
z&NG3PxZ2qKm;gB~B?JIrIpnY-T}*+b0OK8v)W{05LhehX$pBS~Z}5o{vVXEMr35{4
ze;yl2P=Bz(uVz4^0k>g*J_1-oFXOeX=ghM>qsoHsL!o*8w`7h}06Y&$Q1|i(&~z;f4x=vLokOD
zKcM-DHHI3LW5ngS%#4(tJidB*wAC3dTOzp*oNUpKId+%O17~(TIW9E#0OE+;a
zN3t+?!aHMm-$O-M=?xXgWXta~8;Id8U0#7D{Tvyg#TPJqegcdXLOVJ-e2|33pYC2L
zU|tdbc#xscQ)Uz1#d#@Rj61^Tg2F7c{*;U{zT3D}W)^n?!~!f5#!IdDh*joy%LjootKF)09syU8
zWCDzpp2P7zwqwO_-MTf0Bdesm_^2>hc2mFH(y1xLSBGiIPNFD~@ioKM6;7t)co+B6
zX@Tphx!celqGdGi(Hsg;&Gs`ZoxMy-{f90}HR#z^
z8q`?V75>sTY8uIKi%s}`PJL`4Kl?K4Ebbh
ztr;f4&Q9fumvlhOSGNACln8VkpWS%Rn0vh%ECRozLVfWmCqx(zZ3f?lzlershV{zpR*
zE$i{<6*gbjm=U!nB$uO$VPsfetsylSQXdzie~#@B5psJBbitGloSxRJKBa!dTgc>@
zswZr5$C*t@Q^u_&!@vCEeqYVlpyyo~wZ}3ZmytWSO%LU5stHG6tnyak->W~lVhB%s
z^C-kFk+9y4V(_+nR-s^d)*t+50jFa`8z_+92>OkZMUTlcnCqW#-N_5yToH;jQYJnM
z;uNK)KEUqGySERN`=0fTKss3i(@$0oK{6b*S%5lk`5E3Y0mMfmUQk5%%lKgeEA*~sp7aKtC5U6R#RDrlH*Ds9j)^9bR1T}
zh*r0ZT;ROh9+jIVgM95HI=pZtNcXncFbr}xBw#JEfeOd{;{Npef&-dqOSE}EgSo^*
z>#(5?R__-0?1bI+FqWa^j$7C0S+X0wqUY}|!m!?(+yrJDbs#6m_Xcz1Mt8EDghX{e
zrhew`=b!d}itLjId0db;_(B8+m1m!=f)R(dUk)<6M6IKAQVEz>N5yWCkKBcL2ukt`
z3)feJh82}4DlIqD3g{CqwmG9Dqaq%*mt72;zKAHg78T);W=m4Crer!ss%*e9l#fNq
zK972}v!n1G5`K)JfZp4F<~idJf{GN`ZC;6flM~2`d!EJFGzTTi$QwwdB`{cxe0*Z=@S2g(TODzq8PUUx
zcOH$eU4X~Fj$9)b5Kgusr@@yve+jRY24Wo+&(ls5GEZ-jwy3yKAARx9uH@zUu)8$h
zwMy7WY08B7>`lCw(Rp&D^*m`>pM-Zau1;O)fjJ0)uArxARcjZNo7zB(%&x7g!?Nva
zd^z!y_BToo&Oc~86@{>{{p1ket8jl%MgdJb7_D8JHs{7gFXOM6dQPK}V+jOHp?<~6
z4#0df3R~AMyiqHt;J+L_le0n#iVCv8sIIcIvQBIF4pa{oV6R(z#&E+nC4|Q9N3O2S
z^YCBlgA#boP+QO!`0a72f$-XQ4)YY66b<*H2I=Z&1t57!H2!#49J(u%S2F8JZCsr
z8Z9yu0(B0OW$X;%sNr1PT)Phz105BRmeOc;$y&JKeI%qJqT+qpfQ5PLk5ONEl*$IMzMnwXUq#VSilZshW!QI^0-q^(`o+OpwPQp#S?iKjGRf=6-zN7gVUc$NKdxhO?#_*Pxu=jF*Ku&
z?Wag{Enoh=Js1%2UNw=vjLqN%d3EkxljKB|Oaf>ZMj&!4PQS;UH;Yq|*q2}ju00v~
z#C7Cvzvh$pn-F8U@yx5iKBBQKXA8xZANoXR{-sc?;eky7a~WR2qc(y`s*FPX{vist
zy$t3YnurX-M;~R0*Jct|DiUQj1K*2Uyj%fJ28z(RcS-8K_iXeSaT^#7I@sT`JYqF;v&gLLQ`syId?sOF
zC0*WvZ%AvznQfg(-UnW*QzZWcR)MIXk|XJQsCdj_ar$0GtG3q@QC^$(~*?K
z_Nfvp)ypp3Iy3T1%V2QpF|td9qo2ghBb(77+8f2dA!?^s!lK-Bd+9<{W_uMgZn&8MsfCO^8YN
z;>bqau{kT5jT@(W(##ugmDp{S=B3!TWqL6VV*t`M^4pOz0P2{RedMZpVeA(kYAw@U
zC)NmG-7xBEHf0~$3@dtzu{X%=n5cz(#4}EX@j4i>n+LM}8N=aq(0||STk3rMiC>^wF}?s~dP}px
ztLYpnn!RdE6Nmn3Mk1H_mh%v26Bt!d8w
zNvL3N@s6ExnuZ{i__>{(thQbPR=pY6Exx`niZ^c1dt4gEH7fU5zE|i9b40TQg7M+*
z;e(#+)*;d5*r~~rqXDAF=G$)}|0sq~+HE7h=NND3_BvcPNakz+4?J80Fw}rvaT9)8
z-$1DqWcYS4Se6LsG0##gK0<})&CC`Drrrh0Z}i&%-#P{r5tc~Ngiggu$z6EkOOrdx
zFbyAj7RSr&y!$E7K=RkF0H};ru;C(S21B2w}k1;*n-3?60c&La=keQupNbjXd
z+sbWjGercLx>%JRs!m*vPuvjv6oJp9ci!0$7@bJQEnDQPhgYn=(hMaWYf&7Q%swx_
zbOG@|E{EcymdV2w#W{WjCPp~y&m<9uZ83^bE6H#I1P&@tZ3-X`6<<4IMwUmd%);3b
zbuiy6xutSaW&Q3@H8Ju!G`EcP|1fRYVgBMm1w)(jbV5o!iC517h`nAJMU?-Sgu=3O
zQMe!@t$~#YgUmfGxtu&5Ks~~5Zc#l_887jch{^~Han}4M_~+y=U0@xIwL!)B^495v
z!D{26yeP%To_W`FDSLIG1TWUathVV28i^8q(eH|=tD+}G2cKj`eg@uaWhw0D;}81_
z#&QYA4|Zno^)^ytcKsK@J?i<&PkA?^TLgVVg&c@tV1Wys;-f4e7L_J{e8ddvkbJ>%
zlOp7Qp7re$^)xu!u4%;qDRy@1&Uc*^?+qU3WTjAQXe1+>*83ys-)^)2GyT!ncX)`y
z8EH+CqYOZ!O4Wx8WYjUHyBeCqJ@55d*QzFg{7o+v}+%g76%A7>{4>i0Hs6hF
z82OCJUX}DDIilQj8h;`bBV-&os9wfTP*V45{Tg({i+H9iYT-wi+nV78sbqK`o^XP+
zFphN>QPJYRt=A0g=#5Uw~tGryIsDy+Cu5ggKP=)L^`
zl#pJ4`WzgKgC*G%Hq?&Nh2)&G6+2SZrqqKOA~U>yXR(B2HKwlUt-gjYxn^L%g_KQbK&Zp2Ph-iec>W%b@-@?fygG!o`dr(yZ=9iJq&s
zqYfK6h+h~(MBAXLNHl)Ar>DmuqiEzRs0>-
zNagq<0Dprvc~3{cF67K%zNPe1UwZf0;_$YO-k`JQDp^^IQ9=?CUZVGnMB?x2>{`P&
zp6uiwq876bg@XTXIHkcSN*PkZOmCD(Db(<^x~1t!Zd19XwG&R0@l~6S0654A+X-oR
zg{^fx0ER6#XFc0ryKHUOAKBjkCGc5LxzbZ|04?n^JeELXvC3hJ&~|;?7sKqcR+<7>
zq^JIkrXEyG2HKPdgie>B`@{l-zg|OEbBPiUItKTvZ3e&c}(y60a4+Za!1!V3&xp{d)MU+(!%2wUW@EdUE|Oe
z`P_idq1Zg>t^H2LnjyiJ#`=eTf!leN@q!}b{>S&5!zrzsBL-CLZ0}yxl7HE+a9=a>
zzJfv;)x^v6t0lbFXxz4R)5gKvm@q@6)m?@OhVYDDvb_YWJ&cb(4r^yrzcV&-aN^{Y
zbzQO}0MF{)Bjg|NbMVTgRKtG00e^MBuZ0E2uuVlO9IIZ73kHH8
zfP1=^I)Jw@-|;>e^sZppUb(GHtEs7-j&~K=iZH;pF4+11M$4I71`kWY0i{}AU7dr_
zDe~o)a~gi9!2jBdSU3F@+#_|hxQ^#;4nOki6$`z_Sv}$dj1%AdE{~j;0e0yTPxtmB
zmTg`JzGS&&d9{h}^znwV^6AY0_ahVIqr`xxgD?LWM*~>raY;DQXxHBBy)#p18{4av
z!unRwVCIKxA~MzjwwX=Z`9_oi($a!0a_v
z;jx$Nwdb95Pd3fh7j4p~Ql!)-W;YUg%@TI^p1~|rTUJBYwJA~iI=(jSYx7RD|GLAR
zE%W_SUFn9&t5u-w-9d!!!GKX`gLi1lugSY}VkmHBZLnOqa-`1oDqsyAU|gtOoSc&4
zk0)_K!Sh+z7U6dI`6i!V-`~WLo|#$120Ft}*MNlG-KzasM(-Uk$2T#*(|>(QiO=yk
zxF5mk@VZJ|qjN&=RsEru8U|HS`btYOy)G`sWzvi~-)*-0nr=dyq|dm)JMZZq=~M`g
zRL)kdbp~>McWHYw=B+W|s7&23rI2+G^6>E3`u8{f^?#y{W?BGKS}D2O`L6Pjbu)Or
zUJcGF@9KX{36}F0+Lt<|125(4f!G2#x-VT3{*m5tFL$UH%%`ncSLlxrctLpFY(-WYCSPfm
zwhr-PE7CR+T$g;jXU8OY_~c8I93vL{_`Y@H8hv2mZa(tgW7>ExNDb*NNK8)^1_s_E9ef
z3MRURbqci|37CnVizV{=c`3
z%ba;zo;?z&uexhF}rdz13UM!ByI|vx>x;~-RNXye%
zR_!|p1hrmph2AOBJ$`9DD&={qT5YRhTsl#Xo1~jSVcu&X8fA3fp~72S{ot_GmDgs}
z>IVC3urKu^z6cEX)+%-NO
z%zexPsao#E(t2^TY3KQXf}6bt
z+77!O?&(L8dJDfd8N)rh&C#zMr=yo9wMv5OoxA|KhT>;pg)|
zotx#+QuA;S=cQQuc7EPQ#Q{;SNT7sofwV##gR_5{yr->dn`wP0pRTcgEA6ReQ`O!P
z;QqmEz^J)nh+w0P$~&TQKUdnWwO4g=PC!-7AC=;Rwl?~$50vv~EY7L_?FFbno;n27
zp|9JPdZ^Q}jbML~Ge=+eZED$6a^oKYj&_ufmGaU$t)*~asp(~*i`o2aP<
zY`i^#;)V^(L=FTeY?~~6Tlz|3BLOAM%Bl`28#b|D#8p<;WJfN-otYhZ7G&JjE^Eu?
zI|mm`)z)g5e%p6>N@!w;NSX4w#l8Ah
zf9dS7%wO9)r0frvDrR(WI6r^D_mj=iv;2*_+q@on`>su6?MBg3Zx!zMyF1D~kDcnI
zdw)qYGuc*oIl;SxKm9bb`BgS0zpn7#i=n2Drp<0jpckZ@FTAXPR75Hur_zTImRD!!
z3VmpeZ{V3)6E1kr)nD0u9TohQS#M}-zNTNKNtVR(a|CaX;(g3sg9LS?tozPe+qROF
z2Ml^=%kj@+_o+#r^7!S?E_^mr5J$il+=_RYZs|EAKQHdrJm0L;moC>r-Pg1e=JB|B
z=@oFR+tov6goT8bFh`N6dwSApY?2OW=e(^`rU)t58ZZE4&*F-5d+-p-%UB%$ryIdzPnHd*}PS((y^zT&!*7xf!%MU!gO)4icT`3d+Yd5P=JN{VD!%=r8
zk=T+TJzodHTHGdD)((BYPI3g03-8#!Oo%~Ci!b-8>)(wey6YMuc)D%NRj#R2Bk8yWW5P!Ety$Z(|eX13*?Q;p%tJW#&u3N^}Zk0_}c7l^z@
zE`8H9h<*AeLFRd7ylQi6((r3J{Ig^j-Ta{4wLk^x#9QI~U8Z$KL7LYnZON|j*njOR
z?;D8gB`7%hNv2|4lX%P61krMShq7$tSqQJq^mguV5@1=&*(Yy**{(
zr(Ip>l*GikEX~|WQ%iI7$$@^M$C+^kS&tYH|B@mN`g#){V4jdAcP4{sl>1~aVa%#~
z%@zFNba2!Ex;r8V2F*9{PcG2G&VGouumCXMZ@cGO}Qhh>N@#DO~(o&H_EQ=
zOdbdx5`Cst(?ux2YQ57PDTjX&sNm@uR~Yat6w>V(CK4gL3A>VCn~`j+bhu6g-TJ-u
zm7Isp&23KbYZv`TFPdV0h4CK-{1!JGzd+@^U%%Ql)+E&3t0Gi?_$ps!lHgx2zOw)z
zDkF0|fkebJfwBm$EAMgB<3erl8%=Slr}&cY4;A(p1jLDDZgrh=c1*Jw%dK4
zPiYb;o{Kp-RyjhOA03AmAJ+ev5G=TN`OG!;>?xZgCnv9Gs3!Z!3~IuSd%nO^oOj!U
zf<^W$T=7111k%g6eZ^IRV(WzI30Yq(;0UVZ~*P+xF_9I4m(r5|}ziQc6#pq<`%okA95T78mA?_YE|&|GTAnp)(opzg=!k?rDYFkABda3`B6@4nm7ws+s+&qV{JXwxh4O
zvZ>LQ8&kY}9uoHXogU15h$c%?w7~69TGAYIDiGgI4{>+@hF&!t5skXEeNr3LADg|a
zdhPV_l$|Nfw&CbiW?|xkMZ53BnDT?`Hr9k_iP)Ch&w;tUZb=)WMV2dnt(>LWq&7}+
zHQBrp3q_0#O}G!me{s%Wo7eSY?TSHD=rpiLBQv#}nS7oU?>9B&jP(NpksZH(Klfn6
zw9)bBpt`#lQgrC1>w#?C*Pxv~CVG03fIX`K55N2&@8Y^shRt5bYT%nd<|PxYmKBip
zOt+al32H9UB)Y`y1x?s21l;5d61Au2D|kEd&P?snr;~Od*x@;{E+qi7w?7Wpg
zwM{PeU?4ucHGYiVZ{#E#Ow`Rw!3
zR5lw`oT8uc`NRH<-vXMV?f%1V7t2TM_lqqohs%8p!5(A;7JQitb3C1rHAn=ua>4<(
zI6ptn(`O5eaZ_}qEdRN?PujP!f~^mPKX~jq;f)636M2AQH~c%@>Aga2+>5#$VB%|PxPV3{%X|0;H$D9wDNxex5dPc`}L#s
z20unwt~xvt8
z!CYo>!-tY6!3sM1NT1vb1So#eFiXm
zAU{H!JOC_oh0UZkzAg(3OF%%_)_K$6sndG>!b1={MkbH%DH0dEVFP|L(NT>M;&j{oUobce-Ty9_T+A~KhM#H{l!zXdt>ME>1Jx+
za@!0%DwxIJGfTg)2PT8|C)-@uZM~+l%>{4kY8*rd);$BN{qK=Jfa?Iw8B$&3!ni@Q
zct+ONecn#-%-U$_UbCVz4qng3^2y1KQ-g|+O>yop|@wY
zXfiG6L=#k3W@PODdo^|+`+^=s40dBQLX&>6$4pS+9=3*b(j))O);;)Rro
zl6b4MeiA05{6#j$4&b|@M&{MxFr7VOKAf~*kUCcJb8Y+U&Aim}`~1pGjoSWTo2ZnL?t=+QiZ=jG#sR`dveZpGvoX=Yu2OS_d){2$_-FZ%_d
zNj8o~ZN=z4@W0#ZM;np{Q?i_>0-QqSXg#UyyFO_5G+BkWdi!I(Eg<;7(O@=kxeD=
z+w;=K#yDYai(&&6G4ty3atERp!kxh+DaM_O2Ln5S3hA4!^544r9oG*4mCJP2U_VV|
z?(6f8gA%yc83YmtOUL$JRToltiM4B(j
z`LV)h*_(OidT%5}!%$c7b%KzaUCAv2+RTS|g5EzK-y4c}n)u%#>U=0rom*T#dr(Y6
zTj?z7A{ZVPres=wTx|;AAdY4;57ULax86qP0%~;Gfiw1UN|oxT=^`IF(S&ULllE1`
zftDA$N)+OEWluL<2*wlBewJJImU9G(bT6qGfE(JBXQSS7x23+=AA
zuG{7$T*(?dg|fKGkx;$5%Fa+OPPH|^LQ?EsaUHr@$a?)nSF9zfPkoS7thSS!Y4i4
zuJ6CPn7ppfeBtBs@(cUU&eL#0o}T74`cXflx*>%guH>i+Q)gI@>`S6RO)xy3cnZ%NXVnHsOAWtO-cbc76gzfFI{ekXX@
zgRT!(@S`^PXpNoNb)|LRolS?xgi9oX`Mb@7e$_;YcW!f`KHlzff@h~3OEtP4osRcZ
z-R@EUFGUDxk8mDX-De&TGm|*f(l}Erd!DY(|8x(aj>+9
zSjE)6-ImEngRA)~&$JzC_nNktCFUr<<|1$9N69SkyMOracOUDp16oEsR9|rj7D6Go
z9J9iHJ0Q<#jo0SSvX3HNo|CY;CVEdMfemy3e)We@wTDkHq3x
zS_UkmPcK))0dRXmTX(nSEx`V;7r{|P)h!n;b&mGqIYhX-EsfcQE#E{{h
z1x=oRp6iDEB|TkW&a{s3+;y}i>l+I#MYP>&|D|eT0{^7`AcyJOdDIpMzs793h?nqTi{OEMNd=}6M5FfH&A=lYv&)Y
zkQt>K-f@uGZ0VDuqj(W~jytww+NiIbEdR;&?@Emq933xb7PLvxUXGI$3U!+B8cu#w
z>wLfd9+}vQv#q=9)y}?%`Z<+)KL8d~7xzEq)e$29cX{=wO9)`|{-4w81mLSX2VR&Q
zf#+s3QC#XtE0}aldU*RNsy(uEGM}-d_7X;pY(I
zGp)f^(4qhS9Q#t9m*Q8|%Z{K1W50O5aM-mN-nL5SY{l=f=_RIwyZS%sMlTJ4NCp1s+4Qby4>R(JC4Q}F4g%?SqA*dW7w5y7G2U+T9{GE8z-2}=YFj=<)y
zX6}x$=~SA#%-Om5U$SX5`~GzyG0&80l%m*
z!<2L=ON|@9GB1cEYM_7ktYj5>RNF3zX?E(b_R=a$ziqxc>T-F*rG2&9$C&;K9y&ri
z@nH00q-$5a_x47!&fTh6^aA_nqf_V0f4ITu&JVXwQ{Eo;<-;BKH@a{qp59VAZpORX
zCv%jw|bJY>=ka2(xc&)(M6#4ssX{ZQ9*2Myk|X0Dr>-RZt}
zsqSRKHZ~tQ1DkG1KwuR<>iwM1iUV>!t0Jl~`KntKaHj#ZoS^2_OWV&y&(-G>*@|te
z3vxY6!Fauv(rup*`;u_*S=Sp~PlH&S%(CHTEb^M3ergTt6_V!Y^<%~=4_mA>Y4aU6
zbl&+d@hq|__SfS~&fE>)I*@XGaQ2JZ8%KljyWQc{U1LZXw|IB1Yi$)BQMbX!z@Q3V
zg?It032&?CZN~C=z0XX2|77~!g;&Jp&;i+g`)z=A%BHP!DKva~NK|fmt}RVNf_9Xq
zQ`d@8BzD_nGvnNRgQpIj0la<^R(QQq0A3XI%_hICsu;%l05h`n(J_q>Mb#~onxMhw
z8Pvz0@h`c%b|W-2bmY}uWM;N??NbAMVX3(#g+d3^3w>4&mF+^F&TXVOe=J{y^T06_d5zCt1$(MZn1dz>WCC}e=ZUZ%H{8}xXv{etQGomd)D77
zP82QBeT9~NKIlx&WwhQmG_g*njqR~#@%b((`P7+TW=+c>i?=mv8EdTAqF
z#+1^f9$i4{1K6q`MK5fahZ+3P02+B4=Zr~?;5)pfgxB^wn`!2lHSz2VHLIEJ*s6M-2LnWb{5o7QaFgHe
zmV1v-?cPf%-YdB#`6H_%#=i|+NT!4&9PiS0uG8_%OokOP->8_Fs$H5$(}OwP_^|nf
zppY=uZLzs9NVuNTxy$r}NrS6645Lk!&yOl3w4h&n_$5kEw1|9@
zG|R;B&tasd9(&Yf=N@nKr%27qpgXUQ}HZf$7tyPtgjCQ%wN@*B%V?!g|5JY6Z<^6x>lGX9eF#dzZsF7(u<%81G9H
z;y{+2g<;Yl_Th4}MXPNGGN!4e*4Ky@<;Las+qq%9yvTmMCz9JsXNd)JH3d7sd&v}A
zF?z%^t@{GZ7$-F6r6^2)#6fh^0iV^Qce=;PM;Ic#-LC5$IY93*cc0#q&-U}2L@d6
za=;hxqm(<^tZndHAa(6T$sQ7YqL=$!SW4Lslq|c`lWa0+Su$DX5xNm+(22A
zndtB8-6^XT8^DO2NB0eduGi9VC3|TkWrF&27wg?fws;F0c972J{f`34*du2D{n>b%
z3Q3}!Y8)>zZiF$8qa%NkNf_5ZPD4g(V`gS{!L!$U={%F9TQIPAPnDdJKFec(XI((G
zPh9-enGchrs8ejGdRl|}vEB7SUt+`4W^j=~5(^D_SW;)E0`D@V?9-UIghi*by*FRv5p6!tRyPS!P^d!<_
zCgX1R^+(i0eyDYHufgD_dhh@lfl@RpRvhm;-9{5#s6hEKq!(*182~^IP+Tx^!U7|8
z^!`q^T!WL~@KvdH-j}D>&b`)_yn622yL!C1DEZ8(h-O~L(UPq9Ut+lTfAI{`rhn$9
zbSAs=dn~B8+tk%+JG@`gXWL2Q<~*$UUb~R5GmIfLD(hqM7xPgvU)PCg{4v2D7Sn&W
z@7M>wxn}`Nw$|1IL?`0>yOIk(%q*M6WPSNJ>nR4$HZ0O$!d$L&=)ksO+_XYpreS(A
zfAQ2>IMGh$pvd<5^Bl(gi*R-Bm>-k{v}jNm5C;9_M3uF7#{!LSNm%$0nG3M!FIU*Y
z6kfz}p-e5;^9)&ENl$bSyX_N`Jn`OMnHUr1PR!7&!C##spxHdUkaTiB$&10V_v?|~
z$6Mj4ev%t?iDH3W=Hp4vtIRd3ePT2T{w?&|{Rq>Utk3^iIO1U^u^8Q?ng7Vknn~7o
zpBu#O+o-|{efv{z>Xx)q<=j^W>jKa1hl4B5YS>s#K)^}y9Y?BYIhX*b#_Vs+W$UB@
zn|BXDt4)C6SY`vCxHO0#*+UZWd8aapKL0|m(eD8#!oFvHEwhPSQhSZhi!6U&4+NK3MnPf#@nm_
zNTfE_EHB2_3MAs~QnQCOP2`Gr3#7)Nd1G;#3LXz@r~_RQUUJibP}2RX_KfG|LK~sB
z$=3l(;{`@0@yXPr-*~Z=xWcGp6<&sakiU|}JxPx>U2_mB;kCGlspGS<`I5J{_rv#&
zZz}^p;?clpUlg0QjE@vYGzpZ?82I>u&jRky(Fq&;j>8M^oWme-C=XJY{fwk_sNZTe
z057qz^ym2Gu_fyAx+A_k5lgxvSK*P3h0F~^!CQdoHRA-MCY|J2mt
z6=Y>kL@cgOKHvq%xvk!zadK4tYJRH#P}eETeX}BN62Xkvr+cOI3g2A)zH*b0{5n$l
z8;f_2QIe7lyf$~Dv^&yt4SsZXaOj$wNo#7w_GZ3sWJ4D-pB(6JmNt1=@u->$C}l)H
zGzkCE0$>iqgtz(SH2wWJ&&?YA!M^9t?JkFZqwiTY6)yW&?Ql>UekamFt)aL4x^3gE
z%*;F&a(9+uMco+@_8gNAPEv)AnQc<+rMi=qkEMIxj|?`X)e@d0bp@T0&Z>2DRag=m
zPmRVNkG-kK9ufFt{LJ9{KWrtaBlgc1G{dn;Gkk5m>W|bv%~KxgkYHU^M_!KXvQSb~
zdRWVqs$wcOS;Ao|;*k8!;tFrkusc};|cW$`k=Jq%EQ--GN{)$Kkz8;Ql
zZfgRicDQzbx>maP%b7dx7pfvn#LBB4D@E7r3;1t_dAa*H;`$(}#bX8<^+S`z^
z`1kL6vnM)pYdvPMXHyjZKoT>V1fI9yW}T(;LxKFS%Wg`0OvYTjTGL5Cx{1tRm6q89
zJhUGUQ#5bjYL&7gRQ%}nCG7g?20!n&p8)tF7i?)C(*5Up`V6Edrw?%~iQpdE-|uLk
zwdklt2`30}u4GNe{HY>MiPh564wYexLRx8vAfRHhHd0hp4s<#2J?tIZ9u$_J?e9=0
zpp<8o4p;)BFk3ST4n+It_~C}5sc^a$i)J{OSz1p0O_n4%;Q0uuMbQzBy-->d5WZ!H
zSIj2He(R6+s)^b@ex~;HyxlhzFUZ)*S_2O{PJ_Q&$rk8_2IW#+7}l|{d-Hk>bs8*i
z=mB6IR;1`5_wFSea|}11a#?GCzD+$hT4DWNY6_122ONK_;RYlx2>9p!ek3D@4FR3Z
z(sc5DAEM&wHb`Kv&;YERwDK@e5K%?g4;7AV#kr+1r$FT!o^Leh4h6v%46X<@rn_xEcr&{
zMl00DxAzZ~_H41pv`d#N%>eP!k#EQEA8T2-4vRe2DoHT0#F)$y&0zqs_qw6ZffUh`C-G_ZJU<0YxPZHGuCnqaNCdZsL8+=8)sc
zaTc;rItF_`Tls81mO}y`f-z-=_DF56I6Nwjlr-DZaiBMN%$vwdSLQ7gdfJiTxwdg*
zs_j2PRjmuuW~D#VT=qj?``|MeW4ck0R0lk$2lid-&G7t^reupF8&NJV!FvjN`nxKX+kKiuDc#rnr)
z<>;!}SG5H<@kfOtb3*r8m+lQnvU!On)4l~L$ceC*A3IxMo^!uYbnG=rVag(a`Ao_4
zyDsZIv;O!w^B(o~wd~Zi0}Bkfbp5kS6XZVO|4McQZy2x#+aN6YBs*umi?Uz1
zTRR#stOPc0mk3+A5RHWoLo#6f+xz-1X(u-)$k;9)o{m?etog&YBUW&|c>MUn7i0a3
zw{HV0Qhb8QT5AbU7rgJqq*g4QrIxr`unK>J?6L|e+4pV%aL-bAx=k8lF@cq=x-mf?
zxf@2i?0XNp9m3!*54GGI;e}@}7Ug24*27|pU;Ssb8#+7{hgde+HoqJ#CCG=_hSvfD
z@wqEhi|reQ-?pr=wKGweZI}2Ft1AaM!%ix|x4GYO4}|#n`O4q9K9{~H2VO|*v58WI(f{(tQxG|=M
zjT5hbg&O=xuWaaid(_+8f>e>GA+UpTWH2h|1E?@
zw|gqwUjY!D-f^1B0v+ALqx;|J>+2(WM-lRm7Ifg-obwgq8a@*ru9baDqP=zg1~1u;
z!axHWtsW$af5PrZ`>`CA=@$2JB}u;T<%rut^t+SFBpx1dn@ugp;K)5oPF$;<$R^k~w`_CXu(YkWbQ
z#org#=dFj6=Kfa+^iD}kdaC;WDT3ydt!=pK71p;h!z&z-eqa|*@$Cmd$8^a0$8_HX2SPJ0^!N4aBlXS34Lh3ZRdiqb#2NYK^$*zIC$GheDX{MiQgE{CUdyQkMu
z2gC16bW3$@`tE9SS@7pz@U&MavoGEWa`uFe*WKe>I?{Jy>5dX~{#{Dw(|teY-b3+#
zt-oDARKk;t4m68wpqL9rI2=^lkf6AQ<93aVwsJFO)=0HmVaEm^S<3%`0P&8$Q$~0V6fU$sYAPHD8~Uw3
zun8Ov$Y_mbL+lGY_BP)XJ#QDn1l3roP}$(-?<_A1^tXAN19-nl>y6+a@lv@l{wI&6I69&N`rfz<}~0C3nr?$q`=$EEyf*
zh=pkzz0=KCZ_iYVC2}s=)_3o!%^ZA3(&@Jlz$%5V}X9@`dxhj<@uSXSQKXj53o@a{YZP;2J)G23vh@ag4llvjz~u}&MbUy
z)wjvOCX$BCrUtmFwWgM_e~X@YU}5yG56U+X5I{<*y&v7em>6w%K$Ix^=8sQc1?u27
z_U!cco=3&2tdu_-#wS~;UF``It7+lAsj=O<=XvJ8@H^>8y#|)I%x2j56*j{|d9EyL
zfbUWz4CFY)pb?)hDK|k=^}yy5Py|%~oOF2YaQRN&*4#&luQyFAU;`DK>^)r2)ev_)
zb-0%L!!bc)HR|-_aN@7zZS0Ul>fk{*;#)hn_vSkd`beMZIM@FD``I2HYabpj-Lw}^
z(itx?MIV3HW4lwQ|C&60AKfqH8923t;pZOQ@mlMan_5zo!uM3-Y
z8e8+8)^Q&P{+F7pqKu3Wk2zw$=HN&-+o%VmfvvWAmg9stM^1y0M>T5Pn(xoqJA4`^nttf>1)aYaA$_(|?mt51=kpjiV&Ck#
zU~DK0tHyo98!xfaY;dy&g9>)B*VOmADqcvq!@cd-QlA!=6h|Bx&XJb!Z+V_7zpa^o
z2$&J9zw+GkUzQ!@D;;A$?UWMu+gjL+Zgd45FL9i{C6a`%)_o_#8nhiZ9Y?rOeEa=u
zZ24Ojn;^x83fQPxLq)3ho0^|N(PhCRbEGE~)P^s$qLrEdmF=~y#PH9bmuw`eGfzOi
zUl&g~Ss!d4&QZzXw>p(xbct^PS_12D=>1FF-qTFKX>f?Jn?2UxO}YI??qQ#=iA@SUH_QV$MHNq3j
zFkR@ewe=sOTuO<$wpMNWky)sMRpgm8A88kS^0?T3M0U-XW77^hxNooLP!CH@-
zgy@WhPweamV~%%nKYjppWqNkRg#R(H;Rhy6(&R2EvFhpu=I;@IarRL|hZiQkKjp0F
z%&CSokDD#S4D_Po@V4oHf3e!29^c?bSBgKu#sZO;6D+rsQpiygWMfunIupcgczQCE
zfAn6)rJwJQE_Kqk-mjKWV(tJk4IXuDZ2#tkXLTEk$6B;^n2iMoVXeT0Z~ko#i!LKu
zz3*o42f@Kv%Sr8c9>x_@CEv!Y?hSKuqjm=^@MS?0t&c9J2wuy*-Ew8((Fciwpy5bU
zacUVik)bTMci{lYSIic!^QH%JfHM4vavc}j6*V}AzSV{C7B}KzFg94}dXGlzf;dpA
z;cFQ-#|9Pu9Y|xu{Q51gAL3;plsO08T~tN4g5&#{L*1&al+uZMM+ZOVROjFciw6G?
zGkDNWvIrDGT8B4Zqj=Lmx22-lQmho9)w2EQc(7k=@90;yAMR9nZfJhkz+-*{DV>stR9oSdaK%n5M|0Uz-^{F5RGS28cklqrPzL#>U%f^qcI;|5c
zA#QOX=w9q4&QHaTh1u!+3#L!RgTf0%p3(|F8?@&Ti4iCVIjbE
z?yAJ~SA)c`pPj__cJk6~YJXSS{5$a*_O99vzo*ZY7Kcdn?ius6{XFd*9K2o|u}e-(
z83ZMiNnv=QWeFvKj@8dnXRt4ztunEu=*IV>)cskh>FMY!WuJ5VPV@5G?52QN=KPI9
zCX+)V=+-d`w(%`vZT7VnT-%JK8?l)Vb(eaUHaiEFJ0(qC=CX3d20DsT^SN8y2&}mc86FkN(`XP$Z!v
zu=mNJC^6}d2X&J1bKa2)-+`s|+~CCW4252upjE{~*`e4P=Ud@yM~^m5oG4ygqBVL4
zp<2g<*}Y!6m4H07krQ%zpvOTPFQI
zPPHoS8MNr+HY_9Uz)jJSBy{wDk~bfu0Hba7yRdm78wCh>Pbwca5K9`vCe;Dk>Oi?q
zY{wioCxRV8i?;z5zFi0YKI~2BlGb(0y?%gbrR^dB+5LCtz?qd1deQCnnCXVyaC@O~
zb5BXRcS~guWOPeVep$L4o6pE1eBHlLHE8Ka(za%7@qgql0bF~=1~tQ-5`BcfZM#s%
zCMT6=LlO|#sL}qe%FyNykTh<{SqS%KcCX09H|#tTZUc|br3vi{7CC)LG6VLqaGtzx
zm*n*FWjEcod3%RWp4ct6i`vC;R4M76+u5Ue7tdPzvH`hHyrh+-o68KG`Khazh(%)q
zh|C7Nvap~45(-6q3U$fP&JMfoi?cDy?LBBz^u@xsuhVJiVqAfi7&9a+GAK5!;!F^(
z(O_vf>F)FR(GUaG)v~tIi3j4Qos6-m1=i@Jx5ffXUL<{alxwaUYG9iB_|!0d;`O~6
zjVig^X!zKhQ7k$>>2OAm$ii+G@VXyG7#_x6CLDtJ;xvp(GGP>9q!W}Ec(O5X68Sq8
zpZ@$CSGPDZbq4q>bc}YmR>&!ym&+8y=T8X>kird^p?_9>qtygf8FT`Xxc`0nWLL_ZYkn7s#yAXYoyDm`DO+8?dRjsS~
zHuX&QO0i4k{6=_4eh_^WZYP$F7cZ5+<>`12X+_T9?5;D1=EHfaI*AT;94adMiTiB(
zD!vDuJXm+t=umE_ilcV^reWPzr?%j73keJB3mE+$&uf%)wod9crCi+eYQOY9SBI-}
zyoU2rwW)sW0(CU*Gh~-cC$CFm=PI=Yc%{5%>yn0+S5|_Mw(=|L@spFPos!og(S%P2=_4@xguE|bV0cQ)7$qkb{%c4{h*JCT;JoXpLi61ndbR$^NqK36Ivu!FWt
zn@<>UCf)z5{n(LT7xOYlnRGNo-LvR(ssG)zJ$Tx67fhUoVuRW
zBZD5RPdtZf1nF~wn6{qvOc>z!(1PS2pL5U0W-bDy2ZP9k2@xzQZZumtmEQEzA*7~uk)N;JV)7AR#-(z#nwCgOXp1v?Sh9JdCFoUF{^2>ng_1n
zH_E>d%N>nbR<5(z{<^+T2FT8-2qgJb|4^j;+c$ZmH>v|n%%xI7ba^_=Zm4=d$Jrjd
z14JWL3BwtZ1#d!a`B%)3frAB;!3$D`?K8+2Oyv)m^wU-aBAOx=mwZy6B^~bn#>hFr
ze3Zf2=@jGW7HX}iD0VH!&7t9C%Llx*6SeY!KZ=jJxnGpByZZA(&R>@y{{kOIfki(!
zd;0koFQ^M--8MgWd4j1udo0x@&+3M1>UrE#3<>jCCz4!lV)5pQsAAO}~Zm
z%s$vdR#xh#=X(m>+kOfQA~Gi~2$I?oH3FTHvC|tTkr{_35Ap_y<%r04X2}l5`F7HW
zu4JPFC)HSl|DDG2GZ|PtWKZ#g-lrH^>5Dw&cyF7h$8dGGATh6A6V|!UIkpD5e(Srn
zSXg|4`G|L@nIP1jWmGKFRv{{u#~vvellx-gg0r@^Dd;u^<$Y^BKx$g!MGZeLyum3_zDt5c95Ay0x-8alN)_&VL)5I1YLPP+1>*3xG)Don$k?JQdHUfmuougEZyQ
zXMF2~yHlt?f2xAcAkwO&B~b8AhtCiBzw~QDsX)+js2*qV5w+=V>L7+Rk2J#7p*h7J
zZ8CVRDRpZ{gy=jfwbtPdm5Nhtmrs6vtcKk{S9tRe>`_Cg)8m%g7F*ZvM#2`^?WO6lwqt||9y%x>U;H*s}9kqBTlj?$rRujLxsL87;D6M^WAT7rtS{gW@LMn#4}wm(|RZBCvnM6v3_eU{IGd(2*5h)+OYrp}xR
zaaw3H501r+S6)83SoV>@J(bZp(WtXAj$zO_{yKZ8VP|oa`;~4Rob3y^);E4sFmw4!
zTCw#vJ;Aq`hi)AK5O)%E^-8BUZBV=*h$_%)<~_KR8w5@PfADO|-stR-J={7BT61v=
z#Ho>(jiKSdFcn7)C8K{zSNKx9MDemqIHSuSH3&HqOWJJKN~sD0(s)zPZ&P
zx3ebm%J2vmmfM&Ac``9>)dG!cud3e|Vf*o`apVsDr&7*hFLPEvTt@n~bvy-)$u)(@
z58MVe;wBtzXVQE=XEr-G!k2%Hqp|~w8a}9|=%~0uIHv?}%GQbab&-r?4nfpHFU(tZ
zu)VD@(HH5Lee-YwFE73c&m5&)(NHhPjA3`bRQ+cNKj6%hj0j~Ttn|+FeF3Mho|H|@
zNED#k+tA;$4Y+cpll$ve^tN=_j|ih_wZ-@L!E+f;NOiZnxvHzvjY=j<8y!h$ribjU>Y(QO8bML9Eww``nRWwLt}s;R58ikCy_8t)Ja2=_CgN;}
zY3Ad$VFzZg{F*#gPWpB&uF8Yfgmi+jwqoEuYUa!aK0s2^)3Ql5nFKM3in%9Q^87^6
zSB({?u6CNc$K1zMV*RFQbzX<(+>aomVJKu!aFmTj?)vYcy)WoH^M*rXtE%P=jT#jA
zVM6sNF-9oB3lD2hW=g8buA+5>2GTKd&dKHFcPJnKw(A}ee(^?D@u>i#$!+@Q1GP0L
zBW>*gtM1BHom!3j&97q8G22!*BRE~n*#md|iq2{MeRA`*n!$xA#q?}zVZ7DMiGy}a
zNF?f7j(6n2!YlicrGoQCVJ11sw!oXc$Xv3dA}*oEHPoX{x0WvnR)`v@)5RLIKp*b@
z1sNnB&1!v}M{Sq|y&1ZOa}teBk!8PUbPxCjr)%IhG$74VqOus9EK=Cn^xp8WCUFp7
z>Oax9h^nMgSq!V-H6%p|6Co1gB{o)EQXpwnQ>-tPSSE)_fvh`2w0q{dk(#m>E-diB
zk(F<0$PDV|N=eYX+cf_DL}$`KjYGDsbcnU#_uUX7EtT&M?iEiA>pq{ywRfD5k_fbH
z^ty~gr*>LeI>sdgd7Wz>sjlHw#4`v}N6zh%7y3PyE}R_Jti0(MjrI#kWFMTKsjE)O
ztZ2BKu6=Z-Iy?RKE;-Qq@K^LE2{e9HA?}=-H!HSl9_uF2n%$sw-A=OGzMw^Yb46L1
z_pNRJ6MNrd1-9z)%5;Cu|M(Gj$JO?>hl}R`z|f4TT9VDbIq=KLb5Ml
z)LJfV_5u&l4q$rR2hf8h#O~mOI~!o-2780*{l0J-eLYKS712x2o;MvK(+7a)%@!EtFp;24A=`K;x*bhbOT)NF?-B!
z{C@g(REc8?TK@9E*|)>yZmV=A7ER8bGD&}W%HdGMI|;yCZlm+0NF&J}iW`wgi|oS>
z?o^{j@8LD*>SE+kj13%EHq#U=M&blLaZpU|poeK2X?zyAEc=hsqXoBgLBF09_}tgU
ziwsp+R1a&XXJ~%;x&_H@
z{X@~2B)wC08l4c|L=C@8lz=b^B0i87ayPs0>U+#)DwR<3`QU73!|JhjYj~0N1<>hx3xT$VSY-z*2>Ngq#61sOQU+=#2Hz;h_h>$HI
zt%Du`W{gcg)h$E4qr`<$bZPzFUJoKQW21Lsinq?%t16U<%T%M^2rmB`0LwQ?9h7V%
zYo&`(k`J{m6iiH^LB~aWx@S9AhViCl(32yUO?UMnK4!>RA?-&O;B$2lqq(V!s?a3J
z%*f~GU75^@8@{qCoT3Q7dz9sygMuq%4zr39vrv#=l`no=8B^(
z>VRCY{Zj$S
zw2x0$t>B!MP8Cog-THC17Fdk-iT*UQS
zi(p_jvS;d&lP62naiWTDmn&ZgC|N9+Oqjn{LLpB;EKaL(M&1gac;t-sIY82d1#J>YyZCA(39&?XG0z}T!FlSFB*Ur9~16rlSDG_9L$we5GL18EGxNJ
zaU+*~NhAJgVG(pwhPP@+DQ4(|BE{ngb&HxIj`wGbt?LQZ}&n5C8p7CVz
z(1?`Q&u$6Ahrslf1sT|?{b)9?#j_C>j(xwcw@?{YPstv3uk|U)@7%3y6AZ6
zB!u77+k3nTv<@eFjyG+|K)?ys`gioLVF3*{Xd^JWH
zI&*M-bs=8AS4;YS+lSM?FvTrTBI1X4-iMqawvfahXZJ{;K)Jr!xX=DH-ZzP@2|1{
zC->B&WkckgxKgaGZC_?iWTZc%YKR)Y7LhpG|ME#^Rs)V*KVJQBlyGdA#hiPnJo%_r
zk`WKeV)?ZkRy2I=huUrXz{4zYk#+_7hikb-#_^DtF3&
zbsWke`vt$URFhLvWO}e)>lQGP{L75c*VmVXCuxb2qYc?L8bSM67tjJ4CT?2%_G=GQ
z14Pu-lIZi{3_$wEsu9bPbR-Im{S@@XpGILW1;q^aX%6E
zAa3gRctq!E0O;BUx}Xs*FCjb!E2lw+#R|L%oCr+Gq(?!k6uM3db#^uuVDj|dIjCHS
znYXt$f^qEl?_AjNN(1oL99=k^F1T_#tpeK1H9y{rsC<_m(^T>)&h=dL`<@I~>5|OS
zi3Et@rHT?mcA+Wj%SOeE2NNX-Uq3fovo|vIyUj5#$GM%v$Fqs(bK3jq&Tk&YRTwk!cEUh|1&X@S41Dj!C{(uag@@iz_JPR)DSW=W0kY|~mnq)UlgNwD0T5Pt5@(j_{x
zN>Y}_)xDnMW9Mbs1=4Obfp%z(7R0cH-fF9%5dZG-G2xRmzcjsF!
zSWlnwKAn71$elx9*I5>&2d%keWkUOneEjYfH9IO6bgc-
zPA!41Zk;`_GuO35+}_a|Xp_pCdW3%D>Mi)gYVWXFt5dAi*E(!w9s8oK*&AKO$l0Da>}$ewh;=MFmae;gD+?X^v_}X=yn7xpnNxR$*Bvivh}Lt$^~q}`{G~R~
zF|=0t^H{f`$05hMG%YsZG;jD0-K*WyNC=1JXhC}9M8U&W%jzJ
zyv@hR{sr=tj2=&&{`ap7>Xj_!=CpbW;TNBhisjH-?MlnsV$<2kcakjv4O;IyIbDrD
z+WWKVB4!$5S^G_VMLjcooy^6{+aIx~dbR_0{Fdh30G%g7{0hUVd5dD6IOWO1dN*&n
z0=cNk@C(Z>#glTb80h4671BtSM#!5QQPYsSrS3WLD;@|w;EZmps~gLQ*jzk0q|l0Y
zT>065*WJBuVWFJ;8f!qY3jrE+%Ph|QOUx=);44>(S5Gf~zwzzH$+`l&hSw%YbDf*{^*rmNi|l
zg?Ojx$ak@jZ#Xvz}-qT-ce)m!^xF+
zSz&G^uNS1CL}Im2RrpqLzEM$3w)hb*TjJ>Tx2}7@p3{5xCLs=HqnvrG3^b;l6bI`G
z4$Q6mT6l-JK^uQb@cGbQ(8ETbjYoN5I+%ot1q0j^5E>c^25ZB21t-h7^Ok%81U^e6
zyBMBaXWkqh26uO#E$HA!Z07E~VU}37T@6z8LM_HrqLQ|uyeU;3Qw{A+6CWtG31NWW
z?gGrEbkJ_XPqnSsaCP+b!CAq^>jbsiiZ8lAkV66mi?npj)|$sa7&$*hvjXf{g#smj
z8~>ZUKWV7VC)C+zN&8fki-AxgSrL;Cs~Z_w3KcxFLmq{IW3pJ6#EJ*pf|7}ThSh&%
zkpzJu&Dzj;?RfQa&Y7bZ?5qaH4`bNMQxys(J}$SL2=_WcK|S|
zS^B_(VZlcA#7;jbX0YtVFS|Ol00TLe-aUQmbW<@JJu5#>Z~l?dodE2J$Ew|l6=hsI
zbn&HQ4K@UA!L4a9++K}~?c536V|QpXy`IQ|sM~?=`A?xU0wp*n*%W8YAoT@)#|Cd$
zFh2u^*{;!crj{wtkh)TCiOWONfFUzYY$_9IEU2zt(Y{OAY@)(9nwstO(zKFvH1r9U
z3T{krztTldX!s;E>aUcWg(c~cePBtRG-~joP-0zWSs8wIZtmvZOXdANUPwQfY9=^a
z+`Zm}Xw1{?DL#+7*;E-CE|s#8n#YD3M1jeH1$Mx?iB}xof}`lHR+g4cIh}kML|XSW
zB~|Ed4Y=t_8^aZ!xshE*xmy)}u$EJeD1d){I^2hdG(me3s^VM@c
z=)8GD_RK`^f5wt_fPA`zr`g_tX0L>8*Gw#J0ISUXf?+$I^j*LxX5%(4vRpiJ`19`}
z-~!Dk?Ic9aLVLb~?n919snpWZ9Xhgas<(S4ZJxVrKg*YW8vk$kD#N-cO&K6}a&ugan_K24Ey`rIzYG}z_j
zx`}EX>YH{X>-w?3XS#a4p816|!sHW=LQF%8(J&4ct$-8>ob-}~G)s^lqrxl*+CVhhG&DN8
zg>385>RsKwg4DyrSaz&&$A)cko^2K=0%q*z@U$9TRTt2pw#o(@z?=G>*&D(?lZF7U
z0<(Y$RUnP%3V?~+2hzw9w%$1!(yMFQmre05v#Ckbn@$a{F3@OTq(j)k)$!V&4!=$~(?o6d
zky*8GVz`uVPR0e>h+8hxe_YP}Rk<=~+X>fSBmztw
z2Z&YLdL}R%f-^wQBeWej3kVul{xfGRCWFS@GhsxqA89{48)y?ZjZk}jV@?Jm-U`SW
zYpGgw@OvgRHeSIf;+KwXhCZk1*KXl~VVtCeC*usyWHh%*vw(jgEPntWp^|2&CPnW?;?FjFkWElh?8a@RU;ykj{2WKNnjsOkDnI`9FQu45X^rZ`I
z85m{faf4>aQn+c~ZqT|0FN5LknF|9%{06v*%(&EMB$yPKOc?*CDU}yD1x_3ZV!nXj
zzJ13lOm-GL*D`|!+kAAA)!KOuFPh6^~%*AX}oBB(K{LXQHMa3o#P(^8zA
zAh0DpPTvMb8g2DbJ#;$KEd{)luK3g6Q*2x88k}`>TF1@!YL~52wCI>aaDBMT~$ovk6;umgaMs#bUvgsP}
zbm$L*9u|A@X&`3-)Q~%pkLS#px_hp!A`;yogT^N>=L6h25sA}!INuB*96@@4K`1M&
zig$}&yv;nB?EPXBSRQdIlLBt&fN%WVGbRlIO*q_lDin8Q@Hvbr>ioP73Qx-R#ck;-
zrjMF7QU0mI(e9%%MImv?cB%vCse3>w8AifoYDs1D?|tvBTVI{pES%m;an0MDj%l=~
zCi&Ip^|yf&GXukqJDLSxsW*l6n}IAX+9mz_?Jpm}yseW0{FRoV8wv$9C-2_zD;P0#
z#2U-;+Ug1X>v0O{L|*+
zrtU&WX9NCu8{yt57Z46!9{-;Rs&HqjjhT&qe_EYKs|r26ty8UQ`v5WzR4^#dm+w@}
z&n&g|&LvMQXD4kRH}2VEvJWor5DuZ6
ziBWWrC=Gc98xi*K+nUXnmcV%%O=hzK!+*`az*Y`ptFXW@CMaf2uj)he7V6Fwt^0qk
z=-^W`BUDaQmYG=;zQ5jS_oi#(u6{1xHi!)4DoP^c_u#odSz@%oUSrCaX&OR=GTU15JBD8&Q)gkn4CtJG&dtI69OPQ`9@_Z(#$I^
z+D#-N6SgQ#{~^D!7qo35%nrd$TEk?pW3SS--*8GE2%$cZ@#3nj%BR9SlSM(ex(#t>
zk4Kwr#B3A*>^5Y!&NlVvnRLMOY#T_Wz<~5-&A!@GnUrOcu^b!{GR!U7EC3{kBhR|0
zvkV>Oyfe~n6!x8uOK!d`lo(WxYV7DKjeGTjSvhzF&b;HrwFPsopS=tThggmRQt6dn
zcq1(Zz1rl98-4YcIuj|cs5p?{S@B`qPSmjz|4jo(8pp-5o9}~>n6&d@5MaQ|_~i9d
zuj&4tPsVdue-FgHbN^x107K=kF!aUOeQ`Vm_{0@-yLbVAy~aG6z^~hm1}z&g1qF$q
zI$U`zVH%Fp+sX+Ki=1aWHQb}REk7)+&=0E&-KdWDAvbKle(v+Sy&;VQY!_|-Ehd--
zYaDL9rV-5{hB#7M1s~Y4I2XCYdE^wgk^|F>qp+DVhz}3&P71iv*6!auJ~)WFfXPH^
zg2ROigNO9e7B}BN;bOv^x$+r;CXG^uAuD)0W>d`Mnz_tpT7x(7EA!dy=FPUO&!<92
zcinI~48Cp4ZnY$9-MgEcQF-;&#N?kE^&-E?2j`eZr0ESLjPiUZ?bUiNAUFGCem-+W
z?~!lahz2rTm*5%_vaz}oR*^#6@9u%>9;eWWCpO3|d5oR3v_QL$^$MIp*hC)X*w)C!
zVB{(c81A0U9^8{jHFmS7Q+hYNs-Ld(Xk`L0A0RoQQuUP)tM$;it#BMW8Lt*^YJs>i
z4QLmdEpsWw8)SymXD^cTKw#fc7_g&n&d<+Nll`DP9Yj+L?bd89Cywe?=~|v_~HC*(Rx!H4fRl88*GaTtW_-q@Z1x6RY(*iIcGH
zYGsN>Nns%=8!)#Pi(&rFK){?vT`a2(1yuVqawzr;qIL*hW=pKj4^EKckg5V9mZWD;^EX*q7
z;U?}x5e6t|0NUXdfSTIiG$IL5(6}!Rp_4lJRZ_s*SmVZiGrO>rA+GMM6KUUJ`N@RMYu;sFN{=s@1=;bc
z;ae}LTYC-$&+r35S&l;{j@CfGZs=D=3L5lN4Kv*7T>+yUG4|}8bB?WMqiHbvlj-W-
zKcl__7GIY&6Cnd4%j3}4xZjbbT?IbJ$@Ejz04{o{I6XaW!>VFStYvU;aQzZva}p^9
z&=;BPrwXLLNI#s0F+mqV-YZ~N!i(BbD!ZjZt`fdGjFC*csX=39xAZ!ELao^v7*l1{
zTcT}QA<}Pt51;M1=gNu!cY}6D@Rpl*MVoRohgvf!s3XedM!u0<*+8k`5&%=$b=Eli
zwC@=3XtUg!aBrE`pmPZ!0L|Cc699$=1fS4?p_;U*%^-V_DmWn!+s7e02j-MPo$X?x
zl6dg-(^13mbdxzIIhlv_B-S`kpdCC6!IA$BN>;V;XT&fSOlYi#hF07ZU990nCR
z8B7Y`-K3Z4bp4&A$%iN9sM-SV>;c=ir$H#96%H-=@aP{&KaZzL71e|`mb&XQ_-qdU
z!oBxp^Bq^FX^fLzm4*o?Cs}D9-25~7v|EK`BXuxR0w`GI0O=B*`8YkVyJ#*lnIXQl4%LkdC^7EKBE{hX5Ha}F29_YQFC#23aUSD5#ki#~vEyJPM&CWavO*1hv$XU||
zwF|O14@JJI&I_I?TWJF6%EvFuA3j{wG5I2gV852H5xZZ^Nu1wu0=a{JPYw0@gMndw
zv2IdFRMU1Ml^}>zT)(QX7f}SPG#~~3l`9p;@S|=*6Z8C$>>WOBW8TQA3~sSow#WBg
zVwmlcOzCbEjGq)2;8ny>_g}hWe|pTPIAXB*lra71kt4jsJ>HrimLmcK*TUsODo8=3
z^g%nbp`9TKpwITbaV~aYlJks;937V>2UMy)F={;q352mRO##u&n?eak=08g?bd$y}
zjrPu^_n%yS
z^|M!9fLEM7%Kobm`O(-p08PG1lKb<~Y!ALY6AEdzH5wTc=8y%ux)wO-NjgLtIXGPA
z|5TTxLXtu!S7b2?fhkCEAbM>O
zUat{^^u{{3-jarQvFxJ1ARF=kS^N%#QZ{Tcy=UhP-gR?i^t
z_N2|juBkHX4MfY1qgX|upQMvNds!&a?dw0c+XT*qY}%inP7&&;
z0y5___i)YvnRcSKgZ_ZNcgguDmp#Z3&qVk)lq!56ty*Uiwjb^=3b!XSLJ&Sn3U3y)
zCwJC4($>~vV{x!_o1iNlb~#arAAlfG7no3Ps#Ip=T1&yLrBiMS_3`d~AECq0S<)Kb
zk(H%8zh45`D$;Y)D}O%4S^fLzlpgF`BLMxiGTStxInE@|6F&8p#X?eeSYn8mM
z50p{1LpOHzZ{thHZh}ILi-{Ei;MRJeHagF=6&fQ>*8P;P%doGos&GJDyLdG^53065&P|1m@SSCWs2<62$|$pWdS6Ld5QxNH(B
zV)0L~XLkUg=o(o%79r2$@{8^pGYwrI
z0LcdSLD>%7XVSU72LdK^Ev8p1G3<5q)`a4il<0H@ww|yFu#Pg7Pml6WxLZ!~GLtN^
zsvIUAUY7>csnpSXT2>_o40=H;b&Mq4M>a8Qe
zOn_LWzGsA3xwyErdG8+&qmKd@3klB4&!6t=AAr3{r7B!{vjwwxj8C#8Mgn+B0G7~Z
zEbfms;
zBClI;UItSFB(q)D0pqBl$Irpm_S#jmE+-laJWl6ID(cBK#eQFF)r;sn-IN#fd-|R
zSKNTF*~1!S1JeC7QdBikI20NNF23|SwzQWHo{UL{Fe>67dgboxE(Mm1M{g;+FY@k)
ztKs8e@LCup4ymdzNSk6sGDQJyGdb11@*)rHOBp-%$>-dxja*8y_`rNI_Mc
z$w&u4*!6h0uwPS}AE~2#zdP6j*mHI1_(}Je?ksWgYna!^9$cFsj#>OfT*%awY)j9de
zjJ2}*Gj)xQ?VT0aYFJx-MElsIj;A#l@N87rFL{qO)JX#F`xC7JEwJ?_FIJu*_w_t^
zHcjHuVMRjRW3KnsT4s4DL`}~$%(;fR4>CS56{pU94pC=GMNjBeszV$BK~`H!#FJ>1aaNk;%=M9Uzl4}By~Ga9th4WotN9|cPOPhR)%
zZ(Ym(!RtzX(HqzeInP=p#p3EWY|;R8%Q?WP-Fi6b91hA0ll6H
z87ZptLy~Uj
zJcKlgZVM?o)P0rqb5&J90>L~@#>$`4)>u>$T6EGby4z&s`IX&QU6qMSkn4W
zI^)d-1os(e|0yzjDppL^;Fm&$rwetI@D6O+7+I(25s#VQ{m&bic~0wIkc0v80|wIn
z{`97$;8taxzHWWN+Rzr#*0T2MMP9+5y#LI)*WW@RCk62uknm30aR`6X7iqFC@>PE9
zU-CzPi`4){X(*`67e3e!0Les_KC6PdIqr)4M+*wd8K3v0HB?wI&WpM|%o|Ux(jnME
zhQ!HnD^Cu7;rvtmkbm{IYc?k@4C$5VmzAf{M${4@4+(zUC(r)xsF|Ke)+DKKzZD8u
z+g*70-ycKmBvH2@^$oU{?g#%lA#xw8XtcW7QlH22^S2fU+{!JX!=LXPANuzTF{_m%
zwgJJmIlw3#gjmh;?(I$ZcWeg{;vwO7Hby=1eNOt0X4JE;;s1_SaWbU7Vv4~js9{(r
zana@FHuRVna{@n5F
z+9?TJ{{E@BFX68{|31@nmKA#Uj0*d)ej>ym~Zn3Yo)4KAAgzBhyY_gB9zw3nRk
zZI?okmSU6OMG1Ruop}2G_gNYi7QNrh;m$kdMgM#U%cs15jz|IWDDlr!{Qu~i#SH(H
zTv<5Yqcs<-+s5PyJV|xh{xoV>(7_Y-$NxM-mRr{==%gl?O}FJ{xn*ML->c^_{A~n5
z-7`m6qyJ2fd&r?Gv1!}j&U&Y62AnzdGQ86Ji=?xVghcxRuup5^~R{mbLbElV`$Cgd)10iOVm>#J^TCiKE#~*SK=;3M4
zc#tdherFf}yQzR(y`MmRJA^0Y6)LR19@k0)`Kx>Gi#Sh|y+x)K1`#X5&#q{m7P2M>
zjXkK*Q@1X2|I6xLItH&)DR9iF&zjy8m{+QK=qy&Bg+P>f`ojXIS|Gs-TKf~_y9(|?
z{xRPCzn#y&hj*Fd_n%CD{JH!F-}5|Tg1oYhMY%qmrKBNU}ely}~Te;D39`@@dtocX9k5P31m9dWoW`Ouv*W{_O(H~v2%tDs2^
z%Tr}7;SX2I07IySlvgd<`gl=(Epb8gAnEgu_n3O`*J8!wOh|_#RZkc8i$!*zqnZ!m
zmer)G*xYt<(O*A2m!d;HotV4%8y(A)a${~JSSRgy^$!*NS952}+~)yk_=>1^=OAIm
z^%z3u_`dv~nZx-iXt|+eAQvuB`THN!PiY^HPP`WX;qcD7g-?i?Z$j#bqX5JM)-0<-&rx~fZT+VIhi-cCJuL*`wSxU_C3R0Qz
zccA#M@DW2*0?zMdVZZvF^2fp=^c!=zvs^JM8aVj9m#)%*2GNm}3KW|;Z;9Ql(@qjBSU*Jn57)Y#u~wY&?0R))M{i@^6f
zBWK%|dlW;7DeDAb?(aJEir2!+IZ4I}^Sow$jSA(iL!Gr+vB#A!d@43Fl?%?|o$A@0
z&!I!nhRXYyr+=4-MR#>Jg45X^rZo_p-B<=nI=*N*NszVrp`-uOspE&3Uj$FiFa=;a
za#NmZLIksZbnDWUo*&-fN!AbV`}Y@1kf!&16X^SstY$e
z&-dfWFA6y8BGL2#bNh{`sJ<~*;qhZ3_HA`~d794>`eOmwrXDO%(QQ+M
zRk}$sP!qKHev_T*)fhY1tndQD9_BmKGRk&76hvJi+A073V3wYmbYxnb-K&4_=2j{9
z1nX303v)Q!L$pQiV9pDa@EOhcZr)qbVk*ky=|G2xIi#Xx(c#Lk+Fe>~k<+OgTB%Pt
zZs`Ab)=H-d{prqfLQQE*=>Dv%uhEQet3NN-=)bh=UnZo^?i*Q`r6+zX-rS3*H2qFN
zob%aL=IjUt-0|N*=4NNa*l8e~=6-j2R54Pm<{fIYD|k^)|C(5tFDtXR*Zz7iEv
z%GDu$bcM5uT!pjO(C?18%Di+`-Z7!f+qaK~?W@7uSs&v;m8kWX
zf1ZwHiaMmDwb+$AMl1WcWqGm%((6Ua(fAe1o0{`F@Ln0IRXbqrX}pYO;xFjHvC{lq
zqm`1WNoHG24Z2iIot|}XP0gqkD)(I`2&8xS7{+z9A7n2VIzj$A@$rzAFd}7DshI@hfVYwi?@|!JLE+xxs}yN;UO9F|k<91p
zt!1BzPXCtod6$JCbHFXe(#+M}lS=byO>}MST*rup0-7=O%uPTu?uY1aw
z-&cwIJ$$dUj$vv4qLE*r(`b+F7|-fq*R5_lrIQ;c><->g^2L)fc_0_w5jTXyOaAYdezWsb#?j6%+@npPA1O8Pe@??X}_q(blUXj-@f6`Wt4&
zqyh$2uKD5(;4^3EcU|&=fZK+d2sO%I0M*E9op)j;G@Jim@+)Z
z3ku&1V6L8T8ux>?RAs|u3op9Y8a?!>g&tT46j-@H=iabr{7R9QOz?tyab-Y&Hg5NvSeFz
zA8Gp40wz)VH*y`QU{@p`7D#+9=show&=TlhCB~%cO#R{ul}LZ%fdPtkDgJMxD^2YV
zV)F!u8B0rv1Z@e9RQy_nu|Yw+ZE5oLvDjn#Sel2DsUAKH)(I88TTQ(fw=Bj%rh<{G3kKs+@dc`0x@W3LQx
zo%ykV&*5t(6g%bjIaVv=k7)~T@$~DymL82Kl2iaN7u04_3$ogIXuI`wIq6~)qG5~X
zHea~em&S1*jJaa6K0VJt(^Z|uo6uzKfX`VGGBwDZ?X6I&o$?_q<@6DI+;EZC8aB)B
z&ErFgdoG{#Y!OY`90vrL?aYC7c>{@ruP+EIO3Gc$ORbV6?WRcIBJ;|*5=O(YLb`L#
z6`=)HX!?u3WRp;*1K+LiGaA!6vE2O^|Mri&0eK8zV2Cp1LziNbie3(p9T4E+*#=v|`cGKEms#yR1La
zWmx1n!HtDwh(FrtyJY`?IDc~+&rJ)DeS0v*?(4>en>X(y8WVCAm(Y~qp>w26xz
zjHEe=4g-eDN{4X5V^Tmd>hVb~E|Uxo=+?I`;lqwryX
z31*$X<%eB8OhyTiQ}$U^)Ye{9RaUO~;F0zo4N+{iE#1OS4nycww-stdI3oBUO`k>h
zBAUlbrsw9YJ`4}1Cwhba1VGh67$vmtFae89zXd`;Bp$?E{PB{_lsF&$J}Ni`mu<2w
z6~-uVBSIjHF@ETk#O*g#Mm;MlI~kB*YbzNIrY
z`$Yje)e%r-cKlqd6;dq?q&T8^5ZmW7y4+Iz8Cb$bKpa>?AZc)DCCKC!UHO9asNYOa
zAr%Gc+Ek7<@MLC>Hv92JgopBxowS6ChyicA4y3SXp%o~1|*?(gX|0}n2@q~7LPQ%NiSKh*{AsY?Z4z}yjGK2wngCf5XRU=R_AK!
zN*hM&`5A*8oSu|Uup*5y#qlD|9zWAnt05Gsqdmx3^{MEDzu_&HARMXypPzr)0XHm8
z#RFpVYL{Htwa5Yp#aE;SZcb=X(7MUh7x00xU;*2(tbpdHvTcO!Zk7lgh1*-#dq!&D
z9GRvYo>ex4Dit}22;t^%j9j;dmXUlM@n*gaWbxxav*`rja{2%(vYEk-rRoYdgV>Pk
zlSbQGQ9c4`yA@!kR=QRQR7Kj@j0IySw*a8fql?ZD!gKQt)Vx#~Hx!PQk0Cd@Snj}mrRCFTNNy`7
z7hs!8H9vDbf*1af`O^}$PcpBfZNhUZqBauJoEJQ+oP-1+Pko^KIwE`r?~mnUC-;KC
z;u$p=>TA#HIv*z|r_a3CT}8G`>^E??E_b{@Wis?0DN^474{QU;QA%G{odx68m#;5t
zl6#tRp>uS-VMiL+E}-H{AeVqRqWx|TPtfRSQj6WlQJ<~nkyMRnH}7=N1cX4_*e-i{
z0ZE%Md|zNBG5mx#`v&s-_x;}`9WDg+j)h2EOE}{vYyB1T8xfroa9{(18ENA%#Vf&~
zh;u2CAe(6u8Uj41u@uKf3xM^qP6m#Es34E1r6|=9fY@HYta2EriBZN6-VP)9rIFsM%vKZYdr7-W>ObLw`-TGAJB4D(!4sU^Mh1hBLZD>}P}vPEXgB2Z80{=2o6D
zD+CyBi{4rZ0d*tkurra)s&iYKWTguixVR7_Qc%*6uTkLV*KgR=RRjwV)A;cVU4A6g
z{}BCFq>>U1k)>%d*K!NM|=
zNg@hTpU>2gVHfA+Fit@@))#&BI^elRgs2q&P)H6~H>8OOoy}{Q*T24T;kXYwlD0dc
zV-iqKL>)zYCbc>S~7*c9tdhH_D;^^JF~Fti-TUdY%~Do92jB;f(S6@(pZ2|
zBMqg2CC<5x2A6^muw(E;-#>P`kM@lU2}Cz@hBYR%P2~1{a&Yz01^P$21{a3{RJW>B
zCzqVT;D^utRvp&Wb2OSBSg!0)C>d44VCXIkE;@PRSPOt*Qan{)gWC$qyz#DM`RM?#
zviXx|#FwtZOHF6r^{)UB<#fu%dw<;-kInKl9<@BoZD4!>d{P0b?2HTUr>g{l@{G+m
zLWw)?qy&;SYGMlz+mS!?L~eOyMa&`i@wcPAOTxDS1O4Hoe>SFCK4p%GM-B4O-ac79iKI4hs4;8;jA19J@@0>7ZRPS}&~qmH
zKREx{2|V6w9b`4tMzl++bV(ZPAYHOerPQeYRyV3CwE!GBw)6@ph!n>~E19I->1Jzw
zo%N+)0}#Ngo_i9ZY!6Ubr=TT;6>c^*HgOQmrsU|353mxjP-nai>Fmq_mmqP`p-9@i
zDbiZRxymJmKxV{>1wi#}4l*iw@8xH$3z?FO4)SlBUNrh)E1w%l1UJHG;j2{JjIz|GA+%juqc5`gu6lp~k^Eu{%$Z#Y$3Czlk-yTOOB>SXd7R72P1=F
zLjaGN`lh(&9el>v@qEMle#7?>oU&LH!S;Alzek#{4u()cgh!oFG}_+QoG>FeI!{7y
zld3&akPf?ZU`wWIO#9H+x%0j$IZQ&*nkNx)+$CK}fVm-;#v_`e=AkwEz4id8;z-&4
zHSF+ko?P^SwOWl#cW(+H@iauJb_L4EwagCJ`O_CuHb7>G-B34NP>^G;|Kcx-BYp_&
zUICce_Ura7fG)I@;#h?v_2b(nk^qBYA;$Al@yz4mhpu+G<>z>-th0Gwm)wSF5OZz>
zZYl&t*>3d;-_gMEHdoi5Ajp(=28@vE@>6Efz4^*RaEU0fjk-5$%OM35fd6
zzA1QNhn7m#x5!z!5inic5si;=gkORDt9xbrUOxZ{)UPY2&sCB}gsIuUAHbU!5>Z3>Qq$Z0^tzV@oh~5%GGjC6MpMZ!Z$7*+4BZWRSL)!xx;<(
zix-3?OvZcgjTy^qDHv5u9cgK=ZIThT1{k7uR>
zGonbxdiKLCoe2Gc#r6UY+mXHQr*4hxy-RTk^XFtatF`R%Ma?Ro&T{FvRDyR_qZ0V$
zuZsEe!=La5ygE7ikxJG_c4*RoBshYzIBH+vD7#Ni^1jrYr#!KX<)+7r
rt7Lod@=VYIc=-TBtpE2bd0=O^FmIAsN|3Z0`RTci0Y8

diff --git a/articles/convergence_efficiency.html b/articles/convergence_efficiency.html
index 13ecc3e6..2189f7f0 100644
--- a/articles/convergence_efficiency.html
+++ b/articles/convergence_efficiency.html
@@ -165,25 +165,25 @@ 

Convergence
 blavInspect(fit, "rhat")

##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c 
-##   0.9993523   0.9992551   0.9992936   1.0004693   1.0002688   0.9995652 
+##   1.0038580   1.0050116   1.0029365   1.0007207   0.9999798   0.9996668 
 ##           d           a           b           c           d dem60~ind60 
-##   1.0003304   1.0004693   1.0002688   0.9995652   1.0003304   1.0001991 
+##   0.9998789   1.0007207   0.9999798   0.9996668   0.9998789   0.9999574 
 ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7 
-##   0.9995248   0.9993610   1.0003352   0.9999007   1.0002983   1.0001137 
+##   0.9999265   0.9997547   0.9996561   0.9996701   1.0003716   1.0007611 
 ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1 
-##   1.0001140   1.0004980   1.0008832   1.0003361   0.9994288   1.0002750 
+##   1.0008513   1.0006355   0.9995685   1.0003373   0.9991198   1.0006442 
 ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7 
-##   0.9998132   0.9999516   0.9999156   1.0014462   0.9998534   0.9996252 
+##   0.9994047   1.0008251   1.0000629   1.0005872   1.0001243   0.9999353 
 ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1 
-##   1.0001494   1.0015445   1.0011951   1.0003289   1.0002080   1.0015132 
+##   1.0015554   1.0057950   1.0064286   1.0070192   1.0019918   0.9998743 
 ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1 
-##   1.0007028   1.0012236   1.0001419   1.0013441   0.9997055   0.9997758
+## 1.0014471 1.0020098 1.0023198 1.0028363 1.0027588 1.0034479

With large models it can be cumbersome to look over all of these entries. We can instead find the largest \(\hat{R}\) to see if they are all less than \(1.05\)

 max(blavInspect(fit, "psrf"))
-
## [1] 1.001544
+
## [1] 1.007019

If all \(\hat{R} < 1.05\) then we can establish that the MCMC chains have converged to a stable solution. If the model has not converged, you might increase the number of @@ -224,19 +224,19 @@

Efficiency
 blavInspect(fit, "neff")
##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c 
-##    2129.797    2213.042    2522.738    1834.788    1976.567    1971.076 
+##    1732.846    1684.525    2029.599    2022.013    2088.001    2343.846 
 ##           d           a           b           c           d dem60~ind60 
-##    1695.770    1834.788    1976.567    1971.076    1695.770    2526.628 
+##    1824.235    2022.013    2088.001    2343.846    1824.235    2430.655 
 ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7 
-##    2878.475    3174.016    2110.898    2486.032    2588.707    2548.746 
+##    3129.315    3172.419    2499.230    2132.873    2826.225    2024.139 
 ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1 
-##    2448.895    1815.524    1589.221    1758.106    3448.222    2164.839 
+##    2131.339    1711.606    2514.839    2028.523    2837.712    2401.707 
 ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7 
-##    3625.976    3118.296    2120.941    2233.933    2335.221    2383.304 
+##    3504.485    2408.789    2074.405    2017.526    2480.885    2066.115 
 ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1 
-##    2121.529    1195.621    1151.652    1284.297    1397.158    1455.436 
+##    1772.881    1084.681    1008.963    1037.107    1307.964    1543.916 
 ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1 
-##    1555.058    1187.214    1193.662    1166.296    1153.599    1040.533
+## 1440.280 1266.660 1126.238 1159.955 1096.600 1012.904

ESS is a sample size, so it should be at least 100 (optimally, much more than 100) times the number of chains in order to be reliable and to indicate that estimates of the posterior quantiles are reliable. In this @@ -246,7 +246,7 @@

Efficiency
 min(blavInspect(fit, "neff"))
-
## [1] 1040.533
+
## [1] 1008.963

References diff --git a/articles/convergence_loop.html b/articles/convergence_loop.html index 7ab18af5..3ae656f4 100644 --- a/articles/convergence_loop.html +++ b/articles/convergence_loop.html @@ -158,7 +158,7 @@

Convergence loop
 print(paste0("Rhat=",rhat))  
-
## [1] "Rhat=1.00301474648599"
+
## [1] "Rhat=1.00278759516961"

Note that we are only increasing the number burnin iterations, and keeping the number of saved samples the same (1000 in this case). If you want you can increase or decrease the number of saved iterations diff --git a/articles/convergence_loop_files/figure-html/unnamed-chunk-4-1.png b/articles/convergence_loop_files/figure-html/unnamed-chunk-4-1.png index 854e056a6ca65c18a01217d7db82dfe11ddecc2c..737c9b5fc1f3e96e47c2aa2cbb85be379cc48783 100644 GIT binary patch literal 263456 zcmeFYWmJ?=_cneH-8j;XAkrX$QWD}23eq8s(h>vGjUY1AARr~(Fr=h3h|(e5Fm!kK zd;2`^@4x6_pCJxYu4Oz-)Em|UwfZx?-Qb`EKf{8O8@`>@hb(GIsjn10|4eb zJRI;7LyTb~@D1m^qC5=*^|GglQD+lHPzzn>Cz0h<|-k$aH zHqfdS-k+~HRpM)u;jf&;&(Y+F|7iE=*^2hEy4NcLD^+Qz6|JluRw+kjRF?a(`)}57 z)hy{OjCSPTvvUGc$2Xyx%3+mnH92y4yB_AeBILCjHnWi0V-k!}vN%;*{r+lb{_NfFoJ67fwz`tKL)`RNudUKgHkxfaz*Ke6$#JVct0U z_3PKGp`9uadOAET<;g~`v!n|?GAOZbQ9Os7uCDHnC6Qr>0Tx;YnwX1v<`4LfYq|uQ z>o(hd_}~fkU#%*G36T?D)P<~jbN&1Ju%pUn$14!&LrWS3e?)c>7#d4~I zSEhJ>h!x(G3qF8h7My`Cpa^_JZTejBsYp2<8v3_p78MnZRPWrevou2-=mCC_BY(t4 z#L4|yNBTUPmNa07pJj`uM{Hp2i1_HjJBzmmbw4VGzT+ayZaV3oMV9LuU_zDjK`vxl zIg&~VkKcu&szW+Gp|x^a&6?`!9|H!~=*A`|J)%*P`KU9G#yQIAYN`0W!~1HxKLXtW2K~L#Vyr4rDDk8Y!rt7JTc2ARZ)CC>CyM3B%Ph9DjTK% zRu@corv=hp=8?L*Xb|0 zxw*|#)jmLr0^r8%&KiyQ!huAyWqw)@Dk&)mkxVOP3^!MR!7%+%w@(I7S>=(okqSLg z>M+~DRwRVbaf+rD>j7XW@7DVbfVhl zUaM@yFV`#Yrlr|K&_oP{s2Yr)IIW{EB!D^9(KX0(%kT?RCnqN_5g!nT1xq4uxmdeb zAd*#n4dlH^(k_F~H=W&&mAc${lPq!|)Kk6+f-eY>9ERq~*#V5yN9%t5`c=mu?&|z| z(odnnuAZ_bKFe5VbWLARkB>0NgQ!J5EBbnF?Z`2k3~HV^zs1H}^$*9s$Ck62s;Um^ zzlT3(`Gi7{_0iN3BUtf@%CI=c(OgpYz<%~=CET=c940c zqZ3aGXr8RPr zFZ|;xmTEhukQ%>o&67)5+N%-}i8CB5QiQSZj1(1n;4C%qv9S@3^lQA(3tQ0Q-DZb8 zyu60_s0iR59@ZRHo#`9ch@#)9qO`?7XSq!3zwJj=Hq%&eqRk-2>7=*!fPc9r>tf`Ax~I zEv+);qI`1k1=|fqhlUPq*ZV7~tEw3GFTADP=+|BYS(+z7*2B3J50i}P=al@y1w1aU z?5(XYMEzYroHu`e?r|spP5R@QY>e6r>+9<)JXDipp{={jGQucV7yets<=RLn9VZ<}(ecQNq6!U3U<`K1K!WMQ|HmbI^HZ-Lk zCXf5YDqYD3v&8_gjEjp?cBv=RH!$!HM7dH>Q3>aM_pr2F+W-gvlYvx;lEOgL=1Z3Q zd;Rv+Pr-3BYWLE{W{c@%;Wy-L4Sb#+IMANj4Fl=omf8>=8yDv*ttCZ*egd$t42U3) zD(Cm^c0jtF3#-Ypn;zD3@m5p})8}E|SzrH|k)NNB-_qIN-){{0dEX!82SWcao*pi2 zDizkunNDkPIzK@lxPMs`?>{s4hEdBf7~NS@sIRYIlN*H#B{nRImnnY>E^4!V_lL%j zk&#O5R?p6fY6&^5QpkR`-Lw~dN9~WQsuNPqCO8YNnMgqVlf|P8Bj7I%fbz^!yq|?K z#@%nJwwqQ@l`#$9V1$@Xp9aqkRaRHurVXr-)fC80E+1WtJq-PWFj=8%GD%A9DL3n` z-f>b?R5aEYtpZR$IObz*EvZK=DjbiBDZ=_o!p-sHzHN@cUq}#8mwdK4~(2DnHa2 zhQNWk?yKk0163IvHE+P!M5_ zm^Fr7g^!Dqvv#n0=V`UwUZvd?!frZcfe8=IO1H$O>{9i|Q2)3^sC4#Jh z0px{rt^t)nyZd)tTPKWVcKRTri9xP0rK?cBPK&=oZ0<8;*VbN~u^hex@NVuJ5Z6To z1sjPoO%g0(-7A$w7&zLqzdboGJn=g{XU#xnpb2nf;RZ8_CF|uEu$N3*IjuVUkeBIw zm0oANJ1ANsgB?qaTqT+m>r|MK0~jlxXlrU7SL~Zcb{u7N+Mzs2{i(pKON1)i=sQHI zGA6VD3rzQZ$K;pb@-*{va$Z;+%c_@r1ASu>9FzoK?w1(Me8QlTsH?KS>wq{ zYYiRa4o*J4CQNCKb!!@+MvV{#(~VsM*NgcdIgNn4ZsQUIG8_-CLm%e>qpixSPa67wMOf)9hBc+7*;TH&mH-U5kq8IYGqr6Dk+InLxDJiKrQfR3z6rmQ; zTxd7lM&IE9m4^DmK^DJrP|QOi71}e>KQ^)yfk9$sx?@)vKsyyslxB&>z-7OHQ0_E!bkja81aOt@GRWN>*gR6aKuFl9pd-+AC z5$j<|(q*j?#uwGuZ#~a6-o1NQG0zl^eixnyL0g8LF=w`hvbu9}hYQS;NF;-a(G!W| zsrSH@kEF3St>nL8J~uSjI1Bfjaejyg&H&vBD-B^G#hr^A?*4V&qM&tzhHXoY$v)Q!U z9kKY$Wi>R0xpQ)IrnOuM{OchGr05=?37`3^!41t-& zc^8cR(9TYgNg9BRj6nsaOfX;UN}nh3qRv)m_0mRmBKf<3=@;S3_uG*mdf9EKeIYGM zroEoi)$AAElH(Ma+w&zx8)v4Oy*hB!Z z9AH>Hoz)6;7rY!SDeD9ZtorI}Un(+OMN0+Fj#4lrk-&R3xQjsDp` zO=&Y1Cp}q$7_yaq662nR63}K8QjJl>BkIV zFR8`dIc<1)JPBI0-alZO$NGCO6g!p^4#p!{{OUAJ0CkC&mNQinDZ6ID;^*@G!Lz04 zLy=xqwqLXE0au(I`W6>wgp*#%StXA>UCoc-5WFPfR0HB03vk_=yQxMQF}*&7PFGW{ zlz#sA!0*5ZR{i(DkxHA7rmI!7M(?nJ4#zQA2_Dl8D~r@lni~uj*e6{a@8A2+6AF4{ zk~StlJ8rtuf%b7oMtHLyA7}hU*t5`PPP8iO4v&mDQ@6ZaSZhzXs)(&Yl~mc)zrQ{| zV3pzT`ixJ81aWNx@Zpw~U(5Lf!EqXbaMT&DPE1fe?CGzW;t5(nKXMRQjV~}$h&_IPz(=vqABSEPp zB)mK?VBg4U!Kixt@2PM2+v>Vx93UzCm5WX9#qL9EY4cCit>(l3g`t8j?W9*QZ4g8| z<>lq-pD*3O%}pp6|ES)^ou~lVs7wEWwR%C}z0U}o&=*VWP-#|8iIW4dwmYY z#>RF7vo0Vx0R5+@0=eW}T2&%K+5|7UaRDY1G(YbqDacaBpGUZqyL`lwraMiV+gF=b1Mf2nRc}CuV`M3PD z&D?)!-1c-0|4QtXk7OFIXlUUpSfCCU7{<^4<>>c&w39$SDiXPemyC;k4^V}6TI2by z$^xgr1X23n)`?`5(^`L=uU87d`bPMQ~nY3!PCrkqdILzs&0a{bW z4^~$0l61HU!tgow(sBJ_ln$l{W{Vf<@(w7{1A`qCVD$|7^1shQ-nU#2fdAI2YiKML z=jXq*3Aer%wSr4RPpz-1DWnFY)jUxF(@d$N;^Mx1zM}m6pL0tGm8eZN-{!l(h=>T* z(9qCFVV!&6=7NHPLS=kp#J%Dq^?&OSEV|(K8wyn`nW(l#KJ-wy*iL4MbSbG=+V;Brbf&efw==KR@>7V zVYl5G0c(00&6BRbOQj%#wKAo&?43!`dY=ElCZtq)wM6~Dmj@rrIS`014|~dYi6p$~ z`2-xcHaEo}Bbd@JUbJ>-^!d#-c;o=e0LT=#i*Xh=mnZVTH4P9h@U(z2@V_(9=if%N zv1Dc_05jB{*K1fC&j5eKOagO6VL(8@tA!4uQa5-&_8rm9-JoXVi~rttgvxdQK6LP_ zhL+Y-f))Mr>RdVC3<6hTWQd#ov_#QYm4K@1Hr zn9wr4n6s7b`H%TMKVc&==p@yFGmNXFjHi(E8iXf39e)Z+nM8_F()+wq6Z!w$75VU^ zFk{PXM#mYZ)qtrk0>L56GBg{dr>QwY175*MB1M9Q(FXk9Aws(Li>_@?Ray`G0$Kl5 z7vZeok+HGwZ<3xhN?p%5CVxKJ4W|+G#WTs6u9jwg{LkNOyiT_-ApTMh^_5vzGU*dZ z(I0_n2+x2Mcq0Vz1AXh(?pq)Y|0cZq-zOZh$R&kyM|pYqUJM)iYv1PM6qLN3T`?<5 z4JaMVtx+y6q-vv1TLABl*oAzdCMh^e|yKg2d`v)6{b8&XQt}8D;BqJs! zuDAK{p`p0A_(-!#8J4O&Y6GCrt%11rS86~m7+{~c=JFp_=Vkq`>51(`x6p>54_db; zcmgrv;^OR*SKAdK+SGf)4IW4B`f)A=2m^c*N|3|uK`(+)w>T|Xpx+1#n}#6P*OyK_ z&u}n4?JxZl6u9=i6KGFxsQa8!>S$$Zy2L<8$#WheusV#oJOjPV5e%eo4A4PEyBw24 zfD*|5=@(+UOIlDZ`Oo+kUF5dkpD5TN_;IGXJERYF>k%`_G}D5Z64j*CGGK{9@M!+`V5xgesI#F2Hk^k9jCx zsicdrPFB#QZkR0^DiRdF9{O+I^sRuloz^jk2&x~e ztp91$CfmP#Z~rDSG!YZ{B<=4)_FsFO8){SOl0`L#c9MZ4l|YM!MO%?53}9h=!ksa? zTOjqD0Mkc22_HP^*MuwgpgA874liR+I%860=kkRe%k@0V%CKL;G*Tq-o*B8h?S$wl z)v1nQQ8{z-l>pGljrJGv^rk-$wgeG}Y?~QequiT&`VHj=hu%~{AUqA3t~M&#;)|@# z=N2h!20Gn9%p$dQchFDUlV?FR!6%UdZ*_Fe>`hIxiu7xCnee0Sh;RICwY0Qm+{0k7 zNoJfo%s(kZTIY@4@j)}AN6L#3QHGoz{Lw%B$xo&b9AMMuW(Y}Tz7K@44)%Km#7bEJ#+x_9qv z9(~|GROyr2g6?36*5=pf@Q zSv|Y*gP73y7qc7|uJ3?pk$XF}QwB=XPIru-i;GJPd`(F(4zvNO;9f9sd$iE~H$+>j#XcA;mBtJP=5c_aS~@`7JtX?^y2|fy1E)Sm zFbZ=5rQ{S8K0L8LvSv^NU)(tJg#=S%mo_xSig`$t$Z#}Fuouxrf#Bdpq6h|aaQLt9dsBV3Dx)4@XmDEX7`BZ3Wgc;o)l{d@@=)A<3HpRIN`sCzFCtx3!f=3ys7FFpJEjEI{fK% zXvnx3)_}WCosaBvdxgLWdokTA4xej~iR`F=NJp9LT9)cotfpulP1L#AG>|NmgcHca zFw@dmk2%^1)sYy?na7AuViTf&q5T@i8y9Z*;{r%0dvN{)aNQ?yzhv|m@GlFD=XmvK z9$P^kbh97hTRw~}R!~v)lzu}Nu}y55JJKmSLzs~J=-3#oG`!PI6a*t)l9N-^)2q`C ziHi6psT$lNh@ZqxKF+1GtgdizHFL@=mOKCPS1_o)qIG6y0DZ6xNiTXBfbxu_7yW1i zCNZD9<3kWQOxV{M!2*Q5xd~*fR`=Dq=MvP7lJ}n6gAV?+5R;!Fh)vQukgAo4COU^U zwEHtO-1L6;xsoqZvy(5$VcFbadUMrb zKRM|dw8`A?sg!G!bo{Q))BMJb#fWZJMV>Tr=$Kt8RvsdcYdeV(PAKI=usUK%_2m-cQZY zaCSjN*Mql*)|=u9LoAlNW`^5rxp&{e1)n0y{<>8#>w~t$O_O&#E9OGjb1=72YZjE7 z1f!Kui!)B0ktVu^f6q24ZLd5VwHoY_#r%^pbl~jlN6wn3XG@8>DUXw8B>JWi#XcB8 zXmh#~#>2j^QkbD_G)GP8eu9Vyb2(7Tb3~07R*zcNZIiguX~;vK#m#N*id1Ys1`11bNCZ( z_R$u1p8%lgWN0A4khiI-cg*r^te-lAt6fvHB#U&F-~f1%35~3UO!t^mNQ_oqkHHGM zLAnCd)Lt-0Uk9`Bb)ohKM&HKtbo9>t7ML%u)$MHk|9BCU$@BO?G(Ipya2_kqn{YBys%2Yczy}t@X%$b zt+t=7vm7MzV`tkMFNI?`luuVz*^D=l+%OCV>my08QHFAW5Ih9 z0OaA^9{w%9(QW_q$b=$ZngQSlO|m*=kE|G}cnxb_@_ToYMj^rgX!c?QM(b(O7)a9q zza*5pmX76SNxi*;lArpyhxUWa=kIa(p=zk`JU`0(ks0TGnPWkKxkU$Z?e(m}HC)dl zOpj}!-@MO5yanoG1Td%1(yeER&Frk`GZ~5Jc*@?SQI!@oKRi6~_r&R7{zktqzM6+$ z)7GHt+se7eB*j;6b0{joS~r|voigS2u}9yF&&OQeORCR|jWz*PKtx3j5_R4>VN{{cpk}Yte?4;=B2mgh-AqeE z#?#I-qBS%wMk3n>cMmPHhFvt@bnUm-GSlgPGdWOI8yCNmQ))J9$X6&G=oT15zipO& zoX&R`_k6~|`lQXqUgeubg2pu>Uvi6K-c`jfHVoluJBz~BcdeGFH(yI-OI%%%_8^wS z{364TCz1SZJmB6RwF;D@!Aa=l8dpiOOy7 zI0|&y`Izoy^NLTWp4$wk7Su>KxDw!4nLOw*ec#Q76WfY=xsbpRN`SL`)fp?D&V54o z#HIAuBE`UUw?}-MabTQ7B~t1!2j%lvhy#T7m8`Jza)wHgt#gDd34j6aeZO5`Q$cfj zr84bGFmyPVgJ~=+K$Ku26s{BQV3^X(Xm9+M*ouMghr`A+iYn|+Oht~5J4&)f49jJXAQF0> z3_QFcF;Z(sv%RLEqY6x(|LBWqkxyy6m7>9KP-`r|4ZGlrq3c;W-p>Es4D7qnYt6rT zid{lw)@7s%`qgaXod>&0-An%@iKR26nAl$@ts3r7Fp5f^1Qmb zcN>35OAGofnqc2VpvVo%6Kf%yUe1Ey8>7<{-}k zo}_6;-;scUO|ZgKwk_t*AM9CH=g8S$=-@`Um@ZvwAhZ> zU!*vp(k{*SE4hp^jz1X}7zQOgO53@~+u%O&>0NMlgu@N_x7^=X`OIWyFfCGp6>$?k zPtSipfj}WDmkbTq*we5KK^c`uT;^QwjmA`6#kHTi_pat}2dYsU)|m*=i4+>C$01Rc%*Upi6%rO+OJ$f?!Mt&J)-D)xlMU9VQ{9 z$Igi1j+C-6DRCqtd4xMB+s(&C=dhTZ5K1bCh70kG0ex+&Zg?}O4M&MJ?R!l9Rr4+=*lG;$Ihc^p2hyfAXVo=}Ag~(A(RY5F8@V&M|{F5a~~m76RkH zEmvrs8YQ39E&%(Vycm7FZyO^;+xTy`V|AZ5aSxL{H1sl3bXc3(D(BLd64+Zj!tiK0 zOt{-AHN~NCzG67TO0!VQsPX!&+Y+TVIL#oUyM@MnEOC6doUnxD>89W*VGj}gxcCV0 zM^`($J`)Wqj-%mj*-(Ia9Hl;ebj)E;91cqXlTy2=%({AKb-AOI|t2(FQDimZf}BhSy? z$-SZd;q6uL;<2Pf#@+leO{>Wn(_-X!@)K{1HGXxDUqtcGC+BHK<>ormeMxS+7xNL4 z^JSXlk5?3>>|*(e(E-zWxrRtdkw;z`+2sB2dmC7Hr=u_hY*v@E0_jMiml4KruY95Fk9 z^It$4mX5?iWj`{OuxLd87E;%W<%L(Le4pJYd>Qf>hDpp}aavybc15w2L`r98?H)1B z=COFmO04RY{{23)@cVcsu2y?tJh2wd9g{Svl1wz5eQ!71_9?xdHx5K72UMxQAE>?m zql^D<1<<0QnxK}xtgkbcW*L68{mWx*o)E1LR;~pL7@WkkWndJMm>;8RD)zs8JH=`u zmFD60RgkqA8}b+{G8eYg>psT+LP2HH9YXeig_U=yA9;H$_0iFd?Y}EmITreb4Fmo_RGm`DacBJ z{8o`A_mGYq{Rxj}qxP9b0;@H}Owfz#7E9#u?X5FPxVHT$NYSpx(dgxi)?MJMGp_fu ze3b3vD5IO1jAVh;+0IwgXkl^PRta6%kAM&WYiZxyMR~r3qR6gd_=|&P#6#U1#xt&P zsYgSecdCEDt-9=eCNLZIk|GYot=|4{N9oUh_A(KNYSdJw`OnK&*%BXaSDln7dEPq2 z3amZ@;vsnXn-%Q|!T&V%0imOdqcxQ(o-J+Yzm_m)c*G^YmLb^C$7tB>>(dVnLQ4cWAG3STYXjE|GJBP- zgKs%2N~1guY53V-NHI97b5?;wmZWZN5sA-+2Wqg+XSrwo8Yt+U1{H>qiboMU46iwi z3jgq9WMw@30DG7lGyC1e>nUuG`1&G4tcJ%vLAb)}Q3P!~sfb2^C4k+%cgc2p-Lg=$ zHXkfFuM_GKpAvW`R&SzyK40qrsSb9uiNG5pM}lynI^j%^M=p{J)%|EtT;kBC6hJa z?Kpj|*mA^<-hGSIaow@Qa**}(>R9KKJqi5+=cqgxoTkj7prQuCL)q!$?9N*cjF!EA zgl0Ujj93TdOFuxtQy?-kGZP9*H#7rt)ExGn>jgisx#{%E%6%^)C2QA9yyMwT8Bz#T z?uhou6^3xRI3^zXE=#Ka0%e79&SSn(y`%bjctF{26KOt<7%}2`t47RibOeQ7C6%;d zrrAG1w5|Kg0JiUbFMi~_fS-!gH(Ld;oACf_EhvIG1R;24n*HvA+asCaVq#)o@1q~8 zsL0z4RJ_u_8qyn^2PNQhUI8Z5V4;vdL2Jq3xOeq8&GH+!`b`H(ysu6uzw0XQeQK3l3kqi36?c)LF_d?^3>z`M zwom%C=9^c6{;Cjv#i^}jKK#hNUtFbbraBC2bu1w-04g+vQR`)tZa#3A1I)DAU5D1* z>3)Ld(^TOPt>m%NXQk=aCGQCh;lJ*KmDi~C6W@A8$LuU_o7mV;1dKkfhhIQAUGv0C zf8O(qeHh8qNCo7k8ieAL&4e*Sn?s0O2Oga66icQr4w3V%jBJxvfA)`oT>URrjI2M; z#;^f@+%yly4#uQ~l$FLd^0whL)$gwrB6#6d@+7(U9jaLwazx(nMv94D-&E7O62UFq zf-_?yWK&3Ne&MA548I@uY0A<3@7kJr1?nJklj6kYKZx+jkxf=5uQ5{dSXr@5#ZpvK zA3n^ApdYL#(_>0vG-wG=bp^?r?$X%%QODk|EF@IOvF0V*w~oGVa*~0{pQfp*w8S= z=A~WPpgX5F5B#0INBvSoA%Q}osYr| zv4z@Cw)rXfIxh&h7s0ibDBr->F|ZZS^j`5I$rGa+|8THDRBx7KYw3WHu_LrPA?ShvvZ>!I87HmR*tUk=6^tSs^=^)yUAi&819pxIMS zMGlGg9$Gwhx&up7?XaPJ{=ipM(h7>JGx$Zz2c2Hy%^koJWzK zChjkaD=J+K>HO0n*UCp-emvI+-K7(wo9K|07x29}dNp!VZ7+i=|5r3QZa{zD<@@rC zz5cM})5}>Z;Jv!Imrk+Kj%UWg$y*LyhP670McV9o?*Oc@BGJ^M@QhLCUn*Af3=J9k zgkc2X7kb9lvgk`uDzAnuWhq|_WljcC_CQ%EAT9GUTl_|1{5=it!+YE>iV$;Ik!+Lq zh-n=MPfw%5-`~rF9l+*8)VbyVC9(mXOsvM<=JM0lN&5PR@^JS17lvg@!B=hqYTG26 zZ1EB6kD;}-KYpk!-hj*4mEnB$9udLuIHZ5+n<`gW(H}nFn7U1QT4jUs%!O4mdn@XW zw|Fl5Tmh`^HQSz7(Y*Cjl;(O!`d6!GWMVbBjyor8He01AF!^^Ko;|Y3HETN;LyO-)U+4TVVUZYOVN^)QK^&j-OrC>U+?f_x~^^S z7lP)|cTGC>h1&FV?~O$46~zIiT%yGG>yz_Yan?4-dvT;QiQf{_4!#9hr!0V`uNZg9 zO&TX?97kk{*gwF0_=s|U97u0*hto+GS=!0=AP{nuNkwx4?qOjK?$=F!+&$#4ibDcs z#17_MX-77Ek}Z^UTB2Z}WQJw1?@ZyuTpxVNa*f zC^ub+{P!@w+rwZRzZ!R0pTn?PDDi`BbRR43_hX^iO?h8K?Z(VoQt*r3Ls}EQTixw{ zWlS0e8lv-;ES2q4a`rfPcU7IjBIyRAV~Km@YN!|sjCB3XkE;ty5|D*_QdC(}VUqNX zeLFZMF;-Zm?U8f$thbWjDl-igJGVO3d#;V=oZK|xuBS!AYUnowcOz9A#g|c+_=9`; z*aBfmvcn<_4ex@CNO@jKz+OK5L}pa>VDZm(@#C*n5AZ17MhR5cMH3AI5$k2tiT%k| z>`4q0iE0JnRmUO*4(bkSOFDB?UU97M6bz~H>U~^?^{UG*OjUz$$U07~fpBKq{RjtK zprA*hD&ku=(t^(rJoI_oL5F?>G0XGSmzf zM0T-(^bfb`p-<_AKipa{{fRP5kc4ya%I`l)kDhTeNP%eLl0Jzu53+pzoFqQUH{-G7 z381Q~x_>}K61#p~1TaV6k{=mdj=1beWh@Rkc{Z*-9A41VirohrEO;R%iqU@*HsK2~ z+_Z{Pr^A-P<6wE7jhnWFkiWz`yO3k<76+i0hv0|rao?5rFI|d$k=K`F{B3o(Kt-`1 zA9tz*JC^%1O!l-9DPD7}lq_-Lj#$r^INs?yZ{MN>51*DBWt6 zHU<3_bxHcT2s1diJ&JRyVR)*nFJDzRaM+#^pom?o+Z$n(PWLtTa`2bcVFb~M*DYoX z8y>Hm`AC8Dn}q#e*E^ZewlMS$A`|3sIQmUSg@TsfJ#YVdFFS|2<)42mDLy%UIQDI4 zBl`SeujLd3Af<|^K;@V=b1lJhlU^0To6|(MBk7>9 zm&zQ>EXES2Z7C-zWj#?wd`ayChVTaOy)w|oCOxm1z|TJrcPC}oq&K`eA(jv(5~@Wa zFjQbmWj3&G^HHKjqm^H=mTBRM8jFDd)A z9ryQ?&0YRk(Y+Wkp?~p=(%leWewezMX&MK4@EN!Y@HJIDr1N0&Qed7a7>w+ocMktu zy2r_l)e@1>;ivr79uq)xM&J+qCTmJO|0L?P`a9e|>0g%+paHZ{4=2doit4;orKj_i z{*^L>?>ZyMYqQpEHdg-jI&0MQ+TnYV8|kiLz1MLC!42EBI~346+l`>|<(X(Ll!zod zxSSPtmuR=M2=>Y|`7|DQu;dj?br0GsN3<(p^;aAgxZ!gohAMq(kIVlahv;SZo_pEB z6kKu=t^G_m_0T-t6XY20(K+Gh%1CI#?g!%483S@Iv*Wi3{HL#{I?gQ5%jTF0#FX89 zCZ5?lADV~Rmg+n9*WR{?)`#ReQZ|QOs4m_9*cfN5P%*E8-Q7F zOdJ*J2z{0xs&~DgHzWnMlYV+HKX!Zm)6BZ@9rXpUj8A!FXDZApYH8K3a(mZ3~?LEgA8LKA87E9_(9pPxLo538a z;Qo`jWf>t32Lb@^*q~--AqxMGY!|7B`fs|FY*Rp5^Nw|+7my}X!KJX$6L4o0&7c)I zj1khMkIi^=d$u|1w_P`?bEtgA;@ZVmKDNc@9ZDsjs6FC$^*4&O<0R$D*_`;qJ9$Ye zJk2+05g4DmNn46urnWS6j(hn~JycG%|6-*e2g2##cvz*`P)CQ#Ep`csM3O?vz;jCj z&WB9vBO!*L>MTY#2kot|+Qx)Wm8TkP2ILo?8a;`P_`?nNy*`tDT1d-3L{3>3VQ_7+ zMCT>nT%NU4=^P1XhM&dC$x_fFwYVGmUtWa;3i?-XPdK&3rP%S`?)3R|{9gU~wl%0m zMMM71>f&ZnH&wj$i^;l=0~Va6`;sjW1hyQ68XI6K=LUO|Jiy9~iyT<5eLaon5lAFIdl-y-Ht?VBor1UgajS+lNM7!AASWl*$u%YC%3b*5j-x*h|Q+8 zmkxEt_#u+PlJ{XOx3*T3`IeNNccW22!<9Hqy zoO)U6LRaHkbEdr^v32av|IYCKtQnFXve!VSaJ#4J_G{WBz9 zJCc4(9>pAKzA&A3dv7&PrLdxV`j$4vM0wwdYv1#6k;nw6$#uTTah+7t z{#nw?ls4Toir*nfXCYHuxY3_I^izg5xEfj!;$rkFLH3+zOe3~E#p1c=$i5TAWEt@e z5c87TXCVwLaygx8)pUF>Ca&~5(KQQx_p`5lD)qVJ^^b!*7;atkjr|wO&1l<_!<5;e zx7mB=b-A1RjlGLx4)K`&&ksV`-$!6Mj3KXu z>Xd0$$^5NrKfU*!!>^BTS8DhxE#?`8?Q^2$78F>T36T_*Q}<5_q-Y0U-GhP!ue5Qn zzeu9TgA`BBQ_P)8%HS?-lvLPz(ve_Z_h7rd-gs`5k*tJ${F>2{PV@FEHpOf8Bt=Z> zc`)g<2zkd1((LTw+Rbm!C-uNHc?XFe?Gv996-ZesJZ8XnrKwrJ^>r?*l9Xv*uho0` z6?VVyBL{tyIiARYrEoTDSHe+iU1MZYiG1VoVlqqaQc(2A^}iXrq6c7y#jN`V%*^=r z@VEGKxUH>$p{Ax8ru(#GvLV?S(j4#J8!b-op z==a46MmgB6ABbO8*==E6e^l=hG4MFmR1$F|w@CGVZr`wMz{4SRlZ$1UgT^!B`2923 zDy-p^^>R9Od{Wq8m|2>{Wc!L`+I6FiMd~MwZO6tToM~Twg8nT&@#M~`M8}r-4d@@X zg|%_t{mcPZ__14p(M|Q#Z16o_H5TDhPk!a}D?M$37+S2M;R_m{)R3dAP1cGH0Bq7> zkiWi7bc`|dw!|0P{=D`ygn@ZBWsXiHdd#g<&>=2dUj zu4$m_i__%N5eyuAgDtf7l{4-)=I0KhY>(y24pSpdhkgtETr7%#0DBEi`+PR8S5*k7 z3jL>nVqZqd82(JOP8%D@ky&fnW*KF>wVb%Ki*|%;Oo&%oXf4UwTVoLA!QTtE9?a3`)$&| z?9IDH*L_MV_h7=mHz_fyMV*_$TT*(BnN1gC!Q*u$e~Y5BD#>PZkc($n%}SHcJ#;JL z=c0F;2FFu7kQ_KLR?7Jpx%{G#nr21T+BG=-n17gy=-Xo*R1UVhb^ zEb24@Ha4}_-ncg!*`%Koz?9d>TP>L{-v9|do6GQ!P5#9{@&gaxWd_=w42Vy^X6^!H z+Zg5r7Q$yhxs=py?sT;s5g$XbVlxguykzSF^>hHerJb!(|%435Bu)bgFtDbHsEPix7A+~OGpr5g| z;9xmc%YN!ja!P%s@H|S`JYzpi{N#K$Z@~6ahnP7&I4zRi$l3Ia#n#spqmfD_X4fFo z>i4>4KI?mz4yQ<6_uVnvt({E@;w^i_$+uuxXW;lY;q5$4J38Vl#JxM-x8v~2XRPxS zg;n2C+5R+BbkTj-K;_TyFw=g`j+bP!m9mxkhjflsDvsMf>4@fm%QD;P>V$G-ammw< zyhd_aU(TTR?&@BphQXxV+eQwJYlP{l>yG!{*nia^5Ud!|HBGU~H^GHVy#=?Ob!^;p zbGi+gO*+(&=5{GaSVAt$Ts_Gg-8NtVEWk)_bZs1koUK=2B*jJXtF#aO2;BR`hvD6oK9`^_164K}*>- z;r|ha{#|#h7>LCMcSwEH5?NW;d2)D{A3He!mTo6~! zbnlh;LJmkjUr}scNvzr?I4f=pJIXi|gfK58F0TDgFTiShYmfMxq??n?)_%fl79SNw z-Sg`Sk=t-NSEjzpLTCzNNu&xm1=<`xkD0c)*bJ|NHx1E*2zp`pJfq~JNqDT z$t>dUpDM4s^!#I@=N$XqoxBkp#qaT$j6MY%=2+^jD5g<%E~k!rO~E(wj}o`M#%7++ zQ2gYoX3n@P#wgT5d_laF&4C@47L%p!>XIQ3j=O)mFG~R_@DY!9NByVb#*>r2=1c8c z9XxkK@&Z@MF$ewidnc03v5|)ugy621qpitF zVFdiOOJ=5BZcV3M=@^+T zIuJj3eA%q$UTX;Wg!jfGg-V;1NpJQjJ02UnaGO^HJConcEHN5#r9VMwHm3TX=6cMB zDA0KX*NyLOd_L%?Gb^dj+Io)Lj+eY{LZ?eS_|^F-_u)PN6$zEmM)}vpsjg;gt=V*~ z0etYXr)euwUPkp)TV8TBpFJ%283Y%kgr-#W@m!Gj*%Mm-}eup7lA0okJHuQfppoF zloU)<@Ho~uB$C_0)BOIky_q9`Ima^X@ot@SPY!}f`%y+F#;196oMyB}hQ$HXFt5h< zhvzEWaE~q5`Mhu`hbYYC6umEe@0|HAj~{Z>1utXCJDw6{hAQcKXR~sTBlFT|=|x?a z0=MKP@wZ8vcSS_Sn}aq_w?A9$zwO5)n8}PQfc@s71XSPhhrM40b;)4J@11;F1c@8H zW9>eIqM}ZMO%`@4|2%@uNC_6&=Hu8-JudcOt^_>jX|^->_kCs~*!1h`2lg7eLBLcm zx#OOT;e9*sSa~zf{+38mGd{Y9^IK_Bv$P7Sti#UJ@2v>DISSrfU!y(YdWGy8R22(;!0V=JAt;~gwOz+LNsBc*Jhg5}x&qUoH1BkRI7+({<3 zZQHgvv2EL!*tTukwkDd`wlfp^^nXsBi|(qv=&Iej_gbIc_gR%1jd((GzF7E0#Q!|2 zga9vK0s8)PQF+nwiNHo0{i^J&A~v67%%Y8LyhMM0Ms9h&JE-AN#`pXCQ`((P-1(In zC+&kK2$MIk^z|J8alE=io}$d<#{gz$A(ywG^PJ}C&uq&}$fQhlrxh3BxHlm$f|qUd ze$*x-y&zN!&ywh8H(b{bI+Lrh3%pfL+$;xkaq})D$$Ve6@q+sv)9AnrU(ag=`p^%v z(@y7pld`9tjZ3}yZNJ>&dVpkt{G@8b{FtHjY1feDk`F-`^1gBz$p*?TMhl8sFQ%XRTw|?*OkU7!aa8vIw;e$*s&kBsO(c5|F%}CRpVj zd7K9B1Z4`;qm=c1T$RzUJKm>iXN_Hq%G(l<;tbvwT=p6wPU`onNe?V{ZZ8|P!B zu9Iwh$CceER)j9XGAhUTgS<+NZl{kvu~|_h{J94!SEZ{@K)aj{WEX0eW(?GP!YIL? zGw~H`o5MJFaDZyPrKi8x`GM=5gsUyk5UTx^;A$Tx_j( zI30=t-M?=gn{z-EhHp56S#5;Ye#XdRXDMrLziKC{(DGR9UyPosY-x{@+T@Pp-Kf0Y zBpWp~hzP-L#R3bEK^JF((_uHz zP8M7*pI;^<3;0qT-#`H_N{BrgZ`^(Qe-(-7*}fOB0@2FtO=5HFGHJHoS%11X(X)GY zb%>Jby4?=0Bev4_|9l)u_h|d1`v8tUSm6xYF1=C6JQtZ?-j-&_fBE?$ej17Z5+3HZ_iw>&qMbkX(hNQ zNlwwvJAA)(o?8pgQJlWjX4syIuMO-7VaIXRd2WbAUX(ehzG8 zy3FQe=JKD`&PD&s@4EqEOtvG{p>|g4XMp(_m^WD!!_6S5Lop?pdIgwVHCe&$W^F2( zO%|~3D9R;{xcfsnM5S2}lm;gybe;4`W~-Ump32{>cYjYL`Te^}66$yEK1KX9!FV>;eE3PMh#!ymr3) z+MFxvxtxbDe^uNpcMG6(q=6nu7a4pW>nY(N%{fgaT|I-BAa_3zU+$#|-URr+zkcA& zN65|w5xVjEQ>tQ|PWtzJA8HCTE1~ku{Rp#-)~nt8=lHhq?r*Z^gC^yM2YA9e>lC;& zte@nSQ!3_?w5WMS)=~*rV)OqLr#`Am2((J$NJ0#!#<5qAX?!It5+%V00N2Z@|9-1U z={$v!@ksz$(#lSE>tUR~FBdexeygX|{`$m@FqW!;4E{&_uBX>M^_a+bI@?MsD1^gZ z1U!S-4^waxnq37ahFktMm;Kq*I4cPQPG&iI3Swgf>Ykj`+U=I>!E8=`ZGv|i=rgCf zR7*-a{hl?*y~CV)!ke{5pc)0?7VK)<-*hrBn7>~gJ+&9o`{bJY&%GVuJr}O0B+{|R z(S)D`NpTJ;*sa(2IVd+fJG5Eptm>G<5$EUU%m>A3Q4O*boqHm?J=+#;-th|M(^0TV z^qUs85j(1xRFmRrftMan*{=QuCzC0&b%c;(Lb=>t+NWIjI_C@X;|g=z=`{nQ;q%~5 zs1L$}-_Lyd(ZNqZgZKT4yf`(MuJ0~~B!f}AX8ZB}1LwbN?-kpPFMPn-%Qoe&YEF+i zz1O?pV#SQb?cyV3Z1?LjI~xs$ji(Vy+y=o4pdsQC8UPfPyXaf5$|sdr1Bi;Yoy-F* z`?0ms>|RenEI;lC4gb91@*xt8?;Nrh z`qkpvTRwMGyWZk^+C{&;SlSkwTjP63aQ{ZcjG~-It5`E8z0DTjNEgpkOad2NrSa+2yDp0j4Ds z_w|0J&3JApqRZYvtUH z&5J+d$N*4Is#+(5MJ~OU@0<3ZB&x#U-fVexzVQP2vuCr3$bFpSTA+XxyYoD_KOPrj z*y#*GiBU+tPrBdMWL&3sfvWzN$K39OaewBS`enxk$U?;5ws;DKP za?h;tch6nmNfQMkvYtls zUD$ChS|i3aMQYQ$Ij$n;QSG(7guNxS0ebDa71*H>h-)$sQ3t#Oq6@pLAA74=s~I}6 z&lg*Mba-ON=ZB53-A?wO+cb$^Z}5Ug4}QxYUh_?ZNPoAMmq%A@cfJmQ*G9m?Nr{Di zuv62=wD`>qEF9Xx=ZzMK^HjL|L` z!)h=>tGr{BQEp-gY2NorTI_n>u6U;2-yu??MOEgQ6Y#j>o~~UartXTx$4wKI;GD|3 zusCkln46YMd@_l>kVC426MuI1%~eCj$E0s?Zu|=&cf0|vWvL`rWB{Ydl?^j)zrsKy zKSCV(zXT69~<0NB)H%Tst|MzYx3FtS1bdv<%RX1CY71XZ4k{a!3B z#LGm0>-p$np@LFuoC#J%lw@VN80PZv%~+cw(&?7G1ot`YS4rCjw-gNlQwW{uebTBA zAL+W!Uh8nLMhD*5<13oYErkJNg5UY*3jK)8T*#j&0It*8wpgxwXh2kvrYQ^XHk4r7ql-7X*=NBG zS{!taRS07aR)>?cXi5|s3~*6KvvVfU$#1Opeos{8B5sFLyB#NNaOlUb#Kys{S35lF zBixybE9HUyz5XGflvK)yeL^!40SEwdz|XGwrk1wD)$r7Iu!;Kxhs%y0rwDa@(s$YB zN=Yc-WnJ{zfvv${3#-%kBVM-AD?~R^;?CKzR}YD-1N~<`6ntX>!$0MHVzt#HhZ9bI zFrjt>;J90BW4#OmW3*D=WDH^zRQ18TNC})_T28c5M$1CQ^d~g;YK`KvBJmvEsX;yq zcTPvc-``#)r|rv!kRIEBO5b6FMrX4Y2^h$B6Zz-@D1g);_aRv&Cj7MVN5 zPCtKteI#mL5);}il*)vNL507c1D@}*HDE76pA`JN8i(s~a!{X}4zi}#;T;oz7QV^* z>l-UaAV&5H4s zyRC~NwHF)_68OwVg2uLifEQ}ni(KC~W$Z~J?|N99%;80X!1c*-lStP5Hx}%r=Z%_Og#7F2zWa}&9v%bKNh&+>&p>wP6!BFrghgM-Uj$4;^rfAd+Gbl1 zF;Yw*9zYtJl4Dd9v`Te=Q zh46X{icd3B-*gg4)k82s7+4{1VtVRz%*u_abgVZPn&ID=a9~gH;P9!b$X;#av^QIz znf&C;JX9I|VXtwxRzK=-dVP&#`4_il$br}?Tm!d{JUB+- z5=etnS{n_W`d&S%FnIkZIsWZ6eEiFmT2y2i3oY>C%Hw0QMmvkyt6pNGxSganjnGXQ zJP-|$8%==%vSH0@^K~Pce)Sx>5zI@`aI?dqLm5=w3C_;5dcFdcc88-Vhm2DCw~X+V zT=@t96pgK|f`SetAvmip2y^jYu2cdYMYZ3`K647fu3Dz9^Ix^XFx1aTiiq+$*Bc$L zgDl2|Wr|XvN^+2HphigZ?WF$th=ZgC?e@8l15r|&grlraKo}1qm{ArJNz)&ZN<}pB z*f^ig?(TQ~{V%WAT2j{QS?<2@FuTz1H~|V{M9_iSbUgslcjm~8{waYrNXr?IT-0kX zru^ebB`f?`XyCWD(eK%baw^DrAwg*B!tA%VU}jiLeKw0GX5G}wZ!|&Sh519rP*H;( zlfjZKCyhDVp^O|jz4yC*ed8v-xyp$d2CaDx5Q0c%`;$P*Vw{xR+(IWd#2=79ZH&eI z8#^UMIy@V3ewbFzK?mx60e%)&8F3BRyig} zluEw3$EkoScA@m>r)8&_I3ezFxk{$h6o+Oq}2 znu=^Es3pafkX6XW)V+F*vQzX0&Ta{rkZO}r*r8-b9ItE4Kiu!f;etDt2W_I98~l_Y z)7rvfO;_n`;&nwAVoYR8j!t0TjJKm3jwY#KVbRXDN%L{9tr!#}oUCMG# z0g#8^U>nTc(^v+`I~m+iGnZ_n2_qys>f7%Q41kL5V3CmG$1oR3g`B+7oq`Q~ z02Z^3yi}#{=cw{{*sk#grE>opvJHTV8Ps!W;QeYaud*BQ5lwPdf{-?moNffSILUS@ zq%kfGOD~WgAY@b~TPy*0DhYb39@!>pVPSz9&Cq$D>o_3!ESq5kMpdbIu0gDPQOC0Fl*-vJkt5*V?~uk zB*1Fy>D_rfP5TGP!iwrQ*TWd3(_Gi4Y`q4KrsAR^f|8=Ag+~$Gx zrsJF?z%?j^Jw`CA)YF-K9=PkW_f95=i$wj~5ew`?Y_tQyeLy}SgwFpRPg!Ko_219( zu9E1Y-O+AuZ}Xqr%cjv$pIu%3@_YSv%!|pOYnkxc-PMH#s7mlxFwJKL+O)wz0M^V^ zo06`qqyzIRzOpmpB~S2}xqQo~noKhN1SogVpWH=jQ~g)-1d*(Q^$B{b_+*iV*0#iC z5}He@(d#NTXhZu_62ePlROET|a+*goV~G=Pcs($uVHTO$1QQc7(qrQE^Fk3>O}|V_ zzz5JzmT&c@bS{#jniu93wW-j89(B~siJ;RJvO|WZ*>ri^-QM!R_Rh4GxHkmf9c~G(rja)DrqAc1sm2g3J za-VBI(4&Gk0yOzOXc)3F;5$yl2z5ROhP8++ZH&2Ooi9=HHSRh{Qrz6<2czoD5kcmb zR?~OwNwli?soW^8sdt2K`fVa*H->Oh{g(I>2uvZt=bu$la#7xM$0*sXIO-BH~e{-)G*8#JCa2ZmY{^@ zWNL3jM1(AZXpV_!!qv`&GdEKMp~ zMFf^}ipPYKd%8TX?Q(2C5G>Q|<$G5X7-EifMgVkTF<2!P|jz&elB$3Y0)RC0&i9KnCHVk79ID-rsW4ELWR3d|*Qe&``*55cQyUkh8BQQ|XNP>%a=gd@he32x`-x;PyuvQ26xw zJ{9vNm+pcP;y>+KKm4m}F0i}3{V58_<~k*J=>L351~%18BYrH>Yc-VsA&8&g`?fK2 z?j9cBPdVGBaBCBS@qG^qfs7f5ILA5`BS~>AETCA)`H{DN7uI|pXBqV9Lwkx+n}|4+ z5*ssD?Wtsi6X?rkPdEY%vo7giaI&r7eja-m*X|Ith)Q4%Dj&y_xvM4*8;_2 zk*+3Y$)-O(JooBw8xP+-0%VEnQJUHuYN^doYw-ShqyKQBR3~QS2ght*E^aKl>jn%! z8^Fyiz9F2&mt2@$aW~`6ceWg>5X5g8-`rmb>NB==#~*yqxyCStkLR%i?kUs`#|?C2 zGiMI1mrd?ZIgHj1&Ppddbs&yPGCxv8zitC1;d{dWWz~U~k7LqXwms{!Wn^JpSmhG;OtY{yo&f=rVRv<^O$67(Vo)y~{Hd1O&U4DIh)I?Qf}OuhnIJ zS67#&RO73Y)1N;Hahx0DSfnD-?mS6y5_YK$OFxXRIPH*f0Mmbp~=6xu=V2E;XKS2;djKYhqh{ z)4N5IA}MuV_#1nkl^|JPWbblm37NO|DsXN$!fv+{-v<%T4kEzf8GnumS3n#K27{DTH4kkYl> z!xyCJujrzZ3mi?c+{fuAv0)Z=R86q&ecnfFo!D4r&1!f$$n5xK1e*dRQ*>1bG}R#s z1uivy!Awm;9Tf;UM+an{7$hW@@FPCr{~={1r%Nz{_}DXYl4=HZ5l;lc@{D?agZMpd z0vI@7^sPmK#rBe0rn)_Y@8CRg{QEqCwMgRW3)dz>Ld5db(NPmD#MNmmH~m~+@6RM@ zy?d9jZy2*H0csQ@771ZYyWkCMuyLik_%S1Ie*$G>o9f12LV@C>vQ@CdeHmRz6;0(( z-0)k0KFPh+1Y2oc_Ok8t;Z1hCOrrs`HJb~yW>^zle;D9-vN9G2h3()Q&{9dZ{akRf$D|BEzWuQuUIjc364Pt>F=S#kj4sq(WLICvoReQSefOX&fM&;abojU75a0#F2h z)-Z@*FZt8!D+!c$N?OGig*YI_8IFyUlW{M{V37O!s7|k2zO<~20L&3TU>%r9tZx1t zf(#xs0DXZBz>GN42%_i#)&lBdn*0G406rk}dmZ?Ida0)!hXZV3Lq(2(UojBScs_*y zm0;6woVMHx(Ijava@_L09L?C#j4d=go0PWccg|dDoJaY|*IZZBz{Q)Rw!CCna;)Fo z>9a_5pL-BOF@M~|GHfeoo-3!YIn0eIpPKAr+?jP@EN24?sa8fIF0R^L8V1H}CXbFi zX*9omnhG-8Lt>6zyOb@Nb z;ARQ=t4Q@Wc3cKd6zGd1CJ2$h5GrESxlIwo8TdnB8q2MI{A#`V7)T1912lLVNJhC` zu6XVEy0AC+JbwyBL<}$)?~!z*?<}tXddVG9ojMwPgum_WzWqf8y#Dqqpwnbpj+Nlc=BpA zRQ|cIa4aYmyG!@a&oRR(?^n#1xCZ}Lmk)m9&~(HeIA1UT4P3kFb|;u0lU?tx zmv2B1VuW{oIGDob+e%^o&U-(=@%TXk(1ALjC-0kr^bE>GL&#jTi3(*h9)}MGh%jnJ`(Z={U@G+PXer#WFj~ahb-ArODP`}d zQ0lA^>8lnPZl~RBy*pf>NoZ{juw=XGbR~0Z*r##5KhLzg_CW(|Zhc#nlu|5~Ihw@O z!EWchLA?`zPOejg-upjmK@D@-N-+J67dtoO-`5rjRrJLYzW!l9j_D$xx}OQHVBm5+ z8@sx^0Z5YS%NWN8{{DUze@|~dXWDN1iL4EA;nsEZh7aM0lZ2D6n4?`Eygeus~sm0YXzL6*~%eTeFV1b2pt9{&RRFe#t2#8mp(rx$5ygd`(Y4j@zu4U5%3g zkZzd&1}Diz4;ttqeU0MBC=wsk4C()p?8s!I9p#T4ARbZHh}&>qo6L=ccQ;02bZUOQ zDE|Ao3bMWQ%keR^9M3^`-`ZFH$kYb>bkHltlEUOC`C#i0}&)29GAj+i)553G`& zNaO((FDn!g(YJvAI>-JW_!R;`jGjr5NS78rYW=J~C{Kwz*kH>;VLOTe!_Booiku!* zgeI5E_qChv{{>&rHx-WA1*f|}tBrftOZi2Ib6f^&FW~Wez2VG1F1==%nO1&QP^8oD zh21M}hUJHSy?xpYe{N4^E^dsjnYziykba1r(Thi~leNuxi zMht*T=61tcwhSgT8t-Q;_wa9Gepgi5Demd{yzlFSRwL`IivFJIe8o_EPsB@K-SD}O zbNC@V(fs>$2*@zqVRL5@*qSP5Ke+MlspPGN3cfkj{{saWJw$kx^Z7R!!Nop;b-(uA zm;Mu3*~}5J=F{*z=Kpz~Oo!zhVG@aj$o0}$ACoNvddnJ9#ncAOJuZOT4<^W#kQmTF z(+IM6-M;(996&DSx(}R|`9A|=DkP!TQR3ju&5Z#-bB^2KeVTQy=eZ}mw*9pE3ErdV zGmdVcqjT5)^ih+~4#?%fI#6O*PU0N$Zt~h+@~IDKC{F?0NufzJMNExDw9{P(IjMJ< z;EF4qS!t?Zmd3$fmIS5<+&i&*Cu_Dul}e@w_}n8BbZ4WUqcew3NJ=X7n7O5kTroR- z{Kn+*lVmb2tOEd;U~uB%sV4`M=J@Z-251!hE-k*9vs)cLIxIPOcX=|KpZ_#M)L%WC zK_uB)Xsaaz&ptsT-txQB;n`V7CG8W%trJcnxyQkEx!<>CYt&`<^)~$UJXl@JB@tG8 zU~Bd%8S}VS20dab-B8g zWRH(vCUaasHC)B9Y)iSP;)hOCm9nyt^HYf-ut@Kue$?+&4sa8&vp<3fO^CtgrXFZo z{3fcP74uKs;M6taA^hGR*(;YPimIz)IBpy#xCGvA{f+Hy{Ii=IdEke>5@5s@L>9%| z0-j=k3*4lZfiKi6OFUIq4-fy!?(S>?{|~3a!GHNMlJL5ROO%if`ymR!4da!YeVjhd z5BZrls|?Cg!h(qVE-Zpg<{y1TlBa2Gg%ieS z;Cyx0rQ!7S*lVSvEc0=Hv-|pY=hz>zBxCM_)(C9jGFkx9tvD0+8fNUCS(M{09ZigW z7He@?yV=xig)m261@90c*I84cK%21t+G+I8>O&dLbexIljToyRD zmF)GoPN%tN*R2gIVAlP4p3A6JZNZ};hf7%!Qg@t#;piy4Y>%9`?ZG$9%I1kC#$3In zLY5FD8G9UeIrHD>YmG?0uGgWPR8XKDIQu9vbma2Co;Kg=DS#)46ec#uJx;H#7VYS_ zO*`45Wbms;ks81_B??LhETx^0CYaW{I}+fFvWJ`;o9!j3wc4*Bg9el}j%v=Y1gxW0 z0Wn3F6DZcb;ulLNg^tB^vVV>~hAHuU`BtVfVYR43iazA%vN(wG0(nJrot<=^Thiuf z>ncUbz?gZyyO=S4LxyaMeWCyQ)aRCYXXV({jrMXSVm6;jwvlk8%CJv}?9en=78Pv! z^71sp_UmU=F|;?YTG>l#gLvs}qOb%u=;{!v_W$go?uJ31oMxqF!Sz;3L4&(#XFqb6 zl$VJ$SN2YmgXMx471N&z_8ew`?-bzUhaf{oh5bNbGExm?CV4X;c{{IEDYq6WRMg!$ z)6{G-m4+V*CEMBQ^L@K>)Hj1wi7m*^z zOYr}sni;2u-MAqWQc*Nr_wyT~GF59NRT86h0}LF~T5NqT6q0gUt1NX^PofQ8{+*zr znf+`bla^wJ_U+c^dH4zXjZImZ30q?S%?gGW*%Q<$K0L7eOd z$UQgU&Wk_uM1E|G=rG;8u2%R_IC6v7(xd6e_%<_75Y{YeUY zaQO_EG_D(^I1Y3PXcqh706Hvbpo%^4I~6Vlv-A9E#Q#<+{0V-Z1h)%HT)g0jrtRG2 z7Z1`bPGdL5A~%9)(!BRHcX_Tu?sVf*R9gccNrhL5wg5FUtL4v;Vu&4n$auZq(7RK! zaC{E__+ps){C2-9n^^$UwsmURx~@T`x`=Vr>hjs9_`_Uo+TB*~C#~6SwcyS1d$Dje z;_#c5%D$NnQ}r{=~+lEb=}P)1k2_Zj>AYFs`TLZd3*&rK$(8^c>o{?>EBnLB}+$l5VM zCiu8mkSZ#LPykQ?MxZ$2z10GNp!L1imjJ+ZXoDxo&g_8_K%GiHF(=h{Uf9~QZL^R( zT<>R{L`YP3wf=2CYJh;>6w+fg1`2TguKZU2b}u@RAp$|p@Sy+&%dz&rFe}}MwMjqx z;&ouc>;Jn`tNlk*YF`^0N)0H_wWMK5PR@7Y4WBd_M(F>yMOVnKqz0A~Ge7#O)rP14 zSFu%+!SV_*?)KN4_Ajr)(wF@FUkIt-f3f+Kebs}FWvX0eA~PDGX;!|<1&M5>-~8b^ z_KU1y-{z8k*UDZ=Eq+F9Ve-w)%8TmPG1N(_LeDvaZ0GaD=}|2GjUD#A+5itbuz)We zbLKRcN_vF9hgze4Xn$Y*_BkdQ&!E%0By`hTZL`d3=!rsw^PW+hs5+5jLpL=+f}9{v z7zoEMw%#*~`MCjHrI>Tz&jn=C)?#<@M4H9_MQ~xjCSc(5aYIr#5A$vkAS48~*Kl@5 zmO|`F2^xgE*zqBZ?q$TQVW-5v#d+f(5D!;|qa)cc=7exAsQ<~Bc&XaKhyXD>C<73JAlna ziOx-gcpVlnogpF(NVs~G2McJ@bwaAssy8wR-yo)ERUbRK0qga+=Kpg~#@wdF2RP>& zo}bFY#+puGTB7Yu{7zYXvGHr5_n#@V`zGZnSN@s7U66^!-erB;UI-eNi8{>UIu&FU zO9&R=vr;caRM6b*j8#+_$uvnFtFW)D@3zaKkz;HE({zJ|ZxJ&f%mU>f!7Rr0n^Qh2 zEC);Gc};KDrt!`?rNC0k@COuvSZn(#Yi5H?3?Nvv&=uNK`cp2km6(CNnD#6-`X70?itfwFDFqVAN&3)#JVi#P~Z~Ph@?<*AKu(){n zrFi!kkYwuUS-0Nf7I}`)8YMjV-agE0yI0(J z*xE?g*|DoRJZuOYm4w>~{hin^#&BYuSpZ9`qk2`uz^c6gOU(%AsIUu{aN)y;3i#c` zz$PYs#|A)}Uq-N-#pSBNKyuLjPq5JchhqskTD`L>OG&E?#y1SL*+9F@8PuaX@bK>G= z63xURI8^|+@qR66qh=y$d+WQ27CS7OD>bTkxJkILYUf>Mk=Ib(EsbIq@EoNeeOb}S+ifGn8l zgLk|-q87DpBAcAY`zZ`nZ_42bTjCV;%S&EZuxj{yaBkOdGYr5)MO~zn=hN&l?E;Bt zqcpG6@0;xyv$28l!lys}C*-3C4h}puBNQ?`m<;tjyxM?CL6MD&3G}5`$&6^uf)@7w zWN@F79u@iYY;ZZU1d;0!jjXr``e!hV8-ZN)phLd}SiRJ^<|RP_BKpXjHs+ue3QdZi zbWTBo9F!fEzqPDy*FEm`64BpGn#e9w$%fg71+;_>8@leCVfgQ#Hai)626_`j7p5oK z!`vkm@||e*Du^efSy_CLTiEY*o-=KjTKh=6^960WBy3;dAYZMQ(JUN`@HygY_{+AtAm4wu(cG$7%~MXI=sS9nVq zjk(P(fUVeZEsqodq{np>jxL9>4;=lO@8u=*#6({U`D6}-$Yqv#?_Q?*L{8kuJd38n zY6V07h2ZqV0R9v00l1Prf4640^KUIbraa-(!h93XzDmYF}9$PYoRrgNp7TF+*zHV6#jRJKVzMtm0>$QGu)gHuXjczAPZGXQYJRstMK$A4$Ol_8%>vV=zqb}vDYA(+wV;Hj*7ER-Y zWl;%{D8l}D;3_lu&#IsyR66%2ry`d{QloWcS7*G~NE)_|rgfC^_J4}UQIiF$zos?` zri#!;!1@nS2Ih*K8PHVvB8zr#j?&c3hFc`;xd1Eq_IW9{DnCQmuQ*6YUt5OI46@icCd5uaJJ2m*b27#VM!+tLiSWW-c|P6c+xjsQ6N4EPk&tyX4v)!pC}!|2 zNdTxrXS31xPUuvw%kSzWru18A*-6QABZ_qLi7x&bn0|*dp`@2|nhwD)8ALs<4=IgV zlAYsx?$^&Pv&e&i3@M^yVyV~|`(_klG?lx0dU4wLFHv%hROmnP0sX_v`q!>(VaZms z&ZSaDX4tp)D?6-4vSeC=x$xTD^T6#l;-d9b`S+=8{h}gMiTpI*+!>^NwHu|oa6<*^ zoirey<@wnsObL)ps%5|XLXS`$WUME5bJmHw7Z3UETu;OlK*o#e+*csdO~BauRaQzx zp%UbdD>{`I+^b+-MwSgf5Vx-eQ|x!}L5#4cI2f5fq#8n75(3AVZpkEFbhT&!$q0_5 zo?+oJiFKBlmY5h6o!)MOXhwpjUbrH!p;OM{Tc_TcK zAoZo=tF(r(sc4>WOyEHTD=D>0PCw}|QA0Bg2dP=|(o0k@Jd^Oo-e98JX~$cZjE!3* z!_+;BC0!k##U|$1l^NnB(wIGP(CT_qV1sw(a}8q>Iw+-UrRL8Kc8|E1NUolh9a*zv z>hVk~g~hk}$Kc|SlP<2hzUW&3+Nv?g8b0x|D?4WgYo{q)p?3H=?}hb5zGZ6h zn&b=@$>ew5r=;KxC)$Xp|Aw7abt~&sC_)WQCCGPds!8btbUb-ofvWt=mR-;w6a|ky6I_2AXs%0 znBTbG9O-2W7v^I2x?*VfjXo)zzWBlC9AGrAAi73ZLTn(NLm#Gpb#oAF^Cks{qm3!& zhOLhbk;j`XIxroLM9s3AFgYH*7G86Wf#WXAtM2M0g&Y^m%u1R85JDQ|dK)1p_PTCG z#prsn?ftyHc!1Kg52Dl6m6z06dAGA`AgEmTRcpR;ksshyRYbK-99q2<@uABe8ObiH zh)724j)IAWN_1nWxx_^Vn)>LhWbshaL-I0-Ir2!$?P+QMedpryt?Jf}R=d|~v)y55 z>6#`;4Lnd$2kptOjPlhkT26vj4EiWTs(Zi2;PXDzR}zMx{~5tmj;YissfMu$BiRN5 zs@_2?B<(FKqA@jo)KCgX#khp|jvH&}F#&6_#%?RHXfWpQsMiFaUk*sX(PLkcASWA9 zqV)*X++<#ZOF8r9SoLOcI!FBQ3$qt(*>akd75T~b_^l)3iHIeQ{mznJ&r{!Ze$Nx7 z0)%RL{&pV*!Nds{@xY)UsA2Hg!wuMYng2oGi4WJf1$TKrl%$Yt77Vhw;GJXI8NXtN z?;AbHJ!G)3J#CN+*7N1?Pk+x zmhUKt&;njWl=5A3Hs>b=#4}hy2nt>g^avOM+PS3rARNT{?s4^sqFRwV2iM3wtFriv zU1O6;(Y3=gMiw&*&#Ki=wGO9OS5a19z{s+Oet=j0+aT*FSg_gOD(C4X;S$(chZ^SA zMuV_vIhQu%Jme0i<#oO53+$hD_MGNMCoX}BbT&N5K`wN$%RMcs_p3ZBPg0maj>#zB z;oT8kKH9Y675@5|A^Fk+<8BW06HCrc0k74;8nbmnOs+MDi+9eW{LcwyUfkqtB}~<*byGv3M7lW zmskdzNYhOu=P}#434NeTIM{^>83Cua?i@2=x4Orv*vdPJccq<`eB?^vapJ~RL20Q5 zMybuxLUIj@hGa5)khCiLWcj+pG+9(cY^axqU3`;HB?sn@cSprc`+MRCg@%M3 z=ShTK;=s=PO(iJc?wv0~%R!|%Y^#%2rg?Gmx6J(?WxXiz*j6GEQ*#M3d=il)QE=_@ zYR_K;)z19Chs-V#G^Xc}1Boti_Mj1VeuN>`(^=iRDfxZv3U|zINvIk^GhuW>z4+eK zz+PQup^!3V`pFMm3sWIRZUDu8?oDm*`H-hAz)5f#A)$V~-3Xd|e*;0(za;0Pd}tUO zD<~Fs9V2%hhD;;XqKME32*ze5`H1)1E@Z*?1s=x*r#qBn+3}HE6!Za3CJA4|jnPOb<%NVNBA~Fm?(XOb;l``DU5qWx8ftb*YB?{|YsRJy z4QLeO^Qh2}>cJ#CmX`mZ{bB_(P;FO`ZZeR?Z*rvnm&^R`=j-CK?53cdWHg%c9=zn; zSord@osNuX-%gj43Ee5zdcO?-i3L3xc{J!Uwid=oGCW#9`*Pt4;vG~5#cBwi(huJ- z#RRSN4mVA}XuQgAC>@*_zpc1;p^Kc$6Ey--OtfgaDuzvR3~Xvw{-xb#CB!BrK!S`B z-L%A5`ku>FEJnfmbpazWU#n&#_zg-wUSq5^T05Ht#@RkbXO^wjqiAXc;}{2Vq#^3u zEnM^7X}FN~U-t#W9?md*1-i#RPt3I90o$DTPxg*m*0GWj2t5#4rGR96)8TT}enf(N z+l1ABtT8dpvRN^Shtb*AtxS7SzaX*YJrKo1wY1R98Y_`htta>QexEC;6L()JqXIn? zFW1SyZtUK0*mEdT8I_WWmcM_0^)WXVT$k3T{{Z){@t1?8`qQm!OFJxN4n zXa4jZSE&(?oJQ&=!HMoh=eH&C-qChEjcv(c(A3YLV?b8pf5Mg@O%j_Z#9HiM$RWt! zG!G?@Zxf{V8THq^JrgW~m=u7>fL$Kw`%oA=exl+^?A`zFoR`RMHlQ~=x5{F z&7JQ&#`8;>k1;#l4g_qZ5{Zq{W}yk#Mz2des+ictJ6k<7C?-{Gii0%pfY+u}WxBWS`|Gl*y{UxgnYVH;ULg zk{@ZVna&OF)I+9}G^hEMJq;EZx4NGr6*4Lsyx`owlI6!xA5LXQ{%Li0d4>^Ja<}r0 zq+18f2X?ZX@rgkwth|Ws%Yn^uUvqmtL`H91u-z<~l+VGq{FK&UTCxpk_EAr^mSOU< zCD!Nm)TE_@DdSpaV0JKO|4$_I`@>fC!~%DvyzF;TeU-mM-(}eDM!az-9-p0;F$yVj zXuwc9Z!GzFnn63V3t)hIge(;Aao_(1ebZRmL_) zpQ&!>Wq}(2VA25&sH&=ovp67-^vaq{gS2GkqLvx7X!#qkx!jM4&!Zgt#0w{qzbSKL z6?mjpeYO)e)MpV{eLlok|e3DNUXL2q+|mi%d(EWF$~fd;}ov-nvjECXj^JuuIOFV4iq*Dq^|*sW`C@XZqN3!ure z%v6u0~u$rsilCqlKoz>VCc9Ry|XR1JD>@mE=!K`h)|h z&)T-w4U@s)sAoZm2YcD&E2@VG_O=lE`hv~oDTs02E9nhF^{L&LeQm{Y5M@>E|5D=@ z5AG~gQE(fs=U;oLir{%B;NmGg&hl~fE$&@xUZkk<4@X*{=&}6AW%?tjp~j1^@8@>d zh6uoMsUeJpGGchE31ev<=DK4 zjuW-M51oNX9j(UmXIwc}OTBNPIDWB)$dMRbkZqsuk@flbNsJX#)e;+3`=tqD4*hJXp zCX%Br+^rUir~VaVvhzU!3whh`chsZ}u?I2PJfl z+e@we?K5n6%Yq0#`?9uXnP(_h-zF(nC}T@n-;YB1GMX27>3|BLb{?S|qPK0#TFb8E_2 zl(L(@7C@8Tg64_9bF=ZMxD$fD|1%jvzt3++gVxbbgx(sa`cl*>J+6j>m(ej4ZjF^L9w3|6A7}G zIaf05G!|JMf}BQaq^+f_(VJj-lKX(ws~F@itUv?sY%_^}PLpXg%~mb(DB0dsAnD4?!RD0-4ve9O93nI?{b4))>ZT87guQbPRwG zjYA6B-y;rx=GULbBJZK^H$D~&_GR-cfu+SFLBhLGcnR{?%nVKaCBDLzfj{dEF8j5I zl;A(yqJ%Fg?+kuhABym4b97Lq^Da+JgIBq1}ArS%;mHIgvOo?mWIbLZxy z#3jj`CnJN~7X}BM<|GQ~mjJxMfnSzfKH&!70Jl*u%W7)&l8C4TIwt3&@yxvcq3fIC z<8GrrC$??dcG9p(V>GsH+qTo#c4KFP#*J;;Mt9!*?|$}b=W^y|emHv07yT3~{aAYe z!d^!gzMEv_dngknU{9)#5D{t6#(kNi$Z^g;iPN<$Re0;c&PlclReMKjRxMDtMuA;~*4H!paCpE?+g!xYYZ#OMRs zFbSiF?dj>LaroudqP~q}`hia!vVLjC2=9jf?_0;MR-9TN)9=Ei297co`zlfGWQJb= zB=2$hPh!sULiGO*0<-AmmTV#2!;BbPfKykCUDVC0zyT$Ncws=MlEIOuewfz;YhSbd zarag7D(yHn4RR%K@>jy{y%dO@{f>Bz0CBxktD^|ug#zTb=%jndBv*mXOx;E9{!m4<8r^R?uR2%X|CKnHMb29J^%7wcEi=BVApL zYsPzy=2IqMq!8jBmc{XT`u6N>b?@ovcMJ7T zfIbE754ef6q$s!b4-=oWo~GEfWJ>|5$(`C>?_osIdRlmndDhYSV!GUP5@GwxwxaRw-aq})&LbG=6r5AFE2cU zc1tS;=jJ)cHD12DeXCRD!z385=*?e#%mY3Oe)GDTv5_}>R}kss$RZLKV^5*%tk9%hNsV=T|%2Y4f>pwV-7R%WWH|R zm}C%L@T+Q&&bqp5On|j{@j3+WZ{h4sswuO4!`26g&M?=E02%cBfA0(qzUrUZ?L9#r zlbM8&;KD*Mb?>nHq){A4V1Y`s^!VATo-I!jFZWj(BFy|5`Syx!sXIIJq|B&D!}}N& zB-hiHrr|@d^Jnz+%{MdAWti2XrajT4nnz2K@{I8SvROA>W;pBWc&9_QBNIZFg9c)V z*>^(wICvgTSL@(I#}-`|Wg9F6>ZrJXby|pWO4}%(Op9ruR(Dl$VfBy8j-Qta_PG|z ztR2r`c9h1n(aIY-lF^kn>+%S(T$X1by~X#b83o`JgT<)rsDdXr8v$r#2?KeJV-$-q z%K{eY!d&A@!pDOFz?9VebLbo75?`ZsY?&brli)jp8U=s!Cjyt4=k2+wLw#7XSQd9! zY^3icBYPODk6el8F4L+L9oQz~geBNyY9)&d9%s1Wh2k#B(4N49`&eX`kju+~1UOQN zrMH#ne`7e>OUG&^G#?MK&(HT)7zc`^L5(7o@s)mLVd_cb%erxi_f=GYVMW3Xc9$zL7FkRgL4`u?KSM|yulCz!LM zj*jR9VNI!l?f{rquIiq;Y`Zfyo;l^TBlDH3Ta)|Z8F6JPjsMYD@+N+21|H`( zfq7~zf%wboG#V@~riFX(Tkbm~+C*XE?dyUDR&h@mVXf14 zH>a+Kr$pG-tVTDWrlah#^W8#LXb?{j3epw}wEq90R0f5&*l+Tq1Y#w%its0>Hj~mY zL21mOnkJkjreU+v<@(CMkh}{EhLb5Srued9p3XvQeKm}NwoREFi`vU0GKx+qdG%r} z1d-e#;Ja0lwbC96KKLpSb`p86ew3y9xU)Wa^C~H!Gvb(q*5SDxtG+@)8xrV|c@$u@ zlWbB+paNW%wHQiS4+A2&kpj%9yj&*z9-$VQFEb;}rUtzwoyeFKT5uEP!Xc9G9HhMT z%WgzRqUmvwunjpxFhU1;tL(po+ezhYdf+rHx@-r%ZJDU7u zDxlyNHLHLnJKNsiCg$vC6?B7Bp}{U$nJr<;`2pfJls+MS?|rNmq4Nf+Fq)o43+iw1 zg9#_tN{8j@k(8E^p=wtFr3T<#)~NZa&)&HFZ(~Q&D;Hbgz8@pHwUlNp>s#qIjgj4G zO7IlW-^C({;3E*yPRV%q0tlxuks4!(@bKtp>5v7OFP{b)snolwwkmV5iUB7$_8qVs z)XRpu4^gDxtEIRoNObYR%c+ffgUa`1C(jDZYTq6|ZZXao60?%f^9w`TNkVnN&Rx)v zFznHVTy__{*Mk7muRyqL}kS<$5Ff_ln%31RoY zW_QRfzlE*CZZVYe6g3WN_p@O~H_wxDIQOWxEv4=yt25|j;~ljyt3zI2y#1)j-j0^R z8jiob*rA3sU);csWtbNDm%hbYxE0-D$!RFx`#y`KZuH|P+z8fTymiup3lf^VxQp3K zSH2dD+*YGuyTVQK9-(yA)uA&il~#A(|K^we;~ZQ`rjmu{7ZAud0C7R4!w_(^H^e}T zW*@YE2S6$_=*!mE4*`%&B@+OyU!$|D%V+vElt?Kt3BP%2lgA(wIw)eo$tj`mqT;lm z5pkdx?(v6x#>o=4EEC;m@0IjB#Xc^tQ$(9p4)3}FnPd&Jm_^GpM{Qs5)*q+C@zp<5 zt=?3*@K+T#d?m7@_l%Pb9D|UMqSdju*ot+-AkqhGAtU1uvd&ln#1>jv^m!86&HfvL zD<&4jUjYs~-Y%(Vy0oP~>_QLD39EmTQV*bLMQ0Pg5$^ns>tFVA_Nj*iG~9e`^EMhw z07q2xqXNxT&sh~57;CTZzyrUR|1E{CnbndQxjp>KI|Vo&x8kZE^bq5ng7q<36dK@! zsV3*fN127SjsP3j7DlqLO^8xmr}J3s+Fyi}sXv4nI#@%1d9==^QeX0l3i!R8qWxh^ z7&$IgQ3Cw1n8O`Q+rtys0xr}-5nNa7c5+7yysYeO;*7jf6!Zoo>)Aviig(pe z(1xMiOc~~fODLlWb|_~2ppk?Ezw*(^tg?V0JyM(T+lS1eCCL%jG!7-Iw#|@2Pk}t8 zYt!<+K8RF~IKZa={#9tG3&ewP+9>W8Bw5xYax(4m#b&G+`nUgsH0YU5ipA7EG?DTY zAMlvt;whLn0kGw6gM$vy7;F0AJ^pAs1d+}11ikJ8L_nk&MlLQly5kQ~fXL(f=OE_P zJsb{ZcLlmc8sO<1b3hWZe*6{V{;W8Hb|$f_dfK*Ph@qZ~MSWJ6a=P@6w{$W2;o&KZ%wV;L=5waYYbNU=T+QKo7X%QAeG=g)y+W~Qn+Z&;2 zH4Y4;O|xpxHcoKW0!L>jUlvV`1Z$e-XrJNuh{YNqCt(XU`X^x1jUcj4js++ zH{)qG;y{}^P60%kpAA)_Z(IOr=ik@Aks0dgf)Mu^3XqjKziP6O+U?VYenvZHHOo>^ z3ELhD+#Z&mA?86~WU@RH>rESJ3!J5e0 zM85=u(!KhQ<>-y}%{O!k&X+bRJL^Dm!Si=NVYJ&>QhrkOIIgS7uM`&KnGAiAKT}Rv z(t?a9bf-C}ESuA>Vya;b1cCqy=9>U$xk`G`W_i?zB3d!~)dus!^dck5W&sb}$oYPo ze%57h0(T(@WJ00%jO{BCz8Zx8rT|nB_DiqR^;B#`)8nAH%nT&kNC9F7!UIs1&p}A; ze6D9C=#aitvsY>Wgv0~G?2CZ=1@6h&nRWxn7orp(++nj^M^sr^Ne1YHVC@2-jr(r$ zloJS0p9x2>j&~1v5@2zj&jxiTt#D&9wgu04rMyYuc)dUJ`G+YOs8)?_U4PjLJ{LLA zuYGJN0YdwC(-vU2a1Dxq8%K&&t%NSBle7%OTLYFBv9(O&lJ44o%>bX-*7^#1UKrA@ zQk=g8%^l*s*RY21O2lJSlUX1*X!!K^hbCC);qR(vL)YG0r1iTKM-@n9eX6q0=>1MwktX?e>>QT_-GwUo1-+ zuBd1*KP{LC?NliHFD~(mZ;lyY9$KRk8YX6tACVUS7OrWbz_;d}5k}f$QHhy1YJk@` zD|jA3j*yRXL`elf&=WHD)! zZH_*~f1^sd1-U@2gg1eI>|Yj36G%nRII`tb82P2Ddg)V7BO?zJZX-Q}w+C+XFpBeN z@R}yz4>0i7=j-H{B&fYE6EMZNNls8kk%G2j zo_O1V*!UGf861Kl~Os71}AIM7Ue+LbztF{^V-{<;AB9M5BXI+;B&2@J^L5x_06 z&&`Pwh-WJ`jpC5i=n{KMRND;oqmFpPjJ0K!)NZJ|l|S{s3_m`LVnqr_CyXCX-$ubI zMe4YWBj|kKX`_FD=Sh^87LD15BMX(&<-UE2HBT_xb3c5e6)$l+1F2hBSTWhbzDpYv zDU~{0`rXAW%En*$^6g*EZn_ib*pb7%7}A&=6JC;?F7{edS>1b5%pHGvpP{9wMfBb0 zU($ZOo!*Q=;I6bH(xX}CtohUz`~JhKFlB^bM7UEFB)X@;UJnY-D}Wqi@Hq%#UhmJj zTU-BU|_>J>@14(;Uz>Rha0rRAnT20SowGlY48~g)lys2jMxLV0r#DzG`J2&UxMFn_**{^IJ59N-5!o zc2uaEjHDjnzd#OeP4c=`k!*L_$&iEic_>Ke+`%q^J4%+C%#6yCBoAP9F~)M9ALRPi{k7s8 ztY>zw`7A9_0GgY?GC+(_i(_Da_5ogpJs0{3$Kj;!GMw*AKVO?$ddIL&nwI5vw~D*9 z1XFF`VYvJJ1kjf29LnHFa}p0Iz+gVe&gW$1k&1V%) z_y#{XvOgnEvUCJgIa#Hd*jap?x-WbwOm#+0s!a0PJ3(uAd*Ymw{(jOh{U~EP`Sn-c zg?$d16tm}XXfI*!>ioEW7q#K3k9c%Xpl&orX5aCX)8(`dw%2v$(lGXvdUu`^*x)s? z91=2!K6r7K1z4Act1EC&LhP18ju{wKk_=kK?UfGeN3SyUR30Gd=8!;?KJ-(N_;Fo^ zm(qA4&I25PlpT%DRvitGV?eZ8+-X4rM^Zi+QrZD7PsiGXVo}*wJzD?zJ#yIpVRZ!O zTJ%^lFengkHdGP$k*Vv)1cY@)PnD3yVlIbho9cjmywvMl#~{+&WTr8fizKO`ke$WhLO2?2b-ZET6fq`>lx70TfV3j>@3ZG;CNKY2s%f{vHb(vVysZUjO=D=P zBu7ndO52YM#1XDaGhxLic4=-Q8I^83=V>wl61MO|EVAL3=)(nV`=@0E3dF(CJsaF(Q)~8No#r#au7CG?F+#_cjIl zW+mQz(k4eS!F{u)MDg?einWGor#2}Mg7_^K7`%9mtZ6b=m6@BKEOsgyjUp=LesdxYFH{lGuxdN`u zxOvm~NL+taQaUO^A6R0mDb@%~>>vMgM8{GR{&Hcv~d&YvHvwDa$ zGT(|L!vZ#QM2$g*a6z-ILhBP~;MqbrK(pqA-=$v(%PBK$!4QZ>0do*+5ZmS}Cs^lz ze+W(7$I=3oou*k*Fw8Py!Pp#rm~-WME%e$Dcy3a!IR#V1;bUtEuY{lod-jpSDgxS3 z0wpA}p+r5)8X6oO=&@J~dN+3OU!nKXD2lG_H`<-d=tqBG*D-!~MSa<+sf@NmIJTjJ z^9?c_S$`;e<+!z9%{uX@MyBbxbvqSv*)-(BNNL<12^bTUt8}jFRc97TvNfGtLF=?^eT0NML@o{BYM~<*XLXiQwkgy~8)PL&SUY z`X&vsc3Zp#uAnVxVByhF4T)C0^4RKX!H)7%#<6U=_;mhCb}vbG<-vov-V>-F)$xfR zW};a|N8+wyN2JjyiIX$Lb+tB^YH?IS-oFHIo~+1C6gSTpUvy;?moW1zgO+a zWJU-OZynF(b(c^jKZF7H%Szxcm0-cjJV*vtalo-5VbmQpg|D7^t3f+=sB*1Btsh^# z8LGUGp(!Hp=Zfd8!5%pCqC2y@KR=Xj!RCrOoUJIgD>DB}EZV>CY<3Ed7>$jGCUK?2q5uK&NBQJ5bzoNvLGO!Vi*fPIaYhN?u z@T_-4gb7Kf#RGYRA$+~xQq1>5cETsxLeF^`vQAIt(M{$FBF7O$ML3LxP$GT4CnC!c z@Zbj%Jz2oX%geKXY4$1W_Wxfjz#y)UuBK-D&(>3Ukd1GAWF8X(Lp8*WDgCHZhwgGW zNQwszPXz`cM&xn#65wy!@?nTb&|8qHq!I_4Y-AEQuH4ikb!=L`$m_}1KdH&LPARjh z^o#nc(?0$5$yLg$A{PlZB0G_-4T)xSMA@=Oo{lkSUp-kBNOp)Cf`d|~Q znpleRRgk$bD4<;HB(&iNBs?(JTTK?WretVIj6W#N5+jFR@$_^IN*-p^oSY^SZ8xQ9ptU|IW(CdHfB2wu8G)?8Vbv<#Yy}st(aDnTvqC4!eY1 z*o?h{g$DV7TYuB2m%EOBWxf&gh93&!$A)GwVzRt6k!(6*IglcY~XYAobhbV6GlLU|~Y2*kw z)!1jL#jR}wr_9sl2W1UpNA`!Kw1Lbv0YNchD$s?HNZr$93QguFH-ERziO#5X7o{U0 zgfU2w`?G}T?L|RXhzfd841~Qqf4@^?%5budG`vio!!&YfFtcNYbGu7S7jSrTK%K(R z85tuBWXTh<0t}D?wj5OIAOW~02HbQmS|LfM%;x-%?M82uzMj2au)W0gc_bo)Gw^d` zU)_YPd+>5%-uIISkEZ)Z1KoI?aIkTSb(G9#;Z_D!^eo>KMIx>JFC)LZRC_(i46t+7pHbmzBj1`msCfhsRB2*I z!m5r+&fA>aM0d1gtU$P5x+)!huIpNp$dsB@T*1GNf2jz;DbZ^QFiT^pz6gkyP?)5S zI+>0C{c}fj6R=&uWn6*YLJUO0Fn5*o<7grj4~Q9Npln=RjF0aPn%JT(O1H#?g)IIR zkwK6Nj2GYxSw7E2O=?7yY+SD(G^tT-rNxEoZ?Gk-0cF)Q_pX1X1qB5Gw|m3Iy3ETO z09$${CZYS)8ULp|kUmJuXtgQmI!P$WH-GmZ&*aZsUSCJhQe$V4^?M!8^4L*^=3Er! zBdjza7Y~(HQfoDn&l-kG^2~5-`agfS7qfGLv7X$cvR#1{-ziG84}%uMs}nfZPk9lw z)lF}=M(T#k@t6rjF>!IhG?8mtj$rGkq=6@@n{(1g9L8E7;rH%NraVv_SoF=N>{E4TH_3jk!E7CD8}oAb#!e_3_&LJzh>1 zB|8M2{ie)XqR9v-W$lQ2Le$=@!m*GrF5`#h0GUC$qx!s=)c9rxDu9U$m5a$)Ow}FL zJg?BJN`|<{aaXCyFi&UQf^v8fzA>rd$o>`2g)A1HG*1xR7s z%N2O^C#bf_gK9e2k`ZeVt)3n_QYj9;YqNpDRXaL*sva_a_od&GX;DrFUpD{zPEND5 zW!cPev+KU3vYaP6Zn`V$h66~K&mki{T^Ppj>twdL53s}3{Dx~%k3K8fV+XR26CuRK z&CIbRAj+XK-yteXaRr4qbY^3%L%x9TF}75V2|<}5itx+MXE3QC7|4Ac9nB6KayJWf zpL$Mt`}c-pn)R5Moyp(81APFdV7wE!pwcn7CZElnM#0g_raJjc(EC8zV{d?Jqoneb zRZWk{^7L#twQK9R~p!7rHz4D+qKMHlwow2h5U!KBMxt+wJ|9q~3bKw_ab zVWb)Siwa40DT8}=fBye zZ{08AcSjMv4(e?=B0<}81s~}jung)ojvx(}T9_NUk(If;ygU}UUz{>GufF*-MM7R) zUe#BidOWH+>o7Ah(G?Q;1Mm^W_Oz1gv9-FivT|Z+ZT-fJR*M64PxP%VRloFuX3J8msN~m|=q*D%K5wBZh?+y&g{96bWqu^UIl?k56KrPXl+d3 zNwbpl8y58}$KY8xM#|8gq< z>H?>DKoWMh8Q>yU>IjCZn4btNM#vyhab9i#adbxPHghX-T*Dx@Z4Fv-TK8=S`@}2p`P`4N|&u8!^O~Ll^ zOxEh(7MOVc?9HRZN<$LZf91xoVNB6HT!0%f`LKk8@yj{06Acad=MvR#MIFVyQs=RT zLJF4{HKcBd(Av>to(2>clv_vBi?f08p#?VGW;{d^RFey){v1A8iDz)Y@kd-NSLjLS z%|G!h{&2i@E4k`8)4!LG#Z8rV71>56nT0((m-H+l!O3?BbjwDvoSG59-533r{g}U5 zYoJUH39tnO*3{J0Q)~b0@9#$k%mV~VH3ANBL7`+zdw>ThXq(B`UHL8Zbz%y_GxZrE zFa0iR7NPTT7qdJ+Z8JSjp`Co?%#wmf#$KkyCNyud=rybvJJoh68Q&p_UDYTm=ij)} zffRxe&asp8*Ee&;dpR7uYBZvdZ?G`I8`xRXi{*E3acXOSh_&y)PN`|`fmjk8Fqc05 zX1wsd`V!}wNGQA2ggQh*Yhx;Ri5!?BLyC4wT+ZJsllmrMQBjz8!^SN*`cZ(p-F1aO zX&awGhijr3CgP99PjnxR#h?oi#$kRpW*@!r6pYAV)_Y?rzI=Us1vj~H0g%EDPK*&! z{FKgkj}bt0DttxX60jzIv{-bq*dG^FwNU&J1EOwXYXz7)uAn2S4*-1mKD_#5I?zF# zjo)fX>=zjBy9LNB0V3*3K=b6`J(>LmJ!!Wyf`+Y}fbnYJ2(eCf&8Me*VIF1A)T%Dv z#+C_izeo?UrywyuoGg!Hz0N$@A=4xU40bGzNX0NB$iXQ$dMa3JNHSW1 z4hA*DcyR|1JxOF9z+L#w?QDJ@CH>`OXM#Dt_EWUkC3_)o6}|iMGFi>8f2Ke3`qdI? zW7ex~x$r1zF^O+fh-RW(q;rzt%_Pr>rLySw<4uyOX0oY=-|7VY2C&;Epb&Zc}I zU0>_w=H`FD22UyDb_u1tItG7uSU+26kRa#RlblgghPg7nH0QJiEyJg?7zpF{|G$n9 z9Dv3I(oO6*j3HotCj~f8>kxaN6ncRa7yZ^iLYbgv1p&(Da{BsPBqX38_~>$_qb)D* zsN{3Gau8^4acO?!ynMk&S@z9wn@pFSJ9l zON?p@lV;B+>6#olv1hQqm9h%`Y?%#Jp7r)03{Gui$lxdvakDCt$%0xp7{$_B<|t38 z9O%>&`39qX_6WP3DL^PCZZ{IqrVPpT&@DX&^fyeYyv9H{*%Lq$n9l~KHl8?0)IgvE{phU<*+Cz*txXIqm$Uv71x%gERy z*!nTDJy~YmNIb1UXlH9(e>WWz?4A1c<#mE+qZ0rt3K9hOcXwA)Gc!1#?&{#dQ*a{E z5-Ct))Bc$y_Q`{n@E>5uoLqayxr3OSmK$V1k~9p;@XOz^_nx-{{zZZYdn}`@NcxNk zHx1qk_rGMf4@Y@2k}>bjLt#e;(;kC=bY%~HWf)JOAsjA+qs7x&DjXF3{hhf6&QS_x zGWao`oWmy4EgK-~mj%e~v@j)s88K|s&t(a61z)qU_1BQ1FS(R5qo6Yd*RD+-X3Yje zNE2JSz`hj9N`4lW>vfqNG3|b;q}=Y6SXHh#xN95Ue0lSt?49JxKc|!~wx)?(GMF4* zI(QcyGQtUKvU)F9B-{RyhPQ6ArIanYGdu=^fd&!@%PVl&^J{5JxsW@yX5uQBY=gbc zIB0Up_1wxZV(ifREof^Ocz^BW;SG61ScM1?5K!Of z7+v7?;~;9I`*Gm^jq6VF6Bdy+SH5_rX@ixg@u_K6^s4fM00Sj@aF-K&g@sA|YSxt6 zKd?0l0LIjH=Z~C0Ufhl^sc>Hg-ub`bn^tY7wCf%+e- z@fDeofeOOqSJ#F6jiXP^o=a5Upo0;HC|+(nX(%&%>ML9`KXZNvpHj5=QZK)vY^&KMZa^?Uc8(HO_GTw znNsT>8w}K?%t~X7tYk!<%!h@A=^((vgM%_@cSFOCFX*q0f<2(m&V!;h&(m$o>o_-G zr@>G(W^0?sW8;>E!(#gPS~o4OQ(?&mIQP|j0y*bK0vqnCO|p0NPXQs<&6-H$aGYxjG$>Y|C1&^c^Hf<@vQJzLZh0 zNF?Lf6Ixu(sMJ3PIa7&eq#UVABC<)>L_MFp%bsw{dK}6QJV?;sq6elO0Dw-y=x^#n zBULOnrgp0%%owJa02Y1$?;xv@%XN<{a^m(!{+Lk&(YlaT4%Ba_Vcv|HJP?5`p@jMd zsKw4rNNpJGC7nd&vi}vU^rZa!88FPSf9PUPPEJCBHgT;Et4*aO{YN+34MP=#9(;k_ zYUfFm@nBI5#4mGI(2OtruCnhKFuntYM%B~=1vF?d7{9}{dpy20-5{7b+x8JWHjP1> zz7lK&y6YK$VLy&U{Cb+JpL1v|AQTT{M3a7dRV2`f!goM2yU)Y#b?Ssg%rnu?eqhpw{ODR8I!OifLTaVBnp&bp+2crED z9DcpakeWVBJ6o6MK=`B8U-QEQUiwqveqBmMa?aYG$lh7&0a#I_g+{}-wjyRC^n(&M zSx23P%+KGej*!(BTJ~(7nPR`vW7EA}PqjDPfEO!l@^xF8NqjpwFaQY{8`&mDXzB1_ zJ5x;LXmrEwjp&%FGFi*36Hylpl-}Dhl+kz#S2C*1$#>(`(=?_~ zA>owiT;sW^kGqXsQW-1@K-v}2y){Hl07<6k(;Ay8h_$~0$exg^^vNu(`;`6Ntf_BwS z<<|B}Ks5wErgOu4%n9A-vn1G4L5-tFH$uP6Dc3(J^6%Ov4BMKAcJmlziXa9oTX?k& zKW3kw@o)gu&kSN_H5w`Y>x-^C&Ik-68mtU6>Zmyes#0a382Nu=(p~3K`{4qdS4!A~ z6$@QWARG0}kcH(mC@~?i29s(=FF*ifk`J)|#7P}ST7G}op8~<6cpi;Y)6#l0w6!~x zuCEWqQdl^-sE7*&a|9pyDQ7>mZl-jkNDFkuqLM3+yfXYysI3rftga#rXyGh#%CHf; z&)Dz$6#x)0N)4}nP7OVoFdbsOyLSAlr+)q(nY>D`c&bIkFaO6h5ROaEK2)A#I#mNs zF3;{#zU51Sys%8ar7g30>>yA#Q_&KwI+GOBY>b}V`yX8sTVG-qqB67pnH)XLWU;>pQ;Z;K!wg|C$ z9)JUBWGzh13CE~N=X~g6`a@`*nEtaSt(q~`u*m_9&})o~m^ra0z_5V|-&PZ-x2$mT zI+njwbRlQG8|ZHUSmc`0KI-}zhPU|KXDb}2+H#AeR7p-M<1`9h9|f6|m-4;AaZVji zVhrCCFG+oiEU0SFtmaBisft#W9WIbP+LSdZa!8F`J5>Ge{^Rb=E5EIXmp&Pn%JNn% z-oL|0PQQla&$vI+Vm|Mr6FPd~prS<7G*cWm9#zDvu0DMimbQ%2-!SjNpIe(W^ZEIy zF5Wl?og{|QTSB=vUtv+*`gwwvb+GxZDJSicibk%DW<8*0)m`Ft)A35WlSF*`a5)7m zmJNL18X@$B@V1Do2Lg;xwqMJqw+b)2Eu9P(5ubWX`T^VH$%~AY_!3psPmDZS;LM%! z?1huV_*_WV8~HH&iP%mQ?<%p;BWUOtQ%L5ACRo1?R2TZzcXmyaa&jtIfZe5#=i?O7 zukA}p8}2&plEwZm<6-!W(fw6gSTQn_i`A{IEjar&A9|CT#K@Fhs$(S zueB3n_ZYs#x01gAkm6evow+dfLP(UH^ux$*zg-HA z?wL1XQ^6g&P4SkFGxvG~40G2n*PH0h8r?`~%AlPVAaZy<*6EYG4Nv&nl@V1$fCbzc z<=r~A79!a^;}J-AcD}Q_U&s~mU--uHY?Fo_Ie?1iiVJo6P82UsE{bH{XxkI<=y_Md z2vY`qSsX#!yM1YYVfT~H&P(#o= zeY#)PgESAU9BGp)R~pztrK^M5Dl1Q^0J69y6YvNKZRx40k)Yxk1hS0g0rQQC{OYKw zxi}tM=y5%rO8|eN5;HmY1od(Mt^T}ZWTM(Z(_l(6ldcb;6)Kj#_h!Z}{+?CKD6uQl zS{jx^Y<~8(+ff1p6!iNCeo*aR>Y9l!{_0E1vA#O{8C!3z$35>G>2iUYBVoO-Oa7C~ z<5zQV31n$Bd)8=7v0prLi^E|TZ%UI#kM6)w?JY( z0}IRU@|$Lse2CxAmNHYfd3=xf?Ea93<~ROcSlXT5w@-N{*&(9JvZYWv8I+KcpHHtL z$)^X_&v5&`1KA0=lJzsoV5A3vu;U|EO-S9`b<8DG-x^HElFtEx;02Wp4N57tBbV;= z(4=Uy4#b{2LASr)_X63lXEirf)YM8Ek$c{+x~2eCK(lMb-(RkxsF`Ir^))tZrR_g* z82FDRaD4oUW8HOsvI_}w`TP;op>xHkRBLlDco2iwg7X=aAnH*bD=3a9Jsqxgid#BY zSn99V?$>&(>Fb!tq%whKsP#1(HQH3x5=s;>g9}<{A}q@gS3*ZTcy}f~XW*6n4Da<& zW7$amYnBMc^_y!9SVe;Xr%<$?rm$2YN;+>!bUXbV!a?(osS;wn-MaBDS5LDIB!T|P z(5GuxS%0p~XSvpiRLq!0`nWvc^bc*1qgO7ycc3a}Di`WqVaL~Hvc2p)6+r`?OIJs* z$FvwG$|~yT-MwubMI-8U#e8`}0DU7gl^TC-BoEGtrnNNY{BYUayr#!ZDl@`*Wr`~c z9x4qXpVQa2su#-SlbXoA6uPt^GR6ubXglXr)_Qt3`x~Dc)Cz6Y){9yEY6R5|oWPl| ziQY_0(Awbx4G?)E+Vci{>ALwBGCVxI#As**DSjfEEb>o1t0Rl@;MA&YoJ)KPw_D_^ zudnX(=`5maV&-yNWB3jfT5a!x@v1mG(?8;D{T@6gPkQ!CmH_tdR)-^IBbt`RJ}(_d z(kR901Z(ZbC163rFQh-?GK%60_~vPZp^X3a^Wla2u?A_CjY}1k<)*P<%_FBSk6umS*C z3}_k1?<$#N$bbVzR#4g3Q>%rc-_G~@{8l;r^)9pKbt?W~*#5yuw|UN23!QXW@g7nd z4mhq$k;(=DFr=(fcF@tDa%)A!zbn3Uxr;cVme}dj@danN6Gj;*g_+_RTLVuNV%CCt z^bJ%(%F@)I-oZWprE-sLmhAzfuNAbYZRB4PqS#bi9L(b2U%;0oCaCZTa2(JGs+Ksn zI5%pBt||+(V<(Vy<|@FD#w8u(dFCY=4clh9!JJ zbFnWS4Y;^P;-gACY_G65T*g9SF1EUz#mid|tRp4}nYD=gd(!L1JL+JRqO3$ z<04o69=g|0c%6X_BB%nU14}^pfda@3j+Wo>qwx&OFkSRjX`?(;o~(ccGU)|d!x^Mv2kzQMs5!fWu(iuk3*(^sOGiXpi4@3b3lERKKtRRN4 zEpnOFB)Hrsg<;TP2YYWW%V?3~cf{3IHp8sOO2Yh^HE}iuSFb8={hevSub~L-TF7BO z6yqyBI@xDI8mOO7ve~nBTuQ2e*Ep6~Hk4wjVU1XfU0qpiBdcGz1r8c+_67O^9+&U7 zwOQzd=I;<|@GIe5-Ybo5LWc=aspRsx%gO`Wh8le8(@gDu zNYsrsVib7u;`B?m>%4BwdwRvMnLOUMaDu%jS|KYo&1- z9E-W7@XcQDOt4$U=io;!`zh@>m7-KoLi4X)h}9sGJA3`(fc$(Nu`c;xk!{fnH&j+7+zgFHTs*ec%VD~ zEL6e?NxVs?@oR@p*Ont6Me@3EQZ!S2bLJ!{a?Xl1y|}p=1u2eAq+s^`?y{yLD~${as()b^L$`%#N}QnmF{< zEQe(qAqF^xy7Zoc8ZTeN*&;~=z<<_49Jva|?to%k6ItNMk?8kp%71mr5MLXgFeWvE zve&qx%ePzjOS=kc(WVj#>BcJM%h0d)e<0F1ABYm~AsV?Sl*948=2ea-)McY(p zknM8Gh%^vhLvV(9530;01Go?ws6-|YJBBBM@7jMGYb%VDZL+!CZ8iD~)bXw%0a39? z-Hdq48mIR{JrKgKPbjonwNdVkO%%_MbP)0_LH?H-+c#Y0Fg21e7s)Sc{%k->o)4!nLU@=gcPg2SyW%?$e&a^`n*INX8`$9?pGg$H49w!% z)J>69&%Og>nkvC&^Igm!LI7HLI@njTZt7cyJB?p508!UP{SMyDl#wiYD}Xy_0P1Eil$uh?PtW0q``oI<(!q1O9tD1ew`oG{fC|An;AB!sO|baW|03)wgW_nTE(a&UB}j00 z4estP0fIwtcX#(-!QI{6-5Ch(?(RP9yj!(f-;b@@s`)up)6?D0m2=NIcR97GZGzVz z&8Ar5_EFcgylMI0YD9ZGj;JrH6!CA zlVpEUX`rmEJgX6tP!W;;jOBj^7{@iXdKkyV!g_4qxaDNbeyQ9!R~+f9>-D-ybacBH;E9+ zgJ5mX@UG5o_2G2A-xMGyg7}eW|UKqA#xWbDk>_bfdUB`lZ*}RMkmamoMC2h6Y9lN-maRyMU-WDh6!=M z`}R_q3GinULo%~I{~&sOoprQ9FA9rw;57OA1@ghxZ4t4+hZ^ZTY4jUzJVS(7c_OXH zn7fEnu&*C#rc-#P@p?GE?8uxBLevDdiih|Hqhv+$2l^MHgch3)h0=iReOvE{X zg~35{Bh^p(^H9o4l1nf52+Sor8R6J*fs3f+V&$hME-)*5(7?t9dG2I>l*#Rw*z&}_H7A3 zp4BmeOskWvW^y14K96n?$`%d}r?5*6m;_}!J9Q_whKkv=<2GbcE*}1Rh_hY^p%38J zV&qCS2ZN%8Fq=ZCS^Olr8?DwNfkL^lzdaw?52rzAri$`L!2Le%9;jYrvX5DK_+WNL zzWaxD@y{zOl&#Oah|_wo*{+lwd_Uzxs2LWLCk8-F$Mm{ z_6oF~oHcIg>3*ZG&r)#qg4+aKlf5+myGX=h#rf9$#Xz0GYLiy zj6nQG6_^X(wfI-J;Um}7vp|x1Ml={E3&e+@fdb|Oar@_A=a^t(V=qCqa_F_y2Dtk? z+iC8Gddy)%QNsdAZy}kJxB;k_fEf0fp#0!$2qKB2R1IV3uI|F73T$J^{cUg6XliM( z=f2O*81>Ib7y4EU*W=|m(`){cikbP982o8_AVHlrIn|ZB$?P{bpXbnp$pAkG=DuV( zFYRAE4u#-EK?r-jr1_=>Bd@30_B*&2$8kez0bpNUES=6{*l1r|jEi7$=M~9pCwoib zeZK|}iKT6L0Y8r4EmPUoez#j~`iLzV`$zD?N3HbJt{9_ljoeFeToBtoO*Y!I zvJE9KnZu!Hf0#ZVXP&LPcy-Scsr16t)rA>+$IU_m>ZqiB&xSad~2*);e&< z;Oi29$vu}cslgy-^u};AnwN)7D^4fnk7D` zIEX?nSUnYs>+&2n*d`M}0dTVwVJYTza$I!5<^25#w0EVnk^l1}yeTMPXMuqwrj9;^ z%u<+1!0|hK)lC}sl%dWjUImxWZV$6YV*Vj9Puf@DJ*Tk6TE+5d!LP@h?CK5{teNU^U32cQgo z{YZ#R1;^7!OE#B>{A&I>W^?ZGvvlQ!f3XB3(>rxk`on&mwI>9C$o4LmQxgaRF=4ERU{frNyd;D=F>%Hw)k8r@~y@UvM40 zU)N1Q{VgT%8?-ScIkUQm^ktoGqG5%X!Ayb`mR^&~j~DR%$`s<`r==a3^I^fzeI1kv znM?l^mH)3;VecS7lI}!-?TTTE+~DyARt{tOW8@AmcA=^H)2Gs5JWP{+B$dnc_kHHC_9iPb?)j^Q z2&bm!Cv`j^E0!@*PfHQz(e&bxWOswqJ<2R_;XyhRO3ZvgD-l9Sh%)Qw0cI<)1~`wX z_u>(fjZK(DEWkm^`6dVE*8V3(N|BAmKv=7FC?aKm)tmNcJo;~NDWR#1iBZ1*hU$IN zS(?B2FI~89ff25&Y_K`<9~l{$K`;vsBcGZPnmL=r)gD~hw`f*AzKPw7KIBXsyq1)y zCK}_id<((`P%7#b)~c5^cszRfq;k5v>yvIhod3BEupORvV2`w^-&`8QXEAmRTx5O$ zv|bv>o#ZuiTxG-qJ$brq7<6?ji1Z)Hrb4MJfgca4WLGI8=x}U`7Z@Wk1hYnMBEfut zgBaS?sVC^^h9J0N8cm!eQz$0D^I&csnjk9+zsK&nV%!+(={R0tn9mzsZyTd9ZzCSY zz81uNq_ZLp?``L1sQH>0&8uzF*(kSpG=BNjhn`&+dyEhFdtLQT+O|3TH*QQ9T!HLs$U_?=qr01ES(ws$ zyBbCV5=N*1rwIbGutBgLcPFs31G^^aTsz|9bB#sKx(DhAaiKuOAlwxiJAGA@Bu7ZI zg|zYc@-n8X4#yZ3I&5|~2|zq@a{3!_D+By*xEn;z9!PYZC@63O@}MPi0-m6XUQPSqeTUGxnn9T9@DDKoe8MW*!BrnBdhvHaC_{eDKYse;c7U0lbA(Mr8^Z39NAxzd>yn<2?zp!toH&+pPl z?m)Rq94VsL&CTC?sxxK3!q)#nFnTlmu)gqTe7nlE6$T{v&uxSvu?N(JdFa5W#@`vo7dUqY~;qQ1Zl&Kn*@+n8|{G8gu-%bejsKG2--fW>3Qs-G_)@bF+>fDKQxryYoGD3{Z^t z61C3HWZ+yYu?2$Uuw`ny$$_0z7kq@J(ri>1zY{URi*&jp3{{I^o{;-$DJkU|e!<4Z zegZs0fyrn3wJK%A@GS^|*TN55MY1V>f2xtEISHX+!tz6!8wjl=K9o5tgUb|)yAD8i`A2HJf9U};=V}D1ehZ(oace1|pQx$#yqY3!?Z8BpC07sa* zhB;O93e6%rHLpDCLe!I#vvRFykN>LqhsRa|^Mh5XDl|r)aCcnA=U6o6TSV-c#hkfd zm_c(uKR&;yc3sjGMA4XE0BQ?8`u+ElhZmQIzi{g3?qmZFl5F#l|B3Z1;1Jv}gq8ct zZNij_Ok14b8GFb`pqL;~-H$(J@wP7gbe4RRe`bRDUhS^N=x3P`dz(-IKjK#3C(zt; zzoN$O;|hi!A^={JxwB5obdMD98#TGNA5kx$P(6<6t;fAsyvxdwD2k;FroTY~HWSrq?`@zU!#u_h`Loadk-EU?3)S$vOToDeArq3soNVTVT1I1aUD7kg|T3*#mT z8imZW>s}*F6uWO+rA3XoAaLsbkU5{-IGJBvjI36LAuZiONQ@eYAM$&fasE}@k3kA*<*#yMT~_nMP4 zQ`~SzVE%?Y0e@rwts2D=(w?#v`hOXf44hF@=&)dq9or=Ek}<>`Dl0P&n6JRZ2n+bL zb%$vb9I%=wIarVpOoVixAVww<(5ZfM1FLPuA@0oKMY*7hnUB8!9vEj}d&Wp)&{Gq; zz5qt7(iu;1Trn%DnozW4i17~7T{;jCuti81&*cGh3v1*NJ^1k9*Pe-gxR8meX9ta| zX)WK$j7=Rtp9xY8lS<`Z3)t=mCsw92rC3_+Rld7>!M#7djv4vG^6y zn_`fLm(euJDL3H4F&aPZP5^-l2@n;UW`fbEbq?W==0g-cua_SoMEx#PUH7oD)fEe& ze;rq)JIi<@BB}AoQy^K*kH0DjIeeM|hT?gCE$nz0*1$tt!vy}?Pzd-!3d07wS#7KO z4br}E2*StMR8sNW$2`$uh$R3ktwn$ZdNP46bVOM~%`3n2`vN;doy3Mg4ZbTEVjOBFNOawvApXAU8-^GD;>hWy2 zd(gYL+@kyQ3Azm8(+gK94-9G!Jgo}?Fln##b)-6@`ErB&CE zrMfJfH^fEPmTy1XF|^QV-@EM!?tCx-!6da7k;Rc=KD9J*GF$liDEf3U;k@w=7>Zc_ z607Ug!=RFdHIC%$08Ugfm%XB#G=9hiGr3iMm(yi)>yB5JBtc;Oe&taH6HT|IBJlq2 z8kQd3n5gY`vM1%KWpYK16Qg+wk`s5qn;zTg5s*PMH9)NlQ)dO$~m;=sOSqR0=}&-0sI=R@nB=o=Tt^0_7VhKgIMw%Mq!GT%035YG0uR|IM#- zfks1kkZ7W%;6p)c{ns4TwuM8z9se(#$0YTSNN6E?iwe1dxFNYQ-76MOit zP;3F_%9$&6O8c!QufgrwX7cvuJh}@i3+s6_`LEUZO=4lTAD)}5>SwNoXE!og|DFqo zXLMVp(ym8s8mI*FHlKGh-g@p{*C=KKBwffiV(-;#oVJRxeVsi;haJ0^#pskYrjZaM zGVgTD`Pm75`JKI*oGNrXjDyUaG-^(a9up?HAi^A#$o>R&9-wLpk$cMPhB4s`4wHR@ zGQ(SCLp=8>DbF91129V`oY1ET5dF?AZJMWlGw1swlM;xgjrlQYf~ZI1`cd=&1d;W( zP;c7PI$XM+bp<`2kop>|Cf(=@(HD3ZZcY9}K}5)jeT9P+1Z4KigfnOx$E$h8s_#}y z`aamz6QmPB*2gd&cXY(<0qyKQN9ajp_rk#{4YWqLr<4zy9?E*s_vYa29x3y^(2WsM zK_^GVKeBTcGWl)sl8%V>T1{U^-=M^g1(!lSx}CO@Bzjg^<-C;wQ7zNJ`?&Gof!wLr zXj)JMF_BG9YO!yK4)3n2Cl=6RXf<6#q@*`9LfAB=Yfum6!}u4ZA#96|l+--XSd2JJ zGvDK>NIyog#XIKnqBFyxhq+GV4BtWfkQSs*zl_dhXC+X}es)5ah5E>j+e|4bI_7%7PdA2 za$&{S|AUg8Y1DeJd_>CQS;eE$Qq{I%ep{FkeUZ2Nn+;PLi(d@D#=YsJk zV+#FSSFFKQ`$oOpOL0)G_sRWg25(*6v%Q;A{^$AKYoLMk(BGhMQ(?fRJ|avK2eU$c zv^YX2e;YUjX@LE?wXSnM!=>M0*ewfAFVJTW-ftWnjzn<6Bx;X^+a;pBnw}S0epQN4&BcJ+X9wm01v&xX}wS z^jbA>7PWW-W{o^%b%j60W(nKif4qiYWQNz;F0my2)QPs>#uU6T>kT<skQ*;Q~gQ;m3M_?My2+t;ubBuKY!Y={6EkO%r&I5)2cx20{1#%LSkl@M!tR z^<7V!#`hmHhNzFVSna!k2|@dB9tHopM_j;j>(=d{f4K8ST}6)OW6%+i*XT1>wE(2D z2;nT0q!m?n-P`g&1UcuNs2#mr5t0(Cxcre=`S5oJ#YFbsjKK7OP?G@eJN#IMR(eh?|y@9 zxJPZp_cc=N5p)|W);=fZ_sL3~@IHk9IxD?Rt;pMU(;-*o-EA>=_m3)Ab#qh?==uHq zps;C!qqmWQt%xD$?-5C^i3^JK9d9oqd?~2BTci9&zfmm<;R4vJU;x7}BkTf^V=IwI z!w1d^Z0#CV1pJy^hKdIolw6}#}hiX-wQJoke&aT?hhJ++p`o{gE=m=w1p zS{%X?fAZNJ0H6ryCJUGS^3z}|#|XJ!Dk=KBD~sFkKAwH+muq)<(cY5Zisx~>g7~uU zeK52TUB&&ApkBl(Wg3|V2jvqoGzgOFQmrK}1efpj6&+V=jQVg(>`4N!2bg;}i_HJs zM)VUuR@wZa>*@p{dbtF`8Y4^YrV@MlpZ>Q|2q zw_=GtR5*XAqa=Y~b#0UYr;*m!>CJ;kB))&XK@&sUKR?9=ha3tdT+7DGy6bZ{V(;v>pkiQ-ypDuG&tV=L2-S>~48w3HexW~-588-3o=IK)|LWwyhJ95KA)$K2 z>$mOVP5dQ&h^HrYy+}-HV+ae6;}_;%2#y;en{!*byJ5uU$D@v=1ETwMW8ir&HJ?sE ztR552vD1%V68gqJQ|J_=U~%auJ$-zcw|k-=6X)uj&ypK}ViYkp)}hMAl3M6u!@8V_^U)ia?8`(*!Ifb+wNYCKGN|aS$oo zAZF<*N40BZgm)@4M@v~#)r8x9s|XdlHGLGn5!mO46ZN}kc;a4h2AeX4fq`bn1$_3F zBPy8YhK4FG-Y7p4Pmo|9e)oN%099v2W^T7Bao9)kYddAlt7*2OUlklS_b@`BdrX?& zZERbj3?ipWsa;afnHWjgUvPk%(Eo7PQ&SMy&IA-|VorbxipvOMY;?=_iR(f)oCetA zwgik5XwDMz5%s|4@~TpSB*R=(!)=>0=@}VWNdZq+wr!Uc@xa}Hk{0Q=oEJ7%!K(Rl zl71W`<>AeWE2{>Bi7;^mm3f-HkwsQVZ}ek*sQhqnqmke95-7aR;-<62d-ily$+tyK zXEnWJ5{&;~XM~zhOntP%b22ZsF;sopg5BLv$?~2#v>8!}w*P=zGy4I-a!hpMi)=t3 zG|6>=5=l+}MRzmJsaTvn#<%{sp=RPqmf$vi4j^Q>Uv)|zxXIzQ3rDs_u&T2H4=cvT(Y#kwvsJ>D$yz%*|3(fG z$I6uwcXqCpDa%Z~BXz><{FF*BU6i}ST2P$#q4n~#k5qd zadm+W>j2U-!uMeg@Qq?VEIT3a~lf z3uXDMxiYdq+0FOMemRkFeL$hkR@KENMyHn!`XlowRm*&5K>5A1&wvd(238@cDJGN# zE_Zt;42rxI-g&ZY3fgX9SUtQE*PYXPSqWmB0MG!IzhafOaB^}Ae(i7#79iFYuHm5$Chwz8@Un^@eZc zt`M)C9i|!cI7&vpM_SWC0fw)k;pwhEmmkuZe*(Z>FG=|srgC~EAYI!+pNefCXT@uu z@lu~?1d^!KiZCNdWZ`{sn^l){ev8kBjQhu?z=DPGaDp~pJ#9BXwRE9zBkktxLRM33HUHt8?aPFqMxPxQybw{Y~WU>2v;tph}u_ALPsmb-o{B_dcU+g=88(95*u}QH(`* zx}gZN%HcZ`yjQ@(Sz>d>Z$Wnz(bpFNfH!0SbASG2HprJwMUlySqCp&_d&if&Plwp) z^_bM7q=nnjSwqB&5u*biNxCh^YWxQYk2Q>pY^L}LIfaPVSGbw`-dvopb_$$@eA}_i zrbCd-+FIBetV8#v{t@pc{>mNg0ZZ}$|t@oCAdCg594WeTcP zap!PMuM>)Xo8|G}Z+Hz7^!(+r^Snx36qKZ&++JXjaEf{~8m?6Z`KbMEIxfevO`Y$! zoA!&5#&x}@8kJ;Ql^A|Se#*uqwC_;66_5a~r&AHW>O*2C2tvP;0f?6< z#%kQjS7I57C4>xI7#6HW%R|2ML=iP_U_0d;*Lb*6pg(LhOq0ml*pU1Z#^1G z4=<3r75W~z`l!nUdB#7ccw5h|BPdZfCdOE5-itW~GRA*9X_5AWg_Cv7U&YXurvMzH zy}A-EV2i^rkb#ohr51_tUd7Qr@QeUb``ySeI;o8PkX09Ian#xkh_Lmm+3A5Z3i2< zaQ_rZj~ku%#hz)3zvBrP&T#;UvKe7K9QqNi;pFYBg9PGeXqsJBdU(*Z~)d z6ihFJP>Obdy)LHN3nwzhLzFf735hh!S zkkdZp_3lT#(qb5Y(0#yejq942G$~^kAtQRjc`|=RRqo|DP#xQmyt+F*OrPF7@Lwo{@AJ>rn z|6jfL{iDnO)O-K5V*)!>K=kHBm`kXt&Y6O3%nwV$7#`v4pv-aAW6&7(X& z`$T5S!20xwQQnD~cSrX3{Uy&#HDjZ{b0f&1qF->0fq>rfk(4T(k0}#Hx!V_KDoOgJ zSyjW}z03i+M561LAw^8S_u9}lX}M=ie?bL1hBbW4Uihy>yuS{sC3D_EK*EoCqb{fD zW?|QQ$2@1UQM%i4))-jb%VTZ@B2J$1bBmOa_CFIQJj`H~s|f5USH*kF6U`ACbg>pQ zZSw?fCq3m@FE?CTaL;(%=}qSm=zXdv%d_1mg$L6KZ5Zdn?{S(>p#1dxGv{bMjb3Ou z0luDGc&IraVyJobXH=Ce1XUk}dDQ~rSLl>x-;Ve8^ybCKv!}IoXlRmB{VEq}bt$1j zM)4IB4G0?I3hOVjqZ|`mM=u{NYguW$+N_CRb~^Q$^d=|ypR$h>F4w)LowASaI9e@kma?qs%B*o(2LaExt07AqbTT=HU?wN%beri96!o(_V4 z!Ek9B%FB{=qQ>JbOa9Vzj*F6a!WVEo{tSp`B}M};0b=z|Fszxc0qw3n^hsZIj^CC* z050yZdl#aDx(Z{mX!(;NFS7B$v~8esZ$p$76Z6Sn8+R5M*0?t&NhLXFBZ7ycoRhYMsYP@&&6P?5IcU zBQ96}y#FpN1oM$+VZIxH1+U8Hd9go+hDOkz#OQitXL$_{Jaz6vk~>rHi=ppI#taE! zLw`3o&h58ywCpMq41(Wl6C>OR*(28rWWN?GdhB0utt7akQo{xD>`ugKZ{NFSlt+)Yi}U4dp1Vmr?7uLbJWTUQ^_Vjp(;i{Z!C_+*b}kFSptSPI|(a0B3I=>gekW>cX>p z?S%y(5Fm%m?btW2SU39tG!1Yhqpn zayx7qU5^C#KBnQQ8OHsF*B39qjWN+>XrLJY)P-uqwq3Q#_nC#%!@v0NRS>#cP5)-F zr|L0-bLvJx-sDBmXLe5LF(Mqi#y+sd(0cv%2|Pm6lG@3uyR0_x>5rBTg5wEOi~#Q` z^$cURK4k4_s#^uuN(q|7(Uog>y+@zL!$-{;#Pn`hQe=ngUnjvsfoN%Xi0CZ$82l`E-6I32v_D67xP1^kwyw^~H9D8A?SkXg|JFYzmlu?_98m!`L~w zw&}0w!$W_=Iy}}Cm@qmZsgw1Zo*$FveylW%SpCk`?xAe(ASe4F;&h$g#@gVLCmKS^ z4!`9yCm0cpzbfl@YBJi;sc}_V5Ist}0$^^b=gZZ84m)XKeCVl8`|0{q-ekp11cm6` z;dhws`QzqgDe`84{M6c>dhllJ6YA!2Es{bDmBLO1JgMW?FUQ6UGZLOr#GdGY)N3w) zl!fp4OyIS#&BrLEB5Jv^+6 z7F8H3=&iZUps#QD+M?_8QpymzZvv>T*(tnQClzz&{~4DNe0leFYdqb#LZ1D6e}8-7 z+r~^fXV>BeZfUXlupVa6&~)4L2xTIX3&ObFN0KntncEAu>ov6?2jd-0ed{%N;E>@ov+5-MJ>CTHpVEU$y-H-2h7}{#dzX=do z9rvYDKD(Q46T8lq-bYvszga7PX{@`!T+c>cTK|fF6|!)qk3Oh>UX@ds>ZQ2yYht)t zaD1ouZ*xyi3xroJ?4GV?RAuXvq_A+z-QVN}C~TW;l){NZ{7w&>YW;xL_0LU5TXXa2 zkf_D&>z$e9%!4)8fhyUa^I~;axp@Tp>G=%gsf^21JJ-LT$MM*k-o`IssdvDqTBE(` z)F#o!%H>-pOy3&}bUo&u)YIhj1ngOTN2rxgAF`?7fI$RcX4T`(!5mcFYns4p*ET=g z7MxHEy$-Xk##-*vHjS*i=vDqWjgs&UFiCxpidm-Oy`hS?mF@yTbzBUmB2$JG_OAZwHcDsC?0f@^|4C zT;sTp`UquOYsPy$#g(1%lHK|HXLButt?(SO?gePX}+*^bgaYDus)`30%IR6l=N+UmMJiD12>C7?Ov?CTD$w;YW^ zVe2Tpw|*MOT>I;=@42iyOc?_V8cyOxLa!BqA#aqidRFK&D0ed0ysSm$yIP7MpNFCWm zzSeUAp&`bh-!AVjZ9Pvhc)PYduLt?s2Um6BT;;n=t&`sUK1mDxi1d?OmKhG?JrD}8 zz8b0SO?e?#!`lDw4hccT)rqLo?{JxY5k(+;Fs;H-sU1cfM!2%O*Td*`JUD!tOOWR^ z;vtYo!2|(|`D1utW>IX~hTlt(d`1_35Z0~tLX42N$SzX-L;2JHQ$T8L z0y(eUJO)iPUkE^NpM*n`nr@Uy3f#Vn&qRo-+V~`3>q8wQ?c@IzOWPu}u?%3`pD-kP zivqzYw)*wckSMR=lJuyAkaDkI-r;D)`{rmqVLB;S`_*iOR&+nZob!9Iicn70JmGq- zo4-;y|B&*vn&=(~7)49C{fb3ONZXuvb z84r&4>&=v@*;>Yq7YHXE&8=@TPF%!r6mH7ngKI6Nsub?;!*WJAdL8RG0+Q%YoJ#hK z4KGZIz?KxVV)@nAft3dhj0qvQNppVE<%Fh-f5Z(L53ul*Lv);L5 z8{hKdm@gtBAMw6s2ax9d3Mr# zqX|Gu`V<`pSQ|*3p_i@=&l8zdm1+xml9Po0@G^WldFK2U$Dl$QfLk>5(gb>9vyZG+e)x#8g}M86d)oiMO1oU-EdX|pwM^M^(=Rhu`js!g`C+X>KUn^81yWsR1km5h4_ocoq!ZB;+JJ{oCC}zJ$ zy1sPnV7Q7K%?w6h)O-_BgKYik-!~~6jQZpB^z`T88aI}@y1LQF>%$S$GmpO=WGiOx z3g8#Onlk@oWn~4pw7BT1L_|DPi}=BoA+r4#{nv+Avz%fZ3ES!J-j^5mNaU4;%L(WmzMGCZ-KHR($TBaw zfG%=+uiYo`{VbPU$}?Gk5YczaNFT3vgXlznzLX5WMT*A^kcRi-cRch`fy=)wSYI~E z45D!ohF7N1y5vBthV2a5Sx%9yIP32M=b=vpScICznVY{Hts6Yn98-QO(%^e0^HmQH zRT+brCh$neHZeF+zv3m32{8xCz|y@@cT#rxpl)+n$>`$wfu)`6GskVpvkMJ%v($pr z_q!$>z-@EcoeXVQSCh~Fo3a3u`*XFH%ND>Nqnqu7L%$dmt*NWWgp-Y=_H2g5yWyU% zW=c*KqFcd~Tl8N*#;q>OgUuvpv~2A!u^s%tH<~I4fRER~rMKy7A@foE6RGK)_ZB{k z++eCn+5$3VCFStKPoNlH8N8nO2)8H1zEISp*PSNY`j`cy)cagdS70Umn&?)yi;niQ zyu}=qm%~SL!R)`w_ew?EX(hl6eLg>gfwMHI0-)DrwfO$_(W1%UVv}`v>V(;=WjI9v zK#E6~RQ3}k2;pv&aMp|U;rDj{_#ZT&)6x#@C#!!Y8+=@Mb=!uW*pG8Wj;`9--4GBQhqr?tjB`c>9LE<)*Cc8(yM=DlSzE z+Z<7fphQ3m`xUlEzX!wT?a8tGsV8|BI+g4XvDY)U$(&&;Z#vV3pr(_yBRZ0yx1rLG zf%_58^7WW+PV}^vLN1!uBM}TdC(E4;G}tbi5(78m$uoxm4VO`wsC3cu7RwM4;GY%t zou#Gj%a6-+=9g+M1oZEdO05NdM{O;TCT7ZvMDz?o@{j(gM8LuTW`gpr$jso;5<}OY zgN(htM$+O|ROtWs34C^Cb9hhP$G3&H{hpSyMN@CfYBT zQu!8k>*(7LZNfN(TH$(Of1i;g(7S3YHBB(L5*uy(zSgZ72;F}~@r8wSn6z@Zd9AvV z_j~qOf5~Wb=)mE{`m0wI6_(Rv?Cj8Y#KcGwO)p}8!;U~wO}cHdY+us@mdOT4axz<5 z<)sU`{h?7UUM4^u5g`#HK%26*wVeizjp53PxlDF;R#sXofFnX!PRQ9}RRwe{(xzNQ z+SJq(_WaV)lVh6>#Ux*1+UKD&4<6Vq2V2!eAuB+Lg^CY2so(9hxVylab&G9?47Q$< zz6!m&Rt>{SXV;h zwG{MB-vSG;PgupTJ>>={MLksw;E*od=HCQ7p_$OaBv27z7zo<1t)=aoh!a>SU~1wR z8K2`lcH;Y}0Nd`ec+fZ4e%BoybHeUgM4r!CSS1J#RxL(vW=Q64XB}zRO5iq!n|*G= zF5PWuA2rSrj8I&9%uQJ7|5q|#+D5RgyD@Sg#V;5IDb#KIhRl*VO~DU)JzUvz?{)N~ zW7IKdwK0bD%Zbjf$4tFCh(&$zH#nMmb3e@gGzs-y$a42$s2!Y z=l9q@v#jAV$O;3%6$`Z^Aww`95H`Ni8N1g3J45z&*?aPJwi+o~MpxFQ=-YW|qcth)Ur5&=XXj8nx4UUx7*y~kif%|Mfi zM%dbiNn>cXY5hRLV%zx2CqOT_UXM4SVH<Kc?3v$;x|x%izH!?eFFfXX#kYmT4$|B?yZNJ$E*+LHdM zC32GQKy-5Z4Cwf3SC{+JcG^65690l;jDUbj$cE^#{|r_g#FQdwmZ76LUOJQa_k*T8 zDm`2%bidrhi-Tzl_i3QQWu?mZ$DT3$w{2pSMeWHQEV!ZXYx8Udjdi!=9latO7y?n< zW<9^gK1an5g$E1F(gP_C3PcowyHVDurM*_>r5JJ$8BP`StMBt=y0Ga+{Be-%^n%^X z3;p}EA1L6B$ghvKYRaw=M_287|9CgBt^f|jmR6 zn__qDx%FG$b5#}3e&x>+Ja#)D|Jk9JxDm^C*QJ2Nx-HO$qQ0M-sL@Du75n}vZk$4^ z$*v#Al|XpOmTuI4-yGVSm9@CZRs7N%P&5RC@saKz&Fd~&VXK9$g~6hFFhDi~=`Mw^ zZsrsLg{-%TWKk_MH7Q+mN+~;akGBX+ zROPx;m+iB-SnRB9qi6CWLE5gL@H{Rq9&*;)^}ePxJdWGaua?qp5Yc8=1)56Dhm_TQ zl){q~PraP550p3mX)N)%#prG;D>?!}{!#%A`m65N%$TwFZq zCSeMzt2RkLzi*VIn*>_7y2jIS4B<(U3x-&XOkH2u=Pr<)&e6|#&t&2w=Sy)a6t8r8 zk5KZHW;Y;(`8`LR@90pj%W&yjX2fhKXM|#{HCFENhp_;_yqNc6-HWmcGbuAVEe)LU z>JH|Dy1l&by|_C%(K=QBRT2MU6pD?#mlX4!y$&FH-G?+bVpRG*M2iGi)z#}Md=UWR z4_VmhTGIvGuytMWUccR}LCSNaFtLXHeQkFi>6xNu!HI>|{z+su>!p7C#KGis4e6y zgN!-GsrjF3gIPkF{F#N!7OTHBU8Zvb)!CC1vkeBqD^Uwp$eylGSW?5#ol3ZipY_k= zic4`HGo2oDO|aXeVwDfBxmi>+Z;Ff_cPat^8E%Z-IN8eJK9x+SvmV6%1gY)QGQt}F;~gY6sj$((WLJc1v6dJIg-Gm%D{EhIUNh>s(0LkO zfUW7UV@nd#30=kK>m6^;H~rO7F+C^VAEXEllp+=mpBQ4~ea<+5?~2W^_+=8e39HcV z6#h5dI%Ac`1MHBhlYeQ1k6K8>RDZmHUUmiLD6WBJbWRe3=)CV|mJ!rgKsJ`!GK8k9I?oeNTq@W)DJb}d$I?%rU=itkI&k{0jjV!;bsPdaX06r zNFi4O4M-)92L^N|HU1ZSZygoY-#&_N8UbmPjsYa3J0wIxx};PDq@=rRkdQ{YyIZ=u z8$?2elm_W$h`af|?|Xi~bIx7s-nH)i^RO0+VP?ZFeg%-Ngn@0s6;TdLB>M_ETAcRo|l4Q@eQY-LQS&4;BFAbce8WY&BYX#!i zph49^pS6eQwaMhudp?uk&Y=73g~RIKyp-Ryo(eY|Q?0^`BKGZYmk_5Ev2Mq3=cRzm zor~{+&*d?mSTeB+?uCbjq6JC?Po?SKQvw_V?XFa6cxg$KyN)OoadewkOLv1mgIo8e zx)VR>+)F_E=PLK8KV`IkUQ8{Dd87XE$#t6+MR|UK%9$h=rQ)xt)y&NuXCMQqMR}$# z|5@Y*{+1&0{p(GQibB7D#;Kv=DI*h4a~V!Ho1SC!P86r?D<&VCemc6(Q1Cp{oW5YoMl-I&MXYKxyY}d$h%UJNMGG{rL|&m7sL^>BM>_~e zvCenB2u6jz`YjYpcp0d`d*?^vP`)UAuw#Gs770iwg?cC4eys__{J&j7DYjP6K6W?<)?S z(JVDAzHt0ywi z1*EjiEAGVosQMaCeia8MgafFq+|*EgJEgZ#3tgd^*x~G?Dao{Lw5Xpr%0y>0fuWet!cjPNPqZqLNOuhynxMoyWXMqK$hqM zl3xp#@ZTv-`X3cawA<8{qMGu4}~x~KU<5EP4m@DDKEhK=Xd2Bpb(@y3MkKg9Dt%+7sZ zKW`V$tT*Hf^Yg#>0X=@R+(<|Jbk!kjl@98gKc2k`Uy?}0h$3NZeUIfTQQ`0z8G^sH z^r0@Vcz2oa!RfPP5Dzn9@Ege%W6Uk&DmWqEr=#K) z$q@9>n`SHmnVk=9&L>7l=(>_rwY4fYhjCHb!mb%DruLZ7y!d7oufMqnSKQ)A0e$QO zrXBZ>d5&a~6oky02K}|oyM9W1HEA~H8xBnku`M5w+wH!s%M2&Gl(eu*K;L;^?QDD) z1$f(?`a1R_G?)&)%;O5FQZD;pyrbFgj4*)OX@2|H=fH^>rk=HJR*1fIwgwhINdRYZ zb8Q5mY`;9y_4enl(pUM|O#eMX2U2#jwut|i zx4rgt&5EkcT@b{1BeiYV3MX%h$qsSy%{No83W=@(Z&MCEilz9V^@PC9Z`)yFDw<*uF`val`fR8j(mf>=-H1AL0_?``a8Pgk`z5yD!tonphxxv(dr1ul#6$<>S@} zp^g9>Tt&&{;K_V$PngT?te(%^c?8kzTNL>cN0t)npsQC30~+XcGd#3PW1Yh@`%Dqf zox3CMzTMv)E8QCE99{C{H>_Mt(qGpn!E~i^xf#C~zh#M@`3yI5UBy6bmsnvs{=krr zLX}`V{j{%`ME&8q|B#(b_oFx%1f))UT>Qw}R@1PuKiL});1Nj~`Juta+88`vd(D*$afb+dqWhuKjK_06q)4)udV1Ffr94Utuzc4H#t(~B+9~vV=$}$v zO6s|~ox8Nx{x0=8sGYY?qg+=KAXQ?(nC_@3E{^7n+o=Cw+)C%CcZmO%@9T38P@9qd zM)3p45eMvP7X9_^={6CwCdq#-Fa)!6to4P;VblfGxwA7SWI+NK^mO?R!HybmHD$8{$VlhRqOvf-6WVlgOvm_}ss*G`ES zVoydZkOyA^EPOmEQnA?A5U8888Xps(2su$_inS+p?PM>?L%o^L8tjl_c@e!U&Zez4 zivl_xtQ8lJ#)K!Ov?+{@1hpo9dOIH>W-tJrXBTD*V+=+ zMp@8^$v^lc(d0BMxYCR38BDy-Sj-BnC=xZ!WM)|6P2B$(=Inu(uyZ5mPOYX{9R$V3 z6{*mk8sPd`U)0F@r#gA)M68d0DDSCpq4GBNtC~ z7+MncdD4Ke-x13bJKzJpmDu{kHMs~rL+jh4e$i#uOk51S0YhYVtrKnO_N$zb&s<;u zx=WSjYgE!3pyT(!SCL_1%XP-fqpgQl@6*dRx1B`SJ16uAH6wQUNO(QJ1?IQRMq+Yf zM$6<-(h?J+)zGPLW_-u`i19B_nt5cCeacgedRtjFtN{)c-jQb9hfJFVgX2pBSefJv z6|nXi_l~NPrA8=s`z4l7aNSQllnmgCu0?U$59dU;+RF}uGHIwXUt*QP{9St3!N47E zM=#ii0p(Gn%TVbRPqf+bBWZq`$+eVz6S8ak{_AhU;Ovc)Pg8O7gmw_^bnY*y<^gkJY%?{rpArE$+URl4&In@P|iS z&~++&MOVHe3dd8-*U>y3L4kyJUq`){Nlr3QP;kN6;;60CmsLougEB0>^win>U{D3FN3qVOY#bV9`b%W7AI+*iv*ALQp) zRQ@a}US~b54+WMUl4>L0}Pr=mAr*`kw zhqh{Ubi0kOD43egXNf!h0s5#C4wX6Y=%4xLO1PsB66u^e98Cm^=v{f@0ouEDQUTY> z)J@ppU1kk~RU2OemE?IGV^?KvMqy&xvHjS16VWCw%*~xX-<2b|8n5oYbH4Ndv~Yyy zeX0*d5X2qig->qIBN`1uVU1gJgYj`lr#F_NzkeX9{1|vYaN6~KMzulF%F1WSIrBIH znE2UmU6x>BL?9_)A@rB^bHWY0iZ1e(XTh)IFLNCZw@5$&!PVN)vmE)GL)0VPWmsWU z0HsI7h;x6@o_r5a$-y((s=FQd3#U?!YzaIhzpH*y^?>QRFZfTJ)bFpltumIbGt$s} z$%iHUC}?=aZV0E9h@ED1SOK%#~k;WJuIYLJ{yJ@UZ|#lG-w+Guk?w6t zI%SuAf)BP^Gs1UKko|KPh@)W$>*mR22pvI^3W-`e7cJ9U5^HZJ|Ky@mBq+FT<)mF5 ztyEUuzq%eubXRdE8NVL;3N#%w z?V--?U)abqCB((WmFaJifw?YPUh!^XVduY+z?O~`{BQL*YPx_OBAZs~2MPOi|JM45 z6~(GA$w81EYDQ;`A6{@W>}V6uv7{;CDCTuv!)dT@trT=rovVAqi%DvoUQ!V|+BIQQ z5iGljSk+o>T(r7cO!selI?1tvc3Oi2lb1mGm0PyceKJlR%%&lWdfr+L<)~e9Uay_A z$;honI!z)_j_2Lzr=uOexQz#5U7i7Z&XvZElud~(Jw$P9IOU#)__N?I!P&yj-htz3 zVuaR_2h*EGluG?S1V4OHyA*L2_>I2AVX3xMXz}M;V3yQ0$|astYCJ4G(YkkGs7fok zS}E&os(c6rj`h->mr)@5UzwOMu8;0ujjpIy3!NRd=9o&RkuRV(+_P#L@hbF}sE7u5lIKEwnl8_r?Z`zSjUUA3dz49iC!d}@N^&m@G z4aZiv8SKNY%)xy-Ao=`VHEeiUet z>BN)r-T1g-^g3{LdsLKT5FRD?P^;JkmZ6vAU(NoKV_T(K3-?}Tqla>*VWWlovvQ}1BEfN;X zZ(`3nv)+8`+HuUE2V1_P!4Zm`@}6j%cWU1#pE*&H$<9d4SpK!1HAK0@j~Gd_H~>iy^o?#TOz91>ZZ*a`ZmXYU^TwBLC|$@WN(YdevLcp;z1V_u_s?U$ zii&=I3zHk zTQU_-Q-%;)KiR4E{r)bh7F{}AV2=ZeEk@=`N0&qx!uC~=r~Ip-Q4pB(_pE+tDU`;6 z13jCbw&^Cj#phz))$8syik+Zis z>HRA0`?#~X&6b`{pyO-LMy*Z1iyxP(u_`IS*^(~0CJ<+}cfo*g39n{vP7|n>KbX?^ z2NAj-(4C*39}1C2umaMJAImek$Vtq6V^3&k{PXIT%5|GJ>uPEU^X7Uuf&*2+1K%4X zTL{|HUHxCRwUs(#KqMdKw}xM0J`-l;8|T*4WO#?$Ba@&kv85T$`gd2(KT$4x(k)F}>IhbLPVs4(Ko2)Z^?H7-2}Y(xacPKr6ZSvMFjkE(!;I$o~|V58oZ5Q z^6^ggxC7@8kK#h-%WC>U!`Ifb!hEF^>&KiDp~5W}2dIabNpo_ZGRJe(?Xerq-aBBs zO7G5J2D|}j1}>}aorpziG3zS~mEZdpZIkmmO-sua(-!qG0=~W zX1le%QBJ=4{9hdG!LmGb!7q${p_g#>qD*UMkfGlDAEdVayhCqg2-!wZN;BE`n*>z0vM+PRJ8k@vP-!-llHG36|Teb!J;Q&+3#YTG#Qojz(l*3pPoEopVZ z;skDcpS7c0=m{0d(HBI;n2;4BUEbJA+wU$ROFCxZ=IxGem!$#Ss*sFDSa(pR(!LI- zq3#9m!#Q{oR)7!n?xd6Ggy$7VxJp}=J~VQ6se6X zdGXtX9nf7h@V<&ewV2L;NcHGbT|SPQCa)+>leZd6i`nn5>(kM_R8MV3PR{s5LeE{3 zF@`CHB@>q6&rR;>tRH?me~r5N;BWGMRj=*Wz_xP)Q2=D>iyCR5vi(kK=QY*zCq6;e z@!dj}@`DDppUM4^u75`Po50$@ftHcg*e^0?4bev1mCT&IWI$YQG!txBJWmY4N{Wy= zj$Iv}JCYUp^xeP#qH{M#NpW?|J-$D1A(Ix2-JtYjuCwE<-#%Gc-FR8*nR~(CcZ`HI zjA%BO-OoEi5B64A!$b@**aP(!gRI$D*<5+oxwGrWnnck5s5@LLnjvV+v;;=c-pxhRYmt{3 z3&w>LPF+7*A+DYQS!s z%idDmlAunX`%@B8mwS$ydcg;Nb6QBC@{P)t<9~Vq$Y#DAq(c^}^Yy3(tZ4`D{bk=` zzr5C?)4Q9EW0=F5Y~@Ufi}wag?(M zy@mLx9ZQ;Q_F1sjllB%jYMJExeU(=(5~8y41XVyF1A5JO-v^o_VXRvT+&dee_rU&w?Fy1F=jB$oF69Hs5|c5HW&0=kF96FWSfYW2l3pqszqy_+D$S8SWWUr(hThxN&nlr@+On8RhTizpc%H5EwZAh5A1sa?!Tn1pAHcl31z^qc z@+FxTSk1OMz3Bdi9BW_b3kAofik%Pm0n48I)D#B?(Qp@DVi z-Vg{w0+=?a%H|z;^LhgufRW?YMVuA+w%K+rH9`Z=?7T&h{6cCIj8-b}(2!fv_9+$} z8IY*+b=$18Xlce+#1s;d5ItpEwF9Z8JY@0H&t2++K9!~bkHyJ)<&|iI7Kfjs?pnrbvm48x$_MkUuMk@@Sz>E;PRb z;WpMoqR;(>fxS$wfNX{w5PMiAAC>+4>C_9z)68BtZ|qvrS+N;Jry2+4=I8c%IHjBh zJ*h;NnML7SqmgSyuAt!{6guxumWk2MxO9LXr&XVGP~wD);+URaMV)XCHnwyBs3b z*49dc%vwIRlM1XH0$2dSPf95t`(6#f6-7Y&L zdszVmK4GCx9%xv%VZ>X8*DN;gf3U&@!hWI2Zc&Z%Vq=|1A63K=9dTNvpVne=`(o71_MpTk@^nJyVU9%$54!5I|=kn*;pp}bD7dYpp z+V%LemWIZ3E!YH=g1+*6Z?-}&H6g(iaK-FsxVgEx#9Q;u-Mf+JOR-`Gp5xt3wUpJ> z&4_s4URCob!cn>PO3dD;P3^GQ36Qs@DVZWcp8^M?gM)63b#-<0;RSB_KMn1V&;{_? zH5jpsVqCV$vCfy#S1 zeePJ++XKhhs$k}|Td(z#*%32g$h(}1a&NK@Sa6-q*xu}Znk(gClUN4Ctbi8J!h;M3 zZV;6e`7qDe`(0(65foXF>CF7b8$NUDyq{6&UKF)F6GZU<5u1@*6w$=w@a*GEdJ3Eq zdKokS+nae8Y5*pXZRS00F(5`QM+u-q{Sm%#S=M?o6zWbB;ivVSuEx6IYG|bvS;1r_ zM*;RzcYASuY_w6%kDur&_rtE&L-c2GmK+)o7FOAc&@tTRgF&U1E20DR{9R=$B}>v2 zxMto%UcdU}tb-iQW))*4k@12DPuD`!ite)C`vR^dc=4DtB{CP53@mUclY{KBus7*dyDurY=D^3jc|Sa#`? z9tfj+|6{G&D?Ad*pT|Hl+l1j+&izu`tc>6}ZKxy%#wl-s`(w5@CnjR166Fzc{GI0Jf zd!dl1q994~T~n4~s1e3XPPy=NzunXzp~;6&rs*y$MrwpGHuqVZMAo+Zqmy0uP0^Bz z)AdL!7N3k|Ycp>|`XY_pR2$OCFK{pW!b*klF$n(7LrM4WBB?FIOr5akHIa_6gMj1q zL^bdNck-&Ksi|He<&&cTIZ~qAX5dq@3#2PUQ+RP<;RN{gAg-Z;*xP@P2}M#=KVTYL z<%b9P$s`0WG7OI;r#m87WczVs@HGaEBr5oe!8+T=YgjR)w6Y($V1lOe()uYvWVIOm znWKN!^+HLoV&=t$3!KPOYTURZn1F>-V9JD%FvMC8>{Ofv+M>;b35)z>)v=ejp`dk5 z#aZD4zJXoh@%}boe`t}NP?|EwDOGv%K~s`^Jd5B`()~xa*>Qwa%uI4|Ngs@WB-ZCV zj_~Wqff=WU);4MT9p=K~68%&@?4`%HM+C>qT8se5Mj;2Br}Nh-I9Nu5+uO1q1ucnS+$b&?-Q2$%eR2p}Y(Z)HagHO%w0Zy03=ed=%=+!BMbAI~8XPucGXX z$0P-h+<-Svef^fG)8mCW(6;8$$}HWS2Uyc(9|Ep5v=rfF{9}D1Hh`-GIP$$hIgul) zfwo^Y)gTr1G{~f&e9Od5FZ5$VvV#j=*py86>ns6v*>8UQ`$Pu)kyII0^{|(T*Cv1- z(svYaxeY59)>=mBGuHX9BVSrjX*7(=;GM~bQlAM5TWA)&p#+^~9E_m9ixD7^B|uPA zSh&6CCEA3mfwI=Vb=c}KvCQTsIiB!(!&TE;rPA3D6( zcSKH{3vq2mhZq^pqXtOerNqkdC?s+99@q*z!=Tv>`eNeX;NY#KG^P(JKGpC~QwL39 zk?8Qy5L?}EOBn>uh@kuk3gL^=>TywFst)$VYXq7e8SHPgF-Rm7z}uhcSo0Hit60x; z){yB*lX3D(sYwxVkf8dn;)@NL-TB%G8*8z=c|qEOP(beHc%mjHN<+@3W@h3KeaiOS z)oYv|>j-tqRd?Xh**L^2pOM=%snBO>LCtTl`ohUfn{Q8s9m?*(z9_P&CQBk+`HIa= zaq8*0N|o0dy1iz(oh2%%MY%j*`4@={KwWe*InsjALE+@&G>#;$t4pyGKHymoE^LI2 zwES=|ofIVIk%rpXOwK6;HdjQK*Z#1yaG99ZSK~H7Xu!QANe! z8N|-P;nWCV*R~=PapwUM7%1X#;aEo&05QN$bxG&6UFHOUqQAXtesO+US=$%6Bb_M+ zAwP(Sh?1vvK4R%Vc5*J4%^R7Twr@BJ2^;wo6RW4Tqja!yn@e8iKNFXVk8kBd@&de1%mDw60^($c*agxRt2 zV?7N@G}r=81b$=n5| z$4~(4GYx;mVtsKB4>&SJh^!;BG~)0OY3UCNs94NY?^!?8|G8if%U0N?e*);!F@g=e z|KM#>3KyovoR+`sjXTLS1uKku7tEO8bsiLeYZXknylVRqb>$OKPe-Oe5dM^mj|J%m z%h0A6!j%T|jVdF4K#=R{rwxn066t71y02ZCrvgDeHkWHoounY8eZ}1MVisX?5$G5x ziCNT|^rD7P#*u8X0ZMN{+56}2*(FhOe)au^^{~j4PnY2{O0(zp`Oc%kb;t)Ayi(EBbk@_=T?|u7 z`<^Y+C0UPuTB3Gx$ql;R|6mXWfO3-gTR>?ujOGcY<_#e3!AXZEo9sy1M!$ou<$&*M z_q3Bp?HBVF-*Dd)kFDB<0Y^+g!{R};8vSbKHfKu!aTU!!c(~8)`G?J&o4qm(i0|91 zjW;X6vj!E2P_TI!nA1^JwF{WqdDS&Cjs49~9Tb5R*M16NXG_e|cBE*v&ue|*!HER| zip1)%59}rfCBpqt72#Doo&b!XR{38H{zxVK*R$s^OFkIH zI)c@_C`uBH_K#Ku`Lh$G z3z$cZgwqrL0h!0*{Kb2`86QvG**lw@XLi+~9k_F@sjI`5_==DFNXUOnH4)3FmO1bM ziPL_Q)7}fjt6uQSJ>S~cAUWF2j3}w7@S!sJ`PAD{*JseAS`lRhlI_#C+rMf{NUcpi z2qyoOl$0_+%ogH%{OdE7aMb>+D4I%X13!LSGC1ib9LdS$_H5E!;X_w-7Ye}J=K7%m zFfJ?q?5R}Dl_3SP$1lPJMPM1O!Ar_4E|xE(Z46H z>-~}pLIe&}=Pdbf@m^6X=PSx$N}zv9M(yUH&Ks!_G+R|@ly=hnriY);Fga*(W(?Hl zcd|&$+7fo41D99#^!`mY8TYA7msU>U>1~dGNSzP{Wc_4A%2x@YF@PLGOTxC2$Q}P{ zNf7GqYF!z+^HVC9`%_fBbwPv3K&ZN9v_zD%nwrtmBTfJF))oSBNrc)*wnlJlfRy6? zsQ^_UL0QD%+FskkEJ%>6cd>lIM@-OcBbTb*mW-^dy+^Ae{44dj;IiJlyd*watFyyp zD)8aeZN!%-Kex{V^g!AgfO`0-N9ZK_1sN*4aOkN>Eu{_KvP3jFiub8LKk*E^dmnMqLE zz{j6gI?_Mj>~&$X_XuvK#+Y#v>W=#$T~!#lFte~of;YN3+lfJq;fl;R6Y*9O_}qj3 z(Q#7h@#|s{bF73V5`cS{jpoB@I6be9C`B0FF_ykfS^#rLn026GngtdfxxT!-{9t)= zKlq*h^#7DB!pGOs(yAX>wJk-o1rsFK{LfjmkLujuSI2AB2)CqwKd#u@P9|BPaqusP z{rUg`fQ?NqaMZil>{8GbXf3nc=Cy^?fGz9IUw{ebOX>mFI?xq^gZ`W{vpbw8yUb>} z%?5#SyoP2+zXOVJ3M@DuG;U!pwt0C(%9oLFe(sqDcE4efoK)w?M2@|+zf33jYHMQ0 z9sMzNf2v^o1HgtlL92!G7!AAuxWP3iFKp&(n2O$QP5IKi2|PozE%kZ0uRv;Gow~^N z1BW@cVr4!)bEljtusT#DQk37&&_LcH59Z7&EG;cP`M}FSeSa+KbyFJP5>_Zs?TRg~ z_B#p8P`2W9&~BwVjP)p{@U^B;R&&Y7%F2R0+(>BHxA1fkkAtxqksWGw_KNhNa>NPR z*0V=&5fZgNe)Q}=UhB8uwo)dgcHQz1UB&F$GkYYA4p2`>MD%p2)x)K#Hp$)OOH+1# zjG73HN6X(B(gbR+I5oCp0lUvSpo1X{Ca8FahKIk&GU*|Imyw(WSJmlTU?_b<5QzDm z1wzDD4|@vXie9|r={ls|joK9S-1x5^HMP zvWtdO^&a{i2?0quFME2C6ZhlAio5o3N|y*f)Tj7>``KKV&+^##xXXnkT7{40}TnP8TLfz%KkDPSWt zS83S)X?Ucb>y&+_LT?#N5V??dP=F%Y%KhGsS9ewq@drUi{1+mFz1`hpF!{!YWE+b6 zrwtsszXn!B6yLHVhNH?u{Zeh3E(aQ}Yc zKYvVFzzhCmXa4(}rDn6pTmDNU|NAAoWH2aX%581cMZAhliUbq7jx_!PSSwQsuqd{m zLX?gIiJ*7|ShTb#iY?=mbS@@D2xCQk`LMFTb7cQ$$uznQwM5`elo}=S58)~2Tud5C z?v~5iI`AFXpiv|4D3Eldo2tu=qTTK^#01I!(Kt0e)A{c_Rb(BVpi&mF`tsFA4)QR@dRNe6Zut)t$r#(Y@O82TvZ0*eezOZxH`)Q2lqf z|A!6w|MKLHFPD`#j_(VlRM#@xZ2S%l0L$bP#6M9LR2C3*>2NBsHkGNG3W7;q0Hh`x z0Liu*xqSh319Q^N1Oo3&$1CL9Gyc~ENJ>*jTTS}fqiWfA_CVoY##*ressKxdY^gwl zTL*9{=?B1;bYFh&S}~Dh)l+fGTU>IM^Yj`_zrvE-vJ8k%pRs@Pq#nJyu!fk6n8sWE$ielJe_V}T=#53kV+)M{(R;EzF9U;W5a;$T;bJP_z@nzMHg7`cu;jV~kdmC7+?HOR?g`WSyJb3-Di|ZR&IjDj z>AhF#(c0$Y##Bk0hC|jSn!xzTnm3~Djf3p7!w-!rp=`Ddz6}2G8E^+Gp z{Rc4t)`o5W9WQ?4`+%ITj7uo*P)7tA6T5FEG*;G&1APQzxwc7&(meK@EA)DV~Y z+FCCXfYRso_-d5w(WWhpjg2W5-%N{BAIWhLdouoBJGIi|%*fc>G^s8ru|R>g0)0lO z#0-C48j)>{rFk?Jm!lj7gLgm!GRw-I0+v9#mAQG-M~#H%RpBVs%UHkzg~fO;7(<{D z%wL|Q3OXzqCYzu^o5{$?e40P^hA4irSYBv!P$rBb0z4u1F~#?`9OJ&vBVJduM^3J| zdigY^C8QS9k~OZ=gEw`ApNuMgvd(yZqSofLo|2II#Sa$AU~_zPKf=$BkmoegY&Z7q zz^&-Jl_TU4gGCwKjd!lupI7*?+!DD>$7BIf)XW?(T%GQKmlPKtymp+se;7;VwXmE- zLdFf2v{rP6N7Ku@Yn;c=O~bw$HAVcx5CzT6aQUG7(%mY{Az?f{8ra;zf@R1+4DbmD z)eq;zOLZNcYsV^BT1dqNTt!lpu=(m82k|R`qx-m*TF!{z7@~{M1#1r3UXYWPpjSUY zo```&z2(sLz^wFQe}%SAk@rJvapaM|%Q`pz3rw2~7)Vv2lRJ^xIBnNl_@5Isr*E{gtUprUyF!A*8E)D2Ly)XcXeGfeD`8+5EJ0Owu^jh7W z1Qf}lPr5j_H!e9zU$Gx5v#-+^><&n?J+dgqVw4C#PXQxNdd|A5FX=? zG!QR`rN6Lxn-wxE5Q_QJDNwl7r{e(cT5w-6LzQPD!7))yIK-X;DBR6JJ8kG;Ub*uk zekg*Wk&==Yqb>=0T>O0k_ZN&L!dC{^B~;QNyX@E>7)}Lqo^J=;aI)PynZ+ zR3rX@V5#kuL(CQo&E+(j)@eN|A$6|pkq4Qs?~-WP5$GL9njIf`aIi?|=ODv>W5R3$ zG@FRe%PSG60N(H9;?$rPRG|3%GRR5Km|98;cf;m-w=&#!i;#jZH(+g_Ma6QY!*7J3 zLa;iq`2BwoBP`AW8GzNfe6$~=?;lSSzU&7zj~@7|LXCSR15Tg3d@SQJ1(+LhUKnr? zf5cqL0k9)TdCh;fxSdA4<_R7G1yBjxlUD-#Rhz!Vx>ZrZ*q86e?9YUaBM6p|UzpN7 zGL;c+0!SRs0BgOr#=*UPq=ixWUUNes>qFXlnDQ9&x4R^^|1NCARv=dj;$^@p4C~ii zn(rk2IJep@K)M z+`)O@FE30yp?=3iRpDqjl;q)ads7@?HZqVXr$B=mFhooP!(TB8jvyEKe|iBVHxU~c z@q=5Ie*LQ9kfNZk#PRD~$pJ5Y2IaSeEs>%l{}rd!@7E0RdO?mo%c|GrdEU_ucl&U)jKW52=R1N#>-)kFF|`J?jUJLIR< zY5!(T1^ZEXrJk*ey}A7>u%l>FA7oA$2p6+=BWQXUGz2w72;0enB?F%em0R-i@qNMq zC%{Ca`gNM3E@gm#AK!w4r&YKsho|$%rh3?$m7tj!;JdlIZyWqAwa%sC<@4bKY^toR zOoWw{)fs%;H#9Va3H;TXrb0vXJw=;Q#em}in`3Fh1tldV6dl1)Z`aqszW(L=JNO;M zUI>bF<=Hmsur(%Py0Rvh=T+poO6&+1q&AJaxo2^FlrG0dy#m^{i;a|&mZdg<`V)}y z>)rca>(1~&oxC@-pNZ);=x+81K7c;sBTiJ0w|e%rw-c_S%*l86N`&?oVkfA zVnqKK5sg|dZym`xcD=USplk2)0qE{fTqjpydQ)Z$j~LbQ%>J|P0M9Q7GU_L@wG0rS?SB&5|Am=@2R=N}dN~zK_N?8KxUcgoYFt2IU|_MW zz^yRQtT5HWQTJyJ@5D+kDW zjSWhT+Ub@9IdT1z+j8zlCD0c-07vu{ccI4Jmc8XxbWm@x)Y6(gxY`GSU{&gS6i3fC zeuTN>lHadPsM!y@wXfUgwok9sl(ca&ZMtr31zvR(T`hP&_4toy&EK;)|3AZ3dnY*e z{{pT8$O$H(GVP%LOsy3cu!MOtY9vX3Zew?Ib908ehL4NOr4DFue|zS{f^@pLeRY4e zMgiLA&pt#*54gHm2*AYD6gQ{0$A=FeLc5QNO2a{If~OJwFtY9cZUYiE;P1chC`7LJ zI?`^62QC^kSC@7In?Rtl#1SpTM0XEUi8i`t@Pu^ft+;D^_BqS zoKY8G=H(U;C4LEyfdtMJG&Z`?LE8(>8;Xm~Z`74Vc#ob^f$p-6q2XGoZ~Ycbv_3uK zEgk;Dv*%z6MCp1z3AF1~;eiI8RKUAhPMt;0=e_r0R4G1#lUEqO+oqI+t|wgMG91L@0$XvWu!N`o0ZnZ#!+H}0jkwhEG#dQ8Ca>$w7wq-pn2*ACvU(wE z-+Z@T3SI@eDVdIu*Ps8R{{O|e|3m$&)`6<8fb4V4M9aug>d_%qrvTT zv(;tguF|dc9uvUoZpg<4!Sw=d0UwmTr+f)tKI~iL)t^uq;L7vwZo4o=2CTpE->NTu z_ObwU9E*f72KOp8yHwU7%uJYI|x7Ob}pqy_u2tY z>?G_B+W6SA)Xj@r?^W9?L(vSIfMPZqbMs`c%_LLNYWH(f5;WxT$48?tDnQ!as>(c=bkQ-{nPQdhwkQ7zk|6)*=l@{f|6t(%FAOkC{c#2) zk$+83hu2y)J9LcV1WIICe0&lV6cos_Ne_XXkZ!(!WdHKCMiZCpxY&nX0)+rDTt$g+ zgon4f$Bh_ymtR9T`0zE5T$>|0PFAt(FObYq=*qz1N>sw|Z+0#I86S_p)heMGS_ zg~OohZTqqh2~-eZ130icoPlvfbY~~0JLmCq5t~L5TD*;ZTVdctbhrvzJAPXI!v~Kz zSfx=3p`ns~Glh6jaY+eT=$EZ>v5Wpofo!gKA&19##14p?c`Sv+zW28=JCQ*{Z<*Tq z6F!e1aqt@#<>zl=fSx206j2*2=)C~bsX6b?)c^)W*KE*&Cp4?#tF~QPJvZ*g0gt5T z!+fzMnEDj1@nCgSh{~zKfnU`;BiVZsgM%1_^R6iMLO7?Wb>gQHSHPW!V8XhNera}c z@_6V8L+a7J9~w@Z?{?592(!W875eNd6?OH~*FZI}fUts^&`kr$&f2+GVLX$q_oIe@ zz3h9hfQOvojNR?+x%ko%umPl*b-0P3V=IJ=0#7hpOz%Z@G{5msY>w1AjfSojaUcI; z#5a&8EcZr8Ny8Le1xw$xVN+8h6`mU$JSe# zn(CIa0ErnC^ktwJ4AY)=2m_X@f6OG`AQgPc%mo{v`sV8vNt#JBrp`VMS3P5h50!*4 z9L`m)og?5}>csQPXjBkJog$DwUEu}V@uNKEVK6<4hSs?SaXk{(=3-G8h=6qMBsk#d zDIT>9;#bEn{P*GI1G(d?s?8ozB~=>&s5B7je6a9a(C$xg(IrEnfx=JOyQA z-7DTW03i`5#|)6T%zY_r_A_@)Ve0lNbPc!_hI&Y3O=LAS34tSag%OYePce`fPh`FO zz`HvH1ieBBiiMhUa@MqhFZ)GfEeWE=>+9>;DX*?RepX`iuwo=^V%JFmV@02$-FJW< zR)EB^yy`eTkPaNh7klScRh?Wu;(=1k`*r|qy8)nZ1akbS>KHG5`NAy&AR%}FX@7q| z-;d zH6;#wS>c0r$q54Kji@gG#rb+liT{*dr@h~Uk)M;@jfWi}Vl#jF*RNkA=m8QI;LN!R zziqp^g4WhMI0PS1u^{eqAFhgEQc({Ypx8)HsA5jAvSwEMgeWJ#ztJ2iwO%vVdx_|( z3}ymY2{A;-;6%Z#hW!z?LtuP!wf(tZT|O+!`Yj6NDlXl#>9I%<3tA!oN8Q9r6}B_Ozg>5E_hi7244(3(mt6wb`fHdc#npq}jkvjQg@ zL^DyV8>sXWPIiotAAB3R75(z?KqnPY$mak)CXT3g7Wf9@b>e=bN{VIC&kXmM_Q6!& zCB%nB$HVEohgJ3U4-dDt@!F3hnzG;x+=z@cGFtDFi!Z%Jj2 zqUnuJ)4DhBJlOfI*3s#u!?xr%z)-)?#Pnis_B1YNFjUva9@I2%Q1VY5$_&Y#&4KHs zVK#Pq`WoKBId_4T`>nbuSTxLSR+$#ozJDGZH^gI{K5)wjjZ54?ra ziveMKkg!7kc?%6=pkmQbYia?QA`9RaR=dAGSOqJ>krlSL%0Q}dcUawQlr*98Ecs4d zLCOii^8I`)4&?gNp3yz1+_@V%&mccYHW)W@jMn}c94h|rN@~yKe}_lW%RC7A&T@q* znIc@FCp50$^1v2v`PRZ4lR`&I0lPhE=htpQvSWB`z#ovjCIZnSV5>oCt%RN|gI-rd znDqB)u0rAmwSR`iR7?KFz?_kmdX1@;*s%mmW?xcGrk2V|_{$a)?MX)8=4m+2x7X4j zK=2f<0$alZT!VX=0nydV+e@9e9MD3D0eVPW`f4r8y1Grg3(_aEJs=Uk508i2QIQso^n@`)IoDkBT7S;&!mjA8oUI&C`W)TSWDH85x=G{k4k77XzLWSxeu+JAF$V%JhKo!m!WhRo{7F9J$(2 zz$kB|b%J~4-c8EGaz1+mdtgZQ%KsC5HT!_Hjb!@Lp~QDXLLFeDo1~Y}-N_0M+7G90 zT#IeK4p%+b8mNF;_TQ|Mf;?(2(aA>GzaN$s6x8X%nkkAd<$;He0yx?m8203Z$8bgQ zO116dQ%T}1r}l>ylXcZel0Gli{MTjZMWE~-Q&(18!KGmVdce`-N8?^_<~ksXx@@4N zG?M4EzyZM_H%(3s(A0a~YEvT^++mY}z8Vj>7Qp&`p@$`+F{?PlBpne7NHAdRYdDT6z<|k*@Z~ClghYE-nX$S8aU8k;MRR}_-4G>!JUV2?h=x&z~ZiU;J@_&1q<60nm6 z#eCbi!uW=z-obJ*zMc|%H@9PT)O*s;Ah2E!8g7hEX`ImB;GlOM4qq+DbJg}18frLP z&x4=vehv!hJh#uz|M^qlyNKJt9?CCF0EAc>bQxoq6q6{DVUNwKrl5~&Mr)M-sXX6+ zJz0h^lnl~VLEust;*?To7j!SdDAlM^F*7{Xj1!_DODI2Pi!FtFu-ZW-?3{0}`89|k zwJ0p8UwZD+J#vF-gAs4QPYy_=<9&3qPB`;c=$673@X!>h6f@ zG8BjRYNVQRE(#&_oxDT0NMyN|OsRpr6~(7W-rd#vTIFhDATcCDK=u4YGirc+AZZge z2pEuca~hFu()FQHjq^V8bX30wD~!BGp~ykK?Ixz+QP4}swBt%vfhd6&+z=eyWaCGk z=6^2Ll$z%>S|p`cQA|v1>7C0zP9_yhBQP>OgHZW;hU!)yTuHA4xDp(_v|CLiZ!$pj zydOlS`sDf(0AF;ln&$-W`7z~Ym?{OROXLMR`{kj}QeT?BB?bz>`Y-S=e&EzAt*mqc z)oUDPLI^+q=f1#LD4^?rAG8yJrdqE6bIJg2Cq%Vv=4S*27-KyL;|cGA%F5Hj;L9$i z8vAfvpDHl6n-pl#>Y-xuB89&L2wx1`Oo4`88fg9Z3CgRo@BvA3PMJTM-*%1}stC|R z)2rEcH~z^AHA|wXprjibBnjcGNR2ql`i1plyh9@NQN62B$9J#A9zh;V-v6D4^0<2aH3FLc z>6bDX{7LXSc;);AZfli5UmXZrTbWU#SC?5@HGYf-DZzNclQdArNrO{@WnVCgJ)uRr zEdRH(q3V4s;3LX1FW?fy@w|$<)d_m?-o@p-@LyK&C8%F2T0uqHHok-s4Xho1zPbMc7OocZD6D;4g3GSuCJ-#X-IyNwG^XK5wD!f+tvYA z-H4p!|K!X6{l!y_r_1*M1%4{c#?KjB5uh0P7fI_gNGiuh3GeyUrz=$!_~i|mJ@V1; z%+e3w;FAE=|D^X>^Qup-aN+1#PB!MJm)P(Dq_FX)r$8 zce!-JuLTxouL%Kj=-el^@)lMYsdyu#m4j+=w1H7^f%wP{?Jzi~`+*7$;pln&-zS9e zT9{|}O&rhwd8Wq+m_W(%dtAN$eTZm2f>y-VAv{$$s3!@S@~3WO>;SX$|M>&QiPWw1 zq-8(AhN9D$9w_}J`afSmq5b(3fg{;o&bThj!|eXJ^o? z!5sMt3EqMvh(e2EKn{BR5zk$I0pSxwHc;ntvmsw-grhcYw6bD** zR#FFo{Ul^=hDR$$CHP>4-~mI80*cfl3?2%F+w>oP4AoHo&mv($w`?~e^p6d2gxub; zF6MF`0QRf}ZlP-uw(rK_BHXM3k&2>MH8l{FguFZF|5^O;mI44jJR zi~NILsG!+b?+cPAB3}K^W5rgE3VI8F#=@#C>5Nc*%EhNRi(LK^!f+@W?smj)K4a$8 zei1S7vbxRr2$ThQ3@!-8{P&7D!mC}>{kcyA9C;>z>FljNkpI^4kq#!Jpu=Ocne%nv zuwS@-&(x|1tNgKGZUqwr2>z=rKLQt#rrAQP7UJ=#XOrH_w6CkGaG7K?uQ=928teKe zA}+oTTvv4{?=35qqK*CPeLFlbA_(Spn4b^5$I*dS45>N0dgZcNFaWp`&!YG7!(K)P zcJTK*&zbLt>p6LrTx-8jH~v>Bu=VU0D<`7US!5|?$X6ftPDp@9)aB;@QBo>amL?7d~!lcOJBcg>NmsNppZSI&g8j;XEx zyCbq3E1m|roh)+o_F%#7>4h2F?SK&xA`Mn%=8q4AaNVbidb5UTod1`gtNKmJ{>ue` zK$JbMiLz2F0SBzC(^<1!tFyBEa{O=4_}DPwdCt`$SWReiLco>KRM{DCcDf|HNi^D> z4)ZKTdt=|A>(6Dg>YO9=#s5TD^YuxUg>#lz(=upj8;6qM#BP3~bg>riP(=7;70rP@ldva=KK2PtxN&=TMRBr@QEZ5fgOIB-vwUqb5eTXVsyY_s77 zG?I+;R{s~LVF0GnMydSMt4zx+)EZ;Dtdk5$#j|JyX8{5zs|#2r%0qebSp)gA2v_2Ip@5Vj=O_vaJ~m7QW^WmCDc#JC5d^a7MZk&2l;(M*RaUKLJ!A)GQAa za8f`NY1tAcqCU{npZ_kQ!*e?~8JPT4u)f{QZXlP4&@X^k>HYS)Uz|2He`I9)%| z60F+quU!P^f5m8dWC9=IFbF5a!vLgqGD|_D3<@Td)=$&hKY|q9rWSqkPOW6H!aY3{$nws2(dfBv}AE&W+tJac5{c>vF{a- z{ZzPpUoypj5-Q#Q>3P=OtCtWQ^;!1ipM^X|r0IS;1$i%rh(X)=Mgc5EvjiBjBXi~C z<>h()qj#K?ROaM#X;zvI$pvvp9_az*boIbA0+Ca=qcj36avHXlPJl z$sd2Cc`D~Os*-3(VW?d5`;wUNCd?ke%v8P3`3MuP)Xm{Xhd@jH)J-nK+;D$Bt^e%) z0%1>25G)9xgh1-@zhezGg1r+Uv}FqjBYms}nS`656c>DsyGZfM^7CuSTIqFlbtTYI zo@_q#Z)*{5@^OrJaK{0EyH_tV$MIo{`*NP^@Kud5%daci(u%ERK6;2U{q<#6R$>2P zbg;$u{w)6*&{!FPNPs&p8Mb)LJ_yRr2Q!Scfml2MfJ+Tmq5JT;alZLBK^E46(pEDf zXy)C3IQ~xh>D!mgVoj_eFsKbxFa3CJb?3Pk&!7bEVz6(%b$J@J7^^91*=e9-`2J4p ze1aQBr3c? zBfJyu#3xH%3xX~HN4wAMNY8UShp=PiXcf>aEi9~e{wWn! zG-fyM>MJCUul<%m53r=5d?lOAM4cti-4gq7GVZ^c9bA~BZMP$x!wWEw&LXhlKn6%h z{`&$*#{A_2g=T%p&(8-dwihEY3vPGEJ;s*@3p0%#PEpxeCeQ_X*7=Cc?+n6H$nQ~o z$N&Qw=o2~dw;GwOG~{g!z5@{j?~S_)VtOPP+CTHa^wh`fBS1N*fpD7};F_50VF-3L zWHgKGHMs6Gf0%b609=pao{X}LKI`2PnaBMW)R^}NYls~rN4WwudG!(m!Ds8UAYxrZ zjR*gj!zfC6Sg$Ce6u|O`#@+02Q*QjY;VKGSQ>?bN=TbaP?mPI0OLlmr4;?VlHOc(kzKx0nfVMfDJxJwSju0c z-ktj?KvYWxf;A^q(R<6bpyikX31%{C)O1jDcHMgC76f;c2zCZ@+zpt|_60wm;Cc4l z0^P#Wk{fKokSM6BxnxyqdfF-gvgmZ?BZ_F-n`K~J_?NV219&E zP7N41z{sMgne7+uNrBCJ>PQWj^NYB4v_(H;pd&63(2j|FPs~7#(AFDA&WE9JMK7VL zm4&O3Y-JkRDXE$I+@{Tq?{?dAZny@&)#`IOLVfai1uQj<6c&yyEcmF~&{0xk5seYv zx>k z+&DWAQ89W{a^}ON5S>h$nfJTx^Eue?jn`h&6_0;{Mfhty#S5|w)uLjmqEYY*C z*;w3vc&VLk@YXe?j-<57cvh{V);73F(0$k^9rq`NkRFK*0-xUF(at6W)&AT(^lyog zo&Eik*b>rND5veL%Q`uz*qVd3gg*+2>{%8k=I2ETTJ=@=z*&!cVp^MawD>cKnHj-> zZ%4g2g$w2KGVF0OFjWOG2aYn}vOx8Jm7SMoo>KVmr+QxkWZ2)+feiJLilnll9iG02 zcc3D%(91-yTTlYa_Q|d(&AtP}PyM|UYKC8jz~0s^K#yIp?n=A4QNYpwRB$1T>M9>m zj{gJ7GHj*t#fdbWqumuVw+6wUh`Xo?bC7^zc2wKDip0I<2_s@FMtXm~ID%*U2G@*Z zo#7q|kbSWZZP3jcTTg^EI&BOV@GG89L&qk;_i|jQR&>Fz2-YZg!5ZmqSz)~hLGYap z2zk4O6yD`(-SmZ5F!<2B2M0C2HWu2u0Gab4g%7B$5+KPh4{UkN)wNJmdxm;sRBw4>O(q&a= z7TmaZc`?@-#gAgT!A$#ks2g)FeW_Y`)xIqqKBB|BjzQ+z|A(`~8UZ8!P{r&-PBCVq z=1WCagW}(|1S%;Gkn7^+=7%IHUw;DDdVEBO7M`KKKf+xUeDhn_nC|#5i!8ZC?Y2cF zv#7v_;|pU=A3qH`enWK6Mgj5svqT)E+g1Nk0SA2G18f z?=$Re6TimOs6e5)w*ROYSD3+`)e@z;lvEexXG!oBYKTxxNy&cDs2pf&NkO}=0@O>b zm3Q8%{#J+mWfP@*US7cX+;6vLuUMlu(9O%h}ylrnl2oh zx>4_C?<7WGC*|>PH}?Ak!;I?(G(TjK54B9m3oGit;i*ex3JK~%B`u}0;K|bhA>$P# zx-mkJgPv(2WqmnoP%zGc@rZyYa!Owrf#p2%-B}D|#``y)SbsYE8}(}lt{bUNl(lOJ z)4Su8dD{s--V{)@`SmPTM7lo=Zey9hIr`O_K=?2oS)r#wN6E^iB92u(CoATU3{n0N z;d=CsMnvrRv3RwQIek8YD75OIv*4>e3x|04zt#hQ$1Aa9V1C@K!3xjm8N?&e7J*>A zkyi7!;5hA;Q#8vVFdq%-9Z~z-=Msb4+?-SSJ=yaakl%YfOQbhFE0i@|ea=46@98W0 z4b&kp0>0${vHJyG`Z3=s5^wZ#tcdm`#@n$e9>dDd2hG>j*DQJ1#8&Ua2+zHgQJ_-0 zi@*23Y&0t^kr(3>-Sc%+wftUFiGLXAtM3pKM}m{SwhzC&bX_tF^?qFFiFhoEK|B|! zj`H21YI_OzQeGGVc|vuT${n(Nf@)GWBTd(&<{UQAet+{^i|0x&0=Rvq{gMKjvM%dH z^c+Q!Dh#%Mb{0Xm6xCuaGD!8_xA?WE>9d{n@i0X`R)fyxJ2%tC=7={>?oJPO zlf~n!6fVhL-K{Ei;LwXUt$TUuv)t*Qb| z-`THdad|Z7^x-*fF0%LeyA`t1yu+A|c}MT7gA!%`YV9q8p99swrWs)mdZp?f4vj02 zyy<6uSp!_>XI?$OVpR4FP=ajlt}0$Idf(NrE^+^)Y-4*eqNqT7KrK(>#T3*S+Ty}O z>vU6U2AMZ1QYKi6h=-ETD}hrqNje0KSMYpz?5^O5sM@zT8tX?&^Fq{ru%2E`8Jg~p zV)x7nP^p~FK?LmQRK}+c@)z z7pmM&|jWEj1jjBxYbn1YOjR_~p`h3s% zqbT^W@|JmK(%rdJ>)xX`O#zu&@k~(T+Yez>DJ|}^w%}cKxQ<-)%fRx=p~`5U)67i9 z@C$61Z%J$XAnR&_OsBG`&2QV=AO8Xi4&UV0tj46&*YkBNsfT;F{oH$@WvML2AAWEW zugLx+ILE?lseUJD=-__;#Uy5R1~4G{xdc<$DELywnthS5I=0(>vxS^FZcbF+y z!SkslF*WUa-XByYENxA43icZOiJ?>rqfNh#yUmvE`fS9e;#M!LQ45jnsZkrx8HF^!^YC+RGhuo><3b&OP--# zv+{DWSsxGq=7iawC$2E7t+S2lgj1q5MOnTeX7a?lsaBf*uJP-s5oL2TZs=3_xJY?z zi@ml7pK*kfbGz7^6D;B^6MD3=CfhEP=XPJWbde8LdVgi1xDJOizjB}g&>bA32}U_B z+Pg81DPb-}F?3C7W8xMpwEOb3I&IH;=T(2kewt|+zmaokOu+w@^! z09PXN)aCLr@G3x!(L-~OO?RkhiQ%Tse8t$pVjH1vm8WN-IPkY~pWZU@b~72ooOjkE%E2|dmF}}zr-vUe2JaBhBytYB z1B!~gc}SXflAH6_{BZ4W*zAb6+!X0gd{*1r~NGz z29BiK^M2N*2jqY4ve_{Xon>(H0P*~2A*T%myNGZK@Hk5v5_A-ClcbGw00sREDD?8Cy< z>HCCrFlE#tlH66hN6iAx9&Plz_^wI218-!GZVZ^h-0hC%#OWQww`;H_AhGw?$(B^r zt-Adz+^S*C!@`Kx2P$NF*1gKxMP{7yo+XjDCsfW0QwvxUzN3kPkJK^7HN6UXJ9fTj z$~@SsE?+-gq1;4$g)~aLRbV7!-M%}y`=EOE3SHd9b$>_X@g;)`+Tm7I2Ww<9@04}$ z+-C=E?EH^7Kfw7WUIv}NOc2leRug-1_Lg7JX*b3+hqcqYJq{dJE_vG_s+;jN0{+$j z!~QD`^uEbuUY#D8DfwBCD{nJ!KfJm#pNa69dH#HIf;s7n=`T|$NcM4ng^Yp~jc0fi zc#J*eKem6GB<&yY)IjTFgfZ68nMsln9To25lU8Yf5|zVj94uB4;s!Do?wD5FCWCZd zuzIwQf%0Sp?7UY5N|Ap3>-5+%;JQ-HoJ)A|I7m6nWzK%bO<_ltSjWqiFuT<0#M4Er zUahj4>$Gpn#>836=DyL2NCr9X=d;C!_odgPGEH0>n^8)ICI0FAGe-@M?8Ex=7oi(M z=Jtif3QIlKRG61y)79kUQC0728|;_zA=K39fW=}fmDGBPZ=1W*MmXNh$i0Hk-=UWV z;lFneKDvIhMU?$4mI;ZCff49;uq??8eZ|#N7Fsqz|FK}Ubo+B@k0tRk$VB3jbU6la z=>8;UenL*P6egw513tTtcYWHHfLtnw8$$EjtJ(1F(Zt**#7TZ3E+D=2Yor8GFRvuwdM5z6 zC68u^_*iX7bY_jh$J;UfQQdo-G%fE-5A2i2)ksarJDnLWRzWFlU}mT3vz03QH3x5u zC3iA&y0;@UT*k;RjU*j!aoTnd2U)&FI`mXH#?z|X*+}_XwT%Z0b z&s5uL^vfV}XQz?bxnlfgUk>u(C(~)EMecY-?WZtFTEA09ZVj-#?GD&q?E1BimiJ8H zV1xy0iu1^Lh=9XLUdmiu)f+j4&8Fjli~ton%Rl(_IL3(W;H^a32PY*Z{{(*xq!wE? z>^FeL4y18K_VM=H+s;0x_|ji1JolplVZTP$wcqiZaWuZNNg=*IwVi(Qeu9$>L}4F! zY;I^eD<3aMsEYRe(on0`>P6y*weR-=xRW0yqtv7@o5%sy>WK6y56gG*%cO%DPF4BmEWyC zER|R5jsj5dkn+{rjL8QI_rF23a-?v4^D`>)pjtzGCH~|;bc#nm&~Wd^_Q^E23@@gR z8*vefbsL7(tGYgmxte9)+*DHwchPZe`sKS@>J_ta_}6MiPHxPy#Br;D4@>0Bw1DyS zKyzZlhX^VKe(S$dq$wffo6_b$1w94`<)nI}*#BhBWMf-#ns|7xcgs$-eJ>0*BfH5{ zH4WPiZ8lO@J-ZswaaR{dK>ND~_8TI#T5LxOFa*LQ?++!W%-OwVHj{5}rSHM~;su7x zhcMqmm8#Ka#IE{FB|is|g28_g#bw14s2|Z(#IhUCApf|(oE)lyi=iTso!dJYZ@oplW|FhfHN+#qaV(m z5u3H6FVfJT6XAFaw;`Af(mmn&zS@(7S70#~(w+{l3!=}@lO-%tL>9b-d-|cUI z#-l9~i<_`Namac7*GX0#{0?O!b8+Q(0M&uZR}1IU4H@MbS{x|;dz*#01({---F%wI zX`(A!s8I2gh~V)iPqMPnH+_$4loa>Z`{m43>FaZrR?jY2cIFWAsSXR&w)zbx=0z`4 zWbuFCs}%?yc3Wt`h{;}h zq>#36N7tjj#&8_@{IEIp&KAUYe534!@qghhCat~)vPJBEz_T#C4WqD zx#IS{z?oz^>bJ!cchO(6Ej-1#`H_|Cv-t~9*>~qkx|x0*F#Fh@F}KtW#yohQG=`8n zfeYT?Hv`S%perE}Mixu*;p4Nh64IJDl z&GJpeEF!D7XQ~hJg&(0IOFi}<#$`nS%ZUdcnJP^+Lxq-O&y>oeT9Zh+EZ@Clmlz74 z0_(lr6}O*kNk4iIwgl>0Ay`rcYf(0pe-Ommw+@DH9s(ZNB4~_T9>$kAd2>1MY^v9d zPf7GKe(J4@qkTCg(e4iWW(}r=$zV)LealaH=-?pIXR_2*)DCF`I1+^RI?TFV)o8c+z+<}pMZ*`$>ZVWat&V|xMkx03@}Xb|JSL>EbkjL1)RojK;Itw! zNRH)4+LGqF3jIZYU#F!Sb2z^8BltGE#s6|<;W}*x@2}HmGjR`QM_K!LA>rA5uy2VK zNZ6oV(u>Bf@Bp#&BE7lBQ?V8mnN0_BlHkZ?;)&rFr`b8{L(M7CU*7|6Wsa=cjdX*t ze&QrqkpbQ-56XF2;>dvB?1YEs@Hwu!y(UsCmy~pPalfkYi^;)FfsR1)w1>%g{(_Rj z5NhhSWTRsa3(z)T%JF>Bpt_k1Ei~xPvz9u4thQZRaC>JxtXcbXQ{S)i$*flR58=lf z?&j^#MKor=M0!V?Grx94*LKN-QUM-Rrq-y_eX}jft-?alEF9{F%gGd{sXn(9H9zki zkD6d~K*SwuVEF1Zq4}0GiJz~CwNlH%_V3K7Cg=>x^cEW%?76u{AC!MTRbJV>g+qfS z4CN|?EjaWR=7i)?B(@sbdatNNuA9u4sugtXNtPAR>JKiH1NR@3}O+5AS9EyzB z0uJENapYBrk21RN2i;Efyz=IWSyb#Cm5v*6}PGHCWYRseLKXIEc2%= zn>4&@(hY3UN^Qs=<}L5rH}>Kx?Ls5zT7yx2?op+gO~?{2qu zX)YJwHt!N9C6q2JY@%wN|3!hfR-anCPdHMG$;#%f)*a)a&R9O$NZMupUc|+d9|t*L zX^XP0=+D}lQO_H~xF|uzuFU&upWIO-r>|*FtAZ1pvJW)0mP~RCtSKE%!PNY4dWnwp zzc0vr(u3|?=cg9ZM;a3#I8z#$mAM}~M#iTcSP?kyulf-)7^xi@8 zP;tXyO|s&I>qNIMQh3Z)mFy0ZZc08;V}s~o711~P0i5$bolrZFgi622XZvzk(AMf8 zv;l$x0Ymne?H<+n(Nq9z4uG!;kmTaCz*Mz?|EqJ#$qJZZ=~yGWJrffk{#TAr=Y;q)DrwH zOYY1k+@8SQ_<2$%LrZ=zAH-CS%l-?51Rvkk63eE}ZR7f$dtag9l7r)~(&g>-b1yJ^ zb~4)-WEr^@Ukc1=!TBW3Ot#GnolfTtZyR@@+&4gi^z54_V^lJQlw5os)7?|ZCuZY# z&$^q|6IQq+W$ua4k6PCO>xw8ml5 zc4;q4_PfYs)Hnp=96!<;U;~mzXJIG107|A4BMZ7{tv-eoXZk+P-w5t!lbT~Z5!a-5 zg-;OAb(5NftM;ZQlSOO{)X!}429pmTT|Vvagg3+&&sIVAzwsd!#AB`tROM7`-}4;R znT%x@6d;SQ=Kfwmm4>fO7=HgH(8~6K(JM}Cok)4u6uBl`)$2AX*Ily@1{tp5-lqJ4 zJjB-{%x_=TNUxJxZWPxMz+5JspY=YQAe0)jDK7kM-+ex{&T8FO?FxT{t^TOF0})r8 zVQAHw-$M&M+f_zagrIjm!??u{F5@d(leLd{(Wa2O$w0ZDoO(R0jOZ(hr@oW!IZ1|+=&-mA~~-~+LEvLdQE@F47p z4XT5Dv(H`2I8OHhp|K|945(#MYYV7XZuI?Lvm+;GY1@s&pL$lu1JZuotettSCd%R> z>T6-r{oIP({Xa$ue_QkG)jIEQPyv5fkOLIi+3E(lrRoMtbBlmD9V2zo&Wm2b+01_K@v+~@x902*WlZ#Bjpm}g z+HZ;cW=N8!hhwl2lIf`h7hQ?`2I&l@$uep0YiaF58Rl z*lK^2+47dEsji0MeTwCY8G$5;%6^+-EG@`5)8k?}zBzc)wHOpEf`Aa_ij^wY=XE{5_rKegLr@s*8 z>5_@%YvKg+v#)asEa&gJ;Oxj5?^*sUN1w6JmYn2aIcj_B*W5r=qwCkUZoelgXhm#tmL;Q5)s!H#0)NIZ zckr_|{FHl_P8P8n`F5we*5tma#=PSpn-D)+>x~szO*7i>GxH?Pm2K2@?ryoAIsWN9GKOhcARl5g^zH3{r8*?PyJ;4e{`#gnY@NzZqC+Fe43W}O;3Y0bo-J9 zOJqygc!VXz>(hopGk+1qoeXrIQ~UG)b$PnX<(K8vv9wy3^9^xW>{M$5SO*e> zvjfK2WAlwx^Tn@_o4Bo!$BDMRR8)zJD|yt(lwWy8Lr?<`@=_XimW1DbSo(7{UD80o zsq~3*8VQKv!r|#mw3jw(hcOFJE67u)jev?s-nR1y&YrV=0-W z6$ZUZ_@Ep=8xTx42k;zaJ3Y6wb0GI*e(C-<7^GQtS%T$qkaBDB257Y7YfR1q2G(43pBtzA07RyK>Y+`?XT5o2eiPW@ zJ{hn}Qa1N~z#v)8TTN3~=PhiQD{5llw@S#6DkaqvStC-3C3R(c>!w)*drd^jv86U? z{ZXcL{O8NPcH((F9VfHDk@#_zL68aHw<`ml**p?}V$#_=Hc>mUY#M28m=VsR##X9I z)Hu}HBGXkNDOsy}6iEmjG7=LJ5o8UZwDH&c^jNm~P4T$8DTh!WBV}#au=Ryr<+V5Z z`VdLU{Wdmd`OdpMd&%d)ZZ~das#BBC)m$_Hk~bmcM6Lb99L&@wj+G9R#FbpGgRQTC zR$&oTJ^edg2Tj_i$e(@}9u&=m)w3*CEp|!nCxyqWKo?aTJXhZWxs)DGW2+>#aD7w% z$F&z3r(dMO7nq0hYW*U;KocVT(l~+uzL$VX7Msq`4e+KrwusGkEw%TMCM}-E>vGMC zh~wJ!z*%;URM5jRxmCcAD!>Cr~=rVlr#KxKw--m3DO z40w5x&o!4tt(yI5stmhu@R23(r>{1Nj0V~M{-B$Ahmt~|x96hBYVL;hr>NU-ae0t@ zn#x0g&cRbRAygwNy6<#Pg+rtLxSX|a+WDR{oXq18tJP7q5<%}?N)gAHk$kjJ8|Dyc zijZ(Kp}!uiSZg?1>0xv$y{ULF&Xy?r>6tpJZCfvNH8leFM@ywj7-zDGyjN%!75xH$BF5Mtd^K z!U0dpB`Y>q`VB~mRl*;ohZXEgu5r09oWunGv|bL+6Zp*&D7)0h`72i%d+u+EOwcxM zi5(}v)g(|>#^Jou@rB3C2As~>)(cj={nWsLh~T`c8m}8Ram{NtOmr4{y#egSh?goV zZM`!hm8TgQ3)@FHQPNqTJ(`@TgM-a0^n`>OL~R>gCv&|n;@(ZzYyIYaF<$&)accU; zi50+a64;oIR-+_+;d^9>cdJcSZ|a_L+EI!GDCi}vJ{V*cU{MU`gIpX!V1lMuJx+}Q(B$;sbXVgkXb+{kuc9S!R*`DR;`(gew~ zR9Ngxx;Md-de5oOdFIH{D<1k&azqb?Kju`FYZYieSaeSVwdYKV(FI94r;oNE%{Z9cd;ofD&aAr#BL}Q0o(mS&N>g1xX-&23Q{ERoF z><|Qo~1;gx&1|a456xa{P|mw9@V#(N$x_kkQ{K zunqS3z}P1F@rGD0V58JQ%j}3rXWos;`c(S!R=yguNSwdzvZ9GY$?0AVKX2(wy@(Wk z)4RE|gLWCxp*-#Q)(qO&wwKL){2Wpk(drxxKTqz!Nv{A*{^j%GKQ6vu@KJUciu^Rz zZ=-8GqHh%7?ubAL+H~kAZP(HweZXmh%CdhKm=?yQ?62;^`D*VAV?D61t*|_|3+ro{IM_{mG zwe&OTASKXjyWOEQ1mC14dxc!K#wVx1a-N9c{O!j9bUWj+uAH`-k>Y2^v>p!{VK+85 z%9kJHjdO#dn?N^zxT{ETX^!ou_zd;Vg9(+S29p{mL4kMSpB?Kkp7y`4Kbmd+U;3xLaN8 zCvy}$|Ims<}ib$?g zrIFJwPL-+L5dU_Z{TOhZMJs{DPa(G;!pT5K?k*=O5Jr7*Xx#Je9lD7ml~o2N#>TYa zkS<@I3oD$8Yhfa4_iO93wyI{cg?f(EC62~2TIefD@LV*C$r0>)N5l2}Sf3hXFviNz z_L7l@^;YG-sXH_+b_+LpK>F}mMmxuKC|Ba}MQW``*b69UnDiM-8=FKEDVA9zo{eNM zE~*wilM)wC_GHZ#f#q)^F&9PcSHXAhzdm4~s&mEqC6m^zMjA{f$h8x8j#H5)Jc(+0 z#rp)PCpIGr9NAUo@vzK%yzAji3Gg8F@hWTYSXSgQuW;rYXBWnJZuFM{=u{=f_8bzD zIb*v$j58}iPR5Mh30@kP$HN{IOKuyoBL1Alsw)&;9z;en%=a z)#5rU9*lXI+ubBzbiBSE58{$HO^QAkwdo0dlxkrlDzPp5zHUdAgXY4(ejtJQ_o~-e zB(h~Y*+ounC0N2LkYN~CD=AI}N5ft%mbN3Eq;&b_{%h6J6<<4%H_!Mv zLy@+hu|1YBH8+*Ef5$Z@&-?Xt)Q&rPyHYo%4mp~vBKreMhO}~Yx_F7O^GbHe2VeyG ziZg-WBgMOphCTm?cYH@2A8Q>fe0?910Xt|GLWJk=lK%1Cw=`L6GUBWloW{5!7};lm z=;LT4tEm$ChF(jwKpyw;t5I|#CEmT3eM?V<0t%dJq-i{}ZbJP>l-8=_XI_z)=<@W8 z%{-HqPd*%+V7+)sER3VG9v;xaQ_auoJC6Iu;QdvEy>!;G-X+QUd;xv&Y9sB!Z&wm{ zCE~iJ+O0-MkXz`0uKO3U*&nBqvW~I z+R1S$r;LJ2?G|1SWiUWGl%ABrPqKWmO$H z!*E~9@Vw)+MbGk6srsz(FdBV0yR6x0)*%2w6tx`Lk{LvQp%xwJwKv1SAMJ4!)9Z=6#&r2bcng<2v}v6pcC~z$r#?ssrX*-|$7lvRo=Hk=zi@`q}wgx%)2*I+-gI%NOUD zP9#rcf%$esMv%Gp;2lOv6yKbYrkSb}i;2AU*EmVYp!FA^iC1-5#)!sn(p9NhI<%ef z&N6)tX9?kIj?Bp4!-n%CqpKL=ky~SEPrhuxNm&0CmDm%TyltO&J*VcHI*MsO)ABaL4-xhn!4vM_6z*&VyS!O8yZq` zYD>Q`;AvQrH9owGB(F)B4z7yQ)*G zCSI$5d??m~72#62@~hn3(7om5s!B(~^*He8CQWV%wc7BvgN=xNdrj+9gA2S4*J&5{ zReito=j?7O zAomZPF7thsv-AkY{Oy)NXo2U>^RR7wvwj{;wZ2+*jI4?Sl>^R0L3{(}oYCcTYs4H! z%WL;j#t<_StiE1JI2#sh6m=1QBp~*^sUkuF`;_T5Sz}xC*+WBF&wYB6ZxX?DDSYJD za!mE@xGmt3~q!EKnzYF?NK)ZxrsI*qdwTMG6n|TAG608j(l|O0amFxvK5U5wXjUj`ug``{3M_2XgrOVB;Ft-tg#c z9`98j6meI2PLs^xmbct_zrG!e?ffRP zWza4a!pBz|AJX2bm2)ter%rvtGpwIn2&=b5{Y*Vf>5&$YED-T8qL)PTnH z6@5iz-RCf8ndw0(5t-C1@kZ_1jq@PK>N%>4_)+hIEQ~0wYN}&EUwPki(ge(qJ#`rX z7EK)mVp{#TcbfVIGU~!d5oG{g0Pqt4y8(;`@LI|%{y#^j8hC{e<2P;E^p)qHdoI%m z&L61!I~97Hck*0$M|L2Mv^Yv->TPXL1|}(?`m2_!gwMO>fh3eCDP%ze09tX=fn;7& zOV~LZ2g**Q9e#{t!dZZ@EYXlo2|sFwoeWXmaOgj_HZ%r|2sUo~!rFU&_wsg$4a(Dq z=#g}F%@hee7FxF{lZT>m`pEMtri}a*m?8j6)#-4@XG4y>b2F?)%DfY)hDW}t4}UkwCJ_!>gumnS664`miT_6 zZ(q~-p?|;B5^hleI2gQ{neSh^cC%+}Vy4iA+4S1)u8qgEzh|k&zW@O3k`7^WOaLH^ zUKz6rb)=0v3;vuOssC_UXYB+>79uCcw*owyz`yX^htB}&kvoY9h_-#yp}@U|>5GRg zM1)8`w<6#N(l0NA*RRQ#L4Gn~YJ@?Uee5fV*~}ijd=Z?lWUvgqdC|<2tQl|6vWzKM za-FR@1PzWeCl1BTi9-j1McQ$O$lbc|XQWA_-S*Z~(jrp-6@rk)7x!R!d6_5Zn(zjm zg(75wE&*O6wh3LnM%skev&gcNa^zGBr^pO`L%oyjn8~{jKON7>h!Al-~a#-!^4KFQuXhW5APqElK zMWKJHmCFKwNJ9%twW&v9U2#D!swa<>I!1D&--Kas?IW88);{t}hk4p?@bDmiHjw-L zh|*Gx9y@mIh}Z9Gs_o&I4q`3|)2BCt!X8Fx2!j^@=FhY@#7V8+)l|D}cay$#PvbPF zP6`f1RH-fcPEwM;9Vj4q4Pn5{(Cq&!ZZB6V>vlw43#O+5uI=C7Y)YDakp-{X1$X^OS=$wnt*R8?c(bIuy6likCC5PT;P#8Y(GgS zG(Y1e_)yfCYv66_-r|hSoFa%k8%9|B>cU44{{x^3z&!wl0oaBNy%GL@MW-5gH*Vax zr!(_=zw_@@$ogpj6eLbz+?}4$#?QcvLd2*L?ESK0wp*tE%nXWlo$Zb^?V#*HUfSV@ z6vY`ZNLq|?2VH!f>pT{axQw%-Cr)M(NFgOwu6#CjPD52Hq! z_Jjfb)6Kg85CX1^ih*~WNW2_w0B=6k>MX)oVOgut9n^%UbNVs>5MiBUbRqfQ$mqA7 zXcPxPYO*c#p4#<}MC1ni?CzB-SBk>J@y6R8{mn~E^ixZJ$%CZsT_?*L$AT0HkAXMD z1t{9U>(qVms?C=IJkmTYxw#q<5!Vmd2Hs$S3d9cG9B9&_=*Xci2JmU(Ou50<)YKHJ zs(O%!)&n@AY1+k;Cr>VzJb7|HfNO|oHh{MmEn4)I&M5Ew#?voso9sWfbywq0Y9tA}Oc}oF+1eyJs9MCIKKuTrZ%Su6Gn`Pv6zI%@jp`LJ!T%+CZ zRAIf$)-W~LD?wmm=etLoAXi)dxqC=qQ@pKm`baC^_D}rGGn>VC6yv= z<}!mfp~?~s63shmrP|Rp;Yjcd?S6wg#pZ?g~;3gmIZia?5 zF6r$u3p(TZRnKmD-n7!UB^1KV*UkR+(zP3=o7sA=jS5&OLs*nLkr5xQ3&5Erttg6O zGlCyQ$U9lTetkQDjQ|jf#cuSUKO2xNl-}KUYwjeQfNoeYGaiqH598Tcp~HY52D$wg zF;UupRaad(3)f$BE_{v=cHqZQY#%jBb(qG2)G)6H*?R&2hW9DPq#^w>(gilGKAa`l zIEvce)77;ARkEPxq{Ej20FwxF+c)#`{s^DPCz5Pyi_05mGIT{{B>8P5Rc9@qt*KwH zZ)oxa5vGVT;_s6@zT3^ z#u%*s&azoK*+HFUr?kLW6hVA)*VC;4AS?r~Li(2hxC3Z}eucd`A(T-1vuWU!7-H95 zbq;R1VA?&)=T#yu$2ZZPIt$OOqTHb zj-H%ayL#h6K+N%GB}_wyJRz9=DaWXr)D3s$>WwNaEy%;=0Sv>)SW8!_ta~8Sv^GN7 z<2L53R1`hO=~q1ZZmL&T>-C1FQS}XnUZ~%7C_DtaPv3D@;rIeDx)D(%#X{G;F32P? z)D*?LO10;Co(VTa7GR<2xWY}&Nxt+KMR^NDCLGk>AFx;m0g^nSy)C`F>~ z001BWNkl>OvIGAZdjF*q&K0r%3l401#29dU2gD zobG|)jlp3Vw&ZW@^7AJ}v)84mV_r^pGRuhQ^et&6^Oz|oI}76m^unZ3<=FJVr|{*w zuEwD9GRq^+`_XjI%fZ%$#&2F$Jg7jovL+_=N56b7AcsKgWzSzUei#-`8EM|l7?$R*gl3VyQ3&zIa*yt{q9db#gE>8-B<{y9K1K(r~W zEW_{`BeLU~W08%5;bRH2A+Z{Kw{I^NJbGUd!Hk%~UC#k_B^qSLmHe!2*VkZ>HTQQ- zP0IFOJ!J%h5ElwVWTs!-1qbhkcDt_Y{}Fcl;fEhiF!NWfpAVt~8*OJ2?3-|}T=}f} zg`Yk9`dyFz?rU;irXYgt;$#G`!Cb&#GJ_+6;4EbQqYslbKDM}2oX754e9p(_OfHtL zb1E8Bb!P#gX^JTz*@7(yLW&=%M!*rX?OW7KRP2 zlnfugv>A0%6ovk&wB`NTcgic#p!pVHDKvPQjal-^o6enr;%@nmZQIpU8J0Y%@f>&{79Kd@ea6hRbnWK;s$}3*)JzS69?hwc;4^sg zho5!#PRdHUedf~Y3iRj^SWkN(BARxtWe{4rcCGgKAGiD>kf3I}dtviFDU;|=MS;ZN zC30*eDJ@F!h9FA@UOhpuq=8tT9TMC(QXG`+aVIOw{Io8fI1B{7ueivS zdQ>Xwo>>0PCjwF3{SemsWFfj3yk{9TH8lmWzE2|B9hHuVb^rh~Pp+w{IqN}OqnM|* zhl9vawp*Se{^=*5!yPxw4ND_SG(aF~j%VWL2Y%CYO#f1xGkOpnzV}A-EiS^s$s;js z`iO;L>93tN9t7N-NYGkccjB3=N$r456td-1%Gk5%O%osle-}%hdAvw7BsHkFxM|+n{1Ml{o2g~YrHU0OtJ%`6y z$3Gua6%4ZUj|t4oEb1E?bu#ek<6mD20O(O%q<~%Rb`rqPzx_#kweAXZ&od8;5ckpu zL@;>W%R3Te&AFafwF8jah-)e;2K9UJ+qYl!6ZdEa3|_mU@;XI#`eVL+)YN^sKR1d^7> zEHYUv%fpsud-3EVYhReGlldHd#W8WxbFlTOXi-l3GvuLq>#lU63m;Ns4wly@p44bu-24Njt zcD8wV$BrHGmRQlB4dBTMSAOvc2oVK+Tm%3)@vL)GU81Q9%KMk% z-!B90x}FmcS+8o=nt4ER5f)4ufsKEC)2bxaf(Qo>9z~C$U{D7}CXwOOMw*Q_D5k*8 z4{hkD2zrcxFaG$Gm%QkymqMQ-Ae%uC19(J9CVvRvGAF@NRVYT5fMO~a`!k20WTC1s*@zyMu?dPra^s*BXt0oS#usW!`Xa`sfw@-RGIW} z?TKWehvFI6La&OQXuT4^f7-ua+jXedy83^f2qX+M@RDm)lgCz_=^V>O>5qu+$wZb* zFf)OOyf-2aGcq&rP&WAAGRKpdJ)IyMhV5DJ)8KU(yv-+DdKBhLEI4-OEkqo;x2d*j zJpfmauy)PnpBmune*DxM%Wgd1RQ(Xq)*Sy02K&V*iW7j@v&NL?=^{HX!_U+p@{P^+XICbjO=~o(v>g34w zVb8eB@HN4YEv&?Mmj@CVV7Dh>PSvXbv6$Y?HdJ~_iXeB`JeNK19=W`~wfRLp!{PYy zGE@yOM{9dx(~JMuot2(R!%u+#wep~|QB44;Rm&@z4mVHg(Y*lKar4{lo*z1`mWT7W zqR>CHvtrOx6)~0QT>wcT?gzNWFnAuAyJNRC&9ozVfQ_wt4-FQU>UeoCQ*G{wlJswTrTq#I$A8GYo$sZh^W8$yITcW!>Z z{_@Sgd8O|q)vmoS+pnn%qz?`*c~lTd^LE)YsRPK)36Nh?_Myq7ZnLe;f!Qx=Ru4l3`00` zk^CIeT7-udmyVJqd#@04q$j1>KKW&QK*$wc=)(Jjk2-_*x6J$-|9`r!|LNGV_qYaE zy$qh*teC?Tdh^hsT#(nen`&keHjw4y>=FQQLhE(`15*k3hP_bbfCY@&5z@ISN7>P> zc`k*k-^twc5)F`DGRYfcZT940xc1_VY}pQy24`gS>ntd(dFK*%95Fjunb9k17w67N z9fjWZvb=cGa43qvd1D8sOy417xND1$$wKd9zn#*BBIx@7&LcD8WIA}5S_&n1RiW;F^|&$KVr0KTg|ndq>z#zz%r zTf3deHI^MacI*S8{nWp>JI)(B1gf?7uxIz7ive?xC^>YC@+ml9CK!QiMR3oeDGHDwWG$ zuo;6HIQ9WZ>EtD+GC*wHean3O=u0<;I9Pd+h|ob7mhm|^H(d9ZndP`B+T0mqoO3-b z7x=807OEpryJo}H`;Rt{43w#8&ige0Vy2f8?YcS7c1&-f_Y;_FUvt$tc;Z{P;&*HA zy65%%`-{OSv9jq_yJquGoigoNtN}&n6!0X|G=0%a>_6^ZT7A*^(?+4@f+=7lia^InkL*+% zi8lXen`R6WvYmmb&$fo9r>^|MPrkcncVj49H>I>-7rO8v#7COJyJgFk>WEXr0Q~bk zWu7z?yZc&v*(@x-`g}aUzhpt9*DW`Ffap$J zO9&GF!AxYn0F8v5qfKM>dniR2B>eX!Dp%AQFF)|0e9TBMyA)afryjT+=iKs5G@lC5 zrf1}3yw^$Is^-SEPtF@N{P?rm-$rX90WcP-y7HwYaC=O!FI>IjTE+ly>*~#YT3eGR zAG_l+i!S7y5G7hwiluiVbRUXsSazxk&l7Psp*;rP$U7Ir#q0*!36wW%M4ycSpzHBw z6z}@{$nufUGzD*LYp|I6!uz`0IM11)ghVi3y!uzuG)3*xBR@A}LdAok>e+=47MR&~ zm4Eejzx&XuiIQ%4+1?!OKMXyFkou^RM(CvLxFQ$t z|CXeHs7lrHOXO1mN-qF!f>CYWGlFx5kWO3(U2*o7dhgc&B-E?gwjYWM!TG^V9FBLnY*v4cME zqyr#`P5_9@7rnG+Pj*$mel2Di`hJfd9?u@vz?&7LL_*KjR0T=ha3)EGxmh@NvK25W z{lv)xqj;Akf05cI47Dn5~nF+QAF9>4k6?2?(vEa1NJ5(|Ke1Fq1^eQwB!TEVv zIB~KKiewxk@b^sF7hk#I&mh!GtdAvUqaYnHv9607f-{4f##Srs$YpC(a=3VZ^O_5rM(CDE4k;z ztvhm<`FBzEGGk^EK6cI|WXCl8^!eArpORow2#=2**?&gZX~_MtwGbmBTzlo5U%wL> zG&#lIbq38qE=;!vQln8rEsXjxWLgm_$ww;*(iq?@u+ z_IJ^u-u{jMzWAYgBq?y~hKCL9H^6_fSxwh|#lW`!#=T1xEx6_D|Aqejf<*FNyLQE4 z1*hvm7d{I3NE>+11YUcMHLbYm+AsWIUBjjB)a941Qo)M`T6 zP;720o8Fz?^SPQPUfZ`XhZE9*ElC23>38HqyJ4hWr`e2PZ>7w9@|%yP9XW*XM2VJY zLGG@%s<#KXxC83z_Th9Tc6{NvZP(#>Z|vHG7yhv;_=G~FBsieQnravhUrgFr+RIuJ zgm2t-C7%9sJzjWYN8~*W>r>)ks}cAC%>2|Q=S3O4=qO%M?n+()fi{xzL(kG~vC9oV?z`|GlsVeD1S_)4J< z#g=}EXfjrwlE#>>9Nu@}@Hcw*>Ve|?96WT_b?_LE9Q&?Edrb@+Xa;6@%NLr2L*lw} z$gGV7N^rQRQgO8zknfEhd##x*6AXe70$UmyfBMG%?yRp}`Jd(~O8gm>EAH1{e&D~{ z>WNn;59)(yL;L%S2)bl-;e!eSaI^LIooBNmVQ_TS=)l#&k1vPck!YvkYpA z5O9ekb~emlj`_dffL)#Yy-5=%n4S%dCr(|^OIrMSx<^&j5ZJr~G*xjn z=Q0`-{7JkF-WpH6Ew3BFY(#n4gpS?1%H zlutCmt=VP>y|!;(&SQVvuC+D?UAG0Nu)s?9bKbO(g8&SAFY+R{yf^|CTBjEsW6_3G}9ePdhX-$ z>0?t~>j|bN2+#lcZZx;GTT3u}J3n`Z_{Uvkh-=SD~eK#-;kQJU--vJ}jtQ zHbk%p6X-r`5QNu~FF*Lq*{;Wj4P6G_PDZTca2+$gfA6x(-nI?AHX8OdjzHCl!ABKw zC_6gViG!B*_Tt=lJe1|B3PEU79|LfuTewcpl@N&rv{Q%$QVv3LJUcrrH&UxuKAlNi zlRVzzZvQ!w7`#0Satq(sd8FIKfkj8<2;)Wv{7~fQQM+d2<(XcW3QWeYCk*U^T?da~ zPm@oAgIMt|WhqmCFaQLDQU$cO^|*?1voW`74CYpi!K7ovI-9<8!87_m7LxqR7xgb=gG*#z@a`U*)czJGtjC{sONh&rVA8 zGXTW~gr3sNCQv6*oYdK>rW7`P0}RZbH3mI<6e1@(j^F*kReMo{SMzVjzuy^>n-xPr zUJmv*9)qnx87RlHk%oFqGK>~kA0!P}a(R?Zuc>S*OyDd{MgQV%_~*Vu7~b1t&Lly! zeLKgJiKdgcR882s>Y0}Uc?m0UoNRRQfCznjOj~489UhPCOCiou%+bT(Q; zLeZRGURE;cqRP>z7(WCTFZq^a;LS8<96;9K;}g(WQopC^UErMi0Ix>nPrtTg900tv z=OF&IXP@-Fgu-voi)^@~2aU)&k~re|hJY~RxcghJtoueX-t%5Ox6(6W4=*n(1pv`y z;63ZmH0`i%kpVPKi;OmyOeVY8--)Ja&F@d`yda4&=qJevLC|$J=d(l^Yw$)*%eFNf ze!_0b1aFYFG{i+p8pianTw`%HKfk~`x12hppIa9OPPT=IYS2PtWaLk=ddjH4`GEsV z@#4$dJz8&?BAm{|{&c$+Fr7Xt2;|5O$okLc&l%t6$jKJ` zeEsuu!ptDF@h*Pw=>dk33hxRXBFn^|N^q(AzY7N~4ItqPi+$sE`)thHIl3aj~;BC=zArF=}))qV{2M7|tY+8t%x@(YLz@>6Z* zUF61jS+L~6TQIHeDg5QZz(Ti8iJe>f$i}}s`jg+k0x(4Wp??J`Buow7n5y8~nG>!6 z^eX_6JW$%vMtgS4!J~nsh{fAfHyyU_PbJA%r-xz3{Hj~c!X}M)N6B{7}9{%D@0Pq~( zgdt;Y%Th@3T6hH!RgE8l?Qicx69A(XN>*IK$IqSYq{++8%F8V;djRGD5yEVZp0x|> zv9Oh9(K!?FrCTrQ_K&>>@rP|Yf)_BQlF@QN%#3VB2olK8)&M*D9vcLZ-(WHR|AfWKvBWqmBu>xgI$p`i1~*%d6QD9s=EPTmq8E~ozkfb1ST)lu;t+dSWwvaM?#LC z=$6AI9uCV>?y?rl8jpKwtN-%(#f|rlEARO=W*Y5F-m`vJ(_(;Y5P`5h+#pgMc4d2; z2Id<9AZ`V~DJ|*dsfdt*vnV8>8{GZ3YwkpDRt!t-do*wF!6Vu4HU$IIxW<4G2CrZ} z9nYWP>c%)4ya0L>*AdzMGMMGVnR2wdtQa@K{)$VO}j=cz>~B!-iwk)z!@a@|n3mfWL*M zQxs*W8F!Jku3x|YY;77#bWLx&Q;48wDth(m-n(Jr;{XUMs`EbL&=+i*Mb2<&|GuvpLm7-5q(E^v~WjAD7H=J#fNM zT2fR%WHOJ3_AAByLoUh4UbB-R^eHO9p2pNcEr<6h#w-8YjhyVbVn%)Sujb6LRnd%o zVM_>7g6mc5na^RSZ2&N)e=p1)H88Y%*+@QocwbaZ8v!EP@ay0H)j6&xgqb7DF=1ez zwVPji6T1!`k!r_DS)#%4Re#dJ-gxATH{!-GKZ+=nloo}`XY}hAYWIb9I&LW+Lgmfr>`1sU?_l7P5@B0YTU7d!;R3ZEuZmHY}!_KI}b)&Jt;O79Z&g;U-BLSco zrVEt^n&ysQCr-8AuPFF|9zsJUrcFq~i5@Nl1-D}@25(N>=e@&jr)v9xed_uPQ88{X zD#i`Qv^K3Z4&^}L}K)*);4D) z&qRThq2oVmO#rUEd=?&i{PzX+@zNsCdfYC@P_%Z{AH!ntB{POEyZU_WJ$M8Qp7|C; zR#FTuD?!X>Al0QEb0V+dbNtZ01$}#VLtb`>SDE!N4c&aN=UayBk$p?>hiyAh<1+}5 zU=e6;QMA5O38i|({T340IEMTEj4wg`N2O-~awXGMNn3aXlT7yUF1kV^VT#t8T!vgwfsp zb4XcFys`5g&uN31!3cb8|JWz|*0L zm}dikVHiPwrS}g`d-2cBOUsHdd*)cgV(NeVeBJYDr9=AmC`3_SHZqB)B+Nn1`8HBc zs7{orsVt~NdiO-no`vCtIp#3wcmT2&nRF}zJCr|7c3eZ%n86q|pcHvo;SAf}-3#-N zoow|`DKEREDs5Rd>@{kyZUtu~IJ;Kd)LK(Dq4^gtZuP8T<#+D9Rs!bD8i!S%z6Ox> zZ~;8!v<0S^K!CX1cT?(m+Kzl+D z7{M99B?~JstbZx4nKco+_aDZ_H~wLsv+j55;C`4sv>)Ewb3it5dpgnFI<%xP564cmnwz))@^Z7GDgv4+iU43xY4^Z& z@-qO;`C4~tO?Un5iKxB6bv#pqz=VP3xG|<*na98@2+6#hc=oB*c4Wsjv?qf54w|B1 zXund78_>%+R@%*tOC8gc4n=iTy9~T0UV5m(03JHq)sWG(m_0N2z!-Sv&!1nWD9Rs* zsI{%F?V@L%dFJrhu2W~j>Rq^96N(m8=n16f6mBAxk+>NWJJP)_h=1*Vcf`;XZZcNi z=NY)|$%m#0^vKV3dsc&kMqp5&E!D2x_`(Y>ZvVUgcurPE5>B!kVrXEtjCb>Wm@%Rp zJKt?W(i&8i%H`_;y40U;$L@E7{!w9It~D61hMh{aIG#LtNJg4sjv-qxg)|8(3byyH zE2>AQ!<^Tcatm%6#eHSdr&$cDw&U~FSe|pDrfQtKBW;kE;lU{L-=58$BB`FLqGZ`_ zOQpr#0(A$#Ou;raVql+M0MNI@G$05g7CNzPl~@=4U5~oU=Y+bt`(QpFpR`HQk?go3 z4LwF6N}3B06?zObI=v)B5vS*gb2p28@*tv6ORx{;Y{^)PEJ>QHIk<1U~ z@L(BTIQy74Z(dwg)#m_YDT*?F!-fs1=@>q2*|OzWiqoC?-rfE{-cjQm`zsQ@4oYTj z%p6%BFz_-P42ZxA)3aemKuL-DZIl-m;rpMtV#J$GN382Z>sM->4E^|oWcJNWqtPuS zp-USm#FzNT;jCEtDN@g(py#DQ?h-t%C7i{cTtB(0s?TS#TR~1g`FBiJ9ZTbD`}XB% z33Ckn`KA{kh%joHCpiG%?jQW}JHyILuU~xWtk8NZm30p^9yw7`(%r1T&W1oujZ)0! z?@ZmH4K@NU{zQb9mi90B(|RNtgrb1>RtnLtB!6N6aZRX3(rFc;ic4FK_I2JiTCt2&IY0r>1 z514rgfExjP3BLETbm>xU|Ni}#TWO=Ia_=KXk1F@H)cF@pLAy0yDk#WF+rM8neGC9# z`<{2xmc`75ECD1^ZH2Yy8s$XK=4 z-tgQO23uv1>|07iKz4+&-iD@`y0RC~o%%5Vc^}GIj00>Sdd~n_gle0!C%Js^WsM3_iZ(C)9vTClJ^&jVs9*i*q%5cYbe->KK zeYM`0wprTglgFEnMFr#SLKi-q_`o!HMNw`5Fq)YsYnpb|*{;u-0U`gFYCLMH#$om6KaNp@ zdWVMKJaFXLG$63ZnK83!^paHN78m8k>KhvWSl`g(aY-g=aOjbr9k>q2bTJ=9es&z= z%X`Z?U5Sv*jsu5|jUc$XVC>r|_E*RGD--$vfN`S-dLG!k8Dp_^chg*dI>#{2p*Kuc z-8@L@8vE1u-_D%b;eiemCD`t2S8qCR#Nb{7d?g2V44f)@7V_lGQhe^C_79`}Zw*6> za%!0EI*}p`*s#_Z#EO zdt>FTm-O{~uVAOc4S1HM>2n!mFj6ykhYU9R-rTGhs;7>^`O`-|C+83W0t_b;S-X%V z-R*FSuNOlHyM2FBW@CbG@h?P9*DpgzK}-x?Xs~XqxLY1p%%6ctgZg;ctV(8rv5F$F zW$Ql2P)Q(+8C8yw(r$sYI(Yb>w*2dhDYC2EeW1zN#AF=`PLz4ZK~+%NXOKvScSWJP zz|!Bs(iIN%UJ8-oNVW?z1iF<12-mQb1Im~lxu^FMbF#GQVaMhCd-v+`p#66!K}bi? zic5r)EsI?FlIddyIj+Ber7xT$XK&kY40F^+fQ2Keu{C{kiOF{oH@*&KfkQH zy87>n7A<;h?%cTny4}W&8{dQ(Y^wjFMT_S6&mTB&;A1d7_P)7!^X5A@RqpwniE;P6B2_s$k&2QpDow zrE->AcpiYH!f4@DXXczHR%~f5mw~q;Qt<(xx8Nm>$wYE_~@Wh4ZI5$ESOteUEN+?UEMB(a6~L)vDiWT_@YINCWc*`OeTL0;4J{# ziRgbiJO2*~hWGD900Mr01cFjo_a~)l`89h>Cq78PHL3DxQAmJs(tkXzsor2)7J3vH zh6~eJm^x`F0HA(XQ$V|@INz-9^s$5R)2}ZDGu`7))7X3}yuMO!n3j+k!e{wUwJHc-TX6-5`M2zI`E{f;IP;)yLJL~?nY{TH_sH`n0RX5<$f_Cqf2YqF{VU%= z4||FTh*>T}@+?YGTt=VV1WvV?`iTi$SNHC2dg_LACSmdUQ?cx!b!NqUvoB%jq4#e$ zfhDUpTrhRYu*}_d90RXej{M!+cgwv8wzjsHm|1IUYn!rZ)26c$w5FrDWX?p- z*kFL1&T&xRVy7=q1Yz-csR{9H7)&AKo4g>f+3q=7u$%N7tQ=BRO^sj{l$#sJ&6mu? zt3SOLy^0EaiQu>d28s`v+UIA*{~vqr9UjMZ-ur*g%;h!vSiC~lkK>~{>3Hv#n<6=xpDHuNgS8B$>qu_He*X9CDF9HL{WtVDfR+(0wh56 zzGY_4{bSpinKNy%i(P>8@gsAwduHZLJLNs^`+c!|USiGap-pSC?}>jxIXhXlw^pY^ zQ4;;$_kR25+Yn8B^*47#l!mUKTMIuE$~|r3f2Mh&jz1yO5no5U1Zif$Fvb0A$F1 zFtQr};vuT)Iwd~eUB4Fh-K$e~(jCh#g?WC+%nBVL39n$@c~DAq(pb^>Ucpbm8nfP;f>!Lc9wtMVxUQ%0yfBoVIFmI}}WL;(m z0L}3wa$&+O2a_y&uUo}$qP2@5MH-_Sg|Wez{eE(3Bsr9wBxXPO+Jly5QjJ;C$`#9I zrR+FGxqh%iWY!~^of6oMFv-hL%=JEa>q_{1iRNi)Suq~ENo_J<$J|DJAFJm_Ajs;- z9Kv0oG@Gf$w`U5?nN^MZuV2F70Km*iW%$Y09`x@!d-btcpRs7sbgaK|F>b$Q836h@ zYS2!z*Vo99>oHp`WX45`LI2Ob$Jz*=V<#^DZOq#q0H#fKGHoN6SW;+s|JTf_;ePKG zWscaqi_7>Wr4kL#J@?!$aJ+Zyuyg0mW&ozW#7Op^DLk6N%3vVKZRev6{EeW5iKjH~ z5(F|xKvZ6u_`-v?;bRRqV9$H{1W|c;IXX93wJ#-!{zJc&jLFo_;+RJpy9A)1Ft;xD z`NWC#!eI1sFcc~*>_1c0pw!o-utA@}q+(_O8sEJFPGf4C3gqi>d)rFev5a<@g|lC2wI~ zVh|P-a{e8_BU(>aLOr^>#_o?2@`8^u;Wr}gJ{%qHXbrE5;8l$@70Me@L`HI(SIz?f zES)|Xjb~Z_F(=`{8+XHvXd;_w@Dh+=b`Z;3tcjL%B^t7b`|i81AP@+=O(`Ar`~5fV z*s)_+Tc*CgzFSe02crF0_9Dx9u?BMWyjssYQ5lA^qI~37ykF79l0pEOTU~+D!hH1p z;SVA?GQ^ZIZWRrGIkrGtenatsB}-@E3!5UjHI~*^;YxQO2(iw5sENu10KES?bw0Jf zdw64Xzmwxh7L)b)AOs(ceLi^V!hi9~-2cHuSMTvyAE+?Tk6gbO0OBqxf{p=%%#l~SS6Ar?ge@I~wic{x7J)fl|ASL5hW>ig=iep>j(eooR* z6U?s3)F~CHtE<}Z;vW1LrIZ}HsLouc$ck&=waMnqn>PxAup|0s{JKS*Ruljrgj~0M z`}PCcZ6!&1%H#2T8bHv>8ZE+QsctB$=NpA{o{%oPqYlNGc5lPC)K=I8E> z|IJ$v4l@yfMtz^a++;=50p7Z(4%_w}wN8{pAG>7* ze)gAlP&Fyi2USG9SOrC)?E0Q45Ztw5K86Mp!_&pns<8iT3$B|z6_QNRc%~USUXSVZ zojth%FCRIL8Iwx!#k;P@5soAZE1_6jRs_G-i$F|kS2JXD(g&}un}XG|YIO2omJrfN zDHZID7hPP&16iZNJ6`$F0~_L>2_Xm+|SwY5kd&&&6tdH zEmtudNa(q$R;)dgu3b`x+n3D3+-P_UYv2WQCSvE1ZJ{7BHoIl|oY2H(k5@?y{Nm4n ziS&c^riEo6)tV=?iFR*WJPVb@1^Dn?>u{yJ4^v8Mmdlx$I|H+^C9MbMv0KtR_1^DEDZ*!8w zDti3LL8%gzxzHG1hx?U+++1dmQd(HHZcZ&;IdTS_{X^ifZcZ)UJ$1>8kQ{$8Ly|^bTa9h2vE3w%ZQHhO+sV7%-^}~>&U|L} z!F}#M_ndP(HbeGjX$(J?v5{bVLA0JNuqz^Ye%f>KoLxiFLNccx)q^_$O=3IKMG5pa`UcT>&LjrCbEag437I_ZB`>0kk1 zX+s`h3GJPwRsAt_q$10&M%jdnIz;N@>>jAD_;pw@%`bTiZEKQ52S#)OQ&!kqUOulJ zgmhp6Q2e#U1pTzjW-ZzAu)gfsOJ0S7q$OFyQ8`UTZe7&b5SP$0Vu>8#BAQ79uwLqH ze>cBe{tMq9Y&<%GpjKlh9xded(I?#~q&PmYYRN#8Q#kj8%g8;R9nBq`sY1mRp=9kq zB1C@j{dMiq=kjc1e{@GcHHEF3kzBuP2zSqw4;-Px=AF*qr(k@43zs zx8;;n!C;H{Ml~{hSHtot_%)iPl3a2)CtEgh9jOPCa*P-!r;fe3A?|U0@9KkOJ%E<~ zzAPnBc)Sfmp3`G81BhLAUXT0sc6CY86I*D)_tuFHKTCs2^WRY=yNvnV?qwCx=llKU zjZadgnK^K`B5B%>%|LYL;h(W8?aM-NF0pDoo}rxdS*hDn`F4G{InZ5r5DHg0(4{$? zp)0UEyl+@rd3>q|^vjt^UazvFp3puIH&uvYGUyu}ymt@l*|>CaD3nWLsq?vm+&z&H zB0*KrAgQDzO>&ktRc*A)xOU@ze&j3*(v6?mD){;Meo?`TL3W&;JgIs7=vHliOvraV z;HTd1X!DyW(+hD+DpC*A7Xj$i@wW-Uz1ajzq}DOU#8q`8NGrP`?3h~y=%r^mI7$&y zV`5J$E@cmRmsVCz<|lN(>A{kTUc2(W-{0Shw@M3q7Y%gT zPI88+7L9IGbdQpa7QvL}3=?G0x_G8;1srYDby3pyy#Klb;`EY*oz`@7fKCuKaHO_P z==ol{posFK8Z1O|J8U(p+a_51*lR3|I~3#)_~jum-X&|_@fn|Mf>Fr6iE+DE)WO?% z3JA}$C`n88a{J`3Hq`Wd^zr;=l<1dhc337EV{ByuDB{nA;-RzB2munaqiRpSK3T@LhH7|m?UuNIWLg{#>nvTXHhO+IEzZQ=#zuVJe{97dlVJniND2(w-Cf2j73 z9^blseM_2?9~e$@*1Cv(;z})U)DQ+vkEf@zxO^mhxw^T(@LNr$TnPK&fZlL3G|6Ur zP(Nt!S}2v40U7QxXM~R=3wK}|Eh~p=mrzjFMY!DR79oypwQ_UW8Lfpq65WZc<%2B|!yKPI0*=#To{;2G{hxb(` zFMECyd_aW_N8LlBE*wI|F}xl?nRE&w)fHM|_>?=rm=7b26V+uSo?X z4gF3`m}t>}Wf1`Pag@dCP$xJ~cB`MqYEmkq5LZKurxn$@UNV({ou|?*OmHWq>QOb; zP=W?2$U6!d9h}S4&gH(F6bTjQQrF4&$67R|ANQ(AmqPS8a>0m3Hi>^4XY4?BTtt17 z0)}b+TNbO+#6F=Ks~Zr*HxE}0rU;r5a2AAl9>5P+5s;wj7RhzMxONj2N@C)bf5>#0 zvo6dLyj{7XyJCoXDc$cimINiW5jH$GbAZ4-n!gImss+l5xSwJ^ONLM zVkyW}gRCUtj>NWozmdXPU+$y~!&ph-B(6=%RSbfII_Y#pMBFo2i%FHWNmm#el_rY*A2f-8oz9(wE{syCDmN%jZPj z%4(l%bMwmLEFQ8AydbQ8*8IdHWVtpc`^*tE@(+UDZh2sLpFyuvJX)=ZGjbBa(O3+u z_=!Pr+9QOJQ}H#wDUpL{I&<568jN7}Fr1?3h^(ZMZjD_=&a`AA#1BbyBpGKX#SGpnslt)a!difj(f8t_fQ-4h!o%H12 zEIj$c07Ukcm5{M7jb(mC;7`OT?%@5F+!x4ws)ISspqUR%+ zH69$`^;_V0(KNgAykxby~V=<_mC$ywf5ef1oLk0G?%$!pXasQOie|UUi>5!vj%eZE1AG__5slhnqc6%JPS*k%9f3;21gBu7Y1^{K^ zcq{Fy#nhAF>aD%Ss_ShUu-Za_)(JafbXe)1x1}V~Z#JOza#~DlYp<5R8McztKcB|n z>_{vQmIJJ9z{8mx>cRI`_e>qQ?j3nbMmQ67gX}Vh_Vh(7`yP(>6*gJao-%B)lkAawJrzD5iKdpn|OfR3WlHEo& zjjdW0>%#yV%+(4Hi5z*qoZPTh6qfU6Ex8giK-N2D8NP9(SskDq8WoO};#o-uD`+}Q z3MAv^rum(US%PUHAsP+|0wq>3=Y}((Zj{7{@U?kUB~6xoDYvznJvAXP(w;}sb5+3E zZ)@?6p*b_ux-Y1bg+R|9Ofe~dQ**mY!)pUhhkUj);ZD!Z8S!v%&WMhVjlkY>$1$z zZ?)GTXK0-^Ku4@pz=YXV?AOGZ-$udU_lA_y>?@{**}DCj4faxiNqfy(e{XTB?rSDRr+rOCsMC1t4^fSk26= z1ue`izfUE{(YH0f&-_hej4pD(_TPR`v3c84u*wxbhfLp!m=gBh&*iCcM4liRtlkZP)$*Js#9V_(EJ_-i75=sCL8t0ajkjNicC=dN=VoUKvq6(iyB%!D zYY=KqV17GZ0J00aE-&lH`D^wo;PJJ2K9OhoH&*9o@}wOcJEmftp=}ARB4=Yl8ZIZI zg9B@03wrza-lZl^1D@x{Nht}fsHqcQ z-kWJf|Gbt(v{z&ao~uA~UokQJaIh~gLLbsIPzKy^>D0x{{XfSCz=ulD4Z6i;DOH}md8uw3G$&YG7tJ*6IQY}5g|47h| zC!>@_9v%xZJaeTb;8P~ZZ&BtY{uMkLj{m)q2yQ?2NWe`DB8V{GaX0?6k7<(^G}ZiEf{w&S^s_=?&8ifI z7%jWm5P71`c{?beXlK)s#qGRKno!VVd4hTO4mD(l7*6ngpf_p1@&P4}^4qW>@6$tv zuv)WG#q+t0$+qaI+OC>~bg^?M0xhPPlGpJ4R+P@8$0DPsQpF102<`1}Paper^N+8~ z(-VQhD0whWDjk@wp3U{I5yVPQ6ZfO0x#D1i&8v|)K#&_w!FChlStM6j9F@Ri6g!Z< z!VjF-?4(VEc)Usze|cH|m)hvwRW~Vs7B+E34HVTw4A1kGmSZ3DsL%}cDoSsT|Cwcv zqxhJ@a3IfdDLhW3HZP`TEFnNf$2`${Q{bdtv&6&N^COQ(UR$6_oW#j68H{E8n~ZTN zQ5luF(_PVHmyl6hRdk1j;Gju5uJsWs&QScGnu`UG}%>C7J1wu2VGVUhkB50l`UK3+vD=!Cn8LyP(v^1QCfpxsJN=(;BF6pD zrc!93A8W zlR#<2uR;bpdjlugBGhi`aGRw>AO51#9AYl}0%|O`+Jle# zdH&2g`168fzW86)#Ay`uo|cVe_2F#rJgL!~6WD?(Z#LL?aBV;89EXwKlK~bCql%p) zS;4Uy?d12>-l)mriia%rGi%A12j9{NZ%QZ-&4M3~%_LtQ0WOgTc@ z+&uYI%7)B^CW7M9{`V*v*uBrQTXVkR{ENE&NF*2-pe}Y*?+FhT z{sKZOs^@EM5E&bw*?O39R?I?L3snav9aJ{P7Rycw`yE1Nk}xkzmZ_qY`SmUHwCXQc z>~k6j)WbIfE|B-BVKv!mSCl9wh#yB$*Gw!Zse*k{E$6<{oQn(htLx|D(S;kR5=ee(p0%g|f`YKKhAGiaG_?!4 z2Q+C|*}avp=v!|Qa5PmDuy4e)C4iOMTU5n+x$`1eFc7z<3ibO3*~+M5P)YKK2iCIT zCGcYE91$!^N$0o^sTx~bXGZ$2Kb(RJ)`Z#bkSOOiX14Fn708oa>DhRxY_er&x9q9# zwJM0#{M1X7BAMcgry?TQcsM-+;%~r}cXsL(@AZ~;L*S)S|LumHbCaQI2B(8TYD=Qa zRM@j9nml^l)7QM0?DZyWlGQ5o(Ss5=$-u7a)p$k@43Vhq=DarGf1pAhDK3gdUD1Vl zc4+hG89#Sz?WX-Hdzm^heC>woD#EV+55k!9ii0P+0v5Z2J64@!Twa=-Y&moK{+`V=`f2`tlJ_581m%~3}ez7<3crAUrGl;I>tCoi)oL*Lg(Mw2D7Ak zLEzv|H*srtv4^1fzTVSZoEf^PDyvxk8blY~0r6y*X%v@=wNEubYsvZR7&4OI_2*=o zKltf%-3l%!x#VUn>pho2|D9Hx_H^LN|Fo8Ax$9Gli0fS2K1f?TB@;PJlY$?eIFxSW z#y{; zY>ualqR>TCMZ^DKLMM=F*|CNpv~SumtTFFtJ3X1BlYnqgSfW3DZoOlU73>|l3*WvD zN{1lsTsils8- zBYYrF>oD^oGb9;t{FH6^pz)<1p#K>S%G6w#m^%5o*9^Xl9}_ZX zI=hXw56y+9Y-Rr)6DZK+%r?>B6lJ!VM=C`6Ch8|*kPGr{elMNM4j?$Z&Mr2l{!Q-N zT%Dy2bh2j)07@@0P6~06ew&g+4vw$=8IPnBpb-y_&&lSIEgm9L15nk?UhA|pLFt<5 zSE33bI@gj}>8h@u*uV3*#&ZCq$Y8iO*%B74-*w+9ca2^Q;2XGg$P2QW3~!-pvRP0C zcRr##J6S5iMg}zktiLp~-)-&7ZbYFsn$b7~eGrbNT4iBc{lyOvu7A^&%PGfRqhmNEZPfTG-j$(3v`Dx}R1sgoJgAegQ{{)kgaCM?X*jEA zVM$n2PHgkcy9Cl<8igk1n7y@8gV$4Xqh*gWK+);Ebu8$-b6wiOSAUUmZHwJ0`Z2zQ z^C2{ib3u(z(tmB@_k(2i&BU|se+$2@1QZ!odJY#;MjM;d;Q-kp!*{57cSr>J4PhU? zMn^@IP-EuSGyxJR5`w_D#idd^@Ho+(Xj5IVf;EgcUjKgW*DWOVqjIdawJVN?Bzxl7 z&@Aq>b3IK^{q}cg|8yj5k-ER^(zE@96#2%~=pE+MCp=K8^1N(hD+#??}^lL<8jvW(0^nwLV#PWs5_ z%>v>ry#oy}&kGF2qlM|G2o`i>qr#hAQ;?;l1vc%b~jkTdn~p=*E6b__E!JuREew||*NAx`KBZ-W^i!}pD+4mzy5S6wyk zpr2x91opL!GOamBlyh^m!ZLUN(tIR>B}fZnS@X}9^7A;w*fD>(?gksl&srJKgL2w3 zE;X2k387e2pp;0XjUzL1lFUGkn^Dk8pr!%s`D%kp+qjU(D6x1ylQo|S<1$hYzM3wL z$Z8p$nxQOb?1d$VE0DyWh@O5tH^SvMt8MD&c)1pg&eZMdWC}ag6ax@)k`0g+gzw1j zs$GFsb68HoGS#=WAcbBTp697;V$YG`-jVc+QV|X5A^Da#WP+Nnz;4fgVp9v}u;=HptgYsjWgFZ#S~M+(}8pNZgNDbtHT ze3*yjXHeHV-52q2DJ=D^cPKPITQZ4wUBnCmEBsHvh(yP|Mqs?v zCR9x)pf0aMDrLi<)&C9W@Kd0^yQ^GI|1r?9nx*lkyC`% z*JBN-$@*&D{Gc$^E_Xw-c9`(nwAn6^A$gLs&jSaw`sE_a%p zxv~@){*UqA@YIPs^~k3|g?WMx?Axs=&s8*=snBi}PtqWV_|F%U z$e+{`y9*Y;Uf`Ha3KU%F@On+B`zF2s4iS((FVwVbCi1dTi(wI7zmfS}XHCaA(<h<=7;>_QT)U-+Hx-Tw#xWYcA=yM;S z-H#UOexA@=Hq(8yrdHHdf2Ku5z#_UlY5p`vhfzidQVyk47fMx65Hwtu^^O~{qFOxc z4^Jh;3!}7i!lQ^(wbgAD%wI=~`$Mbuk9nR2dnpWED)YLsiSqh?mJWn7POz z67BcHlKpCcN=Hd@nbL(5mj&WfAmG&^@vkiTFg_yk#%E-tJhg-d2 zn-@5@qOHFpl||vzmvj57v#PM(gWvw>aMm7y=l)$^YJbM21XFrVQ5`2;{V)Ay)$fWE zTbQ{d(EuVY#)|Y`Dv4(z`X>1IyvdW@Wtei|WqhucSO^X(t)xs{Pscz@PFDvnow>@4 zN`~YSwuB^Ag1XF``jE}!hVFkFlm9^6^6SjUS+jGCi#|iU*LBL$wsDllP+$TB?bYjh zec&G)c(O|HkAm+*6fs7!V|5Wl1?<66T;b6`N{X$RrxmRxXd+oqTV#QrVahMr#cQ8nZ)a~PJq)tFiSyOQ&aSsRBQQ@2TKYKV@p97# zzN=BiO^ZfRTEf`w)em`8rA2VV=x-sp(+xcHL+YPwOYI?FO`Jul`pi@s6~^2Y>`Gd_ z^^9K`Eo*+Y)|pa7i;-c3F$~1DvvuFRK412a@KLsm96WwKpaQ_<>=egR8ta`!Fo{Wi zY&?_oWKp>R^CDM*P%Z*U4FXIoyHsQ?*FRtG`@1v8RM^}SY0f^2VbD}EDlPyL*p$Bw>eqIyllpeZiHwZAs3M&Wu&e0o?EIMjshbGUJ6$O61rV2m z`-c!$yI?a~K7_69*z70=$nDr)8#Sj?1YwRFY0F<0f~ep<<`992127+HrmW zha!cMXq>rzV@%28US?oV9QcI!q;sd>(&f>5)4g0TZt*l&ueW@G)*}Esd3MAUzC1bS zV&_&ZkDLwf3gw$dYCi{`GS*DSkhlHi5$d~YEt&WwSnCR{Ge{veb|w2VORyMe_8LYd z_U|91FE78R2}l$iKN0I_T2#@K&PTOPcKKMg|qqD*u)bPuL;d z%q9EWK3n?DwuYENCEh&Z*$R&j=R(2uZ77~2OZ%e~1lVv)j z@m{vo;&*WZ6fyU$byEKuUkK3#1Mny1+cEkqCO@*zx}#-en;m83FbX#xi{FN}{`4x( zZ(8gLg6t;bW~(2q|1KTUzS>~jnlSRt1_Gdp33eJQU#NkZOngSl)a^zRpBL<~xM7E; z4feC1yYRX#cv9+GTvcxUT4QNi(W&5cWV*G*z`5zaTa1N`O$>Fl82E=p!{$%HATB(? zkMUy1I*5WlcoapXM&e4GDz?t_G=abfBEm}uE$T$*wR{On1bn8!!=c9U2En!Hc%rQr{i{({kATvt5Q z4aRgk<52_RsEtENE$o|ytYqK?{+-;svx8C_uEM!mOO7K_Z zn;B;e8~R0?eONvgE&@Uryd@@kF!45pVo z4I0c5(}9qR117BIzrfIXSW;=jXy=M6dsMv?)9M59s3VpY8!oWGxbwYNUvr<a>z zC$VIa-ksa*paM?fpJb!Ii2<`IjaUpn z>H>U_p{3&NuC{~+of3s>^Fv(h?eSE`is=W1D&D(Sif6~Up`McO=FL3+h#%)D@efEU zW>DkhVkRt`tgo%i{TPCfmvuO-bk1*JzlSG@`eQ}u_vk*@$I4J1S%||yC2GBeRV&ya zQOH@)GMOrxq>Ze@F!QA-tlIH-CL$^-$_o$vbBuD(uM+6>Q2>G(UE z%#tkuT<&`<&(Gg&xwx>oyT4y9)*%#*-N9Zte9Z1Uz;a+}JSIZuyDzt9T2oA$j|epP z>q#`z13~}G`&I@FuKk^v6_HUud>&rbv2lE|c}5UThuM9e4o0g6`o_L1VUmmAOGEkj zmj3|nJ}>_Zyh!Lp&`->M5+HQa*HYs^t;)j&qlR7k!g>r2B8z72S@pGRho7yi?d&pf zE3HjtP3C^Jq6^_7Ugjm?qddLlI~3BxDR%(;^KYxuC*?!vl@*pSnQ$y<654s)bewTm zbhGo4@ClJoLtV0Q17DE=dZS59(%--L9?}-XC`orZZF)U|BdJsA2zs5*=SM4`Zx947 z4}R4H$wmQh1ec9BH@`t5ajaJ_DW?4|?Ef)RIH;))L=B~o0+mZ5rleP^LE5ap$29=t z#BK5wZ*z1L%GgHebTY5V8b5fk0*wbP7#o0rXL!4GFg-32&*J?cYEq%$!b!Fg&jZsqi9*VBJ2z%GHz%zp z9xgW(;@Aw_p-u6K=#Em(e8g8R%^7v_uTlJd#cWcb^Q3RY5Ej9!(iPyc^kSS?^lHXc zd_^7wyNHrhR#xgFZz1{#ZN-2e`|OPlFOOA<7``2AYwPxS<(5Ry4QIg}F#wm4kaIpA z4SL%cOvT%OcfQ`~S3p8S;ye254afn)WBko5RE@)`3f8+cv+#%kA*9vtk+Be4^jJrj zrV?77-OIiALO}Ph(}&-vbl4W1dMGEk_umXH453OX>Gm4c)$+c=Dg7|};9L4~1t}DL z+I{*PnT;B$O{cPv0Xul>-aR66L@G`deb(s4y?tTFRYSp8a)EI>XwKDMt@=-yr0;iM))Ad*IoNvS^C=i6v@87EJ`+#C4B zhS8tnJB$;<6GUmt8BxC}9Yf0JEXoC^hEF?SlB^FnC*D++jsYi!$-2$I_X&MXVTAvI zwfgA39ssTSnV8L17h4A39|76T!MY6UVXz(%4wz*OgYS(MjxACHinR7tW}G{&w`#JL zj9;R!>Xwt<9umbp9ecy)R4oF*%dyAlwhe@|pX;!QiZ={19JfvpG|tPnj@Gj3?ZG!) zRkzP=&Ls4A{#{rG%68GW-H8Q~vYID+NX68dqX8M+z3VZkt6L?F=3H|?{3xMZ>r$AeC z+RaN$7I;>W;O^E5=7O!Gql6IA^eP#da$twES=iz4e~W1lUhYpDF>qq0R|0KG1&H>p z7BL%)pQR<7S@KbdDGO;sRl?+dEpoePKE#LM8+$#kXubF)MV>a_DPyupK_%KAX4*fn zn=R`gBXz=Odd`lCKrvZ#(L-_Ra&n@-@Te%AyVRtfOBrcXoa14K3-0}@Z7NCIw>{HS zC;k;!%oc*Co$I(xNyK2iO%hmN@oSOVr>MwAi({k+t9M)VJkjhF_iz#HxZQsxS{O^K z_~`B!+~iTbo{B=NAGJdlcPRB(nC1>Wkk_o)`(uQcC&4<$>tc^*8wn4^0+0r}g)6_% zNgq1_vUaia?x_DuOv04PwbN+FoX)ucQ-Xw|`V|7<)`uS$PkYv-)|WIG82`X|IsJIm zbfKjlkW5N`G-sHqcJKAQrH_u;FdIy#elH!K90ZIxv?yrA5t<_7MM(V;=Vf%tSlS!- za$Bfspo7ne#Zu=|G}curs>-2KQz<*U&d>T~)(IENs6QhZR6`6f(wG>^2vbbG-l~Tv zaF!WBW8YGoxEGbPHwC*wp<`K8vN+aUcvR=Zxe2h0sF3D%aR|u7MdssZR_kw%p*ooUrC+kynHoxOk_^xoSJt8CR9%ff`9yOse?}mK?TteA#_^JV@ zA#p{G{G7Obiy#QQc;K^1I2g_Y|9nPzztQrH=EU&bgyM9yPuFx3_m>nzsTVF;66O0z zcj*_-s(#bFM~1UX^tc~Nog?CeXKrvYJk9!k-Ko$}XIjN&(E=Azj@XQ={4MuNwD5F` zor@H5GpM?Lkmtmu%=`%=U-wW}JAd})H}>CJ$*@x7xb-D*eWxG9cxJnnX?kvMPC`X1L8|4_V^)$CH8f)2%qhsC07e!#wXzTu zV=KjpI?RY!XlOs3z3cPxEO;65$uv9>qwn;AP@p&_CtT@~OPMTo+=CB5;kP zM@0(1N0M_XRtYyMP&vRamf*bZ{ZB?-^IECIq~2*(K&+rFGfu&S5nb5<&0&Re@rN_L zF){FTb`3c9Dpb->_f-fOg}naOL| z62JFlU(l1wugmMC3Q>VUj&ki5k2GfKoA%cp*{ziCiL8JHolb;;2OPRkUfmY)W|CNM zXPdiATc{M2u8>gVIaED5-=F!NERc5SLe8P_F}`JNSK)b2`T#`Q0){pnmY*Q;xW8}^ zZK8Bu4Y|47g(vGsIzhJdK)f(m;n2VgC?WN@=J@Ps*D6uAdqm9Q zG!Md#DSVRFG<>@+A-oG~CW;enI=>8ErohwI7P~;qPDl4j6fYkyyCVol^v99eXYMkO z+Ox;lV011)ykhzIhl6f)73J!JZ~cy<3WvaF`=EW^zQr4Fmfs`zSnX!J4S%mscIHWG z3gO-4?bhyMO`9AT(1n|*Px+Y@kmDM>WFMZ;w=_mS=ocR}U5tgnP9T38hr9;dN(W3p z0V!q(VbHEu+F`mrjYm2lNo^BOla-Y%$d|w{-@wbui=vm8mn0~#DI$OJuoeHc1AP4O zY&E6gvLNm7yOczRKCed3)|xq*4En=)X$w%nYXVlSEa|GNF9k_L`u(R`c{*~Htib-R zjCr=?!ZQ1tILN%~#YR{V7LkVh@ zFV;34!ZN>FUlWU*JBx0UytlWCC3}8LByVmc<^r-dv+)Z!5&Zctzkul?VMmIo9F6z} zMr5ur2@3%~_nFES+h!f%ad_RY3N8iBHHy4U)2<_MHv7{DC!yFgOKG24?o&lU?T#s4 zy3H+f*hAQe2&&bct|GMtqNj1fS)!t*i$H`e4uAowHkoh8jCQeO+zh4V|3r17Ygt6K z{}a`DQaJ>J?;b6{S@e@&5fr&D>`gB<&-pbm-Uk7pL=hB!wuZn?;+$G?)(sBQDat>_ z-kEUY6pt2Zx+BmKZZGv}7O5#mufC2kmI`v+;^o`oO2Z`J93I5|<^qRVDa?K_{O6~~ z>N@xzqD(Wu6a>r&&bgLF{4rL>wMI?A>6$5zAii2Vf95KU{~dE65AJdsv0Rm%m2MXVA55@=t%(py%Ce zQRO5Uu!8(0B|RNy7kGWc`ePr3axsgT8x8f5JBg-$Z)qVGCMwve(!>m>Y=m-@XR34Y z&m?y^oS=j2+JD|I^wU!-v$mB$loIeYar7Pp3flv2v*%X$5;eHrm#?>w zW!T$@(fSw}a!2cZiHKhHMUlEmqCdP?e0Bepi<=K1-;4uVW3n4H*m*?_*{%P|Cf+j@ z9124W8~AV{I^HYqbLwH2%=JB=rwh7$`}k^oC#hU3P3nI zmNS?Zp|{u-Icfl~P#@9YAWP(Ze{xCuwr{#A_o@ze^ZLl)2~2oiVGd!|l6uph?K;I$Kg52QBgXx4 zdixXe&^{<|zCk4*MC`Uc`P}e*@={#Qs$9o4 zQI}Sp9VyYQJshi~%}LLLlf@XU|C*=fr*h?k)+I=R`choTrEI$vmjLfN4hMO_@|INL z{ zLzWnwAZ20nT$0tzeHk0EHoy7T5&Nd5SSAoR=0ZPpU;H04J)*OJ{!K7dG3GAi2avW| zO*shmG@|WWc3W%4eD4!z>&|3S1KFFrVOib2D@P^)6Cc9!Pi)E(_e1v~3hkJmYuvc3 za@dWRR<-5aW_nY7dg8?;u)i+nTRWbh{#$^IaoUMGYRH5*_t>a6ss4pwZj?gj5G_t(>P6c_p>7a;p}4l2LDe=;tR#qvJj{*4)5{ z_wzc2*(s+^#x`4PgGKW4Wq6c;Iw)^30t9YD8o)hxNqNoWDH&Nslh&pPwmSiRoO+cL zuyHLpED7W&fWs*7%aR1&z8OA19Wom(-wmfB7;Soz5hgJqlLmt3oqVnpF>ExgibdEB zmQa!#!#`K1!Jh%wvtHq_7l1jT&Ll4#kqp_E7502TMh4eQt-er2jSL_Qg{l{A8k)#-EA+^DFbIn0!gEXO~)5~QKF zpRd%OAUwNQAtv1IkYdWuUJq|_6`#n#J8(ry1GRNU8I2G7UthTTl|dk*FaPnCa7Jc-Mi$|AB19R?;NbhJX{ArO6^d zvVHE~=#!WMpQ{GN-+x1&IiUu0m^bZ;>fxs2;drhwUmA-Cs&H04s&2dB1381gi=cZT z2UDI2cu&~bEI2kp$tCkvIkr?=q2VAPAyehC(89>;*z}&Xq&>OlOGQr_27lMjX!@;o z&l{1ac!z?V-%=*|xcYFoA?&6>W~1K7s*5l>K+KCRH@jcDz7`srL%E$<7?JX|7}Iy7 zd*|%=$JoCw$%8oqa4|mP90&-Y0N<4<^ZA6g+x$s`-je3nOa{y?%Ax#eqUBh#oP?!G zD|rBU4vEs&huClAPL8J-{I6acw*ZUfOTIi`Q*cNJYty#JcfC4Bx!#dfYSY>)3L702JPJ?K0NtL79Nr84CXcvi01z-Eg~lcIz*OOtx5=2vy_a& ziQet{!`^VVz2n~3t_SoUO}kne2fR5yZrK?q%Y>SLnjDB?-L54XU+{5KTn&)%Wo*Dm z`{gJ9YTmR&hR%Esz)NyelD)$T?W(fi~0B{w|IU#11J`kNvGtKr&%fJbaWEL)9uN2H(Vqq%bw zZBTItyDyDvS|2e>nClh&iNHM4eA|MN(_+I1bHT$mD^YCJp08q^Y%y}v`9v!3R*S1o zbB*3n43Sp-x+qyai5DNE@eI-pW{s7M^iS^v(Zp{b;{i|W3*6|h{7z^d@;ZPZlL`vT zlSYTdj;F^m^Mv*Z-A`e1$??-^*Q?;(5=6Ix*2$~A@44T;DX(jaaV4wS>21K|+JSi_ zXLhK!&&k0B0{}3AU+!&EQv!)5S0KhWo@wF5Gf-57z~$ml`iMuQ(6G1Gp9bI72;TEL z5lV{06bv9dt!Hm?wMp<*IMVdU&=$BpWKy{Pe)Qncw`2K^Zw@I%0L71R1GI_a;^4M}|6-T!+Zx>PG^CxX05E}YO7D|IC zy<(Em*CPZW@^9Xgx%*+Z!z$PBbT#O}kn3Qvilm;Mwo6E~cV{Mj4TRc;`uJqtt0Nf? zh@3>_8~A)L0iUhE`Vr0#R;#FIbuQ3WojJCrdyU?A+XP9A){EXOAS!4x@m*|m7iVLm zFg=9`4W+Zwx`Ssv>(1w;V4*gAuB_5-A)qa5GzVacmo;#}Ff7n?HQNJjveO<{_hTD_ z00xx!rKzA4$2Nlpqtm%8iS1P@S&r6|?;({ojKkJiW-L)vNl12H*Oj4KefwUWHx`#4 zqqjGfgjOwyyU~e>A}1OduSV=&oEmAo1(~1Xe+s(ruK^net+_O6SJPV0V$}j zTE@D`ts4o@72mqq8)6fB^ko#Ge>6m4+tHFHNj^LBMA?fL7`oOto{|@)ShiSQ zyAKd6DAul^kby`8Et=tq&lMT}S|&LX!{=JBJ(m|Q`06C9cXFe{q+8o6RZpFLuH%#l zA&)-oPqH$CnDW##w;3)oFGw+B-ITm6$&}@B&%+dAOPzspm7S<@J22Vbmd&JtfDpJ9 zdyyskuMRi!gk>hl%^TKK~VG z^$8OOee;!nLE?Jo4!y^YwJ*~SPmMu)e*D^fnx7|ffMZ-;zyZN<$_O1w$w?Wc5!VFU zVyeUI+iLq`lr7t=IXuinWA@9q#=_BzWnjP0E0PIf0Ze2c%#KKjD*bkM?o9 z#Jo@k19_PuSZA*9q$jq&3|h*GpjaT{?6&tiRT7kG2~BB6rfZIl|OCYrXDo9M$$x zSLc8?LUBk~QCJBBQGTJBGYZ+LqJ@d|pj#ckUq&W9~oO zgL~5@n?3AA(V51dc7OzBB$)5&?B#6;fWG={p9GhSpB}KP=-6ik?$(dpiwKCnKN}oH zAlyAde8b^OtkaoY^cMDhYnfeE-)t4+k)CiuK)X7jBexk(Mx3vwX#MasKCNi)%n!er zUwQ<)5^y8!5BT|QQ?u$XKp#xVft#NFuRoapp!0w;m?cQk>S%dvXo$IBI4l?M(x|ng zv)^!amPR^VuQ*|Y6UjDmm);q*IIZD)Ljb-Y@(=e{n>&eo-<67ooGMm@ z9|?V_2d`dC0LK-|m9Lg5pmyK5?(z#=v}a>;>wO3SXwmya6F_{Je2{;o)xNyRw6R}B zNwb&que2Kx5c6gw5mh$iV$wp)m`6(d{#TYV zwER-w!Srq3n&H|;g|g=$K&9CsaSsqsP)CVkEA9BkJ z5K%W$Sgoo8{tqlc)4ucz?cJEB88E7MX#6s0jiqfp{oF+p_7u)tU_wf%`WcIaOB+`u z6(svCsI?9`f@3Z&Jcfc4K3@_R+sqmggId?sC`KNv-5edeR1jPA+jH^)E_L?e?$wbA zp<1Fr{kJ61$b?ZtAgGT54TdGtMJ1wXf331hj|Qx#R*V-9HDPt#RO~x*2@kJd8UH@g zPpC_`bg9ETWm!=*(!6Wugj1K>bp~F$3u|@^yp%eZucDmm5Qpg07x~x1!rA zx!8roteRk7eWH5t*DRU-V*sB6;*0Mclu*^=QWW7%mzX0F^ z>UtzT=Xw)T`jQP7dJ3xX;EizVaytfsLG0dlN>eBO8$uLOqR~nyQBM@@*qzBo7iTyW zMqzG_?)#xoINaRXi&<6WXm*&`ie->>QlSFr9|+*-?Qdb()G92hQ`-ao@Y;UNsjWh5 zPe0V+7(A$~`&EeOty&m|(LFefZF`S@_?Mq;c)8@(ufz?!v!+dY{fGav`>!9Y={*nJ zmbf8=Kp;fruoAC@LIW4ud;IaD0u9)0!F-|^F~kEwk4MlAt^WJZd+_mFS0B#tdg7Bc zUZ1AvL#_a*0ssU;Q~()Pv}FZZ=FNv#-(y0VC<;Qo|MkQR@jsv6wGRZe6*OVcz1rP> z8bI}MAWQ*}-|v2JaAjRh{{FLSISInmy5Qfh_7n^rB@2y8tNz#L6@vgGF9>lZ8UR3{ z@9|3a|IM$ucsY=E(^+Y`%mEC|9d+g`p^dT@lzCU+0td+?x^k;=X3}m^xy?+@8|Al zCf4&U?b5|dS3T@~N*s*hR8tGbQz}u1_NdWCYkXl>=Xbq#3e$=Uv2pc$%X(=a2kj)7 zw@R*sH4tf^FPegkxK_OS`oXx7$O-JdwPAyBaf#r|SAcL*nxUCwILHxJgt|X#>**J0i?^Q165j$CZT!kWZ(LyS?DZ98O2ariskz_QASjH#Ri9k6diS!Ww7EG@YWYasO}-FC9LuD<{kP zMY9()k{6LEBW9Zs^q1$_y0}+Up^B|%+D^2MKzJqtb0UiXyn6BPe#9VP+og=lmF_-N zO-L+w{`4D3l^B$w#01!^_J)f9JX)0Jz-IJJi1zv;5I9H0@0E?mK!DU<%EtRUzAK)}pcm45!mS5Z?_fyL9R;$;KDa9qYN z;rwE76{$eAzY&U-$hO*v8fWw9^<&RnhD1*N>dR-h0J!^OU-&rzeFTWKM?@f8!#dUI z2Ic1DbPR>~3CFYu2|dA(D5w)^Q$!XAI{Jp5sV*yu8+hA#^jgS<^IO47DUpM0`!6dB zpb%a#jOtoYlIXxFg;#UHh))Z{Z+E#A=1iM%?}p{NGRIC_LTQdq_dR>hc-dhiWfGqiMM3v~KFluWL7^Qy zv1qj#jl7Ln8X(U^qS~KhxHUnG?$ZsM`ahLH=+sjH^BU zh6dj5!C_3`$O!QTN-mrN=8hXZ)@#dk5GAU7U$(L0bx znD*G~`|-*v2XWI)i!3~N6Q8&5J!YAF_507f4xdj{8F+gJhvV`Ic4TbqFgP#_m`O`S z;kBpQM6{Gr3Cx((sK4wQ7*d51^SET7(X7Z+AK%U4(1j~lJ7=0{89^XiU14(!B3=yk zbL3(xR@F^)cnme|eS`SX6EEVspSw49Fvt6_9=oVs3Kth!P#``Ks;esBdf(c4&*=)Y z6G!I&03ZNKL_t&$8t(&QudbpftpJJu;P1Zw%DYe!uTHfO*>eP^vaUDh?8*i1Eob35gz$y0Y>4h5F{aazsB?&@`*H6^>k&=s9-GH?^$mWcv?%{EP94}kT@PLWKl@C56M+An>3U=lRY-Ube-#Ns z@0iCOij6AH2G-n!V>i4stOke3giMl&-R>>o0}hVgwV6lD_%n*bo+uQqTJ12>&fON>K-pFj5| zF0^;!?UNTxi<%jL6$-4GRn{j-in90UIehmQ&+06-2M(S#Ou+Wovv0izLjEmo(9jf9 zT~C8a=bzp_tlv~qwrgNWl~vj3Szy0rC#;Gt$r?4C1po2HM#JA?eCZy;vHAz2Ql*Uu`pyk{<=w$PG-}0n=Y#QM0WCO))nS@e8&M` zC=^zO`d)7D!Oyq9f#1J*5VEY`%=y-6ebv|c@P$^qbSUBt%SJ}pNhjbJNI|fR zjyv`qjep*A^1S8#jIgT|A=qf$N{aJUH-tCUe*EJ=?=)S~8N!{?e7O^S{fR{dNud}HI?Fc`ut<34^@;I^?ZUbC zVY9L>E-`-jHw|ygAPWe^=a)_^f1Y28Bn-TuARv^|#N4&FcSt{&ifu_qV%!%UWadbD zxAy^pLjvc?KO1cFAJ|$SYbo!(_*zX99 z8OF>fS&jRfUWxP*G*6CWD#i0XkrOix|W%w7iq zp|`dB86H+Sd#J)SB+;k(F&gD!5Y@!mbXC?~t|K1>zRCQlTInXt!i)NQo*Oi;ByVH& zWdB%m8-DZ3J{&hmI4=;vmIv>zUu)dS`<*rV6A(Aanv0f601hLvSojqH|CZV6q!!n} zJBnCo3u#GZsGFihl7hu}x$%^$Rqg0V*zSe{n#njJssWUdLC*-)D-p zM$3bj0yx*&iBEjJs!4qf43NQz{r)on`gACK=kxumA-tBG&b zUuvEwb-+M?1n&&N8>MC zsyujkT}Erq0QQ_bZ>mQ<989cAvLX9s9{s#B+}}-(t1`lAr2?71dHqgoL948y@L^tE z6oum5V;69>R~@dYtZYtXwmkq?SYb^Q?g7ke!m&$Qr= zFIg{I@#r3iG;xC*U11i{hFmzM>PaQ#SdY5~hHN!@M)zK!KxuJ)N-`ry`aS3G2X7o` z^ej?J(a~p|K*|msUHz(BQcCf=H}>Pm#a6>@w7hootm*H${+zhgy{o5xlvc7`#skZz zl^t7LTmEAsk3WI+;H7cziMSz5{(tO!d3aRi+5Y{UGm`}fC<%fH30SdOWD)3M`_&J- zxB!!ATWRf2+iG11TDyPU+kE!ZT5F5SDg>oqN(lSD?^{S93E49<=e*DF zkC}7kEbp0_K%%H~Ul$jXbKdQ2@B2R6{Uq`Mv2gGLKx@e6)nL@6SrczvR$N$cBSF|U zS##c54}kw2J7V7))-*I*m9Nl*fX}C!UL(dDVKExH`0ad>kPQ3UVq1@FWn~Et8A7U{ zv!Y_%9xPt6-ga!-gX5d7>fiT-Z5(PeIh7K-?yg-jp0$?QeCQ;CZQ=hh{#Moav@*=z zyffCzkwxQmNl$Nxm5tq(Q3LwfFD64ZZG;4QXe*PQ@0k=Oeh3|6&oN|Z>_H(#Rh-_$ z007aAetG>#E*!$Tb7+ zGW!>?GR*QwZBahu&z3(OMhg!GuS8>?>}0Q}HO~XE()hcfC5Xn>U|iu&RpTpojfk|a zN}AUkV2+nEeWw>3@3^3_tt(y8K zRMj-Z^_HFBN>O$5z?udh9_vq<5Oj*1ddrqEqEl@{JpEVW1 zRyc=tDB9+plc#a&Y$M*?v=>XaL=2ic_MdQ8PY4DuciB4ZICcteL?bP{ppe`5=gb*9 zmpl>M7OUMSs-BalJ>Ph>Pba%40A?oqoek*)f z5;Y^D3IXFe?mQGrZqwdR@J}=5ZMgoP$IZW6+Je}=?>GRUsWn&*0BxbLbR1r2Ot6oz z8&xSje?|%^vl_*oZc^22X>OW99(@ z=~1uN4F^x4IT*IdOpVQL(AAJR#~75lA){M%D|mIE-~1TO{%xZm%P*=109{jz3v*w% zBFQh3Bos%_TJ&0VRe3vlsO09GhyTM`rX>_cxO}q7qp2zpJ!PD^OMZ&@dknhA__NWH zf!Ti1@EN@!s^h-n}j|7jaTz zWfbzJXdvSMW?-WZ{Ma%4ghI}1<&iZ%X(xacbK3OsDgW&}+$BA2yH}O!+WNRclJSIF zgJG}tDW>4%^XCLk;bVhr09yd$04M}7<-;9L=OCpZ_yEDosH#dFUTLD^^t%uo)%a!(=>oo$I0xIBfhL zIG_&_&;PMLbQUVW(oGZt(95S5#H-&?kf)4EUL*|bI`&nb!M|3lN46T@jVjb85NIO44ksd3WmZs+t7^qmL_w8 zv+|2Gvx_NX+44>6ckDcBYIXlUcbQ~N3`E0oJw17I&A&3y1ofB-df{~>d`zo)~!u3W8eOh zD6iOstFG$R7&{Iq5)Y_&kiEPAS+fo7$ZN1*<(4Gck}G(PwRY9cLs-50Fn;rNiM0NU zi^>xU-kL7dCJWV6Fsz}WxfQ;q?DT)WyRpa|O9$;o-d(>30DZ@7m(DXQTnZ^zL6S&0 zvM6}j!-@x>Yew3UcQ@_^0PH+)@-P5&Z*8@fcUvwvW;pjj@14~e%p*a|0pL_LqO4@~ zmL=tTj-VpS&8~}BlZ)P3kJP~%K+Zkyd@&57@nU*5(Tf69AEl<{!>d=ZTy*1 z@k)SDf;TE zFX*eEdH$u9o3LWX0UW80?L}T*wGjmT+Sk-`x;Zk-kbNAoFG6XSJ3~-qw^JqLTmL>= z-+Xe}JDcL}fzC8Ef(v{Guz!j3ZG15g#-YE z!eP|aHR8ZQxd*E;uN&S*9YqrqZ@q{|^V=4VDW0)-%6aYX= zFqBZC8IPOXYUqj@w|?Q>5-kGk$vh?Z^k7?vf6%*+|H^P!+j+LB^*1eTp&C~y0L(Ey zN+ZO6&xvX&rHu0u&z!EW3AXCfjlK)j&!_My<%eRy~;yDc4f~cj@M?A@SEbO+mm=7zY>DX}a1R8^( zTOFqW0M%#C-kxZ@La>cP=xlw&Np0|8vIe|#*tgAK6c^?%H~#L{CB6Ob;3=fw0b;U+ zmJumOVd3D_Tv^RxP!t7^%$Sc~{^M2r>Y0*N0C0G~0GS7`^lO+=_>JmGKO5gVB=6!k z|FdS>iFp;<0S29}Z)#e9;JCSu6c*tk99=tSJ`i}XxUk?G1{b;({rDJgaeS#34Y3m4 zD9Z+|8}3XWBf0ty&eqfa{wLz0OZ)Hs~W{Lmn(`q z77F{^*U->{lK-qiUe3jDdz6p6;M6v?VB3*Xwn?hKxeY_}a{fAaaBK~?ckWR;roxzf&8&S4!ZK6dn(m5e``b@oz?m|_lb#`IFz;soy zkI9#wjDq(N0N^7387FNC1B(?!&h@BR=6x2N0iZlu$<4n+@z+2imWHxQomS4#I1C0} z_})#;%-)f(we`)R1uM5;`<`Rc^TuARhuS2c18n0>Q8c80ivVl_a2bI60K}7_e+M80 z;EE4mT%Cf>Q1H^&v14xv1OoE{fk1sA5U3qDZrm&R`T1Y!h{kWZ<(6Lg`T4&I1OgR- zK%hAg2vm(5H|~{js1W1CPyKfXb+4z5k^>J;?-Z97&FIg57??FR$9PY0pVH0lcQ^DzPHn z02oXLd-t9!-+!PIr_MIw$mu#TGiEQTkX1QnSS^$?BuXe_^S*U7Ww~Dr0J^Yi5!UTE zxC4wuvM^5G?MoK+qx6zf|E zT?4!Ya_eDXc`2Qbo*CG)&%L4G2wx9AKjiY+u9L35h!E!!7J?CSd>F}i(REPHs}w$I z$jpjZofw!`wgxNTi-puPXoB(kqKmq21f$?Yls@Dfx9%<+lO)fK$4S3@+kQ-Xc`1a2 zOQoth*2Xcbg4gohEPj8hr33r^o`A|odGB#9+PE9Lj#uNznX}k+_~c3e*ndi@YmK%^ zP!#QD=TQKF($+#GT;4OPs@evjmrwZ=DxTT*m+yb0X4DmZ2LJcq{*MnGdimqddeNp$ z!E43#1Nia}9*a^1Bz{t(2KD~~`Gi^DrzlH|-zzunexbgpwSqx^O4yJEnd$!hiAzPE zr&TjM<=@M}PS-Pspyxp$Ad;crsjF+Mm7X91xA(P{F0ZX?T9m2!e@cpC z;TxrOUUi8GZNV_!Ub_>`O|4-77;U9iBbkEN{lOCvpR8?Y3+n;|5ZJz1wmJ-S@80!M zdu@Ieuo-q-9=yUY@q%%(qB>7AT7U?B%EF56c;dykV&@b!X^Mv0`lj&buIPRD@Bx=> z0^CYG^6Tx+@<;?UHMd2lTQ@ji!YlrLq@DO1UhCR_5zgAjX~{dFFkCLj>m*S;Mii$m z1kTjfzhfL3W29-L;k)pP}Z`(ucmMtO z`vZZ%0!2|uiD+tLV`FwkMn)eZDrM&P^7Hd&78MnpbDx1g;0~Y9cZ!*>*EH>$Wo2dE zGBPp-5YaLsdM6MFym9~i_j~fqd=N00=2{y>ut%4S)z)*;5cfE3wS;1Z%4GVMxwdTE zdkpi}?uc-xMfqr$0b2|tU=z%2 z-RoE#1z4~T9uy76Q+Wq=p?1_y^I7x{E)QPAKpj2f za1-PoQ!%kH#WB+FmaN3O-_aU^UK#yA37kr z+}eh9pIuwuQVjqN9(;k;_sbgY?N7JApn?VZ_syB;xEvNj`6ih1Zy0rzE!+FKfB}>) ztY~+(@pBEOP9cJ^W5-?{2n6;90)fy?H{H~;gPZSELH)c?9rT=p1^8X#cUD&BNqxTvp+6Eh!o{4CZN?9MJD>mbWGTZWLGrHIkvw85xGaMe42{vlGPgLW; zsTwTXx)02Zdw&1iPoG_~CQdf>h_Y_x1K+IdSGCCui6jMJ!h={nqnepq!n{I+vuDjV z>z(HTK=D{x$ij`s0Ggu-QJvEQ0Z%tJwAgrzt{&L;v@U#R$s2DR`4i)J!}3YryMA#0 zFK8^J*~Yza<){12O;l#utIM%w^FD{ZLXrfI?9>T$jS+#&%3C0P=d6E@EiqD}MwNKn$GLCXjnGZ9Z`XpJ-MiY9>3NrAcX*i6#}yxd%=Cz=s(S$Z7l7MGjvSfQ z*x1-pQIva#=sP~2?^qxZxVPi3sN*qe6orT7<>ZeUdBs;>|Ly-9JALA~I_>>u-kJE= z3;6Xjuc5h4c@&@@%IezY{OEUY^@@~njmB9gSa!aus?HXrSp3+XPg~FHLisQ6GZedfp7l(KVEzI-wVoPiZVSR2XE4u8x`Sew}LkUULEIT z-0>9`-uftzShK>+CYRBG0R!w4Ril-IS8csIx3|f&Iq|U8?R}a*`==W9meln z$Er^HGDX(b6Q?a9e3AD^*Tka?Z2DCHOA9Sc2>>7^<~2&-2a@pMRj{H+!`3G~HyuK8 z2?2GH(Xd&EnKMWA?S5w1fb8Od0|&aFUn1gM2OoYsoU26QQ`O@DFsg6&GXNiwm1$i* zX&!@qR8!wNc=}sw?s7&08zO1f=2qJ0KX=&-w6)RR~B_$=Hva+&Q06fUd_ify`@ptFac2r1y z8NiXo#>T+n#fy&v;F6M(*0Qp)*#I5{P*7P}nb5ngGZ74h^p@5jf~`&3umOE-A&1Us zIgzraY~3!S++A@CdVmNDfz10+Q{Suu(S#XHx^-&)w#1=on<@G>uc; z8m{PNt?iMS?#|$%DDOy$0w7QRHz62jo7+&+C|Ns+Tn~sGJ2|UIk*4b^K%N}D0H6z+ zE<5i5{r*ShVAtW~Gg||IkS)|nJg%o-dJEOH4L0vI=W~kXRExY1!r{T&Ez_Tgk`n#W zobIm!z=oZN;|}4Bg}d4BQ|nuU8lHV?4PLK^D8Y@!$s>+7T~Q-1i#68Q($R0GzV`B# zBb8XZaW@iS^tFTTH?Pxi4+S%>9e(**SEY()_UUUTmm%@KGXio`T9|zZMq^`(JsYya zqj&Redw4N$?$+{8I!2Ek?F$3~e^eA@CxAhSSY|s6oh_)JH!iR9wz4TPj}XIqM=PK5 zvjKU%UrP`mkQBV=4w$9Ma{vIFHy?1l?BQ_i5_F4F%xi=U*P0SBa7t<{-LPlhG6&CF zixz4KNyc7PeHJHc>&KpMXkNej_?hnkKv7YVIXD7Au;17~x)i*sLO67!3IyBWLmH3Y-0=l=V^P8 z(-#J1Hw??m`J(mM+2&Tf`0hr8G>s$eCI5}-@%XL`I6Qc*Mq^fDYm(PpJY8p3KrfJc zt$BB!;^0jhohdVo8#nGc0DnM4*>q!RY3cr=q9UeOUt)^6iF@6&Q=)vzh$nw` z$Ku$js0XhlvCGiBUNhm#bapByTepA-o)Hncpuu{&?{WaRtZMU8^8`^wyfz7VDQ>5h zNFm!{i`9Ys!R%x>p1m;QQ(IV#NxV@S|y(p~$@J!`!TtmaRGR?~;``Rompw z&gwc4nXKO0ycacgFQKZ92T!c2H4?LslGKKooC-Q2l)%GZGCdKWe)a9foyV)NaKmmW zs(RWwAoXnTRhD7db|P%cWQ8~77h}CFyY;WJ$=gxU>J{rHxLwkto7>bXbm_aRNVt~F zae0mc@T*Grib1(I*~$~Mbx&xOjWveK(-VOl&EL)A+|7SYdEFRR(&{1cSHR15!?b;jRwF#$`|A@9+wZ^gyrcDxY}m*LjdA0~4a&;O+6mwX zMD&w{70v;jDX4b{N(S3QN_E86$gpPlo+KJk2R0lyE;;IrD$`?;Y@yr`k?>e4*I=Be zkH~qur>+dljFzBHem5gnoH*OqT;)0}{L&0>E!Tc((btCLefEj(ef0%b0RoU- zXEf*HTU1m9V8*P%f|rW#`=-auROA9MQ_UNt<>k_IR+P^;@zTR%>|S9EW{O!kwX8SdNDue+e_+s<521*YkPszZ0+%0Ggs6*GpDxfu`xT zK>MOH{9dlf76=x04_>Q+*W$rz6_)=n^^I74+qXxv&NQ_AAzpuqV*dn*yp8NB#L&qy z6Nu=W(VuUXm6f?XHWw{gbP7?vPa?X}dHzC2c+J#}+UhCGeIv^`n$DkkP6h7AYBLM67Y)~&G`uCAX zhbeefRW$_X=OLMNOG-*Y0OkWgT3Xuo+tc0WfII*YLadRMS-g005YbRLMN#gT zmH9wmWOvPUGtW9H8Vm*6o|C7s$s#ll%ggEW{_Z2DwTX#$CDZj<2X80=GLvER1q7aov7Db)z3!C#15XVUB_ej+gKN>S5{7&z*bUX z8~f?g4QOr+$%J^W-UVmQ=!o&xy82RNIsw0nWnQSF1*zYg--gHM%FK9v-YOigs@np_SB-C` zYew2hXW4Ktbjqdq)mlvjFM&-(ZldT$fK1L~#4@Iv_ghUuL&@^o=m0?v25red&jQIQ z2^q|a&u#uPw{78Gw>46xjb2%ZfM4_GiOo0=LkY!%^fjf z2|bnZ)J88NDGpvQ8U`Z5%JsX-0ASsIdEyoTICv-)NkbrPI&>0~URZ+nHt(}3UTPa7 zd!MTMh-258`XBo^4<#Z6ka(iwca(VA6_n9K0mroh}jZv3fPlUU}e*ZUQ z^#=_a6eJ>HBstr4vKnjm9mU*Lo03j~Nx)kGnp*2FHa$@ppe8L=L7K?t~%R@#+J6qIZR96LO(=X;8ea>qY9_YOx%bFxJ7+|AF_P-eWCbMzPx7 z4f`6SrP~Cmh|Huogsj>waTjV*XteWKV_wc_04-p=3jm5L=is%CmpD`20qNT6spa0u z@**|<=h`sYhNrh?fr+OY8mY4msH921jpD4KUV0=>0QHweOFa)=F-X$vl zfQbHIoH8z?rKRN>zx{rHJl94;;dEzv+V4m(N5j(^H6hJ7X)o=4ied}Ha}x?Yyl3pF zX==gS+iXe86yRN{K%l1S+$G&7l|~qLGI9q+gKN<9*4jh(6xcm@*I7dMovCSmujw{d_9^_WYYM z&uYh}*ymHBsk&!~0|V5rYSS34OA=tIyesN(rPMoga++rxvEEBLbA*2w(e3rKFl`+QJUVT$5@*jR`(y#$J%MIhJ zLKG6D44=PXjagA8wQbIeZ{xkyJ7SeL%rq^R0+eI?4ogC9tstTp=P{cKUUTtK)npWu z@&uj)p=)7182cNOf#k#dHH)^7gQ{z95bW2_RPYiJ4;nNmIJke0S|SoYAue@|CkcuM zMIjtKdx}M7c5$fGiMsW;NPbCBSuDN z@?8V73k#;eqI>{=w2UqZJ$TvS!E5!D7IA2U4D{%lxyN~oErSf|y3MoQ=>?hc;7tmh zDl;I4?eccERi=9Z{QbYK?)TW8|2_2OnGf7{ zKvryMZuX?%dA-~U>lJQq*ddo?A3MC~s7*fYSJl0LNbnuZJZboVUR&%n=urS*QfE5b zVz=C2{X5dP;4ZdG{szzMRY-hJdw;S^HoSpItIf^sF*Gmx1_01y+!DqZD54Zq6qZt! zNE7vVLH2C4j*A==EX^~p9RPeP4;hx1BgyR&tsDKHfmr~S%)I}84N5GsbHvrTuL4-C zvp->ufD}IV_&K7CV(0j8pS#JA20BE+d;9ITcSj^c9f-(t*GxqF0DzfC-hTV-NpAv$ zNG|g)k;(mf+33-uKP;_%WUN^s0q7e5#1hOn=1c2x;L-&<3Beg(P1G?vw%P(vivIK` zYxu4CTeSIvb7OwCrS%;EP*t*pR~)RWHI?c{Xp(ibjje4cemfSnsOxNz^!dH#-mpjJ zTG1A^CRtN-061`}21~c>HIEY%*9If>{?r{{%GV(V;r%B}frD9?-Ydn+)?w|w;{foV z(ses+o;O0*!vHYr!P_<$Pb|2+ctXL_Gz!}`1WewlKEb@%D~vWy$neXJZ%=yQNcCB% zhq)dK{a3%sdL^~dexqVL!kYfqEqjldv80d8T(ErZs!cZGSXJcNP@Us!jT-6gY#eMW znwg$%KK6qrPD8MG-z@BSfmMZo_ojPmY)Md2QIVMQ)7#D#7v?XY``W6%OViL=kmhSM zI5eg4**e2axKLByj3@rN$j-UMz@{w+PrMP-0I& zFGOF#833@aGA673Zps_d^0vB`=nxiBk9Esu@{bpmAn>E7o{)W#)`XnaBx_c2M_)6= z{03vTK9eJWj8Qx{A+V*kw$bePssWeok@U$R%me^pnpd%IcgcZ+CvoU#e4g~Swh)lj z*J#Y8;8h|D-ncv$f<%q%ID6`oKU{gX5t|OhoUE%Ee zH6n#z<&dyn*Wt>@D;ErhO=X5KiTGo*7DM`7GRun#8UVP1b9;Oo(b+N+0F;%LZ3OUb z04-TrS@R1D3i=}|w2m1w=1QN>w*t{}d zb8%t*@3UHiU7ni|C(*@Xr7 z7Z(=X>{Ld7e(>en^ztcVP(G>MiL6sd;p2i1*@(5Yv}7B9BON6J8Z4n8q~04)83N=OddWU=UwCYu)JPh4u-uAz*W_;*QH<1MgNkOVP z!jxCue)80zw8uO-cs(AfVo*)2o-AK{H_QzCeTp^w)^js)yrv#czrXpY;e9;{~f?ry`Vm>k!&D<-Iuk1Ry=6Zg$4K1@< zgQ4j7W8dbU-0a@N`{%6v#xJJ)aqL4+;rY_{AcR2KyPIwG&(*s)h0ehTA*gp8EW(N6 zw|qmYb&arabYh>^3^X)1dtxvg%so^U3#j4vx~C9eH_kNHw?1>SvKG~+ZCeJ1)(<@K zu@~^n%S&;{5*lv(3~HL1jIw*JRaN7ASJDVv53q*E6QF}xJ9)AO zH8l+|LM@%ssTULxd+uS)eIao@sw7~q%%~QqM9|BpTz66TZbi1bj`u}ZRlaF>-sIO- zZ?)}XocQHU!#p#L1Hk@c)#BA96>0)&9k`U*E3N3#wwQw zF9@bZvxvbjYVzBhiY^ zr*Dz$!qhqN^tI9ZRrS@&r+hh?Mkf7iys0FNx8B(!0VDDZ3mAqIDW5+8i1MjZ_3|m- z1d5WfI_e218mwHrZg?xGWhlO{po)qAM8F*Y;EYOUL1cAY3p4k%Q7y!S#DjOxph3YQ zmt{+hO+pu@d?)o`7P06QRuVhpq>#eL9UY?JB_dOqnvs#=Y4KrZbE4FBy^B{lCx#Cn zeiVrCYZB4tWo4on%D-a#Ekxq5l#wGx?i)FB-m2?jF8~xj5SR=8QY%G8W2d|?YqF(~QCEdFuwYZ$DtaVX+q$`n-)dQz$aBW`pG+DrMZBq+o z{rcO##Ezm65lO9sUOG5N;^Z#vN32a<*G=!`jC6mcrg0!%O0 zub7AdCbBAQV_mXOD5~kwuZX@Y5F|;ZH^^5Z))3eLE(cE)H?)<AA@GyhHN(6NmhfMk#wkXU5phIzUzdPv; zWKa})k~L$!J0EZoA^#Lv*7@+ss-=7PoiJ%IbccS~NAA1@fR~3Wd4>foUbQu>$MJH~ z-HKKzUU{AL>ujEoFlV`HPAh=u{U+2`{e9ye~>=aOmbv!DI!XGe}4IaT)W$}6wD zsb|j*iC#VmMG1bM1b?Y`!mW$uuib&_vrSmB^T6w70d{lnj=22dBg67?#*fI$HhERz zd1=OQeoEIwnDgM+Q>M2tA+A9yA&7X^g#2mGPq@|19kZjz_3n+x?R8QC-3XnpDlROL z(yaMZEiq5dg^WmUl=FIqPUjhWBp@9CfZ=&Li$Ht_RQk;M^kqdn58fn@*WL=VC*1nT ztipo10MHVS82T7k4FEd(Y?KnC2J}jfO9TK&O3~nn;)w-Yjo(Q)x}+qf6h86j5CyNW zSWep7+LHRPG)+s|l2lYwB#7ui0AS`vWFAl(H*OpUOU7zNk#pEN(CYE8%_AXKLg?j_ zAJWSwf7?v1W#N4aIk@}M(|yep6&jCL*Wu3J&P37Vl87alh>Ir_ES>Yy+uX#49$>J8 zug?B_t&SFYt6#7Op=YMv)pqeRFVOzIdzv0b920z{?~|V7dejmOOT$tHC4Nt5Pso4L z&uY)yoSxefm0h!TH)OfE+k}M*f{2OY4_r&ndZV&ZHe`7Q zaPx@Micm&9F#dXL(izVe+$z@;-u_iH>6s=NTMnPZ@cucrP*gK1TkM)V=hI|7jRd66%}e<^@fU zJ@=57gjP5Xtn?i5VA#VnMcev*`A+QHAE94xPM1QL8+c{V(?Z|!I(OxOK8w5*FvJW^ zkwo4^6WB<~>&1onpI@7KrQkKA*fW5mt)MR0yujdMK9c4Heibu|H^-BA!1%$jAPDm9Iw9`E{m zA>L&RYv*OHW@MJ!m=bDn(;+$FS7zpmGo>cVf7I{aZ`@0U5gakm(T%H@Xk>wyjLj6M zHJ)DvR7F`yiIpmZ4HJ%4`I?1+!SdV9@zMeZ45M!txp!vF<8*pT^ykCVN^$)vRNlW) zjOG)ouT<871?L;{&D7{0-LlayYwIRQW@h|P@IOD}co~`A80$;xUQZY#-kjG6j(Dx6 z#v?4!N#7a5TyS=>?t(kE&y7~XiKG31|8RZDgNZtWwyskIO7vW)vVUhuHE*HvT)NPG z%t?X(-G}in)O213N-h$!O?%!d@QK+xHNYkHF(RP=7v84-krx3s|5x~rV z?hP^x&^qNhp$n^ePx^Ep>%=B(^RNtNmT?Gf%e)%X^4cOM*8R=6G^^DTM!=%EvyNl( zhfD7AB3=Mfy2Umgp|j%q9&X=MZQ$wRw0Ga>1Kmq>!d&eRk;{=V(y!DRK8aWJd~O@j z_K+mU8+2=1=A~VJW0j>e5x~A!(W*ju^eq!`0}i%rkBu6NJLX%Hwzs!uJ=R zhS8zykh$rxnQ~$)D#4$}7gtju$Qm5=s5=dDcH-~)R#yY2{CTEB^W&^`ZRMNL1BX)Pmi~UwasYL8oWpH@~P6|N($5IP(xtU zLhs%C&{3?vbTQiBiVpSKe4g&VnS9_PZR#LE)C`;QpV{Htp~6se)~j;-9GdVMB3i-H z+c7k}7HZ1vwYJZoFc(^tn9VYsxT5H}Wo*a_MhU)f+SR->d8Ah+zCM;QfrhS8GSR({ z&!z|7l_9eLm*xAyY~q;8tRuW1D4dq0d=ZSW-zC^DWSC<3UYW(L9iiCM$(3!(3W_yQ50zkhzH!%ZAiC(~Uk}#;`^7AP@ z>UYM!cp@(k+CWmrfAzVflJQj@9;5Zn!D5*w@$4xYxC|B79mw(~4R`S2yFY*-z}pN|=L~rea4~ zkHa4wen<}b^I!`D$stK|(pA?%X4#6w1T4CXz^V)w!0L}>|N3WoTCM2dUUaTar`bhb z$VZU5^fm}CRXtbVRyGuIOo+&>nCtLFS=;U41U87L*x($UZRQSrdpn5(v`Z_0vmf_g1P@u5?a;K=tCXXcB_L)+Hm3{=< zQ`7Adjw=F-c>!I%avHplk5@+v;&`#fnU7#rao4$rx4VXJWWD_tIDAd7j3r)ayh_dn zUrhC%HmG!76Mx=?^gsIemXby6-#k2Jm}tvSGPA>W!GDP(mcVPPsa>CfDHJb-w1ZK} z?w%A_{e>kZf(ZKGvuV{)-rWNY=%UW1#&Whij4(xb;rNT?sy-U^HBUWwph6Pfl9@Q! zVjWRAt4-{*tuuwa+_Gtma6-ZqSZx~He6kv!*WpRk5rEMLVUY2nx0?ZfrqtH9Fo-68 zo-V9}BN(x(1UNX0dZgHr_#pyHI-b+`^BjUKp2&WrB57(a#d6x;#FDo)2T9by32FZw zB3(5F0f4LCa-TzBE9$nM&9cL(34m2`CIqKZff5|KtL6_)n&$raokL zDM3_gk{KdF!8FmfS1#>0*<9)FrQhotJhC`BLgSevOdJq}tcak$) z7m^VZs%Q$Km~Rm{^lmx2ZCb35_Dkty9K&4=uDcqH@Y;mh`Ou&(lb7jY`OLg(f+YeC zT3aikl++_G1Px6ij>>6`6I9~vGq}%kINiV-ydiVPk%~}gYF@WyD_=5)0 z0h+SHe`i3cV+LlBp=XKf^ieN}Y;-b7jXf$XD>|V@5z*X837m44o44959~a9t9T;ka z!_ghI6am+S7q|H8yFyW);L}e#LnD$d{Zp670=75|GmeH$!wE=F9w~tpDb6>)a~)^m zHF2rm23h$kg@Q86uVpegHr5u$*V)DRQ)5FlGFXlE!WI$^rp)Vri4=k}d87g^oDj2f z-Xj@Brw-B1j)Q_#h3t7L)(X*e45(C}!p%4YxxlEq+fXD^VPk4*KUE>azRA_7pPQ_m9BW;k4JH zZ>I~3_9;w|u&tTdXwl|F0$vl^0H;E8jsKGJDJikW!@$%!Q$K_s<q=@nz0TVwD`~L z;^UiDK4)B#FjO*>yh-qU+@R6r#$?uj5$u`!khqr?9IeTeYvItyfNch?zao)6FhQyP zWJ|3O_l{(^j{TTtb45ik*SxcuvaV8ymb%~PKMb4Gba%+>FLUu*ewe2O%EHBg1 zEOz?);QaVp#{Q*2_TCa0E8!!epklv|i7vo%;yJ0_kEM6}(g6IkOM4@Tg{tYgwAvL= zT5PXyt~5>v#b^Ukda;{hab2j1WwLofU)y>w-ZFWTccF%%BP-}{<}-KQ!;dc-kH7kC z%neThb*g$txz>D~g^PCS_mCP)J!*H!CCKwoO0JOVTbPKsC*ity+uyb_-ymL|)QTG& z7=bBs-9ob+gIM3oH2u0$Ad&(p9!1m(j9s%1@)0K1S zuYzDadF5*xu|eDRvQcAv!p=|qd$zTihXF;L*E6}d@f$WDjb}LoqS2T6M(y7VmqZoPmuUa#Ndot0xaik%D#Gd=@Z|zsT1TV_P;!(5&n$9aPEhLI}1`=o8TA3^vzg|MG zG#b3lKa_f%D=G^QY(;Ff(hO(W{pia&)lfH7?aKt6RA*BVueLQ2#`3%^Mzt?Vq*}38Ohc%J3(?(lqLu|d z5RtJpcTjP~uxaqR3+0UdGU#q}p}f%$#F@^ugXk~A+^>R7q$5%HKNl47qqMuf;Ta>Q zrfzCA8Pow&3UPjGO$T!Nk|2scx+>nUp#-0|NU=JaBP#smCPH)uxHT!YruUNie4FvC zf4I9lk(Ajzm6VzD(|^!vOvn~|zKy76l#B`J$=CP8S@Ex*iM-7^Xzv=a7JI5SK7eHF zoIS)y^af!zP|CxQ+6}^7ox^;N*Q!zd?(g${$BALk*j2xr?iadhD7q@=Zx{Mcys8t$4^ zBdg(U8e<_;Ei6R0?*J47MbuRB&u&cTnRZ7vfm_CHkWT2X*A%i)0p8~ZFxZg-PsuJm z(}o!WxAFXNasz++vBs(sOOysItmp%?{xw0&>DpHsN}R3RN{B#fqw(vTSOa6yFHLbr zbG-MvS@+_nS&Fi>PBeZFZ86U^){K-UBQ_W=Mm=4Y)B?NbhxYOBi;*INGt;qVk;5je z%$6mckuWhNtKvrtR$oa5e|j*kPS%$)=#h1Mx_QJ;Wd%WQze{~_2y~`9x9J13yvpdS z%xyfk5DCr4zN|J8XY5tY-Pq$;2w8MuizA4Jf)C+; zQHw%%qr`1y4phy&#v42zfr^`cIyB-x2QtNQQ}EZ8uRR=3*?-E1%iz<*B|7B7 zzlz{Bc!y=X1Vm8}$B(1I2I`Nr3a)4PFluW1ogolWifwZ_S-DrwFux_&=_}u;+kzyV z62psr!C6iP{>$sZgC%Cp(aTIHm;upz=1-$tGU{iBx^`Uh!iC7?>dqaPziLPa7-gV~ z1mSKau~h6mvFhAn*{U>1CyN8%=54-#onPAsh~!dz&r5m3eY5&bXDnH0ZCXzY_gr$H z`nbN8`n$C_95H6Aw6LZWTTBnOZd8rLYXCST{umx);oyjK-kA5Nk$v({mP9d-7BNk_ zrK*5p?|r#*>~@JpZoF%m_o$^Obfw^>5jdsD8n|`M2-&5fpfDY6F&OneE(t$yZnkkj{?p8yXzcW==Ee4d25>L8#l=*(q<^%S-j(A9I9$cd`dB zw)^^$uaJI^=*LNUe);o}70bjeumDQ~fDr<3Q?sj#EL}R~gQJ`ZIcX3YZd-p89UxtK zn``Kf5|$s&ED`L};5ApQUv{(pnP6`}R-I5Nr+*W;v$ZHB$g-op#`T3qcbVluVWUA; zcnYsBd6O&$4ddw~{7$3#3b4D6>E@I=$V=~RGSA0Ja1^~TZfe*Pk19}_t z3unHmtG9*!M#%X-HH4QvFS{G2b;UJT?nV$Nnzy3(`t`*Rjs=PFRRgDA`aA%uLH$ud zwudfNw2m@|-D-PXMV@wdyUv1w3Rv900Bv&Z{BAb1Ddv4}t)Uoh$$ZkXRaET3#lB!} z6Nui=OqP&%an<2Jkp6e`$y(GS>NeSkDb&72Z%V!6@#x1vxpxQeHb?opy@zyhnw;v0 z)O3XD8M#IYhD<}*rVgtWTl1twpYVTx%7qq7e$k z_3M1TUcq6FK`Ld<8M#w0Zh!se&6~EwDOJ@g1;9V~jZd4epx+y^ zr8qE#{-MHbJevt%H5pD?E-HEsOzy)SH{Bk~TzO8nF*Ur}gum_dzrnt+*`YHrBo7fa zvfPcn8FF1l1T>U4=>)OXxRIV_xSpzW$p({OQ9%OcKJ6f7GV9LZ8Pf+_Emllre&2Qf z`}u^VN~EtVO=R(@P7aPDi&b{hX{u;#Q5jE9%!Ldk*BQ5!yLnM(25-gub+D3>hWpv` zZTdmx%Oq(=kM)04UhEt3N_bOM_AEG}KQW_)#NC;mj=%q>C=iuj8(6C!chyb7EX`%5jZraGe&3(D*Y}IdlIjX8Y>=vkgpG9&`D6i@UnxfR7I9!xAa2 z5$Am)bS_wTA^<7z`qbx)`4$Zy2Sc}mwfF1i?1T1VArHaxuQ{HXivvsn3f)O;M)zP8 zF+6zwN5^V}YyxAY@ou_^@AD{F`^oQTyScLy#mvN1>uy4Y^OwbpHk(gD7hC$PHW2RefiM;62M)LH4T$-2DtNY~IpjEQ2={hN{fY2I>7N&spZ zvNv7#m*(6tNgq0+UY;lJZQi^|RGpfg`Kxq?N4G*N)rt*<(R3znCNlI`BWd1XbC8Qd z09FS38wP92-kj>2+l9^_4Bx-g)tbeQ7q_!NHR0Ol zibxiw_++~}UT{MPfITf*eoA-iz~gc=Zr;d!%>DM~D>NsPImxUsijx0}2|WXYCo>jG z__ys&&jQFUqzJ(@&~c~1pH=se^XZeT>vJ@znlQ_YogE6??Ba! z=2Y;*^=!STBOAoM|ILLZXfNlsnyuhvV30+wz-!+Hi?HHPXWv++aL?>q2mut*&~m=9 zC=xyguwpp1mFnkhWKoeLSTQOJjEpl@II^@{PUsD%@l{X8`R>4bkEodPg2_016w3lR zr*&Po<(-tO>L;NY7jY(m+uOquX>v&+ynaquRfcnYm}G7PbS7%)(-q@>HmVv`oEU_! zRDzdLim0w;z6F0UXJ%E!uQN>lS<I;7^nc+8=yU^J*AIwNGTIn)jDz8Vs4@7=a z3**d5(1#tm53$^xZU%T!i!4GZsblY*qGCT;)f?4XU16*2wVVjz85KZL0SDMJEi{}m=5NmGThlHr*J=aJKdc5 z)hR?o=Vnu+rNQ!E7YI5B~k1# z{SZNpn*;<3Nw7k3e)D@AIu4SP!V%j)rbg z?^o+~w!Q%%QJc9sU#>{K{V_Gh@H=9L-2*D_DM3GUAyr?!giyx(8#OjA%d)8qa{ikX z+D#ml(F%?dnNA1z1G76qEgyDNY=ks9GTXIE`odnnUT${%IL9%3sZg^L^s0eLd+OpS z@^Iz#T&-nSpQm0igcksy!^7=?@O{c|8~seLiimHm1)6Jxs=;F7#N$-8I+{glOXBQK zW5JddMb(MEC9j*)FthAu;wJuLIY^a5WZusJXEL z>Y~+%$f4*%WVEJ0=@au)@;>XRLTQ(@cZ!!rDzT)0Q#r`hnvqtf=q5)HKmACb!lTTz zH}w{lP>)5$mnAUji)@im#xoLPH=VDkso58$pa4x|VLeUFCK)x6S7P@tgsazRbvN#R zX;E$YJWMEwCV|O*Gx3znKQW7w$#`eL1W4g*x)xmg{VM>mh5fFj3iVec?qYIwZZidfaZWJ=fl}|t7p1tbuy0*ea zLu8?ehL5Ga*1^T1G5?RGgqEzy(cDm|`G@)pdFqq?cLsCa;#l^E(w3cxg15jN?>dwTO1|BXOWf)jiTq5H33H`|G1URb|9Cc6}<`) z3d9o@t_W!7|L;!AAH}8N6E(;t(ranIQX+&A1bOTi#Q>9RT3TV3L9`t>f&46D1hph{ zlJ>+=FA6MmCDQ1HgUyz4C5azD9V7Y5{$RV3V7Eef+9B^$l>^L#_jn zcPe@?1TzyGUgk`jFH1|pO}rG7Xon+s&+Z*~VN1bo1Qi&7j|Y`KXT3#^Sp}y*RjoD(X(pE*MLa5Wwsk%C;A^JofQ0Ud0dLh z!(TtC8qNxnPfjogLJVcABBMXXh@8v}u|x@SM753$Yv_$|aEx7yNO1qUKeLZkmik3M zyjH(T3TxD=HW~2%?sQPZu4yLjG71u3Nj|d6D=ZAiELnSKN<{VsM(GO_o1VzJyvv~k z51GJx36-=sZ!|Q;Bt)I>0)}QA5xz*j&JCs6-^-J~yf0k$#zN;l%5b<9w>i(MY%@LN zc1Dy7hN+V1)HyF-)+q8pfX5v2E!K(4pHwMDE5@XQ+jei*Eu)sz+3zuyA9oWWcN5VL zk|#iGyd&L!_h+Ky=2~74A*Zc-U8rsaI!9acLWqM?ZyH}vhL8PhS1r}9mAVUB~|u{bX59zuiuHGzzn2i%Ogl}w3) zh`jwW7Ei^+D&id-a_o+^=QsHGV&ArO0tlVfw*?t3{Ucl5YIE?o0!?pl>LFp@+{M$)T`M|^&t1c4RtSK7(v_k;Ra zqD&6ftMcQFYDT-!#aN-afH3#t1Zz6c;q6YhK4ahX8YNCX`&+kYlV7#BjPIxLtA1~J z_q5^jV=|O$U3&v7iqEMAWOJmhLFBz{y5}q+e(&q^7$j7NIkrbMF!i63YLr`*1vTm=ro?US*ScVN07=fn$+nx7ba!5L)S}~vw3$^exAMB z?^@pX$znvm!eUw#3JF!TNBI$QDzMOk5l|E)PW{F8DSs?=T)EROIC#Pk-jSXQ z`fV;|`_ESo2OKVLJHK1IOs(jUz6uzPrb$Sn{gjaDt{3U!>J{9}P&zp2*?4JQfIKgF zJq2Y1?5};ifAi%7Iq&|_cUOjr3D(W9IoRFN4AaBB@&U~ijo0bwE55Wy6R!$BVhdXs zU)*C*{EY6S@6pYYt5lzH;?~{RJ7Iu9#aU9=QtyKye7_fRu>Xpv9dn>my==_x{hG_; z1$v*c_eSYacvFFX@O|LIIM|G$7Nvd0N=qcpI0QOJ1gBJ-q6KeT#QatzYCqA#=3KDL z#jxuMyQiwjzn)WvlfvHl6Pojup(S?iiyVRc)Rf#APsX4-){dngjP7pi${F`~?|>Kv zg+9|Hu6MVSwVm{h^BOI)os7U@OkT|Vab;`$F>Prae|YoZ_-DN0{6dJ{BHv7- z__cC9JC4vf=<$2bbv&<34kp2FCc&`J{+PhEqJZP`-$#~9>ZlwFa~2YkWwq?v>`<7o z-Pq;I)>8(QT0aRsqWveG>!T%W*J=Q?F?#r@845M_M~7|c>q}1xWn@IWds$_}O_#w{ z_)7ccVH)>0tc!-&*fC#~u5i<*s64xo`*a(sVl+S#LfCT6HAXYm_B3xS@?*c{SC^7J1yvQ1R}?J|dlK)l!~V&<%#=tG(ZC8rq=gfw(X+-d z;fr2UN)`MHwxn2V(Vu$p(=W8k(Xv*JN?qwB`IO{uxKI+qI8`Om%uh_-TRpGmdE%2WxxTJ?GU;lIPuK0MI+OVdk0^d$s&!=?hCTHaX>|wE zQdb?Rf8kq8TUUN-K40GTd7-z@d>(mEPgAesI48C_PROJD(Q27G8@1z~f=WVM%5{n~ zzJepF&f!<4DM!++NB&xj7t^<7B+)BsKj2 zeBRSXVC`cwB&(I-;UNIL0{nonb%YD*ioZsr?supERp`723IhwOVoHkVsa zmDQY304hoNa&fMuHrM@BJ8EnA6Tg+nVQx%*PC8>G=3N}J9MARddy{cEFcxpurXk_8 zFJI@J7XBP!)(C}ZzjbqblQ(@9A)I7sDAMlt;t;T$@wn5GrBU=TyQ%v`B6-ShgiO6A7e81QB29n9rtA&G&jjbGA`MsWmNJ2AI zC#!LBD+c<@N1u>i(@{dANQz$yJ36X({{~@i~~bD+ZXw) zoUY!3vg!+8fVzcahtv@h^`NijH)o$Vql|x$`6#^K_Qx!8WV`$H8Ak7>KVjjhawH1c z*$ot7s#PyGIUtSYo%pT-e+MwD_7AwNC*a-5eV|7Aa4VHpA9D90VqX0^hbL-(u#e+M z8=R=q7^HpRPdx`Vwiq<`&)M&g;7{K{fo?y0t?lK+LMkJKBFoJXImGfpnR53$Plb9% zlSz7Eyg=)5zxZZl8SE-k+DGcDT_gp1qNc;?SIB@V>6LIG$rbCFBqbX_K7jSru-kT^ z&~`+7j%|m3()PHz=hlR6g+>b3@0N5|*N2+;^6omNlF^p3ZtA}@maYS8Hb{_vV8H;f5qG5h&wz5ovuPoZu zsNPSl*w23ik-x^4r1BMq(N{GQ69S`YJVrwzOi52F%v+`wi_T%9I8o92-Px_KX0~vic{>FX$FFo9@nqTK>!oGjd4`Le zzNh98Gf!;IOM{w5UpK1Se%~p-TWja!I*GWX)~+P+qc#irhT$1+2c~~)S!6r zP^IlNEZ}z3(P3mYnHJP%JIqUTG`oom{6~3XqG_>K%`xP$kjZ8`niY@v2+{GBTIulY zg(Wk55D>y0<+bTG((RFgswm)XjpLJIZ%G1a;kWYkn3T_(XQJyjERaWHzZo}z^dUE7 z+i&DvU;a-n0AFy3a!O6Ko`eG#O}uIcYq%nBBnPqGbLLDXNnYUQ#KI4#c1!u27 z$8|p=f~&|C$^&H90W5T00E*V!uSgR`cir#mdteSglXH)<*J|!K>V&V>mu-my&xZTm z70~jpF427~&k$PgXbTg*OCl?rrH#`>bXP zKgBpQPjgNhkFdJDB+jF!_Qb6iYbr=);7oB)u*=<5_!)oRJ9lZ7W7Y9V#43lsFgLcyjN&g#T;zEL2|i)|d6b#PeVnn8nT@Ju_f^_icA zonib%TN0kGvT1yHBD{j{pFKqbNRN)nynek_shxEN3RDy#sVL9=3cCB2KV*M8Ujc;U zl7xX(51>t2j=@g`oWFf41oXXIKEB{wcfC*>zS)kRm6YJCsNNST(^qhL`kSj^?{(dw z6=^m3hRn=Tk$Wg?x52aKE6L7hfCV+20mt|4aE%uqw*QNziU)G!-beErSEJy zj&lP;V9r}NMIrp4X0zRc;xvIzLjnAJx>oV;GreCpZSOzMz@N|ZU6{J0v)T5#;`slL zPlQ8GVW8V4rOY1w`Mv~OwL$_=fU{#+cirI+<~h9v+)&!Zfo7Z`Zn)cQWVWV2*V9Ov zyOj~M6M6a*SAcV@JS+%n%}>N-l^reh?F-g7dmUZ zB%`m|-+YQA0#G8!YUH75`MQg*f!XC@ttrQZ4GPO(S9N#*xtbJ+L#3L}!^ra>{m2ac zJ##=541Pj4jrzSDwaNVy;cjKtuaL1%66-1dojX>rtrOmxz)ZYmUokNobXfL10nu$- z@Y$4M57gc5Fkz=kce+wtbeJ2vF)J85o=bvNiLMI)L&#(3%eFhuB0_(TZlAb{-#g$B z+6vn|LxJL~L$s9dZ5KKWQg4*?_xN_T$8w2LG3>$DAsN`g6mpo%qijXSR_?+5t}@t& zfE~eZQm+SOd`igxg_>TX=T&|K$iHNNeGca;KQ)E1I~B7HW~DSFU2{uIEi0nlT7Vf& zzj)uHi`51-sOyas>F7sG%LAD_b6sjmS(Pg)fZMOMsA<0LDE?r&bb(9l&4%i-e~Gd& zaUW<(0ps66y`Mv`@)w2xFflQ4Jo&sJt6UiZF9@sTMfb$OOTEX{{)&NM`kUZxoLcz@ zQhyz!&G$2{pKCKSy`jdXw2gE`Xu`;=w^oUm2yn6d{QUGLFu3f`UkX@Laa3!0sO4WW zO_dwkr;ysVh7uqAJ60{aSUV{l92FJE!bK@qrJ$Wf_ja^+P1Zf3`0j0{tVEBY<|$eb zZQ#F_#>U3h{Cv|U10wa1{w?85+kfBsd2$soD@5vWVyVIhoc=Z@VQ|rf^V4U&RmdEh zDJ>%GHLR?cq>PsNE~?)e{P+p#LyU$*uF>k%=zADb^wa;iTSd)Z?6Zpl**EkFk!yD7 zW&q{R2lDl(M3al^ww#!EUJgO%OwT^PzI~RgnBS3+@eYqxV?j^4~RXn zDbK|#9b7dB1@0c)6?#G=B*Tzdfjdwoj++Yv$2G+Bve!_08Y3Dv@^j2R6u9V&h4rH4nzYY=J<+Gw$_g7~&TE1~f&z*J~HdPvob?j{J##&kn zKLnS-+A;g91(zlJqpItLvc}uw=nI4f>>r*j!Iq45M8@t0w~>|-Ct-*m6dMli!(6wk zGQ^ug@o}-Y$`Kl06(u)2vB_UZ07_a~S_zqbP~(7+X6V%VNwD5u5}<ar#5@|if$h@{MRh39jvSF*ep;W5LM`~L3EXN58f zto2a~*#C04xOs6mdUNL`w6|SfU$3}(a`Hm!r}a;U?iHxBKVyl7=i{gh)E&CHkNzSm zzu}MkRy2BD9hs`Sf3o;~LF5TwM*b7#HsipzB&Qs?Xt9b9oP3hA9j;hJ0un>}n}2!2 zpR@qNkk!&K0wz>2aw!^cSrmU>2ytn{)8@wxnx!T!hgOz8>Z2BSl`7MzF zwB&WGR@iYfuG(DU{`8{E58Qc}|7<6fapR5)`aXhJwwD;*4-zwPjr6BKndj3q#Icy6@69nM4Ta<0Ug%T(!zoE-Y0`NtY_l-f}Zl> zs{aB#7TEktV?~A2Sl-g&ZSCv(QX07d!$U)gHC-VJ>k+QCS!(*em`y{OZSf@(_AOaiLBKz5Tn&P~raL+Fl4Q%{2UM=8-2Bw(=G26yF#AfA4SFXP=^SJ`GcXX~%#k@iPj$WLU#Qaw zB55mO)M=`zZEJh!12U?uA2z`!J$sL32(i1LZ+=m|G8N7&_uiYx9a1aTed@Cs6xc~~ z%ut$AUTC*Zn}2@x5xiM+Z2Sp6-#8o3eQ%g!%*%W-Pre*3iIK8g!tlSbZwzWBtlZY~ zm%VEM@B|oB5v_Fl|dp#E;KsQcz8^>luCm?P@=LUx5pb<4cGqs3ipFmzf1b| z_I4PQYAa{Y+uNJwXsMa7+4aQby&$N>SzxI8)a&3WcS;AGTr#IUHcqr3@J1%(y#hc{ z8!LK!uEAJu|6V-nkCuuvy5F%Vg`I(vl+<}*cD|OT=IGg-mnU@d%y=jvz13o>NIAzf z>UU9fv>|bD@Yu=C4h|VMc6{{b&0Mf?B5#(`u7_%ilxo|=^71m3+C!b7|AZ<#@B9+{J`8{oqy0Q2FEgbn>OvC)I0)Fq z+2-G7ZRW15O2gas4~e3#O_RdPKeUvLR4o2n>x)3^+8xw%(YCyk5lv zOyL?BXEZ{B2YtF(v8ix;!CH3INp4jAv{PDiXr+ffM2MD-L zZD0aTFpM9c=-qv1-ud_|%+pv8#)Hz})Aka-=7R!S9-B@>J%*KqT~7*kPtPTpZ0G^v z=tUlA0B_`lM$;Dbn}3lHMmt}Jeg!j5$mTCit-Dl01^1=NTG?SE|WIs)2ot6Ol$ z8lD7xh#>NsSprgyC{Xz-a{(S6o@jYz$^_gQw|HM0 zplg<5mA``%SzN^6?d7<~tL z7kguVKF#$^+jA{_TlCiiE`$5az32Q4k0Kg^Fjbw`C%$+yZ3Hw9#L_$vGHS4{rOJV90|VBar?r|Fp|WUlUG^ER$;wRx9pFMskXFpeag26)>5+9fN{d2 z$HfdDTivC9uL|0QWrL2LgK6%Y%S?+ygnU9HqahxjbeXj`8$;bHn ziC)6~!NCmWa>K95xWEM5-OCvM z&dj_hsHQ6CW-j!Rc^*0dFRqVgeR^m4B2VV=GiMD)CDo%v@OEbVe+!F&8c$M1Ho0W> zEgv9}#P{*6y3Tq*%^BSX1jZI~0Uu$|yv975t2WJ@Im7ceAZm&IAn!raE~(r1c^lR* zPf4kVe7a-D3v(XMb#zr+r?HfmmnZ)+^}@IJJ2pY+tQ)tDUR*AN|EOlt1kTMJp4cz#yo2Xk zL!gN!&*-VnY@F$Hzt;>QkuLF6Xxbv_Yh-1+^MWjKfG0IRt%>ei0@Q$isWl9RgNhze zzWCAdAn{tPNzN5?{j8$S zlN&vxRnLJ7P#dR%djG3x`O*HqCOK%~5r#lr!1-eTW7WA(w8jdPhd{|3s&&C7B%=<< zw$C=w$u!i~ay7Ud&F2IE)z&)KnWto`P7Ogf|Edz#A$FtqbY@xKLMorQGcwGM3C-4xcsnUy&A|a_|C= z)-{W+pJTo7&=Q$T1Zt>s-^UGdV#wpvfkvoVaj;cMX{l;CJRMROt1hHs+&(Q4ye^oG zFq%mhSqwi%7Rn9ByX#ER12UFjZEY>FYOTfCD~Mo_+fA_QfPI=!pn(-a1?bU*QrnL{ zz-H|6!h#>s+j~I^HqZNW)IY%K|L^k=ryRZjXJUG~Zk9FN5~7XJt~PZQXt0Qf5k!7Q zU+~Y}0=;iB=rY`@HqZx;h3&4O>I=~~1|5}XN#%g)^4|-lpy@ml)?W{yz(N^5+}-8X z_;DMm*$3XL*|xG$R%D9|wq$t=Xi0vHuwD@PmnA>|Xm*2_w1K{TtlT8*6EvYZUfr_d;yscQU7^$bv5nkV5Ti*t7yv(En#biXseX*#`Mh= zb^T!fCo=beh}%%zHaN#GUuVkE&SMyi@qQ&Py7`vR{gUQ9YS|G>*a(5Xw+IvPyo}0_dVH5;7M<`WE5oVBh)&i(* zl+TYAmzRZmb}m{NDM^9rho|RyZXO;*8ylN4WV^;-Z4`Y^TD*IUJO|WLy~27$P`U-N z8(;Z}oW({HpW!!0f@U^j=GYCpU##S23TXI$MMp>H03K6|d=^>5O+f|9*ArSkd-WR0 zUyn`Rkzrl0a~>?RJMi@I$OFwbuw~})#hnY1e+Ooq;}Zds<|cUI%NTekBrTXRQix}z zjie3|ALX!=xfPSRNdI1|ahsZFok8*mbwGYgSET$RhS(Sn{N{geOWDI@DYz}mYQgKT{vA7%(fuuj(=0VUxr@R_M@J^0 zXZRL)fXEG*kb-M7Ax&h~@dzxkK|0N_es&oEcEIBYJk*vis_KN*k&gwwEGaG#B7Sd9JMbq`?B|l4}>PPPL0a=@F^}~Dol+?jSpRHess7yJ3Kt3Ra>1GbfHlB=$U*ITx z?Sm2S$W3J=hJKaeIgcSeQ@!VlojJgbhbw2r1NAV7NU8(7AXIrEH3~w8t`t5C&*}+` zU)ftWA#fGe4-19QJ`2|M=!N?;I4ri}p~w9H!wh5X?d|#4z9swTRtc`}TMefxTUwUz zqMZR3C}lKxo@QQM-F0H&^Rb#&&vFpud0qFWM6~p8*UiUT%NZB=*=P-y%7wE=Wf5$5 zZRqjd-X7mT-H~+OJ;BD)kO8sMUBS<%J!4&m;&7|2l*Gkgkck*LdEz~vV571&amv!V z4jWG`|6Y>%a7_FhN6Edh=;a% zfnW|2qy)|{B_-u1ftAzA$%zC!kgGr>aEG0-j{3|~)6?@|Gn(UdsUBUuA}t>OSJk$% zBK6t27Oqrha2-j`hX)6ih<|`pfxLqVni zktyiDmD|i#yi3T!po{Nf(-_S(ifeXQ&IAbsGBfer=09e3c|silnYoQB1N?K4mWrkE z>{+*5aVt0NCZE{-RY8f-a@hZHvrT+-0PO#!A1bli1r4wqpR}B0(1;FDP@W7{gwsGb z?J{|gG08~o#I($wKGk{uldCUNwSZ40h#VtVX^()4MNGh8aZe z?0Jwa83y;>w63OR7@-0H(7K4+bL$!R>p?pv{mt~qZ;<~&LH^58d3k~C z*}Y<5<%#!xTD8`7$PI@Bmw0k=b+4jJ@8cU8o#=x{HwXh zz?XpI|BR%pTmf zl!+)a|9ejmhj`O93A*F@|2${ki6I$Dbb21R)u)g>#mKa;AgOA-LF8i(5Y8z&(FB#i zGn={{+dsLguXkm~dC3ekc+9t6P<#`J4Z=bBoS>SL4zYwiS~c7_trsKzTMjJ zb%T_2DBa!NDcuT4cb9;4mk81bNQi{A(jnb~AYB3i(hbtx@5%4k&))BzJ@dWu&3ylS zGcPla#C_k_8S7ketYfXyO)8Cx>7O}X!v%u?*s{mj2!IKy90YDS)IY>XqJE?SEU3kF z)h9{4&Fw#DXcG987tF9*=VHERddt5z z(!7_Sy#YIG>b}RQXW#uc!Ub?RL?YyG58NoQ2$bv6i_XxW1E@;-Z++DSFvSF*nf+dr zG!dLh(1lGHHU^f_OE<9-G>CsWndeFk2 zo&>|GxU}>Z9}+F{0f=$4i3MR&1t!b{*y&P$m1IDw-v9_EL9w{AwRITvlMtHUKE5>4 zX>{8Xk25G&-%e2#BndHcf_Kr*-yb%6u$Mpc-apvOA7#eb4PXE4@DCI}h-c`554pEt z;6E>`1X_i#r#a;x)%l0XoaORCtNiy(rSEaZh|8H-Sjej4K94u6)ai@YR@zNaV*6-G z(0vPK0^~>=Xu^@JB(v+2(^G%c_JQEwVCMG)QnzmZ=#rNcGfTGE(>35^s@>iKWpo0& z@L66vmmMm9>re1Fbe@XJ9y$R9Z>UpchSyWEu^7IcVd#~w1#a9}o(dziyJ36#O;=eK z(w6I^oc4ng`mDST)=->qZq0a|*m zSHRZY^)yfY$A(ddym?TT-nW5&-EWMhvKa7REe<9w><7}?`nWW%fzkiUTl0w|)usdK zgc=Zh5<`!a$3<2i@EQ-KRP29q0p2@KOYUe7?2eC(siRWl6tzW4Q;|-WaD&f&QXSiC z2`@kUv1xe2*W2p~6p>ZWMVJ5X@dBX~^!foOOZ51qk3Ic9RfL`ZjV$0#J`lBJ7XieU zdBoK+#Xnj317JhqBZ>d<_WaTCfE{lMFnSPBhPPAKKXOjcm(st^ z9D{Am)35>CDpr0U*Alz1bA`M12EEza=b!@#6K)d*X=Z$K6ddPy{s>_5Rk^vHY-(P) z-#|9w;QBTWN~NN*jy<)^AGvzsdJP~tQ=uSp>D58t15ps5VbI;D7Bu*KP2b(!`F92a z1do5k zo=fg*Oq^9Z_+Buv(LK*hKimHJj~IrT`k_KEYgjd>QJmy&0z^jd6N-U&1{4CA!x2Kl z*~v_F6zp+kQ&xTm%Vp2JHEU1%W&f=dY5zWFe~_zHrrG~eis?Jr7!NAp@zSZ-QR5vD z*WX#du6=fiyHwBM*7SXt^~*m$f!WwNy|0`)^fe63c?DXgy3aTZVcA zVAsYd?T-$!;^i%zB08lQ@QU_9UM;bREc%BTK8-Av$`7Zs^)Hx3;FRsn_B_~u9-!Zl zAY#~nPVKAdPqIVLPl`{yAr7>aBC{^-fvZxT%I~m)-md;~TAUR%&<;ifyPY0~U3}TY z&xkx11XDgO=sykDTE$x)giuX+?M~bf=!}i4B&q+lRe#Q{vw?$kXWsf}XT$w}pAYBu zzf^|4_vx;JT$foTv!B=kk)|Q(<50aJvFpF@Kt|XEz-o10w-urDM{vRHAB4(GICKh& zp2O)-P{j^!?4TfqY&|7UVhDSp*XA-O1{7hJP*FIG+Qb4#mK2nhvbt@KWE(sEuIMnT zeWjbYA|Q_Vf}KhUSD}#M@QLe#vmy-KnCc><*@=l7F#@z!cASX6kAgseiK{aH7kYuT zcnr{uY{g<@zJIIAKAX5lKYS9X%>_HmnN~Ko})(l5CSqN1c6uMSu@hBA<$D;1?&c=-4j4Q`!JiY=6b-a zMo=A1y-LB4PX;>`_3|I@toAtvfe4}m&*4~CeABoCjnMpm@DC899z3<*z^gkuKSzT3 zLG7X8fgOI2+lNVdbQ^%B2|a}uAPl0W0$HHahv*rYKC_0& z^3qa=2#_W1>i^J_8Q#oBf^pxVbJ(OND;N-~cGu?|n5^+Id1U}L{bx}0piJ{6`(9JC zH>e@~6FSFUj}L+vv72*$?cbqu;X}yu@6Z{5D*yNE|E|FQU4j2kR^Vks*A5ik4c}iC z3&T>m`xO4?&-C;qXPhKJSe>K2BLJTYIN=~7t#YI~V zFV~7ID-Vy0uJTE=^+{u7*;y4O0O}d$&FBQmTwL#Dq}lM}QDFl}Ch!-`LB@n(hq<5) znCOb_TL8+2doup;3W6BcvC5IL7NY zf_HAdI4sy|Yvx9M-`^mh7U(3O=9v-@qjjd*q^;}cjN16~5M>}P8bVJ6V~^d;%~ysy zJ~4!cKkjJ$KnfasuH3`CjHC;MVygv+VkTh%80|igX@Aunm-SHk$N4aYhdLZ1s-mY0 zr$P|OIO~lqEVRMeZJ~fUup;vr!k)6A>h7-%Ph(A4*&aG{_H{cy+48nLr2{O_sr{>0 zH(!g`kY0OQTW|2r&CU5jHatYTF|xUykw1l@=5CJYwt-Ah-<+N$oCi{PN_gKyuniBB z`R$i&MCiF}?&wAfMk+`VXn=u6KtsySH;C$g3_)(E76$Rt85!{h-rYz!Y>rf^eVwlc4K*Ucw_e=}Z%N zcI+h5P7Xk*I@am`Sa3-Qm3w%4-dA0yVPlVaCH?tgpJpZX5Hvp<>-U#Ij|>m*&R<`* z5)V3tNl4$lx7F?B$Rx-F;N`{>LC_Zg3n}RH8(u!Xp%)XyASrA@x!g0cpm~Z7VFK~E z9vT|*hem$=;sI&8_z=@u4x*SldvJGaaZxLN`wnaXIuHrU0s)u)Lz0do>V;pjWlhm` z5|s-q=qq#w8kkYJ$bmgDR#JNqKr5oKLrTaAzCuDer|8NayCJ{2`nZ?H?2AsaWhun5 z?Wm{ep9cWPoGvcV@ZmgMCV)6bHU+Kica6O^{c;>`J}+4JufRXmj{4aH>v|lM5nd$6 z2K+}mM>C_NRDJKSO-+ctOT-EUru6LwT>y_uItO?&<&!&1bF{1zVGA zJwKO|{Yi3)kg#weQ5a{lQMYRWV0l@4>2^7NUW(zA)>Lf92x8KglIjelI?{*iU(MeA z+?#7MhFg3PoC1)GfevgT0uqw+W{?ifTyX#{P+ayCrfm}C8OfdD;bf>R>Jm}QJa%a#z^e`D#Wn~ zUj3r0A&}6fy< z+m*aOi3bLlyncN^5tIga{8ysBXE)}nTmTARz>h!Avt7L94C)7>+By$T`epnMKOY~P z<^(e2Yh&}p7LazR%PlaCVF54+Ln_$aaJUQ_&>F~}1?R5oUv_^5=@JmqiPBG`F!xvO z!H;Bmef%0+x0oo2-M}(h*^1v)Re~JE2feeivr9AbS_*|%I3`oqG}hLhB950aZlcb3 z{T-zS@SBjJ8ycdR)`cJS5ntXsNlSq|T{NDo(|$g3O|Lr>ZlVOAm;HF1)xV{impC&^>5^kZZgVzLB&pj zd5lVU6O)jLJdr?$z~a)cnTHqo0OF%{NfqD?wZ?DngRQb>=?5I}&GYLvq{Zdns0Em{)TLM!@zmz)yTY2>k!z@GkEs$ zI05Vc>yID!)nMqQ5pvCJa1>Nklg{Z#Ah2iG@Q0CF=}t};2~`&t+xw@CPUuR0t0c?yrWdKzGRZtS(3kidh;>SaD>vVu&l;a%d9pU|zz}t4V z)&V}*(gERhRZ(UZxQ@**^`y$3HF{xXIA2mVeDjB{T*-AQ3}*73QyTWKDmq?g*c ziLdc+&x1Zqx9gd0iGS{8lh4=`=I0eUjn~y*<>d2o}UH$yLJUo8D7B@gzK+V;HNw*|e zUxbDG!M7)ZLwYIFPm#m4YGwp?G@vq|bjj@D$V9`=YEWO%?VK(SU;p?}E@2^SlYJg$ zA_wdb5EEiZ1b$H**Ygkds6bD%+oR(#8-z@DbpA8)l;7f821z`FtxFL_1jJs9PE8)W zSE#XQZ{5o+b>n~~PA(`YKxy~@VuEg+)z@;@yu7^h^ur(|{JUhUX_!(L1S}ak^gGF` zEw}Ymy&7VypKkDqz{l-esJqCi5+!J`hzXJeK(7xE5iigqc2GLVEQypGC+7@`Rfr=k-712Pvgej!eFc8ypPxkUkd z3tZt}gc_1kf^J-KkJaZD6FvbL6{zNWj-W)`o&2304#dT)t`o~-OT+hu6A@qZIN3=< zy%|IOj@5y5hqTy zQ4Mh!9vy-}?0U!9_nW`_CP!nU+}+*XpYSkI4QdC3v@k64&~tBS!O_M>fVlk!)e#0n z4|y4B27s7HmlG0tBXda_tpYVnoiapAa0%jcOSkw)INj1klUUpiU{zzJ@XigJ5cNV$Oy-C>3Ph>YRK;8X&_6#5LS%rzG6*Tkt$*C z#YZ3oN9sptogB4-Lra{>LlLsMfkV6={C&{D_XBB`r=R$`t8l9shQ-gQJ`#qhJvFT0 z;pNTP6d1yXL?SN?QL{3^QJ z4UALGFZK0{J3ZId88qOLv17Oglm?Wx@Vr`Afz?M2l25Cm7l_q>e}LTL3iZOmi{QaT z+`$^N!|8AWUuPc;1EUq$gexcxCVw8f7R?zcBGOh+u>K_=1Q8LD@A~$z8JOpEzh(Da zG);d+ngG*ToD6ut?acrVRfpLRW$6j}xaLQzA3qfV`iv$xp}k7_wXX=jvDmXeAfMlq*XYTj z&}oeBMsJC*)Obyd%#4WE*DuwXY8|rDe(!l&a=s_W*5nv2*HT*pHdfC$gcI{&> zWN$wB4uk6GjjV(w*8ziUNS^yS)XdD;Vr9`e4_vB7SP2p|&ci;0w-1aVzD_c)jqaqH zXJDh6?6T4fH}ttkyFg!jR999XLu1fdHN>P|F#91ZlR2c5=O#0PPEa z+Gmk%&h_pA{0VhdpoWqlA5HfLOWmFVZ&bkb2iF;3$8{O@ikj?P*}-ytM(&HsW~>ea_?VX16@F^?Vw(boNWq zo=dK=li^polL$puj+*|yIq{j{50>Mr2`H_pDp?%($W2dsM^kM*oN1{$nF2MVw5I`W z^@$sA6!y6`JA29gVQt{L$emw-s^U+;D;;5{+5i<4#oQBp5AhYirWmMZVIp(Ce*KyO z;Q}S+>^GJjAa62I^CU;~)c&6aZoNFN+VG$1U2^^Y-yVV{dAATQ&%Hmk$(H_7nj7%H zKiK+eg_y?*7Lc_QL0NlydjWjjMrK$cv0eSw>tKYgt5?(!Ka(J3&D)Zl4ji=!XG(S$ z!YbW*{t-a|L;?SfE%I1kUaM{=^U^f}J4 z-dnE;2b56QGTAeLF&_lynPg8$3V>_8O<=OFpcgV#`Tq8{Py6X(EVb#c7h?85HO59p z4v4V5xr6wr15Ul4Lb&Z7P}|dZUl2l&%SB?F0=EV@uDJcpg+R#SR|NWDfDeKZR0;)v z?3$zBgRZv5j+_4V>l?t#&tdfx*!=-ra=f?GBO@cvs|kM8EOI>zKzKBxeHJ3YG~o~G zf&M&+k=52uuEA(e=voFvBih>9;(img2_Rm}EG}x3yCLAf5^n&UnatV;E0=6Jh)}_5 zdsjiJiB5NwMbrz2F}v`Fe{p&8AqAQOMQG&N_T=BI~_q-U^;(r^(0_w8Rub-=gM zDQW~krvQ+dIM)8L?(S}KPoqNP|q!RdH*-V+e>qz;l6Eu<{IrI3inSD zrbG&Pd5Is{6v1!pV)RNCDWwr|YNw2So!FXzbRdv`c<+DwqK?c6QnSS9@ ztcoGrM|dBSXKT{s+)zkA|KSJh<8Qg;Z{)7_`X-`jy|G6Z+*=WuGW38N% zbN=7_Hlc(OFVZphCcbfWmu+f^-pTOy%$$Ga^5na$t&Lyb?93YP<2Cd3o0`PIlbp*c z?E}ZXX%1;nTAgMNVC){Afe+g>>dUb3;#$gVjJ%=xqwX0jm^!0 zzec|N{4kpweXKOjiSxr|$6a|mg4gbzakze%D+%`OYgo@tE0Zcdv{AujT3YL}j=ABlk}|Zl2nB zk7ev$AR2)|RD?Y8^u&L7NP1Z4-#s?)1nww|T@l1R#EWe(3(3)0(>+et4%0 z5v2s7*OSQkFq$l$sF$v4GI5_v3JRu-qR1wFb{m-SHi&@4NQ}DoO^La};&t{GW3MMm zTkkA9&*lC#K`PaUkKMFpV5>ysE&)> zN^`g9yH0$EnK4^_&&?fHn{^i8beJ7h1~?Skm$iv?rOqy;e}--TEhy8?Azi8a9K|U+ zN*Z!-6xO+AC-*QxS0s1t!iXbucm00;UweX5gP_OI+idGEqMnSo~USm!ywybFnTPKwl&o#Q-7T7I>RYTDkQ#M!LkqaO+=$Do z@X>4bI)tO_$^aF1CLG7dlHu=mwzrKGO@$x-Xh1+kIZX#+$G;0D)xtryPB^L=HlT3Z zz5uOo{8EQJQZ2~8e>`5<#46jMSj%4{-f{B5^I}?uy(NLZH13NDao8Y2?YaG#zN`t# zJ4y*YUl7Z8er?H6G^Rb%hPUR$?wV6JnCYU*4ozKsz1N!p+x`d}O77=D z+RPhk^a!bL?z9}06Mu@PZg84XN$k(uuhQQ#rQh%oNRk@@XqDDMH#c{!6ZCdrQKV61FP-} zUasoqCaU>sZfAckpG2Ja9Bhk@hu~8H{UnhsFe|?`m_DSi2kK-W!~BTnU-hGIZ*Plz z0kZ*5JO%*{Fu>hwtvPWlM$KNzimD6RH)gp64$1U3S>O#|kByFsR+WYfphG`zG4@m{y3Usul?+D(N9PVyDmvJD zi`k{EpFa+Odn%a&5EW9$4%WWqHlG|T2IPXfYt9@QsD`<4wq{geQGOnS(I*z?(pDV( z7whuhnMX}jOA0JcOfctp%sI{nT454VVrNjJ6%`< zA2P3Ci!|(!+J*)Zc|Vn9mK{iDUPlv=Su{rA!+W_NnbX(A;p^V^;Y?%H5?oqzURdb^ z_quxjm|3mQ0Un}i6jUSxmLZ3V78t9r9&3mu$zu0aZb_payz5B=a)cx20nYOAqU9E= zr%)#$1N-dzWP9g{neD$|1(}mY4_;;EF)P$bhtT;%?{-B$SScz~b$9Np2!%Z-zk6d* z5YUEy@*mBSfrp}D5T$fq=j%inqUGq&Y}|9l2t+y4wO6G!gCVJHEX!96#buMK!a}o0 zX@*X+rCptE2uoUC2W~S$M3@Ra2KLgj#vIQAH6gh}ZF48Ar5XbQV*P2TCi?^S7fYvt(f68%i zCf_+GsKAo@isWJGlcxUK88%e1T^Y=>ahczV`hWXAp)~eH*UP9)?6RDn$B?9$Y})bf53^&fE=OM zO!V}H9)OG2xx~w&;p}|)$Z#qPX{2i)rEuDunNog7Z!>;4*GO*KR4$-(b4 zFOiI$RBw=hZx)o3e!8SFrBUf!M5AVvW@Gh-hj&hL52M`)i~^ znf1RjZ+i3J9G<5lgie`Hq}S_JP_ss%qZvGg2HY%5s@914<|)Pb@qnT8 z!u#`Wqd2Ona~r$FvWtEF&beKqD$xkxNpbE9KmWPmW!7P;Jr+=r8+jzXBZC#cAVua_ z*VI`?!ku*%2+9G*%Sa%3#^SsWvn6*i;4(f750CHVs-Zb@xg!5a4_W>G3i&vW9ZG5r z>^><|H9spd=Ja@RDK3w*eowjXc0EtQFcTMC>~D7XJ}k zUW?I(6|Ysl?hT|rr4*Gbc*_>~Rm5+(UOL@k96i&uPQB6Xe6^_F%q@|wH;D<27L<2= z(hFmeX~XrE2HBgA>dTLRg({Sla{i8_RZ7MK+$T|lMTbrfIx9;{|KGoV%Y#l7iK&;K zjb$mUx>XiiplHs#{0}UZ*M3r~R!0!bu)3z^$$r~?0M%UeTbXpTea@eDgHteR-o+vs zdm|c)xBM?u`<=J3Ce3jsFS1Nbeq7CD!3Z{IePnrIH937h5CN1Quqg#mnAJw*;fztM z7iP{i9Z1YV2fVglX6{MUGHqIr8EI|P&I_IF?W1-+E**O1wBm+uPC<93HT&bw#cxx_ z3!h^uf6IC-^IZ0KgAefdT~kyUTg<0_$@8!nYYVGk?d@?yJKft2)(n3A!c8h~%L0c? zVc=gdn|U({32|&nr)-@kQjJj;6@zD!LSEOj>=o1-~SYmZM*E^_iRMacTi#|VZh zcziVC@Nv?N-&0;MA){&GLMIZrS9z8mGH8gfglu>ns2k49^=asf%Mq=@fnSwJMbkQm z9UX-m(Znw1+Ov}zWDU`@<%r{Uk1|rJu;jCX&k?LzoTQF(rGN7{NZ+eOkPgN&%*Ae8 z+^~_9yhu;V>uUcLtKcZ`;3Sx@Z$Kn2O>-$%3ALBg)u4a3Zetlg&Zxao3R{MjzW%jr ziO@%HF_u<%m2n1oditXv8i8t|+!p;DN=V~v{B8{VJ1)A|aI#UE_PGL~$9W**K^%sID1D|*yM2V(z{wE~%woR}4hw4WExG?3^dxi=gRTcf#Suj?- ztHtUL5pTOq!^GX|A(Vap>`#7*2iL)cG~(kfXZ@?&kneeD&7Nhm=?g>MCq3Fpj!N4^ z>Tamg7MYCGJ~dcsVdBPFSX4&^e3ky!XEO{PayY z#%47OPJAlW(a={XOH?=NZ$P^c3jq>-2${f(Q32g3SvGmM+1g5mBPV)nr3DSTyiQY+ zsE;A6qkLvx`hH}&#h3-$i#YrcuhG*oYep!$z@zu1u7;8K4cyV#FJN$k8g)=%>jMXP zdKCG7BAJSwe}Bh=251=XezYk72Tb|1?-{aUOz^qQT~I0}gZg}k5yO$M*X=%f63Qg@ zIcl)H7;3lZ+RhFtj$P+FHZQNAh!L#*Revr~3!hi8I2B@B%3or&dnz#Ar7Da2z<>B$ z7@k)z+HiYH_r&gxLN~MI;=NW$IrDr?xpObE?pky~wCO(!P7|A4zW`yQbJz;L~LtqspIc+ z*J)yesVSn!5Hb%7FDcqG>B6`t?C^W!X^p+QVIbG5`xEJV@S?N*nJK*Un{}IjfRv3q z_3feh$K46@OFtXZRMUUKd0bN0gnX}asBSC^BSZU1S~YC0`BOC!(P>J=tGLK$L|f#> zAdf#jP?d0ZHmjv^;kc&U&~AQ}rO{q-5tF)C0>Ae8S(#u)>D_PwqXP=rBY`3wT^@_{ zljnF_Gc`sh-EY86T?d@eY zfxEvm3p~D_QY*Pm0e)T;^V4b=CIm3dZr__lscFN^#00CZ!Vcoj5d4aR{$B}+I~17s zp-%nN*tV*3H%CY-a6MSvaM|7}Is#4KE*b+zA{G+Yr<=^AcJob}%!mkiV?5FYrfa7S zMob8~i3Ir$FWVA;TB}p)+R|iA-9uWWI&kV_0?wRFIW;ZfyxVh^2nG{^Nq5mSM<+W7^XldXYpex5qOWlojr=B8ru`^@wM==@dji%|9+MLEf6@P=RuRoNR-}VFl z+HewqtMe^B6o7`{DOd8H&PX>8v7CZ+6zS$8_jet6MQPUgjx>#_QGVe+nXf7pZQb0q zu4d;(E`AtZr?ooGdzifFSNgSOXLR>scckpsT+%bgF$WJd^X);*xai;2<<9wSI|b2Q z5rkeFbE1-Xn)9K(nv|JXjw+83b(+rj2d%;uVtoCyuS(^Km8GADMsC@=l|X6%xGAm6=5(NoW?^a79~b>2r4w=NaM~vk?+GN_tn(niHruyu7{1rGHKM z{moN|#616?sckRm^9FIAtq%|D#dh)6-*(~}FUjZQC8ce}6e7av;}0{g`%c~a`=+K^ zbt)_Gq6Nl&l%fytWrC}N@1C^8y^M$`bWbR@)oXvvod4|<3xoSn-As}a|D{}9nijl< zd6(T_wdKqgYg3)LQI%{$D$~dF~f1CngS?S#SaV4lcl-vX|d_gnn(KACdTH@#` zO&RPOOc`qbbd4DorT5!%1(AeZxs7sh$BDx`WjsFKU!P79r({cVM{5HIo~rJ0&k|FF*vrwq%2wjl zB8D4lbUHi@$t%4b@L-^HF`3Ef4v~#OIi%SLvKf?Xl#FO8J3uJdGQF zD=!?gl(iUd;5fXZ6~K7{a?akO=b=t);Ds8`F2huk!zz*ebX&DveQB8?Z`lkCPZyXM z;+$M+I_EX6^EDoi4-7b&4n5@EKp`wF*D-GLyPUZ~a6aYDDchu6c|yE%U2b4pmu+T# zd)fPoJf=Q9^s)9rE`CX^;ai%5vf=Sp#LtJ=Kvli)gnP#P??8*0%&>y|;BA>N1`hz3 zWPJ#tk=aM0Eybsq2dsxAg|;8M{&FKyiD4QYlXzTvcyLs&d3G$)Lk4{b<#jVzcFXPq zl%~gnjOa!(>@=3sRO5oZ8KAn~8j8J)t>I--V7#To-Un1``kcd0>IS==;NyKUjc{Bi z{WRG13~d@xJ_0NR?lgVqb+?~{wM8Qr59J;G=$$P6w|g4t-1};+Z$7pbmoNMff8HZ_ zi$&TmcFWcqfJ^B-(+i)J-tn%NG`6?KVqqGY72tQIZZA9p$u#1WPbQ#vPQqLX8NxQ7|l^k3yv%M*Co>%dK{w_y;gRHHq3tu!|OPp?2vkyrf=oTR|%t?cYX)z%o zArRCTI~v!&Hhs&Z;NY;U4`sqQa)3z)xVV#ghcO4Y51n3vG8Glu{nwb*Kf5) zNdD|Z&kbygX{FQB*xINuEEkM#k+NS(R^;btcbpjLy4RF;+slUGDm@+SzFd(*Gj8zE zz~-zaN^qyx?1&$`r?;1eS(O5B5m296z%K9?vOM4IizlW^nLHw-#2gWxau{MaKL4xS@_G=C$}i=k zQEgE!2$hoIL#+Ig<(tL}W1iV6nBK4YID{@iaPqWi41|~Q zInb*u#n&P+IJe)Zu;6q)2|5$lh`0oQ@jbne}#d;cGM@PoAxLN`yE z(tR?X-?OU0mzPsfJwrxIM(G&c2p*1&eaCg+0YEr^ly(cN%&pe~ETT_E$c91Mcwpd@ zl9Cd8X;BdlXq_A(*?`Z42L?19T@dg#dmHRfWfQXltF zX5qCNA7Y9|k1<(`=T2tWdZTnKJY>7nvBTlLqux}=4sDv^pvWB`_omlhZExXjWV)=^ z?b_Phx#ajGZ(-*BLe(~o`1mB73$eg9QLON&=wRioY(GGOVX^eR4L*|HU?T=O16B(qs}OGW!CWS*J+ zv~P=-lvt1;LDrrXpNfq&E7_6)&gutSy^cCC$?QHm_*~$rd z@TJ3Z{;Vw42QbuBK|w(d{CkJB?0@f3IPU$stpzBeu(?CBxD8u~9P&yG53ts>0{ts@ zL8jTDeSn|qcnU-iqX~(Lu8-PFp>?pt3m&R8+RR@_3Z9e+(yfY@BYJHt13LBIot(QI zdX=@Y>vVaWb}->a+#~OeRHbh@yp)JqRt0voo{rd0QQ{4I-eBPVea!)dSI{_yU|J>$ zI-hO^`)gm$_=*rdHxoxE=N~j3xwlibF3zoRk!`pA`AZ2ztZyd1i$s(99DEQ|@Hd;K zv8P9R_xsU}sxTR=~Q5Ci;qG7P=d@kxDcT(xmO|>}a!s zmX@ZBYc9|yaKh=}-b<-_~|%3MEkrZv?Q)B^IWQWZr&+q4DkOHJnXv zQD3hcYN+#|7dzGC;NM*>P~^qGH;l!RH}<}?v|?nbBDDG4?6p283K!;ib1HtXc}Oc) z=(-;+QZzb2-(r&|+rS_Ke-psZq-w|C2*wC-6iT1|{ZC;%{45 z79N~HziE~QHe+M`)6EQ}{ix$#uXGz)&(;H5Yo6cvU;C={Z-t5d5f4ADkco~b9ZMW> z*J#allv!Xo$8QyIx^gOvBRW{k46~Z8GUPoY4$IaJRhq6vy0N|a9B@&+*9zy_rWKtM z@Ehm)3-U4%gMfcXk(eN%Zs9E8ZN7~)R5*6$GG)i46M*NBust9Y#Sft}%Jki9*noB6 ztJ`#dPHvbKu{55o@`*kRZLTy7C03CgM-U0n*{bQ)vesi{@HK&a^1#;V?p@PAt0 zUP}{}M;i7m`YBpZamTEyrc!NN;G)=Q@bzMbD?$~s5@lAH?akP_NBri&ZHIF9x!~4e z$+O2)kvl5g&ptJ|%NWJIMAUvx#En;%G=P5g=tLkWD0&=dS#5f_+*EH4U6D^Tu3f*r zQHSiIvEz%CIrjEaSod&J-nOwSZQW-8Bf9{%s6G08EN!Lq8L16Q>%u1}T9QchvitXwUF?E_rWB}=< zm(zasN7n+~(y1@bDLLoyF1sHr=o=1IbNtn@&byhWGD!HVWWo-HOz#ilFf-e~`Px@( z+)0e_*Ks=|jht!8jZKmvI>I2cmlS{6nV(x55nyK;5bs!7JV?r%~ySnrhG zs#J#tM-|3wxAFak$=`S3u20{3gn zADD2OH_O8P`;UTt*at+0sPrWNb~Avx(JZ~PYid6Yc=RP#w9(^-hruCOKZ-PTr>3Q17aS2ItFPWHCj6gm9m+qj3-)GKQYF;Q=wI2cfmL1 z<752=D<5CLI;WwE!Rw(I0;%^V7{+uKi%3gr-&-P&F+7ukSAI1p6t{|2QsFFqCV{U`#zbb?n53TE5i+wF>jGn@5{1bd&!(Jn<0V!B#o#VvG#JEPzs7Ywp*(cM(Gy%wSZ zwz91Ms*b&h5#2MxNWSd_c8gfTX>rt*20DhkynfpRa8-)|PEsru-&!ac)9B(SHxYx| zjS1(ej69@&7$P5>zW6Ub5M%I_^i#p@l8>|uc!`^ciO6eMzI_=JQ;cKL3I))5`iZsp z-%uODjPJd=n>=XyIfidckF?y<728A3mo-Cb%x~Zk=ZZ)PPLw!!7Md1DX7vIvaegpQ zP8r@4ynv6fq!M(MPo$#6G?J8DD;>!rF)89Sd!J8;C%p1Czm(mFYWBA%sxXCaoOj>9 zxd0d|=U!RKhv7@`$N3$Z7Lt8G=i7BN|B52QMzD~qiA}B0;zbGasQ10}?pO$%?^=j36r9GIg!Op?m zgV++o&u=0j&g|@6L@M@AA4+8fO1~^*=xW1a+m|RU6GnWlN-W6W(ehYEh=NkXbx(<|A;$~(`V_zSO^Agnz5Fb07*5)jFcp5 zd3hNnt$>w2Cv-prHZQa3`O&-DlpyXhhrTI-38e(~Jw1j%Z#9%ZP}8F|^Yl39Ywjr9 zBOwtoCk%v~MLp?ssqd}VpW3YKl;MIb4u#rBgg5JvF09lGx!V+bYKu})Q{RLnw|LIm z4s5xNSA5OAYTI4dKO}H`N6krGemM{-?Rx?5{*bHJF~-J0d!UKg_Z zT=4rC9p6lj@5T-cm=uve>n86Y*!gu5Y_g)j9N75;Q=C8HTkNRx2;#aGb>|jDzzltm z!xJm8Rqdp~b2Q#AMbLyLUx1^v>a zU_n8l^WQl|s+8k?unI4bQ&#?iZ zv$)vIuHWAn;2FCGEbi}=WfZd3yC8;P?52z|8U*56_|?1YR!_1an;LSx`w^^@dVax} zDQF9Em&K1{M(3)AQii;BlMfO62i+`hrl zgSJ;;V}i5=^yF86T875Wq3{^iy>CD*cqqtjeXm zQUW(yOpUTFRNLwzVBgwD=q_`5Fo{QrUfgh8vTuX82@t2g(0+%X?ddu|CzahGf)YO- zzRjGvSs1vv!98X7XDms5&XUr@p}(M?=Y0mZj9?WV^YL88hig~y=BSC;38Xi#7z2`_LNEP+Ezqk^P3-sPCSgH*b?X@yQmq9f?lXd$V?-5rRD6fl- zZ8Rx~|E!d`yZ3!Y_JTOi;BR|7f|P-bH~NmPeuG6d6Tz>A9&!O7PR}153Q@@pqJ&4R z#jquwZyPRQq(-Fdd?Nb0L;P%ioWB1@dniP~TXk=!j3sT-&ZJD#{JpsB8T5Y3UQ>_98}>*3#8B$N>mydi@Wih7lbJm1x+G#x*8_+M0A z<9A$LygspQG**)|wvEO~qsF#v+l_4-jh!^M)fkO!-Feqt_rslkV9u;Fd;j)+=oTtT z!1A{W?xXN?+E1(Aoe~Xv>dVg=Hz-rPX;hy3@X@)8u3-s1b*}p%`%87Yrn(3jugV}u znCf<0$-0-&AtRhxZS@u!(_(=UwSt(@S_#68thMh!oM(g+aRy+00uhzI-03SWc@84l zUlKW#a=%EVu|>N1)`oZ?I zdYL9CAy!$P6Z?`tSpHI6UA5SZ^#e#G5*VME3w4`o)QGIevIA!dq?dHalbJxVC#MtHVm~wx{P>y3tL@>H!+ZndMAzeJmot z!6-}!Hs9r!m+2L(Cw%alzBGbSlE)R1;dXIzcmo`hN$~RV!2AxJJO1$b`IIn{Zb62B}4__^W8M-W=nAUsOs+y*qQ(F>`Y+Yf1vsm$DqrPTin4 z*U~p%2d{xy`Ku@LpFe*vfDOoPeUO#xcIWl4?PKB97`wL_$OjFlXC($^77UV)E$6~- z{Xc=+*CH$-SF>?y;b~a}IDl%hf3(+X_I};>%_A1%(3`LI9w;&Ffd0Brhy5bkJVyvY zf@CF`Z6f%0Kjz3xz;;=eFaB(o--?G4os_8a%00R_Fliml8JnltEh!bm`57GqX=!)U zdJ}cdT3GOZnPDO+sa?m$OhKkP(zFJR7TtSR5^4;uhcDyHhcygK@XJ-OO=kZRh&qkm zE@uSVTCk!Ch^GCyi=ZZ*D7rhDMOMfN5tw?f%e2@AUu;TG3`XCbuTdhM_iUmcgyRF=<|p@DzXkl zLNWG_@0*zMak)MTX){^tKh?mpG-|(`X<{TKe$fsecjP6i=sd1~JueWIjLYo5Anz%; zTKw(4WUBQO9MBK^)0T|wN<-(gL~5bORSY`xz5G3vdZ1?s$Jn)34S;=6IO4I{pO zF2huaitw|elYq0ZXs7ud|F}EP#JG3wo4}L*01LP@Liq#(V1>ECM;Gv2rLMFO|KgqK z7~=cM?0B6{*G6i8sdGJo^}GtTPPPGWgmnMKaE3+!QO{L9R6Qax{|tbR4H~vHyXx`Indwzx8$R5LTzf3Cy70-ld|N z-1I4ws=Zq(i?*UdSBln6w5cBcPkp?&04Kj>pAPGNpz5r;Ge)A%_oRAYdpmXn=ONvH zl_NkoFI={-pQN0^>R4=^?Q`V`PJ<5zWM<<5E(3qhA9q$G$cZO{8v!KW<%-mQ5khVA zc^C0pD(gyleI@vu;bhCo&WWnL4|iz1cQc@#&FlE11dyN)?^;enum0I088n>qmi||h zry^z6@%1g|p8=4|dw!>VzP`(THFUMj&J$CX6Au!5m;SB)SXJ7QUNGE&%^dJ3yM>nW zL>6MIPuaA%?%rnxm`FHzOOP9}Qw-Ynl7c3BY(nWY-djoEnVq7m`FX&z^A3z#?R9p3 zAfBe;w96Z?3nrq;(-6s_q?$9Oh5@LgZa8^Wvhz{2IFRU2Q&l7LSyO6ZC4%>ZKI7NL ze?rVh?Y~UhI}^dM3I}^!yti|5P2#M?kP5PXSZrr2;0GDJ$pQqy7LTSD;>mQ?V?Cg$LXXSIe5-JF z!dBZ3{zL|#nva%>h7PhO%z}|n4EEI))5y}fL@xrpvMsA8zV*vAsmF7DAtiCMk3oODCSu@;KZStm?* ziVXzO5VW*$wQnZ zNDNP>hXq{g0KoKQk-wLiY{e{BQ@2XILb0 zV3Wcs(peZbwnH~U*_Hr6RT3+x&LR_qbx)&v>>Ck!#Vy1q_MJ^b62qMN;Lup6)28A6cB zerKNbRa-IKeJRUkBOkM*L1*99t}82wfdi7pGo2F9c$q&Intd*;d!JY6x}5iLJG2tF zA{snf%%6i5Pc{O5^&;^lFPr7Xb0HIjAkH$TEc0Uq8X;>M(is}4f99}{0Axp83Z3~6 zGSh9Vx#$iQb|N-AJo@eG2@W`iIf3-BIV{jP@`M4kn+>Q}c-P~WmXO{#)xK$+=t%8E z*2&!e!ZFAS(L?6XznH?2*9NE~fc8g^Wel-@{OTW4=XqEJ9PeIITf2%dPFz7fpATIz zqQG|KDh>(tJUbyMK)D*RGg4PnIR}?nN=9M@M3uLop&rD>te;OkRQu;Dsqy{%+w!}R zRo{n@-xGE7^@??lW!-m$n$s$IkvUZI-^cQH&bwque{UU3OX!r|$6HTF3D{Flov2Be zQ(#F;cKG5qBmglnAoU#`a*iZ8ESRaR?b13-6?_&&fRD@PtTj))+#r7vKeFr8=()X} zdqwdPKC%lfEL9diW;!-^FyCltujn9d@i5EWdJ?h<>M4XoHk)P4n~Ebh$og%mI?eY( zitoKehjjf&0S_a-!k$MkFEXZwc-P=a=&8FoI8=~m>emG6oQw$S`P%cvU6dKjk=kZO zC8Q?ggKP#LPueWq8Smf5qdhxw@#I>q=1GZgr-kE(DgVtvk_)DF4bTg8X?BI2e^7$x zirr3~!i}ru?TYXtABgmxe3c*knakxa``NuZv@?@^DEvrrDxW?w>RiBIGjb^;C^GdU z99e2;WoJou9}*lPCq7S8@^R7Ui+^f$RIu+(yT#qAk@f>7yx`m^fqUQJPMV7S$G4j$ zC=>zT;komVzb$qfd{cm0pgScX13@tSfanb2ub%_EU7d8#58Z*E(F1?=@0k2Wy`&y* z+{tX44$y7lm69rOR}Pl>ss|V#%G`ln*^Rn3RJE_Imag6#!STJXWXlBYaqNEHe8lkr z8nI?)BZ8hkdWSLq|>12!PmvzItr7 zKi|;6QVoi&A(G?(gg`;VQ=tDDD6k?UF;S%h6fAtRwzdWVC~9l->CQKmg0V3>X@W!= zA2m5D4e`rCIH9v>@fD;7*LCFP2IY9$U(_>|IaWYC;Pc|Grov{!cG6bf&_n>Wy!$V9 ztq5p?BGqS#pO`_zd7q^HA<9x(wfi)7iw?@riK2d2tMz9}K_aRFX$~i`_xDF0B&9KU zthjbvM(u>ys_jiiZ)6ZXiM4!Za#xi7*e&oEM8V6x4|srVI*;{Td=}!_(-lT8hGY>x z9>>uMEbCPc-+4sqrY63c#1IEyTUzsnO+JdL97WV92C*G+5UiA#mrZm7MZc|N)&&|h zdN{Qju~PPn?&}r7`I5QOIKIZ}b_40sip-Bz0jn z4TE8$0PD+YZhb;vehh4C~Xj3 zT1mme+5Izo@s5T8A61)U;}N|onq0gwK+zIR?ZUI*em6~1fyiu6EI7+Ex9Y%>b2)Fe z&ECW24MC%F!vW4zrhvTBUPF9pl&y2S5}|?<{NoHwY0ET}l>CJ;4R+O1Ysn z@2L!t6QYj&5BBM@h>r23CIqR5GB_WJ6*8ME&iVeNc5OVgJ|$+xf&tKOqp#eT;iv4- zOQ=_z;~!~MB_JGeZ4BwRUNuN6)UB#1h=#W=r$|cy1)iL}HwV6-Y;OPLgv|tA`Im?k z*)pU4u@E8#XQ(1H{mm#w3d#KP)lz8Cm6t)6U7Jzc$7JKci@Q`l8{YefC~jD-BRM=a z<0G2EKwlWt81)FOKQk3DiTXcN|O2ymAm4M8)mfzl?<)#mRo^r_OXG1f!dXR zpb|)|9S>Z_eYv`EqJ-0}yEs2z%y7@S$R+Pl<`&0T%>vRlgB?F_4Sul;4L!dckagDh z`Q=5(7dj3ti5?XVzta_@MyL{YNHt-wKE(n5_@MGe0(yh5kN%#1zQv_(`cf457R-N< z4QN{%5q=)I@o2CdwukTs2lvI~BfF!U55AW9Ji;S~_O;pf_txe$i~Q?m`09=PxNT!$ z7qw8e9Fh!k2?yAx>nIGwgK?wdv9u)5wSE~y0RZbm!By(Fn!f$qAQa}y(%!9&;SYhj zpG~l~^G9mB;JsfwyrtIS^$!oWCC~$*A^hj_k6V&4cM?7|4m|=i!z4l<3CUHcJGsl1 zxOU*488&^)J~_dJI6Zt^5P48(oGJ!*l%_!M>%l|+%?wShfOHOxeh_tL(*QBr%wPW_ zko{|nu)!~+slDN3nA(Encx4n_6^Rw`|F9*NbI*#RB8uGfWl#Z>lc4{nY>6+~Pc;yn zB-8N@y10|G%dN|ZZAoy-lTCKhB!(h^`xgVQ$j7Ns|G{H9SOTdvdrhO{39vJ(xR+o8 zcXqt1j-GFNpEuKiAlsfuY?te?_JWNs6cPEA;QEDfCi5jOKfva z#(UI}8`pO8NF}8R@gSq0JIRY!pt*fgmqSQ`z{^CG+dks?t8kU$EOeS$W&5h8FbYoN zyHarS`yac{jF76TUVr-s_uTVTJ{b@X{>5we(>3qFInxLCn*+AcoVPT*a6HR`RVbzC z{1uva5EgI$Ew&VSqza4-i%cY%Qg8gs((Lib1Jds1%GR4#m}r>o?U#%mjK-z<)j~ti z*)c+SH~Z#3v)fE{_&8R+MRV(N)ZmK{gb(6WRoAaJLo+}~Y0*a|^oFYI8lSUBQn>mCdyW*sLck4zw|bP;O8 zahBbKm277UYv-X96*ggbDfpsA99eEf5TITVps1K0v`iFU2qFZ=Jk1DH>|$AB(OGI)w__8otlbxkG+<7-$D$uWdP zB050@6v`V*OAna-El2}tY01g=21Z8Y2Zx99hKF0n?YhmN&ZJ^ctJjAY;bJn#An;kg z#%#0328zWu0!3g&I8P&Zb-jcTIYV=M?*}id6y`bNrsXD0_+NdW*WA&YuWv6x8hP%{ zrVO|d3lL@vlVJ;10KBC{6&H+Q2QxmeOK~<;_dO1TE6cw1znP@SGdA;#Kqa?r`$JkJ z9T|JaiCEyOixEnP-jxoH*z+iQG;(H-iE4q?V%)*LvHsnNaBJNz)FWfJw@0Qpr)hZq z7&~}VA|*`B3|u>3*tB45uJ!NuL{#KnI%e|XQ$490V!qJ))4mjj;a$^yFW?rVz?YjLQpxazZ zWi+0_q8nkO$>AXM<&SOHrr+AXKKG+UiH(z(@I{k>S#T+y1D)6yYo1CMfBk%`!%CeO zY=jV^B-;t6wm<~B47&JWMnPT-NiBr|0t5eAuqRD1a;o5(RsN$+{LcJGH7QNrVR9e& z16A2K)z7WN`LjDN{+%O!+YK(0ZPhz`<-@+ri|9Ilo>eh(maQ5c&}LY+D*)-Y)fgi> zvt-RQXMbpOS<(z4A+OzIW6DL)AZT>L!va=0AWO!@Pme`wK7lz>N+tKHR!y z>A8h0zB(>%mJDybU5&s-&i8ul8m~jihI1RiDKwZ;E$zOZISg1ozCWPwe(JXcSs=6K z=(x63)2HB!YNE4<87ZNPLl#SX$w}wynK);DjhW|2WM7(CkN9dXb%mR=y&dQeJjxeSQp2zz-Aat@6`(vw8&u7g~l#iD4nO-}FX8aNxN^(V)(ueJeNqn3eEC*)%4@ z7#p+JeR8N7nyj)n4~(-Kewr7{=<>Y4d^^4QW8Vu_Z9mD#);C<5{CV{Y>(t8cV_1iH ztGjgPs@S19H-h^y`g@TLKyqjVOt5sIL2tTe!Isg9WOCrr4;QyjIiYKzZqJ)^U_fGIjN1@OGgLqf>B?_BJO%<>Wv2)`Hu$A7xfovfw_ zgzz(3^SPTeNkg)x+ew8sC6O<{FL##yHp{g&=koRt!{UG&Es@9nNJ4C%keDTXaJ@W) zY1v;(zDD=JAIzBfEe{U-Ws94GBITqL)oU>4Fx6!vdO5~G0YSh%zq3Bj|4$3R%RAmi zQWXgX=^IX}XL$Q)_O7$0d$|MM7K55HfNHO=gaQsUFo zQb)HskCjbN5^;iaV(OT$A(FZOP9}G1d)^#2{%4AU4(^|h_3kn+O=yecdCsF<>H<7% z+`+Xz&*9Nzp~7;-JR_2KV2OfjnzM%`Vg20q#skux6aZ|f3YM)go6-R<%CGdl)bhDf zrPBjA|Kb_A=;WTdcKDgK^i);RL-g_kON$E&S+Y$ZKMe0l+D~o}Bzf+o!j3PuT)yOd z9>HMO1SMeWE)`+)PH)J=P@xb*nhvFeb+f!ZKqbHpPf9bTcjc^+k{yU8ADo^X3VE9E z9GMm<$Fdz1eQuGq_7kpnHU79yhL+=uMYLGmlHpznCJhM&}rAC{t zq}BH8wsY-0=GZNU3r2R@koSV2f-@fW=g)o%wtfGYxud?TM?z|ov)_rslbpo{|EV_4|jHfw#)OC^a zN3+~<`TgrveI(zHt@bqf+|4T(Jl?f~h?H4j+B5K4E67}7_U4yJ4F_@AsIvnCI|3xy-?~4{BwQXJGPa9ky5gZ9%Gj}IW4w%&nr>?iHzL&qLrqxSTUQ&3 z4i8iY7s>iw1ZVod+wQ$iOFRk^QYrwg#6VF}+;D~c>%%$Y`9|Aql-lQ}$5FN%C;<`9 znNe!;y%PKLU*&S4@dev_B)=$~bp@16Bc+f_^e}D)|rx2&V>$^jwnD1@Ze;70zG}*o<`nB^f`sBcd zy@rh%k5!U&lgAIcng78hOVBXB$A}Kds?0|00^RBO;&fFS^Jn656o}<}tRhwvA?G^^|`)Z6a z!&<(W-QV6kj$BVju%|;(>Mun{3W&X2)X9w%BlH4Txy<2Qx+4v*+45I|u`Gt4LgEB? z+=mxgsWi@^Ny3It`*@9po<8Q{dm>dCHn==KJo_&FomqRlRmLrNU zwZOkkU31oP!7L0h)zO==(7=IQ}TSc#8;`v!M|SI@;J+`($gO56ct2>06jF z8vDXZp{9EPh}Icm|LEae!MKUnyIpZ=1liL#YF6sLqV5vZ!yfS@L+BMDGH{zdzx`D5 zJjVIli!J8h$57g8ag7RdwNKhFDfgEP^=%}CZ0sWCDLrs+68Ljr_te>9V?KAZ@^w9D z+?m_%Wru&6S_^7J6VD?GXL1M%0~FFT^BTI&qN|TQ(X3uwJ;hL2gWU5V0r(H)2;nY& zHT#fOaJ@~ymE#4{oc1I(Ol~c3h9Qe0!5uhFNzPq!syJm#hsx13!@hu?qL; z*#LG@N(yoSqeD*8jVdS|qG|HcK@Ftl*WSB!W^UD!pZU4pHJ@6yT0G}$BOc8DJe+S3 zC*5T}iK4syv8mp_j!va6DCeFi$p3Vo$?UShwBa-^G9Jz_cPJm#Ta2;>fjes!K98uJkLJvNK` z2XTwcSzq1qCMHcp678GXu37W7+-`RnZ(?dUHqjVLwqE~EjDa=kh!5?lg{WoB2vvf( z-E#~jA^X)oMLsIiny4tY-p7jcC~!< z*dMY0HUhc71iq%O{y^8z$Y_|-wW6_{qC+~%I8n~&m9qZ!uQlx|F2%a_FPD_bp;I}- zI)^i^2!d9CLtjPJ?C|ZQ)$K4RotxF|Vi617Jx3wD)^sY1dtTmS>&R!bq(pj%@NlKP zFZZ~IQH#e+N1p<>^yJp{9rwv0F6<*4&OmbuwU<6!jBn`4KK1!9--!E7HOe{M=ZPyd zA!SrUK|z55P{1<)!^Jb0cerq0+>Zisyzgcu^`wou%Gs%;St4c63gNeyO~ORo-vZ)x zFHp1x&&|y3rAbWiF%A7-Z9+08@Z3GVsZ)}mMdGpBqPGJsb1~r9o^@d!8H&IDeZo;I z@NH1wA5Pdd+1y(4W^1d27G#yRJQqM+UuC%|pe&@HI7tQXr3no+KvU1yFTR8T`Z5%f zgkt*C>X@QrmRk&3k#kTyTq9fDQ&8;103QMtc zh%I%(aZ*B87_tff-Ji^wnUE|qrtv2_k0z#%`6dZY%C*Hav`AD|Ay#}=WnP20^d%%8C=DN;rw;D)KL z(sVRWkG%vPPpug?o?M(89X`j0uWoNf3o`mW-DY}%o!*xpg+24btOVa5t_`m?f~os7 z25|9|nn2_mojmH~S!lfX=B{SU)9ewa(Pk1Y#{60OyJQWm_xZn(#@Ee@wVU4Q+fa*t z#+$P66cOt|tviVKas0(_5UEVDw}qk9qTKTx0>>S5>UE?PtDe(OGzwPcWmg*A!3o<&-+l4F~29EZsVK@$!# zZK+r&TY{hSHaOyVt&mg?DPP@?>swy8GbN7*c|7|uH3_~|qGoRo$grUTI!>iK?Z3wb zp(0i=OH&yvg>8@|V|Op4mE@lw3Qj?9&9NA&Mfdg0O0t&jzZVp!_Uf65dSbk7^S&y$ z_0or;*EqD&>u&(A|0i0aX-RFR=J`mLZ|W-a4D8@X+9%bIt=`i;{?H~|_vs%J8r0Ss zt@T07YLmFH&h00%SoyvBj;o5>#(a@(vh06mr3WfPSY7d7 z=|ojn(Ll5Ai7n!gCLR1e$q^%{wNDWZ(OsVOduq)ws;%D0D06tcp};Lg@D*HN-di$W zV&&yr%fEE@@tX#vtjv(J=%+O=wuYdLFxg9RJ*04bBN`Hdt%Jy=(Q}h$@IXOf%SIbw zfg$+d44xRyExrZ`-M0WN$TXxpsoN5a(0Z>0wlJG}_zYUnb2Lt~3EXGw11Aej?*%OC9Z;s!q4Wm;w05>8? zp`VKojVK5Upy$U0ZSzD}Zr#{-;vLVc`>3}r7MUFF_U^`G@t71-y~i?npM=7=R$)-? z8Q`x%)fLNRoDO2;ASwe-S17*k2U^`NPX9t*Tikr!6Sf%N?|q1$-+ryC5U$TQ+GN(p z;>0K@^mw*9fi{yz{`;g3Yv{cELT1{^#-`#~;}EJ|6fl3Z7ZW+8)5~iRI(Tb=s2jZ|} zb2>9Z9vn=hkRH#PC9j4Ls~DubZsr=J5Tt@LN9v6kRI6i(qXP0^N@n{>(!~fhXFo^m zh(_VVm$F-c-T{^#gp(86A~c<-8pUG0!}Nks*?VS?r@xZHd*xH~5~ zxsf`{FsRkq#>&d-wfKGu6ztqHKcnvy?h!~PL*^ArhmM8wEf@V!b@uyxAHQe(Hcf1w z6{*>`Zxixw;XhAlGwI+Rnf=Bn5RqcFf3>`jf08h^+t2~ae2hU^G`?ivC9ugMZRRwr ztZ6+DJ2DRQ_#H&dsO-U>0=Y-OHuK<2or2dy<&_sbs-xszC_dN_ei8`79#12hjxTGw z2-vpSep}110<*m-hI7Q`p~Tae6_9J~Qbe_+0yjXH>Az0Mx((}PV~wYbIsNWV<0x#uFSut~B$SZ^>n{dkza1}%66EsO7d(v; z`@-wJ>pSa~(Cm89vQww9|Lv^S`oohe;2r%nO}s!@G~8m1e$#bv}A* zf**YW`a7yV6QZ}1(dS}0T{69N1ay&t?GtQDTc!Kn!3?V|&~2;uMMP7~zBuU($3HWu_%gf; z%Cm#L%yXU1tfb0D`0b+C-<*Xkii#%*jXVmenBMg>Eu@d`djmFqb#itZYKo$!W(t#+ z8bnRcBbptCA+71zb6pT>LE~#}i2hm|$cPE}%hflaP^!57hg1QEqfg;dmsp^R)p zXDdBDJr?{Pi!c@%{Sn7sj9;8enoLY0RUEjUnawA*dSAzQ*QtB7bq8Ibp`m=rh501y{+1GL zYvkpmj8Ibg`Lf3O3Io$0*w*HtTzZe9uJ*~@`OF))WZQjdko_zI2gX*Cax%RnTSgWP zyF{c`Xt(fW%^)S)y|>b8^2^44=?Zy_8Jckz_h^ehroQcv!WJ=Fv#a_Vd@OvoZd-60EiB{}PwWz=Y@S z16>>Uh&#uE$BThykX>gnUjh$Ufq8SJqn6+@0QUL!xfIfs@bDYPeA&Y6lokZPG!A;t zR2v802|bhJe2zpfBxj!Vt>yf4!uiKUOVCB~dyB`hC!ffSo~)bDrsBA;X)n*e)JfwN z!6BdD+J-ktfg{rl1@EoChqYX(-W*^nR1Vl!;pDf|3#@ALcfjGm_1^`QeN@nM`&B|h zj)nj1*PHIjZN--*Zz2(7B>*^Tb^R}W4|z}-w93spWqA5|#3O5PexzdO{cZ-2C2gOD zM%BQcZJ-y%M}CVd$IVwTI6kK=9My7t`{5@Ngpv=br8YTynEa(|WSV)ixYqB9#rt`R z2(rABzYLKP%>S0B#7No0K*GYe`3k&Nn_4Odwr=wA@@bfJ?68b;>(O54M15~SlC};J zT?r+aITVpDzI{D&R=@+DX0h8aNz2))y6I{O39x@z$m__{LyW#fbu_r>!ALGnqQZau zqt{K=WB%9K(w>Ib)!&W7&|fd)>y6$fmx1#IbzFxz%%9$ZQO0|#c#f@}_X}l)ja2lb zD}9)>@!Af4if^s=(DdzX3;EuT$*h~&@m%>@T1M>HO-tun9hYVNa0Du4R=?OwNlk?c z)NC9XwRhbR;Q9W_46Ovo=jQ==%q9Ph=Gm^X5RvG_DN+u2sR{f4JLcZ>pN93&@vNTQ zo-2t&Gw*dRu?-^HE5(Q!l~E}{T;6YODwU@q;m7)W&2cj=3 z4KG4YE^psQg6!3AP`!*`3(la#`=5`*JkI|t#a{C|USD2fH6GnuT#_Zp5{~}sKmc_w z$3&dhxtyvY`Cr6;l&00M1TR*qn}N*~b6wyr{wV@m#DdCd{PtpLYJ4E|=yQW_-ByMX z0=3#~&%8?}3@&!m7!7v1Ub1&G#lbWbE>=EsT^7Wwzc}3Ex5K{m_K1VKB1+Qw+z#U^ zYgT^Omo$jf>G(DuZ|v1_^XL=C5s;9}#ZI>~3Rz8{wmVSZTPa3sA{%noAN5L?bs`NZ zow5t#I5kPvfi1i0F&$=qq*^)qSj~Gi(sBuT_uNjiHrXtW5EjVNPk5>}%hpzLO3XpA zE+OKd@s>rY`X{S83jj_5|0+em3VnZn=IFLBuLxCoRZ{5lDqAwQtV{o(Gy1efGiEJA znY=cO$#4nW%B$(1cRU zXeVtF`aGdr38Xl8dWkl7W66>~n)gvZ6sueVt!jwJ$aHk2OBqBTFnbk-qT2=C(rt&7 z!k8Tq_-3s_GPAYm?ZvDI0|DV}7#;VBI`?P$%V~67EG`~i8y0{m{_HnOA~FH66* zx)DkX^p3@1gC3ZiGxYjW&;7PVukE?Ot{qPguilK6W@;R9%F2dGb%Kr|;vze7sRm;V z{ub4~UT@zxc!u2#zo>3i16{*Ale`i#yt}1qs~uuo3*UYfUGn%lz3zgtPt}$+QwFaW z3m|*Yf(HER&q31x8RdRA+mr|TxiRQ2M0&(50=QZNjGI}@C|yS06vRC>m(<~Wx~eDz@E|Ud6=LFjA>27-2G$FIatu;&O{&^z+$&4 z@B@R#dgBf3;l#!JFpy}${wkJM&?hoEE`xS%$Zw;;g8wF0ytf`uPUJ~EqkRyAy;E5{ z%zoX&_PIwuqeT3U7DzE~4wm%u*om>-W%>70WdOe?iS%Yph7l^;m6!C?IpXMu$7GAy ztE$|Aip7xrko~$12CFz24Ww$~vO6^PuN%jfuWk%WMenbu+!g(8+e$T9R7()$A4Ro4 z-@{#3X5>G{bfeH}sW_-$VP!wA_g!|~(J|(0$82k<9`9VY+h@Wif9;o=V64GZb1CS^ z0&TEuhoKd6P|d?QCRp@^^Xp zk;MNMRE`3JLiDCefnF{gJ+Zd9xCn|M|G=5$!_7TAJ$=1T(R$X$P#h`l`^-@Yd%`o2s#`Q*B{uMWTOKOv}de z@+-Jw`%v9K$AcWq_j|mWv!BwCE^z-`6K^#v=T57n&?D?@v*<&t$|TSetxpg(LYzdD z^fL_(q6+*~VIK14Vue4`+#x~;zCAF^9S*uO5A%>$VSu;<9Ple8(BJ??74juq0SLOD z$Hkk)ezxlFZ5mQ(H@Ql&tW7}g(W1GE2D(j(F) z())mZFuTVJ6LjjaX`M>G$SeU?t1svy#Tvy!yF=hZK3ao225fTW{Z;MXHyTXy&07LC zs_e~#QlxA{UssH?TmF8wop!$*PwEKP9`?`DJeGtLB1Ev2Ri&w^gvwy^66k~F)px>< zQz>wG7_&=!?7PZBapJkY<}|Q~3NtlcYna1QLy{CJqs!Wss+Wc=VDrZuY^XqHSUkR+ zwS*#@Gi`61gbOcYa4ek)H3}rOSm?f9C4l$82XUh1Wuo%kbbArGOjh8*n?MfikihOr zbd0J}-gO?#?kAqu^NGE>e{NG$CWQ|bjpl70ej(s7+p2f_+^GftvbNB&F?4oB1Fy#~ zA7yfnONG$@P`9!?ly*xpRy9ye$T%)!Y(mkE3O|-KhG3_4{zKi=6c{we&woPXC!&oJnzeyD}FDb^M{)e7ORI*--ETxO)Dm!fst5w5E*ReRJg z>K)8-a$VXA3Z2@aVhW>wnko1q6t6A}rXQ7&Elo|I`cWKZrR8RkIx8yRHGjO>qawGv z-XC4B+J3yfBus+=JGh-ph@Ct^%QS+J;i4{o1C`Uavw0M+-HbBnWz5SO-C&Y-qye<_ z9X(x8Ebz>Kuo*m*;j+Xp{jS$ukmW55q~KIz9bzzw{`(u$Et1I1&3y^9LJOJc>23X% zPl$*tc*6u$t>jP#zlkUYgOaxXihQ*JtApt!2Q^nSp-0?}H@q1EygyW{L0K%XyBa!r zEQ)PaJy6V|nX-EsxfxN1nJ(4n@ic)A(Rn5pG(oF3ps4IWu4&vb=_dIqxjaMzqG$%Bl{13>8yXm@_TO*vYX; z`S$f;LBD^>%eN*Wd^7@sW6QFUwRnLn*)YHX^FaN_VOq>h^eQ8AJb1(N->9GNa-7vo zY{WY&UKlg!TN?wmIl4jCeee4C&yPA=U8kSX-I_g+qKKgE0@&f~&!LRiwBhx88M8^x?fGR#80Ki%#krK% z(XhA(@tzauF^>(k8(!ffUj>0Ic%&o?mrW=|O5a zx!R_tq*lK;ui&X5z+}QviZN+hu+flbH~bqx$iy0crBYslh38r7J)0%^1GyHhJjrhj zVwioCAsEQb)3Gpq58-cST+W7rJgZz731tlptS2#o8gD6Y$Hkl>?LUFKsAV`R*L>BR&mcVJA6?>p^d)(^p{Hbq@z^Ln}Yg2S5}-M`m?gAA>ojS-G} ziSaD?@qb!?)g2P!^gzYb2|qZ+pBe7pPDYRD^PoZP_u=Jt^z>CSGz}x8Qs(;Y)Gl4q zS-_hj=#QIhafW9;2j3gJ`N+a6Z8~iaP&as7C*y_f^Sh)7z?sT5Sld)oj~%YZq21j{ zFNF?0*`m*Mg7eSChbpw5rid2WZv>jbf99C~Kwx<3MNGE%e7hL!YYj?`uZ_NIgzCug zvmqY;A=p;X?HdoPral*_#rSmuogTB?7b#<(S) zG{R~G`S^HaR>vNQT8B{z)8J$@Euw4x`ZwBgdhqcy|4-6RGPosV1hNYLpp?)~H1m={ z5JT(zJ7ADhhm%Zw=|Kp@Vjej_sy})a{DjtlBbSVEwNONgfcEEx9>aH8?Ko9r@+UP} zan7D~O;CV%ik6^E#?4>U0NY-#`*+WR&3+XrKizwEq`pZzZ)~Ab<9U-03Mm&>+IzSV zyb*_{|Mau_@HrUm3IhWYE4~y)QUEis**vK9Z&VN+$3g0~eSc8|;7hn=em(3co8j;A04)9ct9hvb_%^Q6FZ z=9bMdj1*g;mS0R7O>e@?qe-1TnFxBN0yH#wDX?*RxI9SIoMBFaE%|MbNXk;Ks#LI>gmA1uZ z$PyG)csVfPKgLTOk4h*$Wpcp4`LWH~nD!6g``>!tVIs8tdK6?5?RfL~}<72-b%{=$Ukk=nc9l?9-{_rJX9|pi8 zBI?evtr8_z@-XIW2n<*4{9!X?CG&pD_??;1(HnR(I8!9)!C`6_GTn zU?pj3UqGUP{`F)l$+-F!WV^TBgR{-9Pe$)oyV8=+!Y!Nk!!b28)oUojT4u|}ai{oTa@DN9M<$^T>+P+KKO#mA z1}lw0L`tNLddr>`aZkgSz%VHa)*$ue?cbZQe^*h76*^loHAVzgL$1q{2;)(=m$WL6 zTJ$Ysf+E}pdC4ip7rqI^v#bkz0WmwCYLlWms?u`(&5kNH%@SY(T45Z9o$e0BWPup( zQ}cvFfSln4KB0hjmZ((b_ML`lFcv9##01z3&}%ctLo@@>)NQe<)o3&7 zji^{?yokkGlbzTjopjoOqckiGsW#(2+?WC%7Pg)Dr=m_$7~_U7+E1<1>wKB%NAFGt z`Ba~__7NU8L2zkY2(a-k*Y;ZE_3C|v$D@8Tr8weYD>!w`eG(d}=51K;$3aLUA`ep< z{iKF&w_wy^;WY%y?^zMrNvPAKFu8Bb3cH&My64ZGYUE|%U%&u%6R14!!e;eWom`9` zC9AsBx;P#5V00STYsCfYxad{AK2P@0U;zBW&msZYpUu(CHz$>~Kcmg3kfk|9>$P|%CfS@RYc&}y;ygor( zzcO+$D$BXcIS2Mk{J1o*7QK4(j-2(+TQglj<@>ks%QWnKg|~y>>wPON;YBNyA#5dh zh`Op6EPHqH)I<3I2y+!sAJ3TzoS8jy#sCxHLXa$s0kij0FBYb^;HNc;x z@^;A9J3*r}VU*$vF}~70?K=gBfN~&AVrS;&&bQM$+2r z%=qPXgekjNf_#1Yr-Badjv`!_3wp&yqxUsDGO5q%0)|3b8v6@!g_s0w_*!S6G-A3! z-OylV%j%r@4FCJ*uW7yX`H6SNoVCcwl`LK$Mk$@lLJVv6OqG{v)|talzl{RP)b-F< zq_vBbW(M}*O@IySK%#_}#feJ?p=cz&IaG*npm>A~<`xjex%NqmkAIMw>=P|}aaM9- zg@d$RaR9s7M^1D<444KHnSQWfUdBB}`lp9#Jz=iYahs21eI=rdimV%_=W69|a>fJZ zz2VCijbVo=@%O(X@aT)Xo8x9M*eZGj=BtvW=0}Uy_b=mq*D^Sz4O=`vE)CC|w$;lY z)7~GFW;1H_7;B#JcmJ0(sx+4qbYducB}9F(mz#~T;+in=u_gqncBHkh?&*8FBe>rB z)bM$hA@q47c~O*ilgw=hT9_65_qySoQ)m-GC69$a$Mo%_f}2=ZK{us3jgJxl0k90^ z`khf++ykF@1R%m=jVDTm1BXNBML@gXGAy!N?n=jSXo$p?tnb)L6_2nz%Z5xGDZNZ zG_6LV&e!Rv6I7i-H4q(T)_&&|746vgIT`-;cT+oI!^gq+ERwVMcpI)B$U)pF3xzK( zNpLU#+NyRtadA0_-TvKDC#dVPxR^rL%LG6}EDbAc-Kq#7GYqAICrbe`!7L5l!PJ-x z!|STW&8rM{@S1|8(*SJwKABS9G}hNy-cegh*a4mbTI+O96Op|!UUusV$IJCFdJfK8 zlMv_omcd|0qs14yS`0nkU_-59GmIS*O?}q zgz75045HfFM#K~;E!WXk1Kr1bi#sXS(Z6&pes4^ahN@J1R7-!04#wj=n&Wi9qrlzI z`Fh>$(>U!6C-m6cLQRbbozv5x!JJ_c~7+FeiR=4Fc z#%T-w8rS5~0mG^+0nvWFGH?)3=xm zQ5A2v`u~g?$gww#xRk}eV;}O|se++HeCwhbyvOSnl0r7|i6}a#w0ER3Wdu~LN7^_u z_0X$FnzIS1K!j9QGYB&;Y{!B}m;j)#d8qGUxDQF5Ipe7DQFIov$9X{YPr(++`O_Hi z%IVS0WDOUmB@GDKf&a zA*~X0jP&%+1-ksjkp%b8W2wwrUbj=f(x>%pB)&oKBO9_7-=eC~%L|K2iAh83b}x_r z_h2YAQO5r^LD~j$>SSWO@o?dB!xdm3MbW;_ua!YWnW)M_aJ6zDEF;UmJmU2|_I#!n z&mckAN2gPhRMlDef4<%;4y$aCNhX>8^(r$lhciSoz^i@}WfKT8;D6lve8xqC zqf`>#!|D)4TZxDcU+!EfW~JdRJ1vbl#{8C|AwT~WZL9;&n8C7YKKIPXxfcipy$Mao5~tzN7?TPsAc!@J1*%SgXmxm$>nEqX3JL>bQADHP=jzA;Rx3DXn>M;X;V;X97(ZA-rY;im{21`Xb48E_O51!9j#}#5KVtBpQp96Z`j?_v>Nb3{) zL4C`Ef2LBi3JfTJK4XmMMR+HHy#{EQk->;-l!wv-@QI=>6~}FhQ(9$d^E;`3ZP|p$ z`(sB&vh^`~$6tLB21j1di%f;eh91D{Q=Gf1k@oKfx zfh=}lV`RMndmToV$3A*os@m*1H78<$uhE^D#Uy1> zM7&-)copTmJYlZ9bp|e^M=7blGd+cNcT7nq3~OCBJ0x)kNu>vw{&9@rfiYO z##cx$J~xCV>PZxlzFYAo6xR z=2l4(OD`}Dl?iJl@+fl{eO1kf@5_JhCSfugJyy4)I~!?}SO~yGZZf@l&?;tG&YV@Y^F-*-uEu0YP)?Ee>@yUXikMkhR1E# zgCQPl!B^T!s7AOfi=*GZ`kXt}m=VZ>f5JXQc2K+shsowDi4GbcOh?)(oMfE1%T0?UcfHmc-z$!x$xxA@&zkX#;Nha z`IK_Cuc>{X*&1biLj!=|Wau;syGo?+_}~^iB?TF>NUuK*49XRaWT8L5D6?^xytGqX zbJLKjq#jbn&)ryaq_?~O2ZQ?G7%K1WeztwCa#=WMRp@68GzZuN_B|+cfNe_NEZx}5T>OUbe0*|2O;2#GwrdzXU?X~W06jbzfl>~S zlas70JP{#bcO>iM8#p!m8Vp`P9j~sYVUQ<{oj~~F_hSOQ!C5cTt&pQ39!vz{^E)@qFKnU8Y9O`cQeZo_My$S42Ax4HB}7Hu`HLpQq^;sOyCe zMXf(xM_bB)bn3g>YmmW=u~x#%@V!XGlw86^R;0slV9V@?S3ZPah#3CAV*AJTfr@uf z!<;Hwc`JNvSDi%pejhjEbt~ATL|v*Zp6kzc`hQomz6=-4=BMK~iz#k#o zSKyWPH?(&9ir{DK%l4&~OmefdtHU<0+xf+-!^LM~^586oatnbiKtenT9wL)@ewTui z<(kr$fQ|64aHXW{(;PodBYn*Df~6*8+~;xx6hya!G4(|9`mJ)fBwEE`l%-~}(O zNg*WD?&yiDD6UlsHS+d@-C|M(o|vd6?8IHSB=bxKow(AfkiGUeA=0t=`SlX#pi(*P5I-JSMJ@Y8HGiK|;yDdjY^%fkqXIq?91J9&9raVimRI74?V%JLH zCi2g8D*gPG2NIV|sFxe3+CkKEId+b=tX`;`*laC^ICD8AjbxGG_h~qodRK3#wh_0j zE4(IEMo#P~Ly~IBR8Rh3)!p z>p~SF!W+{emH|5B%u*_V3nKah=#Qf2EDs)ZHL)H^9;r9=tpxONe!XY^e=)Iuf*7>M zhPJjRZg5n(YOCD_*Cu!viwS6B1KIyK{GS--mpGETE{M{w@%k|Pf zs|^RURaLc-*dJG~4;KVEHhfT-0X{C%uL(G&p~ZelAX^(Q@jDq!4vNEr9siHRw7%{8 zA4kb&4`Y~rXI}|AEX{|YUR&R*Sw!m3{QliJ`s>K%WRc-#P{vV}bm}IMLoaY&cam?a z>&7ddL}63nPewcL1>;Q`^54}eLajs%AOZsX?)xpI)Rz=!$e^besSBHjL2SGe{|ec{ zD)dxyv{1YKK7OA!hKARD7NQT)e>;DAc+=F;CooYI$tn+7~bz8ffMey6O^Q`8mjX!-!eS4?mTrcbk^Z=tAcB=`?b>Q z??!P>u|u{nCJtjJ-i`OovYO1?B z|J+893KJ0RAa!6qw zQjAEFcDx03ZZchhM!5)IjE=>#Cv>zr_KcZ-%VmDKfB|UsD~lx`MY#s^s@s;zT(L%0 zZ!Q8pgDDT&E!~m$4b(^;8Un$>m?dy>t?26J#tG35**~zoy=|!T6fv}SP4;c&#*2Ae zP?9uM59{sa0vsvofAKj=?DGdLPzz|LrTdi6I`yv~E2{BC*u!VGkjDQ;R>7)5!c0Sj zY!Aesp%JGfH=o%sI6XDFCQyMa$Xnj4+6@=!MzkWmZydU|hlW2HLkbh@Mbc}|sI_b& z0PT4GSHxcOshq3k-$DW*yYdgrD4W=E-mJaQTunFQE370J#>4(s$iU+A*E(Td9=%Bi zicll}QI2Xu3o5E6kC#66F!Z8f0-weJMY6_WU+H7}foI*_>ruhWKxLDlLZqM{)UX$YQm^R8u8WU22@ z$AE3e0%>+UDXthPWyY%Eyym8kMd4Tf0 z_@NATuAtFFb^`5p+<1ks(IBCLs?IRHSt{Zk;_RSFZBl&HAF8sue&GYSP{K$7f0OSO zqz+B(9*nQHPEZw_4VI++iORo(PuX#RXsGp|&TZ!At5G&|6@v7&Ia=(oTC!F~M0M_d zw_>$>fWh9S8*rd^_(bxxZCYL0QG zGS7A;&4tKU=WCOz%5>P6sc@-Ud{y>9M<7~yE2l|7XWm~fQ_^lUmG0glw-rX zR3IdgvL;P6xMR^K1mI}(L|(1W`vldUeqXsLemfNtii>Cu3N#XNf1E=j=g6F?ru#y9 zw7{!)>ol6amh)ZUZL_y7zt3d3FXPy>``8u1=E?Qura{)=?^*8m^L-hlFO(Z5qZr?2 zue)=03ausBRFf&FG516bRV^L?`}IScu`HBP__Cw0U&4`r>#wa=q^Tk?l4KL9M*fSG zQx)^00$pCWmV1FC{gWwYwj-qyU*$f-H|raTa1dV^p<;y1=M>?|5@+NegRvz@r`m!VxOfr5R&xXRimUd7j#tm+M=KT2+5MZ>ywBm~ePWGxw zXa16`CKcI$X?I({x5}M^hY+l@UQCCAj|pb-%h5*e+d@C?4Mi7VCB$Ti1%=Kte#j;( zQSMg@R}FO<{*&7}z7UOwZ07IE0NRUVb4}TRyx1=lW~0SUSS=Rid{Dj=E3$&jJ7sZ0 z0Y_d=$oupe(@vCFapBGE_>nW#ak#mWv{N$@8DaWeSw5ig?b+{BviiEJf$IzHBm(op z!K%SwIZcaP-JnnN*uwgLVi?s5nr-5d`xOe1E61+*oqCfFuLVMl33c1-oyI zQg&e}8f;=@sg8k>3!jgeh|w-`XAV6#Fm>LoTj2mV{OuksY=mdP22QDJb#*@Waa=__ z{FEy~jpfFh(`YJp>vV182YA$(jlr+NL}cOhtX|XTPh3I* z#KzK?%rQ(!%H=-}ks{W1S&?9Sv5e3p*Q+Fxz9-cZZaxzR_A z$gMEsFhNyPbsVJfrHlRz&qZcJHc#< zPwk#azebtt0xWTS{_3-^F2AQ~SO}QrJCK&)UPRi8c9hcQxrgN7RiIpblmtmzx~*AB zJgQ+W`yEShVPXqsfE9mH1WuGi$GkWKBfrBK3Jk4tPkb@0;VE{`?!1YX z5~vq1o!s}GD6!={pS>2;)4q_#LwrRMIL9SxU7;3F?lI&TFcc>dSq|?lo5vf>O)8(a z6HrLq86zRC-Zs<8__<;A0`|t2f=s0a&CmODI_>b8%1$)dU#aV6y{ZtA55{> z!la$HqoCgG&F=bX$KHynDbs?(ga$TGnhYGoA;a_*j@|T@n8XZhSVa@P-u(q73RWTr zvu=ry6w%|?`=aXIBgVLP(ndg_SA2@)1Q}!ZB{&>|*q!-^DAe<(@I6_*(ijqq-F=I) z-5J;HhY9m-$^J8Nk;6z6h&_QZ_G2w^R|keNdZdXOsN|PAx5HbEF8uu0EsndoIp9Df zH3>V`Z-`o7gG5NLKy~``cMmRe3a6v097eL@ALk>LcB|$DbFU`vRzYtjvei{wPm85> zY>gZY<>l1FgECIUMQ?v*T-4+G?BL(~+QlsVm^jSM(ovL+s8g*n2e(J^_f1Kdla>7( z`|YsROcMm$ux)VfoS{&SGz3vxQc^x7Le$@Up&YW4qG7N9o~y2WRIYDXryzyEd25>* zvhcK~L&WmT9bY3K&u7fKP%PJn?4wR1h?y@7K`$sfxzjZmG%4NK@MB#gk_V}m!Z!XX6;uio2^T?wETmAwM@|j@IC9N zu22IDRu6gF6MSMhuva;2$S<)@JGr|$N9Le76kimGUlQVwc%h8<_`eoupsz*Up#W?{ zqW{&fURnDd1>pPfbJjuHBf<~qD8KLX(Qt0w#MY*YVbCns#c6g_4O!?Wy#2SdiS7Lg zworF48}R$BNr~(-NCI9~uP$zYfG7pBk)8fip-u!$Vmvepn~hAeyCm!aq63y^^1j6) z5ZT0<*`v|qXq+)(Y?54b&WuM+!nyeNg-fS8d7&sJ(sB}(;gPLj^2%a^zwF9hy)=PaQ@?hswKDyXB0#p2#N@(BDB$~t;vHlNg98^^5R1hYwsN^VL?P`|B%Ll%#Da9kAbB%@e+lKW41Poa=6 zT!9$EqV{1k4Xi^lb6Ey&%>xBBbi3E3Zy}1etP*v64nA%M?VwG1+upz^rV_~vZ)^-l z;OJ>=RG`F8=vLvC(e6^_K@YL&Z`KSR1z1Jw5vhPAJS0!x&H1Z_kZ-p%%U4)~M*ol3 zrPPHdDD5E2=Ak;;(w(!*OFwcV8tpcFeOffQzbqgo*m`IYwEi79vV^Lt*BEIMzrS9w zDQ(BLD3EaRAs&x8VUes{;j&XjYr)dvyAS#QbYP-bX7Nj|B`ve1N^mb+93AJ>W~*uC z7AB*>$eKoMgERyoLd4LdNz{g`K$rbir&l8b33ceZ@c}5VhTr|qvrF(dL-W`V*=C@T zQGuX&s1kgmYyh%lO$`gH0GR7B6r0WVeo-q(I{fzDZ{^RpZfln6xn$F3jWZ$3Q=;mW z`~wI1J%7M)?uLy?7k{OUabiXy;9vjfza!~BrsrLaU*I%LY#ga6vW6(85In3M&w)e+ zV-|CTqe5B+o26=Mg>Mt$l_LPA34nw3m%xo>Mm9T}+Q+=L_wY2L=b3W0zduR32A_NUw_OF^ zBTkYn3)%m&n}>y<9p&N0Z7vRkbU^|BFz29>e4VOf^xYSB?|Yq$-p^4q*lss<@j*+F zU5?M;u}j2a6Ne~t!T~Vp^3j|lQ5-bS{S;xCa5ee2=b=JBh6ov(AThLtHJxvXHZjFf z9_Gk#!)JK|sRG3;OKxOcJurzC77U?0UmkVL0d8MxWPSyCOr|pig?vG^|5Bff*0?tu zg^81qnmRWy0M4id_FZ3Heg5Y!=&%jWOq{qy1rzsOaDiO_-xxIKMezHmBs`8Hd|(Jw z6}0LucV+=5>`EIN<~s%nEaT#9+RD1md`<13l;mCH*(hgK36FjGR!s&v6Wlxfl_^91 zDuf}9rwO_V<9ic@;~n@ovos?MH9g%kNL~0eRUX1!OsV!;H`#;%`~ln5NKj(DSOD_p zI4(s2m-g6K+dXehOkMvVjXEd&wZ_U4a*VuUc%8g-fgDz5in7Gk)M=i|8o3fX#)^&U zjX-N8Ix1*1hO!PvuPgj#)ePpWxO{^BqG>zl5BcSFlXp)OY8_@uEKpztg_1w>osRW7eou=_k}+m=)tN zD8)oOJN-R{_gUizOrE!qR2dXt7Vv_Pb0sB}Z~qi<(vpxKNbuB9eIFAc$wN;aM*}Eh z0LN!k=oA^|Mc^BJL#~ca+9mX2IWeeW`3YEA1cG<|x#brJc?gt1%#gp?ixu~2;LoWP z1@Q)iWS1#wtFj026n10#Cv%cqbC$S~yMxn5NC2ngq16|cmmkP&7c@ySC4sE&vw4C( z248LxDu4GG4~6T*HV6W0!3+F@4Dk2y5i$^Vw+(z>GuT1Icv~8=DEN!M#q#*|Rzdm- zpSHn~5EMQ#CK<0UQm8b`!3j}O#%V98Q!qgyyF?lq4?FR!Q_)3-7nmC&q>gM^E?|k5 z77HjELS(V|p9}b;UmL-FgAVjclA&y>t7Fy?cmC0TQPPFy6poF(q_NG;t%BD54BE&{ z7EvZfqtrRr-p6Lg@5#gHMiT2x!bVt+g@0ckZ9Z*gs4wGG#CIE%Ckj(amXY|E@7A@| z&|X~%Q6668A0ej16v8sr8K>7$ZHXz%0Sz59To7YkT8|<-81*T-@pym2T}(TxeD;f3f+oZIdKxZRj6quCS~ zJ+;d^$ti|8c#z+N`Np1c*Lw!#lMUitFp!0|b!9dj=fMgV=v@TB7at#=0JAL;l!(5F z3caC|m1-SexgDj5vT}k1+#3Au5*TL+z)XV=6YE2_6Hejz2^$_2ZKY9K!Jwd|W?v-A zL5BxEOZccoH5H{vFbSf|Uct9!qs>7WWtS4b0wPSIm;L{|B^c>0WyB)U>8U3hf3nmj zjVY?6I$>5D@N+ADnlbr-BC~@-%SIb!;|6{zu+fOIn9uwM-4#`EF`!=EO~D$-cU7;= zN(IH>@UEiai9pjcmEWKLnJtakkLt!HgB4xPR-;C*Of4hBmn_<^-inIt0u;azSaSc< z>ndVw0eOk=eeDL5F%P4)NiLnaa8`7WmcNCc6O zL{}$F=$yGAdQgrd^(Ke|}xs{0f!ZZl& zGvfP<>r!GznL>FsvpO3=dNVpArsV+;VZrU@T6_Hh3)=}$2Rw&Y_uo6)!OWN&Byvgd@*YYrrR7R7IQezj_3!Bm+OATLOmZA(kd{pJ7C(z0kox75=bKB-iw{v^+2ZMomU%UA~oDtv9aD_QhuigkamF(8$3bbE$jP#-LrJ zFwhrM(qoCNY+{*)t!1Urvf_CvB1yZPcsxv?Fj(F-@5c2JXLv)f@z z4FjpqVg!GoRNFiYEuf-l(Yedk2IfKfcNc3JP`roFM|y?y}W* z#l~U){kS$4XJ@yB2RQUy!~hOOpNn8bCdb<3_>&*s7&rx)% zf{7COCMy<`K(l6`p`SB%zkcoxK6RLB%jh6YIP{fB;4#Oj^AF@;Wjp zi%)PTGt}Fx}-mi!WjU8^=KWzvYY0dGxkSm?U`;zQhWD$**6(=&%qzn8A7H|69MPX9`I>CuGH0-8l{?aZH8d?|(ZuPcx#o zs{V5mB35=t4&lcD-Qaj2PaB!+kSmzPU0^L^Jy67I-U};6nS1+-N>)eC6z~{)eBP+C zGC+Zgwt-E+za-Qid%Xb@ zyVFKy6FdlJz7CgQy_)<3o4Muk?*J0NzcW#PxlNKd0>MLE?3ykOJ|w~IL+~aUTxtgf zQPpG_BxcxUt9>6f40IXjzX&Z5XxO=r%E=YLmVtX-W+BNVlXVr_Sfpbg(!?elsq!vO!9>-olsIw?Jind}hysT{aUN;ZsU zU!3Z##8F&z4)=6Ip>zc9HsU^P&(6-q<<;vbWsj06v337}6WSd z)u~CgC`kF$t5%{Uy3CN`JhYW0*X6r(h4Rzg9v%i6rn}}RiSoa#1f~1P85PPV0>o)u z8n%QCD(}W*NefI>C)zSyB|3dv&F;#simLDg|AUi%+@NXjZX-s<`cd11dybG_ClWj*>F4vPFtOVzCt0JjLe9}) z2b5uv@t-7ntE6q=516gXajW2X?$7RjX!!bKd7C#Ay3#5-r>k)w(b+wniiGB17U-H= zsypc4pE;|UJQQreaduC-Qfk;bhLN|^ZyBG*wicOrgt%h%pta(dfWM~yGHK2T)MO}n zYco-2!CHW*u}t5KRoQOO8y2v+2Htg9&LU}OX&CD-wrQ-i!&HY6MEJ>szXJR>Pf*e< z#ncTF%MG8RmZZ#iLDVldtj3Ay*xTS0n*hZF|6c(x4-S)~16KuJ<{Pbcc~;oq1|F(_ zfSvm9A!`rxc2r;e-MQ#b+Ip1N>zq3UO76Y2k1vb!IWDlBc_&Gj<%RJJSC+YfM4nHf z;^V`(ydkogo^vXv--!9#5q1LJmEk8VftYK@2RYF2tGL}31J7(pEb}F*F)mHX-OYoQJq!XP;WaffSu*JvWwib--`5d|?WhIF%IhCMD(23)xRPL^V7d@v z5|Bv3_e-howB<3er02n5yfsoh$jzojrn?X+_xue%X}sq@zs4IXd%j`aOJqVor3ih; z0^kDgi4a*^k-#VQn-g1_!$zy3S?t*YQcCVbWtBB;IXei2$|c^_m_baDnyvRKKY;L> z8t!&OIOfQ`I&Uqg@DTYo4J_>K;m*FqorhAHIi(OzA*+KaQd?LjXNe}>i0SL^MBvOQ z>xd<$_JfZl_kDRG82hU)aI?I_9Hoqi8a4%^^7RFDyykeN(3Od;P3+Y1pLsux%`7GG zw94!|y$@DU2Jwv|#N3_3z1&v7{L};}q@LT~}0#?C)?iJ5^-Uk{5ULhsu zLC^%H(Fq^7_qJ(N|AH@r^K6zXhmi12f{g-zaFXgBkN>oHpeM3!!U0dV6Zz5oHCP)2 zHi?D?*hZ)M(XPGHl^Q~UEw8*)K3EwNKAup)Iz7UCJZJn-7|7kFwry5B0$gHr9AcV^ zV!fr%76Auu?f+j196V5r=6HB_8%)!|PDh~fqv+%&fEm*XYHBm83WRS=kaV~wbX0U!rG|@Z z>3>;)Fl|f;Xu+U6C-oJ%6cwXum$$QqgYpH{6;Go#hbLdF?v34pKmEv04u+q9>Az4b zn5as|&C191O5NztTMYb`7nIiqg_dwJ=@{#K@Fdq{zVVP(O^yzSWmve~{RXt^JC8rt z`+<85nv&^$f=SX(c>pK4YtCK%h(ICg#1Dktz3S~1(uFPh|5sTy%hhzvSJ&WHn*^W? zNxR9Q&He387i=*a^cY! z*EV?&&mZ7-f1bb2Q*sC+CSI~Mg94jo5+p4%(Es0yrT2epZ+Fi;(d?Jy-sY4qhc^Rf zP#8m3$wnAM)N6#9ThL!OC{l(FmAEpX4xcgZsMfYjG5tEY;iXM#aiL(5aEFa;Y<*28 zGbkrJ8RXMV$2-loPGquwb!}fKWSv!B)#iyO#}OUBd>|EHomZWMU*2^m(-RY~9e;jA z4Bb)zxY6d>GA7;HO5j*QSAg$>ygR+lM-%+%%!XIc{hD$9`#-d$8p0FuEfV90Y5FLPxCH_bemRrz*{l7!R@RC9e%!k&vax|WwK0Hn2N1jcm^OO7jBjfIqg**#| z^;VQHie#J`Gs_&YMmX)!D}{Q`2;28~YArd>@1iV6gQdz&v~oYPl_+@8IPN{v0?JUC z3BQf%ra5P~G{I|pht9P`Iay1jds8jkr?0RX!0d{l-s!+9lp{xs0KK1dlZ*$J_0NyK zXa7lU9`EK~V*8ddH0cw+wZ zQGYbCsQcwGkCHdQ?z}~N+YWkrh;zDCV^S;#^ge(%VM2^LuD!TJTa`>)$G;V|A;UKJ(Jb|HXf-H4iAfW-u-_A60=l|aj=@{;VHIK z2H{FAQ}ivwk`OLb{S3EHq*c(Wgtau&8MQtqhY+P7^Cg4B{m<$=iji!QGdj#|`dHsR ziUt36qzEnFQWcFhot5S2^mVVdn41&1I)@wS;?c0;ie6Uz`v&7KO5DpHY8VU0@z4l+ z*$AUec?k!}k#-vfZD7rHyj@ z+9gVi6juLF8`=KjmBexP>|b-A&D=rX!!6LFUdfRBC& z=ItkScXv~$&G+YeY-gQ0cPyjLTL65aMPLK@z;LtTqQO?LpAY9YY%R3Z97A;bSRP}R zFJ3li&k^@21<%6#|8M~gB+Gy7A%;6{_-v;+2QAwAF z`eVQ|9r{)s?F4+=hTr|~O%-b+C38G_4jA&^62<)zKcF%et$v=dU^{%=!Z8kZC`>K0 z?>=NDAjihbKMk1-o;HQ8FJBotY#K)2m7zGw{@q^Nl}S_S2~(!jd{$H+_+_of$K@^k z$Hh6P?iBy7Xf5@|yK0V|!#dJB2T2C*iw3W>|EH4;^mAClr7T4po#c-J{v)0){L&jp zjN@-{CPmRBMxm;tcnOOARWX;R%2P|(^)px#QY5x)Ke@YZD2JqiEwe!I54nDDRrs)@ zv4unw2kC+sfc~RIde4-HT|onjLyapuz5q7!J~tERZi}7Qzcm3SNDtZg0Saq99e(^Oz5!NLRG9u?zxPz0!TicIP5wj{-<6NR$&cIjuXf`Yy zQIgj>Vr`M_HmVdpq+|vWEh#nQ*4H2E*h;@_Oa?Zn0O9)dWjrklX@RhNytt{!g(46; zwqeQ3%gg8P{(fn5bF*Odzze?LBl1+&%*;&qr{%{l&6*!_5@vwjpBWiX!r)JCfxTIL zKVBcm5=NU6SRY?1J2Rq0(mZe0za2yW;Wa>29zRs8>GnP3`QZcf;V(8xa1yasmy-+< zATDer;EVVR$9%~kU@jy@dHuA!-<02YTqV!E(D7g@cU*ZB$)&ZyX-bh#-4LmuzNau; zI@@l;;&vWnx|j0ZpainZt%_MT>*6*SM!WCCQq_!r5116!co>EW0WTz*Ed>WFmfmv} z*6Sfp5f?>Tvzu$;n3l}86!-kD`pZE6niTXd+MR6pt;fFT@R}{h7J&v`=EohkVzL8a z&Fi03H){A2)3l7#8sSA$r><7lTLJNO-Y`7j2z1O7a9C(}BFeh$??0YUl7u#v7b`q? z&0$g95Xnc=-ZkLS_|d-TPs(w28dcF@OfPyCP<@a3)gGk}G3L^uQdr5$oiHq!6p9pR6&=oz9KwFE;Ic3Ddv49cz*|Qt zEF&36j>kI->D@D4^Ti-vMb>jDc+yTTFJM;!htO$T-Rb5vMMl+Ih(d8bkx;W*+leTU z8E`r^Ik{mbl%JN?0%6=4Zn)(%N<=rhRHxGf8o=FvC>TGuwM|YNpPJfCvF=fWr&+A_ z&Z876UXRaf-wumSNws*UL_xKhxZ-fD zbcTzYF7$)n%v^qD7=vJv<$7O1G?Ps*g3g<%g@|?Lxa;a4JqYSCdR79VFUni@*Lp{} zW#&WeAv+poUt!}zAsBtehe|v#E=683oVkzOhRe zX|-$Qo$+fm7Qjz!xSHSRC}N~DMc0nF*N%?A+oiqFzVjL|^BK!S=Z~Ft^)!DCEC2DO zKb8q0D$ifu!I^CKW82A=u{KZr(Kyc18Iidd4cD_sF`|ft!(Eqq#t8KEwp+H9a*DKX z9gasK&~ajEg2+>xICKUVoecNoEqWU|0~~pzm=Hf9I8^*y16d+4dAEz0@IL>IfznDZ zQCr~P&+-m0PjCi`mXU{~-{#rSOohv`DAG{M6zR+iCS74wDSM?ej2mNxRUb<^oYLLP zy`I;8j_rli_?dgisESxgyZt(N1|B|u2os&Gc|#2aE?PszW-UnZ1Uou9L;<=Gq!bhf zzbcon?_V?lV5;&^<7=^3Nq)U|@6%6pD>O?r5ii*+jbZawO}#y(bx z6CYis#|$4{IgIPg#Sg5KADP0q(zoMC>V#~T@G~1hJh}HTx=kIkmc3Vob?8?ek(wDUB4n9WxqbPCKKUvE=>a}DH|{m$6c<$lJvB)0j{X3U6uCOc*0;uhC*eLOHs@QEh4W2Jg3Lg-NcYl1*r`)QG979gM zkG_vsbxMF2A|+63x=Zv_=wR8*djzXGJg;UKJ|_;@Pu;P>I=kV3lk6vmgfsy|znb`0 zh+Y4L+S1r_Ghwjv>(Fa9+<0hu3=ctf$_b?1$L)%I`5@C20e_njpcnT=AGcgj2t1YQ z#VwERh5+@#03_5?&s$CqV%ev&fp&KY{icGR5C{Hhn?us#eZ_CqL!9uhv{HkTlX;4x zN)5si&+76P`An|hEwtkDG_1^tS1?#Hmklp1k|8N>oRodBkei}-I|~5~-93F}FJZPj zN<<{?*Khh?b_3(bOuBNNQO-BZ9FuW%MX`>~(R9^+(vxsdiSqS&=;F2Ogm2r8g7s$1 zE=o(r1*2#spi#FAs)EFu)O`o+Ll$I!7(Bw1>3tNG>!|6LEgPtr>=Vj7N;NtKYY zh-f}RO&9X3E}VYM%3^$BCK8I*LionGX><@o+8GX%O0=}=74dzOU03`TXUggTas?Q7 z;&k11HoarDVrd=36>BWqYt-n|+OyRDFUHO?sLe0x_My1DQz%Z0I}~?^;;zBn2~Kf$ zcPrN7S_tl5+}+*XZvOAR@Au10_>f5^naT5Rod}ol>gS8+BFnk zF;qZ!YNd8Pjn%}P^im3-i}#}Aq^fPb(R!}J4Kfp~Vdd=p@7nqD>FFu_dFx44e^P6L zOrQ)8s8kd?GtyX24?PA4RepAwsEUv<>O$O@gDLkd{Vo3AMHb$qZ%_c9HZLE%0bzR< z!)dNC_V%b*V7wPso|LZz8P~-(xbAcm?~~f}M3!Rfe>{UTe8|6)8@l?U9f%*&@{2qO zBC%FzA#3wM2{asy@KL5u{%qzC4(-JeG8yNtmG&5V=61`G2Xwf}XDa-z{1lZ10Mn|d zusW0i#j9cdOFqYRI?4ok#NGv>?6p0Kdz2j*RxRZR2UR_RTNcUAatfuJi(0WObJ--Tb8S%9d=y16tfg z6%TBlVO4bOHN}dyui?6?iRHqnK8rf0oELGD*63+ZsR46EPY^Rri49Qv+fX{;)6$!U zpj8`FQ{$cJ9jsyWJELH8oZk)i#|7ob6(2ON6a_{A)Wu_Po|E?n3js7d5G=Wf0>>Fc z*ZNXhuB+C9z11x&E%6YKubn}79V=NK<=RwE-BJ3>xxm_Cn&%*0fSq3>d}w~A#%3t0 zse}B{_Hp)JGiLy@zJMCP?DKTA|AB*)Kcbbwutwa2SUuTc!7lj#lL21ygRPO^WZH=Q zY#?m4ez@5;{-Z&~L8VzxN1zL@`ae^wwtY?ROzSI=B%m{(rh159d>Zw z)cb6PAphmEAGl@bl-DMd19e;=2oaax3T?fQfQ&2;`>nE~qEe0nDBmDIDPQou6h7nu zN%#|)Y1o0FB9OxKZKuv`)SP8N1FA)RrlACKkzLTJ9xyhqIzK`FT{|sxKHVG`CZ(jL z*gm+{pg;}=*vf#+8#Q^gZkxicnGcKyXMJeO*|Y%owRlsWy7gRvDzz`ggbPS;6-kY> zlMW)OWp&cVN33>%!<7B^;#7q?acP@8iu8_1CvG+uUkrG(V!2~Ay2+4KcX$*|p6CN9 zG-yWEb7CD9BPD$z#i|<}5P}e+p#cB*BB*TLDFw8ZtlCa2%v<9l8~bDN`biLpLmJG7 zjihmghcJla3*u?+EIYamUuUF&vW{F-cuoH)Nvrk`c+D#Ur|xa=kP`b&#ohfrj8^q1 zlhcO8zL_umaHB%~_jyJIaRvt66njo~e7W{lB1IH=Bd5(T5_+YEOPb4BheS6pRhc-R zkv*5IH?&0F@KSd>?+BB6LpbN`98g3*>GF)&WTcCU35VJP3*!$xSkKY7Pda^$g#_Tg z)wpOPwtB33zBHI`XjOmTk^VMH823e`U`@cXUJzl;1U7gjw+t3X0NWL~@pp0UhE za1A`vbl_HAcO%2WzaBl z45Yh?Ev2vw!~Q~bwW10cEtz~J1EjOtz@2iPDYvOobPL~_qE`?tzr+mdp6)KbR={Ck z;)K@cN<{u71S@fM_+k8%G0$=z!3(bszw?f)^_x^q=4c>}4Z{L8h<9r(wlqFn?poTf zGo^=35x>Yf^>GN5s*yQ8CUKx)0Vb4FYw`g!w~Myk^?e1De}aifm16LpPdYuh=B2uS z$bX5Z!KC2Bm2Oz(&7NookB*U>*{RbsWFd;%@k%zXmvYB_okETSO)~9#PfzA zrFc?S7V+5d@D}6%g_@C(K?b`?UHIQRN*QsyoBct5;1hSc5eSPc=>N1=PV1!BqTbDi z`?9EJyRi-8V)CWB+w?sXmgrGiDAZ-kc=zYZ4~(QGn(=>DR|CK zf8X5?sd%FPJ1dj6xs0?R%lFuOgmx4tqmnytBcHik0(F zcarbK)ni3zPuOn1SnXSwmSLgkvhv^B0)Y-|(Oqa1Ya*WdW25N~7Ar6|>o2U)#E0{l$akK2_H6qN?-jc^mQNl-M{nVXRf#Z z3&}da&nMl7uoos8=0&elD#^l;9vr-vk$o1A1bt_$wtw%7-H+>a&ao1r8(q>L2|Y;! zM5Mj3Yt*`h7K$EsKnJt-b$bbIV2^h?C+Xu=Ew(~YTxXr3kb4DXh&U6bWQNZMF# zg5EqY1&d@;WHXx#)@nR6LcD|8So@@^aU!Xytg8kGKt;8|4pYMujFJBHk2y#W8hQG=^fe>5o+_g>23Rl~Fju#G1zY?h^`;oH5 zJZU~8FD6HekYq*B5w*flzl?^_*St+;fGUob#+{T&Rk1krnHlh1w(&oZ`c{a zgwS9@BC{U1Tk#@eF^cQMTeP^IEyo7v7M=On0@Q7<>v~HE;@0OYC1j@hO7Kb^hxYB~4ot+kR#baKm+_jE}ckJa3v!)++!SL7I-aw7q~0X{t{ zwd2U;Rd&5X8_w+o*~$r@32hMNFZ)1V3yG2{UnHN6YISo9L+iyqWeXe-ix}UJZj2pm zVHik;(|?V53QAAFeV_QP)8@3M?&7xRSVwR>uunZeV6}NMI^voGh*u+VlHTUrbyZyD z5?G3!r%<_*?l0g-G>weH#$qIZ!cM=U9eVpLsmfS4+`a>PiTAE~cV9n=s ziLN=0kG>Q;BbIUp`nW?z9bASFb$Uy=0cdFw)oxIit~f18usfBNAQDc@Hf@Glc*o*C zu=WC9ota9V?e!vm_Gp z*~sB5>*(kp=g;ro>H)}U_XHYcV7Ki2omgw zjc(2BzQ3>qL(dHX{F+I}Jec2>4@7dI?L1dbsa{&`y^#nzkd&V&8^#1bk zXe+|1zoF-{g=I6O;QzK6Gg2_U#-A3nE_{G1)9Vj|wHJvkqE&&id*|(qbaTk5T4n;cg6|1%wH55kFz=`v{>Gz?-MH^&7L$D>* zWKhpk%lvh%3|%G+ljj2vu!mc!>~o5)yYBu}lqh37h)U#5AhSe;!e4#h5*@f9e+WkO08>*_AGeBS0d&lV40AJ{ zkh%F*j8(_G*O)2D*p(B(zlU0%(LR^YYxq(h$1 zN2LxfY3KwsTlk8z6c(1X3ti<$N)X}5<3AcF4G)~quFG(OHahH z`6%H4f!a@X!-q~rpIc26Lca7ovsink0>cPkHXoLWD4pd+}iBfgM_HV97@Lw<@~AwZ=c1NH4Z^ZbP6mlB9gg zbOx@2!9yce)PX!{$xAv#j|bh@n3td*yxJ&fzLY?o`G4l42_HM1b|PkS43E|fibM2Q zj=rWm=05b;SMu(>pPMrDV9i(Of%oL?UWCkvA;+VnRxYLsA0C;bHUB?=&6+3CbMdtC!_f7w!(pSo}u; z3T$gyLVr%u<*O!E{BRoG>O2+k1uZtiIKXQ8fqG$|l9B@QiIZFv4Y$lbob-MAd zwJpaAV89oGennlb28VpgejfGD{o4j>>;Fgq${1t}kM@aM5)HeO=r5@QP{ zHCT`?5z&TSE9CFf)JXNhMN|OTP6D9ayB@5FsT$2(pxJUYU^eV%OBZ?)C1(PRW;F*5 z?sQx_)_b3sDOmK3#NAd=$54@f1DOSx&)-@Fi7p{FVOD9EY~D$v_@OjE+@iPRRg)(4 zrm)HkM8j+*#OdZokONw*x>sXkp;iz~p-pAam)PrQa*w?dG1_*1koecqFRTJl0h#h; z`;afn;X0gxvR^qN7e@cXwPMb_oy~OJoBEK*(605hOAl<5E6F-qLuI3}Fqf!!+S^x2iYr@(daR_(aM6pfo*{r#Z3FGZOCQcrhhi}u=yx5IH~mTNomL|`H$ntr z87=0&&3N$`$B2QI({AEjDoHZ&HG^X8VC^IC7x?uX>=-kUX#$12%siSJ_jav*NQ=`} z_6jhhcbwH+ZImXdm~rNa!2kT0FKked!7W;tTgzIIfoV%N)K;kNqwP;&;r=P0Tk6jC z>aUx2EL%Q27#HfYUPzCaE}8v>j;7LCyMGv8b~6jrFSfd(ne!3vP672<$fnQM;~e#VTZ#zTXP>2F~&ePHt9SeWx5u#SkWT!>U8d0b}Bo97m4f&l|0 z!Gg9e4tJ$z7m=7ox8Lej$b1?Xc5~tYO>e>xFjc;M;UDFam5bh5@t@%AWJ<)c@P(CPP1%eEso{pF=SC7ga=KUL zBA8_T7Foy-fLwSg8vZcNlJEYmgR!3v^biZjG&rLC7Str={~!Qzf+(HZNj6s11Horf zSBvy7jwKF1j-Q0Z?WRnvLSd{$cY0l*8@uzZGr+tDt*e;RJdn=Hzh%B)RBzzKqjm1Q6Z|K6ysNoKX!4c~kM^8`;S^~u zIQa>l#Bl<|+xWbJwY9j{flKe8;3hRR7NR z;^ek)`XILcB&z za~)~6jl(RmvC$RWMR#ImEq06rM2PAs}WYW zBSc?JF>vGS9OjwnID8}hYno(af5UYh#&EFrQm3dzDm5PB(Bp}3+m7cN1_+RuSOMYT zD3hgocc98I3w|6UtsmUTC1~2t(WAwc%Bm8b{DAmxZedZQqm9QPyIF<-z_`i_u-Mkw zqoSc!NNc;q5oO5rv3>B9XEl+lK5-I1-hdLhJ2n*yR%rrJ5W8P^@*mv@Q6%*ESQ;BtU6RI?+wDk zg3u9B#BY(f^h_RYYw8d}jk*p@0}<@QFk;KH>%H!d{n_(6ZzlNIprnVMnhIzfU4z4|-vaX$dTqF&0~ohfs^@1Ofr-S2Vco z;N@6Sl<4TtTkDMT7GvZkK}mi|anSYp=|b-F{u(AP|9tI?oyJ~GMa5&Dl;PlD=i9-E z8($oWkGua@gRf;U0GwGaXaE><9n^T4U}za~Vvy+hlfLeXNib>XD4!e`QK-iC3M?e` zasT{jyU+quxXo4rVJmFuQ&c5jC?!2U8M|~l*`y8eObn;y;~1&{}xM6JNi#Q37}uIf0{(WGpETY!;KQYNO*im z>wg4%`NCeaLZF()1a64@c`Lu87#1kTslcPNVP0EINns?O6@^G}nj)RU3=QgW4imi) ztq8UI#aU*3bRHa}Jr-_8BhmGeYVbmTYq5VhaqHMiFc3%*C;SUK1+< zU5`T>ViE}bV>LSIb1H6jpt?-z+$}6=hX=g;{(F+;PGSd)b~5Uyyr=k9lV^Pd7knnB z;EnG0_-JEkdjW-xNCM`XG@rQ_-A$Vf#5NuV%ek3(y6I|tiTU>DdYwNqjqBp0)l-$h z+g2WUk-_frOnT!~Ds~m*62v;7SZ?zT`-Rb`h=`Zbs-Ry<;~)Vqme-WH-_*d5$O?er z)~di5LE&U22dgrW#!&L`^Jc^#DWz|98vC>i7WU6wv33?_Vm zjeC0hr}ZUUUiDK9gN9JMQ(6y0;tKnV?2jKS(Mg}z7JXlF3>bNs)K%E2-C&tTm1%#)1tJ_~L@wqwdwRdq&7!A`#ET(8`Z5x{tiT7^o&_2gRgvbNaIg}Wg zHspi#hJOcs}rgbUkrXtuym=Hb;D;Q#CI>bC`&3wP$5H9asJHkhgr<&L7-V(bWRat+WN5R9m z(zQJMES^Obh#;IUMV4?FM>W66YKUR#Z&vzvn1*am! zQDVAEphMHc0spjlV=&vU3$<>MKA;zdnBYp<^9f180)Ly@*$cR1h1q0YfzAcR9tfil zpNX7&T{6c^6H`)fR{-MehD8zC;rXG!357V>2jBTP{-?FmWB(Sfj)Vn_t}#OG93tSg zEfKcJmKgNF8v;B3;34x=z?tj7fUjE3CQ|!ZG6z1!;z$bp1;qTJ3t=H@R?bMZAas!& zWZxyr9g#c--%N}_zz=4Llt)BhaOL+F-Q_^MBPNMo!%mYE>THB$$HJl`+6*W07Qz*Kzkq~5ozkTwMAXEMf zc2MaA(o#-W(WH4s~t5(L85i%Lr z4sj$_gb;^2KNPS@H`K$gGtISsPssdrOXt7-W0o`vi&YY0C+R00=^ijEr{^5U>Q$r3qko0P!0(%2kzA9Ge4B0TqP6 z>XDJ%y**C|z#xdQSsz*Gu7um5?o_9Hh1#l8P zR!Y}nD5qv#tlewBo>VsLnF;R4jjb%J>!;aB#1Z7$QBW7eGh}6~=zrLGoSb-uF~adl zV~q^3TFN7!l@QG1jS^9K?oB!{&wjs|GoE!IRbI|jbVT&i;MO2~V~AMP+6DgkiUmCgwl?7yNt ztG!{ByrsaO1^0~Ugu+UIO@1V6T>u_En%ziZzE-G#A%(XJu7xN9X)9;zC3Lc+z*FVw z1wLAO`V;2?EmF+S6B82#Lb$JIkVWYN(uabiB3VTHdN0+P-Bh=1NAd#vWW^uoBb|HB z+&B22_+&p99^|GZpO@;NZ+`aAL^ro-O%E-NXBf%Ln>FVKUGkW3i`y0z5hvGjdd(iy0Mv` zXuF#m^*P%WQWut8b0EQpWCs(+d#PX+7#7|>-aGt>HKn1fxXc;ibE_!ASFhAyzKS3D z#jNn>Jw#vXO5+zlHunLH^dzngmrM1(?)pe}eFm2*3gUH$0 z`4Iw`@RP<_{DK_)x2{0u-u$^rkOy@5&ECagZPD7!6~h&X{~|$|M;y~Bc4_+xq#<#f z3xU`L53fM)VBeSf*}w877@F?x)=h$}(UO4Q*n?g9&Aj`uSbqFy1GAMYQK4hGzG>ra zWmOOalKe)Gb~zyUir+fdgL>rd2TQ~uKr&UooFIaGo85lcBH>{Y@J=k6=&Ts)A>bRQ zo7%8?-9_+&_+1EjlKqMJE!r__+lV`2564+&*QMUTMba^!T*ZP0<9$7hau&J|@yo#b z!4&u93Mwf;zIpwdVp?tCp<$rv1olHKpS|y7<3`#lcKG23o6$p8A+K@a-Sk~3>o})z zRpcdeziO%hr+=z(%wG2F`+GP)mS45xj!xj`d<-o*huN(zxTV4OJ|0UvTU$ zVv5|KvA1%Io8X=u0M&tI*J7H6b_u#?G-6Di6M%e{Stfms2kZ-dN2_1szpRR{JfglT zU$*L1L2W(QwmDZ+7%(JfIj4CJEPe$z)lWy#F*7?Pyqz2$f5%2qOitqK2yAYxl+(Pm zB$}GSjzJ*8jxf`zW)q!j+4>aHFRJkUB@`WA-M;Y=nVm8zyn1Z+!gZ&I*TesizLV87 zG^LXJzl-e!&`QbXrpJ0~3Y41JOh+d#m-^%C&8#rP*+v2fleOY4*f6JRnkFAU;d(Fi*Z(|eP9hYR zyM!R5cOXb}T2VTRIUnLe?)Z3%A}T`bhsm!f;k{Toc-S_*A%u7pw}h#FA2$5^_q$@i zL)#&QJbuX>M5v&!c6dtE6@z?0_L>HZe2a>;^TSLJ(_~w~MB`idPZ8#(k(~2xWHR5! zJ<37lnf0LUPmZ-x*~oo~#BZou0Tv9Y=Ai-eY| z_k7vktQa{fGAe$h*;f)WU3|ixYR&~SzX+cSpT4~IHGkal^`-;@6u49r!NWN&b}&ZJ z8H%M6o~$jK)14hPMV7wVqrGm$H9n_&Qvq970IqX>q%VJXe0(f0bBCF`k+XpJead1g zc%Gr|fJ350`;}*PJAL0o41*#PhV1x2K*NJ> zxgUo@k{7m%F`tU^l+Q)^Gg`8`RtgwKm@)G~Ogl?ol)$T@>k`e z%Fz@OOjb&&c_hr-%r?s{f9sGFK{NoP#q$*BZj4Q^k7e&@P$}OFs_a67a-QJ%3T2O< znHX^wj0120_sce-!%=AdEbf4^>l61KEk+DMk#ti92d59wFa@M`S#iE(^TI^Q!kcKH zWiiASQ7SibC2SlqxVpv>R|>~AfMCY4vm9G;!yLU(M^>dQK6nt*nC{hjgipae~9)M%-&!+g{7(VF%;&|K(Y&9=} zPLHmN@3#!H#T|}Dad|@JuE{U#Qw@?b)1ST}NJpJ3?9n=1_?Z;*;v?cdr4Y6MW_MKh z*T!CtX*Ke9T zAzhLV4-`^x3rJ*7G|Zq~*2PCe+D}ln7ZX5KXm|3sXr6=MHSf_H2s;rc7e!Zi$>hpk z+^@k$DkqK?e|fWqhX5y)<*mtyA2H44M4kO9HlT8_LU{?RiJC#Xj;iK#`RQZbr{tqs z_y;GQN7d=+Y@#+qCd7p?XcsFCOtZOGT7G4KhX<}NLL6p`y4rEV(jk;4OZP6_74dz1 z-W!}Z^dgUp!b?5spRkP)vF?z1>SBj-F0dfetk55>lD z^d6~kt?uOVx#*bB=EyOFh=Iq@lV=Q!Rf(e$%Eh98S+KNc_+F&`^9C+zs6fZ`tXDW4 zC-}AX-&KAA0CzgbJ_~4s{YZW=P%cgoXu>GPRvhAUpROsvaQd3}`;%GeQ@XxNWnY6w zs+W#gTKL@q_-Ta}DYD|DpYOQYG!$7#&L;5he(L#jCzzmq@Yg)O7m?Dw~6lxL2sBxM8u+MQ%m&23|Ck z{%>L5s2B#MlcRV0SS7l8AM?SvPRK6(=lP;y{=5mDDTAFNxn6%jUs00}VUi$jL;y4+ zy^|ANt`dv|>GWf4c&CO7!U3{x9y8QwmJth2C_a>UbuVY#C<-WKAbFfSVTgl)|H}fP z0)FUdFjHNbGzIFJr|w7rR?2xB9Bf-2s)YXQy5{wyvE&-6*r1Ai`k|)saD92n6N|Sn z&|0R|9!4UcaISNFyy7Nu*)=Q~tX4_dHQ3Mg&BGTlem}yaww5lTv~XXO#`wU`Qz`zgvU*u7@`BOL;|)^%daPJD2h6f)jx3c+8*l~8p<-` zJY+KqdU*bH_%M*Ia`wHbg-60Fl0)$el8x3GL)~v7*SENL&*43?$oI7cZfBN*v`%?h zQoOH3eN0wVyaez;K}BcY>)#eW%mX?+~UqHE*){Qx`6P zG_?`aj<$!~U*7%Qc4sfA|D^3X^lC7Mj|fKw2A+I>?Le(^)dFsaj%e(T6?mF!l9`-N zaVx?(-4`xMQ5ZBa9pXY3H8&}(zNhMB9y)_K&`0vmT#ETVth8xI&4xR7js0l>^Nzwq zmZv){Cy;@Vq!OKvu>H1ZQUFv}WoAZ~$q-E)ds-WW6%);38pUmX6ie}PpVet4*z}sW z-l*}Y>QCu(G0x#@EuOjW=+jV6OL98L5S*Y>$bm%4sQ11_>}OlWR)Sy-2i@Pepm+64 z%&gS0g!{BViw9MdU}r~Cia*KylTjbUln}!H%c7hfLTz>WTY_Ha5BW4W!VF}9s%Zvc z71oDGpI^&=F91Se4-exedITvM0iS zQ%Kmlm50o$aE}vmv!Ksq;a>Wb`M{K`>Ugv5`FvGOf{9};7nF{`&D09QAit|S>h3;) zN`?M6iqAaq2ri_H;#$pWpVZ3iPqgFf^%78@ksftDOLLDpaZbWVIJk)yDXw|BfWO9~ zMxP6zETyE8JE9lKMrMa*VRA&wWmGkJ#;CkZP|BM0zkQRt=S{yhFt|Mwn||0GszIUJ z|Hp7K(oFy`M|2`2K^(m(`WZ0s@B--~{Jg6s<$3K0aX}@<9WX&WAj*^cs!cz7E({&+5V`nineX5VNwoSzfSXti;RPCP??|kNG`dF%Nx{mL0NOIl(!9eU z!iT61zS_b5o!typF{c_Q#!=5sQ1ps+!3>)U(S?zGMkzh;bZcm`T9oagO22I$c2hN> zZZdt6HgM%kunA&>yjaYc93ECC0OoxHNGR{(HM#ucnGPw0!C^g>_?&ak_vuZ=#gZ&C zr7m$K=PYZ|w ze#n6ET2YGu4stGT0|ntHcp&gp;EP_b%N7+*PrZlRXt?1FijY$%U_Xf zto8$U+wf8d{qhp{lUQHp^*XM_flKL|{eJ2me{fhau$<+7#+{b6CKQq4OaZl%xVHf{#)TjDVy)()Ib=~ zO@ep0z3&Hh3+Dp>ijD3&t<;)A$bi1YOGQtMAgD)^T@QZlg#U-|5xz(gyx;*a60)Oq z`MZj;ZeBEe9>{IiJ#SHDEEX2I2XQS{*P7%>o1HJsGmH7GIXP+RK)#Z&)hy$dPNqCD zJh`LH-J$K0-u5Me6g{Cv)7<9h2SxfZmi!|ydy8NzusZ{YnM+9T_aOD0}H zch>L!FxP?>iZ`kAyDppOfNEhg<@v2mdz#vc2WfrRB6AfkuU8es@bY2H89@>2wlZHq z<4U4XuRO15^Ht=`T<6S)wEN_K^@VgFbV=haCK|`WTJWd?l4UwAr%BZzgu=18Y-pT( zxA$nqj+SbrMSc}-{T~=(@mXBlwp~F{kMmHhQ!`%U^W9Nd-YiCy!JCFL*{rioRNr| zf;&Aw36Ri}5qB}Pvh=@k%$s zZK-~S-uj!IvCk6(9gP?5-Pw0(IJH5@l!iU^i~4#3{2p+|Zr8b7wu$9~DsG|R7lR8Xs%INq=$$-}fya&1=Oy+3Pb@&4HN?wI+gAMpZ`50|nJ-z!ABCntg zCVvGr|3@Qi)r5vXG{({KgSOVz4wNpaP4v28z<;In>Y2MHBqAqmNYsoFs5r0~2T34f z8aLHfQK^IL>Idksv$KyQYEOI)UlCMIVU{_G}FjQ)>4FZ5l6!AohyL ztCze5{(O_2snI)kvR<1t^qeEnRY>D;`);ecPP5P!W7sxMhUx(iz~@~ExHMyQxpx@+ z#2VousUe@cSAb%*SWg&~HkNfsb@63z0TGm#w8O;nnxw-(lKlZIj2!NZ9B`OmN8H39 zID3>qxOVp0#02+=Q_tyof}Ghv(3u2!-N|<+`A@*y{2J{_jr-0bFcpOtY0G3w$tn)K z1B6SXqcCR`cT_>?@l;e~*qz6Wh$s3iOA!%*`kzRsx`7(@pLG9cnoX*-;IaV91oUl{ z)(asrskIgE>UIB3nQ5YUaFpXEU5+-^7J1UYv7`bXYDH1)&D`YZ|V%6(} z*yD(QbyzQE(|YMwqHQ1qIIM>ng98ktSI&pk)`&#^U(dS%LgpV-_<;Wp*E@DcLODQ{ z@`MIiM*kD+`{|EQ=<5M}H!}?9j%Mx%fb~V4fa}N^T&4ATujcahMIw&z!){#zC!K?W zGg1OOu0}O9fW>ntCxCzyodC2A)wSo^=N~4zXb)7yH(1R^7f+lm{$z5>1GtqaWHil< zf{Dd<-tby@YJ)l)wpV1#zG0pC>@{#CJaqa8Cunp} z{A%hsvHJBzMc_3RTe}J>z@zhJ?YVbVM=xfJ_h%};0_j{ zjnEfCZOHw2uH%A54KTv17T9bJNqggQb_hL4?e1}v(!CkIIyrD(cLMis)4}(l@U!la z1FE^r?WoW|vP#>(dT}j}2w|4StDktEgKX?ngXHkX-{KY?Qa}+Vw&BX~ZYCfcqnOXo z23DnsBF6g2nO<<0)?0|Tcc?pI{(gw?ayGrB6Mz3c_p0Jh7vl=ng+TQ-rLZo;08kjn z0+I{6RIX`Dx>WfALUbSiXTul|~Pd zVbs)eY`a4j(6+0{{&+)dTsQADH*nz=FbllDu*)*JR+HY`IBo75FfX(|Et416_b^x` zsRAUiA2t;@RBCdAZw&+c{~x~IDxi)g=oTF`xH|-QcXtV{3GN|Sa3{D2_u!rY z39ccyYk-Xew~f2I-}(M?&wV=gJZ*XC>8|eSuC7{Z)rxz;sOvsD!!EMoLe0xW(m@kz zI6R25dqDY|o#e%O(|huh zT*VSi;0|ix0?y$Jr)I{;m@l1PHJ=731$O1U&$#Fn z8vDdsbEswTPH8hYhH1MDEa89(tWp;_{Fj&g3wk^MDImJHu9QdZF#!;3kgIRxS=qaO zhZ95^X_NVPyJe{)%Fb#$rgq)foCvKidFH1 zf#a;2dlxo5R3|7JuvXTMep|WP0A8~1OUI(eUUVT*#Nzq)FVU-?%JR2Wq1~j`f!F`> zK}t`I+h_S}gH58^VI`tTt1{Ob-6xm(l?fpW1(D=!#fJ_&rOMgS?q2RHEu|<1cwC}w zE;#OIQ#0-}x8wtJ0q1yXjn^Z1Ndv;K627}{DRf;=12xg5JDT z$7=gm=&~*FXkjL;{<*@F4sv_RRWY71?mIm!d+<;_E?M*Okaq)_{r&Ei^`jN&Lk zuc-xD9GD>M-th0(y5)MexSNt!={tl9=%W4d?&EAIw21id1m7V!B+LJ0A?)=HrDXD} z8T~76kW6r0GM@{+OJC36PCr}7mkM)ePguzCZ^}0qs+1RXU)?ckb?etu`FsO3`#l zRfmZpSk!?_aUvMG%WpsU{u+#)#QUGhJjKyTJ@@1Up-HD{H0F$`dI5(TU}3cbtR`H+?Id)hyq)Jn+UEbPn3zZ+Ao zKO6B}G9zCfJ;XGFW>Wo)%O!&FvsdMN_jzs~pM_19uBZZ@USEh^-*<<|PTUp>y~iYD zc^$lHsmyR&qnSiN&P6wcdU6JiojnGSREV#xXl#XbF3&ia>3v|5l4T=%r2o3M?Y#7! zPq7e*$I)gDQJyf~4ITF#O1YE&{Qk{L1ny*7CiV#RUo$;`vX<|tbMP}6Q3_;4z>_s= z@&<}a!#*#lx!m^mvv}ggHWdp++ZVHiw<))5xnkD?po~eR=GnW4xfyipqjYmjAfwy5 zSAm$1!~A=|3%bwq(`#LFFw#Y8vm3PUd|-OC4FJSHBaxI6;kd74m`m6QdeA%0InGow zgdOS&+Z~LS@USWF{u!0c_M+(NuyCo>53LKrJ?h~M{0DKMi&Q6N<#0&J-(Xcx;>E^- zm52c?>onVWOMorWb5)DwmnIp3mjcFfL3+{zbdZg$`&3>Gf z;Xe_MoLgOJ)D`U8g^?su#A~x>hi4%1*skg5?rK_HoeO$T6<&X7?`}SFaD1r1$uZ&ajQq8i3pXesGA~-} z^x8*a(_L7CChSjM=IhC|4~I+Z$_hYcwZjK2v!~l>=Y=*EN8qrGc}Rr>XAsn=YOtfefqTP;)-ipe57w`27jTVrq+ z&$278;))jBf%|1%*QbkI{xBj2hh&Mqxl>00TJfdZlV&()e&pehLVdO{rW~&l8yAWx zAs!*V(pprcE0Cb`k@M=eu3lE!0=D=VD_ftqxTo-5^@LB9*ungiP@V_S0RW44BCP%f z5r+xr1Pnuw%EabOM8SlTwnMs~-c#QHuFTkY;qWM<)HR+L*^AhG?`3eRm0-TF0)gzX zR=kY$ES2UX1X;S3yugoo88+`zc9+s@eu1B5ixgmr3_0%}l;`@aA#o(;!##qTGv{ua z<*jWn0=0^iMoeK1h-7@?a%na~CVb8i5}o8m`_7WA-_;Lw7k(rvX+*&G&&{mQ=Y0Xk8gFp3gJk1sESz!LyG`8fATjtcNhT68~QTXK~o5Nm0o15NA(JrtF;BM4YphE~W;#9LW#>Kh6i=&cN-x+5rx~3tYm%Vsp-kji!pu3T4IR z8&yCMUn^D^QU_tEak<1Gk~XYF@Hk65M;J&TZieY{Scii@60N(AAw3{D^y}!-`~IQo z`0#opEg3p)j{J_YN6BV1G1_Tx*fAi8w%)P0UKyuzFJbg4C4FrnDqF(W@@K3DgD0%R zizy87CO&__ZpkYYLHebx8|H?}ih2K&+iuc334ZtQuWpA;fh0hdzrh`-_@v#(UYt2oAz-8bexQg8Rg?@Yz4IBzZz^8QDw_Yqf(kg)cY;F*;XEzCK{{ z>)nUF=IAqHV$M%`&8P04t%209(If)#u*hreV=;zk1rA?H<;&|!$g8^k?)yXdIh=i;O>?Sz8mJpi&oe!2B^*LGWY6TZ&(>Q z2T&YIxPO|HmtlU{oD!3N?Qq%c-UY(EYKQ`!DV09<%wchjo+E?xg|=N6GHBR_X;Sa8 zBY1tDO^b{e_-@X{7Y_f}ot<6&8EHDKWP#oA(v00I3cncd5u6tf zYl!b(y|w#@zNI(uZGLm9>Tdx6`8+rX#%dK28a>n?i)ZGXlPsu$LB3r@q;)=28IvYq zPXN!mkAppzU|DDahNiu1wYyQnnvCYMUZ<>P%Cz6W#HzTz^b?xeBi1ZF>5kGqMGF=1 zDV#mRx8Nbue?C78g#Fa+-_QNUNRpd>mYq{oC;(R!YaMRisj1Zz{)~Ex*7cjP1uLsJ z&4P&g&sFQd9=1!w5Ew5n_T1xp24K0x=H81M_sZ!Hqt7YjWvcGlg3x8mclnlJ*$0*K ztS5LjO&$bG?mx+_PP1Wm^@!)2pI9(m8nM+c?_nYLMHcw$-kbVue~!P0DqE|saN21e z17gzZIE#+W9*2%bBIdkZ?z)R1RuS6>lvE$z)2+M^YtGBSKbf6&n6-u1TTfHSScM}w z8{~^qn;_-HiCKO7VA^Vy`)6m|6s1V;(1eAk>u|}-;x;Ko(D{kCMGx%;r_wtG34>8P zv2ja*iD~Pm_fQpb99?DoTP8TOcZn`)&rG42RMEr3qkQSO1GC#95)=5tDp#uucULwO z1=d^JxH}hotMi%ch<9y(kr3Si@zx)<3wO=%&(p?4OX7E08%qfvo3+8UMXwDBpo98j zqxoi?(EIXD76sRZ3abe`E?R*~O166X`H#vqu3~uZm(;R?KQ8P5cB<(8HQDTyB=fWW zdCtJWjfXE4ah(Px9!Ulc^! zyIfZJ(&I#@vgUEM$c$UkA|%>k3;OTnMKA)KCx?P*BAZEMaZ?Ctnmb{D2=>lR=g9oe z(xWgMN?b8cT0{7-8w|FnRz=7T*wQG}h{#f##ao*5HI!2v7PBdaI1Z=liodP{wvTg5 ztL~c$9d@I(3?D<*NN=qNpVlYwuMr3DRMJWUi)6m4a|1bR<*e+m?b1oHL;a;#Qw=_5 zI4|CC?aas-F+_zf^!4}Sjm-sy+VZz*5^Au%GOqsmhbP?xAi3OGB+ z!c4Wv%kxy=e>ipSz?*K0?3Sv_MP(qbXz9uBFoxG5CREK*Oa? zliwri=Aau|)$%QQWh$fnc)QhA?{xamGiUF=_&Y;|6n%H$Nfea)@g#zU+ea zor4s`soW{IT-o*?v#=$J`i~!^4CmfIH5dz6yDox?X*v>+2F@mBd~&D4_+v5xzAMX9 z3*c$8=87GA5o<$!vDsG^{Va_^t1PpYK|x(b#%3w3eUANfOwBn)=Ixyw?n*UuqnsdT z+3ISu_U-hoD9O#iYJCjLg69jrk_F#4>`yk`F&?OE0<+_t6bK&H{hq3;VI++AtGKB%5;-;TA2T&k<=`t&9sq9= zW(x1>=f0NcoPJkjTdfIUnhXh>2$8Bu#a!LOl9OXr+iQyd$wnECMa`zmM}^iKNoHB4 zkQ$#UgIy-Ct)pXL;22?JZ~sIes-zhx)G|a5Fi|2o3)|8r6 zN$36bdrs5YOd^4I^JA#@htI*(4+Z=zLwByY;+wNy`Peotjmp;0p&~CqcaH8W*lV=~ zMWgNuI1R*=rmx~if))x@O0!`|iUuRzx8%Pux^y&ld6qh#rOpepB^cxdIBvF<2lt^o>bV>D=`Snme-?7g^xBn`I3PUvclcW8xoVu^ zr?R08_i*LSlj< zZmu%H>rzGWy97+uM9&(Hlx#5HJXk<&{?#zkHG9GbfB)Lnjh5_^QJ1^{q{m`>h?N`f5NrxNZ~eRq?+ zxHn^k01}n1h;0|3Loaws1t6Kdx7Xm4iHJ+#<_-|{zWedo-*_7FT$c=mKMm}F*0gb} z>IVG!^HJeGMHihZki$}Xawk;4byTttW0cob&~Kx`>Cmv%`N7>vB%51G_7Aav@ZWm0 zQ7_IKI2DPZpJX2efW1S4rzt&w(?XRC6Y+wlt_-T}R~|?2`~hXe8$p-*i3`S<^_uLS z$mZWCd*obsp1P=T|ujR;?l?I%ihiK z*Wdzbklbc&)_@*C0C8X9#)=_GSHtE^4N3vJMg?&9P=O9iAdAMJn+2(A-ceWYCqh}N z`YoKdSVQH9+e3%Yl!yEDff5Mux>;X>+~T+Sm@Xh~hD@Hu|9@iv93Ix*Sc6O|+*3aV zyVU98zFyOIUl_F9@4EL)KYm8l&+5v8cM|o8Wd@MABbe_^Tk*<&cy8AbwQHk;^yXiKUx>KTDRTtPw{5;51#c{gm6G8yHzCUVlboZf9hpj#NJ<8 za^G1j!EMx0Fm~5`rE?n1b(>3Wyqw03)Qf0ko<`v&MPs6hbVNKO0&Jv%g1rDUmCk@M zV8ic{ZZVvSmo*Ki$^Wi9*tbdIuHJM^$lG34Sl3Xg0So3UWVPi26p6wc zfUQWG?_f7j=t=&^w`gtRByAfhIp`odgLyz+rOo>dhRkKLyO9UT7Z2iigaVJ5wX-}q zXnUx94l<9v&aBQ?`jD6V44mU&fU!qCZs+QuIF>w*gj-zDp3}lT>aSJv>vgFApw*A8 z4sIT_6<`$U9NYgJg>3AbG=`C^*u+?_wH;oRI_!X!o&iHe{*q@N_(*q^VjJj-MGNTYkk;^Jk{ z!v!N)O-(G}Jm>z*Us`Nm3hcLg86C`kDfn>uvS})D6ZKczW3pWGU`2BvGn#aA^DaDD z)~TDj;**|7z6OWjQ|S>qX#uiRN$0*ME$~spda>gct3qet&cA@30b& zE7qD?BNPGs!JhBh|I?K7dVasPbGAu$fg`7-=IUFvKt}A@F56TkZsuA>;u1-9{`%02 zNgQr=KDD^y)s)aQ0ic&i`9+$YV%h6GH`PZ>BC=SR{~0Rrk9ZcTlXPBmAZ;x3=59*peQ!5c4i}^YLu|adp1qQ0P=4e3 zz?U0WNTzL8oNEd9_k^}h#4ithJ_unndD|nD>qyK`^q?8Pr1*CoRCU}9A~uIqfDB|T zjAW4k1-6R{0A-Ow=7Y1BAX(|;%_{z7h%Fs}<=rr&Si&EJWZH!vAkkwu_8#qN*tL(m z;mJJGn^2Pb!chC$QLE*1Z1$Run3>r^j%~tM49t!Ki2T6fy}koBW<_S_@SYsI|4N8y zNaXMcS4$&nQjG2ST2l#uGO9`bTIU-8BTq1HnyoSpP4@8u^g}nocLjl*HOkkRbdxmp&`;U@*#_0uPbhs>gkIkXiYYI19UJNRy-*#X&CK-(<_+ zU6{1+vx4t=7)sRJH?Efpck6FTIpeIcvH$U%WBl|k26DC|LdTVvnJNg4a7SR%0)COY zP-myuF@x>u!dLDBTU3*mc z9NDM|$i>kjAJ11!#p*=cjzghWKiIrH&(a6bd_RIgg}?IXr?~ZzD>thA?%9o=-51|; z804QY;u=G4O=JR!aRaOkX9={wT@U}Xj98Kl(kwq$|cjs zUaWa~jo##Su5wENBxY$Y)cdB(xVXY5YLV_FUW80=DQ!3Fv2Y!_|M2kt;T$ntIe#Ut zW3SZuWu3aFQ`G0S%(c5*qfhf{WC&x(4FCqFnWik!Vt83^WWid($gJj5l2+#3cB#T8 zLEc%cOzJF&q=3;x`I7p}&GRqC%6$Sz4p=(w+YpbLXgBO=h)X8 zJVhu>g?$fJRIS@zXyhwtng+1BG$QL7;JT)U7IE0w_*w6U^aKLAXCX0*2G<&6ByF9o zFsDZkf<90Zm*-U(BPi?l;n8z& zgAYIcr_|>kv6^rU1auzoexbn(7jz~J!BKn2fZ2{Zol4)65Rj-Pp2w(4T~=O>ZiV6S zN|wZ!YffZthio-ItZAf!Ma~!4MoGDe$C-p(gT9V_i&WoQfcILS!R!=1kOsa+h6GsRY97ce2iUgr`Ycb;L60h1sY8Cq z4YTZIX+81kizNk1eP{Kq|2p>CCuR|6ZBX-2%%<1*5=y$LWzFdrl~9ePymbH2%y2%? zX2BHGK!nQQsMorHhlXKr_AW*Rq#P!`vg~7H0K^S3{iyvWEYsu#`mZpFfHX%U*KgoraaSCO{GvQ8nRb5n9q(RgpM3&i;)3P5U3Xo|yiN<& zK2O-~6cSn(6T$+kMh(7w1($j7LGQ8Iv(Q$&H%H9dZ{tZkO}t~3em(q5L}kX=xmFAy zmTCP0m_a5}=H0GniBfMwSm3j2+eg&9=?JN5yrp zE1`X{zr=Cr3r9iK6eTVG^9`p-V$yXQ`Pfj;8>f}$Qgq7i&++-q?y@e3(=<%3QHWVV zB`dxOsgH0iM_L>9*<{F4!>qf0FobsFzq#Jj4>?X(4K$?EyO39;ld@E9m+JR z`mW_^cilP>eNQX!UWC%7{Qc;ii3<2zy=D?w5c5=Y)?@eI|s(vcF}^gC1M4x=8|a5y0w=Uc0N$*!(d zhH(6m=}^v3j=cMChydLCVXq2~CozkSN)m2^VX@OHMdWYi77^d7ml~p!2jafZi*t?d zI^IEQDsr@jo%SwZQ~Mqd80!DY`ua;a3I_MetNm8ZLxyld)f)6lrBGP}6*Q<>j<1Y( z6A5n7YQyvM-+onxx_xJdN76(!VWp&kJ11z{;oncJTmB5ASZMQR^pD~GF%Mx#7WS0` zCg6QkrD*MFochf$?Su46FZ438f1U)0ZNyKo)6F-NvH08ZZ!cx6!{^b(=1UC}e+tQi zCivltL+~)N8YjTd=FP_-qwYd{Q09*O#5HM4-8Xm9k+I6@%_*2^Ytp%SuKaLKQ+D*~ms)9)1q*?f)hW=%l zI~CRUydJt-@~^1Wz(ZB)wv#wAtvB;M+x18IDR$1hHQc?OUq0{F@N|I+QCE(#LJ(>Q z!+5cmOZi=qR#*IfD+i@vML0YduFq(^+u<+lj^sDm8(Q2I{m;(-Qg#12N>N#9qzKnJ z@Oxl|sKp)EHDEk=j<6R=3x{_5S-6;b(Dd*!8^93cNX|hX?OqTLjaW@Po**)R#w(e#i{k)uTD}E)?25a?d%c^zj4`4{Rqe^X;+ao$%lBYfUN)T9l?Bjd`^E> zPJDpPQnlQN{_Vf%@^adFf-WDKf=q!RtPNj&ehyr{YSS|g0C*NYA>ElkpB+;-jOw(z z6Z$lL3ybjVYeyNsqV6RSB*D1}Ay$-`B)41zmGvz*PGEt53C_0?z$6Fcp zIvDRdSN4o<;u&GlFRp@syI5|R(R15EF%+W557e-AmKm#PWGkx$(&G>o|Wk4h?@ zd1bC)+=`e#!B~udY1LI=I?zWc(mT_(-S@DEM2(2F;`niVGGZz|_TlniWJL1l$AhLOJOm-_}93V6ur<|Z2lx;?!V8sO9bLgm9v7Udd&(kavJsim=5P78ntzc4aA4A~_5Z->I~j z@i2Uh_}CMqS=|j2^n&jp-DA622o+dmpli4@97xQ^Nw%MKLrV6oA3GFWveqm(l0}eu zn#RyCGAn6XjlYj|s=gqV7!M!# z_v`%|C8k%Hg4oCs@HG+j*xK{!RUq-%@Rn2dUJsLmH4}u-r7Mv*6c-ZUKAu{5|Ej00 z&DT`M{EK2G))I+9+0A483jK~^e-Nx`+^a(_MHcm>8QfL}$9=zM%}qzI?!nj4j|XcPp*B=q|4b zZZMjXOPP4Xp)dR9cy+~tTlxFqla#{tId8mce)Tl7ckNB^_kl1W%by|~!Zy5_>?E>7 zAx&YuFp4yK{ErdnE^lzVRA#$%iPM$3b$=kmr=@CsAHsyD?<*uZyj`gK6u-;YaLgG) z^My#Gp`Xb4;hD1`RhdRj^}yvVcCjbvm$v<@?b6@*&pEY@CPuLcR_wJiiOPk0@LMw7 z$|(%$9coBiq+N{wnw1G#Scd8Q_bHxVXAfBgDoo;5GKsgOS4U;OLWFWa(;inhhW>y~gVue5L9v|CpkOH(h{0Ch#C6&BqpmFY>(JgQj>`Sk$f zyKo_rNFCbR{kg;|IyceI-^}b5+f_`mYAJ^~p0KnDX>Y&bY}CVEsF!eT)B>D7&i8`K z=_pb~tJ=NL7)`Jmiz#Z0@ix5p5udp^-=deuW&!ao5B<+bHmpvRfn#8H$%LPh=Ct}m zf$Wni5|?aUoA*KmlcHCGyQ15n2MQ4YOXYQ4xFjXWreN|H%al)PBppVIq9F6n5CZT~ z#j@x0N8))5x*g#WPteh~!6?P;qII2*WK7||)5#SbAvN20yG=61c3S8wm%riy?`X_x zrX+z{yP%u_vfVMc);Rd8eWaovdjxiP(XbZfA#+#OcVs~v*psO|*5iJSPHP=Kht~n& znQK?xqRLe*2W9#Tsz{reytY$V)LBmQ`Y5QhB&dyy1QV7n%#C`{qVcC%x)fZ%#9I=% zMbFP!X(^Ch_Tup;zF2ABxR?S$wVK7XJe9kvKVr4qvduPTY1oj=I_Ma7J>(bPt7RW3 zDTx6~l*w%D;n5gumN>S{O;Gceie79s;@Zhe?fGu@&F7NtiSMBV$;}1dc6wr0Xwm9s z)l8FEBCfvRb}@iixF_=rlvUahV@gjhtKN`?5J`hHeX(e+)duLX-SjoXC>8OCFe1BM ziA|!wU3lY1GXY>PCP4*Z?Z;NC5j8(GcDU6E6kSYvoOj>tt zoQSp*<`Xz_kH64OHmClmV@inRGW!SVY$OIc&hO2oeb`on5OZ48f-~5u|8_;1XDFw_ zR7+#WRidm$L_~ZARH%!hK>vh8F6ZIv((%dIC@NU^*A?hi<7EJ$FnrZ>tvKBU^zCkJ z)ijB-LGttSipV9>*I$acrT(44(oiZ?kQ&8DhaMe@3&XdS{?SB;u0hao$Vn-^wc=79wyVoKy$Zo=4KJc4W=nj#|T| zxDd)aADH~W?VP1lAiLzQYS(QaE4;u>Yory4rBKgIx;Dd%7$Q{!lE~QR0!N|I3KCTn za}ZxP^9>dAJi>e3Ej|Jm<`E~ozECVL|6-^Ly0?S;kK#3SizTx-MG)x#7JVgZ;lTQ? zKt%-Qr)V?N(_d!7yQiPm)n|K`>dEi9c5WQF^QnA4xp?Rx0K7LmzCMM8N;eC4<_#yNfAi(txcp+19br} zdLT5(si6r8)Bo0hBa%UxsS5M$bQ}^PI=6IVSN|_EO?MSqI!tkVnLS_Y(-6{P!aLeR z1SgF6iDD{{BLllrqC^@o-D;Ji*KLT<bbBpc(RwZIkOI)`GEH+KfpFAN z^6d4ua{hM|{EwvxH{^&xGJW2Y>_T|E?9{d@Zn_UH{BEX3!zc@OLbde9bkJ;bJH1k@^fjK&RF2K4@t2tew%$n6Z zX(g2WmmzLP1j=m#OR$Yru`8(i$HAtbcp1diB}gUGaGJ+lA~oj=m{H`gKV~CTm)J`1 z28tua;E#g{rOu^e6Ab7;a&od0P0Fw~8hOI*N2`v6Os7<>fS=4`KDZ3fHKM zl-BJ~{LWKq7EEslBsxh{7h(u9tYz|>Lp}$Nv*z+0-;Xflv+jSP{`pAHzlf-Ww_gZn;wZAF8e?>vgAYMdmv_-CqzoPOZn)@=i-H# z3qbmQsrn$v9%3hhuedmfcw|OgWQ&nbqA%=V79TR;G&3_o%Xnkein(pXGMylKcgwRK zJl0IWXFt!$5rmMblxWw!Pe?dUmsK4byNec<@o-&b7W>U)cKK zdlUPY7RTXA0rH+BG6c~#W<{nrmvr+rT~qin)LE^$Q&f*~>2z*~fyfQP-2$*i`N~2l za@IZUcCxU}_4gtRs5)-|S$DT&Ud2pK^N`TY{5NMk(fBNRW5085pwZpi<%4Lyi2V8| zF1asUbXf%j+j4)cJdv4lHJq0J2f=M%}4Mv2x-xxR+&>$E`E0 zCsFT2Be9W;_0+yMekLHB6V3nuZsgkoI2Y8eU101BpI@5z-hDhJL_iGHM9r+f*tSH@ z;Wz3#Vn(mv*wl?~_t>4zao5wK4;3G~5-~_wEx+fd?e7W#97LupBAM7CN?vZz?XUk?m&=aR=y>>Rn9%^*b>@@ZP5Xhm@y zSNwEu$|V>})Mue`nn&wuVPv@Kw^3+ulmE7vCQ+d~u(kN*mgM@<>0JaWT8#B*B&jm; z)=ts7d$<=n&)Si|50P|Nyy)>Twvn=tkr8sh2LQ0?(9)!2MS!5pK^+|(D@#v99UV{1 zpkS?$?7HD<1&YAuCoid7X4T!op??$fWkyvb1vfr9n%_gKC0t4{h|C zVx87LGkApJOTz;N4Sfr0DN0FcF%dNg9Q_ed;!Tu6hJG+)V*Uh6m}F9~5fP)`C@`*g zBIUzhSY13C<%8?mnf*AH((K%_&2~_w-boqpDquTxvt***WqSYA_D=?oL(APH4W36`bdEB-^;WPE(@kt@d z9`%g-a^ve{Jh*Jpvz;Og|6HcxuXie_sYQt$cS2D(dMKTJWnVfPP*bMTlr3s5TQSU^ zX7<+3glGG6Z)k|jD&c`EkITcH{N~GO$?|IFS%>lZoI_7`5q(iNADWGhaO#WIK7=++ z#=7wE`Gf{jetD{#FLa9*V(r^0_BQMA3)>1IJ29+rkG?#M>W zn9sXUok1GA(dm`T%eVsqR7^AE1OA-eVP{+Sw-$DSG%&Hd8 zAnLU25#2cQV^UrpvQK6X6T|I!0MYShWiw2$FMVAQ7*RZ70&llfLmk_txD;dJm1v#_ zQ=}EBSQc^WJm*#*z8;wz!^f*G@$$9RzzcaT5)WHi0d4;q<}T0^`^%dYO;dNBA+^oX z<^jE%G5EEd$4k}C+4^Q_gS0^)>s{&f@}uBVUOKo>zI@cxcSuB(ML1=`GK7wmkZ zH8y_#yM3mJYTv?QjZaZ{;QIZ~aw%9$bm6eMU)on2tPoqOta+&&92}l$u&=N0{RFzj z(U;USgic5VbJea6=c;Y++M+k4ZXaKMd`mTwOLoY2k0&?a3Y;Fa&Lf)Z96bN`Ym>_$ zSI#>8$DHmHY`*Y0(k#TcbD}QHCC?nscVY$|RlMlDDNvE&sBa+rD=J%j(WRMVbF0MI z7A!D-!geGZ@805)j9lc$J%(^@^zk9I(v{A9v>^K0mUan%q5w`?`Z;aqUG}$yO9V51 z=s3Qvj3s*yMMS*7-CX$+r{xC2npKY%3TpzLN^&Ci1e+M98Goqmyf%l>2E(!eHA_H* zCfQ%k=<%+NOo1cV8kT9lcf$+$pI=T+NyJ}yzF?K_VMR=;rwQhSr+sG>0WhRh9^jV zQMZL(Pm9@!h|%u)`NuE2VV0LFW1R)<>evP--BSqBw9!jSwIMAXwWC?_x;9=G$Y(;V z`7`mcfiT_F`z1;GuLkcQarS`kaSf4}j`}tkmqqR-@{*W{>10$+=^vj{#z)DnmFs?7c7yP>tensTmZPFXL6)+rs?+bdc_M8L!El#>MK`-~%M~&_ zEWYd&UDJ{Sz9cgl2Dl;Rfzp>aK;&Kr7#l7dHT$xNMpe|l#_zz5&JP_;1AjBQo zvpKM}IRVS;g&I{d_y~=o->9p|_Zk2k-;WrFOKW01I9ij5c1~z*Vf4RgV&zr&;+&6l zpi9Vxsa@298Qx=cgaY3qdj-$4HZYnGTQkLteYp!rD&2dxAV`3eBy_f2|W`3tn0cn*!^UlyaP`f-KUSxN7U>j~LQ3tsdSx0TKP^k{{q zIO4r6rIw?HZlBa0g~f53{L(LO^TuDF_H%wYK}`O9ln#n5B1=G)O%6fk?}zSw&YEtN8w)!%ep-X63@62x%rS z2m;a;qPa-@W+{IvA4~y41msnnR93lOE3*dkJiP(W=@sWUbi0V02LsHCBXB}!&eE6a zO*S@k{8;dg(RmKW^560YSusSQj}bW{p)od4Hd95rn6t5YWeG_MA-HQZ;t|YScE^B0 z{Z6p5MLvx4f139i@84g3-n#Goin$h2AQHYdGdnww2~o}B{gq#0%YmCTw|i+^%Ibpe z*(H@v8BXxs_$=KWqJS+E#`EjFhqQ29Cwq92TkpSS!osxCn+hP2v!ER74&FT}jXJGq z%NAN{>Vf{qN;mDkX+;j-#G7>x!1-x7RX%BNoGq`#eCMM4Q@4=~(A_;4Ha8AM^ca}6~ zg$A?M1QgB83;Q+PKmNQk;^o}4?-()hd5k-S^Oi8(26MFBznQ&tD-E{G%gS0Dr%O~* zV4mzRcgD)Wk)i<{Fc}(#hL6HHHcRftfnepwQFtg#(GTq46-O_GpoB3Aw$KVt8~S8s zW+s3%t60Mw>0SGrZb?0wQdc_N<lh{a>I% z@C~UW0SxG)+}B|g7Id$=o7?|G`{8W7)h_u|#4Z2Wxa1rC^;=UU zv`}j#^z0vNoj)e(+-21S8livPUU&&f3CNfmSl@nAOrbZ1htdP+;A(W)KT z!ZQQip0DRPhGrac|KDgw$;LAID-)ia5_Yo9336q8X~8_QVS?k-#_X{!L!C#{G>4* zz2F-y?NTKz_Z@2dA6m1k4)iWH80%;XufwG$i77vO2O&vdOUJV}uzvZfpkGpgx+z8d z)G_gq5$v)2c61>=1c%Ij0FCK2U;1y64F&wLddR(<_vTB4^xvsqDnKB+^DyN{IUGRU zBBYr0LnVW=yL%J@=WX5}jSsOhjF&DP5&@qL?mTZvExXJ2{;}o>@c>Zu@H81sBcj8d z!0HKZM!e`PEG9zq{_#Dk_UOsMDr$B3S@vZlGmFCQy`c{}IyYxN?P5Ssxpv3R{TuWRk6|EfePRtVcVSrZ9E1k?4M&tr(~T${Uo=b2$bEw^)E% zhG`8ynw7GsZo(=3@3uM!lJ9Aag>F^>B zfmz%T1pSdx^*qt2fq{np_l$T{8KRV5vhDZl{!A2s;}{Rt`mYl?Ac=wb^(#tv(WPWx z3{bqxCjCEP(m%BmuArIm|36>)Bg0-xUQ%n;?Ch)rj;1M?b^h4fQ9q{YchS=u}ND}mhGzd|KRq33q8CjLjz^?pWmCV zC~4IHmJELlTvr+Rbtn@8t6$xWsM3&KlSZVPHEwL4J+fg~_dz+Y?j04)Icsig75?(83{p$F2fB@t%o;^N?6EJXWasEDA zU)DMci9E61Spxh>yQ;BqksJnMiO0c>n{=!Jb5Xn6oQN9_S}C7E?#YG|01tHlzQa5T zt*8_i7lUWCjiVz-+~$wc5)JEE3h1N&+y1X%_ZuN|YYIc)vsy;TTMZNwxi_**-jzb| zUFgtu6>cFi42Ql*>|XVJaeu41D&w!0GzR9xoMv4?;3e8ITfph%=S1CBC}@Q=bYkwU z5Kw^kt$4tbcj>=~SR$^CB5>*P2i~oJ{ffe-EWS5aZQ8jCu1IfC1i%XcHdxJidmj8* z1$sIZ-g^^;7T~A&H}ji_Hl$)34lAmkNO#ionTY5lyg!xG*^3RqdB~)wMNzIcY4^b( z;oW-@^S$x&yVx484^JC(jEsB-KC`a2w$^rcJU92^Ejg!|R?lN$Z}5j&lPi7}Zl18m!RX0KtH^eaGZgGYEBIDU+K*J6Na-kf77-PO zgeayw&v=!`A;d`Xew5LO@v06LQAUyX@k%1{D26ek9PjaryobtrjOolUgE8ao={V<} zd+&eu^SOUqf6d42`Th1<-?hGL@3q(7Tl!+>?Bg;ElWT2HWwdzi_<>i29Dzk{R_J#o zE4Ty3mf$C~TABdGO7Fhe`P|-Ry%_9X4c1|v1lSOS8W(wZcW*Mje`)e|>QvO(TczIB z3*IpFB2-CdAp{L1QHN}Dpp7;>{xUW-#+P0u($7t%Bkw}>lgU@`rkO!?1hvmgFw&ozZf5S*?;*K z+Oe6c$-7%{O;~-)d%7)YassHPGZa(edKEQtBZ5bgGEvX0;;&HR-{*CqsNg#YQ{_V;l@asLhm+pUfGj6kkbSjG_2 zSVhDY1OFC~brfiH^3tZoJfr=-|Eq(C-eoTb+Ad+;PU6@eWfT0-ye>%HxvXwWF;zqU zTeha_O6pWFNQ+Cn`;4|%R>v0na+fe=*LS7p*d6g0QE>^01i%=2okR&h3(^kzAi$5G z#T=5m6fQXBAUkUBbrG~5RHd7M0NAJY)OuMi&-1o3%nrQt?*5NYTnW`!(5oa3;<&As z46Ti4=iDlvfbuWWp`SCgZks;z`dK|B$$Ix5u#&)y9sg4q|Cj#^mVDK_Blv(9@PnbB zWIT9l4@G|M69`KNA#v6@OYNb)PNYu_hRO0CMC&pJ|h7wj(xZ1_jA9S*MNSxx?ZD z?@{K%`7jSWe>BgOfrrbr!!4EIcxNeMRrverK+v&Newh^B!;4H73nZg9+|wQ6zlbSy zP+!RU#?c}VSrOdr#k`Y@2<{KULjw_s5jIve<@_7+P91Hzh{}A9{+zvts8J})eVos1&$9`Lr7LEYdwn~EJOU)r9>$v%gDe#eSKp)5F zD%XF9u~bSpTy{6_j^byQgAyC#e51hZB^x6}duPH5TF8iNh=^HET~a)j8rhz>A&`Zz zx++3uSC=4m=#bPWNywMoB z>pzO4Ku1YLoGXY1e2@ak!_&O7j@IBSB;?L)ny3DQknR_1-{L_CB6ShBD5(0$axhvQ zKN(d<@$DhoY){T0mOS%WmeS{@J3S?e%+pTCrqw{!>?|z0jzK_HffsV1@f28Llpx|{ zbNq=&RtxW1;Yc>w$H&J}c9hv&08cI(JOd5_#~XD#Y86SdT4Gl9{?LhmCRZmj^$}QxMe{h`Z9X+f`PdN9iKd7SA+J`E z!AkQb>pBNcF0Bx{vbOz+iz`#IhqAoQEn;Wf}9eDUy@{XCHHbkIWT(klWm z`DP=N+8peP*@ag0>==66D}FI7EJ}ETLlU)`xFpiv}O(PDBJ^M3{ntcD8g(w8O!)drUhtq+{WI%NWuHQ zeDim~L-Y{yB<<#KSUhlRAY0qZf6FF%@#2R3xsJBNe_S54q|B#AC$17j-ToHteko`) zO`b=-1gxMqDo{ApCCyzkt=EIs>42>{8Oa4F_zguEp`V6_53_Q+fCr-@xIX4OJI8~2 z>((6S`HAQOc*g&j@WgHi5vP(Io@Dg<8ugl2$yllaXc(uf4JKiDh{{fgjNy`LpjCAs zxIl{!Gi_n4cK*H;=iJMOc}aZ^dq>NiD?5v8$ir& z#(m{B6k#9ey_>zhqbp4Z%_X{au7n2oL_N=w!I3d}6JXwT)NJ#(f&xKq9 zpT2q4j`wUgai~RTkB&YIV+9;8xBTu$7o8?H(UaTjg{Kx=dR`AelttK7)a(P24!HQ6 z8|PB3a>vTwrgqtT0a%!nloVQT zp!1N#&xObGY=omwJtddZE<*6W9Q-+kJ8-UYGC0D?n0HNEeG&%I_gHCwIm%93C;9(dMyO%#28c3k zG5VAFp#RsPSyPe6DZn1-L{Xo=?a}Bx*Vztk=&Dq2#sm=blYTP&kRfkqduW3agx!49 zuZHxUuK~+|bY=TG^X&8MI*?>9rZ0VAX78owVc`1uT(+OUxa1@fX)5Hq`pY+Xnc0U<~Yce z89>@|8PaisQrFC zz++NOmS~ZyXms!1R1E3YYfwYn+oLX_$zd|DR1avZXVAmr*R>ILD9g<5`jXrw6^8-);Hc256AaF7{Ta;Q;n3e)@_X4$pG(W<8iL^I z3A&)X>QiKoe2LofjdHBJ6=I%#Hkh5u;zQjRy~9-Otn3Q0q6F(4gU;%ej!_cB=LWsc zg)EOZ6|08Urz%aT?7JWQ=f+_w z2t1Aw276;iPAn*AP$PZU$W?D+SHsxXyRir1<-e8;CWCY{wA%3vX>`=FW+Gq?PO^5w)k^W}3ZX&mdH6h5XNE-uQz51cNI~Oo zFwSK?c;n#G1OKn`p)d-mN{a#!(htgD!CQ?1-*-@@wdY(Wf|!j$tx}TXD$h;J4>}I) zw9L}^6@+5g^A$JjRlSj@)>eNS!+vE`4o-W4Tt;HDYr!?4X32Wpm3Ue7(rVZicml2V z8;;q-2*ekS`02SiOo}jS>7;$6GgF=UjIZFrKbPk#x8WU?OKG`LS_}?KWLu6Bvi2LU z9GN(-=KIh`12vmTIXmY5jZ@iN0amV=FlPYs9HnC2HClv%W-vw(xjo-{S05}N8Q$wM zHIWZ)%uIbhu6KU97TlpWtK2%FQdgFxq@*PIA}0rtY^$8wNp*5@!D}oJA*NDEf>l=2 zjeW=I`WcS#<6zB}*b`=gXw?G&fS{dFktRm+711_+()C)PGJJfFicL;t=8wAGx?b5 zOf-JbXZ58mNwdp?J~ci*4wcuP%0zE9L|$nhLnP6WVA{(kFLkRs;tU*#ZWJKbxR=z5q*L|v$;YNi9t2iVinapeKnSl9qjfO32rWVvP!v%ZN z7-;Z~nk5M|hOUH4)^U2-y!9UhaOk-#BF^c@RjXmTF zpbZ@JK1@AquJ&6P;3FqaRz}O}!MfJY8QSbVS%;Jaw*P$ZK237$YK-24>%;eR=OFJr zJal=v?mu>zYdkT_Joo+L>InQn0JQV^?|g@1313dZ zF{!@qM$^9Z%u%2Nn=4@r9|CXPUi-YDi~b+$T%`467|K$QG-7fF)4aH{|pmDjZ{AG)+RiVX_QFa2`T%xA=v1)4Q?Fk@F(fh$P<^FBjC|nD9pQ)`)~wz*P&(w2gN<#~ITNvI5mtRchp< zFe|p{FNZwd5a8Q!s<|$^Vj38wQQT%`cb3Hu^bSsZll#jcPkmmk?vVH1qOP~G1hUPH z7+y(chgM@q`MKnM6EIb9Ki0=+=PQnmC!GnA4YQf7#|1W+FifP}LI!xRIVJ~X5g#9K zl7)nthvAR`xgez692lZ8v=Y|gnCXWFQ4DIzYRgs@$!6;#3-}bruH<&j!;QG5iV?q* zb6J+M3!gBSi>pUeqZAhS98#RGI5>ocw(7$v6!T(RQ&xz{vhLh?J_W_9F&Ye1Gk!eT`Zh$Z%+s7pj7^tPltyxfZ!6O&=x=`Tz5$`X@~J WxO`0fH@jYLr{PAHhGqJ$_x=MJg!;b# literal 262129 zcmeFY^;cA1^gnz_X+%IuKtMrI=^nzj3?MBr0@B^h&?!nuNVlZK&^2_4NJ)uE3^7PE zl)%vOy?#E=_dj@kcz$^9TC--YfqTz6`|SOCz4ku)M!i;7Bqw1c0RVtp=@nE900?{l z0MCqw5d6gmchVUAA~aV~go5ATbuQNy41N*2zS8#q0Op8)ADsBLzg7V75Kw~tr{j~o zv)~(GXw@NmFm{@qG59mkMg1i=!I0Jyl_y4e&z?MYQo?DB%+s}x)`=_~e-usK*?nYefj5Ra7ntb3e@<^v#QuIrJE^>ed)(D*8Tp7T` zvWm|!;o;$FfUWvd6)4_Bh)dQC@8jx*2G3+C)Ffc|gnbf66^9?U8waS49?)iHX4YtE zXn=ZUQ%?YvtF5@6j!&OHtp}bFyhb3FhTwr0kvSNWV>)oSFR517n$RFh(`SH~_+dz7 zUF7aPiCU*Ns%{e?KoR;`Q0+*ndfH$I>lcwx-0}*lUgvb_l4|Aj{OMDs49vy7iEei? zq?%*eA9^w8`A0A(+5|Or_eMleV^Ptn4|wDJ#DrTSVzC;rymNAw}x~6p;g`?nbObl-k9rfAvz~X-+6|1P^ew@UTFp$1Cbj`t;09GqSTYNESDt z^+wwNq6vo`}HM=JJjg5+G4F`4&uUOmN-EI3iB&Zb~8Cf@q z+#PX?-oXK=BxEid*$NE*=RW4@=}Y%2%nK-#<`33yWqpdgn1&tnw$={+)4i8hElOlS z2@rx1^h>i1vADzczdnK5+sKOS@^Xh_)!6~tBGtir^^6wK%+ zV>LuGc5{6x8wtA|Xc7y$I-69T%yvMXC_+~s;9GM$;nk?Yrs-&CDwe?6O+3L++NN5; zaGHe<;jqB`va+p2(+owN0G@(@Bjf6{1a)X~oQz9a$m$#?Ql(`g%_*sWMS^?B?uV@j zJL7@iPhNtw(-H^pZ*Ip{Z8}<7he`lv2wt(>V$R#xsM0ReBAhQfXDji1TRS_)xFLw3 zc5sBIiJ{cg)Eh(C*pXjH35WSWhn4vlwhDw8}tB%e^*IiW1G;wRHOdoaAr3 zn*LZOvG2kod~Bb}X~BSz`{ykRRWACel%e5HQPY?}VdZPkG)h1x=={NGo$qxO<-iq1 zHx8_$I4=)<>$ShQAmewu*~1cFg4?YDJfKRji;a!FjXTi?qg@4ZiR{A%lihsAYZmui%))APno{LlLFm^G4PG^1j@+GZ&+XgVieF0syLm`7Vj?OTwgnl_GtkN?$8TkZKH^+

-0JxQ6CoUHRURRpJ-Bit;Y0;E9`*qES}*vUm8I zyUjte$oVQ7X$x4i{gUglOA86|AF%|1^LKG^am01dtsS6D-aF%{|GSaf@nhr#mDhn* zt0MsG>Ca^asVDE?1GqPnI57kVraVk8AR2Rpd`C~3fT8%#NvL zzxW%j6V*$F+33FkL7O@M7D&bmK~O~3ml@u}=aje$kQ(t$zp9>gNKQ`n0kS#Sn{aH& z7ng58qIP9$^;1Dofdf9wFTNlar9m_#ul4#lGjrA+DTNR81e@GV=x1VN{5-mc;wZ2% ze1m%YuSW2t*hv#8lcu+#`>|Um@z?x4{D9JgLm)o163I(dkbwUFuA01 zX&JkpMP^&hNs)(i5Fc)*4eo~X;0na9~4YuDmC1WkWQ$Lhv{u3-Oqrr zIb>inxU%!a#6%7G&yTEB^z~;mKwzuvu{`4go}Bu1$QxHrQ(sVar*@XAwCZ3{Ab8Y) z&#A1gUZQ-_1XAV})^Ewy(ecWpdK#h*D?@V#PJ&?2-yK|GP~7 zstiZe4eTJ_cXc2kTGc5n@{rQwKx@uxcMjWWrQZd(<{*MdyT^ddv%f3-fF59~E{Ou2 z+!@F9yxDDqlOf!#GIAb2PX}s^m+q8V+y%PoFo?Ud&}d&H`ERddJ3&O~LppWg=iTi- z?J(ZI6;IKI89dt6c|H4?>P=Q=W+#gcysfOvjue;6)I_C`!leWI#{ZvZLsuPoBo`>q zaXL+k(Bw!*aKlbe;Ldee78&6RPKtswN*6MQ(_B$o`!{~;S41RXXXrRDPA#ff23$YR zFHx(b%(A?^yon7`%L9J0!Ux?ewbKs^ZlbB$lc~TckUevK369g!Go1>Eqp^NM?#uO{ z{xbquVCk=4hZRDSs#^@l6X1toS%&MJBXvh?Np%{gtlhxOn&oOvOS7iXMaTS+oF#)=;P?su=VGDndN!z4Jr5muzs`DK=?zzKyCKnHDd`OLYRB-i;$ap9cl$*NBDk|P( z+m8SfoC77m8@HJ$M0S0M+t%J5f%jU(?awz>FHg^3IP@gwH-P&2z9i5rZ}}>DgaP>8 zKbISsP19=Ngz_?oanEQ@$CNXe)gwT_V9pje=?8hDKGmv&$h6grKI_?VCTI(0o3qF4 zL+?95Ll*su7Kub>l%@U~f{;dpWOZ2?_uS4tAujVBDAec>#EqYhSr^SlxP-4z$@XoQ z`oBp5W03b%ES#2hz2YgP?|lg2zA>M@B~IzUu{v0;Su%>ZIhoM2}Ou?u8~rv#3s9*|(F>(9lRl?42S(Xb0u% zW8e>YnKUP;q}f8UoKT-He;c?o;&m@}_%FexGzdQ$I_UpSX(?y>H{%&z9J_{pGv>%a z4%Ss@!?0t3De5HrfMJ>AmO3F9I|5-ZxZyMb=Y5Tg+SNJ~bR7{c0K;2w?yK9%_gLD5 zTMC)Lhx8L_P&^tCsVo>78RGz-hsX2$G5ePGC`9W-T}8Bj#dk7_&PU+?Gl64^0Ri;g z+Mv@@D(HJZ53vR;o)2F*+Y-)#4Q@7ek!y6o?t4`%D*?`D_jc3EH4j^90 zg?86u{`~p#sScd_9hXRd9Z0j3I0rN#sI06k6H=4=+1;jr2V1S^Z}*^3{e%%O;#VF2 zXAG`TTozk@P$i;-F^l! z^p@a-va+%|Z9@FRPtBl!u%K!lm?J>nM*XiKWN|RD_#VTs^Vi22Hsyem{jPg(SP1E~ zG&w(i1!9*At~hr)#XqQS$pM!t2B8Z@y<7YtPR96o<+*j?St@D47oZ>YemK^hDce0+5hxnVg;SR;G7 zKSIUzUFN3)xFh~ia@jU1xFczn8_ZM_FFt($70CR~eu0)WbZ@fpod2u6EjfDR3>-qJ~5nzaq#-)-V5AE`03%L(KfM2Z(dt8|9 z?aYfE@_SVOAH6hL6AX1jA|sy+TlTyo@F43wlL}D*&R|%EUVfI+vNB&bYDl_l@Qvl9 zFx|%iLs$-3HznEx^zHpq**d$);&9cSh{*rBo@o7+^r3sE=bC9oKLv1t_!twso?&zH zrM|=WXgyXy?MRN@ogst)P{)7Be%Ok*Vd>^*Y;4@O%-aU|3A=UQ#dqQ5J(mLu3k5O_ zj(S zu!fng-UnWj11#|yLUwzjtQHx#A(561BVcXm--RnU-vfrVzKDp(ZKLmzwFzfaThR5z zse^;VT3N|wKWT+p-LTs@y$0Kfan-%t$jA$39M`~uza|#RC^CTEJupVF_KN*%f34nT zj5o$m+-0#{fT-vq)Qp~?>#x%P7R!<+C>FQ3x1}@YjRm3KnEkG9F86I3!ZN^zrJ-Xx z^MQx#*omR2fh-^ovG(!)bHStq4JW5vQ6Lv^^%?lYHl=IqyXHpZ$vb>?e#8aJR2!fH zvHiHkkt6DVqQVx<$logugIgagFXaZF%*shrl2Lu>leReboc=+38+K^5clIU94-#;8 zP&#grJ9Zk>;LctryR(JXIe{4%v{lvAjN=|uIiaw$w6tFG@*kWs*SmnLzKx?4r}<_# z4<1zUH>cTxJ!Y)aZGE5y=Dg*fS7?eh+dPw<7O^;|lQ66pZ<@mdt*)Wl8pv`c(M^?yhljTWt{IbcV8E&) zs;m2Z!tNwh{t@UAD#j|nTGVKoLR-$FzpwZbdQ&zxj3vgADO`4GDRJ1I9x45O)QSK^%KhU@ zipBEkPQQw=4gY)HPr(c&SKS>eC>}rf4lBSGMl7PHdJbTAkM?`pVZkj{V8wbb|b&`CosreTV@Sa0nKMAp`6>WAx zA;AKya~yBy!^* z%|Ws=Rl*Agp)DUF}%pP%d~NtsaftYoQ{f2 zT#J&9%4FQB%1?F#e+vZe;JkowL7&=Wt`CAShnlW7+1IdUWfzn>o>_D68(Kh#BxH?k zFeU$xdE&<2q0I|IkJamGU%QgcP(6Zr^=pPpM<=GL4vQG3+$$xxqT&!G!5-f8xT; zuQKgZTpzyX8{dhcS!AHw!7`KT*eB@%(SJsK;y-`qkh3E{^2Y$28Fap`<8q2c`H%O> z2@etx7bK*lHd2>6^&RZ_JUl!ne0nve&J>7gwd4PQyAv)O4J>y2HqWYsQGu7S3{TC~ z&g7Esr;YV);tgejm^Teb5u1Jmci2Xe_g^VR7@+PxwRdn}KH40~l?@J%m+zCM<27uy z`bPr2X&{Nr0?wo|*IqTf%@GnF>twhGU(l0$MOW5Ocxe?5?onyp_a%fk32l$L-F;{L z8FdYst8*}mVo{H70;q9a{>lbM=t2Qv|1zMH6x`q7M?=N)#dhnG+hYL0RO4Y7Uo_ur z-Mf|IfZ)Re=-ugn$UL4jc!5PWTg%OJZCSA1RE2kNs{>#87u!_`grN1<=Uqf;X|ooL z73bjS>({T<@&-%7BN{mA1&B4UXp=dx26BHqu3ja=3Y2(bIyyS4FCMJt?*EKd;u$&JH#T-x0dL2JR`}#6Hn}U{Gai2%I2DZ-$5LK0x%;}jX_$Hd zEL4h7$Txt$7lV*>h=W4X;mv?!x{&||P-EDXeb-Xg!B$Cb)$sSrLTB^dot((R;2F*7 zi^3eN)5qHrYlE$rB*itaKP>D8IQGN$;cfj5#(O+JH%eldFaP_=w8>9K-*c|FyQ6rp zH?!c*8$zie9dt|yeP6hE_({N`Z`VBU$L$|Hv5i(}Ly!;k|GRHO9@8?1!_lGk%)4I9VWmm2z8pMbY!%O3CefM5d#adX@yJ{?*t{ zg5Hvu7kc~(e<=bt-50}rhUu74pr@w7M#Xp?{1aGXz(G-+bH&F^FyZYajv#hF)XSSx zzOcDdJ@e#0NUPra9EHzKd0m zCKJoDJyty@Ua&B(&3bLvXHwt6$6gRnFfM`nf>xJHE66~5lD=?3TcFfqiJB`nz#Ss# zNL__4E1wITM$@l1%b@6}sIUe*?Za{78*_YeQAOxd)`hLd7pGH#IKa34==Q&YTwJtK zxwT9ho+_~hkrY#FVbD2jHfTka^RKT$9ZTxfwz!`TY1Cioz_7YRX=J(qtzOUsv}#L9=FKD;bk zpjbr{h(m)+@7j$GcNGo`oBtl>KjeECaJlze(ffB3^ZdlT)D!RtLv#gxUI)uFhExAd z+(LXVb%MMjS?>TcT`^;DdEiB!EZ%V|+j9asFeuJTn|;Kpxt{QW=*Xa=I~A}wDeKQ! z=^;vGhX`7P~2BsH;`sp8bYxnC`RT&4bWRjPFH%ge9D<5bY&l5c^xay{^bKF); zs-V3j-M<<5l_YSwGkDOVit|#aks^exTA~P1SKqn&I}Kw{vR22!em<>90^}eU_B&13 zo2j}VZt)+AUc_$dJ>of^H_N!Y8%9IE01-O8Ib%wvei)q2{-LExu5;!O)(g%f++yhK z8~0y>&Ccvcn5Rciej)3;-&kuwvRD!0CR!w!o3YMvYnxn`&sf|4O~D#@+P(n5Dkh@A znTrwswvR`(W~jiWUr1DNT^vRi?#8VnV0L^k{xsY2IUaI)KiBHTKJkaH(e3}+3lJ13 z;c!MyReQwG(J-N*EewP#jb*Vy*?4?E-BD;*@;=B6)DvbWP*|{5L8T=`~6`3D64h%T|#~gJ4+I?QF1P{$l>KOC5bd$Q7bcn3;@J03tk(A zJvh3hpEG%8U;ybs?sCO;+hmPzAP^R~@?WO$J^wxUq~QnSw(M~{wYvDSZFo7R!o&7^ zCuItyjBh66`l;!PO8m2~!{;S}JjmnQP$Vo|q7X~`;`86z-J9IiR#7P4f1SCdCmx9r zM)sr7#=AfO^6T{Sy*3D?X|Rig`w$I;@7|I(^op4)ho41dTIW_^fz2V|2g7i+fK5e3 zB+PoE6>ijW0X6a!8Jt5F7YjhVo2p(tx_;TIAWw~j&{aMN7H{6s1QCN}yjlA2Kw*#*V!gOJ87Ee9@3y^$t z+&n;A@|arY$o3Gs1%Qr7$WtoKuZ-rAXRCV2PFf(C{`2O-q9lGPWPl57+rrP6Vox!<%b0Xt)-{TJvC^{P-#jbE$wF>rL1Jc|2@@9x}ba-cnh?7@yIm}gd&S)u0 z_syeAs`laEztu|(>&=3Yr*g?cps6e_j*UEQF%J1@#(}2`J>h>I8>sb{rq~uy7Mk3_ zAGx&EIWuGqoFN<_cKbME{ng2PEi-c?z8Mm~c#LlCv4cIO4Rpo(Dcb6CH~rF`wOeBq z`qg>J*7W zWJ1mv>7md2u4DI0mzusW%udt=dJjKlm@(l)oi=>#s_z_G)L-(lSQV7prSmUFkADF2 zJ~`BB(kXIK+U$uxA%gqF56p;ys+UK1YF?`a;b*VVl*JQ#%jzqi>~eUs+L?=yWp0mt z2^^sEc~o*04>IfD%-e{@9GT6j`3jUNv(MK%XNDi8#YbxvmG}0zE_aPVYIl-x<1tr* z*h`!5dR%rX4x$0(Ticobf8-w?BeE+qhPl#hH`+H-@*`wKj&|v3uG%(R{*o~MJ<|Rt z;jq^G{m0s{c4dqc3jW&H{%_{?k=6pCriqYEmCs^!i@7Gdl~K@T1G=}$c7Y?p>Q(X| z0q*R=`wMhcQlxZ2GWB#y`UTcYa4i*<5+-^f&%5gMkbB{~TlJD8e>UEWC92>ZvH{}u z_p>wIza&oEEU`{b&tmlh(4%e0Y$Cwa;VSDdi4=a%Lu^J<|AMI={{BFI-Eg3RB?l%UT^Z9+LpPdw7Y3H{>=$V`A@t2Mvw<@TJ4$IdFRm`sfY(!sIjO8qc+MuW zTsrk@I;!B0X}%2pW^>93yF6A%n;R@4(r+#H!h!C8FjW-YP8JsGI^3Zq$CqLo=G>K) z@F57LFwQkGyCf$aZ(#Sy)rIetI$Tc1wIW>}wI`ZC2GX5{*6-f7yDrmlrVHtoR(@A0 z=GH9yA^faB71|blecP75_I@a$+^7_%Q;X~1fR=xZyoc$|M!V$t6 z-uy(b{g3dA9ja`y@a1Y=WEo6z)D5h9TtB?^v$SHEEovtv8`gFB%)YE!~iD5DHW{ zb(t2X?@>8dVz06&SRlgxQ@lu0!L^`yr9RP(m&AJqEf9afH}acBHTa_cE>4x?4$EIS z&R*CwP6`#6@O}TkT21``SXr_u})Q0(B5|uCUuQQW9QHn0)&~kB7bD@Vvob< z+m>z-k3R3a7jd3(YNcUfS3*&!o-858(>V9}2kqe_W{Sz)s_`4l+A-6vH_>Ok6G>>F ze1SHeo4)!6yHszF`z*oI9H6w_PI@;}~4bYrAEcZWCXch{VKd-4xS zTtokF3;J0@Hy1;B?|S5f8Y{gD(JY}ATkmh_)Q2A{U(Ob)3QG8dk+o44i^n!I*aNK{ zolc`56;zDinKCXg|6$R+9V1W*bWt?IwC=(y<66YLe>Dc0*%&!oMb0(1js-gf?>y0r zoiMvkGBaM2m6&-!&MIKTYm&72Dy`kjl5g{?=vBrnazLJ8HZE)kCL+Y6J1y1aGxc35 zjv!z+Vc(27q=ol#z{ze$v~V{fdKI?xzKFiZq1`6f?X_D^V4wWDiJ%eKOcBRrIs53E z>m6Ol9pLKbMamsI|8Kj3p)_3_L4QjGEXqi%bz5Q>o;vq6WW}l2PknUe7O<|ma#!|N zNlN&z=_rD20%Xh)SE6OKHi6ELr_}Y6Wv^_Klip}5Nx##D7vh@0O==3HYLetWi#vE$ z&UW02_ey%u(bAmmKMe}rY4uKLfN)bs#62ybi3Nbk7q&Ca&DNFKV4;lRV=|cljr2d+aa+kLB+su#}+au_bNh&`y?s0UNR!Y5t&Q}@Q6Hog*M ze|8T|=<$2#KKS_}O}9l!dluw6aGeF&e!E9*a&ZW`j8KdV*=%VY`gzBp7$@_<@+*Rv z%$HJSBJZz)yZmxy&?G@f!2PH=Po+uUwWL~4IQ*v_HGAdtTyTJ=V&E{BkY>rNvRK?r zk&G6EsU8A;c7$0xBgYh)&#ULN$5N3EKCdp`NYT`nKYTlwbMs2Xd=HhA!_u6Gr=4xqhPw4Zm|67$_ zPDPbX7bb@%>0#qaO72uDH}9&(<~GtOO4xaO&%eU@ymrtX*w1kJe@S~e!cWHePR-ms zao;zw3_Wdyox67+n78|+vTW44L27ls8>jJaI)lDRFu<|pOj4dPf_!>18n9deQYn;R zhg0JOhu^qZvlG*NRR@@KwL-*pV?IZSv$)9P%SDrh8gU%1XLHRF0YZH=7{G^2LhC93mY%5Be!i!WmX$DBmGxfaI^6To-bE3h2Jt89Lx>x z@8oVaEP@#dtFD~MOMW_0Al9 zQaNhmtdc~N#j33oJaHTkf70@`N@^A`3Te0s^L0%M`rFpp48J>^44SgLFTQ?8fF=Y` zspkD(IyijrbncOd5F2m>Z8%j#9@%_QF&??JsCs)dngl!mZdx4n z^<~mp8V+iLz!bRuK}=(-{ll*cA>8XfQf}GI_fI;`(7Av1_2eXo##CGOD2%IIayUhe zCBIZ*Pl5IS%xu_>-q;%mquM0#Pr6P+S6t>ccZ9Dfl7dOIIeaK-Xr*|f9hmxA&Ll%z zxOC!io9^7u?>20w;nGe8zc*I)OKi*#%dtfKCGW~N>HSFg`*EYQl(q{d`tWYV(%#ad z<7dq_-^-?#W3fI7OyMdPK`c<;7f#%C!0Sh1Z`r9jf;qH-ZY#_z&<+3*6jG=+YBK7A zBq%;_9o}yu9>r$2J%x0mGAsETLJe!l|4%*;akDU^6{tKrV?5k@gk&vGl|KGNnifn3 zbB9r zN!g?LX-mU!X?;?L0kdM;gf@?qnbz&)HQkQ%AFYUd!_>nCQ@V5S&=>eFPrh{eMuII6 z%n0eW*3_!1mY#6qFjGHafn9B2C(cj@47xSDpVjpKTA+Q{h%=~b^BryOSs>elEk^D$!N?mXqvudLVu^wBXa%HCH_go z*~&oGj`sm#=nssEtB+}&vHfFU?AA6J{IvvSKWyYx^y9|Bj#2!p;ua&CVbsUfa&^q{ zJn(hz$Cd_c?e=Gt4kOgc7#(WJawV2u|EZaJUHo=IxXf(WjH=!L6e&TWMv_bRIG~}F z`SG1Y|hdQ_vC1(}1MHPOR&nOFMl_c?}%Kj=-j75YL}78SW_gN7}dQ?81Qc&Sj?-zG=A9lqAf<#t5Sb<_$(0W)*gfp0-fkwxXPl zE;-0)L%=I}6P?}p2Yw^R&HJHfUF)`5(K)YP&NH&%!7Wy5q!bvB>{f>%&}@I2mOv8% z*AB+Rm&GS$^f!An2T^yA=&Pu?PvGa=0=y6 z+hb|8eZLhVJ#vibD%x#-m9j12yIR-wpJsekDfCo(|I;&tkI8z}@Fvp#Vq|TUKuE>W zL@R;6c-ckNtex1_SpBX_GUZH9mXUr}h;b`&-CFL-MYpQ#T;b(YqL(dp7V}g;UNow4 z*vlbaOjq{yo$4Co-pmS7o!3Iy#P7BkBXH>opRbv1(I#3$*XKuG2dx?G8|~9@8og~P z{%(9_x|{u8)ZE)kv_+&K9OEwLBtyZYyvT`IO@ZM{u|ql*>^!Pa19$=z3` zOhyy(as7*rCNEaMmBF2Ib6$oPh=0=jtU*H)D-+k)!-o-Vs@jx`Mt=(?(a=jvj)cm)I z8gJTdRneP+#(rr&UD&Mtw4b8oQ0L<1UJweb3>c<;$M=Za`LT+QePiEZ<7n`MsXZ~) zErX4FbtslhEv~_KL2_)lmpM+1*0IZY4y)%h{pYg0asy_B*rtEvG^*ztw)MAxzCLwn z*_|$c_ER6y%tZ+~$}O&^Mv%MNO<9eats z7WGkyxBmB)kjw}{L!mc8WAL64BkHu$h5E2*@Zj>eY8Ouo0BhWsa0XuC`wt}N<~{s* zfJF_@{g1yZh0>}P`A;t{S-c%L)hk^(RM-q|uFqJPy3dFGM~h@I9u{sBL(TQ7U3KMd z=4T#C{9Sbn8(%Tf)93?2giQm&%$uC<`U(-t!K14iZ1MMcN&q6N)+=$FB>QZxp|td} zxa6w@SW>Q@OmmIn(8zw!&K7RALo9v2$WL?T@>}5S+}t0q#0jUox?%0o?AzZ_Z?}#9 zn<=olxkNo@S;BYaLK~deXv(VqyHXF`@46UmTk)qcr7+&+gYtV^l2Y{16si;}m(v$c>Jn{gv9>+8wLJV$$~jqsr*AV~&V1=WmuM)BT*$i0 zr!T$sk4K!~Eyg+}z~T~{0OZ)vY@{w)s@6jT z!+ci+4j=Yv? z-o((e*i!Soo8~7sVaMVD@QlyU)(+aAcl~zay9<}LAbGwJi)oXY z3i%H^(8zZVtzKVlJjZ-_2|_0J+aV;~i#notjI9xjm8`ty58BOFJ}_u&eA^Wp?H^&< zkJI-818d@3G|H>Ft7BI5_+Ua#7v6FAM^Bq23|j!MVh?$JVHO(aNffDE6xP(X^T8w? zeR!EW+jJY&q!|0)p5cV(O7K+Dwf#CNd6&LFJJ9W-PB4zvlX@B2|6xUeQn9yl&wn2o z$<|X{K1j5vGx&~xbe%r@uP=}W9F%Vhg_}ve2G3c&BxBEyHZ(-lJZd9X4cz%%!J?{jBzVN0kNec%_a72no!}*zFq{k=?8qLCO4EMfh`?obxjpU( zi`Z6x?rzWuNPT9)7sq=CzSr_Tbw}3Ia}_+g>x;iSKD91Yh&JA+QM_0B)RZytZ7V#M zsc5qCqyAIfo{cQRZw!M~n{XS~{?EwazBfz1Rupg9j^Fy=^8t}VI{2duelA+IKK_B2 zgnF(RV=BL0FkxL`oxjNCS-+^~jJdL@hLa5r09s1I6-}qnMkeVJ8>*tfFZNlF+&}N0 zko&h2f00|$0R>~nSVald6s~Yk-nTyl64;)41O)X z>O}#T+S-U-E>R0y-`p|^m=BZ{Do|`OYE@F~Zp2*#+O%Jd-b5`}`4zMKT6tsaz#>C% z^V)8pW^aiThfvF7>eYGm(xQ~=gQ_v(sPfU=cZbxbWwu^{_hMe|q&2aPPGkJAJiMOdRu-%;5G282xDSL*^Go-aw4| z!0=4P*?TO$FK#j>%G~$tXtc*E7dBw@`jWQf@b6EXB24KR>k<9gVt%iH;wy#7#4s^s ze3y472VWfQWf28gALlz|5xpC29^S)P5dBT)rF~p~In?_oe?N7uiaiJ{V-}Ln`Px+7 z@k%gNfl7U=<1T&dgUk7^W%0ddlmHQ{fP&{U^N9aMA17AGZl)Od_k;CayIJFKlR0vPFIIXR1ntwTBUczlTZ4z`e)RnAobES)z#If|qlp07Ed-2*pdcjrF<|1_w&TL4 zf}Cp7tCjpjeK8t&VxL>6HojuHNDyir^k;_ZZci)N)MQ|;a{9<2XEz3|_6F=9)c}6b zB|LQin;KE=zV$BG7g%PnA*2hx#t@d~j6y#D5*Pins@a?~q?*IkF&lgb^5_lNCkghe zTATc94h!m%P1f37CLq19IyAtfoH#tij7EFL-Zkg?RA9E_kg)seSSgr;LzDT0-l0g* zPOt4Z9FIrUoVoqxY@VAIT|s@pSu6Yhe`@0@}4riw=HvWpv4JU3Kb((Xi0QtnP|?o@K87 z_AWAaqA=pm@g(QBMNNL(^6nLqH^0;0MG_fD_wE^fIgJ*Wl&n#xA;^3pKd)n0i6dY>iKj!QMq9c`qqtBv(|k4FwtF z5=i8hGMw37|tdM zH}5dx9f`blY!&z zRqK;ZLeu2(ZlbjTQq>@8w|4p^sb(8vkI4`Ti#|Sq%VOL9W(e+-!jJqwB*l<1zRO&~ zCs-hhlHJEg*+X3VnB1FwUGO~QV)gR7680-uM^_O=`!cy71!TmkH(}{ z-Vcx;Z=OqRR5tlF+Ij6ayv*PKIbz_|lnhP11N5o~ejO283aIbavGZ)(Ib~1lxY%n8 z^Ir>!M|k5`PsS!gjUWyevAE~CRh2^T#JG<(#&XHfl7Jf6m@@|D<$Lz*N&t6@u~Wo* zZ@!3QResf?Ct?hIagim?@aA|@Lk!P{OHZ_xI8X=_@OhXf%VOW9t?PVp>7X{R7{l4x zpqK*oWvW)`R5-I)D=K3k>m}}pCH{VF$J021N8STyFwlLU52Xo@CH@`z>rC z3lFki{(pM``YErGo+TRM!F|N*Kh`if-P9QcY@tF?k)jgoZsW+Ljv@H{=Uq$rg}XLT zg>U;a3rI^vBh+&v2L+*{-|Wxc(#STIGe5uM@~*#Me4?IBp^jU0<+kjrOY5nvNm>;m zqsbG7{R;J}ciasZ0?)FgNdZLX`N;dl`d0sV%U$u+I9B|^+Wj}IUfw|__)K7x@>oXf zF(Vo*i>O5{cDy_$qVjv>z>{9tXXSJLEns~?Bs_w-D45QXQRyRh&oR=mZQt}Z=<5uug1>iKFssq z^z})8DmOWsaTckh`;hjn9(Wk3VHGqOvaFfkq3(Q@Lmb4vKxf{%l7nQ}QyrGK5YJUEC0M{@$yDW$B~B=Wm-v>pe%pZPX!a%`ZGXe=ykj=gMW)r$!vv}3NmLs5hYWYSK z%DQ*pU9k`QLSw!Bn1rkI-Rz#exeqA>{v-FGWGYz5O>!fE)*Znvr?^x%wJaOy|9a*5CRcLe8VcU$#nq zEx5{*+rV|{Jh%Suus)e|eZjla-#}aYJExM;d#V_oazj{0D|q}fqZE>K+>=naf%{~4 zw#(t$#T9c}#wR+!^w;S&z5mg3UbpS8}rdmNW-!yFlcf}B44HudA|mI7B+*IU=DLt zlNR@tp3X^{+38eXt;Z(wLi{1?oseO^m~8+fe5rb;Nn0FDEz6-ySE|(Led*u7{7tOq?H){Dx%pFQMQ# zoagV3AFx=ZcQo03e^9WRJq91lB%h?w3vl0>=>x1=A=0ez$p1srIfmEOc3pc1jnUX> z+}O5l+h}atww*M#ZM$h2Ysa?z?fZF;@8ABpj^w)LnrqB+jsXT(5ik}tE+dY{9C@b; ziGMw3ghSHzzBtzrnX^by5Py*Q(tjJpql?Q$P@;hbw)pp{MM263{O)pA82MKMQ|$r` zXdfhj`Dc#{sCSWjI0C&fFQcH4o=GsnDiVB;K6lGARYw-Nt{-Fsn1-TobAuPDz z1kS##s>lzIndc}~^ouBN{&6lY%!~jx7%hB*qgPAiVkynXePC&g#a2?L#v?I69Y-X| z@ca142483Gq&!*p13P=3S5e`0&ahiVwFVm*(Vx@e)Enh?#KN<&)xxll;1%(11p+y& z<6K^au`ts`?ZT;Sqnf}BH&##rSy|FIK`WxuA84zQ6}x?CfL@=W?mse0@jCE_x$!EL zL`NBZV1P9q?oNy9X4^fBFSW?kqueMFi8X&Ks!yelE4_Hm8fZY6i-H}+FYNCwB^wQ- zc0n;K+kcyE;XX|fEt~hoQHULitw57$fi@c{+By&FA~xC9h@1cLx^OavDHVBYd#m;iZSNrWzH$j(%9`gpx})2~d70`n z8jD{)vX@Lkj5rV%eVny~LYi-5zCZ?0N9?ffy`RLLQRN}NS2g}uzWy6%4l7Rcx(YYr5$LsE*?k=UOOB7$Q5dp3dJx@( z?0*;-^N&@sV*#zzJupp*-bDlZ(&s?9JfqVN2vZ*gWIzJKjQ*9@e>7*lb@r_{l$z9& zR|j)wLni|(Z|9KS9!f0oLXhP$Aw_mhQPj2weDT`!OUOwrhUw?^uC60K>*)0ZLhnlb z%~#hD`9RX4zM8Le5lR9qifHx^`k3{GSm)CMcmd~F-dK!rYyjuoZ|3Q~`Xk*6ozIRl ze3PZ9Y~w}aC9Gx2oVPBsuRv9&4odH)hpcj$q84J2>@i3;va;dLx(nxxNg|@x+h&m9 zxW1<*|L-PDw$8UgkNk3gR6h33&7^+_HI7mxbm%}87t`PcahFO=lnAg5#ZPv`D;uTYw=FK2$4=y6tYfb zJAcP%Y^D5;%(iqVYMPX?0k?DfN2ii6BY(vXJu2@GE%iN+2BazVxm#?%Se&8fT-oIN4uZLn8|9i2%`V}X3Z~g=1r`8M zx$HAeUO$)?SQa-I`S^xtg^jn4RxQf9s;VkgLhH7!K2B*A^;8{lX{FR&s5bo0Qjc>s zmxr}>K@B}Is-4>S-a~4B%N7Oy@k7b>(;4p$b|6> z0ecf59RnS}QI_pIMRe@|_~m=L(Qm1Nl^}+R1t1YN6O)?nv^MYE;Ie9V`TMrHecn0P zKK6U6^_fs&=Hj#xby#96%`E|T+j+MO2N#J0AV^j;<2L@<{wdNV%E>L!|{!Cb55xys?|%}DlaJM){q*}Jk0lb2)9l5q`*>SV#lh=~L8n+nMR@6+-@#yEB3<_JwRZRz5{Q|SJ@>fL1VizAu2HCy z%d$!vI3uLdsGXLW)`^TjS}7qdIsyxD-fH<9>)jsk`T1D}wgCgwWyId-^m)0}7Tw0v zZZwsus;pE1a1L_ix4E7zr7!fP!4Kdl6bYFlLFrRS#?<(hUmKCU^r z{L>J29vF2G*>|<0j$b7TUHNWW*|uCP9E}Z;%`|AhWptJW-AaKF5~Nei>^xL6853J) z_}YV5dunbGfOdugD-+w#-k^o*+F}&8l!B%8_~E);_-**+Drw)5_al6pmuQYBlId|H zlI7<}>54CKeABf=td{&BN$$H19^>Mbe)7_2e|A3JH6VkS$GjZEqIN&d?H}U>ViW$ zolDx6`Wt6*WBj}m;m1M0alt%{M7)!tVQt7 z+eC?!j8R$D;B*v+cD=P{G1i%IoU7{3y(Vw};wyLrBu$*|VS%p40XhMP%DQTRob&Ov zY+${nYSDmV>%wU_LXHkZ5I}Hv^{-7JF8^LFP{TLPyX7!YBKsbu)y+*ie=c}!H$wuG zG8iR3qF`0_k0&o;f3cUQlp&F6Y(?ZiT`9td|8gq&ZrqCo{?^Csd{ySP9~a_pFo2N> zINwkUvfbvmYIo;lAV0)exG|1b5C7crqZj)AQGYeW&qgTp{=I)^XaP6`axkyH#~FVd z*Z`KI=6WofGcUz}QtFbivQweL^Xcx%d&IMqX+)yIX7AB&yhDz$Ol-7fgklEIfz*^x zoRQqi`F_`91dXC*Nr4TvzxAN^k6z!qknvwGFMY##RQNceX+;^uGdK%tp+#+sC5l;R zCRi-|s=wl(JeV7_6w2dhL6!tR5(liGsd07(P#uq4o$0)STESQ4YpWnxNXeqw0-jxias}T$Yr@Vy$=tpZU%0%G;{mSfKUo z^*K9Qegai&>k?sxWoe2)XV4mSkNl(Ko_MzIRBdh0&S>V<^|CY^{$VXOkGlf`(7tk# z@eVtoTWvfpRw{6Idkc3MIYl-Yedf{$pK81<&(vs$JVlq{@$T~66!^XD;+YY;mUJ-P zEZkU4E>qYcyCX%43IoEVED}~96G5t&7nz4vQ6GWFrh^{z0n}E6J~p(UG54V*@Btb9 z_cV+~2*#77=o?f(Y#z>&EHhaW!W=%7w4=XfT@h=f-H^?9Xf`=t+f4}Hr&@1^DPKhr zE_P2%#&?R2mp%+f&^}W8s2?Xjzg2o%L>zqf&k=FJf7e^$-OnE*fP+Fg=;$h6{$aCkcE z*O{_iqA$^nOalZ?Og4n--9U)c-cBJt zU*G%tp0;^E5;4&xb@o(y_ujW74--JlpTLA4K=}X+@xPuc_4>r@6O;bNsUc`~~MIrtsIu2PQL0Et0|e3r>131ADy{pnZ;(-o3vDk73QzI_Mgq zwrJ^fOrcFl;lTm1&-R>S9PWJ}o!X(!_j*jl;HLmv_vJv%`}1nkXk5NCHRmZ$`(}Wt$YxCsYo3H1w=KcVDek69ww4&5cZ~U1YBY!0 z{F;%p1ByWgRkDi2NOmtEb-+w`H{&Q}M}O1P-+-rhJo>c1q71O-K#eWw(N#fcgkWZz zFndJ^A7JlPX%9D)IlRAUYHR+BB#CXA^{?Ivrb`SI00Z~S95V44LNV6K*Jft94Og#& zcQi6qk|`tRCx1w;XWkyNd;zhN}|{;F$fuP$uaydmiOJZLrzL*1|e zSW-5?nvUYFtGx}UFx>h6Z5P>B!42g+Qqbm<^L!}s0c3IXg8881#Pj@4+BX#CT)q@J zjoU|e9EORTc!4;dyquq9*X7&&r)uW5nnlwq9$|9Z*r}YStG}sZ@>QYk^q~QVH@L5u zJPrfDCnC>~XD0fy%SF!nD3m;pGmTYAZmCgif68lXII~@9a}tmr_C_QZ2Xb6Z*OQ*< z4ZnuJjaBKSxB2WBhHosT zhc)8f*a?Z=Fr{x_wZ%pcc#;@uknL`*)S7^{_xS96^Q!9zcbbmpwWqKWhyxBu1@tbXgoLsyn?&{`&`jippaEw_o)* zMzt!Zjc)gdtA0v_Wp&M9>GDIOZrc@jO#fX5SM~2~Se-)dW4DjZ;H9rb>lMF)jnBJg zQh*+SvA1X7<~em?RLDr002<*VZ{6Eri{+gLi436$iJ@vZavVkKjCj}+EZ!}yup_zN z`zx`hRDDA$|dBw+3eT2p(<5RoV1_t*2ftLkS3;O4wXy`4++l^IDldU7A zLNHW_Ix-0RQz-pDjYS6fb-OYo?M|1IB1NiZa&)*{gizrz(BXRQ+1lFD%A_^D*&XQx z{akEtiVG1gR4G(EM(*k9$xfr!<0iy9)XrrhOPxB*p~|$(o z!i^=7jZ24XQ8tq|fd;rZgkbNseL@ntma)Iz1Mp+VLGv>psh;ctx2na!`!}{|UyQ?r z{cCT5!EAf>yf!kx<$StAfh(1Kcd3NMVQ(sjArb{el5CZNCyma8f-5KKe7$3gS*)ixaTH?4{|W&#|&`+en%5&6H{XLH!c*=+an zZ7eUhQQ{*hfGNs~D$p79@^+kY&JzOiQ$7fI+|JWMPJNOkUI2jOjj>aG z_C#pYWy0|bJh-}}ath{DD9Xl!2vk&|xao~j4_X^rGFg=4!$z=%f~rW~iES6jiO__@ zQX9Hiut4On-qd)*UH*JiFYZn!xe`Ho`#^=T-))mni-}oy-k11`etLp**rvT)&`L~)wg|K35c zAQ)l2tGr@j=#C8zfN6@|e2c67So!zTH-AtOMvCIk$_M5uK}Uyka+V5th;g0*2m0u? z_)4VA^W8&)KbTii94`rUU;ZpczFPC&cRnnD7KQm`YJ4qyt~H|HXW?Q7>qCg)?sp&o zvVgGL(;q>X5j%$x-6*~-i~i{7V^%PAO-sX#9NwhKK9xZng=@;o;rxxhNX<*g=GPaO z$1fngyx--t#z}kCu<}aFh_MGO#!M#znm>__q6Kf??41e}BMhMyNLs9d-&zRSczl9N z^cR-~e9qf+?lLaan`nr}6X8#x>3*61fE!)wFj*!4;YfRdiJ)bO_M`~P)8Whwfy{cI zG3z}wN^zYu21j&;9L~eS^&>6t?5+U}Xqs7Czx(aW4w3etV?ILK#$3*PegRI21f`*L z0jDZkFx_CKs(JCUDNpQ-MNV00kg3TNs7OfQnD~m`UzI836COOh(L|KTJAa;m&U+n* zQ#lEG8wCBFsI2S-D~OG_1TEuJS5;Tze*=o-+&wXm=D~&vt0WybGXd|szfU7el8bdW zu{UquR$M_PixE6!uzsc~*h(-0hd_O$rt63)Bm_V47BZtsHiqqx8zHY{edUR>R25aL zdE~Fzh<-T)EG2Ej#~3E~8KRVA)r6xQQMUo{vp-VyDWn~bq?CKhyy!TrjD8u0;|DoS z?RGX%sAAl_LwTa2u7r=^f_VZ))+u_^kkm|UOt z1HmN?gAYZ&?aEEY{%IpXHgZS#5<|zw*+-ODlp;LYcGp@if11eS&NiUMwkfwB->lew zk?AnSGzF5;YDqxZn@ZC2nN5Uf#z;>`tL>Duun_98_-?3KA1Z)W${+xe3%`lPEGIeN zf$(^`M=XU6w*rsnJl)g>aJpf{MJj`(HLYMMu${^0y3}G0vk%19`75Alui1{#daG?2 zz=se3s#fBS2=3=AH)Xjz?ta>jZ6NPCgEA8!1{Oo_HNW?Z)9l8{3FZMAzeb<23D6am zl7b$)Y<6P)VMs`h1+p>5KR9P$4Vs9+o>av|P|g+BPLB)AB%4NWCN-1sT9ps(`ym6$ zQ2vs@Mt-|F9+Z9UmXxd!;)bYq z<~lW+h~AUI22YST<+E9IMGS(jsev{@p{(z*1Nv zK{REXk<=0Pb;NDX4=~BoD>iT0yXQ<3+-VFZyo`q|&E`x1@NhNx-Yf1~Kv5CzbiRP+ zS7&%DMNva`@KZz#bDp9j7Q@H$1j}M4#kSt^(|Ae?*{ zqqxn-&_~miPrZF+uYj~vNMaz>G5&fFxHX6X<1-1otR;shMIz*VrUS@CSb7>5Y%8?c zZxe2TBxpr{|F0*24KQc>1vHfPra_6`g%q0I)wkJopyX)m=S+tP!jXUM4ld z-rnB)kDqwJq61TE(=pIT3<)e$JX^Z8t1+gJ0@9TD^|03k@M1;?X7)N zjlmpDwe??JuRrTgWLTfTPr=&9sbwmvG;(t=J1&=@s zUHuM_wXYfClR5GsK7PW9*<{|M2ruQkyKRW$d)v}XYBmIeV{&0vdxLlKp_-X{01sf^ zPo$^FnE$J)mCLIZl!+$tuYZc`19;~jKGHv#5&4@r(>dI~H;yNqW`XwfDq2cf~M%z3_rZ*NZ?fC~7-dhz6T z5@G3mew3m}6K?v*{-q2TtEy_{T$j= zn6E5e+&1NG%$;{#NDVl?gz-Io29@w09568*0ZFxR)uEo- zvBN*b#1h7A!5|6VgBZVEtjuym9moZDjWyvXW6Tp6%izyh7*vel`6-hptsXR_ld&CZmq0>4D(Xu%Ajbl;`5kNB z$rv+^SW|EIKRubFP z(v2sNAy+9dc@I8$zIa2DP5q3%^2Mdq^zr-=dD|aCR z4oj)g(aA=0(eSAImKMqKAy5OVC|ZGsBMZrJe=fXUBzcotmsTDeeTel9;6d9K=}gr< zPSjh@XGPe~+*zy~m%CDj61MRxCd5$;m*kY=K*HCC( zBY|N&w&niDKPenXE|b;_uK5jU2&xunhkJf~U)BJUoI8KX5Jy8wUKL9P9Zq>qeq%RYI~-^<0kj0&7Yt1{;{q=F5PQ$eTFr z6Y^8yAIjNnL zHC!Y;T=oP;a%hMp=7{=${xpNn8+O;xQGceZWux9ib5DP8ewtVbVpnx! zEV`H#7=UE$KcBf}aX6AFyf8Jj7Q|gBV#48>NIFhs2VE+bfU(%$wC080Kw3IoABS<7eeff<#c-x-|NT()*FQKISwV$%C!t>Y&UA=2%b6 z?6DZY+**6zk!_(MT)Pb)^(O>)k}P#qu?jB(z0j^}ow--dHlAhZ%NA-!Ez7f+|JYgw zoTkqne8#=P_@?)8`y?W-@UFv_gG?Z>Kg4BOT67$afa8>C*$c99e*+|$$*Z$YQKvIE z;|`{Z_Qzb2?OGuBz!Y=Op1i;ch?nD;7R@}qcxuzgSb|u)mG$*QN}|h*ZFFi5+6xyV z#g*di)iI7pfe*l?5~WOiJ|ph1k=9mR)_>_D1e~sf0ee77bxa~`P|bh(DJ|Ug%SZ1U zb#!&I&peQxRL(&Njean8-hvyK+EL<)R>_Cj4j9W4#<|vR^KUxSY>)>Z7J3F2%RO#j zMnkss0Z6iVEPnb>-fXkLv7OysDjHW&wa$&L5Po;A{vd>EXK&@$D~2TYsvQ#PS!$p0 zn5iT16!{)NM3-te`djNaoS4#m=%~H$-;_~ZjW+Or<+Gj{pAE#>e1SelLGl2G$;m%c zCs$WxAgNo1T2R0LEKp+bm26STj2#ZTMyp@2bYy3*41r*`X|9jg0Cbr?^4q_lG2JY^ zZ9^xDM-Ja0Kyv8BRj>7q%l<2GIn7T|88fMkfHZ@IV45Sm*cf?`Oh5MP0KEj2-R~%} zeO_(ea+(Di32&eM*7$N@MlLlvDA1BE;x5wrkzkdIrmkAhh8p!kp?`0{-c8^O!}&EU z3w5K_YXECmV1vkcJKl@t=K=?3Z`)}MqW{NgvI5RM+O&NIxf6FlU}52N&plH99Q3>f zSZ{v?tvGG184Yt>zW0SB4Zx!ZR%W!xzB_T5rFOEt{-ixDmGkj#`%CNoC@tyL?`{l> ze=zW=iiHEaoAO+`K1x7p__OF}tfoMFn0KtKQQ(qq!$bv=b!3lwJgYa15kHQs+5i5v zys;drVNDOfeX4?-k}9SR6utKa0CU!H-8he&0fGyxPt^i|sG?!Swye_CMj^Q{U{gg( zB5b)dGm{6+J?3z~@V_5Eb-_bJW?>@qcYThJWYv0qE;9Im52LX=8!0VYW0I@YBq7*j zhfEX@?qog@d!{$KrLdh{rQS3wFiYLn!v8`yznjKJI&$o?aIG#5KZ*Ur4qkp?mmnki zj-t&;QZFSjh{r)sS^X8!_Z1l61E-;_9AKR`mqMGTUF>oQsmpfN4AScR^q+uBU0{MZ zyq!_bK8mD`W@{28iTJ4v$PsU*scNO$Xxv`sDWL$&np(CG3=_OROr2gwZTate7Kxfv z-vHBDt9CWvrE=cw_D2$-+GKfHcrjl{uf7146tF&q8YHWWC>keDi@pSqC~!n;pXvMa z)q@nzlnyi(#IY5`F+qEKedX`*eS3`Ym&GzE%9EN-V~w-v?;RqF3!%d#>_Kyvf%+Dp z6gsdU36Mb1m-&Y)eNDq=N#2k<$~qdWE6*s+nnBWpI;PloMqL;2*b`M$Kr8?a_!LSy zZ?ZmgXNbkLW`rZ_v6jJfE38(XBxDz*?bzF?F+qes6y`Gi9#+&1*z#XrEU%z-yf|gI zlchVHN%gKvx|u-xzDUSghnjq-6y*ewv7#92xtHzuflw6$E#z!^-TQi)*dC`zhR#QSW$x*n36YIysMAjQ7s0FhBbe}Gotf>$gy@~w~jYmq`zl%)-#UEldR znpMgd=2+$ZR~kqs4MBbi4#(-+&y1JdZuG3PQZYo6um(^8o6vD9(&Q)#K3nkI;(Ijt z-J40~rzz@;qqog4+rOtbJaU=$Bt)_b%~{NPY5hKmCcco%q~xz`@8>&O1<^hyu#(G z|Nd8=FFRKkhojtV7%JeHP>;sU)Cy%rIgZ(6FMS^5DHzj|FLo#>Y7q0$jhLii3&Q6J z0n4L*{a8}FdAPatp&dxvYHKdLO0ArY1-{m{xAUV$?Zpi#dd4G|%*i5IaK@^jjnddUX9LW)H5>Y3t3Ic!$(YiS(in5-q2l45x0cjOT9| zTmVu8J@bZ+eQ;G=fC;JMxVDc7PTQjlOOZq2u(%cVB$!|nL_?dBbk120lQ zlr?2Kms|rTLs9j+s6rPx)obX$Kv*H{S{$MB`zXd8WbgH5h<4CivGL;W$;xXT-Zl$& zB%n9j3Y~+#V@v_%YW-3q+=&fbhY!?nkFu?qLVE2i?l}_K-~_unaH0~STTVc{cr5e% zvw&H!!z0kHy8*K9{B=!^ zfe2s0Tw$NX2PCppOS2Io6m8otp?Q^mA=}{Vf!OMxFJy?++YsO1t^NMWZ}cG)J97 zFA@|Dw+jKE<^Pa^k^|V92rY2IxpfOHSZ&>^JxJ$-R!wrmY;#||RmfbJ@^Y%iKkru_ zmQ(F~b@;8#VCa}ZDwAuemBF9~5y1Y00c`jV@j3*Eu};8I$IBn@OWL(W)K#FA8TNn4 zp;aPDz^txPKrv zQS6?2COaOnb?U(qHhjwaHm-1BufKT&ijQjR&h|f(3?Ds9X$g{$#=kyn)k7MAt3>Du}JtuKfn{@VB{RVKQj|gU6zu{&wBFa@aL9#sD?_JAIX9o$1UM zS??R5clD~#d87$)Bc+gd*?`kuctH(RGw}|M0usTd23l);3;aV%?BwMd>j9Ho(_mR9 z0;m^CBAzIdaJPy&%Fm#buJ{;G6&|1Uw%4PIF98P-OF-C5`4Mh)G(vBGPUnW@1xxUD zR%1C17Kc&GtWj@n>Ywuz3oV7PQ?~wiyDW>b?)U#%;MrLu(Fgo#e7#DZ9EbCP;@$* zd9=R95m(w=932|UU7rOH?erjt_r|MiCtH9zBRcL?dg=p<&4W$Od&8kCr1y_)OvJIL z61(`lMHb_{*GoaCOrj>?nl%j&jbe|1fFCveM3L;AvX&fSEiocGFr@w#5%BdE-dFo0 zz?E&$cr~RVL%@g?Qfs6h;VG@tVA;&KC}*IFKz_6+Nf&4^;MeDGqoJWek3t8* z$blMp4hls}?L5t%UtQ(uT!$JkWGonualAC#K4d9qq#`o0o@De^hVLe{SLT`3s z{3AlVW|dAcb_RN73H29U;Mf}b5WcivQ(+GeU~6fG4^s7YGa`#o6sJ{xhJN$Z>~?@# z8(SRZF=zMPhNT z&KggS&aSS$@=>}Zp%J92%e@Ue9-;vSj=gejamj889_7Rw^S^QNl}#IIet)be z$1PBbKFX=R^X9d;2JVFTN|`*P2F&V+H1!r}jB#7a&H`gaEa4*V{J{V&HOT$@PIX!s z-yA+&T#^hm&s8us+9iq4C1VQBpCR%9oRlPu$An!3&Fre_&0qlr`7%g3k~-fvE(xTt zJ8BT0gw$M{ouqSw*$mO}dQO|Hab7-8TkTNjQ0@1Y1-i|I8(Vpmz|?e}fS5nNH$ODv zsEiqM()#PpwpyQ!bezE3^%xC+0vcuNF2(&AkBWDhjI)?sX2S;7&2$~8X<28dOmDus zSR$ka?^#dX-0{5;ZGp-gp+g0w>{5UBh*|i4%9jk_Xf_wG1W!0g?q8_dBriaI;F~yP z+t+$L{8O(N%teb5l!cC()qBQteOf>Z-yKyaf4jFXRacM%OT#`6yY)*%r=7A58ketgaP zSA^6>EE`xIG+Rk%<35y!t?{wh4gyKk+2ZquA6E?+Xpr6g$%7iXPaNtuw0DCp0WvJ= z&gMK~`A?~b27rd!Pytw=7Qu6*zrX)1=Z+y{|x?V%yP>xr(qqAARepe zkU8?fXyV6g))`NQ!^(}GP<>?l)B38uoOCm}Tx z^7qB}kA7S6r0n36p-!0$4gJ;mph5>o210J?(g*{{BcNXHtWYe#@Rv;NOk#-ZfDax# zoD*Z81&RLa6AJz^W95&T>XSW1WsRV(=ehisA18e?Dn1l0(pja2 zzsZPllXL2{l9^h-6gBa}*w4wufx_Nyb+#cwiU63l--=o#ycO6WnZ`WC^;R52rgbUdLxF~#6T-&&jqFx|S;pT(X z)pw$x{>NzSFS|eOnAX|0F)m0ik#&8XsA$f=s#$-Qt@yCGd0m)3Q|_3M80{=RA;MQ$ zm^xk5l_!L50bBPlWPD8*?+=|aY=#?4slV$~FnK#~ba@&1=qUAv56!Biona{$C_hyw zT=WwpvDpkoKJJ}3tWXiCDCwj=J;%qT@jb6FocV8jy*;hxrc=;j+<*)rB*8s9VAt7x ztWl=X5J~p3zGLuQcqR%ftD{asABzkM!H+gC0*@1u!^j%1MjD%c zqFJ_9B(IE>Q{x@9+&Gv#Ubdbg$}qA z8PblMGv1r|1)3eM?$8+l2`VCAQ+}%Ok9V+jt^$FE6N#h}4#$5AQ_d=(R<_$%HGW`6 z(DNgSkvO)BC?y8-*Z!u<<>-i)Si025(OcT{LMz-8o8|v77eo_IeEABaJrLT$iqcbr=PqWm)&1f_h5kw# z;17BIJ>W*_c4Hblxl@LS+r@IIzh7_?_t&s-Y(pb^Vacg|Qz#>Xnw@6h3SS0TeIYN6j3ohsd1Js>wp; z-zi8+If&TP@91PY;8dok<>{tv`QnWa$ZED%vY2^0jyxSKn;v{~*4;;_O|W%T!myAC zT3`f4v7BPxaHpaWq4e!8t&P92rC}5oDayOp*VXjjLDOyRD`H2J`DJ4!Aogv>8Vu87 z!&FL`;n_1!3d&j6gbo6}b0BmNFOJ*>@!mIc>{LQ(dI=*>A66q3;cUO=wZnSm}^ifD=xI2e%$8}8-6yuJc0f7Nc7 zg6hhbtF6&xHyHO#pwEOgt5RmKQS`7i8(T2Ou{Q8zyI6BHvgt?~-sF7OFwdY?Cl5SW z!z+K58li&%qRv#gG7L>U{~rT4bZ#$>OG;$ZTkCRGo!+>`Mv@ zcbklL(ZJ1 z^Qk)0U(#%)`~s{tj&m%eTF{e;Fd3>EOsCQh_HVRS>UvB#+iwr_4zo)73E@m^up&(H z^fFzI^(@9Dg)|+v03n&QVY_Q%rfay-m#{_>t~dsYl$UXI{43r2uAh+(!4k}z=YQVE{gF2}p}VtpLV_O8xwmB4ZF!rKrkYEv+$5%w zb99$1FjX28il$9nQ%8x@j1_x; zy=IrrF-UBS_SRt@>PVuMg4eHxrgI~tsK|%z0L^Ms#>bMi$%#g^UW>z+@4Ks5a!%xt+r@Cz(G`A+!FRz%o}ctU zb1+pSNa!)la}eIelYA%=B=2vy;I|5e??}85D!VSxL4Gd_c^JXZ8ry zsrQOhQj2XU|MYG6-7~MGl~X6!xPn8&jU=+6Cb!=7mRj5rA?p6$U^Z;Dj4A^SJm7Fr zNeU~kv}K88>}=$@6Yl-xV3}ZHl-g_&Xh!R~0S2H`E4i+ureIee-Q+P1tXagtD~Y~0 z#=&2Kktbp*gN1s}m{$+~^8N(K4`U8wdOj@FR_1lvXhtng2=V`={bgO%=~}jaSxg2 z&r)WkW&f_6^0~d7Ii@cH0l)XOqdaf=n$FWpEZM)~OKCW}#0A7-;fu~Z^P2iLU6ZS; zrg&=VUc&uC>AhqEScO0LuH*84dVK7!a=D#UtNn;3OkGFXJs48*oN`!M>17r~(aJ$I z6Kl6Ni&qLxEx z8!7->MK7ugYo>lNa4``pLV`3YW+5jZ>S&_RSt*!<5@?&tS2~|$4uV*@8Ui>urn4fD z2A;>cpxrCT)e?xtnbz!cDCcFcTwI$uD0?ACf15)WIkX}VpMhiCvG_T6b z!MRuh&j-ihk2qyoOcQ^4JZLBY|33@Bn`bg;uM;Kqf6#?|8v>w}7L-@E2k&Gtm**PS z&xs1um2uVVGyc`J=eT&Jwd<18VHqUBF@?oAe!tEHj78jP@j*&+<;ElBavV6AUqfP& zj+pFp_0M13Vyx9Vb+blp^F&Lgr{*du{VljFZgX)orkak+3l}zMG^8n`hM~(cljvgy zPr-VdW+8Q0mWywU_bc+nPV9Z%o|-7skho#I3@@r!Up>-?Bu7GnF4@Iu>QL5&7ik=k zrcpvN2Txt^R2r_K*|~bhb1W7jXJPE>yk)<^tCn@^M{U*$HKO4!C}+nn9Hz1UK1i~@ zpIWA10f=~b!7Uo{Bi`zC_x?{B-dTq;32mEp*#dpny*!9awyG^aXP8=RSqoNBs19}1 zE&Sa_?{k4Zt#Hm$3KlddM#&YSx?~WT`cJ@Tt35e6#cBfMK;N0rxvUxI@3F|5w_WdF z+f4LK`tgD2P|qU2q?Z@x@nz*BI6{SifNkIa^)is{veVBT8dDZK zb`amFRyw3&54R+`)3wEH^oF2pOrJjAr;GIt+sXMu(>J;JV~H(s9FX@PU-q&?HvoL_ z;2m?x9Wq68_3ghjFY0wZlINitUSh3;1#o)Z|655?diksWa}Hhbm$?oEXqcn9#D>}R z*!znQ>~bG49Ox~Q8$*XG=11IN&KKTdPuBlk1=x9lc6~hCM>YcwAVKNyr!i3+xe*5u zgNBow``>(?2mSfMz86+B{M|EGE)p@-ef4GEy+i^jQt@?P`)wvu(lMRoLNWmb)BRP{ z?Z1rg)z0iH#`YA}w-+QixnK5jl0Ds0&xPj@kq#!I0-^L|lTq4RMQg__cp9QR;kr7H z;7r2YX)_0QiIzfZp#sA5pZUT_P+}^64y6*%dF&_-Vyw*8{xWYrkPK>H{gJ5@InKRm zn3J4Y!Ju!gBKPz2dQ)K+nW6i1)GLj;6oLX4c6fLYp z(fxyG$Du*H{byb%Hx#i6@fc_2J-gNu^}%l&xVAk}yT>=gJf&7khH+w^U=YO;5^9dd z9%>AdFE*PW8{JE%%qe9jS#_|{{)g+9%vYVAD8}ouF^XzdJ!u}=#0vh+GF_->=Cf#l z;n+BG*%#+heC;_=5vol&-KKm(ra-{_1@qMscd2P_sbl5c9R?9=J0+u5%lA7vXa5vUM? zcS551#mp?GfuPJspZ%*VZ99Vi_<>dq`Mib)8+4-OZGFF<5^2jfR^(+WOe2wKO_Rvq zAi+bQ5DCP}YpD!A#nfbXMb&?GXUr2C#r9@C7uY z!P}t|B3}oENJ#<8z=+wE(uI{$FacI_|5!quEuf3DG=DbQaO3XFQgD!(fqdDAkyzCy z_>T_Z_DrSJ(0x9)Qg1FQcYP{sLJ(dnnNV<8FIoQ}n@y*6V&6?*!FSr0Jx~UZ^WVNH z$IFfk+`Qk_X$8Hs8^V-?c45K=E+@wn4Q8dm18|Q(VXc-D+AaT&r>~5Ps|mIp+})kv z4uiY926y)$!QFz(;K41y-Q9I?3mV+r2^t`8zWeTbv({N_{+{kW)m3}f-sO|M-;o@B z#5&dBwP68h2;KX!+tp|a$mrt}{_@Goa~2N_O4YG-D(7EZy?0_s>@6r_#>O#<82=m4 zG!;5~z6D>#fQk%MF0bRL@7AP+v93)2*7!+73A#$YVl%Yy)PvSflM!PIPfpv`^8^gW)QtQRPJGg7*fs@I7 zH$=BwNH)o2{23&1H?U4%xvzp!-|i0j$+oL^?D4!9t?AhRh{VGj;Arm zcudFzCVZ>zX(e4Ms&+X1$%ynTS-w%g?QF4)ZMdKHY&PdUnNutEkba}q3VbVr(p9ac z3)sOm4dGpfCbWFMDqHzEcE~@9Wa$8kyJ`aSf(g9PC|9dRC-9|SpcCaF3i8dw%Dsc@ zIubeo%}n=dgc;4{o7ug)VVBA)#As}Ti*BXiDUd`4890+y+huZxr%0SK9CrlO2FwXM zOiP#;%7)WaN!yc359e)vI;uil?+gC0`$#qI_P#71q}16K#?TZrw6KDG;p_6>-kp&| zz>qwm@_DEavzaV<>ZA8#kGa{{l0q4=j1*^aCJ82}N20Zqx7hm0>Gr_eiRx~N5(g}x z7aWEpC$8rkY$xYGVI`kV44PNcNi0^S?{_md2#sO0L|TE#c}aog{-n;?)^)m7QW%Y1 z=Z)dZ4VyKX=bwmEr_X7Qf-nFHI}Qs7tnJuiGQBrB**Us96R}`B z5VW$71su}g$-|F6dvOT#ypoce$bMnGHl(EIg-RZhT~`$Xm@kweJ+I-F(H5% zz2!mz+u2&CK!Fj%%%@^7nCFM$d-q{FUbMQq^th%G$0@UJfkP2Jk-!?_5c zHooNDM$noA+zSBY-j_6TT4a*^{kI6gqf+E_r??Rf`uD$yO)EGEGT;)4lzK^7qbdoG z%Ig;cP`&3JGga{-KPDGL;+;UPCDswXk>F3*2@HUn+3n|XzCVE|f{vF@1gLF2X>tmI z9qKT0=0RtXinltnsq?PMhM@!J9&l{z2{G7c3Nu*(4Za#GExDIxi9`x`78+8sEei{& z#V(=M|DXXb%wZYrz#TJ7Z6q6&SU1Es-YpdysSxy|J)-QaElwH~n@MBWkH#@*ephD> z>!QiU`Id4X-`}U0edZ0bE@z^pDh?w{sfIv*$1wB0Glj2yEE7|w#h=4`SF|z=>v$>; zr+X}*W0mgQzNy%I`a!Yx^))kG-#_)73qr)Tse;6}w=I(w$3SVJLxev=Q!@Ks3usoZ zM_5;8z?CG&2KY~lh&b>xcV!2y$MY~GLM1DIn^zL^n#Zj2#QfK+QIn_Gc-8WLt?8TS z*nRP@(cM+oLXlBgUd~xDFFC-)@ra3Bn~>gKTr#3osbad@i6~NO)YA3R+ZS^qj|n6N z%ZLZc%EO|{<#za5zjX963mLd9;N4+j+631@%5~hsLo<`W(J|@4Nvb#{+^={LVSHA( zE&P?OBo)j&`Z#Lv@*bJdv5|bS%^H7NG@Y|Y?}c5t$FgftIj%I*7|x%lNv2rMN80!a zO&URj_tEe3cL{8%E;y-W)f^bQYR*l0t0l;6^;Pt|I-Q-SkCCQV1|$kRM2xxV)A8T3 zFZAWTpiuE-eQqqTT{Kx8euGBn_ZzQ6X#xbO3SDSK2xYvt-zy*-$Y`NV97|JiZ*Q+D)H7L#`eX*XshMc6 z&#eVTNFo%#(s4S%NUhVXSelnDC*JUgA1pJ;fJ&ZN%3e}ai8_r}gj(xOg&JwMXRpK! z=*NyhzmCy7wqfAn+bACHhHkgH5cHhIDbQ76FSLnu5wg|NKJsC=isFth>Zrtxqiaz} z5d1X17S*{v@5Ht19wXiNr4!)VRMhY*Ei%E*s+b0T)Y{k*__JrAQEW$ZKakOqrq7oe zux_hz)2f}doS`BpUeM_e*Za0>_}N$|oHWM=MKqDgdbRV@SjWo@p#X_GLza*RzW(q{ z222#qEA))ZFFu0Nlt|ve-OaD|)v`*~j8pl#_Q}#_e~1_2z2JwMD%f;$)(%U-$Sk>H zheam}-a)EO05c;gxM(c!@^{Ov@4)mO7w4btJ5Dq?r8?T_{l^dew&*`f>YuGj+iX*~ z*_2Cj4huH`6LBak()oQ?B8Q%u*#rCG3>B!~X<&wqo*z5U(~UOcLw1bIx7C0Zl}wRc z%9K91=b=3y7G8tGWQS_(TiPaiv)w=82x|7d!sYn`{mhv{_!He4)o=<$8GhYN!j;%u zH-g?2zCi^=(nC8p^^1if7p`*R6Ob5*!bUXR4`~e6Vu-z?!9qhtM`sJzi=jsiWixDZ zes_nUj94KK{*d46>+6TEFeKFu0-BL`BLon5#c85~FA*EQIMd>@;R=TF3911*Ed+_{ z7W8QG5L7qwij0vr=;yRdK+Bz+)|;XBKKqOITKI6c&oh0cMu{F~37x7|Jz{(_%Isb- zWXy82Jw2_c_uxcc(1%9PdmBsMw_^-4Piu+KnXc`Z+|T$3Xwo`l=hFFiq6NU%Nh;}k zmtgb44|nTi&s)AqT1Qwc^+u>zvUKmnp>ukT*xR%Sl>fN9%1Y7yCGT8qZIA098i|?E zfgO$iPvC7_1<0uDz}Ow9&`jhO>4g+o=PwF>#DUMx&xQ`}gbq)MF2CR=$f1GM$UvfWzqz+Nb!f}juo zSE~)|5IUV6eJ-xqo$mvz%<`X(R{1B__|W>-M!2eDQpLMzW!Rcua$T<8K1-OhU{rmh zQ$JRSU#it%m!SrBU&f@LM6s zmTg*aouER&VN>>4LcU$X6@w|$T_&YbiK3c!@q`KcrmNE%S1P*m)V$*YflwIY()gg} zdG8+cYeA`AR`N$g#io67JX;I*$MAuo!8VA@SN%>f>dTAI^kiaU-?OL~OO{0Jh zZoV>xtHQy3Kb&&((D3kCv{GAH^kZ0=sI@W-6gcAO>9ew3XRh^vA_CJQ{GzMP=~=yq zWbuwyAhJHI2ZWD@J~aH}6m>Ygo-d+74>@AA*Hr^#eQ}lQFAt6H9TKx6r#lcGGWG!N z&<-Bmym5mUtO9`@F|_+$Ih)h<+^0*w`3F z;F!;KMywe^>@Pr+4um1zfD=d`Zr`**lL#q#FhxJa=7F}5V(izShlf1K(Ch`MjWNP5 zdO}oklnBXVZk2UZv$#_GlEA>g#Q5Qd4hc%WCU_HQ4&eAOxF{BtiP{I5Im3a#V_zpn z;dg{&hSz+%jh@|}!5{ArM7UM%p&F+juhxrrVit0`t3Y_cq1V43``+Vs&P)_(*uWviiiJrXZH+%Te4&^Y zI9ZLZ1dnkYL8g29r}q-Bucq1>j{4Sk$08k~80l(ci9Gf!N7z{2=d6x%JD$lw^ToVV zPG6w`2hTkMumOMXuX|ieS!(3e)zuF!l+T`g7XETXCHxP#rZdJ6=6(9BB#zMXy%TOqL0k)uaQ+gpRs zkA%<9-FZ&K{`LSELd~_XYmVgW|w7g)BTH^8`tyTxtmdU-pl+G%yrVB z2hXNnI$N<+$cYe6L(H}X{XC^5`?l|;k%A&~3ejqp+{)ft(!9$L%x)?3q8g5&6ytd} z?uT!PE`dkxLH-sCr7FZBAFHN{tB}-@8BiT+K{pHF_?N?HGiG17n_&dhn2`>~vzb+8z$ z$Pw{g**KTisG;duXlf%p)7guOpUrN5pqSZHImjVlA^kbiqRRz^pR0C$*NSSWdlb8z9nNKD{E}bdtu|$o9eU0HkMme%T4UXc)~0Tu?y?4PDZ_O46NWz+4o@<7|;mdh01gm&L&( zgs90V%n1^q4SO6y#xzJ18i%rD3*_B{^l#3TP#Uh|_ivr%5vdjoIzPL(fNB_re2|oW zJG*4YC~4zr=4xhSVJFK>P$idj&;A?eb5?HgbM-N5Kba<4v0JUJW;b=RzDWQO63g}` zv23y3`02?aw0WU0dD$bo#W&im(OS4Hgz0|Co*$fa!cUP!zM>^A%#N*~++?<|P$Z}B zXZ=odt)y;(4qp6T!cqkb*ko;q1k`diFMS{QeY+r{VV+tN8lo%ekuF26tG%=wfJ5f+ zduaS7?V5^GjT6(F$EV5XJ~`pkXL)tl$N8xEk1!Ao8_iY7m^e+~yf8KXr<_f}fF6-6Su=U>8n7SYi`)o*eH55QI z+hOh#%fYENf7gR<`9{vU|D8a)K=|vp;@s z*xsq)#b=#1)~86|pW@0(7xPf#gwaQ2exhhgj2-*%|Ln9yAT({lm((#u7gks=eBbX! zV)nVKTe}FEqo#$orJEh9 z)uW`ij$l_-ZUr3zfo5(Q9A_R~>$KmmxrB*FhUR8}Qp~1NJJ*O)3RMQhU%VPpLRhvz zk;mRUaI_4Es;-5^XpNGFwlcfF8?%S*dc(1tJ z%*daE5PEC#S5|m*S+h-2-~sHFhDkpfRVg|zl}B;yW~VG+79kflL~-O?z=LJH2+vGL zonDD~q-Mu^p~UCcfI|oR8iH;9FY^}Ew>FImgJ0qA}eCka9NCtk838+!8&-AwaL#!R+>J>vbP6+Z)y^ZF@oBqui6jY63~5Jelj+#+Qya|WK`x$jD5uIK5JD;slD zgdvS?fVj8KPCE}&z*2SEjftma%CHY_zLV%`CP>k%8vDQ*6_#*5$b{17S<3yO)A3Lt zkLR+Td7r&kkkYbBhU4fg@l(9hx-#e6@s3j}v0k9xCw)`l;p{y8@>?drdzhA&F6k4F z>}Yc2mQw}6m`PjM#Ky6ZpgyJn!jJ-I2M7fY!I-#;Pv7Y7Gv0&KQ!N8L{MSE1)hr%j z|I~3KAG6(X+xUWQ{x-3jh>I9CSFo)cXJ~W~h53@_FjgFSjFOQ@n0vC!owMf$GE#eD znJ)`0vp-op#KI;FN*;^*3exe=S@GH=*vr@C#%)ZqXD<@}n-;>idGr zQ;Ii_uIVBiDxY9cmMl}k1lc}G9r-||)h%ymWxdi!DYDst=iP?n;!Yr!6Ucd;rwNou z(vD{IXtSqbn3+zcGwKn>PAkRaJQDx#2yYVFW4^PT&)9C0-3914wXoxVdo0efO?KsY zxNIY&RBXpYG?5vAjk;a}{kA0LXzM}3Ib+5*k{8+V0e3h}*r+HHlhZeGEHS5zu*(&n zx}M^2f0HY$;}olsPHKtcazr^Y$z8n}-x^omHb{=%+5MhoH@4R(x!mtxK|KP0t>JpO zl3eR`G4gA!2h(m0a(dMKo6J4AMacFRU0&bB6;J)U7GlFJ#SOI?YqPR%M3t=jzsE%P zW^ikC2Mo5kw&w&>+Wn5&y_ZqOp_s)m_u1=KlG&&d#o-9f>;d}W z`~FL*IR`BvS|T+N4mkVp=h7oIzAWr$tr08ko@x-gVE9ik%|P1!IDnx1x3$!<9$N6R zZg1_DL9!yTa#%$_hV(B+Ff-&&1@PIz!*iv~=Dd&{zxJGzS4r1mhL=Iu*Q#UXpoKFJdn9J# zfNs3C2gYe0yDBEKhE8}+t4w2H3z@de*L;>JFGeu>*j@^(<-~fz0Q26Nf)gX;iYIZo zzXaXVDa0v{qcWb>(jX^VNlG35v%T)x-!GqODd1{i9+%xu?61euAyiaH+Lph!Whx#V_u|1CsQ#Q|z_qz;jWVr}R z2e6F%3Ab0h-Biuz<;@~+S|x;8MK&Q}giGYQpysmlXv$b8^dF|)FcRVV7`7##+6rDG z1+<2)MDj$-tEQ)vULDW~W*Y_zY1rXXe3w>bv0*t>leDo z9mpww$sd-_7jcDjtyIWd^QcGco_{$+@mdxu_UBvA574S3ZUDdkB3Z2mCYUk%I2Gf% z3f@q;7dn}Bt#SZ2J308W->mkDDB6#Z5xrX7Nbo;#C{7r#j|%-v)KpgXrkb`Fz9y{@ z;ESyhC?K@c47(qP3}9DSX2W$c9C8?<3UG!9A&dzf6o0vp+xaNX@|H9Q0c8S{K1;L2 zeNA-hwcu{Vly*g<7SG`^$Yk)uNL-tCTqU&pzw0L#Fqp$N6AsHe6U^fO@1X(3IQ)c+ zQ#E9iFpOpR#qD>y-7aS8{s8kh0XWGLWPXObKQ(Vs5R7YRX~`{|nUeP7N_egh#F&zX zIS!TqNThQhkLS(MGi;Mb^>a`w{DB>puEcRe!aq(LtbG063IlM?s|^4HZ+<4ZjUxovQPjwtQ|Et54I25SsgW-?@LOve0;%DCN3#m<)0nM zOu`-DHBo)IMHzg1;Zm7NAlqnl6QF&b7)>2&$W`2WM}b0Lm;X9MCGVj~Xp1C1N<2Xm z^R(qP*{;O~R_Y;Oua;HtdB={_>^2G7SrcHa3GO!IwjyWkQP;8g!bsG7;*CLq63FXl zWL8hxKr^)8=E)6=?LN z$Kl6IOMiDma1lB+-kVEEZ7>n)=ub_hU5$*tha6+RaY8imoO>jd%|OddSdwER_zmzP zECG(iZJuD3ofP7+= zlI5KYTK`Fpk8fqqd^vW&@oXCRdR&Yj_n#_kIFn+_v>rDJMBhY}^Eq1KQGSb-rx+*42%A}zU<^HBUELiIr`{YtyiZCn87Zb-EI_)ya5)EVhl#QG8Y_wq-%UMKzu9R? zMxE;PKo)g*Sp8+pzkm>ExdtHNmBo78NON2z-r}Iis(Q7Y7K#Gb^YG3PV8ThJO@Gg+ z0C&_jJPFf7!;66LqEDJFNu2b;GK*;(8tkN|IBFS)&B);eb(n;s%=~W>yjMxPk1~aU ztOCC;9F1<|mBP03Zyafm`)JDE$fu|%>f=}Cy#>L4K6;x^TSv3v)j z^w7GFX-+|V4RVItJ9>Pd=p@Mk3tRL_@Ad zZbZO36SYmbILuF`m6LMfDJ1F_qnwJ(&&DPa7LO&4o6UlMvUB)EFrj5-LE!2sVU_JE64ge0ccBiD$P zGQ7uAo1Brs_n0rl>j=VTd*k!_Ztj1>^dof)eA#r^(J=f{-x&ddz9okBi`p1>7~=Oy zjG1bh5oCk@HYMvunSC*Kz~3z!9g;`yfc<4iew(o`xBIul#kO-`bm(QDgJteFLf&*O zJ*G~-zY@Z)vk!6_8&o6&h`Chpd9stTgM{ql-Pp$j-__DgiMz>2mLxX zbVQaTn|$OF(o9NUt(OFzX^=$1hJbYs3YL>Ah8ph9%GU)$6M|*kxDRAnT;ESzet~VrNvbPk}#O=g=&uInc`G|=2Eu+F0#xIfa zD5weJI5-+N3ADPWBgobt=&rfaiEval?70n;@w75S5eLXlLy>5P138X=9!7LbOjyhS zq!zMabIW*Ld0x%;akrRAU>Fw~;O!{C2B;uZZei&d8hM7@$ z2xM_Q#y7i~>@+Hs5~|u=28Q`~9h)yTc&loi|2lQa_kora9YmAnG#%F~O>QW(!-DhA zNkiO2a?<{2HGYRGk?H$8s8+kVNai%w0FC@%iwC{Rj?W64vFZsi?=yezU;c0Ntft1`|_@>9Gg7Z~RxrLlc2}BRkOouibz^Jm}wBN12^d=(2KE->+_ zx$5Am$!qts;SC9~)fKM(^ihZ>mpb1Yhv+z-LhFqf3Tew;hZ>V^*2WA^gM))ZNO2A8 zy6R-!JoR9sFJuQi6NYdDv_TCjjVyKR&Gwo^U~xeYx>SKE9A2C; zJ4pe4VOJVsWm^7Y7i5A2QsMLtF;arhVr%v0LytQug4hqvii=$q!aqysUy0yFOu8HY z5%%6Rm9hHMk<~d6Em%38BdbBAgq9MVJH!`+gtAW|y-z-d*W%CjFJ{;1Ew^{o6|Tl* zTEb5J9F5x?>A6exb1UQF42X8u6r92Zye1k%>x55clEdr%PvcFM?xJA=vJS2o_yE~Bj61b9mIk-IG&rEYnXB`efv!% z#1GiOKX-A<&x=%Lx*3c*dYKl_rozf&_JSgwvYvzfA5-{IU}dQ*ePxTVu;GxM9L&qb5QM1lD!)5&n*W0 z^`0$y_JGlGV&pvh#pd8hf|p>Uj$6Mk-LmT|f$2nmPm)f_aRmqo#A{&?TPYP>aT<;x z*9vDW0t#Rm_`kXq7qVUP(n$Ij(y-Kb2I)y;4}Bx4%XQMQ@bEU6m^(;j$RJ6jkt3~g zP*4<6^eCBQ(Al1M=%`NF&zvMRHh%Xg?d7@h*P-c1G+7O#sd!+VU)-d?`%uLn%0c2T z&9^4tG%zs8N2t#PwpRc6VfOcGv#aFoEudiX&=0PkTKZ4kuV25y8QCGWrJYI9ickS< zKYr}2K+d?6udi>w!`V_$#$-z>@UdXrFI}2LL0%InL?_-5=T|PH{p?HlJ6?rmsXeuy zGa zA%D(rQpV@0+vkOq7LVPVELoSmlXITO+)dv*)Hh%Xpmr;WBSGkV=o5#ggaPJweqT)( ztA69b4CE|52nYxSLY_^f47Na8$k{8Z=-mBPqC_!1K7M<6aPXYYZc1Jt$Uwwsi`f|pgqv~x*+4q z%0>+T-5pNKfLHMWEo>R*+kV!+78cq@4Zm{kKE7(hxO9(~?GsVwsZI-r&`z)2)rrua z`IB6@@Bbb(nL6Q!o+82M5DOVzhft5{$fQ**I7N{718*piWJQx3LPtJQ4<)wuEOnDb zcn=UaG{kr$NFTx7liW(ZW2pA5aoXgWfLK^E3v-Q*8dQba!~2KHWU+iFVm?6%*JN?2 z9~o>Y;yJk@idOpkN%aK7FU!*-OS5zs+cIT-x{$J8*#sYU6b?5hT@WNoSdAY?z@9%! zXo%EL^hRO{i`#wcV-v23j5#PYa3g4~4%6Hwj4hHh#{5%J0DnJU;o)e$;>^sGTF_6! zQcs)cibWKBE;G-~jXvL<=#^I)Bj{CpWQ0o_#^UZM7PMv{6>1l6?xA{klo+iAUemLd z+L1Pce$T-XnVT~)3Cw9VN?V3s$CpoXQFyq<)%7#EPK?1)vKW z=N1%P!_-3oAm2$Z`PX;nHh&<*cHyH|H~55{EhDbOsCLNjSQD);v-WX^%=WGVYwZ>O zc5%57=oBU#+I#m(>&VpLyx5ps{rvX)0LH)0EeAWqhI{T~={%{tXO}0%xnAtSsq3#%d|b6S@2h8lcDlkqux5J@^9oQT%D_62#*T*hCLu_1?6@HNR>G5fGm zE}7RGKp1l)Tp3rKkOO;=ETXItEY-QPlz*G~Z!U>hm0$CRk;~Y?NGc#~3H@iPb4<;f z67XJ+stx=Xk=XRIl}lOKPWJ=0M#0a1XQ?vhHCx1sBtv1k*L-H6_zCcvbl{ymg(QE_ zUbS^mb|WD@bZX3G1hX!+$^1kyx8;Ru%t542McW_T8`I6b+`3)QBB<36dQ=}l?1>7rm0C-hbdE#U{q~RI>z``5#zqB*2I~$FJmr6b& zl(K}#oPgaVpoSrK+XA$yAiYAhqpT|hC_ykR=N~s_A)Nm8%;i5bGFgb`}|eSCR}U$E>Di8$!aen)&1(0E{@+ zYXNKgA{AT+Q8W6-w!n!l!Qm9O(=6a)IiN^bJ-Y8pMF`*Z<$SpYoUImjkwFAoTFym~5YKGGY0tei#8m`qLg!UA^Gej;3-X46?A zLW}m?WSbdIHPDW>2Az?lm@A3!@o^ce6QtDEXktjB~_D;1PQv8n@-$;d5!pNBTJY!gZd_JVE~ne zg09omj+5SECM%$b`)QvGr;|YsUkVE1t(lqLn@*?5`C==?Pw5~_NI?Tg>C{*7WN=hf zow=4)uZF$>0wxJq4ZaI-aB!$#hJOWudk@VTz@zZx+%U*cZ@{{nX&vhYVOL4io z%gzl2p?=V3su*+txedP{h?r=#fpUxLOUfwJdK=a?^!LJR5DIbCVd*f`Vi zy}Q^riv>}2;x;xmym96!VooL-S#;x@d#%iOyH9<^-u`xOFTsm=Pve^X(@leecf2-QDUc2%U+h}DoWHtjsw|!t579X}b(%-t2$UjEvT-8g z@EMIy5j#_L(iu`?vl*Ukw2dVz87JTp0Sdc&=Lv?LrK@W3dCTUl2X(I{S@ILrD-u`? zfkzUGnS3;fkh?rie__Bp^FX_ul0kAi+q=8F=l>ExNMOtTZvFCTHgB8GqHl3UoFQ2( zfa4B`k;@{w>qnF@{YIk42uUp><-RzoY6VO}m{I`HAm34TN|CGR30{rE!>y7-8Cbt?SP2nDaJ(uU|LXZ)=hl(~zGP z5(r^g962QwKS819Bxso}rBglAocaRn9L^iK?HM1WZ=Fr@nfWnw8|kYin)enW(cP0f zQMtPd$MzEZ1T_|L|2ic$Ts&J5MWlJ2DPgaooymkqKQ*}aG*0a+i3)~pZzIahe*2t(r)zFcNB?GXqU|_D0hf=9h;V{(>ezwGBlvm0`tU7=8aurAY$C0p^q{;Ns*&Z8?_4^5fD^XZ26y&zo`4;03Q{ zM4v1`ws8Ia{yq?rqIW~mb!9)l*HI``%=uVImYXm!9}H5O;%Hn==pHITA@u-(C0d7l6WPo@K~;hK4@(6aD)#|td&2R zR-huPQ~SPSzeYZwsa9~W#_LuyH@503;mW$ZDNGCGewo|WrOjU5L>(G3(IoE3Ze{BZ zY)0lxB!7Ywkv^XP8j9N(!!!T*@;a^plBD6jR&ot;f<-Cb+NTfQWI9@$wz@m;#GUFd z$ZnSlSPs65fw)-neE!-6=b6GX*J;5!eg=*%SPJJ@-^ITIo{QOS>^KWcx>CBo>_{aRedg zA2cs1lhOoYMYYpFB1JIX)BEF#S(v3M7f^&XmNA%yy!+dag|QtzV##7lVGiu?uaW!2 zy+28YSsE|(Jf}FPtRlVmNg-qhETl=c0J>j;kR`;0(6R7oa%$?00-)+0d+XkH9{jnwHe)tdq;p2-`i}r#8-(%|e2X#I(dyOYSe`?e!=$k_D#Qj?O`x{ z$rB)axX?L@>A`C_Jk%OIPQ7_0@gLgurrm+%z~=UTsyY$_@O!i)pSO}~kx^6S*6LiN zm~45YN|^*Nk}?io>bu_dyvPd3S?rFp#;(j3uY)2#esab0Z&p(Pvtt7rY22$feaG7S z3H`n>TW9Lcnz*zJFF~q)%MB`fdu zkPvA)(ImQv-moNzTVuIj8ZYltL>6Uz!Kgdgej`QnR{bO=g>v~PWJhK}?YcL%@e~Tc z;}yG1<5dGx-1@GrRR_gvZ%_lOKe;Yd=b*yUuO z4{=wbmIWmto!85uey!e0nLs#0P_mV)B=o%HlUVQvHz3g2L`Hw`kT6gAfEk$`Cazp5Vmjz)sA;_hxC=U(}JhxRv zp`q`pqcSQ^X{86!sI)k05QbCL#D}J85ayP{sq3~Nu_|KnXK+%byi?6r^ph8&zZIeVuOx>?L z_l`=8P;^{C*Eo-l>MtswNmH)XST?S)oKuAbK{=0P zvWu-mX0*!U_Wlg|{3xelsH<`11Pj4^H?4UpUH`=@K)Xc~+Ec(593Yf(Sc|0uHHHlUgvI|Y-yhX0!J%b+4-mqct3!jD#-<0BYPEZ?x zkgBxgj*rWJ`b|-`IwJotgFWpts%NZ}y3kH1<+d#g`*ZInjMkGh^=1VU0|SBsmE{t< zXi`lF4#d^KVhzI$QXuQbvS040eRe2>LN*+52-S)jh^&XqQ{<*vn<8BAblnH@?R~8v zh72pe_lDqnf4*;RzrEbss%CP0@}d>Q#Knou(x6kG$IMR6H0N9vfgc@8k{Dwb+_erj zoy|&r(64g3JRw5e61*el;r03hExs=hXqmYc>F#33&tz|6H>15*_3zqV#d!Yu8g!Zw zN&n4&?5YFv`=qK5;a?`VFC=pyTxzv6t?YfsRyEWZ_3C;yc@ zd*3Sfh}Uf+MXu|T?sp8c%J)lLUFWj%6UE9ET>!;SfD>X)lkKzJYtN*5>@_<^L|4e` z2fpVy!4LPN3+Q`|)P1<|P;zGR@5}B^8+?4!tSjCey~31NE+-D&o`(-YF9)7@oz987 zhVdve>tYfu$bu5BG><8ARc+h$n#|!X6;jyLzmsq<+3JV^q^7Heb`f#5(9zKJC+E_% zE)ODx`n)X-T4BD`^Dovjzr?Un&h;gbgBz$?R!ozqCHWAJ(T zcLwp*dS2O=x!-kqlb%8EHLkL(qjASx?T_bqWh`A z#&mmFoa<9ahpP$WoSlfzL-@s9WC=aK0ugpCrRQx<0i!>p#@wQ~TysA0YGU!LJWQlNk|;D}{0PZf$LC zoSmPaX<~{mGer1!lx}y8BEbI-2=-Vx^WYm%o{=IwA-U^rG7EaVhP!IH_=X?qX7Av9 zNj?>PE0e_LAN2Qr%FaWmwzDL`Ci>{gDg5A6A3?@HC02!I=M_`C%Kl5pC5^duW@BPUHd=wwVs`pKQ-0CSeo> z$-6P$ci}D=g>rs{Yx?o~R-%uTk$m1-jhySM2nd$i+FbJ%8)96J=!2#I#4~~oTfq5} zKC@vit$n*BSMU-{TQ&_7bml>|Mr=@c(PS>%#wGZ&e$_~v8^5a{XvRTr2!-`cyrHQy zd&R=9wYP|#Nk9L0kOWcMX(~;?4)Z@8Z5x_dQo9hr*f7M^-hBq*oJHa1is9RRo-oQc zZgQj?K(77O@P81`fF=7VYw%jVt0*-i^rcIa#+=jbpfw zE>9dBL65OKdz+}cBG*}>;{8fC)`+mz#UOULv$&0a@q4L&8<-~MZvc_lyX}F2UGpN} zZ|B_}K?>G@Xjd`98_Pf$?c#+eoYAOyG_I-LP0?Ca{E|`0jb^K z;OwA^=jck&5nBn|D=O6_R9;O#@KzOjK`+g7gG0&!QOR^P1U`3NYM&?e{3%>9P%D+D z<|yETt=9EO&sxm4xaA=?d^N{c{+P1dmFgz^_l+|<)TBEJ8b#F(H1a#M9QOehdOro# zrIvmL>RYjZAEL`1d>V7?zUatnQy0qzhx=jEO0#DK&SS1~bo#=dEovKaxLsV>vuldp zzo$+kK3=2do1DBJ5}*cMh#|G8onG{b4#Wh#&rwSjig6WR3-Wd=&laK;J?3@g+gZE?cit_fx7FD=_cCSb`>*!(kIeugL2Ei5oAl#p)Z;n$_3m37U`5Kqq_buKSY2_zhYCbAm zX|4T|t||g(__c1LzK|k1^~z`6_S2}67KygGi~$q5WbnVwYM$|o4(YU7Inq*$u79NS zY^R4NKS&cv2N>(C98OP1>(?Eka#q{Rlm5HeA_gI>m`B6tzCE-{Jj>+u%-EO^J zktGUL0AzILBCB!dqQ+eYB@-56l-B!nHjl$!G`E;9H73FrQL)k_)>%9pxaCTeBA;9RI41j=(#6H>YawU|?=tY(qyg zlTGy72ndqsZF#O3p8|}e|0GNvPN=p2BqkN{Yc47-E|$2SJ%4z`$%M>!8RljqL_T43 zsosbj$PGxsdA}I(zXrLPe}SOigTBAj2#quH@t?^Oa_xs_Qh9c*h^WH9VqzYqp-{eN zVR9tN&`Wbn$JK6toRR+E=i*};XpH&S<~Q~ z9Eioo$^8p2ns4gVE&5$;k#Ov7W~nGUnBBN;4UWC?B6lS%Zj!jkeFXZXhd5U9Tw zB9#<_w88MxbfupoVdeB|!Vs(GnDG#~=>eZS)swaD*FPR*X|RaJX5VzeU@lrz{Jk$k zKJzjuxU$o5;Fq%e74)D9{d?WFjkM!F&^S9{*hh&7G5@48DAWzcEI|B#%sEbHjnPL> z1?fe;cRrFYP3B*@4AcB0b@5kU`Bfq&r?*<=+ikKGDODx?e*h&x+P>2>iiF-%D;(9s z7P-2W=;<*QRXiGMGPNTvaWH&d>(C&If}%{IPn54TV@!~_Qn9YSUN#dLVkq*x67SZX z*Ah_45hpZs^cd#281hKJjK9`k-5|7kX-Y3myXcO=~tM_^Pm^Eq#ne({y zRqA(d>~b^NurU@$%77n@P}tnu+)p#cHUSvU$jG>L^XAQ`^YioN-Me>71qB5sBuTmj zz%<6#!DY*qz0YE`s{pLf{`vj>7u(wt_do>zafIAtk}Ts?S;Vqy`*gwE z_+_4uH>g=>k;415uDu5z`T8HQ`$#2*(*5Dzm4O*5@pTfutFZLr3*VHxxeRU~nCY z_D1ka@~9{FINy-!FxUwbCQJj6%^3SsPEL+DCnv|J{1Zhn9Lw(Uc)CKzb8~a^5`L%= zK;RLI2JPt6%S#%Au^?CxMRTMmu=b&4VPls($@-){DLt(V2yA}J8e78@0=~j0PVu6Z zi}bG1>X({&`aq=Klmb9gTi1&Ka7N=*+tfV}=5Ek4YH~(&wxNAs)4t;>PD3q}O4h3{ z&wh%C(9=JRjU@pOrE{IVZyH`4yuGSEfdLL_4jhvu|#P3W~?a80l?{SbO3MKQdjQR5POlpj=T(x4 zBQVfqnTI`Ft>XIYnU8U%GBnDZ!zYQpkTU*--O-`Mf%fYdab z=s&q!t|&LR#fulu%*n|)m7AM;hWPBf zkv4Fd%WEE7_NKP0M1{Xf*x;+2GYRIjie~-D&BfKssWKM?TA)03qCP%aG%dCrtH#S) zq7AWY9?tz^qIGt54$yOt+}%h3_EpqcUJC(WUExXG^~hh*J*1wtHwEQ_+&gYsX>={Y zcx(?Uc;2;Rt$V;7=tqMwXhf^S7$Ay*PkEjxGu{Sf{7F?oBc&wEDr@E1hn5*WOQHx- zD9Lg3xyHC+D|l^OR7jQwZ>mFK84-m-lzyF`pC2V{2CdJJ0|4jzSu2&6l$89iq@?8g z+P@PgPW-;HafCF!BMb)km+JsLN{<)CM3p9p-IcNA8s8O)PJ4Y zTFv>zLUj-yIsc#l_CWymgucrX!tPKL)1Be*{NXFE2=DX>WIPYV5WEFZ;3)okomm-W z6&nth1-?t9^hgWu9Ebx%_!;NyGqS>?nTX-5xgYtFX=4;Pb*A~ASVD+t;zJg&yt};; z7z=u==oKT|A{_%M4TF92%{Nhi6}svi%1*4y|9pz4q}t9g>T$hn+P+*AbM5D`$@){Qkg4&ong z>{(OO+6}+K9HEVTU;x&9=kw>*d}mo3H@UIb=Z~UW=pS~kQhsl4?uyzqYi)oNCS+*c zSXG^2q!7^_pFe%-JE6}E=JXed;6P;^YFfKM#6Kbn;(PA=$aTL8oy(k<5oM4w>^XlT zF7fOcWz|uq9T}}W$k}X^Xie7>Kh2@51(y{TU!PyXQx7lgVN9KjFCMhF_ttIQUaI?B z>UrXtQWQ-ajxtc&um(wzz6@Xo5pB%P&Al}*FHgAbw%Z&zIXTOSXf1#jGcq!MrFX3; zieCkAJrON(I-U3E6d}ggodAw-&NnStvgFR&ZoAC^fGu0LY>va>*a0AuF}5_QY#tZb zx34V9=zpTV1qZ7Gd$Qy8Er#!MM_)vov`l4^1O>02LxyaTY778|J>E_6w!xVu8hTtu z-%>>z6l}b@kf88N3i)QJ+RjJ-*oMeG;^;R3 z38w3ikq@+z=l+r@6II+l=??K+d4Rf)Cl9Kn-YivR$9iX>|sz|^Ue ze$vp=-TTiscP@S4u{C!ZRACCO;l>Oh1#dhwD;ggKd%tAkqC!#ze5ylXb8~ZN0mudb z&beW1Bx7uM@Z&8xIXQ7tKqL$O18xkuy{KxA!MkUGZ~yNLC_YhxsT0%phK_N?0$nk0 z+Ck-Xuct-T@Z}gPcwgUUg*S~bptDI~3@!3BrHPl*laJgp_*(uRypnGmJ0 zpA3CIclFhBpngUR=Vm{3x~}cr5NOHFtf>*VNQ=(FPrbfNr`_zwq0fsJK?*7+1Bj%H zrdR^ZZ&tqX@~PV9;x`JTGgPbY2g*<%QFNIA;sT4(vg>(}ktC`}0-eE-D!*TnGAHW~ zcRA(heIxDk7p*uX7p)A3s_!X2^TazRt6Kq}uqxu@q)}ifh54#YCE-N%AmAy}J1Zgw zRL7M`iS&L$G14gvOloiMInmP61p>f}S3ZV=E6#~>L?OX|tsh-@Rh_n)PIdB(Qh+*% zvCn+v|E=8{OQ=tC7*D;IXJxJhV8wV~3oJ2^>M&R{$O#7 zvh@gh(CWS3e|~-owilg3O=BebhXG9H?9+4ST=rK0aC;@loM=mF1)kn!jpjkAv=vPv zcSuwA$1C3W*T>&GN0kU~-NB|!n@cKH;j3OhF9Cp81KjXW96ZyYG#($|;>0yp+Ntdl zhbV4~e2b6U+6`RoPXI-9Qa4oogaB$SgCv2lu4C_6=)&&15c+_L{zAXn{yqKFP}^V^5lHMex>8dBoZcL}xF z{p8?;Ng4a%xynWWTefWRE?Ttc4kG#z5&f*Bq+}p7GqW4Oy#Q`=xm;g2iYk#L=~V=1 z<;oai>-5SL6ch|(WMq5@z!wEU_+DmaW_M0b&M@aZAHaIf`SgNfKCW*pAm^UlSd_K{^sq*@;foJ8*+f`0Y(T}N!Y9j=btf>o$ zV#GyLKivrv<)RgLhrTJNFRj8m`ck5SVdDsnEU%XX00Z4}yrJdZ?!jUBWgbO2WMmWt z^o_!ave_8%0f+9cS8vgAb9vPYb3)En%7ot*5b)rQ!&a;r z6ZU?|#zlps4ER)s!ZOCfieZPtVVJ}XKzP?8Nzx>%^(PzU74;wlGIXCjW1i$n55AyP zOAy3}ccEgUS{~5%#_(oRo@Ry=4MrTFn@bgo5CLxu-@JGx8U$ zI21V>mU?1}2B*%p^nU#pYku;FC*Hu*>vkKKV**ntc(rS8|1|e*0IwKbU)R#r_wS8` zUtTcpk{$qf`@pep>^fY5njj4TnYhn5MD;6PbG8L_^=<7<-Ti3n>_zA?wF0aO$^iDm z&=;peG$f;HtZ(&Hoa^}2$}NS#djWu2xzAX{gLa~?XJI%4F7aEulQRBWS@vjcGd3J9 z$I;s6A^=`6uJTUPgRXodC<%2*+WhvB&2MinRTXwPBRlGUKCpDLQxmU#;$$seJ)la~ zuy5hK>CJtT3VXgl z5FOz`sojw24WuD&_|=Yko3#3k-T2e9YQ4dPp3HtA6g6VZ$;SnLZT_|+ma})Zd3^7Y)7y^LHfu=e*>^yW ztHBtB;@9bG;g@VK7So_W)fY^8TSDY;afR6qlES#791DQv5(Q?tskKw>$5lS5v zS})A!ULyMB`{rc5pg3fz;H{07giZmYt|IkpAN2znFOnH?T0z;_dl(Dm2>8#lUKF4q#5%Qea6a!ql$T%UKjTzg)@<#H_z);+=Ha(&3w)yF%9?2TMjB*rK!HFd*E9$ zvZlVRtd;u(7QO+=)?INGsBVc#pRGhd!5fbUuT9Zl<03|~27F3GVMS343n83yLl0q% zBG`PvOCgkViWUAPBRE7QnP}uVV~m)}gI9+yP@Pe_4*-VT-l)aV$PqTQ=mc+ou7P3v zdeyp5gbwu#4tF!gxL^5z7L|lI&z;^(0zRT{aKwu>7QZk696K9va2)dZ{-jr?Z_tq5 z6(IbP5&czhq#pnTftAI&w+bxa=63vagwlg?^$$X%rY%ur`{rQz_uM0|d1%>}l|_`B zzxlJL75@2=+^_=pXDikp{K;QlgHMuz^)YS~Lg^IMv{`Pq5Bm$t8{R5DiS>ud!rlu? zui6cV%gnsbD~TbZI510|AbNLxs%|O)Fbq&aLe<5Fk%Ykl zmO^3A3&@JOT5A((Xo~0uLa%G_=>~KS4DV;4_k+=L#+l^=rmwzzC@MPS`sXK>9!%Whut(6Xll#9rS*Xzv@u;p)b4B!eJ|rZ-m3cc;qg zbX|(PK3@+I2t!>sKWmLI4pO^xr}HZkD_~U80WhBaO3>x zyOirV#Zd76_|LDb>gpc~d-82NZXEg=dPV|02%@lu@)UV+8-Nl9{7m;kMbEu!{)~vs z;PE9cqyZ2F^%#@Wrw1GvxUL&q7`m$Z!7K%RQ3UT4l@9~JYuh5W=s9giABPTjaLEW| zwBKJ^Jq$+AD=Tye!e&5UX>j?pDS5IitN2Uwmb1#H_ORTr=E0m@1biD@zD}=AHf$I| z!|^S9{f~4Hc}~}LL=?P(18#J64}@LNNk4eY5TP6BiK|xlqbFsghxee*?>d5W?Y*jN z^S7Vtl-T_~-pzgOA&a^cG7e)^5O!o0dsTYX7LC_=4GC&{M?1i%{Q ziP`lwY+Niz+JH}GDC~j-3)%qm2Cu!vs2u0~*5JoVm&=v3kidAMpzp-6+j_Rmw~wC2 zmZMc+FC4)UnPB5h1fUAJ<>LKBSnu}wKdvoz?YtSg^sd+LUx^c>!c}3)h)X9=45YqP za@g|lcnVnL8IBpX&nfW+<#%Fap`#)jrsH*%3HXcj4lbOZ{mTXOr~f4MUFPDoOb|Zl zKd>UOvuDtc(b0efQwPM@Bda`k`(uoW9Ve>)pmIebrdB|TvPzO725uBi?QlfrMPQ(2 zZRtr9())pccS1u)FM2e}aRU1yfL6xwD}i%GdrXx2j&!=b?brr@{b}>tL1hoAHPO-D zPXS!o(?dWsKVL5!3L8RB zPEK~LBx}o;FHb0;;YguO(4~BN9FS*pcSi*6&=~akCA_q^^r;2&rkAXF@a}cbJd$gL z&j*090<>?)4X-cqZq&4O>rR|GlI&nYOr831Psvtu;TlRy(i1+T8@-f zM+&&|hEJTW%k1hN2uCTX<{FbEXOVl*ry|!z%R(7x&Zq@oW>)5MF5z!C#+wB=@kA zPq}Me_G^p3`!}?7_TlBdN3s5(jwchr(8CY_-g@fcpJh#*6b^UlH{h)W!m~0q-5nW1p;U99}SQ`s&_cPuOWl zrTo?;S<|-oRC$B0B6H7?Nr_1eUMoC~fA1+Zw-po=s1`&k z8DT|He1|dS@p`>?Y~8vwyujz>p!&M>QWHhuDxEZU_{ik7*fpLatrf+^nt%Y$*&}HahbrR zuW)hFGcdq)^QX6+Xi$b{FkhnKBr@ln#0jnagP3_~<|;;!q(5@e%8vqhu{UrB|IsD^ z;aC@05I>iF$>hBN<{4ka2mZu4U0j* z9Fv|okW{B0z%?w;15p$v{xmKt{p`|-RPM4fXI}ay5xoQ8NdRC3RsY2@>^KcLctau- zqkwa@)8TLf6i!Y_V97~Ee~}?L4qd^&xUgl*mU95Eu~Ig;wvCAbHx>lW!*qjxe`y=$ z&CJ5wS(oPi^P$hRiy!_jhP^&aOix3n!XrdrLPB2RCL3@S1}LW4<@)1xMb#W%m_;LmchqG%~NsSQiAD3TC7Bnb2& z04gHiA&(Ew?K*-tO_IxW_712v+Rr|iQ*{5+u1TvO$T2jE3rxORW@6TjGiMF~z$6X| ztzx$`CW#*oIMN#Z>Vn8ta~YomkYm^|1qS0VjO$^+-0bzo>pMRMAe`vUA&7MV=0_D4 zodf`GpZ}c+Y0giTHMZgUIWtUZ*A8y|!A`Qk&FldNPJ61ls+!vI(knXw09_qDvMB10 zI|4xnDP@Aqk%{BRIoV;C->6pZf9foK{?k!)30#yRrm0Gg$i>-)jkuxq5e)7@BDRkN zMxcx-V>k6;q$7-8#s-ac4t}o}U#a*}Gh|k>g9_+8E#b-ZwgG%m-tZ#vTy9S0) zQQK1f-YaK?JlMllF3t({9X-gpBoo74KPIL}Gv;xcL?U7*yas?5_mpVb0Ce{a4;qyR zfDQ%czMq61KxaP42ywvjiD8s$17vu$mJbp|9`gKh3XU&5`9N+Y z*}w#I{$LTD-rquz_s}>`m(%N0E~1qas&9(hu*tgF3JuI zwU^JhB8MVdIAgQ zO%E%)*A<<_;WLeJ?LPqk=Kw%p%skDq0gUE2XgJPgnX`t@Ui1&fXSbk$_caLkMdVoI zRhjDV?FIlws*RqaZV8yKv|_Mch;06R~bC(F@Boshv|DTpdJ_Nvf_=8oQ@ z08kf9bl240y;*iRX3LPS03u?POg!=v>hW+Xz&XOU1f$=9h_Jt~41GO=VJ}8K=S2?g zf#?ZWGVJl;bani>By8A-7r*$&y5Qa|dhX&f4@bfouP+ho*cBZ>$c2c5e0@jA>pl8? zktG?uLms@k{}|47May!*cPyN1fr#+spFjP&Cqjjwk|_m2fJ_|!+@hkF4L`&Li`kH0 z-G5A}fTa6>_dNdk;#TZ9Sl*~Cr=0=@-Cn$Y;5eS&bp+*QH75Wa8J_}Pm_%$+c-{&A z^RJh8;LwrNDp{Z=m@lKeu}$8#<0#w)jw_rfU>H?^0g$--8VGLy_=@(L4I2+uY}jWYzOoY;&iQ&Ij2x@;kFp`oQ45d9I##Na?tu5+vIyX$pzBQj&k zG?Becpp%v3ufDkpe|_QY@WT6iLBx6a(Cpc;BYzKIdKM}AVevBMxx*)7QJV2hz^aiR)=4Xvo^2X?S_>Q3#5~Z(@3SKXH16K)@3}_?K!$n>f>Z0k zoH^jua|mYukmhjchDT{J;PFD{gg5sd?|p6CA$Pk@fC+*$J95zW;I)w$WFASfmN7ByKN#>C<@vs04~kDW zz#~a0uW4Q+2*P`xelRDd;Y|<5FK;luUQ?u^sr?iY{S8EmG^Hb%+7ye@jq|c!TsSYA z-8e5h%%$q_N$7WbP~Xv`;`2@n2IMfojcP2)M8DH_3m5pcH_pq7;&fLgyNd;_;ZRn% zZOP)Wsu9h>Z0!e%qP?h;h!wWU7((QihKYZ?(j0<&9 z?Te!hkAf$m=d-0wZ{XYBiX3yS{P1OSd8eUD$8Ooo~9FH?BLn&}m)&om={eW7W>T0hVNcVsaw zDz1Qg*qV2t4IA-;(SO|k81DYz6WCgKD&!TY+Jmg$RSHRxCx^asrDeikz&A8ToL@q9 zG3uy|zASo1QC6wveHl8fbgU2rFvYr{k}1WYuY;ssHzK^V7C0wXZ7D)Wf5a1)WWtg1 zI{bT65wsk<6;%O!Z$)KeVEti0Ti+lC++KKwd_&4-2*d9P)iF^Z4Mju1g<927y+a;6 zwY3Nv51wjh3WdTm7R7nXIgd6rGC(d|`6an{ zvHJj2mDV=5n_mHh6I%yyxU3dP%g~$f!_OK;k>}}+**Ha4i9qBXK3o!5US$Or_rQ=_ zeQ5w;{X%7x%AR3}X_scIWs(kC!E58kpp7f8Ki2TcTh1p{hXUL&!u#+NBOX4hdlCPO%SwVIo5uz#p{N6ER&f z+Pp^}CFJGB<$vvPh+Y8c3VHp$1=r4&0X(NFC^*%%3gpzfGNolqlzj@SV@^b((leMx zB|lRSUcKL#Ve_kn#|NRH5YZy+5dv_A013$I2S4BPNRV2^8dtRq8_^JCP859G?p^xH z11rA2Sbr=LP*_&pSNQlt3D2KK>konbj)5K{hCqTS#_k5uT1UF`>o?AyZp?&Dh!qH+~Hz<%k2@)p`#xUgeqN{J{nXD-jtHIb~!6Z51&BHCTXAc7g3Ps&& z^=CS*rInZv-UbbMC#%l&_YdJ;8}`Lc02f0!E&K69(Me9?^n0T+Qd?HLb9$GXu^`|6 z!4>_EZ+t4I7LW+fF@^{qEMtEGk#ph9nL{V)I<5UaaTu>N($dxdxDNn^1oz+T8~XoP z-q;SNw9+~v2{Z}pUIzNtfY-Y*Gd(?L`s4}s-uSK=FCMS&H0xCT-;N19bn3=A*-b!T z%!?oSUib&_`6WP5Z#vT)0kPb#l_?y2NNciYVD}K{??qMhv+w@k^#F{m+64BX0J<87 zRz-I7I`8S(dD-o7q#JTwdL`Li)7m+~=)4UZ@uH`HSQQ0Eq!yFgy83bH^eJHlZz2>8 z0I>Rj2mFuJe;z<2&xoEpuAClTUAGrMS@sE)Mk~m{D;zp<8j~hwU~1;1y8wJB;$%Q- z58j}!4p$rOWLV#Ww{zl`sg4NBCJB;q8tUrm#|tm*_^mAS_W`(Gd6}OAd%36u&Yd3E zpDT_LSc$pFV2r>4h z|Igl;$4OCLegAi=x@VeY2Amnd1sD*~L?WQ@B%1gbjERJSZqQ_i(Z}S8i7akU_T_o9 zOk!g8m;_wHqQ08M=p+i$AR@+$3yTZLA{g92P}vz^9A>M!=l!F*XL_mLtGaq-&iC^{ zd#Y~TI=8lS@44rmv-@Dvp8eTnr%WX3bm5Lb{M2QF!e&mXlM_$Dd|&tkcW`Nv^*wRK zdwv0cX4OO6aObNr0~s6XUTVTj;iXkZtm=!u4wV4Vd@`J7Hp8CCq2`kqKeFn|abqfC z64Ie@@Cg9Bz=&8@IX)PIQhX^fZtmaF6w|>V(z+6u#WpHNiT)*18HWxX+(5t%BAOc6 zW;}n#8gt#kds7|PEswI!HWpUuX+llMP~NZf6#zJVIJBhBT)%MXZ8u-}Y(hb!HFo5z zD4~`K-o-Tv!{!`zN z^QfU2-9HIvt<1|+CfQIxtzYnKlZ;{Jx`m4XV9C6|@+I?URxO(A&)K*O0E_1O_Yl#2 z41k%Fg_TGZZX#CTWEoAOmOy^u%fGyJ!l)s?_9%7Q)Ej}GIbsuSy_JGh{{hyws8h= zbegIw=a8n2kNn-K)NdzLS2>n5;j@re+bi|0(e{OvP`=^VDbkhj2`-Dq=A!Ybd_Y5!+gJVRn)P7id`2R>Gs8kqQcsR?}2Cz5iW~t z8ed&mKcTwnjHZ^>u2owlx_%56sPzl}WUOEKtr*#3C-Rp8{LpM76P|v2cYPz?IoN~^ zaUm;~Jo&=Xe{M}3#zGMCA%00efMcW181`V~4~F_;*Kdt}4gk;W*oExinExfiu=Jc{ z08Guzt!P;JJnp;y@qa2tTek;qY@agX!5g>oqpM=Co*2&TK+G796ZXdr!8pM?#xRui z3JkB&23Qy?D-N3gFyg@G#a%IYLnjKKA})S`q91!;4txHk*HR`{40-Uz50Fw16*cCk z!atYA?BGz&3rnKDWu?B7jJ;>GnJ|ohR-zM+>00+tX2QrJUjbnG9Zn(x1HjUG{(mmH zVb-$%&`&E#J0^|~AHvz%beMu|9i8}p|JsOq{`mrK|8qD(O2uI_{w5{Ua{z#Ix0~@{ zQ*Qp{1D}chJE9Ib?7`cWP&#a=Hx=Wl4X@VC|JnVqlP)mW6oSfO&Y5wTxXSQ|i)0&6w1<q*v1c$RGqhT;Xs-XHrfCC)A9#7P)qb<1#x5TvsTqyw_vfc zZsAi_Kxp$+-LgAHniGpNbb0VviInCO85$o&6*{v? zDMfc`MC||)5+iGR_}xrm;O%HT8Pf-S>CJagzkVA|c86(86e#+#B^ty5>b3yK<_!t2 z0*n824{7NHx>n(aj#Jzn+dfVgGnsVv{3{P?;7DNMml9+EU@`-mo)CjK6^5_n`(RvU zD*7S-n7Up~L{rTT3vUd`l^B*Vx;2%92WGr_CexVip~CSdlc=y)C9!@YD(p?0D;~|8 z@;m$Ir#GSDh1hURM6u&3O3}FEmF*tV@HhaRXl+AFdnY;~&s%ee$&B@(O7J3p)Nb?j z^$By!>o&c4^n$DEqP9ewSHc%DDx-9SZ~ftK|9XB~Z1+e@qHkYK5~hI|H${FciqoxS zNwQlDLN7!f_5v}R$UJXUzS68PljW&>FPeuc-NB)`AAt@~rM-BO{ z=An@QKXk)w4|Hws2z&6hcN*wCR9P~9WaVWE2U951xyi<#0btwqx4)H8CW^&31fC}F zm71nirzpngHUg?l`zS=jr|&yE_4OiRv(rpja6HNTp|SIzTy!8P&TmN1v)T3eaS4yz@2~5T>r_W zZQHmgAu)@&VPS(gn0#vefgBE3QHQTy>Z(P)AuD|2a=&&?)z-DaRqG$teN6A1( zV$A1Cw#MFgE*x8VVq$gG_}6y7U3R>peL~XnWD#kjJ(JOUb9#g5_>oo10VG=%W!diN zdzB0(BxLq^V_)bo-F2|(&w1c;{{asROEptLx`0Sr)%5-A5zbgX}I=KaTPIf)j(w`yT+h zy%Zz7@Ioku*0EzP-zUaR;pCBB`lIvMuo$O+qwk*t1GA!1K_rM28`dY$gEz+L8*}OU zwT3puRcVnQhrwtMe^=r|G$<7s?-}bBKBXybvRSGwO^^X$qqZ4m{!6DS8t-c}H!OUp zOP@aXhdnV)B*ZDl9Yhv6Vv-Q+t3)Z|lgF=2ik^VbG# zV->$5GP%=L{p{Ih^h%cY4r5(=B=q0L)6GuPyp{;xFxu2y08ptD%yO4;I9Y-2{JP-~ z4P86B3t8MZO|yPjwrtytN0+ZlSfx9DR8`kFuKZ-jlK}p`ZQHJpQf<}6<|XtQY>&a) z*CFsu2Au=8p3P*9KTnDt3~taFTS)BpPzlnr{CLm?FYWjhc z9h`SYuz3EgM>7_Tz$s$zCb0e7Ly0kXqiaLljK34;^a)m&-9oK*r7Ra7&2y%< z1Mdk2V&9cZi46UtH+4TFt+CnI%nb`y;UoWZDxUvCmuF#Rd%HTJb=RX5$E0G@5Hjd? z9;%$`J@x3Y^M+T%dggCj)Ct7qdnAU*aoy_u2f5vd8iz!t!TWW3|F5;gcvd4?0|4Vk zR^E&FSi*vkC5z^MCT%jytUOx6EPLUVTL%y5_k$_p#sB~gKKAo1M3nb;nUls!$nbcM znuzkj!wGddXj7T?W zn9cK`r%Q_tgmp$nSe{yAwsbV7aQgW4#P*xkYs1G0AkH* zWg$94-^7T4_t290Gb4#QZ-^uqwtCDXAJ1u1&;KFN?V%r*Af?D*zt#l|d^fbEF0$U- z3?Caaw%+;ryV(8qf%{HA{rjJd|HbtHfGuwyzBPQNeUm3s=a#n*N1q_nU+nHJT71W% z-$~6#_}p{%xG?VX(HehvGCaE0wEBrn;lQfNjfI`h|1qie%zFoq!SKDmA$DtiLq!JO zkFUY%6G;S0_l@haGit=j%U5X~NHIy9T;(Phc$qsBL?T*3ivNNXD?KC3y5vJi<#_#_ zLzde$N(?ub3XXE|{YP-^O$a5h2T-T(zX?YGbcOiSJywAkyLs`Y*HK#H#jw+=rdXaU zF3DO%^~a2e43iNTtt4rGlo`j4x1{WY-Tw92tpGmgx#*@H0IJYW47@_$K^}ISF+AFT z0+?-%IB02%nK+{Ag$dP_W8OP*BJRV)Xl?7j;`y^yN45~?AXtT${3KV1M2L&a$y>vF zlE+43JPiOEw8xZ%wq=g;s3itCG*~yhB{K;;=cLwJmsn?(9=vf(7+H1KgzBpMQx@vh z645=MjD{)pEKH3tSJo4eLSvmH%Nx@fWo}!#0>@6YU~zrpmT^0F zxIXZoFud}ei6bk2_t6m}T2qzF+AFNA!@3K?)cwBoGZV`^|AzyJx^G90jEZ?b%>mur zL`B-f#q<4-10kdSgyEHG!>#}TF&i4f%bk)CdAt|gQq#U<9@6Fr5yK3{!e}izt#-MhaD`wky}2F%|!+SDHa zJWb#$^FEItL=*NBjaYK`96pBg&K#EV8_{8!3?P#9FSxni z>r9hkJ~Tf51f>J@(FlKVnW<~JPk11@I7usSxb3 zzrW|;x~^evp3C*^qC~a-s$DBRRa2BiXC)(94BjXY-p-P|4ZLr>cc^K?%#S5s#lW!x zccr+pYbZ;^o`VNR8Le8L8C46HhPN6&8X9Oc8hQ-)AF2oQ4W_UwFS!Tdw z>WY&_RtDba@a!rvn+JgpM7&yG*|8f(k2T}K!KScynG$9Ej$5Hgx{=bcVfTB7vGw)6 zU<qr>b zGsifzoN-{&{mDW~4K@|G$DMD&s3E`p-aU`qcf8a5^?(xni-`hKe13zJihx;lJzCUh zFtp?;Q54}sW?Cie&A#?m&E}LkFTx>x2KY)|4-2F*x$6*z+z|NvJvYxxnsq>L>F69cVrbG-$bY5TvHQZAcLy6SNoPare)OZRr^!5H|Eb3Ms`H`>aOgip zVV}Vh8{hoRx}CeRYSX{-t0>w~lFZ9DiumQ_it{r90HGy!;m%xF=krKqYmA4XOfCh1~)0!h31+Y`_4t^MYmZ81qs(_oOb$4<=sJuxWL`)K)0P?COhCNX$V z-#0M9xJyh^06e1W9`LjNom3MNoTUK9hn($VdExv)> z=g2&+r6A--Vt606NQMglM##YH0{|jet_VBrl=3ane@9P1>hbYmGa$u~BeFuzLe{uE z4iV2?PAtpJAiewB&sN`<=rN;3qB>2fL!{B~0YHHlyz}m1bVj9?$n0y~9ov^k4<#=1 z(3u4O^x`>Jrc4Iitqu~$g_J=&{ZtTmEdX?lk7HSJys~{!=9Ojfxr`HAgV{BqkPw4b zsjdwKHI2bHg;xqfu|5Wj38`}-So8DiY7X`9UlOx&hgn^~ggdr;bUocK+ni2aWX$zl!JXYO>NX=Z-mjUAXuy z7U$}6ZX-=g9t1ct{wvkQ<|XtQ#Dlj8F*Yn*3t%la0DRdOj$0*21pxN8&mzM&RnzwU zJ=3}gc#(k*Z9S(d-O}&)+2-^~Xz~k}m@VBQ8Z4G4#nAvDP<`5||6#in1}p1sX90-{ zRQZo}TcMGLKh5)7dNKgaAY$CLJoIOMec0hV!4tt1G>yj_OkDwj_nbI(;+^BiQXLXY zYo!TTtWaf`T~ADN{+@TaK*W*ddy$@$SwDMr$DBU}2LPeCh6$-?1);#WGE0{X;!Oa3 zILrb0ij>LKJ-hb1TN3Okp^}q+Nz5Jy0!cH6kQ0cf_R*;tI zVj5e{mQkS;#!ez!#)_-3y)L_CIPso%M4FXtTT{v7KYLlPXgAG%b#<2}JkyJB2s{no z^A8e_O7KJs=?@FTH8VhL zm{A5r0`Nluu43R^AkO24bOlz;0F^~Hb$IbUo?EaL({A?R1Xt>en=Kn*fd;yq!M}&X zji#YmbX}ilZ203k09bN;U>AU0Ne_-xAE}G1X1en0Wh|aQYxQ+^1gEm8zYO3Y(A^wn zez1P_?2L7@mW?cN4LNVbkmt7SIdWfTN5@m_y>(DkZ`(G!=#&r?q)S4i1nCksBGL^a z-O}BSfJiCbA%fB+-AE(dn-ZkE8{P}=-~HUrGxN-Re|GQhqkb)XCmfr%oe|8vbEXcNfOo&5J;*D zm7Qgs6`xRre`;0FTc(RREtf%wd6Xk|W^6!C_3ah5&Ip{mD4-A7=EfmU ze%3JU+mj!|BiLjp?9aBlX?e1g|AJENdTV^1SH#X68Rx$`=XH}4I!4Vf(C38h%DFt|)n5a*yulwM;DW zCS%e*EwibWkZs0oYwfBNCI3*&c%hx|3A{TUyv&l6sT+_NValD0RA78{Pin`Pf4dY#56#1jAO z{5ZPrsyp`~Kra~@SS<6juC4N=2zQjc{2a0O#LT`QQJ|T<2l|v>=fvK<+T*>Q*~Z+7 z#sewkk=4n!UYL`wS%QRI+u&NvR_uE@7{-~3t$Y+`t)mY;GcR}L+5#uOELG?~s7faB z{=!_JTqf6k6)8E9)1RR9G<#@!eNf6m^4(X`>z)T^NHlg8a&CgF*K!&zZ8%=_7xUGL?{3I^N(Er$ljcZy^@70nm z(PUd;bknERIhSS`06uZRsYF&NfmjK6^5YI(AnpW?i7puYqRG>3 zLLk@3z26mgZtryyo5W3;>%@c_U~^SWQ8#rQXwY!YdJjkxFYsRK3)`!;UuvDw;hxJY zj3iVbbe}LstQ`#cTI)4^c4=1em=7O0bs2k+bS#!Z7hOX5Y%k|MV+unB>>oRnXqCKO zO38JZIc*5cHp{MlL^7zK#QtK5FuxuZ<@Z-9CZSA5>%sHx53BWwih~z|(FMlHLl4TZe*!U>8(DCsjr#gBy^=tJ% zrw~ei|1T^v{<&cUL>x*FO4R@~|4cD*2OJ+4zI`E;hv)OinNfd|e0tjYq_#Bq9OmO$ zt&sNad05Ee;y;#he>uyHK(a}8xZt(+foQO)f{t}C>$$q86~c|-jM>#v!XUz{G)syJqTeiz&845o4cP@)Ti~ralB@= z6~dpt*ZZOH7-BWZ2^22!m&v;nbb$?(VF(d2F;hU6R0p4`>eS~~E$ z=QigDqUK3LpKcAxhfKA<^t3(R$g`P$&v0|}>k&bIJ_VM|0R&03Pk6em7VRD}?_VF- zM2e(unj^P748kF;;E!J-v}-#0>W;dyhZN~L_vpkyR13c$m8(M13xlkD?)o5YFV~+y z$aTqWcaY<$jVB+qwd*sktYF!NODJyTu@PBVpv0IPXL8plEviN6h0VjT;-U-H(R4VJ zA}O<3UKp%#`83*{INLz5`+;7nk*uk6TcdQ+36a{$YJ#17ZCP|@_;gxPSdISgAKwbE zcNKUUUf5FPz?2C%+_JpnJJi)v=ZWpbWG-emxhl*l*mQaIjoOpWyiVtME!aN0=8%v+ z^i*$JqnAe7O|CmJ9u9=vPi3A)@O^ra%ubvWWac7;D0Z#ii<^-Xyur)S1#_E3pC~Q^ zB!Kg8kLtA*w&w3l#N`Y%h4394#i1a3 z#{20)Q^p9yJnn0iRvr;WDhsP+LJWBJG6pM$)*fq9oV`6237&kJ==9q0?B_p>>JeK} zpax>rM@v0zquZ@;eY2GQ9i8c(WfKW&L+YKAPebB9T1Qqg?NdKt+yY}&kS7jw6!XEb zRZc+%bdE1@3>KU)LPs8?TE6jiz4&n=FuLJ1ZvEO^DJ}Q;-hCg63{4aB<-C|>OTD3) zsZN9|OsJ8YcJvc9r-ZFj?tV#+@gtl~t_Pt_lhZG-4&wZp2MRq<1m<0dbRUTH*TPp)bnaEhi;QgQh!v+9E6*^Aenu4OEVC0 zj8&!IbI;hUexy>B1?7e2V~&A{vhkD1l&yK2v-FiqU3p#pxcx6r)Hod6JY7D7aOKw} zIJr_MYj92Y+;3*!WJUq{nr%`jSaHp@zix?c=uZGN8hQ5q!7oJP1kB45@)xtTAEdM( zQLE}D7sy)jgj`i!misj)Qx8H0jwtzLy})KD*R%2@??_rKwv!!0#{nM45we#V34x?Z zmAk=~X(wl;J(bpMWn8^qkTdoEtc83hHg34apnvbox`5{gnPOXnyENLk#KJJBF;l6E zIcNSdkY(IEFH4fJ7*JRaI!c0mf7+Hwn#Gs4lqd`?F8?54LP}<~ z0NR_aXAZ>*aGnbZErdF>9;7;+gmm4H*!hCM{%vMDfXA}=U0|z3;s--wRNBaF&Gj`o z>|rYvi=j6nBEHfLk(3-pg~y8ADQp-u#4h5U=ASgW8Cj11P<))^_6YqIH z-M54pMDm{cT-d~_-?__Ue)F7w>E;CuB(|MPWe{z31Tk3@wxni8#vG7Rz=Odhv&kqe+O%R1q7OhGJW}feDkSH1* zxOZPAiWGUB{Z5}4NK5s4h12flwwK0ZKUiAmfg|!0mPm@0cG*TjP)+B3m{sE-fFPJ! z$K}637GoInYIqIL-Hn3&Ai;_;dn#f$*zA?JrM{KR&z~qNL=uJqs-xst`imiXMZ6h9 z`_Dcm%w4x)3K7sp42XQkcT_i_O{>etI2!TsKZm2UR5cMV%ucC^Yw}{O!7}$8W+ej+ z_R8Gj3sdlZg}kVjLs&N~L2BM#GG*G0`Xg0-@Ku@!=4R#zwsfdL1N`odWYj^+yvYgS zAs9|Szv<&@#M*t9YcmpJMaQ!+`k2>no5LIl5hFo!A8pbW{wR#I^Zn84pTugNDv3zk zCd@o-BgECo+@-?x_@uXyWYOU);Yl-g(_&&5IW09p&atN?|LAHm>RB>>_$}gDXU@c# zf$PX?h)T?`(Frak*P$I){%r*Te?M@8T3wb*^Elw>Yk6*)E$y2xRCKL;CYq!o^#;!g z1{mJsPO~VN4z?r}Qd?YPcV_U>;Pky zi=ooYDn2=&+Z0E{Rc$;rDsHGM$&Q3)%2+#(PHCd3H@DCi13~{U&r}m?`8q~z zU)COS$v+u9>$n-*s?2(o{3S^?G!r}R zz9)vKm9FyVdxyol!q9?1=$YiurNg~E9d<_|Ay-v~7B9Bc`f!M#pZ}Ojj2aJuaMWT!a~wKSmONCY8xyIp%#o=SKWA-LS zL1+nTn0(?(eTLNpH|5FV@kHYS>VTIV-aiY~Wtn4L`t)-3O^oBcMDgs~TE7|Yr!fcR zM#(=x5J6Kk|Fesm%4aDp_kg3wpcPjp@+SZ2J%ZXh(^JY)Y7$6q|Ed`i8f2^gZc%to zf+5L!r>N=~-vFT~U*d}z>7$=#q!R5yhgVtEg=VY$3h!qA%(6J>i9N1P+wZ52?UC1~tLG>TG7I|f z&0qJw;+s47v6&Tw4s+q@&(5N)8&-L?u5n@2SW4mDrz$<8>l}q+Zb){l6Un~oi_R#e zU@|Mpzu;mOW=G%LeP^#xOB_V$d0y-hoHj3~Be=9+9=bDS*g;vjh8xg?k(mk$8Nr@vo)-A zBKS0Yagy0>*?Qu-m3h%7!c|C>PTV;Y^@=m*d$@`0vCA4Z(~z`GkbdO%m3i7H>M0GY zU0x*mnyqpYNt=hcM)t6F=5_(D@P6arajm#}@W&nMxaTuX3B@%rj5YhtOIeN9w0IX( z06>ISKP{E|T=0PGBOOhug!RH$eNJD`v6ABmUF8>_Z&B*lb7Fc0*Go+^aWC+?XnNn{ zzwcz|sHjEA*lvg1LQI1`~J9{cq@K5#}zmMaxwds?p z_hIv)Q<(`jA2RVF(aqOmtLP+(Y6$5Q_0^kY=9G^d=7L|U2__a5Sxzr1*kY0(m z4|V^9vI6}8;+cF-oKe&UB5d65x|$G2lgttpJ-I8kuYcC#^8!}o`sxy9L>ldYBefby zQR^n=G)Bn~QSf#paDhV<>Z$v9|hYzgOzwY`Fzib-$g>5K{C8jHZU0?K~9KkyQL!C91XQVs9 z$;}~2pU}7}6mX}%!@3QhMAR__)p-BT)fN=74;7YhWP2YlN5t8~wT*$1SNhp3z&{FO zu_YPvhj&Z5WdZAXl~!1t5F(9P_s$|{F8gR`n3oy0c4ZDUUY!hmbQ*WAX8A~!o%EKD zUf#yZD5QOanPiH)^NiF^Fkmr@x+6vh#s@X#9io>Eb!We#kQ$_xORy_f>(PS6T!cOV+(g6$*BppB@Gp_-(&A zU_f^kdmFK>#Ws_13yAxbP1wxQc09+ z9kxWGYU?vU``w1BQL-n0+^||wdHTJ5hGuHCQ4hZ!7P}%)q}1wfk7vHSZk?aBivS^} zUKG}ZwEt9Kg8;cj`)7dqtKLT8cMIeq_G_H*DhKmSfhU?HXP1Vk3ZpOA-VPDs!xvlg zKOou62j$48d)MTcA0oWPY&KdMOUhxfG&Ae!4X~Q7Fc){!zU9UD!fbvIbwE@!?y-rK zXeC_4*gHK<81Maz7OQ+;sdPI=E%s_oc$?k78L-kUpkkC=fgw{%GPW(R!0HJ#*6T%g z2G?2mzGRm-xX*-S+ElYh3x`o^AKO&*Ypc7Mr|)09wZHB|;#TkOs70ACsp;PubX>>9 z@R#ipm3xKB;SKG5j*KAw{px;sn&=RziwB=fju5S>c-i|?)s?=)rQ^$MW-eI^sw{z| zCnqPq_15X>=@%4{t5o=7NM;A_4e4oI=1S+;QqeuoTM1Y^ zbn`y`Xm?W^csB+mgO% z<6d0fC?}jp$R=}dqePYC$AvuP;o|Znf+*awnYqqL9aj2kEN^eFZ8#23uf1>cTlDsd zYtp_bl)(KaFYsV|bX|m@n5;p6xcmo|hcuk{_Ii@((7lL;y=wko6CqRMGho+8u)Ggv z2Z~cFp3v&;OGmNg@VyTSd@%cJp5&ujW54Wt6z-VsKbSwnMdKFx{_Xeg-}y+J$Dotv zTwDba^Sg)VaTPy)Tz^XRdFHe+Dxg-ZB^y<>hs4S2ytK-b;_pa(Af@$u#Kx3dkkh z!ikIc$Q~s>3^)ELO``jWE_g;#-@WG540#)>-<=fH3#waTE z1_~wNDv3MY7E;v9vAs{_Fzi4!nL}Q{x_9p$E+i^0js!76^1!|ZI1fXw-cX~9m1Zb+ z;%22!9QRMTI1c!k=BLq&917LbPf;>u&>Pw{QN{SlNRI#*Jnbf`8hdQ#Vu zOVm+nf8@@^J}HIly}*BGVQ~zuIu=TTQa;;w`BR}+X1Psg(#54wP5PyBwwcGb(o`I+ zF(~KC6?RqLOi#Z_4N*gwe1MI5YpI%3QQ;Uq=KKQBogVC8GNBag2muU1shcV+C#?CB zSl?#K9-_(;>ITzrHlgOeXz*oL@(0a*MDKlsZ+{ZVS4?U*S+P^#UZ>x#m(c+X5`}?J zjg~^e**-EicVh(^LT_Vjw81qw8x|D0Ci%iK-X+1y(8c6CxpC)Y;#z@aEJH=uZ0~>d zDChn7@gpci4rxzB?O3uO;gzWto;!hb(QTi=os$U4r3q?&f6saJDCiScKNbFSI~Rjs zKWHmV>J`*TcyldFy7?pZ#IJE6E@i8F4`yufs7kHuJ{Kf^H6SHw*cND!w@mxSmGJmkz>QJC?kdExY8 zT1`F^>+maX*>Vv}u06SQ;cI)y6v3637+W~Ln}g`BZA$>`=uy5`-FH;0Fnjy7rS&&AH-BMoPJsW(LGo4FXa>`) zJBWk!RcZ1NZ25hwfaB(vW5t1|lEQ=NG5iOU!SHuEgLyF~34HlG3lFny)F-aI$6j2$ z7@8TRFNmm@Jg{2FJ+c&HhQ_I`xou%?Uem=MhTz-{=4yM(d@J&FgbM`crdW=EvdSoM z1h_*_PmeVU`&*{R-MJq4IYo`R%nfZuGwYR4fv&~u^gsGdtbZ+GkWYI$(aJE$wM~>` ze(_wkE~}#Ah!hO<;^elPcBJ=hO3XPw7NxRv0D-Qxo`eqFpX$ggWDPc&{*|fc_~Y7R z*%7&EyB#2>GwilABHy;!BHjBqlri|EJk~O?3Z`hjxGO9fz~Dt;*bC-W%XscM?=dL} z(UChi4_y*#oR@oIWovq{AOdlO@9(RU+T+i79n z>H4gsy?OIUNdp8y{Unn=Z`C;tB?DR(+@Wv9#b~}f!1iy;3k$a)PPVts$%9FGHSL?eKX5m60luZSl!U*#6%VFJUDbk);tRd#}v)k4p#UOf!P}!jn{CLyB0EST3|;!CXH!{B8Ylljj30pAyKB|2~W9|)62`M zs;XjRlfs4uuLA;k!J*IcUSe#L05=XY*tz%pIlW{G@isxcuzIGPHVt;epB9-r}7kw?6i`wLF)OkiX#p9yi0SQnMm$G*EWc1_L? zmIbc7Z)rg&MMhL6AtAYW(BK0g!35$U!W9iMHbrILmz?`(nrzcYW+U9Hy=1&Dv{eY9bY_w|LUqqDOb{t&~pcT+6uFs%r{ zMGGRDA1oF*GohqcV`EKe^5VkXp(E@Oa|ola0-3C|%m~?ir=shr z6j~HY)TpO10pNn=7x8?BV}*v7;`Jw^w zoJNxuZ(jHy5O?;0$-w3Kq5C*ggmHd}JV?CJAu(WH#>wS%cU~E1$t5uqKdF%p3|@=f z*L3z_mM<^2iTj^Vk|!+&KVBm@&5MvUYe9oULmZ<;csTl~FOEKgoE@wVO`eAn2KwtI z^E}1BPD?D7G-KL|#3Pb7?@!^I^SV4)t|wF*shEG};G39BJL*;%I&rkWcbl&J z$LmA`$Q3uUTFIw(MYMPV%Opsj*e#{eb>CHxiUx?SmL-(dED2S6LO+QR zyghJz2}d|1!~1Rqj5`KV)_;^ScO!>~FGztKqr@&- z$LeH9J-?k6dBmcmgrpbyiw47gX|ne1=995&*txOR7fM{96`I7b9h> zupdHTOu`R{b(m{g89YzS=b8KJo%sUIdP4!vWl5{Rd^U17Zb`|m!DJ4KNHh?Qn}@zg zmRd{{3CioHq&SUh5_6g1aa+%C@T7acMT_sw0YetT;!%@lejQI#BK&R*6e`y z+24&as;H?Mfal^jl(i}8=tPtnb{g!?HSoIb>0KZhtUI92>AXVn&9-h;OL6GuTbpkZ z(eXYv4u;vs=jA<7QCDC3#WVjCoHX;W)0s=Q?R+&oGAD<={&-yLPD6$rVJ!i1_d7_fKQ5wwk&JvPA%VheGndi}`$+8ip5jB{ zzU84NX7am7mc;Z~-}|m&l-?~Lt&bqFu&~@(T3T{}NvwQtnU1M^pV1`g2iOrogudQW zWbDpclgd!Nx}xI#LXmb|QTdCYtS|NTo{z+)?8|Gph2DRnmGs7G_M(-HxEcm(C_k9n zd6DvzjZGIxF9+_=+rpHaQbyQ32BgGixZ0oEP$bFiezYc!h@R$su|Ci5y0_5!6n8h3 z72WIO0FAW#Z$BioA_QAu-zSoE_KCmSf_)w}w<>;l`D?D;&0)~WZENLdM1B`{p$mwd z62Kb=zmj=Gmcul5INptZdjfedKY4Of?{T`b zIUCoB0T7Ho%#q30&$@RJ8LYRSq#ZJ=dakaI7Ql(dqmJ7Tl#>aIg$H!MDxVBfy%F5iE=66+JTOsVZ ze2wwBLn7SIgApo>9h$*X;R5{pqA-)n&J!vc)GVDTVeJV41ksTSxuaojL?+N<}|P6B>O$l;vFqm zBOHVctA?Rw(siw)lU-+<9j(c50N2pHo0>2)OB_T$(^-HjOV7*8YrOXH8#<$!4aE^I zTFZ=`*!gX6&CVGUK2;vq2~mk2hc3y!bJw#w+lFEi<6L zpL2t0P<8(GxF-zqLyk9oj_ z{9%DEXCAgPg{)EeR<-UL76&A1;a~I{CErt9`@;Bj4ymNqiZ4ZMq{1Yy(Sl(%t{vm` z>(|81S}@1vyR#v8yLm)WEZ?darC-)qi&S-kseRIT!**nujWYSb=KUr%RnfghaB5gS z25gD5-B>e!os(Rvn}v4&;LqT=;=n4Ok!@n2s|H7}fsPr@NQ?+2(IIL{Ip?Rb%<9%? z%{V=)W|yD_?jLu$=BG*O=`%%QN7yo2d5~kys(ohLRvG7Z{nQ>wv_xz`>G{MlSLq_2u3LY5qwd6<#QY1&U#Jin`( zY5oQYe|BhQ=I#37x!mI{R1ZLxvwbXOJ6*3xh@q=A1j~4 z^&Pue73PTHTZQP?T=;#XyUOc*qww?R&&OaDc)mPWY>%D0Rvk%^{F=}2NFZN_5VIXX z{sg5tPn*X=jct9p6I@ow^SkL=F`jZ&10X>Hv8SRtwZ3DJO;Q;L*OF;I?F4g-?OdAL zJiTmE>f26!W*piH4pbPaAcs0=0!#<`4~g2Iu(Iv??W#(K8>Wk2B_XMcyawPJ*ng1DOk;%89~0l9G@#VnLCD2d|6{|5pY{ zt#cLLD5jGR_=1MQLaWEV^bqKNgaNHhbv)uUkGSbV#X4nQ?tujp z6197a011c=xUb9-|CNXl>Gt4%mx!nd@j(WFzLtYmL@7VR(D(yT$ntZ_OQ8RlmH6%>qo)$u3W^FAD=lZ3W zcfxOXV^EDMwm(R)lbh_`UBv(Fu~vgoFfb!F-C32bZ3iv3DMd+P_wIQ*tKbI)o{(YOSq@|@r(Zo4_^5EbC8PU%n;hfu~ahmH_Y9g5- zxRA(f*f7<>uTFoy{FkG1%*zWL-5)GZbL08P z(Irv;WXEqs73W4K&Is$^VZJAJbpSA#;HE)XqUI&|W(%blI~1CYP&bFGv;8w%tHy2S z$>T)eTEU5+g>x4A0NixE#}2er5e{<{0xWxwWyHrK#C9KCTIpF~A>$rG-K%~8?(QMj z(nDrR4@E|_2)DHwJHxj$~U_ zP+)o9m&hqel@0rTXZ(?!jQxH8^lGs1N#zyfYk`0somQIiPpti_Ab@$oqJ zLqk}Fdwb}E+pZOjzcB<5Kg_%W_}cA#>F>U62 zfKP~)#HV?Sq>kT3iO|1F;`_Jz`D@)pn}e2Zk3V2J9_#C;oT4yyDYYQ_gvy3|GT z78aW}2-xN}Hccc_h#L%TK;D+LobfNc35Eoi)e2sPoZc-LbD?rC-KBGP7vq#258X2~ zL=BM_WNubB5I1%5i;HnpV#uR? zaDImj9BRGJH*ySYDDONpKf=@YlA>nTyG6(S;JOb6^tzPj;_z?1(op_ydUd4P7#Jp8 zzL4;?NOB%l%zUQT6T>9j#(smcP*SuRAIK?8A7yiy(kKl4PK>4&qxna^da-cQx}Ec# z1CA9nZjQO5CyV&Hk5MZ)_-tc(HM@vCscQG=7f# zRplk8lYaLOBKot#=oY;a;b_CfQgLAhII%X5Z+6QJsNq|>cH`pW^uZ#JI4RJP<&YFm zpx58CHElk8?RxA|84nI^M+N+F2E_H?inon`UD;eOpZ2)4fP2= z)8x~h=mhnVRS_@}EIJ)TkfyHdb#~uC0U>4vwf(Ofw;c{Hjy5NX5k(*1dkycNR$X4- zM6CJL7BxL!f{%|o)0GL~p^r{6rAJ#Gxe9hd-@4Kh$q3{*=G$z~Ss$n|=w5eci$;I) zK}H+cKAp5WpS5nHG77lMX&=^XKtqL6>P^V`eMsT;^>fWfx%-#b*Kjy|f}^|&aFq6d zU8CoGeO@_Gx_Q_|8@Yvr8bElXe*YFX(+C~%jfjZI{Im`7uM>Cgss<@&3CNm6JmutP z*5n)E3I+pbn|>YeU4(7c&W+(KzJ8o~FMM;dVv;c(zH9qms_MITlmh5l5|R6_867<; zdBO9*=`vLG?mvaAy&`9fw0`4sJKdRyYszRc<@H$&1 zLZCw)PUAFgIlzbfN|6t*om#1)sZ~-3|mVu}wWmkKQH~@xDTUI$JyC5Tba%e#_6@}EtBV}a(uVR7*H1K~05k?3 zn+RJIceMY;&Qf!A(w09{ScW$mGzkMAFd_wbI}N3TLUb9VWwwv=lo9#IK2QcI5#+$T zmwm=e!uQf|!L})DkuU#_6HF(U>y>w&#lUpp!Vj=w-!?Pq z|Hxv5m)CvjYzPgviERHk+<&bntoC1tTBe(+GIuaspIF^PFfF#Po(2zHrf$I>E6u{v zaujePIh=<|5bl|0<1Wz~R=`ZB|4*(plz}l69RL-L;>gqkzR8#WkK7Z!8h=FB>K`F& z)PU2o>l>*)L7(|XuYAy`_CX71X@C@zl{wWWj@_YagezTkV$ZDHA8Z7nzaKeXlAxa` z6`Yo9905J@N_}b?aofx>u+|00G8dkJVLeX^0^X!_>70BWfRLBz=QK9yo9^A++|wW} z0CzJT{m0$J${u5jJp}B9Ia|Zgup>m1|iTP_> z(H*QYM&Sm5PbdYj{xz?^Z$fWz7RaE`kV?)&!RK5rCJ-&>G&{0 znV+cUSL0QLYFC6xjXiYHdV+v2ZlP6ovvWKQZ>XwrRzzg|Q7FxG^V$YvKr@y!Je7Nmnk;A-PO&p zQZ5B0HvFqhPuI)3m~bz~qYIU{q5Ic;CUwZz5d)so1BpTIbuop{7P~97dtP3nUh*kt zPB75?U;c8^Vg~c3sURuX3zh%Nm-_!N@BdR0$ZC0osf|E`2>2}q{)lqUcL(BtqRR1C z2?+@adR{3FgQ-|fa^vH-uRd`^2|+irvYN%pK!z;g-h|DnG_AX)B$n_-lIDPxTpoA9 zG)XK?N}8;eknQ2-sY)*%-}m32ZtlCjMBH1hd^Qi=J$O-)mM3n^IQ;u!1e_oTjBs)b_e;J#DCR3^?v-hSGJ z51d1`?8H7xXojgDLKvU_>r)d^yDGPhp+@utWKay#dg^$1TyA!fyUc*cQSw({`B5~$ zxI#FZrD5V?#>UIB5G!g4S@UN^^XlVK7*wRXWx}lgjZ5Xrhvr#(|E# zbd?o691>2RpT<|L+&?jieskX9P>{dy+T6FCKp-SfMT$bo4ugH+1cw} z7#8?YHaEev&-J6BA@)HCI^aZrWyPVl!s)wjiYIzsSOA6Iotl@I$N!-D15|0Z$CdTl zkBNja2LOf-5ldUx!uOWB8s;mvAN=kGO}KS(a&jAq!ksd!OC{9?MOZ%)J4JI7boB-2v?CRk!?#cPBM202@HIgn z5Dzp2j zbAauKP{w^xX5abHE+Mc#g0!rT2&RIrw1%m$Uv33QYep;?T-u+BH=8;*IQYWSdm-fe z1;LY~*$cRgt&`J_ZC*KA-#5@Lu=z$`;wla`V0dgaxCp*^IzU7>n|tRi0iVff4r)LN z{$OY`S9!I>n8;NyE&b=4oV>h^`8;=Q-vNN6cH5a&?I8<@OkphlwY2oD&E|OFY&5+r ziMEoG64pX4g!8dWvlM5twdWkg*8=vZ1$S;CT;V8l$B5C024FzHl+%&o!uA~85!N|LiQoW|| zNq2_F6go3$j7M1~Kl6%YW@gsK`&5o_CCs}{2&n^k+*n;-9N*lD?`dx>Q8StfxOI7Z z8w=W#dzJMf3|Qj>xzSq=RTUMP%BP#VP{hMe1Hh~)!C!F*YzzDW+SYF)nxzI-fgLwK z%nt*eBMAv&Kr{z;jC4ovuZNv>6sluQ;LyUpm#NCyFIAQMzng~Dd;>+0_Fhl9v$Hb= zsMaERBMzw{L)GINV3tNnOI@k!=^Qy!^S4hMJJ&Wg+@a=Ikh;Gc?uVf07@wt&->eMk zRI-6s#wyoOL0jxOklQk72zub3rEFUPchJTEj-p^3Hf01q8714s#DCDCU=y$OhIOox zNq+l2dk8#7X5J8=@A=st62y9R?wJc5wh4Kc#*Uw#e-88HY?h9OvdZc*?d=XO{xXF! zm%=!)Aq9+Ta)lg}DB8dlhd%P=U1;K;i>O}rjDA<%ohvmAW_b5#dt;-vsGy+WK{GMv zM-cnsA}GKsMKBfwd&}}5v!YW5*+TGQ`Ku`DOb$lYN=jvtoO@sk}-I~rDvo3&o?HZQI7`uL)(%|`3;Bwi0>72N@^$!zPXks z*=gV*2+re6`*a(hzCdDCB&nZ*pM3pQxjh0h%FXvYc_;x*@4hdsKVK__OWiCQuvH%u z_(@GPgFMAOWE?t6xbRTrwg*B1Pe)j|x_8d*KA;dgcq7U&oBJ^c=x08~rqX9on^srJ zihtKe3~jP{{XXQ1_srJB&F!2cF-{T|fCYbCDSd7h4^&LUfAD?7aKDlR^tV^VBf~j( za%*>CDxSm(Uklhfj<}oiE*$HZ!QQCha8WUrkXL;H4o!Yj9_CNl@Notu)42;h(k3R)Kdq3JtZ zn%DjaIz4f7S1%vLc9QTfJTt zQX6|t^9%{9t*h%qm`v9rkVLt?MI+vNOj2>@0&6=v-c#E+73mR6Dn@T~Z2t^6K|6=8 zf;>RlWWEkz9P;o=uWYbYEoPm&)fJ&y!bm3N996W{>;9)DF$PNjUZhG=Vyz#yflkdq ziqxvm&f1zQk-iY60pG^AFHbz&-36hHJe~@$wJ;@`oGL4eCj?GkDUI@Z=gwG&5Inn= z_GMm`eHanL4dd7>S9hQx!A7;KLpGY^Uarwb40;8R+3|QvV}ZBz{3%T*ZB$TZ`afu< znE%XC7RT8y6Abbbp-+I_GVI3zD*KiKItANx zNFiRZi2_Fy*OwNWNe|}_{3hq5pxjk2~ z7qK*hz7UniT4v?(E~V^eSwT7?dz^85pE$^FZjkUYZ-0A>qR`OLP^q+P@jX`ia4R@v z_sdj-X5z!%g|n};ne2(WDG@n;~*5Fx&DmfkLj`g)oW5>#B+ zavOcqL8J(eu}__1eejZd`mU$G?Rp4`5jF`u$Fo5Ue*AmnS^>AX-Od|u$sY!c-W4ajZNfKZ+r+U8t?-q)dqpHy^T9I8X*cm7QQaIW(u1vHsLjz(V+lx{ z6RoQ#(ePp%VQp1KMf}|!n;s_|*1G%6a*(nm{6-B#d`5_ojg8V6enOsiAqio4Ox2&S zB-?y^MGl2@8Ne%d6L{?wHK=U0WK~tijPowI7Q?&+Qj9i*=(B!XP&Mth4+G%!#Cqyo zGVIS%rIiSo;3sZ~-EQ$`X{8kpfGTvpsWi{ZzkFHxHM50*|DY9s3;$lzQE(DTf@OUt z@b-JELRigpGzXzp@KqYT(YyOjRKey)PT$15i(8Np8`H{Dsk7>dkNC_P*<=7NM#Mj- z^BoBo8UOef>*8kl&^YJU)?OHN+N~h*;x-dPmw3cNN2O_LX_8+g{R;E)k{$>$mf-PH z+e4sJb{hydV;3v9@O?j|puwvs3f01UE015-_21=BfKv}1sWzZCJ0j!gjPpetUZ)DU zSXWwI>Ov7%Rs;~ZbxG<73mAlIVO|x&HzeDqzAn&}mTEc}Ydf@iD#A)*8XS9Q18&Pu za&kI`b=o%-l2gEZ0-(jd|zrIe(IbT>$Mw@63` zDBaTCozfj69W!(@bjR6#-+ABjUFRR>;+layJJx#Ey4P>5r>lbkVM$|d@7aG3mRCU3 z=?+}u4^*WOK{FA+Az=z}PVa}GSY=$5XCXT!i*bmvA^(%@{rkbp!Sie{AAT za|6LW+j~P;w+?~}-Rp@K4vBe2<`n>bg8uhG2>6YuOZs0rk%QpPb?bF_gyQf8bN?rx z8P!DtWBl*CJdyej?aIAOO^UVkRUHxs4+p`vU%G4rBpn;)DSd zKi*~@@c^wV{xSJgHu-n48s)mgZ$bVTAIYr<885>UOp?HFzO<9%DK-%{;vV7xU8(L zo9v7nk$y(1<0BHNt!#A!!;-|XQq)Q?pz!wqKVAWGL^Dybt)$j@{A&_c(#DBWJ)Iky(n?O^6`SaGwGl zS=&GK8mTWmR2*-ynrM&GdS3Hx71e<};A8)kUq`&I*CKlSnt%-R8pyNgIdd2Z%~G5U;KqHU|&aDoBD%4*Z=ng84+Ob z4GPArpNUCH7;XBbP%-5j@~w;GI#gg9xh$ORtAzq9fZQz`A8A8}0~<(cA;YpIx4H z_4gwQdcmd@SSS7Nk&56l`euA+72I33p!$;vc;#+)88io$TKy;n4QfZbo|r~b1?+7c zsQ!D9Rk}B7U))FXs^NO)d9T7Y?LixT=EM2k@VM3?G*-LQ<^A0H6~nywo4CV%dC*+L z8vgfWvSD^F!errS*M|+zXwu#P5^M5eubhm;EvpuaA087`#~D4zE`k@|M8>4>R!r|E zNiGFTs4RG5FC=C#rPQp0@C>d;?fuT|zV)ghdI(+%Fm_jiH=ug81-({2k*JvtG##M) zU6x++?+M};bUEm7z~N7Z#)ef(OWX)tt||=^z(L>WS`HM)GqsuY+TU8}P>ch4Ff+YS|2 ze6};tME&5+Kod2f-}?2%Gg#YN1Y15>Kch^xalriNqn_RP1JSzP&B;hMIxSTrd3d;*W&ghKJ0PQ zOZvn$R!aD~nDRegT4i-9vJ)7Up`A#*dI6NNlnc}Nn)vh5UbUHb3md!~t`dHkNc_AM zb(7ZmY-^Na)ve_T(J(EnRUjS4iLa79(&0RMecP8WW2Zg&Np+|B89ok*xq7#;hGKUE zrXC($&byClHI9oJ-uyO)tvM5}FLH96&^vE{dw?DJbUq*4WQQ{#^Pl0uPSXBzPIdgD z&P2*$?W)ckchp18lOTnGOD)wr2pH3f!N9#`+y<1LY3{rMX>g6rJWsjVa7K8e&L1`N zN2Ja=>GW;P&m43)FQky8Fnut#{Q^bafVlDI?y`*raLJa{4|*lZ+t`W<1LF!n0pS=A z7)EGC>l~=ultvW90$n^)5abaNh6$vEdL5x1Ln^nqkglKI?pXqqC@=(oX8gS`YPtk5 zEM35U#S-vWRWs1inlFXkZwbJqxm0y@TI`ROnn+2rynYf7qfT4IF(=QQBH5O0qPc}A z6B@qD-g^&%3fIGJN67)tOwp+k?OWnBue-u`8X;j$!-1;mJ8veAYmBV7iMcwO;DzsI zgFl_V0Vq1Jg2(L&6RG6u5W)3N&os(Tw zn??{jOdU4^hlOP$2no`)$?*vh(1B6%o2FA8u%Mmj7ToavGekq0cBv58?91B^dT6Qm z;HxQluChw@eRsO4>E&hL$!6F6%WvZqB_$LPkc#INAAyy8xIvqjt9x3`Qi9n9g`n*# z&pO-jzem*l?pw8khau(iqD^1O+beeNBcV4gDEik%GTHm@pC{FAFkm^=Ki#zWtM3#O z1+s*c11KZu!dDC?3WNbxpmvC^IsHRF*k(0yd$F%94ufqYp+{b7W5B2Y3Mo@tP>~q? z&sPdVZ1M4NzHVNLA$4(=$A&W91}tLf(a;T1q1?t$D*b#<(E#_NA&SvSpa~mEm+LLT z>fC-d(Cdv6AOs?Q7#Z?Pw?Bdh23RERkfNc-k>;>q$^bRSOvRfq{_aesVx4P#=c<1$20?$g+75X2UJW#Y3dBk}-irEqx7=bo zz#%eBkTY@L5RA!MbBxfI#J zGxvwQiHpJds6{s@#;++*t*rg}#|1xpfv!>&fJ_Ls*d6vK_3j_w#{G#TCHy zm-=Bpu&2fjKepu=nbu`WFdAO_@j=bFn}N%u6g@~zI1!I6H8f_gKs-JUUOZ3k#YHCa zauQDa$6_SU%}2&MYb?D)IyY=kC~|I!MXj`3fK6Xc9@MxL6myP+$$aPB=Wm}WU@Yv5aw8a-4S&n9~GHo2?DQ>s3(^v-+_7voQ zVk7@)%M)o%zxk`Sm z70t(hS^t5hmqE(pmp!f+sJSObuUx_Uxs+y9M#BeNG2m0l6uytKEW3I}`_>QcvZ#Cp{gn6mVf`(>4q31ryWEr4l~G9b}Diavj;l z4O-H(*GNq!g|daQCvV5cxbQtCB#+)Yz&aa1?C6@y{gM=6#s4dsdv}v=IrPp)6d)4@ zdqLBk>3Z=iXHK$W;u;j*FOl$S^BUcIZ_VEG7xnc8*aDM)(yj8_WIkBfjq)=H= zkrf&Mn!CXK8qy`$UcD5BjB)Yc=Wj2p1Eyz6Gi&U%Ng*tKn;HLF$h-TNGcQSs6sH6E__qVU%a%7>g ztj4x`W|?%W!meBO_$UqykNT}g5UBq7&@S!xOW8LPl9*8WBl46iK2FC&<17+f8`H5U zQpLzq>JLf`%swVsh8e!%9*!KK3Q!_~Z3EPlJGbrb@_I*cMt&=Ft)U|CL$UM_fM@uY zqENZ%^`O}_lYB20RK!ad6)xBTZ4P!Ce_nw=&M?#--UQgIfBwwQ=F;}MN^Tl4phWUM zq#SFrZ;D1l&1-J+E}49L^^VkFEMVdp$V>JEviv+DR#zN11Nq0EU(O{EZ16oPQQGx9 z3WqP28JjpWZ(UsP`Vta|{SNJoy8fdDh_qJ|Jn$B3Bpc3)j(<=^D#s=SI)Y(;X}g#gsg!K z!JkSS3X39+=GJN2Gmo;t#Ku!yLnF~0EaPOinADS*jM;zr;>9`rT1o8T{C6a`iOHz< z!^NyT7%!||ZHx82@x9A9M5pBWx$V3DlT^rV>jcOuv!KUD3g@w zCQE1ls>jr=2KJ2v^g~OHkJZi;sMRZREgDhZ`ov}&$Mu~^l-hhhmwFOl%UW`ycywQy z&1-b9w))yx>a=;)b>!vsf-x?)e#I5K+C$*Fpg)MK?o2@Mmiu|=Ri6)DV3vGGN4(OT z-6U{o!-gFiK@EZe%ilg0Jjr29Jrp`}Kgo!lM%zx8Dwa5I?5JOvEj|2)bKXPpI_?@< zCOSW#tL!F{E0`=PHroIBx_14HP^AyNov*{2RU}Xhs0VJ98ondw3kF|{a|z3}6qp|` z{|!R(fH;CqGWsNCDj2lGtG*O_a{+e8zxShj&37H^MEG8#5ii5YGaz5i2ARJ9AyQms zE^t|HcJ&TMs`QmrgQCHrz}g-o)jL(SS;T9l(he|UJ>1z4zYW-nmR&>oE$J*dU{Wqlbji)pLb-Wc7 zxRSX-*#BDHXU5-)sPfBwo7dkweN+`x+JTF!$6|8PEBDCQie+c#LyE~WjUw%STd45E zIXzQ5C%0Xwg6T@J8e>UC^ALsCir${Gek(!@&5Oo$cj^D0M;rJK0N zhme@Gb7K;=4?=&ZrcOgaPBsddySTeUaSgR{HVyo4HbV(V%8?u-n_cHCeaEGu_nM;? zuU3#?TQ0-d*&kK~gEuerJJvs8Wc=3V!#Sg^rc^*qQuN_2ngs)gZ90eSs!Widv81P` zAA5YWZ&g-sytmt0$K}7cQV3L|yaN>r1<=&I2|wG1uf8ptu&^l?{?7WK!hz#2iuH`m zqdTRHs`wZnLMGC%$8bX6%_+%Zq(o@4oS;Va1v72xBv6iQj>9u7duY$JjiArgH?uU?U1 zljMIDPmHC`3-yCMfU^|1sxgawSw8kfZfu7zw=4mDJ-0l4Kgr|gcXN3LLakU6uuP(x zBMO6&^8VO2Io-`S;A}^%3D?)HFC!TV6Y_ooQTK7Db;@bQ8bo*NA2LuR5^y5k&QV+ zk#NopYknJMh9fwn+HAZrfurSB8NQ)j9~61ICXb>Yk!%8G!Xpx@qS*0^((h-t_ov&L z3WE-Cms-J^4g?rm@=yC*%Q(v1JWa1-?P4K{s_&>QQ8%jxq%hYTT#AYh1!!FO#1xmX zQ9^M4_b16)D&*&u_Ty5C&<(L2PAAfUk_FZ=%~r#kh5gg^hd?2G0Qof=Tu1%fRelt~ zB=@S#eJMGu`K4H^s);^HuYmi{Oi_Qw^>x+P6n{Cg5n9z3;&ZbMX|>lM>@H9}q@L|< z`r1^NwKtoWx(UaBQu(eQ;l;}4_!UAhs&U4}}6>;Yx##c--9RNF6WJD*t5B4492gNoVU%=t<& z(D}H%xov$eYVi#P+BU6Zu<(TRXMkJyk|=0zqV-uyxAV`^mffR-?|T%f+WUzW$yz(j z0HE+h-5Tb|KBuOhG85`i=(iPy%7f}rqhP!lQ+6}bQ)$ts200EkY(@n-3-K8radfVh z&f~T_8R|}nVCgj@X4AYQSQV+oD;#uq;~jT{5s^dDjzOZdN|+*wyxn(QQ}Gb#k;!)I z3;HsTw$C-vK~L<*U3(5`5f@0>i-(Gu9WHkDs-3B(u`ptb@TJSr#eA(A3OjMl0C(C& zS4xZZ*!X?}kG-DHm}eJ7|VS^K{vgeq#6%KrCwZD^G_s@7qEe|AueX7 zr_(bmh471TM19`kO-EED;q^$-AUX^(GG*THf>$P$zxGJ<1uxtDRq4lX+I#51f*s01 zaKr$|O5Pd{Q!bAkXQ^DLh*rTJF1DS!wZaSJfL^;;@6)E`D4i=Gm-U&kZ2`Oa=k&{y zuy&M;!X#pOG*eeImq@LjdvIG;_cToSpT0V=aq}juBfB?t66*_Sd+-OfgO=A2)5scJ zapIoR0rMuS@3Fz8f=h_)aOlG+A%2uUlU2~K z&;O3;%F2TMI-eCwz4XBi3@Q`zniaOaTz<#Hb zZ_Ry}0NRn|F|mCW6Q*q^E}ifbP&&A8U;U#>sqD#dVqZAy-ss-mQZO9GoxIUV$tyzk zEl!@Rtv08={t^ztRW3cBlU_m-_BHkCaVE{DHel;t!Pa0{g-_L3;RM-3z;;p0sJnj5 z-hQe1Y3F#?pxx@o7TD{t_fl<+)H3ivSczJ6pS4|R@Bg3G2Tb(qEz_u5ea|M-Rc@Z+ zNTg1*2(b$2^&GDrqNHcXk_FVk$WTVCnaoDMj`0@7I;fGeF52kPUY)4*j^j|6z2h^+sYl?WZe02|ekacf@OQ8~w_e9AE*#+5*NpT(QsDpU;Eq$5iWJrVyD8fqO-xm|9>&Vvl5NII`BTiK>}$XNzPa7da*bC z2*yfLphl>fsPjGgxoF4vAXBCfPp0cQirOy(--`8L!5MJOTP@dr4s-L&^x^pA+eaJ=?MR9SI&>@*VIwUkn-x2n@rS72x9+FMxG#i`%x4$5!N{ zAA?!__up(=xKy)xMLdeczAA*QwP#@n* zldcii(AxLkovD|x3K_>(-$&?_FHKjF^zA~ehEM3lb&DSTIRL1GW=mx$W>|+4Ln0tf3WdsdA}q3aCJ&cbMqzmN4L$*%`5)~{CopN zawp)JjE=!+(R{fYh%lEt)C%K4iRybwuUd9d)f*?qmLGAdeDcvXU&tR1Qhcoy|E8G= zb)iwY#+}1l>ySJ={m}X-S#S$H{XCFM%7%hX=nRB$gKKbNXtVr;Qmv4}ooBI=u zc_q*@ez;==BRHMVs~f zUGgevF}M12Zb{+hlF{aEYYjgiyERD#xs0((oy(~GKiH%EBWerovX6+dcmDT(oi%{HpgnrP4*?M1uurig zPu2JKyZwB2OCd}Ngd#Lzr%mO?md<}K=wz)qE})UTsYbGlC#FRDrg2i7 z7H;12y$x2*6!WDH*G6w{?tJ-UIBPUpttP9;2k+-pRF5tPJJpRsKRDK(UVeUgm zUZDJA1QNTAjea&;%KnW0ZAi1KlIV;R<+ic|q8KUXFl=4JV9wO;8V2sAySjR(n=y3e ztEb0h_#hJM^?mPfs~ErH;vZODG*RYkJFC&4ie70gl>Gzo|3Cmcyb~|DK=}mt$;3Ur z{1%h2l)=!+md~}l7xt-vOiGTPk_$X8f-CMy%f{(}K_r=Z#{WyQ^q&5aEUDv!eZez# zBoE$ejitYW$$hp?+^}SnS?K#16Fnk1w-=0w?7zHe1vS(%P@Y{b7L$9hph8ERQtRQ5 z_8q^M3zSn&qmFltVan$xuVg7<;PrTGkd4Q#J9%H^O*;D^C|sv_^z%xAqUCp4jeSrD zQ%q)}Szqkf1qt%wBQy%T-A2j2R9XrS92;PeX0{1Rujr8%e`>Ay`g)_d>EZ$N<}G3Y zvZKF7L_S)DGP2P3P?B$!W2f%OV=Pm`nF#t#VHxQ-uPvpa+D?q%??iq-( z#umlG=h;6X4D8%4!UBkayb@VZhEm z5_Q^?W=q%r_iXi(I_uce;H~)H=9PA(UP-p#?p+9lH#}a?cK8cjcII`dm1bCj+mdm8 zRXp^DqY=UC==Od&z%mVSdy^hy;gVq?2LsE}eX45Ac_jQ*=M>25@7{CeUwZjY`>ki;%5 zjvi!2t9bWhaQyTXT_d~XTV>9XZa@0Pp_gI=4r@S6jcERHumu!UV^SNu(|8X@ZqstJqYFrdkC-)CI!t&KBq9}r|EEo(h zf6zUjlAaP4VEvNvr;*(Xv(}wusVPzA=EF6W#?0mTSL4+)ex^stq{k+*NJxAt-ielc z{#sfdlSPfJ8r6j1F|O%5{s!gG2h|I~vt-WNs;UrhUO6a8;r~7+e=|=@;GK5r0YMN4 z;|+2wllQ|ye#?fV+Frp=H#A~P{$*x;#k==;tdFp_{<8t)OLu`{q0~@^!;puqtLuAi z>tgQ9&i#uh=5TC+e(apfh7lmWFx?xMvR|v?IHSMdX(Lb!c{{x1N;h{ndS3Q}c0=zM zjpKVK1z!_YEZx(hJCd2UJXBH?0Rr+}QNM`bAI=@G`kZimXA4&-M69pcgMY0YWzZ9* zJF`wK``0(VzbjKgqZ~h+<2L@RJRe&?#dAZm3K>24#@KfPP1u_ZEOhx&h&oA`32}h0*E#l z9}XrAZQT-&mK-6KkM;2fbfR=BE?xmZq07-c3jkD&I4lWcwsXq5ymn>+=j2* z1Z#xoNA10LR^hI}TzS=hLi zi3}|@43JZnPT;qyB@glY^JjMJmtz&;RXvWSS80CdUu|;zp1)Ed+&|}`aPp1ihtpto z5FQ-YcuSk&=@Sx5y8XrA>;JdJJ;pQA+=PysVHhthB}cv-Y%^^daT8z7m{Nki+;_5AHEt-}Jz83pBdDIbA!zeeAIcc$LHMaj>hIcs@pWxR3M3)4F5aGJH7X z{Pj`laXe%g20;VF1CUrqChnRW&nHL`*xe*&WVkjo>f+K<$+;htexmsPHnUbX1gu|}8o&~VpP2_)-ni3(D8s)TaAbCswjJclLm! z7s^Z_Jsp4@8u8;aDf z!$YwE#gBJK4{mDHU&Y=#2ImoMk7fOB^dXe{pPX;KeoXmogNcl3g%NZ$Y?e=-S_x$P z8P+pXc;=sC9G3g`Mjy177ly>?@)UU=S`p>_&p%tSwmm}PT2_7w#a>XhM%V*|)$B~> zOwq=5Mt2z{2FuMBZgIWu4)r8dc{TeI+m_DNkI4@ul&j+>R_a$U^YeM4xf+%y9!&ba zQgdq0zh)tIXTnzzcU)3^{gpwUnAh*#GEK1U4V@e~+|t|MlDLvyJ#25VXrdp`bpTZh z5aC@c_--t_^lkeh>+k&YMFBM?r>x3$!p0jSLKN{~mVO^Ulw1uiA|Yb3u=82Y0qku=oH_a+?!Hm!!P?GS88S1dNF|Y8#e( zOezHI&kJDhYs_I-XIu#Ep7dJF1de~e^fB65EI<|EOks{Ldsb#k>{vm|*95W$x*eL` z67?OvePK&x#}=62m{-4J{fqFz3cDq^qeld)wS6R4EaBZ4dgd@elw+)9Po_%%(R3m8 zeh`#NC$un=-6eR?wfSo$+z9SwtS>vrIQjc_58|Ch^swv-h}Ss0dpI8M=%9tXj+?*U zI@`ZFl>Ik6S=uf9Fts*Qc3tvlFcO~rcRt&Yv^u3{e4aR>5R^F$6 z!G_hWNk%z7MmNh*T~nhRLsZ_JS|gQP!Ze+JMLfE7?)Mq}xwO!=vhqVke;MI4clZ#B zr{16QizB{TuYMi7ybIOW%GK|KQhHh*w`{xZuCP&&!OB~<`O}I9YQcA({ddD283%K+ zot#~KVi&T8qQ$)7$%0)-g@W!K-wGk_Z`TF3UIEvwLP{Z<`z#0nD8o9O?vxhp4-pCW zTQ1&`-E)<=$KV*fWQfUwV)~nlo$Bgb7E=@X*Y6gHUHJ-ywi)J#eRmD-{R#v+*_7sB z)`6$S?J|9`OMNrGcHPNI&N@$N-_EwQ96BI6Vr)vOYggLFV3DKBM|8Z{)&K6}eVar_ zd6tra{l?cep(T-{Fdsps){>1CcW-a!Uw?VioVKb0$BH0_A4r)>HEi(PV&1VJq!~`| zq#_gGi@EzWKRlmq?=*;{Zk=e?AD?6)k5h~>*CH{`aC{3WaCsK&PgQC?*qyv>_Mt2H zhI*fr!1-+4v>v|49CcCnGMg$#XNo%0hH@DH5#0}p(AsDz!aP+AiUhHGJJ1D-F>tibU zy>zs631$m>7ouV9KdLLMc5hLJQ>)_&iomE-W)JRnpIi9m{L$g(&qjGA;Z4g(axD@q zXl}4*{#O2`BIL@|_2H#g^H8T#_RE}NM0q~}JJb24UA0YLmP~NqtUBu3KXT{GTqk>J zQ`?+weqkBM{MN`o;Z94rW=C5#U)nv6-8z}OeZcI={>Q0JCGB?+cN-@nFV0fOd@?xBN1Xw?Rho1NJ^pQT(W<1`T@z zr=ty3fYWSZA+|9G`_l*=U*LFUv)eJPZTco?ZeTGV|7?cvN+>gBSI}c}@5qzUxDU*= zwaPX{H5zWXfX34Y3z$2beSZ@E0}o51UP9Q~Fi>gMU%pVO#gfKrwZxVaxQOLG%h_JA zc^hw`pqQ~u0(kXd0!dmp0(XIm*=`@x|CUEe$AwY1Cd9_Wy|;cXK3(5-P<+zusK9ro zqc~z&r-K~#4!zU?$qNPVvt1~NKWBmkUdzsro_uVB{c3P)6R5jIC7Wz7mFuGY;;|XS z661eQ8$>4L@q1;VFy9yCu2;&`VyKgQi4|>p=Ym^Vh~y{5A^Ii9n_k;@_fr*#Hig>R z?pt9eCJsjvt;hQNlPu;d0tDsA9?0>K;5dJD7f%MvU40*p)gw3 z&@_Jcx4_$COy8@NuVi&ksKNi};_qb;vnZbxo_Ny5O6>`%57weOoRnkjT|_bS@elM2 z0P%3>o2|FH-9ptB5%$C=n|5^Qo;Dd9oxm55g^>B}G)IPh#C$Mxos>-B1Ad!o0UV`*_;q?KXylzowf*7j=-m$D}bhWFMZMy4vjcN@~2gZ34%GLHyqUNufHBEZB*rj3@8Vhe>!{JCjF&2Ed}V$NQ>8-wePm-7&B z`b2o^;c&_`_*k0M0!pszX zK1Jhe)PFFy=@aoECiNF$AWz? z^HaCkBD*c~EZAP>=8YXX7VDMo_*R)dRh6%dj{)HhooiYLjti2g;G|X9yVRrQzD7s- z;rzvT?yIz`Fz&}nafiY(JgMVP!d4*S*0L|K1)E z%%U#LTVLQvStFGtW>8t(1l1F)@>A3k?P#xdy;{Oqyu8den<||3I^8(QGt2WG&0SpN zgJs<*irH1ibCH>-k*@KF75jFhe7%ZN=gSPMYc0uN)lpY0pxNf1n-n>T^rELb3*TcP zaQ^tGH1o5(vcZpKruNu>wFXe(mbEIu*MLM1=6BnqkOugP$Ww&~zR3?wKKTljY1jNk z(hOYeBj?1iYIA}60n3dm9W}-^y4hDRj9AEfQZw1U91VKEQJQPtj@r)fKa8E=WeUM6 zUN(CqTKv0mb}_iu@VL77=D0voe%v3HTn$P(MK0JtWo1ZX0vO;T+JGhlN3~wO>I}|5HVSh3@$+>3EuG)oOQ*%F1jo zpGtXKGVoC-yTW~Y(_*~S3S#54^LKqeXOH3<>aNLe19d*JDDSvt2GCtI4lZw(94i`; zG##MD;h=b_JhS188gxHWi8N_N{AQ-0@iKn{dSyGMC=++~!@G{AQkP?aLl znOVZ;(bqhhgSe|L$LbX*zhSJSb(gR*4-cbqN3_f+glqL0OA{krvG%-jy%x8DE>D`~ zz8br__@ac=)CG&Gmx)@)cH-g5>7R$Mt8w|o>#l<%GYv}W%WWpvq7Qq%$EexCHa{WR z=PJJ#OY5WTt!H5%84wzW?B9HJpSC(DoO?bM$=^t(GfpHwYjZmm*xjFJxAk^!zZgTo z<3yO^L@svvm>5!~tfdjIOJ<;Z-msa~s^I*jG8e{shg|RR;03RCO?BfmXxYu^`E^=y z@#IJdSmu7+)aE~Dxr;Tk=C43k**Ko6qu`Jj{kwH(MSguoIpJ;-!_4{3TE~A}cKW5iV(H*IjsZ_DYQQ(z5I6FpdQMcpUQ3f z^QM7h0t@W3FL>(JOXt7AVM-`l^kGx2vfo`$6nH7OAFw4FvqfHzB>8@=PBc`M%P@^I z#1^+Vxf520SK5U=3`aNp=H;%%rPG|-0snE`E_vOZwmMzr-8`nu?@w-Z&NKq3zJ6wa z2q19L*b9x_m;$t&YtIX;?yVe3*CYkP`WxV)_un1VHQ@CExcQWSZNcNl+v%PemTelI zadiLO`Za}<$rISfZ3;#I9!ly)J-A%oa&~9;z*wO9bh4cYePt48v$*WKTfdwhYT&h> zF0Ca>s4A+T&s*{3eH?}2Wc@b&N2chhpOR0xCnFnMLQ7qhR7{E%f0w=4Zx1ZZoi>>S zpr6*rJcKmmY+kOZytn&%H%(QQwX#}hbft@?wXPEW&2N5Wwa7EBisxKko<0hXbxJ+h z50!B~JCWG*eK>iRKJ+2_xnT%%eE1PN)4Vs zAsdI}{*N!ZLcM!8@UyvfpA+U({+Ws~8**&``29uUR9+7L`Bheh)_r@@OM5e^7v(Kp zFNcP)0vx#TxBVOQ%krFL6^pEpA}uL*0!soD-#tQ|V2=mg`j8((zrW|)mtt#Z1$p$1 znNC6$Nk5YbVYecvnZeS^JI=B{0qci1?|h9QQ#P@dJ3@OClOB&{^wYkv?PDz+beW`E z$R^$h3hPEd4G@V;Pp)apXv{`1&i4DTIeWqDK7W4ndf;ZXvDS=%BtxKC)A-752h002 zO0XQ}8q@$+UFAm9$2^$#R4IYv zA{5$6zw!c5bEY*zdU4{=W2Q6r{8iYstylWF*|6g`s~IT%tlt>tKFw;9nK^`jtCg%4 z|J$ngR_qUeTMNa>>&?JQ>FfMAEAhc_N?T#i)@{fdwCwt~YqYHMB}fA{+^oq=q_YK$p$jt!p{ca=sa# zdKd?C3%RROzIN=!qvoW8eUOe7=v~LG(hzsad}F2d2N?Pwk%Vq9Ya}8qw?P4j7UO5c zr3=h34A0o4RX+`c(_mWg0|Vcghn{-a3@}0sP)=$1<>M___u%9gHBmY(%ym0-w z;A1(i15fIz%kDxf~Ve+j&#m93R;^r8p*yja+Fj@ z;620A{ z&xk^nv2HxkI^?H|N%<&+ttLpDZ_wSduI;ni*5U|!HAeK?wokJP)<|hbL5uG0K8KlN z9T)L2r4K}$!cZd($xb##O1W67c!{Myom!rI!WKPfZw4c}$* zm8<~zcl$j?B<6B<JALT9L2hkkCiS{0x^o$VA@uo529`p(M zn%!lLp-iIAmouvTs7s1fS$8UP60Uyjt8|l(T$c9QZ^vI|KNS(c>^?W$3);xjZS`yW z6L^P!y=JtD6-Rl5t*`WocadXtpR9YT4v$~+Z6y2ix-h+*K)^lxo9MpkCjP5B*XbL} zcBy;RPq%h=?_$#^;7bIFQNs+)X=znN?DJN++1+Zv4V(FxGu5Y9CJS&DgL*eepCsIL z=$U3YwVJm)g1_h8k-KC<84vAga_1tcKqDAoR*Dsee>H*LM5&71T$rBWhZ+U^B(RW$ z1eZDneWreeu>l0+Tj2~cP@l-zth3V&z!`pbm88izMaMsbDFq zXk<#o8|Vk30tm`Gum0?(%NY*U@g+uvCvg_}|Y6BZOB*K{*g5_Knij#OqqpTYpRL**bXYBUS({nnU)|73* z75qgQ6z>nmJ6meNkb|w`c&w{Cv8Uqs@!STZ*vaxmAhG*{`r6SD*LMwEe9GaXc!vx5;t$Nh9CVACCXt4KvOxr@<7{%hKKvESJKzItL1OaV$sW5n*ZRw?T$ zA*S1v3?!NsNbABxwxP!9EA8S9H zp7}^X&WPS2X>L;pI8k zES^l~$FO$_*wjf=J_hSc-AR|St-P1^ToJW_0#SZQ!P`cNzHB@DzCdS=2b|$MA;T0^ zf|ji)uyolSYJ#m+ZJVEtpzmEqKPPH2_3ax1W4V>!_H#M;yO^IJ*tRkHKT%uv+J7>+ z|IQ*n(pj%ZmFefE5o)$!~`4ch^p{=2+*9s21c&`zcPe#{~Fe67gIz(dAj^YSQ`em?#k*)vq9B z_MfI=aVygqJtRMiLDBk7>JXjvptycs(TEctkZO`N>@8xnX_%MyAUBxI7U5j|F)n^u zvWIZkaB%OaL$=;3_aspK-{L2mPgpe`j)i4HElvlI7atfL94H=`9n5J;evaYp@jTe# zAn6USG9_lfQ&3&$eb7Z~jR8)}&ZNfA#kZ1&%|dCZBf3F$0UQIvF7EWa5V>2olaIA2 z9}URD&XX<5GoZ#_Vx{RQLvFh4k(kd5hvqEn&tPA>BJR~+PdT~8+z}!`aTQgs47~f1 zP|}>q)wS67aOAm*+c9gHaNTt+{?=)E)gXxyE4uzd*%rW^akZrnisdEu{MkF!Pa((R6F%Z3C z<2I$q!X{t$ekWjLTg?$Zo4EETynDegI5m2@aPKuQ9(BO&UXp3b)Kojsxf}p3SJr^5MC2mD$OQd}+)Tfcs0X=KE-tmq zJ6R*8s}L|%Qu2K04Ahf6$5_{Fa4I&~!U;!}JGr~*+Ug(eDins*@u(Q1%8fk_#KuX% zgVrf@ zuH5=E;&U_4ZU%KNIVlAwgNLyk57WX~n0pb^gh@}o&sJP<>eM*qO}oyp2uZNlCo}&# zpIBP94mXzGFaGn^XY01fFfzNjTDBsdcDa@*C|}6#o30-g@MEMC$+!siJF^B;Uvd+k!_4GMu;rRVG zdM?x=+}+nLv`NqH$d5p+F>F6`*?)=UH@)HFQF)B*^774~TAA>f%Q$*vl+3$D-MNIs3f_Y(ekc@fh_`{DP+iFjvPjOjHBsy)GjW_9Ys z&j?fEY=LPl4+eru*0%I5&BK?0v|h~N)QRH8R+&F+?^jpD{1o};sk_&w10pfXFuzOG zU0we_07pT%zW3u+Y(=u)oyVwMc2ZI3-vEBDHn%(CGn|Rz*bP5;I4)~GjWqs~@xC$e z&YL%{w5_e}rG*O@K09a5oDZzvB+0BZ0#t=zaD{bFAZ8HRH96TC$ji+#t%;hJROD7q z&boqc@~3o~UxL#^4#M>Gk+g>%P+96ffj!82*q$D;}2ULOF9{6G{H0O0p{sxwrj zX4a^BTsBE(f>xIoxat~TH@5{rTWmCr@DFQ>oGKduuLsL!PQ=`C!v+kgC_-sY5Q-qt z;E^zR#Ve^RmCrF%g(1st&8mg8|8*=I6EJv5cbh~q zjvYP#U_|P*SI@+f#n%0XzCKOL^!oF*9UotO=lU$AH~j1KTN|+U%hx*C^XHf}nZ}0% z%w;0Je9h*$*IYg0GlS~|Tib}$UJZCG)9Y~6FDMRr^{%6}IDwkyr;=Ejf;lyi!>Ebv4Ito(8XJ!7Vv1%p@03XQ_&Q8A%@ z0Jgo|Rk>rw4qs7rX0$an1~0cVcD*uTb)&Iyo}NVpAP!tFR#?0%VQr#WZgkM+!0;jE zMYwQc%uAOvyln*LlC@e@nQ36n&d{5eo#{g=iUY))bAy~t-^W072g2&p!ePhzz%?bd zK?;e1Hx7eWFF^nA>gi)~#RU^Ft9f|h4qc*c{Mx_YZgov>WAKVBz9oy#!$pf);rA;J z193b_4vQUz=+_{+&vG7oOGM*?9Qo2rsWi?3w6o}AML6D1$=XBwJb&`d<>f!T^#+U| z;pEq-eZ2`7viy4lv~sd(q)Xcc8v%fC0N^K$zMUwq2+;r@V!^Q;P_rGUt{6(wbzgE8@{7w_EhvOs^zc;7x>yp><`o(%e4RUWQ@VwHS-J zeDg6GR=L`;awaCMG=r#mR0V#Y7s&=j<3w?^{E`Rr_BHoMIcfYyf&g3tpc_CRfJN_Z zbNV02i?5zzD2j45fDxQ?cs!oV0IYkj+jJ%%PEwN8l(B=cV9F>|R2E5tS{V?>ZE_06*TZdT>rIaP)K!_H-UaC>)U*KGH}X^XJbW#u(cKpr)^{uk?{e9yxrrWzL;Dw@6Wx z^N46RfMx)Lpua$`a?bw%;GQj8w(LCHdd?Qh*8HyNL{DFCR={b)ngGyOP~sJ#S@$m-0|b>xJ(Fn2_B3NdDx&6AUf z9SHb+Jv}FF4Wx%4-1HT9tvBa5WZMu|6(t41$~4mGUqqZ8zXMF77nTqbW~$g9mlx&w z0AO6hKs@72XR-zo^huTvZ`rzymvd0VJvS}-igAnq(!RGZ6pkD3!vUf3sRWH?EIwIu z$AOMj6S4-ZsxK?TKi_yer6yUBB!joxrz$Mk<4hPg1n(R@0l-xj#sbD-edjB$zysZY zV?u3R^&L&q_CdB`=LQYE_8C0qxNzI<&Pf@4N3N=`uXkuQD~ggcdC~~;cUR}pA1Rz8 zVjJi*Mr0@@5ocj8^u6LU`N+C0^qIOs7&fq9)*U#Sz~f4=@tYB%&}D0|mbkAeY} zMd&zm)PFQ?E0TmJJm0iuNg6Sf0N4OP3~c!y$D-=jh1&f2^XIg+we_{Nwe>N^b{NOK zUhg5}_`-z?$H?-A!{J{6cmu%8MD&~fF8|$v<}yTn|Fc(Oc1uG-cY4tcAxWtsFt2B& zP(bX2ESMP)=FA@JIA$QjE08?ogheT2gcJ_c3JDygj2|C&m;fj42p+(=7DY)4~W z-Sf`EoU9DglofyjVE`CXS&YKmEd2J{?eKUK2jDEp4dRN)&VW{$rac!FD4@P1%8EzQ zSvY<;f&o9y8&QkaA(9}eoXlAPXA%Q%g4rYi$j{QH3kwT!%$JTBIf%?|?^)3A!_288 z!30CKU1GYSx*Ux)5{csEA)lPc?;UfSuqML^NW^B)?ApXap&GaAljz_e6lLr7hhUa} zmcrGal@(?CMpTtL*v_slZk&S=x406u4z0nwu|qMvLEr38OEjDvrcIlswzak0${2eE zKt13LMtLS!ym)brs;Y;GXaj&F9*^gOrlzLsrlzJKfF(pU6~J2y7cRW5Kk7SEtX{pE zf!MRJALvXvKm~C&R#g?pIM7W*i`TFBE?=|h%Pa2MGIZjbCW5F^`3|o;*W^J`OHyuD9+6Sv-U4z6{hYwyyFDbAZ)JFpZVxmfpPm^Q*eT#A(!)yTDvMbjGwVL)Nlt@iY(a>xx=+-#>JK7hHWZRQ84X?&OfBqG0-P!dC@wiKa(hKP{ z&Kk?sZC<*3&Bj^A??@yu+mb2C2fK_RIfG+vrZd)~W$=kpGbfy|9rzV-e0k{|51EsH zZu6edI6?rh@14UV)t2^evF7&AA^~n%`#>>4H1MXt;FVm#io3R$`sd;xCA(oHIeg=t zTh9O7{g3_6GjDgrWN=t=_d6D*Ip?1w zqVFWq;9YUo#*s_cZu;IWcdpMOhF<3-@~HqWIpxiZ84(YdiKXG|LU^(h(s+gVznU&pEq&&SK5;#O^QMf%W(6hE001BWNklonDWEih>-x-F3`7cCxp3@MCv>3JO#3qd)#r z>kh@n$pK~g7+qJDbhL!$-aK?~cc`!D@t5Aho{l4q`}o&;ox!y2h_@ayzzC?Y$u>j- zwB-Y<8L(QDv9jY1TSS)iept}pV9YrUb8F}IGxQ*-C%R)B({>iL$_PP$5vaDVw7Ezp ze1~0(C(@%#G@2G>XQK1?spPiw0Vs0$E7vNG$h~1r^K!09tuW%DqQV>u9bDPE=CfA? zaiXBnnu4bs8JboU;<>v!Q*E*ML2!+m3(dGvJBfC_Y*1yv zten+b(b7H?Pv7yHVY=g-D;qce{k4l1Ib`G9U}f(_!o;249y%nKLm+6J_h7=x0)QUS z^vGt`cRJ!$prkQEr%r;ALE-cyY&zxf+V$J-w&Ppt|KvEHjQ4??bV$R1QUDk!JC{n2 z$PLK@!WW}8eG?23Nv#|JmaW-%11J9SJvU$UPvS6roZ>NfuU?=lD7@0qk!id>j4_%s zb|~IF6np&{BalQWqc;P;{?4bCVC}E}j2~|Ni)Oz>igzb%`ifkWNiWFfZ>zudgt8h4 zgVW~#pf?oC^Qwx4Xm`WH$$A?Y|1N<4i#5twq}#JhBaL_v$uZa7@jwAM|B+}1>Nkl7 z`?82TCy=t4T5eEc;7t;Y#sco30B3 z_x<(Noj;y3Y@lB6S}Y2 z{@%y^hxhFM$8#^dIqKj$_;CbS8f`0?-B7pRx|!coPVh$iW0}WB6wB6Z`i!RGe+fW{ ze5b+jh?{|S&9DCaDW!E)OXR8BZ;_`k8!v@*bwMGq3ynloq;9x#qq$%{)zkA6A^Jvbi4&*IQ-(x?8fL^}aSEla&B=L#orZ1As>vN>J(JqU zX`IJ&zaqW#{98w=AKChH-ka}qInq}~0ItD+;{0zejw&DO573<#LUe-cUo z{1!kffSmv?1aJ?4aqnfL&Lz^0zx@n~PEslha&Yqntr%NdfqTEcG;SVoO)7TtKEKyw ztj4Vq{2k+Ok1s~uAR^@E#t#Ulr*o^rVd0H4syk1;vG>p@02bq}JY@_wESii=zZbJc z)$0p+J2ORq!JIU}!J$Ou@Pe6M$H2Y3Z4yRSCydho08mwSeK6p^Y2o5QP|mO5z8T~#qQkk{k1!&qb$SWF|3WPG<2=72H{XKTCISHlsMjZFw5;Kt%r_qMw~Oabj>J64`Pt>WD-l|0g?s_uY4g zIM?M50NjE1$PH+J+3Svam#*D>&GNOI?peKhH4BBp8TRu&pGUg+vi|qa7j+yy?yzQZ z#*6L8l-Bke6tA~K$~Li0y~i{T!ieE9={0e2e_Q({6AE(l{@y-b$(Tb)fol|Tb?J2v zHl_f7i2kYR?Mb=%@!}7SF|xbECkBO}!W`TyOL9N{$!q2y+vszcyg!k_5^BWq0(8H-iBg6EKZ5Qi0dU9oEzcPppCC-k--nj9JGiDWlYR$Rn9&i{Nqk zaPFeB-cVawY)IR|HW!XWbS9_Y>w(9kVCaxa+`Q&N*FKpMJ^=uSPoBQcIHn|!C9^it z`Q0kQm~JH>oy8~a!rrvQ(;XW)Ed9MeVp4mL&nqs@8#Q;%I50)I!fcsPzCExk=x1yDr#&ph5b@4^5pC2jFVFrNCqbC}{`OOJ0%H_6M0z@+#gEuU}5=Js5&0&49 z)@7$k!0TyQ<%klzZ01CC2|LV2c8{X;!N&U4jn+}d6fwEv1yTz*0mR-LwAQKtcJ+^1K?4tul(p}utvkhUA(D{L#m2Dd;MH|?)$$%Nr@%qo2|Ok zR-SH}jhs`wuFhbji280xVd>i6O+Zv0WN>*Qw(ahG?Eb%Q{aR07UxJ)M+W;_|8|Uqx zzXk)!@{t?Nz^!Y3hf#y8a)0#8j`=&P3;%#U?qgTLrV~ysI*^VwxDutEH!UeQ;pj^y zc9C&EDxN3-^!GPwan7N+1q%_7 zj0P`({~ACnP^XLclpXnb*_J*vi8mPjAT5 zj!-xf1^}N|#l-PLQD0Y%5F+&PZWQ@HlbD;`QsjC%bzJZGnivg&jM~ zdhKlDtlIAPi+c}`ifCHn=<33siN`}KGs1;gnaC_Q&mhjZabFAaf@G|ESPzjFRqF`! z_E`J3-aInwhdz&oYD@C)#(_?RqD~1 z6(umVI_q%5+6PM3-F)#O08m=mADnl?_wko|J`Vs`wszA40PO|vk61mLL-^v-)=>a} z&s=-H85}$4_u<$nt52;l>GF7#5^zq^9b*Y@yk}F8_2Dy6>E0hLU%1n}#7O)gcxim7 zunoXf0CvCE4SBbaCWiGhc+@JItoBh}UKVn*1n*PZ+8|(?drP%$HTVEb1E=dfs%oy- z1`SM38`ZU~wz_6C)>|mEBLtRYDvTPV*ek7Cw`@$~AY|AUoa06f{iyNx=^pDM*dD}8 z6Gjzcas%&~fZP7>PspqY;|5jY6PL{d04!Y4a>eAyBkyyxDNbYj9*^a{8B$SXY9lhT zFB=mx(2`-18}NC&Lr9D^3JXOR1x$T83kXlTo23r6ckgY|W-Rr)?$7+_X-L&zh zwZE$|4^nh9hRD)+j~Q5jih`Kbr|iqH&+QBI^z<{%YqYkXyR&T#Wcs~QcUA5t(LgTJ z1UmGAN4S|eSpl3sdN3x`55SHcJEUF-0KlM_y0&vh4*`IgvqufOw9sYY=*ll9W_gbW zl$E=SfzL!93{CR5o8{^}rOziam0DIm! zTngCUgE$>-QC=2?)y5raaLbwv=6pp_8J>V`6HPitAkBUB0^+Mc%yV;#SMf6-jP7*?oD9 z8O2N`3ViRjJ~Cr%Xj{r*xS+RQnB za^b>-cduT(`hC3)^mr6BjHp5NfMO>L--i8NCxc2$`!h;&`{l{k;Czc^?{#LD4@>WS zSk7>f;EgxlFc&k1#<&|Y^>vS>ABjW^1Fy&2)Fj2Bw(aix z*0wzzS8z_52GK{9N9+|cXkNvGX{%!kqEoSjz}&I*wX;UmWAd^L z*JzWXRZnU!S0}BKYI|NeWek3H+j9NdTH61JiL1=H02da5WE*dQP zgxOK~12YY*vJ*b9I~ggS@fXlnrDJLlpf+dN1Qn((#zIuzM{Ii zq`0Oy4<$KPnIFao5sA0#tNRXp3BaNVu^*cUdDQKcb4!Hj$-`=_Z4f@TzEH#mI5!Pl z$yo_Dpq}5;QU164zKGjDcNG927!07a#MRRk%hzn2Me*YS7=|$OCak#RJPau>!o>P2 zobu&;*)1a{?U4OgNpA3?7fy^x&WS;~+)QOU%O{53kp9yj?I*G`1JT7JB@84H@W)(X zC<$YEv;hEs*LEJ5EgqKj*$KTq06e|@jf()lVuMVO?e`T+>UJR~%gBIa|QHf7|T&aRW+HGa$HL!6jm{f#@EsbaX|f{7Sd zl3yI~deA<%60em z==$)%VDJ?H*Avml`@8%D2M*i^U>*@I+Pr!5AD?*QiSULE8~V0v+44&OD>>)OpMU=O zFZFl5{fWyjJrCoX>QP=+P?#v~D=+U{0$?Htze>6SNo*0Rv;hamC-HO{e@hjJrrYO- zqAUBU-o8vnJ^>Zw1yF5uhQeAHFo-OY4{hSAN+Nt0AVYSF16Gf`7^z`(B9DRVWQRG$ zdORhCzFC$mw$_nPq%}^Kpq`PwSidS>Q(-VO3&0n^=@%DH7_nrmyoDZ_Fjbl~+ zc++2MmEO*f+Pw1H0DxfZLP~RUasZ&JAO|8wyi$}>&t}{uMZ-R>S&fV?n8g@3S>#M0 ze`s8DAtwp3SfZEe4R{na;Is7oW?9krHNW}JO5A zw?;G!{6T*T#!H*{*UVA%xOiq0hzNeK2iH$`*Gp%DaoQuf?;IRi(YAP1#WFk9z|VLw z8_VWy-vvneB4}s%o}}@fgP=!k1%OY#SB>Z_%yDJ#vcAxbLBH1@@Op4*%Sgg_u_4Q(KU&D!h8Ahtmmr(8*mwzik#WZ{Ny z{c4>keZsjjiaLwxg10p4Yk*5HnvA(~#$j+>Wrd8f!in8rKjzXR(-4>!jE!mGP-ME& z+I|D(u5vJWwFq@5Ds@AGc^MHvKo|gO2bQ9wBoEzD@0NhygA5_)C8xx5Jga9za_$<2 z7qESfAYIxe(Qz7!J&Qpg#SJw{smqMNs!H<^4j%rdaPoTq*sR8SOsucM%u(iMwMWx1 zQ7k1VJ40X&%2uVR&!b1yR$yR>&blU!cJZ9w?*+hq`S-1FobQ(3vGs0~Mk0+UGvLDy zZ@nIMWyV}UenXkYDgfPnmFjiKisWY{(D~uQxzvZBH*elx=z)k1Y~H;25&L<+-~S`% zat&XfGiOdbkA-&+liJGxKn;7%cgQ1&$MC}L!;`k{?%es}uC7+`cwTN+azQpkFis;! zRHJ@S%p+h>jnn&4#yI5QAGvBl>r-WgxfnO3D)s?QXdjs4^O+4lda^q%^LOgx2F#c~ z+IG~*;;{Iod;KC^Y_g#f^bJ_P{iIck>6DC)&w zZ_)4$R+g6yZ*SE@N%nGtWb4qBi4|Q z^Enp==Ek5ceofr~Nidlx6s8C1RFa6wCwqMVe0k@pMEL-KxM<*wURUc%sit1=#4(G3 zH<|K9s9N`@ySsaxtn@U}_>drN;O%da-Z`hL_n8X%41x&}uDpCY3bQkV0MJlZi2+r` zqXD2{Knd!~3UJM|v5x$+Y|Pu*68YRN6@ylu)14j_#X3uBY;6T*H^vB2GJ~QqVPL{Y zJEE!-V+K~5{9%;H-$*!;oJ^9!7*xT17SLr7zOZyY{9XmiXE~&NEf6Or|G57v z4kK@NMgXeFP!?S?*|$4=g&VMKplYfTefU@GMPM0 zO-(;(YHB(v`!{;@=pi{dIf)Cg!8Tbo5%8(F<-+skt(em?VD!Lpl;vgP|9w*TZdF`j zaxg{?eQ5xwDb8orMR}OtG_0007`ow6Hg0?aulQ*N3WI4UpPjneSOb6qrmZF|7rD$EACov zd03Q$c2n(hv3Z&Mx{^Y}>niiln=%sf=8QvkpWftPMgX5*DM&PGi4C^4CRsb05v!%U zZ*CgAvUyKZo83}6PwIBUjOZpsb&-{!J!Moqz`3}=!ho0zP+9D~n4ysJ{edO<@I(#Y zoC})ol7+m_=kcW)XfG6YSCGoh$wc$`A?WQ3XS*h{gIig|C%JanrOyHyBwEYHjC@`m4*n$SmWl+n{RvKi6{D9x<^qIgAsf$B#&^zh7ElHHUWUw z>yu!>Qjl*GH4G1sL_buCmtU=deFs1MaenuJ+*glKrai*xTe9F zJZXe^uCT~C#u5N6#Nbt(Ny{}W^2Fi2dJ(o1n_)kaLz}wHr$@F7zd7(KNo{R3qSWFOrO2M_n z7^E_MUQBPO!?m*~A{cP4eM^!s>H)w7qlZ`wv+PBF!;eWrYcRCJD!mYJ2^wWz zjw*~|4Y1uzzinqmOU3Fu%v<0#|4YPB(U7If?`Wc0^drYy8Z&4~$IikN#C!4H)gwX80TEp zVTFY`h)BNK!DWSP;rN)B(|G$7$b=n`kunWag8km0_QxOo$WU@jtmB`-{--Cal-nQ_y|V< zHi$+A*ye;vc4sdp-)t2qgs`BqJtUd^I+?xhB^OMD&#T%b8dC3ZC)5u>Szb28_s|6@ z0Q5$mn@@@LujA`0v7l)fW<}>dq87CM4Xmjy!IhVtcjMr?_>9XtKy`2 zS8(LWi8%m3oPVY-oX{Q5u;QKstnynGrHSXDFYM}=pQ!~-Z`UWD58ZO-`YhIm!vHXI)Zj!-0|2NKSH=wFmVJS=XGt0#E~Kpn{ftjvJ}X!x z7*Nl}EO>ZjF?Jq0f{OA2TqJ1s8GWb3Yr}#>F8K!X&mv-|fijofbipMOfNo33^m`rB z0-}bgy?=Hvcm<>BoY6yY>~vhxSjyJr_7vafICUBA z2qkH-%E``fEpBQOdeHWFkugGHfjb-0YJ}$rC$%-jc{p!`!xo~OOd`PJ|NQst!HbHW z=K*jIMOMB?Ww>x+gF_=MjrTXEO`GNqhr^Ep=u{MCYLqRN6rO+nc~=cr0IvWT7U#Sa znZA>xX+Fy$b>7&aNpG%*IB&{GZ2W^XE}{h?VxP>-&BW9x4e&AMz5iETOB-tn?g5~8 zro#I^d*&FoVobR8nF)+d6E&hcWC;|7Wk_5Sn*n_TZN^BQ@N)aZ)*UM}W(UgaAee6N|ZWo{o-nb{$6m zBjeTupkYMJLvqI(`!B1v87o;ty~Li+coz1Bv3NJ9468w=&xdetavshsW(IW?HJ}aluRa&~x1}Zacd(^dUk{IKN^bFKpf3~wd6I9dWX!g@@p9(| zVc4#dExK+K!D6ts001BWNkl~c27@FHUJRO9=CKvw1aaF&Uw?~#fy~<8#eS? zaN<TynZ^pDSc{$ul- zohOZaAQS~N&^o#vUX`(MR8Ccivk7USC_5ALE}emcdpocL02ewNbCXFJbiArY5sh&3 z<+@_Q=-LXra-hR9MOO^gY)}>Zhcy7ubGr8j3ebq`&IjGv#0WXzhz3<*$Vq}Uvu#h; zw~6x(zUT0p0IrV)64l$n7-}nv@SAV1y!FuWRiAxq+m2uS&(*WVAfPXcWhr4&OjDuN zROzVKt0-t1TCGMn{tLj3xt>hZvh0nz>SbjHFm?Dq^oGN@*Ep#GP@K_d#7I2PeuRaZUT>zy9^=mI>pAIMV4Qb0{tCPjb#ng9%)YK|8dQmGR^1w-5G9c|dXo-cMeAzQee1 zwjiREU0)OJo}UTC0C}kxnOsRoXMl?0JT#1zzn_5h8MQVH!ZWYCu9HlRs&;C(ji@Za z_T2}tcYoJ~k}Rk$%0)OFp1WxNM8`Q*VQJ&;2MlxP&h@FP`UC*Kq9~0UH*P%oUbjh! zWH5~)mUYM=cS*LmAixo*QJRj&7$^6CbNMiU|7hEuL$5auDE?c#d~RK1#O;L8l*gWV zxk_?cIwtSk-}OaO=*bh^y$(;8V8DG7bmsI%ghG*-Vr%;1xZJ<|;_ht#1=NYROo0Xk zMDzI-NH$Dz4HiWG}Phcx8F&aCnwX7W2btA%SnEG zm^*ebGF&`~L|6m317&3eC@s##*6nYZLG8LvrM8(I3Wwnl;^DshGWUkjWvNfBm)XX> zjw2`RJB3yaUI3x6V_Y>0sVghMpc4Jx?GJaF334(6usf>|=#I&w>%~H@2M2O9{nF8x zfX@Q>oa9s*?-EX*K3!lKUBcn;F}HL?bVQivWC3tZd(IIHDi~(|Fhe-;@{|b2!0}l? z4=nuruKmeQQe(zbNOpx}23~MnaQ^t^@!P|(WXc#UnKA}IZ@%$aCY1LgVD8vq$jR{G zzgAs>OE-KKnkJ3|*8I=z-=EQX>34c+r*|IeKat+@RlrNqwQvabMKqioijP4CAZ?5gvV? zJ&Zvh&xj6$vZ+*0NE^O%=6C?W+DD#_t;-ndmaX0VLoIyjt3Ub0-xCH>^>B^)pc}R` zvjRAJEEZQ-oQr8fdvbD|WU^_astTUjc}Uf?#EMxm5M#J#x>KU^!w!YfU}*Tpd)*EZ z9Jm8O+Q8e-NE>+HYn+9}OxDp(8d~$d((C-_m9rBkib5tQVS#OuLqwJ!a`xMCrUncd zhE^2C)y+FsAflvgI|He*aL*=Spj*xy!GMy=^`*)_j)!$$zSh-f%Q<&!7&H%# z8z;jR=Z&bv_T2|u+djUo3ghdlaQlh=HRh-B?ql)d#ev@5-oJ6qGl^*Q#*G_Kyw`04 zfIjbOqL44XPPy%UcMG>c(I{Vuke`(iv@=0Yo(R!k~^zAy;*SWsZJ965f$i`E&L~bsA3nq5!7=n;NO=*uPM%JBIyJC3 zAGIa&`GMF^7iDK+;*4?F`u0KehQi<+xO`CyuAMdxk39VnUO%GS!#GcEZjh1bw|K6E zv$`Y}V!^0kGePY?bksr_K7Ra^O_PEU)*LJ<2I$x4#&q_1;^+v;nwJ)8cwd5uObeCY z?{}rpbI#46kC8|u191$zqeqXfR}@7WWZ}@ELt~E~J&F@2&T6I6~RR_aO!m4F>$E z$PeP*`#Qvo@I=|Rxlx%gE(x**4)32{+Ve|K$h+h-*UnyY`}!x$Q;N*MYqTdIQbutK zgiKXcth-yXO*0I~4H+Z2i7WzGp$xh@TjLpYH1`9Z-~4TAY*h z{d+mTe*2!T9~kE>2HrU9h38-0J>7oH>mxR(w$vhjQ9r00JKo$MV?^67sJO)H?U!iX zk&~T)=2|_z-@QMzN}AiH;pzsJA; zcT*-cSbhfsevGNBd1L5+isyd(r)Qx_J_S2+GW7#QBGLxl_ZU}Baqhq+i;@z#{K5D-2Z`x@2kCg3&~?@Jn-Ma6 zu{nx;7q%oPxyfF#7+IZqfZnqO10m9n(m{i2D{%BwYHTl&DcxTN*81`o0V&z5>rdmZ zfw7Y4wtzmV>TiAi6ugJi_yD4Gt#e*%t_jYDoN4~4@8vA-i8*z~G3jTlM178F$hh@{e_ z@$?qQ)l~ujUf3CP2M!4a-rSr_ESNU|%Vv&;S5@(gUq6m+03eMM7z21*?~>k7NI2=< zj>ejD_&o~#v12bP$_ri7ohj{9pVR%kU17455-%8?GcD8oAKUdi& z>Q&+!$wT3YCBTwS%(fS#GbArs)av^Eip=svJ%w&`Nn3c|kI*!Y4EAPEPft>vemERI zz>=aU;}Lc5x1+eY7>c5toq?C21_EC6boYh-@aXd&nSVi3!Yrpl;qsoo@Ls=H=<|iE zc=he$1qUmF$9{SDgO;7EJqJ4LhSln9&S~R@4m^C~G=BcK7vk2H%uN)>5~7%|ocO(6 zcivbKBlOs0eGKV5U-VkIY_KL|76vnx0Kk+9!x!y26tl;(Xq-i{4JNC%JE90>90QQ4 zD9mzCq}OLL$O+db`R@0192sF4cwcz)?dw~IR$I=?41>ivSr(VKMY?wSwcGb}T`L|J z>*H}IAAO;aL-1B*3L7@0DrW2kFk!+F?09p(*+()EW;fP@i16sv*ByOlA|3faK=)?2 zq-7*3`~mFi>5iM;ULKJi7=3z!?!`K&G}fK#YE}dYn#83gd5*ws1~gNH*F&J#J0=>* z4etxvRSK+jCkUtlV7ZS5yn+IVLW%-}ksDoqmk9AgMvKJ^Dlf#yL6vywwO!zx zqatd&4tPCHE9bW0u1BAdUaNsowH3H(S`*$mdIB$OdlLYfM~- zHgDeifuq2QqWr1igB*BCrsouI(E~V*3XGT|(AozD$=WIz118qh^jp23zxsUq^e@k) zlt?|rf+rzMjb@#Z`I)s5(I<11<0oiTXEbtPD&r}4qX;>C-zdU|@E z;hcB-{r;(2wrp|C@Y~wjj%b>;c%6wS||q~_}8#@x^Jc`^D7+3ex4R)kR} z1Dtruaw`?(g{CW?7`Px2eMi0s#K8V=w%1Bqib(2G3-lW3UM zV3n`R$nat5noaZLmDgyO3yNAs;(76i-d`DB4=$V3h+q8bard^mo=M}q1QCgT;;yc7 zL=-TMT#Uut`45M~e^C^rO?GbIzJ1pmKYskOGij@VmWjhWEfa^~flW`b?$f8gluRBX z;Pu@HCXT9il3JeK)lt?L>D!;br|UUQ(<~E5d;gwopVx9i)9`9jQb3l+tv$luCfQV! zPcY`wxk8=d29D38_cfa6LKZDpjGv-u8W+noZEQjt6vlAn+-7|Aidh>@*4;IGI#C$F z2|c~tz$?8zm*Brns4R93r+fPv?B^9qJ^qK;2vHs)PC8ZMz3TC(N+cYzu&BKr6(EYq zArUtNfj_$Sb=bT3MD6x?6sR5#%JQ;t@r#vyw0G5}uAShpp zF--`vCfp7O!%p#%%$B!Ssw5X_v_4M>y!a09( z;lhPK96NUGO{-V0{*U^y11=1hvvHk&zk!f?5HkfpS$>S{bS@a4=MKrWl`)1U7nbRn zASW|%paeVmL-*EB*t5tVB>CJ6vorD5p{~RUQ-B-sifbHNKQgC-0Y6TpXaq>({egM& z=9Man@)!~I^!E0iZ{Mt3xNu>xr>Ey%ob#?oBr;>eh7E3loF2uDdh+hV=jov^;%_h{ z`?g;=VFWImFai%e^CI>gKAt#(0EH2dbuyFLK0JjHA{xhlqC5osa(hH&K{oFD+A{p* zwVk-MB^EnOl=j)N=it1YlH5wez}wm~3`b6#D$a{;q)w=-Lerp1j2uvg$N&BkPM+>w zXc;z$P?j6StWoty1SwNWKVf0$dW?-&jVp%_A1}z4MAep;FMlQuPZr6sWI>$tATGq< z^QsVKCo-ePgp)nJNzbQL8N25kZo)bOg1PC6B!j3Pu~CA3%u*QPf|e1|K$=-+U|>&Z z$QNoC8C?L7l@$OH%-~3+rPe?@S$-b|6j_fE1Jnf1g4ss(iU<)iY+JImnz&IU_FG<$f@NzrK1K|t zR8KHVZ~u)m#)+)jUxw|#|$|qd%Oji{K&)!L%s&+k{A&o zj?37gRk(aw6Am1GU#O#{k;Z$5el_qeSg@d;h#mr<64A#w=ilqk@(&z1a36qqL^OBv z=FOte%`e;9+VVK(cRv68^Lqi@)}QshU$Jof@WhG!lVBSaiIHWo^+7Rs7iDKAP87xa z!DxLpYi1L=pONre{4)g&-hN(E+6_$xJgU;K?^8~O4+j$%c*hJZk9$6i_XdihTn%6Z z=Nul7=Q056jB{;mZ5f>NtpI9?NK;kyL|dDbGF&vJ@Oe~Jm*(TVI5zUWaHK^1J*2)8FTedx`{bbm%{BwE zjV?{&RpJ7QKo;Y%0h#QPB?y-AX;zB zi%RmOLBM3}pEHG#bMd56D9X;neSdxyCwlb#2}7r~Cmc?CS5U@ejTca^-yzr)WC3X6 z!6Aoa8?&YkuSLTEr%V$8Xut5hl$)9exw*;D6YP-P^Pxiq6cpy`27zIfa)}MuNF4CV zjn~O)ai{U_W8=n+$J*N3P5=mU&IbT;jYCCI>N)2iqOBV?YnuVFC+;{dD^EPH|4lO?@%R$cSq%=$-CL?yV=dAXp_w*o6VaB z1Olcc1aL6Lwror>*ti$TRjzVVvm~qcTW03Gf7~|Z%-oqqbh$Pz^fb0&tn1~<$uz~b+Q``a$nYFPQ>F?0NAR7MD5$~$<|QhIkSnT>{a z^RW!|4BtMT;M5|e3mm?b4gYZ8?Vmh!*LAw-5~2v_3Z9TqMXwI(>9DZ+u&8MIHCwkG z3vbX_v}9=1R=H3|8jA_Cpb2yH{VP|-k5pFJtC9=LI#=|FgiFj^NEU4_L{&EKmLagb$DOr2#=n_aZFgHv3KySux)yB7%V?(SCH z-L<$EC{m!fyIXKA?$(p{d~;^L{7WX2OrD)*@3roAt$TSTL?<-yV1(IR6Bn9IFH9p< zDboxmn%P;x{j!wlrIZh;0*~-RCA&=6@x9XCye#J~ zl(Sl(A*Twv6kC$6TiZ~31xl(l6y-)66I-pKfNwxrKA*CGuHk_Z#iyirrIb(oL|iy7K08fqTLXFp^bDk9km^u zXG-@oYIcn^SDjW=QM=dkP8i_T+C=|#yuTtG#D%ib`YAx_vtXdCI61cxVkMqMA~AaI zldL|K^D2unAgwdu0$tj|;e5AQ<;;7(U;^Xnc8x+FgW=d+E!t%0w1=Qt&)V&FQ~UjI zO%PXD#Mm8g?a{vbWflmV7#ffn`>)#svf3(TU(T9b$52p>W^`?dgW3+#Q<*92T0|_- zjUq#N#T`n*dN>w#8+J|42F(H%80-4X&7H~Q;!y|Ut#<~`W%U548W<3sIxAcY{!~f-JeoivyaldLB zVD=z=vEG)ZQ%A60Z>=H*xJ`Y65wvPHBw__+R~HOQ$pUFaOdKbl^y!U*F*D~!|FDXu z!aZkN{!{5jSQjyBC1RoGznVR!x!WF!Ot^`7FJ@_eOh^|?u%bfhc_Fv*gic2V>Z;#U z%voQlW4Oc7@PD!ePM5J&+MOc>=%6mYAF`=55_&Ol;|ww~kH$Z;Dau#&WK5O-Uu`3G zcWS@zt!433!yU6kESX{vAAY?I8-6ZdFRZ5#F_{A^J{@S{fhu$XxP3f;cdY6{Zc-nw zAkeB#WYKp;c+$aJ-H13ba+O``#4!QImJL9t3c2ZrKYAT4O)il+itryqu#?O^T!}wR1FI7Cv{#j$0@zc64$%JhKuR;_=9zqsu;bEvDh8=pS0!)vPhiyA6? zq~S@U?kj33r11Vc)wU)%%RT-Tbk0j^03?VZWTp!_VFLjWp45O#XqFm|CLa|)_{TUU zzkadw;wdZkdmiJpVARZ1cJ&-@F8K;vD~L2$CSQ4un!jvQ_T!5$h-s*7^BU9`w6p!2%H( z2*N~=CouUMEekhya;BcvwKYw0|N=^E)AlhDlZl z;g=rWWJ3A_SP}gD49%tDmFf9$=&_rXUlkc`eqk8Q9CriiOlph>szt1|Y?n)!jx2vx zVjjwKM&cG>=Ml(xf@^5X7CUagarJ-x?%9JKaO12jjDm*+CY%tM>J_Z!e1`Vp%C30V zrjm`^QL2+b0UYy1puDiAO)oVFG(8qc0f4o*;M2JpGPI-9WWs_&*pqusPo$_%h(yOm zIfC4YWHBt6*n)Hh9m}q*OM3um_~IFn4185ZTB!QBR@Xy$VIR(Nd-7fPYutWY+Ir{9 zE@`|tPfg3$YiEs&CfbxXdr0X|;X-(s@y5#Sl1S&p`W<^k^heMVN#&##lUSlTg}etp z*SbfJf3*5a8k|_e$W-kK)!gR(qzrC%QgD==Nk4C1?_zP_xPCN=^SH7YR74R4%;&7?Yy8s!E-Jbq#~i`~JVnYd#=r*a%4&KL!7hc{EP{dN>I zQ!+kJje=`40EZ5}OBOZIl&s!a+zPgSq*BPZSnc#+$V^YyQlta3$aYm#Rp3SZ!$He@ ztD-CDKC* zX?p3(ZqkPAWTz}x8QwaRI6ab7RZ68F3n5Yw>qW`v6B9_ymiFEsxA~p&WXX4_TY3#M z9fhJ_Ui267U{v9B6KLo9YCcRX4o!#}5@;~VCh-w_s1NMg84LJ5&A$Sly&J@G`s~Bx zOgz?85+tF(o`a=%`s9RaxQ+4J2I%5hn4`9+z=!ae@H~6>hpxHfN0IT{6+M<-C>pyG zJ5mSxNV@KbJHWBXCZ`p>XI=*>gGy*CPCTbK)UX-?FFBr<(ow}VDE@dnv&05djnjb~ z_|Zz<>M;3TQScVVE$j{yFxxeuvSl-uI!-=N9uTL)MuedR@!t75B&8Fv&<-9{WoX&0 z?3S(5y!)N6L7E^SCN?(HjSweJ2ctR|>h&4}fF@pV*c)^5P3ntOj)^;2pAIE_3M>5v)@p<8owvuoz$_4b6k7fo$3 zh<8bB8339nL{wN;#=|tk#nJjG#pYZQ14dycfX>^oq*A-M4Tq5wm9=e8_;T6IAm>LC z8U=5L`SUWFAeu3F*N|@C&d_VU{9x2f>y_CGdv5|!pe2u8O4Fm@zVsX^XZ`|?F4{6fqSO{>PEWv zdE~0JC?|c!o%Y~~e=puh%LjIZN5e5Tcu~>V1MOH>e((oiz2`!2nvHxQM zvU76ImIM;i`O)4PV@&zUalK<>ViLf{y|m@bi6dd)-W#^*=BB1-hA+4jzAzAdhdty` zsvBV|!-SMl2c(qL)}`o-D%kQ=o@9y{O!K0DbB#J+Nl5B59E#&q>`Qutq@TE`c(YQ` za9nuB(-deaPNAetUwP};Cm&i52&qP5QkFf6b0= z%TZKUg+Fh0>DDoMSc*k$yq}+das_ z<#@j4`Y1sH5C=7mp1yzg{eH1BwEXGbPrPu%yro=Nax9O#Y06>(9>7%XaEm>6C3+g! z3(@xx&8$g|_w@#riq62TbL)sx7DkM9VHho6gn%Gdj2u1W+pA#booFU<+DYw~mL|2E z{tBoaSr>jqJ6$MIU&2srActGZpVaWXn!PO zev8NM6IC7Gfpk@vTmRCvFn@m_$*NkCyzNxumI~L#oP4m+6 zKgxidPi)`9ls&)EJLYgK@j76h9+>}N$jCTPKmQCK(V&cL{i^3fDXG7G6!W9e7?Ps{ z2cT%CDBEOxd7)R^?(_%xPAswx&B2iHwA+RHzc2ywJe2DxGd%+z1tj;5A($N36*tK_ zirme%`gLv1WfxkB^B=zdSNgUZE5(Ekb~)q`^mw9-V|e0U`|ICR)RSi)KuWW=Wu)K` zHX)jCt>bCkht(NmLEdY*E!rvZu_<%60jUaovUDenBgKDlfb6iBpz%NxrSX^GD@vm@ zQY<2AxckKKvq#VuGMoN2p@jX{hXh1*J-sTNGoP=)6ZHH6eojG(3f%Vg7*gcj2ylYG zN8ym&z89Qi#>XR!9p|#s@oe1REDRrobE2CSgMTpsBK7ERl|kg4{8z?v-Iif?ju9}} zpGrisO>A>&{Y~E8EEoxDW^S%j#`NW{0sut66~+iU@Y$s0Kxr<~9g**hD1UWDqV!HJ zu+AxFqhOy~or}LIo$S@WDKoZ5K^V402A(OXv6L5X5{l>iU&V-+vHp)5Gmoba8C_i@{N9w-Guuj_Yv0d1 z`g-#sG+AqkK{dyH4P0~IMQ{TVeuV}8SXg6*g>2-_SKcaUC55L5n}Enuwz8-H$Rv>a z(QIM1PlFy%4{WEo6&oNN%dl=_`!XWIKCh;MiMr1mixgI#U`gXUiOcC!K)@aR?S|Sy zDt$SYlWC;#1dnbGPvHTi1yv!5^zG^!yFm3_DD3U7^?U5FGO*blWquEIT7Og>U79>| zUCSLi*Q`rXi*x`tp|Ei@PMNuzwC8>u8A2Gwn8l8wV_4$^%Hdw_gmaQil*5I~<`mzq z@ObcJCEt3Lht__}7V(MO<%8}!K|kugPQUV_^Z{td+%);3?I9PX>pxd z(yI|)14z~R87~aExo=E$pY>}EyV?*%Q30y*9xKY%f+Cmzc(SPFT0IWR;Y1aB6%QF< z+iNwM@>aHrdM3sl1Fa3taH?PLa^WH1Tz#*=vRUjqk@?gxWq7J&ED+Z+S{gG^s^mW8 z@Ij%hBKm<4^<5bzut zEeAtU5|FvLo*L;xIb&wUF=@hNmPs2Cd+hQMH#RD-&>!zsu{XzJU^lKGxYm7&Yh^MN zg9lHBE);aE$j)7PR>4FN(-POEEOU?pxhyp6baC-fY?*V?>{t>RK!h-u=a;?Vbd&B<7WqUF&tSnU9BXbA1D1e7((`!u@O zD`>UcB8)N*MkS3l=C%fM5q`}9@VCVwZE(9 zI*^VnZ42Qkru@?=!9sCGt|lWA_vaBD)4<8_$|=rL8g)}!FBViq_dgS>#`a5wI-{TE zCZF0wzL}8?WeaX~T-2B+}fBqL}p;e{ygJKgIqDYcfBBMiVc&b&SV}zRihSjO17Bo()HvGPk2-@%vR9icMbbx32}GR$h~96sHw0 zX=5;qrwr$0d&@53RQAiy*i`)QtDZ*Er7QjAukG|kq^UWK9QWcr+*IJU*rZ@XuqRi> z+TFnsh-DvCm+%=%9f3C_|VoC(N9U09Apv zj~m&QG3UexS*lkH41{Cf9N0wzBLaWOfyYslIsfnZU5YZGy?_*?`u-*QN zn9n*!3HQHVWhIGt$stj_&Ptj#GJDG}92hB%oaV!G8a|D?yrC&I$0#0bNk=hTZ+iQ9 z7Ab5LtLUS8l&QxZQ`Z&7amyQOkm4>9wS%Z~x&g8wwTsWb6|m6W9*3x6{en7*JmmckS~F`bO0!>V0pb4&8(JwAw@}WXY@QKIRwcJ3hk7Qk)a4 zVy3BJci)aLqCQZ3r)?Oh_PWiFwc4K^YGJceKhV;qkg4b*{T$kI1b59G{0@G};_L(5fnfyI2lcGwcM!{Lp`?P)AWZqwNbpt2ofseQu$ai;lb4sjEKd6k4f?sbxJZI* z`D>{o?*={>Pr&Jtx9pi2nIbGR$-KZa?`*qn&4Y4}FS=vr{HaBVFG`?R*}4|EFt+Cr z@JjAie`+qFFz6PxBI>aX*RF&6`_h#=3{l3qS?0I=pd@Nhtr3P6L)Mo*H>y6WQv_-b zB!w+wBHae{+3R!*wEJO%{Ze>ObF)%VB+ZW#p+wCRXKKBGKgokgSLArjQ@Ff738Gs_ zLkoQjSHcD&cJiC^ToSc4ewA3Il3_!?qbJJn`sD2iU!2CM{DQ*NI|%&;pE83Vs@BQ;3u z>5Q-}8mckH%U-EFEY)YYtq=Fva-`c*;z|lKn+uAt(j1Tkaz!9BZ`etCPJ@ocVm;y$ zY{`zv={^}zv^Dl$#D%C@Kb5iy8%Ut{?cE3f9|%+Dk9n~_{ke7E(`FAeqfk?6UwnN) zxspC$k89NfXY;YeFA|2~m3XQ7O;CMG5{3!heeCeqant>CIn@4lZRIXwX8mdK5PA0Y zchuDeJAba?s4@%;;3lRWx`s8&+JmLb)F@l<~()2IE#{sHg z3R}Vexf=|8zN3k10xiH-uo{k)W8THW!U7}sw$EtZ<-{M#F-xeUC09}NA&7m=tA?e` z^a%Q+99uhfeSK>rE|3`U_N|PD0qvG%UF z?3iP?qGnPJr_NqEdWoLAeX7BM<&PCq54=5?JHvJowOsQsd2vCKiMIwrw2{Tdq-S~J zQH_LI?%ZSt7uL965imEo&IIFUVToZhUX1-Oj@bg(V7u$WS=X$4&`);3BskJotVJ&E zb-&l-9E`%i)MNvgsD4jjw>4Ps=@ohK?Vl?i=^5jXz?am3ux}_o!LzPr%86*0b!S$? z(Rafneq3J+=db#8Dz{ucIKVOK%j|5rz;Be&)j%*A_5gwd6LInb94~|oG1qC-jDN~Q zN+@BhdPONlwH5a;oVoeIy|-M<;Y){Q{pD=rq}X5EW%VVBYqmK%`;u-p@aC62;@#60 zvcd>KS6Jvw=tcM$J=mfD0ZWlsNfu7s6~d#2fsBBmNkwhvtVM9={)CKV^kjyO>DGGt z1&@w-GCvJBK%F4hnlv1VAPkW#THk`5Ze$hRtUJ2MP;g*?lR{aV-`IMDGrIH2vdMH4 zCin~AQE06mp4})7j%?_aOb{WFVQi*Bc~_z{A*@Dn)69S$919OYZt)OtIwe56eCrsm zJ8-fpmI;4fjWhkE{|-5+@@Em9Wp2K3JI>q8qHSBOy8GGBTEEXtfkLU|l){Q>VE4~+ zc;Li7D<;a=%a!n|3c%Ye|6<3U$ASrhqR;$<%o9(%gD^D>~XT;MGMtK-Xg9Tgk<~M!^p}W zV-;0e-oD{+^odr?=Z^!g&L@!?qF{}$yO`qEyijY?qLY(H_!W` zvSS_Hj+BgjTwG=5S~5;?!kSVGJ%Vp3*m}s2NBHHEL1}VK`kVY7QFsT~jZqyy(J6zP z`#L;Kt<7B6*e^F&F`k;0l^@bsPkis=51wFJrs{hU*wKZ66@-ITjz%79AMg)8dQS-_859ATI z!_|n?!;i5e1rn5UvV0ybDXlht$c}zo{c0EfnUofIs#oyKk}TYeno;g3b7dlV2J#ge z{rrh2DqEmorJt2U-{HWbnumc7WzQ9>FstMD9bA;MiT)7X(QjSq%rID7wUX!ilkD#W z#~9`K4T9n}t9Sg6wL5h6BFSRkq*ZX!RajNU**O;4Y7$>I=hy6AfCMmN1Lw{&6knm$ z6u-^Du&E{kIVeP!Pqld3&MsTZvFz_|rxaDCd&w$Y<9MmHgvl7BAR)aFbxk z5_MV6XC(ncx}nF+iPr=gBS%Q}d1PdAj<@Yi(Ins?Urcht`>zOQSH7sjT?*~c=~-k2 z$ZJk~?cR34ZR+nyocbdKfH#2^QOw4@zyBcfKC=$&G`wg+pRSt$L$D#i%K4oa>?ZzFq}}{`!WI7`SvGXXsD^vQt;`MnXtib84SbjFPtes zIr~i|5VYnmdr!ZfZ&4uhmB%pa`!q}Yh{FGw%I3H+^uW*K989LMk3=q@oBJ_L3IKO*+vFps~dP$Adb7qf*eCeg;C_$SjW;1@@-%ocY$}%@r z8F;s;1XB45d=faBZUCoU0a$Zt4Xwxmca^Kf6l@1(HI;vho_>8YjKaq6%uUoR?f712 zSM|ft{%GAl^n34>U|hp?vt-Max)sYl5;suJ#`^CCfw4#?v~)XT9vc-47cKL?I-H`3<)ASU5v z73e;&`U-jMSFiCRO_NQ6IdOhey{quFfhzc5BvkRKj&n9x9qcbvaVTt@`S;Gba*#qQ zqjD}#T3XXLaZ^YX5Kr zRDj>{6R7LlGS{;=zTB`x=(v@9s-L*|NG<6Fg=BqUEfi9Vajeh{ zoYE|Lw%1Qr9+tniHz%As%LSfYNGW)cRPN{|fd9DO0UQ0_50fdfol(mNS=7+Ve(c02 zJ`yevKHcovdcy>m+3Ld$=x3@i7fNQ&MAE9+R|@cF7~>;e1g63$(JwqOLA4f-}qlX^CU5I{#a%7iLB(X)oH^% z_wwsYS}$9XZ)7^0Tlh^g`dEE0i%d)mI76(gtjv4hv0JVk!^6YNShzgC#C|(Uk;tncFVF2v*j|8kYY)bO9c^vTc*RG3a zotIE4Z9W%9?Aa8YhFRL$+Cq?-bC8)U$jOcQB?{h-CfTH#TU6NaHwu&SQJ)x~Z2Y53 zM#^}!ZN8h*k0mFTfbZwx_>;hxFdO&Sg0{6B^KkqLa%!kWp%N-QTZ)FMv%(Y1)^AnA!QB zA?7JaS3y8io>KqB03fWlF?Y<&?e+XC6f#}EowbRfZaCfI`v&xVFM!*{q=pJiv|z}Z zHz<)e+X?%30~vU?F0(#B8(}<)2kf#TS-xE4afRKj3ak3LiwTqG* z`q__fcWL_f)}Y#s!VM&v7{KP#D>$1QcjvE590>@W4{QI`0{2mH(D;&|n0V1|3d1Ii zM@RtPL;8!Fnr^fJ4De)6wMM<4`*r&52;k+s$;iy?{Q{DcKOKNWA$(4>o@Zua>Ot=# z0N8?QTzPJXbxqXZdc79QqVDc@Du4=P#}Dx5lzST{YBjrYaHaoLkxy7{vSHrn%T={U z1umGESCCS0+2?i}P~yW90c8`E8{(%(jaM+fgjU+KROH3Lk4BM@Bn2$ZZ?1*SBorbB zI9)CI>O9`lX72gH^m_biB)u9dNBuw|+FEzJzmCSJCeY^ssy)=@PeRgDIz;#1NsZ+L z)_$xZ0U(In$2)C&3!0jz*7Qy{kWjcH7WxU8_tBm;AprjT6R{6M-UEd@@1iWyU$tZZwX#c2xWk2F~{>1vErh2jFr`}F@^XCLz zb0!hj+Y1q6pZdB9UUq|$37k6qQ`OTOJAcnVxwvS}t00x5>z@Hf^Z$jg^Jd8e(G>o9 zBxd@>{ov4NO%JSJFal5^tPQ|bt*EmPaGkOSlxg?8c6&JC#z?I~TiyUC{LdO(+0N1P z6+;V++-kta!BJ_+3N+AVW!Bfw=Xm>&2zCfkWE`tc%$?+QfO2y0_%HSc-x&2&7~!wO zIX57xaFD5){z;c(Biou~LlGCNdM~2&iC+ba{aWmw)Kw=pWdBoQ=lyilCs1EREEygG z!oQTKzckZfsS3oZ|8Ni-4#u@q(k}HLyib4DB87bjB+o(2o@0&vHEKCN>SgdeF3&m@ z?lv0ZzD2jaAd-_LhwKYpiBd_>?pnF5Q_qlj*m!~LO{Kk4ekK}Vz?t=AqyuQ%&{8Sx z+f5BE=SXQtJHc1{Y}(_^5%9a7+g+G^htAK%M}p7Ht%@hUz@(BAJDewU1$tZ6$Wq!T zJ8{e>`dYbB0YLs548fq%Y2m<`-x}T@Q*|~2rw>J5NsyCZx3buzUtPg-7=M-9zz_Jpb@JCO-T2@Yea@_r&_-n z4B`5HoFN(#eD+EeM2HgmejpmwDX;n50#mavHB_XaLDw7BU;IPE!R1~yyCX?wh=E+v z?_{N`w^A*KRJ(xS(fWghQY)+#su+KWkuOH%;qTNPQ~M8O6hqMv4LExA5WYQGr7_c4 zlsCNEM?*0p1VCM#UV`|1r2KDy%uc_Y_-Smu_Q8RjQR0TK1E?ZeYX=1y$E2+onZQq+ z_qX;KHNB1Ra8BP2R0jH1r^gyn)my#5@fJS*x*$LuU~DvG11?c?9&OV6d;8hAo2bg^ z^{~eTCA6MgA}JL2Mh`35tlN+6UsCi;G*jU4{#ltf`7e`$Ug2RAL#;$JWy0tF*Tcr@ z@%DC%1DrAi703Rr*%BAaw)=p=mKl{==*ThVf<~SiOj1e8vVd+%Ss2q+Ky0a8;?VcF zRvrjJc!1yt!+2G`;ewCSldz%6Zx_Facbav5!>Asd>Y2fsJnl>$DB(iJvmzJ^)W4es zo9L7fHy1I_xTysLM1`dNKsI|bw>43KKh?EQd%uf5#HI@T3qtTtw$kRI>mgh|U!F3J zKvHC3Dxerj6ttal* z@$CcfF$PQpz03KR)gK_2Ub<3e@7ngsR&udpp#3Ip--s3RQ`tMH@^ybi?S`QBa5-!) z;=J}p&wko{$+4_uLVdEzR3y+EaC=rP*nNXjE~zMoI>e^oj5s|r8y}*-j1CVzZoF9T z?m34qcrni0BUDStn)vtc;mIlA$@3#EuZ7%kT`?Ds~@Arn8-Tk_# z0;F`kj3+<8n%Vuw4dcZEs8VV3&p8_SbUWcqk^NF8IEi`mfB-1PneE}_`dKCQ2{lg- zn?pW9inVp*l#q<_GWG<=9kriN3w2Qt0Aw6}i48i^8-LznFX5`eSEdVaBgyRAR#bje zb(6WWMg%86^WWbr+yMP z2^kQMR_A915SQfw7h7Vr>kVwyt10ACs$9O3QLZv88i0M&id4v^L@$l4Y;wGDNoxr7 z_f%6x8<8rx8C!7una>8G?nt8*KyN{=N zid$ORkzw8Mk&Qn-_pQ%OP7qPO8?Od`1*P?EL5IgD-TH}F9?a-Gy7PEGTF33;Y;t3{)5etECzPgrg%+_gH#g5#5&`l` z9|O6=Y`!kVM@kTB*jMq#9!(Q#7Sy4}Lo8hg`alS%M^ZjilIM!U@gD z_HQi_@~#B0D=hCzQKoU(T}Zc#V|Gy(Tt8K)gULVjf(&1bo4C#Tn=@%h|Bj2UgYw?+k=Z*zZx8~qsU z79-T577V7au%?IbVn4xO&nPZ$4PPgKwQLt?HX7gmE{X*od+Ms6U{r%xHx^BN!|x3{ z^7s0(YQ%5iK^7{}FUVTeA_1)j=X;mkY_~|zN*#0owB@Tt3kE&j^3%%VW5_K29XyRf z{z%1x=(L57{81_^CL_^zib{JB4L{BgX|C3qvv+M?|CCa}0Ysh4!d1-Ar5mjf_<-Ly zsjf~71$!N70Nt%VB4FYN5~zl>#?~W@jvVi>>R*N*#X@V=^YSQ25c6kc<7)T}HGR6q zDWH`k$((Kc09H|6i( zm9g8ee{29>PPE$Y?yH=+n(>5aiRTe7lXluq5HbTYVzb-&&k4+ zQX@bTi;{}{x&(QGaxfIokV*Ww1S%36X;+1NS8OG(3LZ=wEOyUh1`xbO#t%TX8 zvqtaAEinxR*oJY|0=>;ZD8hh3cVKf6jM4v?y}Gd zyJ?h*ji72V+2r~oswUN|XNQp)3NEHPbkWiDRMAsD4mKxEJb+X~h(&m=ki|vzmB>ea zDCnua9&cCM?YzcO)zR;|CK}~C7JXbaX2LS}ZjVD$;T>NODtQsM0$K(K7*3%oQk;u% z8+>=8RYSnfIx^Hv>gw|9+u_k3)lM1>O|TOYfG?yKb6kI4Lp-D*`8Q-Vw{*M)4e;=& z>s-k_d&J#=7Z>j#ZXmtLG!z8|zHXfe3X@Szp|yg8ZHayQW6~Fqpkl(enlz5bApd={ z_p`(J;?|F7I>Bn}%dQ9wS10DYl&6WC(7s8=6T^3#Av#a7d&upvL-tBabttZuo@zVz zbS)%;hzDXmxiV5xE`W2rEDa!i&mcRK1$k7lGDaGS5`S=Oh7prYsJ4BFzNw=gO`MdM z{qOcQY2V$u4#XsQv*630hKuYJoC7^X7kg6iHW?4QWv~LHh7%l*nrg9el2?5%Y7gDW zcL}J0qIA>F98}WR6@-d!wy0+5QJ<38K^}1%=doSIpRN_ZYIttNzJ!Mk4_ULwVp-*; zn3Y)blF6x8zIb(QRRqF|p(%Rd{YO8EkEVi4;2(Gj+q>ZQG_L`XQ5b+Tp%v~}GMX!x zc8q@DVP$ppG!AAevEQ{0qYsHAWG@!k6JYcm)5p~@Uk$)3{R1uKr;! z?c1O009z=FB4SHh`D-bMn>%de81N1q=mSggu9XTG*s!$$c-Qj0_zI|?(MnDB=Bn3* zge65|?c-$5WDt2?lk5ZZk+2%e^7>6*x%hmFbBK=NKzPG<1Pw2XJor8d{~$Pxfdui9 zfA6}J9&I0UaZV}PuD4x;!a%*>l+SJzS4m!v!4@71pH7>X{JQHbPuE6LFWln(Cp-`u zxjP(p`IfM}LLUMFA^CXV5EUtoO3FMx7_LE#zojBhACu83DHqYo-@|F?C4Ii^$cj9@ z)PfUfXgzu|?CCxtmSI5PUVjXfLiHe&VZ;Jp%*xV#+WwJ_ra8AKp-}LBGEB#k7fr+0 zXhuZq%r65I_N&7-44GHTL67tE z>RWxjV7L+18Mcp2d~_pvlwud{{>krMOZ&PhwVjB7;ivC0;O$|dra!Q=degP(J|k~9 zl(g|LR(?Pvf-C|zN!9R;?*MNun+8dxpE6f#uyo2F_zO?J05UV@5=IJPHT^nVEng2N zB5#*FVS_W`Z>5LMrdz+wByvQ`u}ldCz2O9b-9f>IUaKb(@X20+>PQI+h=E7E)ALB{ zuMg)&Q9*oXitQU8$~HEqx_u-J<*lu)Y3iMkXc!2i8!Ia#3A}_wB_*ckAy9DIjh_i5 zBA-u3mgf)UD_e!Fb0xwY6eeX7ZdRz=+W5@tobl=@D*t#(i>4UEy?rKfSWR1qywe@F z!9~q@h}@q!g9zKWGb+$fmVyPTN!FZIxhYB|{YUagN&o?*M-4zCL~(kP9{dJZ6qO75 zlF=_$i?)rw+}Nza>i7t_jl*TcG3mh&A+V-<%@z}cjC4_wEdj@D7Y%}8ArPp8LNncn zq{!6!O&Iduce<9G%ofhV`1u|@Uuts(P_tJ%&zl>Fo$U6%qA)3z1-4Y4sPP6;vvezRakZz~#A_wO0Ui}Om z7nJ+F?p+_$wv))ycAca+&0$A=4wN}@cWi|cLYE|7hi!zQx7Je@hX5A|=ccSNzJAk# z)>G~K4k4U#?0ahngsPS0iMPr%4My0^*YYG$?4Fdc^yAC(Q?IMuC%+)gG$C*Qq#LuA zATqU+-+jal(+u*w2=pe#qC2!2pKDIP-5ALFp|PH<7i7AWZC)PGiJU>qLSs-Kzog9{hh#_?e zqq>bfx8vqBnR$V{_Lq~M8AWsA=!!@238S1Y->ZCZV@D=rjrhUUa6%7_ngOTGl{<`n z&Ga4vkDbHPSaV$APtBjzZC~h=i77bLmCEO?ZcL0kh>n!;39j}cco!C9+C6`{RMp@t zj2!-{R_Xn=M+JPw1@cI53)nFKGZPVfuSgBkMaF3oH`yW`6u*pcG$a0BoQ+x?jIgzB zyM&U)9Y8AAEB{!S1xy5kWwN05j*e#*!jTUWc^fS`IXR%2*}e~efHxtROm3d{`QZx- z@{spff6G?nPJ>|dx#ckhjmA#MS?RzJ7a0?K_2?hWZN}iPlF0xEHbq@9PXUe9*V=T0 zOb!k>Th2^Qm(Kn4!_|%d{x-{EW5&6=8(~X4J&P6OX?j@I!}_WSA0XoX8v@&kpwapa zI;T`le;g8-% z?Nc4#%#M!5{7%Fw3WPN_?t==373$gJKJ!4^yWHFqjadA6* zd))-y-=p>s=z48zUBOcAa&^4XEB_LCe+Hc4e-qE&IVS17f&|3POz72l2?@^C?|Xb- zF1f4qeg9p@BJ8t6cBCveI|uSONvIB;(Az9HvGkUJb;yQmc!fI>4a9wZo&vR%kca#F zrp?Z_aL@}qSX)`KDCau@Xlm%;XT7ga@FKb*0pWw8heRP(fzR8H{i7GVw^q@2ia|FGr` z8*5hLgZ}Mr@K*fYL_5T>(8das(A09EMT{rxi;UUd5%&HhN6B;g{_j;JcOqjeYMRjd zd4y$G#VH_WN=6wfn0!>dCZgZouVLDlN#4(_d#@wEb2SvK^>-rIYaK>cVv!KXbPH}sPptp6 z>jK;Z0Og!USG)zsR*+ztB}p#|mkZ2b)H1TL{PP8)?kBgmuIfOba2;5`?E=e&HKl3F z2xb4;t>+W4RT|kfT-tsi2krQ*UTVocmtdM}4#ne5l8VcU6xauH(+2KOp@ z)a5H4hXdQ;8k_{aJGOiFQ@91Hdm_u&<+6buvOn`5LW6s5`hgn9s9&|s5d*K`jzXKV zo}aHzE2mptJ5&+e*ZTDwA`5tSN%H;eZ=a!>XJXwG@nHvt`UD7}U;%yeyaosvB2KbJ#p@S)0M zPvp^df*~}=2XqI4u<+NruFrdIOtEsv7fn(=w$FrjLPIwV5%1hy{?PdZeJP~z6NdlN z)4O(R^Yf~1r!HCT8X<3a$!Vp9D?Ejz^6o$#T8y3bI;MFn=7~W?eEsgiDL|kA<>A8b zZ8J-lS>`J84Xk_&k|C4PJ!y6RXT_V|V9-fbDK#D9Yk0$;OsXAz7JQNL&#{WZ_*4szCX{ z(q^mta3-tW$h$F^@T!a~?S=F0y;`pg`s%u*Yp2t)I`3FyH3Bgcsp}W_tE%{@Eubik zeS|Y4fCnm=QqGC81T8$t0ze9;3g#2T5AIGA7WU={c6{~(m;Z_oZ;iQB&hD|v$cni< zH|}^>7r>XLMINNr`d;JXg%hl=^1o@{JWKuyXQg2HnelI=kWli+B&n>}+{$r?@zfRd zX%mL*<^Gmd$D-rA{`(&OnADHey-8sO|7*}-_RYf*tY5rGnGVs#o8h; zI1t`}>m6m*7cBa12kJWDp>X2xb)?Cx)F4OhBn-OptCXCXD#9!jpi22N9tP9x{LeAE zYRSFD?Q0sczKl+Tkqgi>tCEL3v2Q@c59Z%}@2>DxZti0q-Q>)hX$S9k;Sc|R(XguT zUNHj?X--cIZ;f{=LLsIiD5B&TFAtwF3(s#G8*^J5KX8{Yrn^IQ+}WT35bo|zk1!OY zG2JCr zW=ooJj&5EX&vxhU0JF;rQC?4)#T9Iw{8ab3a_q=J=~6}bxnAYyNThBodxwMa1-H&w zkqSQlyr5x))w_F3(X}s1=<`xhAr?|;Q$|K7bZNic?Uo>rTi5ztMIMo&wKZATD}%kwuKZwJu(oJ zi@d2*d3+ca&?#eW;GTZR+>}^xeui5wYTG?jtPcEXqkrE<5;3Fpdsi1yJS>C;Lg9EA0ALR)JO>T_d`ehc07_zV(>2kpnaac zMi^mm0aN)o^Lr?osijXz2a8KY@eL0bLtWuYMi!gJuyF2sn zb2&5Zm{Hv+%FCmiO;m7s{v$Q?lyNCM6~jx4cK%25S9}N7ad1{=vpfI2bQa}y<6-db zr!Ja#>Z7*MAOUlmR5{ON%4%~Hp5%e6|1wl8CHl=Rh{zKH3J|Q`nWWCI^RcqI*}b>g zbP{U(y{o{G=_1hb>*K$wgkL*{xhUjY-K0V85kP$CXYr?CtG}le+GwCdopw#*zuWX+ z#-Sc64Z9Azp^Q|Jg{WE(80L_Elxge!gbE)4-a@0F`XaiU%ePK zKnr7Cq*d{(1HjGCM?Vu(FQ^<0NG~f_nr(&0!b)=`2-_i&+zr@(00^MwqujfW=GM9g zJ+H2RROP9J5qD!~)zXxtjSqIGOQnh`DcMAZ)sE@Q z+Qm~zt@hQ-D{DU%B&7RDHLOsn+tfq<5G>MTBBR7oY#d>NPg$@5^%HC#CJ}g3sTCBO z=Btqdrd)#W1wKlhBj{+-bejG|P2l`eC`IZ9juZ>~=Ld!cg#@!k9J zbDlCZal|%^eTbs+UyC(zcZZtTS>W}kcFMey_CQQai-NobIBAgK1F~Bmll+O&OWJLx zV`^EFDsaE`xvWz&U-DJ%9hjh@NeBg_+r3DJj)c~Q<$E`Nbc~jI;4t}IzuwLM>GTSv zjG&}`9|>>hmly3KWkQFYf16?L(v*-kv!f|kYn`~i`N>4|{5MBsZt?Ug=hNdHqWjlA z8Z&3xuK!<(ZrK0) z2h^^9e2&JKf`zW^2}N)->?cfcESjrPTqXvWkDgx4IsXFg=eOT3g-6~DoUL9j=hR`$ zsoQ0p>%q8^^De%#RLblkX*Y5oQ?@g+*WL_=D3qEWwXi|Y6Ee@Qi8@leWO+jg`^Rb? zm*m8sYYZS>*Pe+(r1)6c@>zlu2La;8jb{*uuDj*964;TpioE7>>7xHYamK-VU61Ph zqX8TbTjfsi!A5^Ys*KrfSaXOaP0NM1-T&2arq201Iu>L&|ksi6W22y*LXLr`+pca$L_k?XbrE}w%sI+oi=u3+i9G}_Ks~gb{aOe z?Z#Ha#x~A=Kb((ejI+kre_%b&+Edqk&&k|&>%YFFx$zHwzZY+v6I|vgl(10OI1>eq z^SB^qGIsFg3Jl4bJ*+itX;BWG`? zDn_Tj!~*%SGV`?SJ3H(n37$U9A)LPJYk8TuZ_YRS-7Qb{URY@hDueZ!Db$=WsX>i* z!D-PdrDBWde10hL4`1T>Ud^cI{~)bEC&yoQCNw@p(Z(4czx^aP88H)`&)FR78ai6X z!01>rVuU2|(3+UDyr`DOqHG zy)KRk9exo6jp(;=y8DN|A8$vJ#W(#cK4_8ko6+FZ8$#98)u5S zwY*FAOdz$owW|v0&CYp3=--z$Iv zWtpffg;L2H!=Y!eGY4bf$KWT3{!22t;w_rs3H@ffjrhr|iD|M8)W@`w?rSR;LEb(0 zuU1xPqO#aI&5Y5Tf1+^H;=Mcj@>o`ig)Jd9nEJ_Uuy$Kpz@iBs)}^n6}dx^ zZs~1wzbY9ROMIfqKkN8UuWP~$$`b^;KTv+vr{Qo!2xxaZTdfAiEmA-`00bc?A_FcA zRAj!R;se_!mA>vHePfMle_Wi0rjxHP!&ntsK6A3%Ki*;El-`@W5 zsx>O6aeZ^{dk*jZrV59UhZ080P#3OO9LT^l(;||>hbQLLHRRd zT%x_d^o)9af#_V!lmKLDUzHtmmi~R+yY+++-er=fu;LF<&B|(Pen_c4e_xU^l}e8K z1YBOHMsmb$cy63Ie==*{c`p5#v1me{htu)m4pngfr5cX)S79NZ{>GcfS&ZVv?T-&A zRez2Da$RhJx&-%D(akF3h|r@TdkjeCR}W?7)whXh2#|wWH=D&NUD78DL3)_OtT}J5 zU{X!gh59U6?8kSq&A#h3T>87uGzrj$xwr}hD-e0Sk>hNk6f@{diAYiCe-L<5xB^Nl z@)0kGe5|M=sIG1}np+Fd`62a~52}+&8)1cTGvmbhJ}`tRQB3dnO)K$h5nh9=ILm3;8&0Pg6x7^=v<|xKyjpp!;vak(e%tOLky^-;6 zfg+Re9CQ=dpM7lH$+$`Q|9upU$;8u%e>lNOOcqXUMmNV%U`(;?`qV$TkW^=LeTkfi z@wDBw^Qn6Da*bdtEo|Q7O?33`ZxZvkRM7vmSQgKMbKvog2KXTYaqq7zk2i5t%%-&w zQ2&Rl;Ss8jk%5I}3pN{09zA#gHEdTIAQcV&M5wB)Jo5sFM%tmASj2L}-`!SJWcnE- zC_17c^Y8d-clcu*iKPQwUwn&KL_ZlbLb%`^q$eV{(if|*_r5}rypGx3!ZV4Rwxvo> zYNKB%A}o3qq-?lg-TT+9g;Q>@Ob4j}FBu5VBTyP+P*%D`RRB#WIKC8i_ntN5nEVay z_~V#A$|gxNc4V&mX;Y}hluaXGM1yHyG&J=OwZ4>;;+uA#{MQV31S)nFHoxTRToMJ% z`p&rwvy`_MFWY4D@VrFmKIcda3Vyj#%QNn7%(2Qh@551~kx@A*12aC}AYf3?R&FmZC_o+02-#Fk)B5yC!(O-k_Xs zKuqC*hF$NTTZVc^{w1;%vlqJYHMr#^gQu>`?T}R1hoFZk;Tp>)P>Yv-$)0}YZ9;ne zGCQRJesG?KrlUIT_gxH=pcDz=Z+vVqfqrAXY8u%lLoFRROq*9B#4R8U#EZu|9FU?2;bHWw< z0&W|<2|8Y@yuIGztSN&qufGqv)1Nl1ZO#OZdQz!@%`%nf9(A>!E{R>0y)jom5e^lF zAE{~3XEG=hRCN*w8t!TO+Pjh{%)g{1e)t|5GiGqtF7-NRs193dz@1!64eGB8U2^!*cTa|{vNalUgJ^XS*9_uBk^+j|+Ieu>oHk2tnC;CD1 zYG9d=^rg+4_Uy}AgO#d4vR6Q*i#yDFBIcA7?ephO_@kfYd6bFDZ=GJ!$p~DSM^WU95<{v;D*jP~o>v8t)iamfH@!`s_Xmn9~q; z-3ZmZ)Gw{DgsY6SbpC5>k=giP79c1xCS&DaTu%F+@RwAkMXpQ1*LqD;23NIz(%7gA z&_x}S3ml5@btegAWT$Az$R13MCOB0aZn`>Fcg zzUfYNdo^n6n3rMHXI%s-`zhzHi6+j=+l}x;OwoG37Y#2%$uM&1-3~xljY=w($FK-o z=VI$LBi-DbmnJ*;FK=hy5|=X4jqpK$^TJnfcJ;E}oTK|7fC*1sqG`P->9{mUScB-$ zHdX2Ir2B9S@D9THVTp*FHn(j|^8g<(K#P}O?@yub7z`ErFc1{K(R)fb9xg!DD+d3K+0EbS8eN(F@EYUv~ zSB8fmDPf&R$EDJ(Go-zu$*99GbK}PQON+A`VQ0hBg_dKyr%L}uVUy~eSjuFcN@{tr!avIzKiyC-r(FtA?lk%2MI#fVuh`6p!|D zyLqWx;sHFt3&UV5w~(>TW1aa17o*K(y}|nhKGdD7{daXljn({n(xE-gKc1qgQ~5}E zIIx=zd%VE5N(zx!F6G#PGL#U0+%QtCl5Y$YmKFi9)aXW>n=9m2J;P>BP55)Qz4j*W z%9=hx1|9mt{`?N%&DK`LTkSE&9jzsS$$Rs2+>&tIc^AZ<=`YO+u-g9XbTG9tD;_>f z^-cYml=7unNjD-<(gWWzO##X4Q9Kx{KGagifOOb-&`UP7F zGjrSPlo3Er{^AP{cq5FmQrW?7{-v{Xn$>=}qU7~ACt_R3D#8i=!cSEIYrk#;LD`S~R zy^Es+z8@6=T~x}~-ysRBa~lLcDNO$+`Z`D+UK|rcp*t@A6l~z^9M;$34VD;yhdkB_ zd_FsrU^|BG2I&|csy0T(g}ESghK|N@vZbrSI5eZp4xjDV6V73^1#YUrf5Ko{uf}E` zQ3r```BXt|Jsi*rzDa*Pj-7CiX%y5~L+_biuZm+H|N8RKH^Frp&8ncJZ(+2lwg=aFJ}ht$In@ZpY-Szi(0JzPQNZak{J=*2{V+=~V#6mR-L0R($7dD%f9H z;zQRwQ_N&QN^wnEw2LBZqmawz!)-iNhMAB!O& zZH$k`l+E)k3h?;;A`(rM5wnJSG>$BA^R6)0nAesAua8BoL_TTQ7#>3GPqKB)SVn>Sk~kFN!=%2NqBWZzI(qOpK6q#6pBTT&{VxrdIsJKmmPg zoDKu(S%g~#)%46$-eaBn5?P_D<5ECjR)H`khDp46^!4@vg>S> zLssr1$97n`@F8UK@~}Owu4euHt|Gj7!W929@eIuO!U&{LNq%#=q%IQaW50AtUWebt z61~h>aKe@wS?dpAMDSw)lP%KVu7x+A{HS_Zr{+>OMoorHxG6+k?TlC>CgpNO=@t|y z4zyA+r|%aHesIhqD8T_Hj?bbT^>)==%aPv}ax?r8 zQmDZiQ@X&BjIS(x&j0RNVPgYSo76I*`Z3^>ZSZ~6(K^iOxK5hA|f++yZe^= zI0Ej~Gftb_+#)UUG}7v6Fvp4B-49Z?W7J|Q`a4U9gS0Xq77M!%$+fd*|G4m|b$Qa$ zr|u8#?d18<087ggNpE{0Yu)64oxfany^iY`{$9_aVAzD4#He}4DR9WewS(LBZewvS zP9xR5`n4#$brelQH+es^m=m}hWqb=zj7hOLajdK+Fk`U?0Px7PuKQk_#^8mK-xQUJ zKY5?S|6suPBe#KdoyV0$Ynv3+ zs?M&rRX<%-Z_Vzi6!I~es=LqD(vYx9oMQ>(!F-@~baDhR(qmfBcjNi-zMQ?0k)0us zh;qnJhUQX#lQHdM?p8hh;?e0GiYn8hr1F$Qwd3b{*!ORUH3hev`GMO<<^CyKA7@#YTC~>GhV>Y9B}Hk7jM_8k+}O^I306rcQQ_ z0)jR^>`0fdU4@Coqkistgs}KT*Pi%T{#xGW2m*A&9B#+M@wm8pZ)>>CPXx6g*F}3a z00xGXjIw3Nbx%4j2Y$;>l;&PI*NN{803W4;{(kyY90^tY z`#V)D9E>!TPr3EfO4K&Q^qIfhMT!%j(OaME?sl~6mz9hyV3;B)pJGOfb*RtOt zi43sZ+7&bu5PPuABM!` zUq}RJp8a!}oGhZu@r zUHc!FmOqR!q$DRgK77>3>XqY15OnxMhx->?A6KcSx4pX!(Cg#|Zt9fU9Np*lQ=MRY zug-W?poDHxW)=-^jbRkH8-exO$}gP(?*6tU2FwOg<*F!JI<-hODanQ92e<#kDXkb7 z(Cq9j|KOz0A~8z-qg5#vRUQd}<7+7> zN$1CLg!?6)fLecixOHL6YNpNY*@?zj^;^xOet}6I9@35^MNmelT0C4&tX=WsVu__n z>jRx5tg-`akSBQ!Yk;g7wJfStwVIz^Ce_wdG zYnuIL&|9Oc4b#6)N+BLks9C<2cOB*Pa8ce$mT{u=2s^1%6dIaoORFqmNvP6zrVUQDF8q z=lbO1sZeA0>oZ8|do^}YmI%Q(1f!x+N-&iNjJUPRClu5)#y|p0Q96 zv9|eVmj$}*vOBbPM%vZ5tl%?#k7lm-nJ=-O9h-uZ%V`xN5xy(~Q~;Nk*e2fz0~_5g z`)P$hNR6J*avfUx(ueO0)J*VV((ENSwe<0o@_s;S4XUghA{Q$~D%NLq^@=E5)Yd6{ z@`B-vCr{gz&`zm8i}M=K>kJH%P(8_|coa0)RYM1Y(T4r!y6O!a0B1vk@mw$W%L1j{ zXIceLe3hh#Zy4y3hl$3F6QWvM=`xG9Tdem{Je!aJv6&l@4LjlZ@^7h1!%t$6=t&BA)$88e!75F# zRfe9qz?<^^>JNZcr?-_*C?M0;n=+*VuP62 zfXGvPXfOeC=Nc8ic(mNd=TC==5)H>K;Q1b`GMo#K^i-_r!y;u$Awi*`Ph5w#Q)T5n zKVZRT@NY{gEEejeD){(W-X~@S_-bN~KshKb7kO2*<)!An-EDas3?BrWH7it)oVN~7 zC^Z}g8bQ>-lgbSI9{b^RdfaTwb9P^qt&i{;3IReFToQluwIGG?gvX!%i~sF)ccbGD zup2|@9)5b=IZ^uEvw57ftm})p^)4e^`W(H+cKH>6$9HXp9D!yf>G4!|VbwZas;kfR)yl#kS`q_$|KCx6` zW#U@bw6Lp3=he?A z{Z=N1K$e(LU(+?rleRnj?9cc++j;V*qNTb@(XY!_U*kh`2TvMRJ&nPOsfYX2iFEMZ zEzTgSE{v3!$GP0jg+j^pSO$PHP7Xq;9F5;QtQE>Ky$#ENOP zS7Vk(Jy!&VN-!@OS~{1?S+2S9x>Ve$?{@gj zzS&8dRf`3apEb4&i&R6O_v;3UNN2-zA5xpcXgwm#(1tDlYYmZxuL1z2HB9B^Ej_7+ z)4TqcmAC80i*GnlA}#f%gP}@%wbk1&6~4MHpY`0S>r{NV#=QiwYN5mr$iHOG6ql3n zV=&v~BPN))NV>w2|6J@c!67kZYrg4QMNOktVJ&33exAcCn3al=#V#|>Z=d3d*8bi$ z*I>EgwRYCLf=$@KaD8B}DaUa8P5rE@-La^I_Al#?7`kw;zrkN93QF<`a!(h`{)qF> zHI5tP3P@plY*km=_Yv7NZQo|}&}_`W8`Q;D)GutCK{#ylx0oIE{HYg3@IY>-80++r zcKi}-goiF88pA4+WN3(+m?8G?xp~jPe8IvLH|gE(8>P~3CMQGg(<*EHglx8y@PUqh zt+I#m)874d6KjFjBHpM=Mhmoys*-68Zp85*C2lpa#WlUr6})SEQGD1_fZ>Xw^CsdV zYj`N}1{4wNL%|Vf5OW;iNz2n%r&c5qi-7;#1hWde4EnXU_OYrQ3s7R*E(L{4W5Tz z@>w&orEIP?45x>;41LMk-NG6#KBE#xt)xkceU~*7t@T=zuFN&d!N)hZBEc%3`!sZ= zhX2s?!n49O7rn$BpMQx|Z_VT}!p)&)69L2L;fyH8I^Kuu3nfk-bg=RYu^0g^zApWzGnWy-Xb8tu3#xe=v%ekeVTbPhVbKXO`IK$5l)8@sPyQ7@9P@e&8n zLmg6C;ioPPjpTo9Wp}j*C47^iF~7tkW<~=8ztvAQG2-{uIXU^mkd4_ykMQ}hGY>?Z z`)&l2Q+nT&EFodzI2~ucBdnC>KDbJP&v#Svc+PSN0larQ1?BrjErpQ@V6{)F>J~n{ zdCAYxUn+d}ioUzZ?vi-v_+I16xLjRG8z^Bmc@(qHeId}q683yJLXu15rPY19;69EL zdh430asJC84cCw>fw54&MN&eU45|)D|&d{rik|a-!qBQ>t{(*i+3BdkQvjw zm;u{6%pC`MM*`3!Pz`wrHojC|ea8f$^;k^xwX{JWns#5Z%E7le*B9R(5B5aO2@D@h zj=a%bd#BAl9j&EVC{&spNTpvcOx>pdc#FZ|MW_TGnNmZWij;qq3rD(u^-w%()BJ<7 zBE8K7w&g1;jUf-N!L5&>-VBNv&O|kDB-|vocVCmG5~|ya%&zH2m66gOm5IRcdQ!5b zE+enaX55L9`e;Fi-=DNjZE-@bFj^6&LG^ zh)Ya#eB$A8xAXIR_q^)R?<~PARp5RzsvZFCeZ*LcLjb$q1>ISFW8Wlk$Nn3ZJv+bQ7CW~8H^h( zNH67zT^%*&YI0$JBSJaKss$TifmmWe<>l4IShw!0MHZO4FGr?HzBAckv?o_XKbh#( zjT&kUH=8ZWIBFERVs!X02z6pY5`OAN`|Ccf-YSG~B60FBy=e!4%RtR3kxEw%SvGy5MtUKezgz?}+ZA3H-*Pkp)=zul>z;|-yl5czgg zDeiil)7X8Nb+@viTYa&90!BaY80j_5M%GKzwN?&0sG0>P>C%68h;Eh-47`4AY@DdD zmvMg^6DH-v89aUogh?9Yk|bg!{it-e#@4?>Yg(h#NTjA0-b0yL{^VkB0-SspAOXzX zgmur3 zq8X9FgN-CVQoj;)Bke>4C9Lt8kwNo4b_Bubi46jt!#tNdHV#9oz1I342iOb$76O4; z6}&-0-QRfQ_7w^X7tkOkxVX&Js+U{z&5Z^I(-_9rBFvBz2Kk>pJC4>^UCV{WQTz|_ zV4H?N^VJ^5MLHS|1Z;0Bf6_L%8Dl5|Hqml;WA-y2DlrqsU5ren+3{sR>iyt088*72 zP4C(smVWr70fOu3={MGc*MaJFOi=oYxpviajGVNYI>>}U37pMMnRu{hBMC`&Wy_vN zn$SOy|8zWz$Ap^9hSY_)P{;gQ7qyr{UNDat{RvHo(`R9eQ0q&$6?+nu<*hBvYoc{hm9q;sA zqdO)ss_wXseTeA!s^a*v_szh&!e`jqJ2o>WE&s6dJmA8u^oQ3)5R=x2G_R-{w4Qg9 zce#MgnlEDPe6X35_(~<@@5a3#(sl{EW`p!bX)y75}T{TIH6*48JXn1BYbtq(81~;Ir!Kz1}+4=cPzZ|M{`46IfN%5?t1^+t> zp*5CYiKL>SS&2EUc*`H|hW#JZ_4aU7;te_B23B@bv{Vyp&Y2)0|5KSQ z2j1Y@0fg0wyKD-rb~V@iI0|$o$?)|)_sA^isnUMee9iWO>G>>^1X8E@1y~QMi^oH>!Nq(A*E5}!1 z{rkp}>0P~!RMr0_?n6D8m?K#K_sJd1+$TZXjp8Q;ZB%Kb;9P;8kA~;hR9NHoBR$;c zH@J$KgF6Y|_i_p;n!!!HOtF4spSB15Z{H3sEre-t#FyW!a5kCLju!rx1<-9=QQ}4Z zBQbVNx=E?!qPR5j+{s7t%2%Y)Lr1JYI~$X`f(Gyyq$s<>CAg6ajL3C&S$)e5753io z@_#Xy`=pjm<#G7_H^4t|g-#y;2EajRh9(>G;;ZtM(wanWx1)m=Y-ISt_)$bMc3M6< z-7w+=LWk3wcD|3U1wGG*yN~`l7Iqb}FJylp#r=Zzchp za7fE{U(n6ZN#`}mCR6{g{nu_~;z2p?#shdsji;PP${4(}A&(F!<@ht#NZ3uoc`THM zu8Smg__QdcRTRJlmdx_`s-G!s zkQx11M32+@G(?&*v^7XjEJ$snBxQdsP&x%0sVyv?q$UC3+~*a6ipsUt-n><+fu^k2 zPyr?a$o#^PODA*wM7pbTvvi@uLE{Fv--KpLwi!Ui1-5j#sGCZjNl&Qt0kdMQ`#p!c+bRG>QDCXjG-M9{3zTySgSJGK*n-FQPz0FV=Y?3FJ zC}EkqmV!A3nlXgcG&koKbo|JUsv5$Sk87!wC{^pd)m;lkMRg>XE=LZYo*dJc`d#i4 zl^-Mgm_xpZGofsDM_63B{VTlsR(2%@*60@rFe|5E8SH0^!r)1-Gg9s$3+`#~Ch0dz?Rd zI--Id!D*|@X0RdM#D$p)Kt8_(27r^S{H~QECoEDAbm;@hjU^gtal0b$f|ee@sg?&diB+Skw$PB>eHg=H0sa*B@ z!x^%#V*Ro_a;Uwu0dg1Ks-#&4p51$Qvrh5wZ^%X~vW2KFdST{hPs2CbZs7Z%%_}WN zwgidRoOvJikh@Ne6f_Qyl3YpsD6hBy^vA7;ds>EbX0}S2q^#5EZnWt!Mt&Qj)3Lv{ zsIZ7gNbTiDWa#PqzO;`kro{8gh=BNQHl6JhX*mP6ilkS5=U{(eFU}A8mXcxosb8Hd zaEA=FK40ZK`?17!p}i4YetBw4QBa0{-syM9#Fx}V3XUIQy&MYf)eNQdI8?Z+%;3AT zOM29|)yJChSgSQ(5~*BmLc6f%kb1!%g8RANuIXOi%iNMH1t+P<0!#U661yxK6&OB= zRv|z^vG{YY`VJ#pF+#$QY?(51m&L2xUEj<8^9wpnY17L)Ob_*#RKOGVLUV)h`Iysb zW%&XVr({0nBMxL27bV|K%8nR2iZ(fu?WWpINq={?;<8lAKiaW1R81(rjRXnq=@ACz za|9f^;xv=jejGU6o<{l`&w#cOCtrsI0F7aT2)LeTX-ws8YekjEUnzhV<`+a&V`1EA z`?u++^v8i4NroU4Mr|BzB>!R_pIcmc2~jOPW!KTvOcjW{wl0F2nw7wi3c=pje>tAD zLwnokDC#4TOEq+7k&vuWirhYtsknvRnGv!eQ0Ql1=;s$W^c^M206tfn$5*HF9UaRn zoyBXEV7N7zv7;_ z6u{A1#UW8@Aqhx7kT8r8&I5>(A#R|~{;Ro&ULR|{c#Iiw&PgLFysy<2{=K)2m`TIfkf2eNo= z@c_IOCg4!s3NvYYw(LlKskb0~O_xw341QIRsjQdInucBKODIr1e@BxR&aLS4@vz5} ziT=hrer?|}6Ur6hdJyW}V9nw*J8|DB$zN$V3WUa|?-go5VmL<9Y8*H7kqXCOAjrLg zDfjokY*!`YVl);0{aa75$lUL}^MS`6*_P$#HF;O2+o@%Q)htH;GcRqs82SnPX2{$% zH*xp7|N_av!xV%a!NPZEG?Av++jxO&K#iXKAHM9sCIGdMhu(C^nN&v#N+5Ol=R+( z%IHJew^UK@JiykfBgtr}ZSPxQiNV$i7f}P-zH>lTfj_{Q^-sI?zm7v&ahqHSKYj;1 zfEpTg!3hyizR4H2NU4%G(;y!qNHdznTqBPkc6N#<&=$S&J3uh)?$Oe9UnE)Md^nQH ze7DZxpnk6FwNq%jXC^70Ksm-PkmlD?oZVXKaF#TDgiGMPuq$E)ffkMEPXKLoIw z3OTSL&azW`hEZEeJMP|x)}|ZQ@ZA}WGH(nV;?kG;!$mT3eRdPNeWowX#G4YR*B!kn zQAw%?OT(-=H-`SSe+_$Aoa?K~sO0nzDRNH@#s|l0%~V%q2g+9>ZL?atimz_N!+dBa zOSM?M3-f`gZr!$vX+dHg>&YALXB`iV7q1S(@1U`8^~}l%6lRIB*mchrHC9r#F3nCQgN?R;wsCW;E9SX5&CJBsy#yWt5F z7ul*%bO+cqLJ#GiHN<{=AF0hB^|*W)2H8$GSsOkD7v#FYqPXHx)|qn_GK-l6iHphMvY_78q*+i& z+y(R{ZM5|gyZ~yDJ4YkjHJ;4zivo90>c@VHdk--dJ_zHvjOnQl@zm093YH=J_%;QN z{x%!;mQiAsSVOO+l2UQoDbbQZB2BKMdhMG7%AzeR-2D8r!mp}c0G}+Zm`4kp9z&vw zEIR{!J zn<6xR-;l!DfoJV>0g#49OK|(2a2aV!vXdZFo&?R#Di;tCpjU!(9)6Fh;~scF{yWeJ z5)m;rEH=g&C973vKpM(x`Qd~ZQK!wqc1aDO&p9Wm7mI8ZbsjV*uc?`(xkA^BzjD-U z`0e#9iVb7MCc8U?Lj^hii8Nli6)2cfijj8qx=^woc=hphKAA>W9*`4j)R1R8-hmd1 zz+Snnga);$(uU={`Ek+Q`r7UiblmThK*daURW|#*SADdW+tefxMescyiOeY3Xu}H`UlpsWadd0h9N$; zkws)y;?w>KoZrTEMwNRJK4tTyGoLY|3+{wlL0ka%f(ODHbg%J{Y_GfKl5z{FLOZh( zak^|uu4ZQjW8Mf9uf z`!_nzzWP6%%Gc`h@q!;qbmg}DFHB66+%f?fVl!~%T1+8@E@b?V&|T&e%jweW$6$U zj)mX==QO*#IeCi`jfMHlwhqS5wNI6AvUH-MG{`Pb3lq48FUgkHbU(P9D07gq679X! zh-&P$M`>F;2e|NA$@}M}I44yE@-uWQN2GAejTNdhaWqK;LNcX%hL+#=i~Oru{B}YsQE+lsaVzKl zxYwC3l*GW;R}(JGZldNYLb!Nk$~>JK3UFU+I|3{~Z3D7vKZFr$*3TGhKXJ=SD^#A* zq2PbbH3OzmhZR%?&o>PSw6|Mqt;n!Ofoeq0_z^pt6gE`i+P%4~j2|^+6Ax@cuDYh@ z6@K$kh)d*yG`q(l8HR8`hPD>MH!X?F&&*^ZY*|?P^xnJMc^LKR=`hKj<;tAyNM*fr z`}IK?-=Dgh*FnEmphH}1xH!`Gki4l7*s`?&kg9DJng88Tg^3=Eq=5S3i515kG$^1k z)Bab-4s6;o(|P?l6>pX+OHPmbFsxU~EygSHj1G&D0zca0O}{hZN0B|2@wNb>5jmhY zQ@Z44+X(}Igg)LZ@Qe=f11Pz;U0#Z}{Qg`@&sxlUgI*Jk}3W4Q&Pfx0!-cx3>f z1MTq6NA{yn467RxpHvpSL_m(Y0(wy~E_hn%6zTU?!IEll<3 z4K#tu3;977G^A6Bn@AY>VbG)O$!=h~~h826q~Q6=#kn%7UyE z#N}T97bi)7W3P6@r`jFeg^}`zlfZR9r3#1y(+A&Js`Sumn%|&7?--q)0X?n6Pjs5A z5|!3PmbN5}e^d>HK=~eL4Vsiq#2qsmwG@jYWthq$8G^7{7>tJ zhtii=-|`Q>^gfSMIOo&>LJi`}e^|6cwXdD>kMB?)W;)hZURd!|?g8Ptz=o!F zDD!8~r{*3nCYLCjXOZO;Vfm}Z=0|GV^I`u-qqlQSh}V|KU9gPT;0;*EriYNmgbw$I z+;#=Z)?M-YtEU%-sJZ5Itqe7;5sY^5^XQVwOAqnvA#Tbpn_@6gGCF5<8>VZK|Mi|h z$Jz6)#<>a&L~z8cR1;MTZa#d=)<3ojT1c~QsJr!YIS;%&|3y)X8qhU8@C9793BUu1 za#UIvX!KQ9{S%1U zMejgW4U;~x7ka76c%Gq(0asE}#ohn6K>~ zqeEv)JQ@V9mzw0j?NP+S?j;oFTMZv(C+RT^&`*r_$wxI`XNN2$Ba3rd4bb+@$4-Z;iUU+aH`fz3jO|yc@O=lq zcmx$ssQD8YN=rx(WrZVwhpJv39zgwTBVyaN#neH;4eq}u3{_a%ODwDvq}HN;RBVt~ zq|xryyZ@9(9nwZ7c4=X{wq0&1}dQ z5LBi~tHMBKEhT~kU_N~(&!+fsl#ZU1l779N!?o2yj;hC6$Vh#5Ic-Ai-}ih zrz5-XVs*YIVBJE^-(>ZF9x%+If7(@mm9MC>Ask0GG)oD&r5r7hrVa>hvvd2V*=&;3 zg-e3bm*6&ovK*aO$jnnBOr(;si`?Z1H$=3^?2>@Zp8dLnqNy3v6plFWgY$2lKQ};P z`rY~I)PozB<)-A2`9H2fYIW5)P%d;~1TuabMy{9XnZ3?ETe zH3}4om915fFm%mAQzfNG2=?YXm>;(+dd*;(w|}t zeKLQI%svRZ`+8%3U>81d9Pa{yMXxeDYRjZPQ>DAwM7IWmwFAx>gmA0msYS^XAV+mp zyUbnIU;$c%V;^%^lEC;X-knqUTY=*CFt}q_^n_*S7FbbuR%cZQ#*)7&3E#LeQ5f;5 z>Rze|xFSU*O%UG|I$NIHhcA6KjxqPs&Mh}G^0pNwj^7@&Ro&ucj}Z7sw_B}0axf^uDRZH)U*q1> zxQSMR;PwYo_LmKv+2g^ZM4;8bfyV}=?$e}qK;D3I<$UjsNj?Lm z2aBV9gV<89BIK-Qb>*fWL3>qDP>|TtU$=I}it=*bCaz8TNT&?*Ea&zOjX`eFAIrZf zR^OP)9eG7aVK2G5Ykcdo5;1G(+`#hTNAUY604r_%au3VqF&-w>+!w9;* z<^W`6|#;*(CH@~4mF?Sf7Q@R6V?TVe9F zi3=6-)Vl4D@$3n`2m|`?@)5aqU^hn)%BFg3@TXnOz4#?O>|ye{bM$~bw5|4!_i5%b z8@p_*M+PYIfy}t9wv==ogdczWiNTdEUe7}@%fxH#yVm&Cv4aaS5=+2N%^$}YO6MOK zBxO<1rm&0Ch&af~Fclhyb3|0+fw<$BTa3;V6Q241VehS@s{Fck;f;tWAc&xJ2%82sNVhZ_ zltvnq5Rlk(mm(livS}%4Y3VMJ?(XjHu5aP_#7T@llj+c}HqOQbQ%_hnndll4nJx8nT2FVSbpFVQm zFURTZIO@1RTv<4x?cQWgQs8vQtAicJZ?~A6v9iyN;aH(Tin4pab5Gy+Wl_-V6A}M= zO-!|wMl07d6nr-NlI8q5ck|ONC?#N7AN+MATlJZ%a7Ntbd^b__@;lnUXxec=a__O? z)}uoX(Io8^2LY-6Ms&wf%ol6VQqYaDJP>7`UShcTzHURUeGyaI1o@PBy+?L>0G&Lx zz)6eH@r;ePlf2PMRx`T=&dqX@=%nq5MdGns8Pm+$txHL)mZYrDQ7|{=9Ud<~;3A!( zLdxgPHxmnkXlw3yvyi!;mr2c?XjGHj=OUa1uK%Y09de2h)Br4Zw0Aq^|3$9I4eC5`+r8xM*^swyj89(W-h^?e5S ze;|%GM&$QhYEJIe^c`5%o-La;sDypqa}toJ-u+$p6a{hk5ggvhbljO9!F+bTWmB;) zNZvyY?w&jdtI)$$u_0*W+xvrF9iFyyPq z6U%#7+#fxYe^R}{l@trdU@v>57_vY|;-wx+%QeZ7D&N?=(Bc|M%KC#vrs!u&a%}^t zqTo$vwI;Yt|LyZfJl$lAugqL0{3y^q6+N%34pGI6pU!y&2>+*d=mUrHZDi;p9iK_G ze)*;NNL1nk8ywM8s4ORG(C2GN<{GzA=1}QYjkzc#%hW=#;$>VuN7p-BwZ0G`qIRNr zKdgdt7}|f3zEtz&?OaVJ-Y2{*ufW7e57HN}v^507_4LS?+pjB_?|H=*zTgJU*nXQ# zzJmu#`Ho{HZr95Ui?K$wgh9G3tE-ee2SK_nQn6Ob&>kNb`Ib9q_W*qtMnMC0X*mOvtQS8y%ygLo}* zJH+ln`~19qn87Y+Q?uugFqL1)+aY^2 zTNH?1RUP(A$&Q$pQ>rs4HmMxHM)0$eCYb?h17w${GMur?pPgs~*2!uVa z=5g04l?PK2bOrl~QFcF>I#Zz5+f}(HdT8BAgIIFA!!)+5upsz$c`WCBQxEed-q)h` zV%<%6V%iMR-OB%S)Ma7hPl#ZDx9YA}W6ce*l~BUW%UU}Eko5XO+VV#Fi;Ap&0`8c* z1!nFGR6}Jid{)!lLV6}bB3lKTqH)!?3=orUBRCg<@WY^I^Hb8^FG+|5koVKr%7{ej zIuD7LRV2g5eepBP%sKNP@NGQ|!paqTY@4yHCM>YCC9>A_Vag42A@9lK19pA~70&P8 zc%6%eMjmttLS&@RX@R2HSNCDxK2eWei6dAKs5>v6Asx&lY%|yp(Jv$2>#Otc_E?)O z(%W>y+c<@J5iSXR>K)<^+2#0aO(c2S2eMzkwCe9FKW@y8BoIKIjZtqjRN#Iw`r<5| zV1|C`AV1B>D~McQ;4bE8@fog#6>&FA^WxAd{Kq*>?h<#A&yDmK{tTEe6s6@(_2h8` zIA=~s+?RRH#Z{8*n7{oEYRV7ccwdZDlboJmrq`C^ptcObBJ3p?;ibI_B#B31c<273RuL=9$1T}hDy%;@`g zlaZWKA?x|@NZZ1TC&B_P)0XmgIrkqg(pwTZRPpLgwEtdPz!AFC-*clf4>m*di*7Bv z6yIIw_*L%w9Mr^WheOokzm`;=aF_EyS$ShSih7Zo8rk)!BWTiM=n{E&~UdIu#o zcN(bPz0tOgF@LcQM}{Ar$5NCQUtB`GrIn6Os5f##RaEal?#bLIl>Mx5H}CF#({B8| zakc=7nYzY+m#kq0o^3|I%7=zHQ_2k+g(GuZ>ka*>H@=6Wj8e*zw+TJE;_KRR@w*?} z@a0f{{6rSNT}ZM0eLk{|$2PfrU6Lp-#kW;1$zFV@)O`%like14KbO#E#OqrLPcB~e zD(c*Y;GT?>pZ|D^mA_@P)z_fZ(qjxkT8)KBsT*^r75gVTS1G2gAJ@Gr5qSD3CZ&?8 zHK&2(5^)GY(Mi;-pShIUeocRIo@VNN6BMfaYX4S

{z8AuS|9UfPWV2F-zMu_iZr zPAMp)Sfw@Web;29q@>+ca(8zm?%)a%T%J-gdyFtBr4eH_v-O2dy>jLPMxhxCQ?ic%_o1BNZ5H~A|fU=43ZI2E3=y=@@ z$}YvDF1Aiis#4UzAoxhu*j(;`*!g5_q`6z zk9rWu0~dzru27!>r=Hqfd4{HwJj>eP*R(UNzqh}m^s=z9Q0sdMc)Dy;1Hi3))WSom zF9s?8Sy)KFC4=Jih41mlbY8q2VnLVUHVB8q=BUTZmn+)H)OqZ~L=_dsx(G@sFUo6+D#oIQ)r`DYoiBw1AtpW=FDOu@TDmZetEd0%%#IdwBPhDbcNTY8&WT0G;xPqc$H29s zdSAr)32%Vm+WJqMTcmEqPC-wZ0V(XD?-{TLC5TWxw>*?WC4we2br4QKe8=4%A< z<`iJHTO0ihw@WoGecqag;3ip<60Eu>9OofN(C!o4~4G7>yIrW5Sg2F${gZ=$`&vy9-%B>fCE4A~U zK;+mC$b5W!RLQ2IQUP=j#+fLRJ{sP&g;0vPqe7PDJ1%y996{gm_N>aCMoOK`R0t!CoQ(1cKb`3Z9fe zU===id05KWTeXxW)C-_7=&crWTAK;{0;~-B6rYP17qeKs^}U; zvlSG>5mnlGMxE6hKngdzxM!-;3=GV4 z`AZUr0Qul)*k%s$0TtUD^aVk&9l{S94F(YMG7=cxwM0D!tFAWBK+y}Lh1JJ|JEJgY zRH>_Gk`SKR@*wI@dBd^arU8fh8zrUM z26e6{iK`?6lYC{eAbGu`n3D72RUj70pr_uVKAV40{0}gpW;TWo+@^CnB zl6zuotZUfR`PbxXl(!UKGE^=dS+Btz*%z&$)H{aD7tv=cpvtyuZEYa}u|Ih2@B zob^*#ZRQhRZy5h*X6^heHWdx1*s_r>z4rqf&XL+$m|M`4TSRK}r*g*K=2{Z2n%~;i zy=pg@=uJc=Ga{6cmL}ovgeBFQnKdrhxAiKT^m(fb5lSdxkL`~3_QFT#s0VnPll znzd?o3VjVhVuaydlx6w3Eij{3Lzd226ZZEYP&>K0$)%k*Uj&s&WqASRFYftl9LSG? zBpTlYOQf!#A*aSlo_C{!loFs|R1k-+xu@)^I+k7tLN+!w(1(VHlPh@TDxiPK$O9y3 z5uXcrR5h6Q5Hux_LeVD4*4a%f=Q-W^BzfmpvUUz{?!o&@ZEzLcPa&VwR`^T5wboS6 zzL0Ip`Vb`N9rh^WV_j?=T()(1Dc+>?y&=nlHxbSqI|KrJ*T3AEFlsW$wDzk)%gx%j zjaoqhZ1PdpS`BXr%>&`rpK!;!wq(kqL;o0lo69Zlcj%`u>u317Zrj3x+(AT zm=yPGb#!%I!QSiM`$5aXvUU99RYG%Vfk8{KO@%g{zlpo9?)2{O-@mumn%!95 zk_|*BBw#1@_zh$%y!ldK+!cq)Xf+&Q7*d&zSQr+|xUT=@|TsSlzdm2C|d2JzK43K>t%CZknWj3 zPuAr88O{KA4C`iWnXVR5?pRs#^!W&yPqwg9JBAE@5pUZN+~4oHm&iTTY4Cy>q zVa*z9%=#6Ukph;M2^1MU9Rf`}FHy{p~SuQ#u z|bNg?!4JjjYtePs(d2;OqsEOBiKK`ikImi znFHVX>g)Gqhqk)QhCf7DB~^di9J3P>ZbTh!%9D$|zV*HMYEAI+kL&oQDIQBoD_)vb zY(AdR`a`H4Y@)bs-K(sIEaQ8wp*wY8xpjCP0n}abJzD|WzzOXS2~p(?tZEE~9{6TE zO}el{dLs6talMk9w;wN?T58dkVW@^O4BWXUfDXn@CUoM}z7%{N->5qhMSgRTjfVpH zs@#&y^o*(o1;!~;W%*t46%wj!y=D^o_I+;acs^BN6~qhNphyeoUuG}8`_G=dTQeMn8=wKz4?j^V&mFK-dW?s=a|*oz<4(_w#4tTlz+`|U9AfXP) zc7Bl9Csfam#Bo5G7G3jfQtO+m)Dy=Ejr<%kDfNW+i~fp-J_K~))37fbJgsPFkIou)|c z+ePzWnA?9QXR(-^>>4f&zyE+g+krgyVNUBMt#>W@tU*LmajSz8X_6skhI9L)L8C~7 zE61)8{=<%P^^^GrC~kSm?skxvcfVYIZr1gnjmYEsCkB<|Wwoaj=G>`QgrGi9kBQU| z?I!!IT>o7Z(fvfN7*eiPyVX}e_cUw4Yg2U6^2AhCwWOzJbNrSdjwD-is9KO?=mZVr z>N{f~l%MI#%%sHAIxjIHDFWp3CxAN9qP8&tSDcKRwbJ6}*ft=k#B(OSOddaku)0}E zjtw_v2=tAY52$FNB4o16YiW?-zr-8IBv}%#O6oJ*?m^(|+IRCSEr++_DI!9h*=-VK z91`L8mz{9ypX3V(<*g-Y_^6$^X3%VDQi}@CJ@j) z_m`_FIYvD=yUfF5_u$Qt8Hf^}W8u#c-%MOcj$9s_n+K|MLAU81Gz}@&3)QpZ@(J*y zZTc*g8%aLpIuw5Yb=pURgbU^Ic)`JvM`!5qCWt#2>O;gjh|Iq1E=3-P>x6DhyV)l; zPGEB%*05ze8c5jN&V-`&%X=0dc(s|3ZwI_SdK|N7OBGn}OQ3H;&u8aLBOA%#B9QPN zvep@gR{w%hB67(rhDf}a2KS*ORpqN#vkL7zlY2=D?<6G@T_Dnix(=od;wBcxsiRqf zB`B-+id9>-nV3WLn|3>3WmjZ|>LvwW4QUMG1jSbZa^fA4Xm9LFe-vuIVb!^)-Yuv; zU?lkpl{xhg!Ln<*2n4QWXlm-aimB~^${xjHF~lfXb>gwwU{1u8ld@R*Fu}JISiAKHW?6m zF)SsF-W`_ckY|6)94vCa8SxsHKM@5TF2B%o(AidK8}B4IporAVLB1I=ipk(;iDgMQ zEM?8+fZ7*Fp5IE3ENT3ul*8}nJuj0`NYn7<{_(C;U$#ZE|0uNXaYvM|Ib%GD;7R#v zxxv8`h}Bt|5!s~W<3E)^5|Ts1NqUepvcxDHs4sg-Ec}@}M((VB0`|;QDn!6N> z6V9{+f#IHr=%n~;)zfRr9rHJDw;rP+63@>U3HK^lACBVp5u4H17eQV=?%DW`YtP1p zHGXz>HjfZaAaz`_B3K=;ufmyoX%TNq6_J_<`yydELqVk;96zn( zdt2(&JX5wg#da6A2xhK{KtqPyXBrc2ZS91p%S&zRJ4!$P2T?TSg_khst(*8&TgY;< zoJoMZCwOvlGU%4@$<}+yJpJ=Y^|?;3y7_E3|IQ}LEM0@J=V)epMfBLQdBE*aHHa4% zCxg=cPfN~_yC^qdtCdJ*{SUj{@h*rXaC|&q|6oU&KJ49GXEn}BPivLsbzrrHe=w8c zB9t$>TloWu7tQv*fph6Is_Xe5BG&xG-b{k%keW)zi^g1TJ4i@SxqhCQzP~1Zpgl8Y@d($u^+A^OBMHUYhi{*-!@9bd$F9!XMnp*y@lYqwk&MuSNb3@9? z$|ESN*t1a}&%jh=P6wma&V*M8A&C1|dUtcMMs_zlh3N!7hpS-v`(ny_M`>{Kl0Bz| zs&=7RPw$Gv>=9(wd?6B|U%CWQ8f%hj;opRMkvaP6D|gBH)DhWMyH44_u3>ZOusdWoz|!@0svb^|e+eXD~Rym7083v_n$^ z#_L@dhN4E64Ud@CS9d1U9<`&?@5qf2=W0~xL0@+yd~tF*UPAx!g(kG0VFC}{kCs`m zGi${K|FE8zOh4mLq22LmdbNOi#_ixcNbfKR3c9=9nKrpw(+6AsyDi}8J#~z;OE1Y) z4HzgRgpk{EvZRn1=KFWu%2|0}SQr3Y2q0-^@WkFl;Uj$EOMS%^{;!%i(^#3;3*Q#I z5!@)zdm}}a4Z*)V;hr3i5_7$`1P1tCvU;WQoWd+Y3&r3&#7-tKnE8g}ZubaGuw*!ZG?Om&`hK*C~HF!6S0Wj9XZx6gbwbrp+r zBp+_8)g0|+t`JqT$4sbQJr14R`(X>8MfM^br1|c?rT40WOrp%bfe=B~L9M0}#mi@2 zhP*XB3~rq67r}Nyx!f$oGrih_L;u!`*tjS$M_-m zotqB^%YS))@6ny<)eXpfsw~50QB_r2a7Xr3W7{O%Z4?9^zW@xX=D6R`!?5Ugi0e*Q z2f-H^tFajVItAk|)S-=*<)F@1UcZd*#EL+?LFO)RMSCsKO8RZudrIAFk7)5SJ16A{ zh`!&2O^x}f$4#I*KM)hY^HN($5>&Uqd%mQrsEX2Q4}%*;?zm&ash`xBp$MQ+PUxR` z&DJ3xr+8i=D3cFo566h#s(m}0C;KN5zm3H&eV@&=26hiKNsr#)N4RWHSaVjNV(t;X zbzpneX7hbAjkpaA1ba>BQrOE zF@gSJhmd1>SVCCw>i1`j@Acx7&T1&`BnV5eYXHt)B&p+n=AoDnEU20A;c^6$brw(@|yj zy2sQ}*~U8K{ZF{~d%s(0rYZ;(h+u?@k5MFE>feE`ee^j+y(&0cnqpu)#Sl=pnEmYNAMa-`)I$F|a zp@y1S;Cf>6+i!>7Fsum&lzJ%@ER$>m)M8OLa+5NSk59O6@^ZWN6Iwjv!~dZ@b@UOl z%JOo&eRTw3zB=sJEL68(jRtF8q^_vzTNQ3S*M$pS`>_j^f4W^4mQbxvIB2qw%>IA$ z3zmWxpn+^B-xUsW_g3LW-!iRCK2jz}F}Xcj{k^0G-LW55yqfuorN`q=+^LE)P6X~64} z;psxlsmd;7?Kkvi_Oi=z><;@BWPwxiG5vaT7kOxr&O)}wL>NN4pR2rNc7r)dVG(y>izso?Owj1o-+}ylCqeIIO zFAaTz<0ecTpJRKH${Yr1e(lh4OdsEB(ub?2{%$XUL2RimG zZQz$Sp$#$QM>%QUtdD0Fl#FFfk0v(?KcZN&-yf;_fHm(^UjruOr*x9SYWn12Jh36x zB%nAg;T_P-tgQ9+g5jCoUIix8Jg9R5_bMv&n_Nx%mo?~EHl)UF>QN}9g;aud$V~_M z4S^j!NG7R|u^Q|qzx7nz;hjT)lMK3|ujC@vY2xWjU9FPNyq^(6-o_DWZ1X=CqF&pd zJpBHyy#(%(!M1Dz*CXn(A#nMdibj!xaUU*9PbHEXihpI=qUI!20H_z7& z7#I9r_JSQ)SR71AzY*`3{}jBS@C%gvfhJiKH{aU~9dJ~;35z;vxdvC}kiN|P3iSBn z$gbmKbmOA2Or$P(PF#tD?#$skKe9J0rXvdW3C_zgbcRJ^A}y%8bskrLt}afP!je1* zU#{_7t!Bc0o*YX;Aa3^SlSC{cEehKLcrJ>~(~s>)uXu+qU(`1l54kpNhd>1>O?^_! zvQALUilFZF<-HhU=rG8Sc|wD%i}aK}lM{udoRW)+^rEp%Xi$>(N%4T(L^0?=A&8_U zG3Z7XTfdEojC^XmHC}?)cHMHG{^dNPc|j4pP;K_>Bv|;`>FOxobEpG`GaiBk0Z+c| z_~e?rY~{069vPLgRM|oPYfJHdd*t@F;^(bD_M60pA&@662i0nc>(d}*oHYS_gwE)M zyEC9$6Oln)6x3{M1(frNp?2hGm05AfF+|XJTE9bU@a-N!X1%+R!*|L4IDHYP;=gEa2@@^Mv7m=;sue3uJErxxdmbE%dHi-iF{AO2~njhjo zYY<2)7x&YgD;pIZ8=s||5|Dx-Nea>z$3bVJWrdHh{Zv&|)3&#_zq)_x1GzP9e|Ni^ z>#OyX-JGwu7(N{De&0PhJp7rFVVqNRBkd=RzT=G}RL=i2z+NV+bhtb8u%)5hM>J_6 zr{qO5pj*bjcR4yUy~$B$T66cVDKqIyW)EU}(d-7BIk&xLZtG$(?lpQyOB~d09ryKS zTF7eF>zwb1sVix}Mkn*aWah*njY7*QAw$47l$VmvsY64iKL9DGvcuN=Q=AG{f-3au z)$}$$U8muT_3h_X*B=!#4|goOA9Uz_T=^W7>|GWYpFhoHli#~)J1~c;>sl+xA$PkR z0mx~n>5BS$3?I?u)G)cM=@K)w9^Z!~#~}hzXEE%?-Kl^%^RvZyn#ChUYAtR!UG0pg z=QQVY#qY35XuG4q%d?gmM(gO{@cw!~s!nAQH)f*}FXMIWQ|J9QI)3(;S4~H|4geR=H*QtLbGdJW&y#i<#QI>Ss_k;8zvbw!cQbi9RgBxr zoz|qb{ct+fy373zLC>oVJ*Itjw?Rdz*L?F|sDFcAkQ2)O!kw=Z1bAO~USIly-XP<3 z7U4f@Q2$*EFj4wdpp<9sGal{EL>cU0(zYk)Xf*kS>r-s9vY(Edzhhfo3>>ZvWPdO- zOW7F7pDA-a+5UQQyY!P4w#Gf6z=>(!)fJ323|shecNcW4V%(3j0xUylh3(3lOWwHz zLDv^O!Z&Ub33$NN$i?y5e^~UVOIYoEUt}Oy{Le4xwwygYZbqZSux5+Yb+jroY(q-(#d{d%ZN{H5QWo)JP15m-F^n2Gb1UlPW9E35LgAR98=q6{W~Z#QV8Jc$cF)$UQIjj6_-%$_C_x z-I1v^%IU8(Xft_NoxaX}p$;zB>*o&!uf>3M%`eBUO9>G=k4J9D@;hz^O_W+_@y%ly zwOYry`%!qD8X%uz@jVT!sw|B{!X6sx%+Bg+xu}wKzb8#t+m`oG-{>e00Ea6E@(|%#tGVB%s5525#BgQc$(ee0 z&Ghx{^&qnX*>>oEF#HA2K1_He-N{W757IJ4ZR*7PeX18OQs|eeYjSjKh%ZOX_-Co7oTQXD}DBrmY9UZ zfJrUSO$iBpG6v`*uW2@85$N0qnnQD4%<$cQbN!>IvMw?;YO6xDnTXa(II>$|hrR4v z?`M&M0cloAxD^_(h5EUgCF?KU-LE8u$7OR%ZYqKK>t0`9k6(9}9{XhY!gM{FzaUSYxs;j|+f%GRg_D!h_Obt;^JLCP zw`1sCQ9N?kyyiVQe~2W1vlG3?byB9*pMR*ivQ0q~&zNZ;fOB4$28dK(H!VzVuFkrqYf=IEp5XwETnE<8JCi9-Gp!7yyTN8#vZTLVbOqXWto>rxrbu&(!x zXk@Z%Dr#!3`PKXF#Bk3Ce34Wxz_WS(`||@M&!sap0BOTDmq}dE##B_pG>#({R({Y?aKl?gaVW} zW&xOK7x0L<78T6@HNF3hf4x4w>P1nxKQK6G7Ya--(k>}Ar^KOTfrp#!vA>izMpjbN zJ4t%{b611T31~da8X>%y@F1|{m<}098`c(-@-wUVIB4Tsqu8VmEKI(%5(jZSFn*P; zr1MN4NJxl@X+ezj-fXK18V}2q>9=i;elli$+yV@vlO~cy-%Y|o5A>Mc0}eT(L8qwM z)*iADnNT$Ryytz9tQruywAQ_|{#xMVhmp2u(34n1 zoGALdkJPgdlp%L+3pxEdU31~9%#~-y#uI7ckfyTLAS)?3m zv)ixQT95ayL0u92=0on4REzaBVL($i^BcD&OFibN7jE?UE^;;K@4AkTj)vmn;|EAv zD%uHcO?gPCNdubl7?zG%)PGTeAFqLM2+Q)xrHr0jYI`u`poRx4O(mouqb{=yikrVj zU4B6bjH^joG9DeH#YbKKO!-#5*s|}PK#`WFQkJ3T3}>u!_o(iPVHAWtsS5I0rV*ZJ zIQHGn zQRH^r&2_D(ZXGZoWp;LU<^XtUp9Tnqy`rrX9=-G_MF@<@+uGXx%+5CRN!3B72frr= zU-q7afJM_TtHdEb^@QfJe-#ZwsI)YaZVgmvUJ4G6FEyDPgibgHr}iw5+bU9pj*jHJ zdzzb@SF_?{q=EZS2L}%iKnpx``jTT7&Ei!agH8+!WZ}Ps)YoSW2xFCI z5=2&L>edN^-1d0G)#1n?PiHM^KqH| z2TE)ct5W|ZEpG*OF~v{-tcFC{#iZI%g{lkgUYT&5vmEJ`-kkYh63CI9KxmAL#`3X_ zcgkiwTtiBZg>7JnVai5({PEg7U14-=($jJmM0TYe$I{i8{Adev5Q-5Qyn&BLgJt4Y zk9mMcDLQRWgvelfdvjAj zD7K5%&kVs9sfV!vNlPIuHU4%h=8|SPe-&e@R@7EGvkbOcy(mTIvq&QxNpW~d&$9GO z5VK8I>1^v@!Tle_@KrMTkEvGoHfVV%(Az0n?#n%V5h)K&DVC)gAyrgW?U#7K9RS0_ zQ*DO*IqC)TG4H+##$VhFE-x>)q0TTDyDwCD%%ZsF z?%^8zEh_cJ_zEiDKXYhgfWp84DiYbz1cg~GS7*DFw+SZOkcNR{94fp9od-z6e+BnJ z%1$Zzxq@`uXQN^`g2iPwuK!X$;2IG?hny1}$4plCsB860+0^pjNP(USm%SzeiXsrO z2+G$U5{dIDBLBZas z6;HKhzk}J94=N5udy;!2gO5Awsy)P0_4hIJd)@u);J#M6+kqEMsF~a%5xikJZSTW^ z)u(Amkur+wtj}A#+W(<-{Z7RN0H&neL_CANgN0X*Q4K`U5edgz6WlcjzOc4U@~k+v z_iA-fegvF93)qlC-(s&h+%d5)1%9n`Hn!`wO2A7Z_cy)23^M zM3w;J(2Ms@(61gh-oED71vGB+KqQ`B)#Y|sLKkBJK*Lshtb6y+r##*=gB=ZHORq%m z5eMC}BAQio2)@`ZIYtNVl%ZQ|ooYZc75j?T6Tpt>1ULCcMny$MyJl5CVUf$({?bX1 zk?vnar4DV)_AVkZcwRDG%W{j`XaWI5AYG}^a1*?BKCv=@+phv z;3#k{pRbjhbGeFg5I+Rro@5|fhK!3V52?qyzGMkc{{KGfrCPxNU{JCQcy2*up6UN* z*5Ea%c3CB7FzbZ>*{oNb^MxczfNAJ$m_%^melSN2s$Aq zpVI-*)q$O*&+pn_Z^k;18tW-~6Z@cHJ{1Ri4>hvXPc#YBM&3<8I%$jP_}srq-v=10r``g5@SsHS70wj zSWH_RCU3nX_W=-X$1fSXHBEyHx1EAgscG5{s-Gpgm<5`4yiOnrXwt2jN*kQuMgly-5vVj~p(YujBZz=g9BE*GD=!G9`#`BA3WyX9BcZtWUO1B0j4^hEvU zRZjcs49Fzin#fPrr08Uxy<6zbpRlI|1W#wZt7zA78uaM1(c z=%8KkV)I>tcLG7sb5_(GO#vo$obwD*!}TK|yicx@+VQoRpT^n&U7ArhqXzy74|}L| z;4(p)=!9DFk?qaZNk&*(YTK3S!%O9z#z#>2)YKIF#kF9lbnz*vUf=jAV7*F)kEh<- zZ7M7QYz_42Sli{TP2OGr{{0XtZqI@5C8u5e$1Yup1;UVe9K-Ur(>90S9pAnvw(6m(p+_G#`;U97z-cvilNr+J_%@Y0Kq5=>FJJ7DeUJF zh}|wcnuY*<;&*w}34)0+$rkHcX87=Udc%76*~R1yMMqHGq8TtGGYlDVg{u7>70x}R zS#c}Q1dFtZK$1~gsu{q_cW%>BGAqzg$ss+B?#azD4 zXac~_Ot+J>y?*{UL)n|S@M8g|@~YmX4|rk!Gtyy!G+}{ zC-KD5@gDeyqPr_T8Lw5+69zio$wm9vUk|QHZF)Z66fpB*_iD0SGcgj{Vx7k*38tlY z8)2^{+QM$AqX_j@k^`Rez3LZU()AeJIsG&(CHs%1ORE+1{;O24(yn8k10}P$ka-56 zMC#c;mYnfl{xhRzBJ5xBMwY?91Q*kV;^DvK@Qtp4>pUkIXd&<#err~Nnrm)AQxVmH z-jKEcG-7i~WND_zf+U66r>&dx3&1YWLA$t{o#w2{*`EeHRK5Hm-j~sP9I<}B$6iZS z+DB~gRMX6J+j;snEp!TqYER&sM(R{MS;wz93x89w2-FCd<&*HwkG}O_JODp4q-7=? zE|;MO4B!b}SX&ozaCFp3n;!o|1P8nyNc*DL(r|4b{Xb4j#QHIF#4XY{smv#?eX>>l zyN^l*6FkKKR=@S*LnatJqOK>(>Ece0Y?FBk#b02Vmim|blEOB~f<@>J5(X=PK}Wo3 z)}}N4n3|L7N8`>C^Xgg&3CtWY!FF+M%div{M4+iO^sz9}X3bw4PX}mm28IY%qJA^A z4C4rJOE_^5`82TTI)Ok^n}L8UsHv&F>gPm0SJ**W4nuluI#2h5m}rx@^bW;5(=nGe z@YP5Jda7jlC6IF87KscJN{90R7by#3iZlJp()`R!)1(ESw#g2W6G4Mc4S(@@oTjfc zA$&4>u2^SGOX+sJwHKItuqR4>w-e>MD<~`@%U~%l3{>?$?H~Pr z#*_aW1jYY-_5ZHG|H&0tYQ0Mav7)!qIgy5EUf;YAtVpY=xiUcUxeMX>92y0Iq>~v7T+ zUS@oZ8kPtd)eNP~Oyu*Z;`)Q?43MDM!6Q(FynNOwn}U}I2AQ5}9K@y!be%pz<~7o; zICTj5IB(Q{0c4?eB;tpTvGdKMO2Apo4AQ$y3!*A2nJ!4^pH?l_oBtwrD&I-HI# z_#i{0=snp}t8&QKKx|z|+WL|Tqmkr!(Qql;g(^Zuki@PY;?=IArR5rzI$#5fO7Ab`VMAfoWv z1Jw&&N}Th#;QPA1BLX#Mou_}Gb3!1e4VwIAi1CB!<9F>>B?yp3iPh3afk?c|y*im( z1i|d7zROR2kavX|bhf!G(&GbwuD9At0gbk@ z&K=i%MU%cKwG$aEpSV_}{1icfVBbcMxbPJ?;11LpBkW06PTU7Vr5EF<{O(b{6oA}8 z%g)V>x6G}P>F0;W=S*L%=MRrd(FiW`bi*blCLE=ebabXTdJgUhVQsi(s;sXAM3*$% zia>TpaOm_GAwBSeBoR};-ZgG3etztrQ`V>H>ch6|23Lj(!q(`TqY))#Wj96w>(PR) z$5<`amf?2(sb|g6;U&k$;FrZ^Wx{M<3ELw#Dp`=&mEVUoFH8WF$EvnGft=?5(Mp}E z^5NY~0E<>>arTKr^0Tg3ZiEcrSxcIuJ;TEpI2<4m2F!pQ{9s81L+i}19t4XKxKSAb z=j+hCfFV7&eszb*3srm=$PzSB%*={f@5}SbSez!PRL56YB=AA4Ner$t0j`t^MD4*1ItfzxR>KvqAwZfHq;-*(9j~860y?MX zHSpv|?CCO3-i&lWr{1&{0K;b+X;+&HOI6D3G5cb1XSP>Vm(RrgTa=2r z?ss0>JB-^EXGIJnU<@K!r!i0GSN{JCsPy;|a8y%FIGZsWc-4++A8~f$G_| zeSvn01`o4&u>FY6`y*Z6uF>GhOi=CF@+ZnC-9CoL~K-^$b9IoA^rb_7|Z#!zyY1_c+`MybE0g=2rdl9 zO|i>n2{Fp)t%jb3#WJ$O;7f_IZXL3qv?xQzj6AU0T;QR=&hn(i zup@6U-bA61tY!_}d<$H2d|;qx%zjE92>i`ckVEqm*njMtN$6~Pb$*1dJ>o9c57^lQ zU(9JuSDU&hJW0#vUN)cxur* z&5|_osXR!k+uU#)cgOL{D$Ni&3wxZeWmKVOFaB!8cFnov=(N`y$?`VHY1WD-J9e=9 zo?1**+NY%EB~4SnfHl+w@J?X1Wpi{b>XDkdR#8yA9U@K@4}!88Yn_wo+Kk-ckr65F z5y3wDDSl|KJ*n}&RmUh80=Yrw{A5Sjt@edNR>u{Yq zLjL*4eZ-!^UgyLDpb}n-QV84f8t&I>zFrSi)u9JhGeBzsYfa6zvXU6p{~9|jn-15h z244#M)e`R~pzKWBH77N6T+3XtpU*5e6d%X0aX=|E9F&(U)2snIB`iChP=%Zw36)MA zu-A!|%c!Ceq+SEr$(vXJ{@&CqKLP6C8gyvydN1~T>-sV2nxg1w=D}NI z9`}*`b78<7#2@0Pgrqz!J2W6J+et{f9+UV;efb!8muVp|0iquBhqIN%#Y}UuH&=8A zh$4+$vg?`P(P1V!L*TeqZrXm5YM!*5zXOK2#&otolOoIg_dI~5tXq}8RWs}Z8aO8z z9`M35>1#rRMxgQ9C`HeYrmeF8*XBNGOUp9gt|DK~VC0hrnJr7H4!i|)fEm`FpW0cD zV0N4-yQ;MEtz~3yP7(D>2s_P>Y9Cp9&-HJl-9xc|6WO%bqxQsZgJpf=~!S@X;uy`I0=dCc{c3VZ?3X5r%6&I(Nhd+7e$%vQK zEWB5qwEXkEoX}~DYHocn^OJ{Z^aB>hAAvh;C)^kF#>wd^;`#6N3xD5=1ZUtq&;Tj% z7{(9@N7y4KChYU1ZF(%0Z+=C^Iosq7fK{>{x0`M40O$8^`_DxEOui$G+;NwVB?or! zS!VTqlGOzYLBNw<>QzTu)|l>xf~;?qAjBBX^a?sFiaMV$cf{fKf8 zLX$Toq{V;{uI?TI6@9k9>~R7f7h$pQKur8%2E;{SvE&lZ$$8m`D$;n_BfmB(OG;eV zn)m^^Oa(LKcHd$0#^?a8lE6X5Jd3&DA?OS!oWqKmhu1I^8EZPdR|<; zAr3e_d(8*d*a?8&1DvQG;LM9AlkJd@oE!5vS%Hagttt!y%EGmMo1Tv^!(`3!JKUI<0Wv_wbKqA=^8?I z0Q{pKZm+bW!pi5QWetc|{oa2+_W*AB+fn4|=+=EbJK(5hgPbQtTew);^>hZ;0WZlx zTAr8(96u2JPNcG!cL4vh;-usJScdm_2rutV4k`pn{05%)V!yNm{KW$y%HF=BD# zYlOo1&zh~x3HEgf{UpQV4I$94hR6Z?4+rwxnpz38EF?sT3J|lpx`-x@aGl? za|DC|-Z9Wk{MHmGd9~{&GuA91atz1<1$E(LJd<^xfavF!aK&{2=>0&-0yq-0VBuuo zq>@M}(Bbfyd17T8+9+6EtbiDt%1;U406#2)TWF-ukG2S|xU6;0Lt2&rtV?2Hx#P~h z_@pK5r|Kf9*az`Zh$8i!g)K3ZERp-LL^FWEkYCH2Qj^jFl%Tun%xLT`kcP<6B%xpb zbIZ5Z%Rr?68ivpJm4vQc8QP_ofM6nt7%)ezfmm69f4(WNzW_=!G>c+Le*j83%vaSs zskH(pjX{54tJ#b3Urcz^a(+PCE<6)z&*3pjuT&?VDhrH4A-Fl1@2>^|JJf$= z4b6e%n+A)e8J@pm0J^!tHOaYzRm(r4@DB<7=auZNgZ{^z=H;=nN7|k5kEbaJm+YA8 zj}hPTe1Bm57qQ4$VZ{ScrX=9WfHQZAT|jK)q3MqKiLd${U}dA6?CoEhKirywuK!7~0olECc_8AxsvcP(}G^2ns3A~p5P%L2;cR@T;D z00)h-;IKv@+QR&6-vhV=@LZGX#7E#_wPf5BM?V1}{^TDS$P(%-@b4eFC*3;pZtSX0 zL(B-89?Oz|M!WH$R&OI_V5eM<{JnkI@36xmbCuG zo)GxnqSo$mRLTzx4*X(TTze3iSxz47K|wA*6gY@)VkuTSwvOwN4+M&4)^0zLjQIlr z2HKQ80OX(l{UPK9QvLt=&X@A9L*;)y|Hnme9>S(pdpyO#P+9UC4IFd3I~*_mvr~+| zxSFW)&E=;%U=KQR?7x9VM&}!8TSr`%AJ0xOc~R}ZvGt{YWIsh>c8qb_YtV_k@u4sr1l*rfP)9|QSHEKDKeYi z28TD(?;i2`Mds(Iy!3=1#i|Bxhmk;{(M@Bw)xQ>9%oNXgAwF;xH}! z0+BHYL=RrE*`KYa2Owyq<`LoShj7t_KP1*@s6@Bf5A^rx+ACZLP0FO^HZa7U@ zZ#Nyh2Y%q=p2{w=t)=VONIaIsu>&dlsj!)S*CO*tZZbJR&F-dFST&F#hOtTKCOQU4 z(qrdL{v)F!J-D4f1KlYl_4kPmCkvK|w*l1)cu|9swF{owGXoP76DmL$CK9WruKpmQ zh8@;VF4{ttAx)QX+tH)0AbC$O7CWu$@qx;7(tDsj_$2Bm;2g5t@%&pS8w@0?2axrA z>#6GMNY9APi_6jVu2ZfB-@T(j@l}}?U$`Z);vkkX8%1O5TSf-W+}z7bb+YeMlD_J9 z;KpXca$unU2ZM{Hjf)3veJOMYL4-(W{`wX+Pv<{&RKILp#r$Ge%B!FfXsZG=6lPWz zVIUGzw@OqUx* zqR?+RAW?bBZNS59x)kJbIG3~BgmxecTG4*_Z&S=}&GG-y6f?K>e>KHCtaOi*0VJq* z9!o4BUd2|=5qJ|lsGGAitH2|u-=LX~7YaZ#ekha~>YP?Q57eMlG_%+avN(N9Q<4?F zlOWEvvwD<1T*XOqheH5~g9FCqIqi_-y!r5u(-c1na59$2h5=XJN^=Hc~o0h3#UMTNCBQnq@v^dQ=+-GbUH5343z~7 z9m#RXX|OHC;SBbfR#6z*nx~@u`&GSc-a&q;wfg=2AN}G_13fP%#2tKL?V z(_>|c;-vFp&1D29D)nA*s`?LGI76jlfk^K3dG?5^`2%o*wM$~Lfv2C(FaAGTZhF0_ z78e(@C{4F?E-Y6X&ZOu%Uu*v9+^Lt>^kYt1C_yI9mS6W~yI=a?S2j!y*5_+ImJ^IK zRn>OFG5K{di&aO9b`6h4DjXk zgAya+t^kh1l{QYRS#LI<7;{Vsy||tl>>@JCK_Rj-*NX2GTl+Rdg2>SY7u1W(m~HUS z^uz|w zR;pZX2DE5JIyyLLk{`tY1a;ZJj<@?2>&jcS3KR$9oFAvSx3Ukunr$MWx(xe zas7Eyz#II3LQroSz+$kx*HiL|Sf6B6!GlMT@JVz$buo-TtgHWkRu0NJo>+s%!}Bm6*WQOj zhNCY6LhPhG5kO%A*h3q@D--}hF(*);<(s(!dL$Oh)gO-BPk<))1F`3hJWNhbPW@(r zua@TKCjiRWtT=NQi%~dxlZt9pQsaxS z$h0m%chc%Px0A4n)wYoCay>1q>3elJP6;`X{LYE$Z7%#Qvb)T}{++9)`i6O|8$Ru)cDDz|NZCD-<96SNKb?U3`=JBeCVkjSja!G% zq&1h|7)%7cX61bf#+H{iCm#8+J!7||d{zxRb3McLdbZEg^sy&a9y;qRjo)8J92(bo znGRK+C9~cImOSu%uJ+BLtr=wU{vo;mf-8Pasu?dzy3klx=WJK67`p1>->*?_f$&`nwFEd{W#vkyhGc}o22a3r#&PbC#mXt zlQ-^I~cxLprRt?+83AA;LY43Y;NjdHeMk03j}`cA;b5HeDa+j!2<-nbB!3 z?W{LnEC7U(mnj`Dy7t?d0YGO)Vs*<7{Feu*s|AZHp^|$TK`lno7rC-v)e7Ky_ z15Lk%apjt&Vf=^SPj({$IT3QI(lkc6HRUoxHsg)U>M3^CvPIvtf^ZG&E|bT5NR3l8 zAaNsW9u5KkTK-OhN{!|k!Dicna0bkX`geJSP!b4L^9%~@)%Qy@y3@zgWMiI_fnn^~ zcKUnG=8%VQ7gekUw6w;LGX**;ZSF_0i@&&kaa`7Zu%t{4lUVJ-aTd8A_gmgY#;x7$ z7T|3la$vM+QKGj{vAPsOHMiFSuZ8*yqZrW4+VZ>Xj+L2tPCS(cXzF@%tYQRg7YCtf z1SxxDtwGr+G)NHZoV+-pc-+Of9d)Dof?mGtj>eqvGoB>Y_W6B49RJ4aqpw8Ib8+`hl`XmVVJmn{tT{wKwBb|kM}mF$Y(jIL z$|wktrNiM8<3*??YpdgLIdBw@_4P3CO@@oZvFm2xZ?7u*Vd+l2DMW+kh#77>MKW^{ z9%p~X*;%>hj0E2+_B^NxSRK1h6vkBs~;Pj3x=O`fq~uA6k4nA zCPcp`vGr5!;x0xjeW#s7xSMrXV1G`I9e|(O&aL9YWqItVJB;uW>|-emB~W+ZZu~`c zwuvUWSgbKxx&gY~mMxDn7erlacMLig9%MwcK0I`9DISz5?k6hskz6Nh1$kD@zV$E? zjD6Ra92AD8S+kA4sQ+=>SAd7f{Wc>J1dS&VQ1$-=)bu{-hN}{aEm<^B-o5Ot9b`JL za!z>WGOH9CdhS$auBxZly~FHXESz@GXMNJTe z?$Xbzu#lqit>3j-8UcWYCSM1~vep=nF04w1jkP|PT#S?->q$KdIS&eK{bzhQrGMdMS7kcxFuw6MF-eAcc&Tw|k8qP2xk09;{k~X9 zCe~1uU+%U==AEwjX>YceCL}j{-?M!V%dV0s0xKdrxe3pElP)l*dgQdU;`}3pzWGBE z>(QFM)dP0y>V%s9{__BQr@WtgLDDx>)R@}| zjU~=OH7_oF>(G8ZP5|B4e*1-U^HKY-f2E}8^zry&XLKGLflP?3y!60LD5mlS40d&M zM&+c!zbLxt*1W#_&a}=mt3jr-yuAF=oRv&g14fArT7sFEM_#!)4I%6{6t$RaH0i1T zH>Zh%hru@cU`4Sv}NU0?`r)Zj7;)zN?#mWth4M?_6`nz$g)y7cOK%l`4@IQ+F_c* zwrL+kF>;M>iDJvdiV{P$?2)l!`q~3*JS|8Yaw;|^X6s*!C;P}stEi&FrmQrN31Vir z5e6pZW!FCZ=Fu5J?9bH?L2W7>Ffk}bsS^~coTzbvradZohR`Muf6vE+!#9qecv zrYi{}2IUp{CtILsn;ojdPzjnz;q0f>PD+aV7%#aFdvNa8P~Z^Afhh19iuc8xM?D`I z1#i|vYDiE@F5a(uGPS^PDM25o9Zmw9$>k7e07H&Up@dA+-^ zVX!_@2m!K+U*<5f6<$bX|HHe7b{+y^fxVMcnh-$D|iAv?+WDOc;aAA(M zUD@pqduOfXX@&W7fnt0w3v}wQL4^+c9Slt@$|c*~0hxQM9ITDJyN*20Ov{6*8*uxb z;l#OMzc}i2O3DY`2lhQdq4kzZl8ym!G|Lg@uK~#tx7O zc-*;PL;DGU&N$YTNlXlkeP^!B#?a7EN0sSy$a^hS;OAz`mwDYEFS$YKLiR40)_Y7M zm}SJ0)0hf5(yo`+c%VOGTI(rR4$y4NtC;Z3`Nb;saq7c#tx(PRDH+Av{)y{$;%wqw zY)MXwHY}Z|FNv=eu0N@bsMned6=!ZZz~61>T%LGi3bxGzzZ_hN(1nmrpxFas@M%Ap zf{H3C)^{CSp~2XQ^UEHbxn_2*M1|$nAueks4{)weYbUK_>eg=%Bp=s}*Mh7>wlf(E z`e45vooBBtq>;8DgeIc02OTD^FF)@mvf@OB6X}F@1kd%P1*AUbB2{&9)+3B>m|0pA z%=oRHQQfW@>B|L_>?U!SqsM#D3cO5GAj^pY1(;UL-s%+gJo*{t@A6=%kh6s{mC!bf zQ<;WEmV7$EWKvD>uS!0BV;i8V{$uODU=%@MtqFYEIg=Oi?AF6=Rul(DNZg5%}3h&*b9~I@0YouQ^|o_zn+|V z9Eo)zaN`03NwUU>$oRwz_GR2JlXl5e3b{LR?d2;9)O{vYhYPTJjv?{#n~6{t!Naww z(Z7Sbz_dhy0y&?JKNO}$QMIRPDJDN~?k64;!+k^qdzQ(+INch;pr?|UpQN6zTn!J? zl^g3h^&H%2LTp-(y;=ZE#eG9V;i^rhiRX8&%JlZN!5=eL&fX*E>qB!ipmk804mfZl zO+uhcfyK*(B&W!607mUOFy@3j-8Y#cDET0Li7wbZiW{#v@lup_?i;J!AZN=lNojeM z2KK6D%fXRw$T9BFa&X@-iSmN>vwL~T%yWq|vUxA?kT<~H%WyMIy!D=>G}JdsoVuM= zjOw0XEahq^^N?|qwPkLOAj9GhX^nTT&Y6W=)j3Z(K^+V#D0nig0|biC)wY>DA&otR zvJdlp(14i%RsG%@=>c-2D6sHpX3O-IGi8|!jy=L0QxL6^(p}d`0?p2FI2>pQm^nrV zyuIrCo&O3Zsc~^}CJ#KkhXyd@4nLa1sM3uFDY8gkS14>fb8^SURrT3+F;au6SJCWL zH+RZ`g!EuJq14huL&fe-bE&(077b;&lmtivOr-F~lD3iP*ZngKOUnoe`r9XW*l}B6 zGI4D10vL#i*WgP^jrn3l0!SeHkARTOIjR5Op|N~rF9605Qd1-T9q!2Ke^`J#gzrsw zhEJ>k)w7Xo%g*N%AnoX|GAY?;RfIpQYSp3sL-8QVqKKom;I}!FTmP_htF1(j`6pUU zHq*XvEa5?5o1G=Yh_D|ooxo~mIITfyb8bV&QGV)kK_P-Lr6*a`B=pOH0ZJxKzC1Xn zuS&5*bq81d%Wny$aq)0kJtB|^Hl5Lc3P`7*c&L+8c$n^^afpT{C^}m#$cKQ9W7)|; z|3zEPVx^({J20G^ib;EX?BQ&+`9@JhWI*oGWfT)=OWH6=(ilIu;fB=V^==nJM+wYG zOM7WU)}v*zmP6m8iW;0fzH&}gQqn})Oz;6lLX?(7ITz;smjx(U-pFPB`*ui+xDL{r z$n7@%FuXqgOzx|B^by6C%~ZR%PYG#ASMsz6udkG2Qq280MvO2OYl;T3lW$O&O%S?$ zpq<3XD28>i0Ln>w8?^Z))NCbSDHsR+?V*nCg$u1b-Qdbv@7agLc#VvEKIv1JkC*E! z-r)*s?yuqJ@*DjG&I(d)=QvSfjFx_Cs(e!6tI>LHGEvMgU%u<^AAoQjTi4*h#a4Wa zGy#?6o01Yv$e}h6Z>JvLxjyvCo%L2ZLs>QA_(3BLZ1o1A9qB2qDmNQ8q5tIZd|gmK z>p>L6;$_1@3;fJ?7umQqn=`!h1^k8wFEWXSH@uM`^7R^i&-NX2uiWkL!?QlDp~t!8 z&^HhS(fc{Xc%v-zN6kIoj)Ovw@yGf*s!=;n%H+l?2{4CDjtCJk`3Xj}<8s$BiTgwK zp|Ex9cb!N$><#6XbAs^a$o;D$FZXA5QD2z~XvBlgMWPU-iHBeFW52f`3E9g( z%r6uP3sLc(OArb5EYAW_>V_LvCOlYtV?zUvrlO*~IiUOj6RYzhdxMbZjQ7Wd>H<>e zpuK_GP_UH*lTr-v%S-JF&AXLNhFHSU zBk$8(FAj6R&w6(v7ZBL9ex_c-UpBMt=u@O2wWkZ(862i(rP)@eD5U-#2330^~ zmdrl2#B*tl)3gpfJkvE$$n(mzt>5HP&vn2_)`rlh@psZ|CWjXtlPfAJih|~SI-9Bi z-OCR&&{y;@-?edoF(wJbkoS-VnAdUi!UvmVCO%)sGIMm#+rNf#*@ZYVzObK`A13xi ztod7QBvF?*V}+A_){uxDrT90U(5L^^x0wp(f^Sj>lDGm?{X>e54i5yQ_eHgnip z7=-cvzW&ShRVb{VrL2+r{!t`Nwd`_*Vkfsn7t%vN>6ptAk0ZX^o-K6i_RUdEdg5!V z)u;Ch+kCU>Q1%Uo82xd5btA6o^XoOoJ&h9N4A{@o#36KOEu(&{R{R`uHhR9y40iOx z%Mj#yv>+XTL!$tDAJDg-(SwQ-#7>lf@sn8S)B? zuaE12Xw?cy3V)Zy`*^`SqM6YXADcdI!@xQqfK|N<9!Ics;=jh&g-8jb2NmYxqYv7A zhiFiVsV)g7EG<+SZ!QMI*m(Y=8(7PkuxdB+YoEjvp0-gvW7< z&!kQ4k2OBFffUbOpBJ2H02S2eRYyOjyYwfY_5$mp&oA7srcaw(}>#c%(&we z(uTy1brM8R)u_EJxa_FeCNZBm^_@>WCtJBC#_7}x#7wgsqNw!F^oFKEo4-N07nHO2y7@F)u z2_p-zXvC18WpEw!xfO$4x+sN?bjhPekC(W9xY)k7JqRAk2kW+Szc@|SvOWzmDnywv zBsd<->Tm`AxZ}-5zu|4PJ*A>1b2%%>E1Uz?RA>>g` zPL2=g8O%HW+M)HgP#yQBZQ|fgh!{i_Fg5*`-b0bjlXrxuzM4hAA#w!}olLCSPHZ_WTXKvp2SHU`>2fO`Mk z5HO>I6BvjM!Gr``cg33lUR`-u%F%Sm;*D$bthVkZ9Ujm4sSR?+g3xr;eYMmP=sT1* zOBkJhjtR8Z#-c@YmLdF}%_9Fd)RIJ4kk3&k|K-3pL_#L+eq~e3veYk!&P}lC8bPsa z#*}L+8OMHHl=&x*6B$r@W~>U#HugwbeF+9<01j1u6Fq@-jS*Tj#BxP9~F%7Zrk zumkv2iyX{#MpZOm3;r^!e`2X$W;L`a%+K{Lmx$&8gdY$1EJ{*V=SXgi0A<6n;c>9L0QZ z5SMWyZNNZ7!9tfev({@+CPn^w5KjrGH3P%}@52S?RQ;X=@iJgK58VS()_=1DjMekU zog}}jG!lyc`U%#R`7HAjuy`zUbF5kjAWj~()UU7Ys6J{{v;=me_9N~MqOM(u56(xi ztLe*u0|6`!Qr7c8O#c})^!==GH>v%3jOL=P%4Yd+@x0k#?-S_qi8(iDJty??hQ+0{ zo^vfbnhNeOvVu~>4>lW_%X7vM%Fl59X+NmQ64t%OGV|RK?jF!+55BFba98GR=TB4$ z3YDxYWb&71RM3Qw0wfg$#S3tF@3jRL(-0s5;<~8GvDL~Xh41UFv~6MN0l7FJ$j=_8 z#nN{L+MNc$P=DQaMO~#dZ_<8!Z;gg%KeQLxeFE<`IQat!(kUH6(S3RqJ5nQ_K78Y& zD5B4yL2w%|Srisx+RfA_J@qK_i*2k>L2a*K%g~Z+r$B%_5eOUrGAjnxIl{dB0Bt(d z=?nE}X($8x;MW@Kk|)FIw&*y~ZHb`s)G1fRXk~P=yru;CWm-OR;VQhWF?MK$#Q?A% z?B*K+R!910W8-ZNvZqT`o6A@s<^WDDw~wjZhjop|h>C{s&)MR(NH8vhT#z7^JE_Kt zV(auT-xSn0UU331Ou9%$Go$))JS{lBr88Rr(lxl-$Qw|!~i;@2sJ1B7= zrn&^>plL;{4~h8MbaN-7>hGV##6%8|1`6fN$wZx;qGDao&J}KbiT2`v8S(NHFyia% zR1)U^H$y}IlY(S#$)w(Qc)jj;IT^U2ByCF*(P|F5y{@NnJUqX%3JPTM_6*DNO|o>o zO)ZctAM27L3hInfV-q}R-GYsgTzTPyO}GCEE&#bDYY7@rg&OzM-=eZGJ5Ba|@zGD- zVC_t@3X8W;rs&(5$5Y{-K5$`-BcP1(!Ml*@-%x;V5_eU;4h@CHI<`!pIbeT{CpJY( ziIfMCApCXs??4zwsZ2{688?Ius^14RNHORHAM}(PbgvB#(uZD}Qm@Z|;nhZKZnoHi z(N7iOGIP?r$x~^Z)0EBew={G=2F6dm?}mUaB|{SBvkMf@l`h@EQ|j1AFf&3w~}au#@;FAk0yDgR7&cC!V(PFV($GCL_`n;W5 zq}g(scm2_7s#Mp?WfG-n`OB9Ah@nnPdJyw%mgn7TbDWKfoaZ5S;yt<| z$VQnR4O>I<66MkZkk=@g3)_-nf88Hs=B$Vkhuq+;8C4&P@w);;OWB6g*W zpA{>l2x(n1D(86>fQGvMXk)+@p+mSUbz|f)YeBytQNU_%Xaxch9kyi)Y+@=L9VDx20MJ6#%uR!Wo3A|G;`~cM!r}S?R7(0H{K{*iU-~q^1*e0%VCxwnOpuO0a zp8V71kU$jEPfT?EzUZKiQO zG4~`8!QL`Z9oDM;`4`M6x;7hHHl;n%CbO`wc?-9RLk4}%fZ`A?DnFL z3tc_~=~P0WWRnLDqRlururjIQyfm+Vmb-H>(nG!JGqgF%M++R3_!fh7{&Jcc;W6a0 z`k?Nq-n&gfJ?eZ%Cc-UA#nPpXKST`KjItoy2hcU$!XgHxZyqhbMRF^bRA52AhpOP6 zchf%!nti5P5m7aN9LI1NpK(dH59%PJ$l?1Rqh~X0{$>Z!Z|VQ)YZd7l2X%q}I*z*F z{@oXyeu+H#0e(d?nz*mVQrL&+Q3=Ca+5BKc>9V(&dO;CFx((*{8H&5n1YSzo6!B+X zx_BFdF&{=C;_x}DFhtsyHoFTJAyRR^(NjF^nT9}N5b{BaZ&FGig{#zh-_}R7%>o;j z>~VGR+{~2zS@-D7N9*^N(#D)k!TfPdG6k(19g-m8Ud9rpIm{2Q7!QhK9CZs^V<9ha zn}FD9d+B@2313cf8W+RPp4Z5@c<>;8Abr;`aCj(e|1&+WE|pd#4; z2oOpHG$@GYQqBY$ROUIx*#d;ryks)Y(1#~V6NgmTWmz%QkNC(HT-Jv_Vnw%cb63#Y zG{5BK!cO~GRCP~H20@JIK_t>@rb2CgeCk+V%1?XxOmw~Y7Bp|mWSvbsy;w|%m6-uK zzqRqJ?P08&SLa}RP}Z>hpo8hYh_OSE30W;*Zu|`CshU{E~I%O+NFol>-TB%FZQp% zX59*ycNgR3$YnZsYpxs5G|RGg0U@j4ohu~ST(R!zI3a(2^tw~1g#9cJD1!l1&}i?5 z!(?OAV;d?V58dUH`y%KOhlv;116}tgCr99$TAe5`!@e~6DGB6x;Mm%!@6?_{xd@ir zH`a_8v{OPUrSt^@LpsPSGp{T4p2?`gFPPl5eLc{sz4}x482Vp&0$SCJc3LylFnysb zs(PMtFKV-)juLzS=JQ}LohT3-#MyuPVxkhG0rcd-1yLO?ngP8a&3S znl)7VdQ>7)Oe`BMP27M19KGG3Yj%D?!x)aDFsk7i4wt!#aXO-U?@ zeP1X-O-NYutxED8W3Kk+-w@Tn2R3qACmMZ2&=<7i0$I6kDhvd8d@nCKDl?^cg4W$m@-rL$V^YsjFYqGf1xOgkW={da8!QQ{czL}1?M*5QC_jJ zANhr`t7ZC)LP+=A+1W@&Xh|vTCzv<#HJRvoLt({{IjD;#bT|q}Xc+1OmCA1U*DtH~ z`G)98-<<9NS0kj8aXvA_`Q8$BT=n+#)}Cu>Sg@R?*k34rlRY>C-DJh~5`}?a^_TL; zc5^bUXuOsb0i~~u&a~A1QZqy}h#@?i9L|Xg|Ad2vp33$k5kn<8CNq>q`HOpfD^n!g z*P}ZFqh3Pz(dL||V4Z~iRW>f=U#=f2@~U6rguE8B1(&SdFOS{{l-k$LSOY(6*2pI^ z3R64lJ5ME+RgQ2v7UUoNI4|2__H>h%?_PoZe^YG}RKtLg57yxWuopK^nc!6fU0TG? zwNLI=R_8YY!OdfB!gBG2z`mo>!5vd&B?oTrUr@k+k}{x-%_N2TWYinO06fASkZ~fw zGHwvECuVt@5>M=A_k6(#J=>KtNnV5qk#{bpV9kZ5*-)rNSMn3B%B1U=P9w1YE{fiDTjZG}EAYqx(l<5; zra`U(Vv3XrVh(n;jXm;+j{C~64|&Wx5nWy*jfT{Y|kBLd2AVB*t3=?|JN zo!$CVgSx^HKCc6k*#rHxCl(LFq|?*Prox;6?=7+8?Di2?5X_SBRUhwZkICxW*vHSM zc}$shvm*;ai*HiIAx%WVmV?z2ESL0H#<>-{znFYdI<~C6KLi^)7f#0Lrj9b*YwGyY30n_EDgL zo3u@#V75A|VpIs5ZgKjL*CwC$<*4GBh&0Bn9VDejHZ%32n<2PcDz1xKNtN!>ebzTw zpT88>i>mUpusItLZG5`V7msGQod$ETsl8{@_L4InZqecPL#SIri#kJbL^VZH{s*6^ z3?HFsXn8)In|Ay)>Wia4}N9-f<(|?CTB|)6cM?t z2MIlXMuWb5^4XmH^vsn>TjWy?UkQX4tS%tpLW2pxeI97hMtIFglFg$u=945~Fj?T; zcp9paJQ^rh0PRifG`gnVUS!L{$m@f!a(0ufNeD|~L{(h=qVbA>CYqi#pa{v4s)>W$ zjUsJgQ&`8+?rlm&d8Yh>ZKz4e?AInTWO04wt9wa{;fpIEoTa^I-(*11DfBM z^zLz(3=ie)%5~y~sx3snGMXc;1f$J2DXe_0kNGQ(j{XE*GoCC>lJ5}nMja7p3SQ)dYU>>B+PczpV=GC zd~b^`Mk4}5#7q}3_qO0<46xu4yz>jFn2g^aBcliR(<&Wa>U)VOfq~!SV(i%H6ZkyK z+u!8(W;NJ-`dbu4j(=$XOr>d%l5P|sJMSLNHZg7?n?LIdg`B-y8>e`Y#+sp_3@-$M zz#w|vBc{(O*hbI_Q*mp&I%l@)hTWw3`x%&Tka8g}(gZn!YM*Z=JD(=Dm6+aKeya*p zv>)r`6*gbJMW{n28$L}oveSHA;yUC2v+S<|_#3I6eJ0>%s{IcM!4;7;N9NvKgi}|( z%3q3qz4xuIrGH_M-cH;iPEg-}E=y8e8J~CL3kixMtX;}KxH^O1{0(nQ=_x}Er~WAj z;qGUtQC>k))RGo*(`Q|z6qb{A;kN9NQJfOGr#;I|QMFImeYM4;-jyMhv)pi_{5G$* zOHFZu^i1=f?)H~;L>>s#qNdw{80ccL!{10U6AFq>A2t!PI9#_S9l7wo3Yc89sctAT z>#KAke=wp@1?Fu`SGy1Ec@^DOe!NsZXEyvC*^-+{UEw#sSgqLJL^hrS_DL1*0=w9x zee_AiTJ{ds`Q>vkqEWqbFg2{(?onUQ^0DVwafiYFmaUSF(XnEMvcXAJfC`I33BN;O zj;aRu$3^6DqP?-C{$`!RF~BqbT%VQFtX=mBS3mRd=6=;MtmlapvR5~g63Y1LPUVeh z7R&~oiK?3_+kR&j0vd1m##AS2*7PvLT?{!G`Pzr$3}*0<#^ppHM$$sOX23uTsr>tp zTC0Gg+=s=MDc(8O(Woj0iobvCo`~Oku&!*d_I6>X+tyXkXvLKFG=BO%Y!jS!49Sw! zC;8+-3|~QMvEHAzQHFDf2wW(Q7LyOho&S*xztnApsE7T~vr1upGe87E;hazDw#z3! zO?QpIh9qlbOS~$Me)u5XE&i#(_DebPDSS^#mCp2$3G`}m;^AR5@6myXAmVz8WBB6) zMVrR-6^Uq9A^YhfMk&!(zkE>A;PVZ4R85ChB;UWe{nY+VcwNFEW+P92n5!_L5c#V` z%|%ytOGQ}DiYUi$j0@v^^ig8X zsOVROk4v9izm+^fH2iv06n<{e!{q+`dOMfh0DCF`Qz<9z4yWZXvF!3K{`YwPYG}iy ztIYw6glwDrkLCLNLK|Jx;+)Md^reL0OzL}5jRJ*nWh^ag#N$?tLNkdu{MmfqDmi0a zbb3Q~cDE{{l>!<1#R(eKFrdq~?<+#Xfh9?k9I~7C?9?mElL!H}sAB0+qAj&vfkoxk z9nJfE`l6};=TaH;osHWDuNpD)Z2tbrnM%udoi6KT8hNP(hBhb_R2QIu&B&eB56F~_>bvfqMGzYhKk znmh=vO=I`Hk`crSIc+)Bf-jhAYCaIb0F}M{mj&p=A1%h_cD8=LlQ^GGn3RrG>s-)X zR%V>XHBr-6SVT|QK&6fRoHF0&HIkBE8Fz>t%wF<`k6Pptk6L8)YD(_+N`>o@AJjZN zIlLm5oneXYHxo(#MMzxh>5HGT$3bj*I*%9J zxRL?l2g^10{kUj798vIddOoDEG_tJ}bNKDw0AJw<4>@!n8oJ^6tSFH1S)f&fae7E2 zfvm&BYDgXfh>v`+eHFI1_PoRM>x_K(tdm=-(ceW%Nw*Za=7O4MdCqlN&0Q*T#0!Go z9`b-LwMNI(F4Nt#H6-Z}6xa_5F>8FR%6-p_+g{wHldAGVzfJcK-s7#akQMY#|0MjY zIx3R*0QdrLv2c>^Y=d0m6_14p%&}|_xF`KTarkYpf9mSywyvBrzX&LzOzRg)XB?k6 zw%P?3g{ElJQd7IO0piu{Nyp%hi>O@u1859FHXRtnZ40P+JOaV$!G~r53IQYuVh?L_ zIYr3go=e&domW;v$@$c6`MKXMRJ;rqTlEF|rI^%=iAnBE%pZ=L>&mGxEc%OJz6yc7 z^{tvUdxk~PFV24Cax=|Np0}RAJnM%j90pX>nfI9yptvG_LEYYUvJT+suJ82jUq#2~!_}}RHr|&IGT*@y=U+m+sI^ukos&Vk#Xn@_uE}>2%WteO zXn(*7#6RM8)>rNETZFli@vb~Rv*%*2)IqJOVdVRi`GYq8uWL-sOe5H5q3Gve%Ju4L zQ^-n7py~%RfT`|G6~yiQ#)twLTM|eoEKy`v7N*Ny0SAHvO%=+BKy60x(WqWzq{@0G zlEyxQ6Bg4ye(oOY1fPx)$YdUC9CWj!6r=(Xry)C!_mGz4;+hm$<7V$By+K0m<$C{( zYo9bKRFH2roIV!6_f|@m{aQlg`M@AA} z8IQg-k+kH$+l#4Dha^u(D(r( zZk_8`)~-Zn@u_#EM+BkpMtE0*JXw-BL`8?F<>!^27C4OgnDDp7j7|1vH=C@o6(H<|-NXm6F z(podri2Hu6=V=9u;p7-6L|D9Ns>T4mD7yAVk`|Dm9Mf6UGeR>-T7OmUq+~JME%W4%SecF-|mx&q{+8+buU1-nX@=>9`5ncblLctN_+Y7)L0I$FsGE zig9bRAaQNH%FdK(021U*A4Ej(ksB5=EA6g4Z3er^c*cClHr<_C-6>Q2zTz?sAc09J z?Cl8i7!lAOAF&s4IL!$i`@*4lGZBsA|C_@wfZKE5c*ALa>P9$b`Hp1HnMLhM@Wp~p z^i=>QatiTC0UC~zil8T)UlLsSg1Pqt>yWft&2(hLhlkuWitmI|onhmmN{4@~N3XX1 z0{#|802$OW0^&fl_zW+{W|e?lDhQ9vS&L5n`8+Yv7-)D}5touiv+#mvw@HQ8Fda8= zMAPiBcTDaDIy~MX`&}a^4HInpe(+%2SF4PVw>uTc*!%SYtA}6O5;ZI+0AInQlx<+r z4s;e=0z}}*pH1gwDQpJ#T^qbk|m?l?P92yX*r1EB6G8) zd2nGJR1ya>TVvI-dKx@VKCVkCF*FPy%}6`>!(OymL1a>im(s*1_)O{UX|T|n)j5JN zE0qdFCCk| z6vn5l^8~CtV$4;QuwAATLXWEckXcJdSFe{2xPeOJb3*W)EI!cCFS745Gd!+kRFO~) z@@Tj+Q{LuWmokFl5Y}ksY`$FDsBY?hGv|Wq7ANmC$O9?>XrRy>M!|~ahANWll|Bh&G^*Jws3H8AP z5rXK%%WAN^GGx?I=kp8$%|@}jGcRUY5Itq-v}gF6<0|hw@6QUA(O*-+JABbx_Z;L# zg})xn$_1kWMzaGv5du{qh@1G82#*y8uUXtigSK^*H1k^d`&vK#c>q@V8d-DRqPa3!I$q@x+3>_a0cZH_1kgi{1|5Q+#hpJ_BFSVh)vlE4O2)#i?#fhMMxzb zx^Gto_goGM2sIoam=?ALmJj_vfZ|TUtC^LsWSWfhv4e8_I^jDI?G_=P%OpmteDs>R z*THV|Al)p!6E?YE1IC#eu;u9xjhW=Msq~~L|2`U-PDkTr(tmGE?;Fh+)%V_xBzkP) zJ;-mnZK!q66=ikLncDA)QNwt6%nS<$I*3s~*}w=}{HzeevcURZ1Z3jj-rBQ}T8 z8FFOv#uu5ySlmaLPD2%Cf1|}{yq-+3)ZaKaRcxU|;6UnQ)4{bGJpRbgYuf5U#$F^A zdoAzu@O4^b8;E5rQ8_+m>7e4{C5(Z`MV|9SUg2@u3GT>$@)V^;6bxCMqCP^lIUWB= z@+f58Gp|Grk4YQ--Qakn9F}eV6W(9Ry|Y{MARMeQ(8;XC6>1m45<#n4wb4+NbbUr7 z$7 zPL;zdOcRR%Od1^g%0p3U`EuX7h&ggJP`!E^#7>$fPZGnYIVIM&CD{tyGgIe7`qN~Gz63+ikpYZ_;t?=a{M^C}&j0!Pa8fOlj(w!d zm@;-I3rI}67)dnobEGNz3b@sfh$``b5Eg~2wz~rq92N2}{CS9G^4D&PPZL8M_^xR9 z@<0jQ+48VondS^AperX@t~XC9tl~@kfxQIJ7Aj02gSy3CNGt2)@WRR99}BjMwn1J& z1TGwRHzF!X_~^Vv#gFCHl}cUL*GTqr|24NLtu{uPKgNAmk7eHa>^W!K@Ox*IC*;H> zMe(vj7{Gy+H43H0N{KgCj%o#fF97YD9$#Bd4m=_m)!SM5tgsvY}i*>V!N=a|>F75ny z^`UBaaRyZhdYq-$7w3+Bu?a-u+G+K715ihYLkWQ5HYxmgq3CB%9SW@yf7P=@9eJD? z!vbg(j}q`e!d8D=6**;Tm4(Y%Tm@aeBB&JDQ{U!>3DI}@a{C!ro5(UwYqQF|{#yU< z02K!xpwq^?Bmh8TtKxHe04w@e!I!Ir^&*4h%nl*N2|fcCYzZ2;KVy|?#N99L-B-=i z;y;$V1(2o6m%$zjRo5q{tUm31sDKms>{2!bmM!k(=qJ+^Uuq1#<6rLG^CO)4Sd0SHEjyIUVXo30XLsbl`&u_SZ`_M@=NP{&L zD1n_fqPTqVwuk6xS@G8Ks!FpRALf3#XZS5LPVJ#6Khif2p53YNB)(Td)t@a%qXz0979n^0pm>Z8P?_07k9E$sdRG`S&l$7g> zNA;Q@{r*YT`e7JZtB4sx^vt!>*}N0VTe9EZtQQ(h&|wvfscpXdpzvF2jv(Lo1kGey$2zqx z%@YjU2t<71=bu?|;h>7qRD2DdA}&pX;0>d&zssw|bHMRs3r-TO`(E#qG1=~^sXJx& zO|t|4Ofmj4PzMk~wZzUDsC6q{{fE5_QKJ3yB4*+SAZE;GY7z_Mv zX$&@F^lCY?Q7=D1zcc_%lrjaY>s6U-03_Qu4kZ(OwbZdg%Gc#ZN3jGw?wzOT@RPyH z-Cp);J`}cRvea~AbwHU&wmEemsfg?)`@pjw&JS-{-r9jilQApE6HI%n3$zi)Yv^Xu z5g&608-c!^J6LtH6h`AR0km&Z!_4Y+dDmMrPWTuBpWDPaxd)#;CFApBrp&wQnBxsF zq;}hPQo6eKmG=>mfL#XHA9~T)@_GE0a2H0HWr#MmF=dZu-QsOsy~jt8Z0w>Nj^r*Z zummW~avD1Ke=_q&Ncl+X5c$zD-$tJpT2;S-)SAL_@f*Ecxy8dNNVVY7O&tYTV8gk9Hyd z-l}`5u_yT5?;{P6emyZtTTJ}svml)0z6N~MGNI|^#h#9vJO(-HHh3%Gy20}GpT zM!UA{N2%NPazEMa`|B!5i*2u5b;2`n?3%VVfSG*ZjiOZjPS4Vhv$1^f zT@~}L01U(OIM}(D=WJdJa2j7Nd?!&=cZTCKr1qGbbl=afLAu?3aWqQUj$Ucg!moi- zSIV{OBHb;3msdrzoqxbC?6@9895uTtXb`jI$LjU~{k-_Mp=}Xb39LR&ad+)Boa#B= z)oI_|&3s8(j;TrgtsT0er=fvalnS?GOX14C`jA5m>GGn_=k?oZ(k~=0WaU^{iY~ap z>UV|k{Z3HgiN|iRh+iB|*B>O}?wIefVt>QSKF4I`yexN0##ZQf?bYmjMhEpLe?^RQ z(xG7C;5gIOwb4t7zXAd?U1MTmFpFv{!PY_O?P`E78yj0U*ocFV@YyU17F?NW zX!rqzG1-mw@4X3leV7fPLq1I&|J=#QiA2ZGj4FDbEKn949YD3|V#i{}V9QI0Y>7|h z@rLcE+qM-?At_zSPpiWSaxpYoAPKzd7olvj)IkpW1gZK?klCN9+U;8;00w?VG)n z>|9JTWkqd?pm-tfX=cZED(aAF_Ywih~Bf&T`J&bUhT}56i_*e=6B0Z#ke|)R|eB}Bxn%t0Jjlq`HX+G_e(n+>() zkD?Sryn~9M_|MT_iMHzjz!{h&yAMX&#Q|SW>VI{vqJRZ(M1W#bY^45kk8)VioEbVS z3FC(fvZsn`ZAY~0-I!Rcdazq=SNO2mu&?9wW^cgEL%+oXzC7|+(6k%>&4CPn0ca?2 zx=51v@-;rs120MC#I0=pQWgm!kYZG+o+IDd+J07guA=fWONT^`8k@4g`>#cq)0` zzl42+r!_uIQG!}k9FN|buB!&V32KymaBw5_dM%;CGWS~TYKb7RTtJ|y4zkMu6G_Qg zFqv{VQTYCDIMyuQ?MY7yC5|E?T=qq3_wOF#k91$y=}Fo^Mda-8phaz07{h>zs|Yc! zw%BUN4?w>aRUgAyVNo*mh0)%?Z)>w_k9;NPvfA9*7bpOoZdUEK4RIU_-S0Z1)Cj(M z1BAm@2a|2&_h%z}zvr}92VG*FgevZk-9|Nyx?9`0lyV2{%n0B++ja5ZC!(ehq7u;H zK(aIh;OAU0^WlUJW@6^aNMDP=1Ab#*5btixhOtSbR=^bAHq~l^>qlq zRIXS(bSQQkEje4m4Z(O3n6B?a_R&)h^m!!8;r6N_JEDdRJY3ii=f-nj*596fDO-yh zRorp(c_7$#B7=j9E}&;(%7_LoFCqnXTIf$eQH$@*p}z!Egdc71DP=*v|5oGpSC<$m zgF;4X6u;IucE46cj*o7)k!w1RWP)hfdiO9nGokOcv;X7iQIA9vPFC6k`viMzS&EsM zsBiMPzh=Yv+3~zKriM?}UzB9>A0bA$FT(RBA%Mm4Hyq0l8yTjtEeP7U*6G{c;5Y@+ zUwCr@y2Ma)Mn*=zkjsqOBR&(Y_{jL<2k~Qo-J~uU!RxK&?0kI-HrA)APIxDb77M+* z=FdLHfqh}a=jVUeNj0&$v{--3Z6IWs2M!J*L)u^0k?!ygp~Lg=__t;P-+hWdj6r|> z_QyQtX*M0R(WmU1(MP`J+da;9eLR*h##k!i659#7s9F8{r}Kq60FA7XD3s#~L=i|L zsXqj+*Qx0gI~#wsrO6I-YSh|)&j$u(QosTMy-gtOI_9Y^_AVu6{nmQmH-RfTVbQv} zyBTA;rht~2TXF!mdRXx7{Qc*4-ts1IeGCk0A;~^>qP5MLauw0?n8M0`50X z0Ox!2=wkR)Gh1tNsfj62fx|1$Z(_bZgz%a8c&x^#vQ{5->n+f(b~Fl zXz!YzKD2_oXjCzmcWLF^;|NXV3wxiwy80amY=!^6uD)|r7Ik#F3XbSBbD4O6x*0(l zI-3{U$>cN%Te5uI%Q;?GZ{zm(uYedZJFWhBe-+34*%&Cu*M3hes+d-*OeY1tcp z3OxxUlTBmmZY*u9l%Oq~UmoRK{=fRe^!G(sm@-;=Lv=g>Vt5GQ&UN^$o~C8o%arO29I?G%uaSz#gI(cEoLqK1m0PG7{iwb|0x{ih9Q zEi<&Y!aq|MFHx?4`ei?i0||)F<-HAo{RTo_^Hs{VW*rfO?N{YyUrWBqloA)SF-=W^iz@5q!SD zg8w>4Z~i=X@aGcnq{{4IBK7ZoKHbDs&O1WwHtbTU5taJbryKQyg!|bxhjM3GT7AKF zugp;r=YQ%N3>h34er&3RYd3ci!FGarwM5qpxGFu4Qwth|GHmyM=CR5l5ozLnMMPwk z;a9=e1kvcu#6z+Of%pXk_^IGWE@AFw`lB;30SJg`d*Mfb?Z~kVs|kaEuxmO@aSl|& z<=JaHG>^D5p3c2a_jTFn4)31F{N=bzZqS}n9`#|O6Su?NcE$mPUTpV0R=U|>_~ixw zfVLMm|_`18L!3#uG#C-Acg1MgWRkhtJ>J9pc9 zZ62@tgoyY8Kp#9o2uh{b8u?Nu1g5^nfN`-#%`e#;*1uO^kRpxSqfy1}mKv!(+=kNcdvHO$v)n-6@7!iD$iG2v1UVj*{-a>ZLHLorT+J)wR~xva|#hvJ<+_>Wo3DO=54 z-1Ta6ATrL9(#~?o{zcXxetU?dKm*Y+oMpjQIwBUAtInAmMp&owsm$Wb9}FM%?qCl= z14iTZCVcay2lv&LeYMl{8y>nAFBbZ4bQ_zC#HJXo-G;&PL)M||MTUSY!_8srtTqcX zssHHsfbE{nl&I3Yaj)d)z+@0*6!wVtab?v6kqdO;2pCD%0s2Nh^-RtkaNVFpWoJ8*;*a-a~aY7uEsHh8Y% zZ|m9H&~ODIp@M=o5BV<^zKI|aQ=3waFy5^{*eB(E&4!aUW>Bh<_UE{cF%zGqu}~~Y zlD!~d1?{hT=tAvKd_!%n-Sf6nOT`Qlv*6zO8>ts|j3I|D{HX!Mq9x zt0`>pccBty0?9OC1Dpd2N{;7GG1nWgMAk=yjQmbNsM4p9^l^>{2u@K5U%Fw3hbQQy z4l{APxR<|)iCtia(X-J;1j>4piAhmd#?g~A5YOmn*Lu4aQKDWz4c3<7hTN| zB}B>avamBZAn{EW-D)HIN@o39K>M*_zx3zX?fAzf32)Xn z=g7R?Q0D=b+(hC109csEmFp6ny zhDDKnN`QD)3_uLHLI~X5*w{b?b61$y*x6~M>AqD~>4FFI%V2k@5MFT=F%W)P^wuo6 z*mC(F8R-0-_wD*KEj&K6y50R4Y_xq6S>yH{6qJ!MA9cGda)@umcsd6|I8HElNqmBu zRNGr#OH5P_6IV@Zm;xrO_`9#i)_=txObL>p7ivY*TgCp2!;XZ7;9}w{i$|{>T;|im zxp6!kSXjx6#FY#6@+cqt!gg>s%aI$q6}g_90gfles?EW??^fOgg=?-HW8HbPK%yYl zt!s0y2KP))rN1`av2`2^7wHF|(Ecz>#E*i#k-fa#hx zRV$~Pn6-jrzW|m2H*D$?_s z#Vsvczcl~op;01^kHTbv`^TOdxp`f)(O77g!Z7#&r^T2Xr@-8czA~AggyCP@tJ`f} z=wM`*xCc%s`2sl1|F_=id#j<<5`v|1>88`PRULzCPK`)Vh6K7=UM89~oqo*w*f>AU zpT>8hJWo;b@b#SPw~NKIqOgSk?8r_r&!PmhH1~)5#z8%&f2$l%Y|>h(oFm*(OGN^d z`&EfvvF21oOC(Ev>3R47=J49OF)*(++`~xEAC0$22w6~zK(VNGEq%RcD$n~S{PSiz zZg8kTNTb{9rx|+@0v`N%Gu+}2_Wt?+5^fgKGP&#-G}!YAr%?E%>1-tmD} ztFJ^ZksjrBv8d8YjN|Q~01;%d&&J8n^$q569$s_=qi{Nqe%Pd8f-Bz+uaNes;bLzj zUz>xd>5oPY-C&gj`&CcVWW*^Vp|y=)R1k}^mnMwE9hUL1FU2MlproWj%=xiPkk>^@ z4p=IK`Y2o(x5a1fwgmk;xZ2T`~egK0LRk|mL%5W?EdsKe|`;Ll;_aacCl8c~5d&|b*!m_F&6Sd;Aj6Mqf^H~Af zy$-rry}{WHZ~FvVM))V+zzsTc3X0(`Z;Z)eh)A#6gOUY7ZQ62#})m(td z@Z`JNotXKm;M1$g55lv*SaUUqImlnSeC!Ta(dPTk*6aGW<;rJRiWR2VeS=~vN5Pqc9m#jzoBl+9(pX^8nUx#1E2N^P!C__wisK}$EP zk=RPm&eid4Cl5Nu=t^?tcI2)%4(u(fS?uyPYe{rfhs`)r|7kLV2;6a+-=bdu9GQzF zw^-)a`?{3hzxe;zGIVr;SxXLpPZ&TFrGTC0_Qht`r|oQ>0L1BEFm|)gb$<+lK0^N&#KH!Ph9rK<}D}fcR7qp`owE72HMuQ}|`oB=iYSlas~y35-48 z;|F9bTn+2-em!NU49LJP|F=;Y3966L7}X!dC#^510L?G?$oeF&+!c3Llq~XF$bhK* zHI>M$8FtZMuA`D3LeQmlhDhN%$vDT3<_9)~bQ0^K21+Sb@(7wLbW9f8Uv6)JfibpM zOxbMM$+l7qYrjs0=$@hB-XFnNW#`aexz4m2;wRMDL7ecU?tge$zuL_H;=bXKA=Mu= zl(BU<^pm^T9A)k}Du#C}lk=8%)DH)Qd zIAAHZ<2LI+;&11p?%V9FAC&mLDgA}qMo63Whq^uweOkNL%=LwpN)ZayHntM+V}kn^ zs?{bd>iusr{(%O}-LIi%KGQ8R(cy!)#Kh@Xb$B4JyidEg+58|@zbI4|4?y7G%f2Ot zXTf|&9a6NXo~_I2>FH;HAmVlexLJU6mUf8^%#=EM?0ahrm|u^d(B;jevC2{ZW+|@# zeKLwqV{TUHFzgKjV-uteckvIs^h89lNu|CnQo>k01qxaej*CNa`0PbRyW8o;Y7A;M zj$d>i^R9yS-4USOV)bI_F^v`5>uy2uHRhhi#G#-4a6o_Kh5Cx{P^o$aG#y(*E2(1w zM6HNjTxgM;by=fKQZ>bw(pAr>{}-i{cU}i0Oe>WKpz2GhPf}C-eMz`!5EKOwdFR|3F>&z{Y6 zpwrsMxRGKmnTR@;^ZLYdyS+tm`G9SZ9RojxXkFarv$&pKwk5{L(_Vrn03_5~TSqBJ z?Nz@wb#QXIp&hW^?Zn&r_5H{p4nUfeqHem3(S}SHAQ*;gP&H;PV2Tv;$cKp8^c4C*jG|-B2cSyxqkM z=OeiHgZA%BIQVX--VyM;Xc?&O1pl2yu2jG_{bhnJ7EdL*>1lQ6y|_F%59ED>r^|v| zTs`5oUjFi;ZFGR?n>O^sX$VT8uo&>&@VQsr@bjBcab2hRR>)D2x`gdJHF+e%p)HIS z>e|%j&aNrB=c0Xm&JZEV!O6J7Vuee9%O5}dSOPaeNF-0ZdAQm2U zNMj`KpQrSi^Djrhg5d^#)6DBN=kMQPLsEV=7bNI1h)_BU zuWHj;jkjxMBPxG}2ex_}{I!wh@8!8H);44a0Sp;ifflYbU%OrRX~0RU6yF^6vr=I2 zbc)pR;2(3D6=UV$l$FqvThKv@JRTbQWOSUc<#w4Os0lm4dN76%q$c8CTgF`m0AaX} zabp7NfR}}Q#g^vgyVG}Kl!$uBez~MOfgby&pk$r(^J;A4wf)AvKOdL*BNOz^hE4F? z5L5QJVd&sJcA1sV!-(YV4S5y(u1cOpX3+4`BcNyui^LM>#2+l+V^~llcMlK0>2hKHOHzA?csM8}YjR%_+)3tp$DXY;Iawm&p$QxA!|DK0%7d+5?F%$~WeG zJp%CEA>eoqKDvv8qW^NsGxsdHLrUAr>&Kwp-oJ5IwP&hFJ89pCs3cvhZ!$$rX{;+& z5O(IUl&p-^^aou5Hx%@i47s|q9H3wErA8iJ*2?U?3fy<&ad3pAnP6koastnqgo+#t zv47tl4nWz^FjPZpN>T*4uKWvr1NZqzqX{ZX&|mo&T7LD>`{oy~aEb4(zchw~M(OYE zU$;5M1DIq`MH%?zDhh8!5n1xg{8cP$4!>Zku=$zUgJ{dT50Z80&HL63=yCOQ!o6a9 z;Q+>o-7<0An@Mf947qCbG1`(bKk|G0IY%a52SGwSMa^hZe7tRq4<@!(g ziJdOIOM8*3<=IXQ*VLy@p$)a@NN}m##p5mzvcUX=QG10+Wi=HDBA*xt!{QKgwvR&n zja!}H+?!RU{%0xRkt6hN_6n1-jzQ(lw#h*--8Q#vR;JAjq+Ns@z1WxFj7E=z!DG;g zlo4RmIoeZLDZIq+J5oAnp^Dv+K-%L%)ShC3&xyZVZDV&BFb}pKy4CUT7IXnv08wgo z*ShEBPY#|d8`@i2H`?*jP?olw+&;%*{B)=Oh?FeOyl1Uecf{<|#@^u)acIMKx?uNBh}}#T-H|s8lo#eUIlH5zG3;BI{*3Z7C)( z#XEwsiCkaxb<1bS=I!)*9V8i)mp@7G`|&ADA$21td-kFkqye#bXqji^qEvkx1+1hq z{~e;`sEF6~7jyTB-<^=6GpdXO1W#I-?ra3wo0C0P9KVV3W39)fqN4K|IC3yd#ww+W zGTnPy$EnkM?Z{63K)Fdq#?)o_OU92YQ=2szizt3b%A{q0&r_wkP;ooHOc3|!#q@@qTj~YDz{ne%s$;L zcqhfDnhC+=pbtiNR$?4P=l`6n_g|7BqT3k(Z=AP|TR{S!_sp~QIYJsrRM>JjN<+16 z`cb~A)P;H1d%XnprvCZ7tsY5T7VdjhUVAnxy0v{d9j-LO?~62fh#fG@N^qbeLeg~T z+eZH_bu5|^$}@flb*2HbXA=LrdKr58y`1Z9P_Vo0k=fbmR|cIF1iEx7v`Ve_gFYD* zMNdx9$CJ91iirsz@fhb7nxywN^Au~{HRt(PAhcAZ3)^->j*0jP4)GqPs7bwHqiLAs zy)hUinHp(Z;7Yi1c!g^%f|twCnMXn=?UgcV5Fa_&Pm-07aET8?rz9xS?jJ zQ`v)!oS@UMvMgRHLGe@t9fCH@+T}mE1#{61DE7Z^M)+54PTcMMSNJvlsZ zEtN&bD8K}trIs=^*>o`HQ>NAY2$ZLU??5H<+a91EzHP`i>J&4{obBr);>%AEw{C<0 z={41wK8BPjOVhhbBXYGfL(<|vu5Z&V85lsR!Y|C>jat=&hYUK)UR-fCpCKirh-%Hb zDT3JOQcTu`rg!+r57TiVQ`^kyZuP~h5qF~$vQSYxNy-kk(o z;~6d`TYNg`%wekms?D*NP>V4$h`$e2i#az+f*rrX;ldms?51q`IFO_2IOf^yO(!f` zmKqiF{0c(Rn#l{r!?XeZ6MvDOh>%p;r98G8v|4?IB@fFYQcWeBqYU~Pe!;DfitI0L zUFl&W*IK_y^99J^&Ulc7ar5)XF}`!thnuGt`loW*0DWN~Np zaA>09npDWhFfkbZr7KNWTb$xQUCWkRWWBy?q%YV4l%rXp=_^ZmN1GPS6{jF1%kbNS z{Hx>}FG)E(QN;Vgwpg)f%ZSXTMV=gIt&sT)g)Z$rBU9*yh~0@kEV9vS19Z^iAz5M0 zjpHAP&|n|k+p10{-^TeJFG8ZGgCGjWoww&D`*2P8ER3PiV`4K_@g%6UO$NumT$6>l zAc_Iw{$0fa`WfyCdX&sTFi*}h)4t*>tQ2<~6Z)G&B4IgWM9F*ih%F5rSzU>tImt#9VIavF3C@}>ZOhIQ*^qM7OoUtS%6Q@HT@5ksep0zl%DD=UXwyvL>*9 z?8a0f+v7be40OGTDU=d08DzC_fvrGT`|(v~FSJtw=zKNx?V{sihyPr+k_^)#35S7J z>21Ychx#>~mLpfkDb%TSz&Dn}+L5?g%ch^%csfVs3XehYr|8syLHYuhKmudBFscbe20t|MOGt z*^@oEIHrOjb^N&>)&!h=Mew^m(!!ERfr5N`s(NmBIF>(e*Tilq0Xgml)akM!7P!5( zH!ek+Ctyi?IakCQ(23D-oM*l~#n6=6sh&u)a=M=CJktSGN^C{OAAWt8X|iQ zy258<@w>ZO(-y1+vL8fc&@JJDctnwq2~rMK7+$8N|Ni#rTOx?3ZSun)J(hUw&`UX0 z50<6*sPz=I>aSt8GMFuvMKzQ)v4@CTb$BuzMgd4gqC$@Y?FnoS2WHzBbuLZ z!qvAGVVPc(0gN3esg81FJkoQ5DtC8Cm8))$Rdu1(*r`^KdUu+5#?$495x8^8`0WXEC`=k`swh??;C+!h1PF}BJmRR9v;2p5Et!VBlm2%rOP+1y8ZD*J z|As5h3fomKCPXxqOZ;oqN3cQp>gT&4@jxgr3wLED(zg$FL25MC(fxpmdm*`3ZJ-A{ zAFNmE%Q|ZqSxJkl_{!Ec3bu{y8QKJSlmb{Q-)Y#v1#o1X;vkISa+ibZ8w8gW-kI*QOf(5pA#DP@pl@`txO z4qK#8h%-Il#Zv%~Qvc0eZ-VVS*PV2?XjP!rpw?Z#HE<-GubDF)j@Tqq&tBjIkJx z#uGV)i53b$to~kHY%XePxwn441fw+DNV$Zb74`Ji@$NrPSL*8zy*}tfr9sBV#?v#o ze94`?;FyDC(ZV?#z#CM5TdTw7%R0&D(`a<4Iv7R|5Ao#tM!|lq%|!}O02N3{(BZjj zX{e4(93>JSjrS~LA_f=Rn8t8YRHt;hV1WfGsLNea#@ooUh0>F@EecvRXsNbW7~AWB zUNK?V{V+^4^^|nqvg&f25S8=b&Eo}w82CtPMo8$M&pMJe;wTIkLxK4NFJcus1c<%; z17QYW6XEh|4h!#jaB$$^%QfL>TqVQM_0J>pC>l>}ulTFQCwyuQ{PeNrCn{s%O)*zO z`C=(A#W%9jRhL73+2zivX0#QCoOq(y%Y`Xu?Qv#Q;+LySUlw0Qb+1kY2q-$Qm{#Y4 z?=^fM%CtnHAlsM&dDN};55qI1+MqU4qX4*_y*nIC2!9~sY&Tur>B%eGXjH!DXI}p3 z7H8RaWOV23$?KUsg*_>HSCsL39}axR;NOy|-Bq%e?I4vx=H&^ZAP8M90 z5N`9rJz5S2p)H*IPLYzU#8YFFbJPaSIC~}yh7HaMmdqqJJe?b+UIEOf3?m6|7~kVQyhudcR?{d^gOZ~BLp8&$w>LQFXrbbIXKT~l)z z{Z}pEE6U;Rbwy>R)!c}Z3YzHh#{JMTGj;FRC|iP~*Or)S$@I=<^)xueT!UrfzN{uw zwM%1#$5e?g(o(Tj*mhwU_>kVjA!v)DP zflCgn|B_(-<<&?W0gf)i1x+w%j`@2wm{I*JDGB2iLtVOw zMczQ?8wEq_!Oj3J!c8d5vFOdf;@Gzd&V)TpKA3T7R?mb9F^PLy@Lq0;1phpY*{3 zf1+HR{_*{&V3=eBg+^*kZHVCMm@+eSYjg))!EZb$2;h_e`_!A~t7mSs`0ccVTc^_r zNx0bFO$0B&*I9v62I`e8X?bn>C-avuB-En$e{p~hQ98fo%1Y~JFn+fE3%%wOcyUt8 z9xDOgzM{dg2o!nc_2Koq$yyha!hv6zE%0u~5*R^S>Q1AWvx`nBpkiG8Q)6!u?? z^i86#2DeC8Akw0X_cPx14#O52ZVPAq&cciWklCr1cLta@YhvL_v5G2k)i4t~Sr1CP zK0Z$P@R5tmU+u{`fuuiH*~e#log*v>2HOKuREHI6Y8VC%7DnSXnvL=6GFXX2W7bIh zt|@IT;g8hCf%qx`c*$0CeG`Pgvi=5K=2dGkWfaZ583@`Fz6p|KG3UqmE{PKEa8JKc z_4X&`a0lEJw(2U&l9I1wI?2uWqNM1Os9`JxHKzEsnjjMpb4 z6gh}A-HdH@J+Wo6w&T>{x7}z1T5T-G+^ltBhz>aGyP#KBoZWlF6IMaca(cHyxw^%BZh{!BQ*g+c=*td|VaDr^CCT%RRq= zOP|mG*8=SGMb+Qj+?|I@jy^u`Lz>*1+&y+VjLYk{{hEWRZWn|0^1tFA1;OsF|M9)3 z@y6^~aXw_a&$C$_(Jx&y_-VtuUV5ME8PN8q{GF{aEHB)npLshdp#4J#nZAa%ak_Ar z7VZUw;38!8Yme!HE?PHwEO1R1WCx}&Mx))}2KEY*HoRSrk_5DsmP%~2*lIO{52|}G znw3PDhirdXA)5=YPZ`{Q=mNau+}Hp7`P0^E&OcsI=0lYQyLpN!US+i-=XxnCOjK;Y z1K|sCH$xN*BBV#xpY!}rZEu%CVCtgq4+$|7-n^tJ51Eo8>wPJ4tS?b`adSN`-Wn~* z(CkCfDPQj#={SiuTnHni)m_Y|ITn-;c_2g%p9LDrAO-^SD`$Nckm;}Q`NU}9VU)4P z#3VA=51K-OBU?l&Th0TQj>>Y}JVCMzSe4tr=C(Fe4lb^`!jvsxy7%2Y0UvL$B4Gyj zgd6w;447*>;i(fZo|gg;LNz3y-S~`9H`mslJH+pmL9QZh&nwenp@fP0fp@YtfJbDJ z_FwQ?7A~8a{n`tH(+7WVcv{X0h?J1+*=!_0SW~N}Aif@_T6TNp?-Uy20FbbWlib;) z%Wu-q5Jf?QrKAk(p2n6u!>S@X2nkRoztY&UZGC?e59S=VVMp)E8j+${Z6$~w!Lcd>G~!5oOz2=1x%rBGsE#aFT#5o zUUBSe(jHYl#R5x{De`!!X5o;pUEbL>tqU;w`%5??}rPXD{jlx03#pMVYf+WOHtd}+B~x_3QYg@`r)|w zyC}rS3J6D85TTyf9BL0=l2%Gqsa~`=tJzeul(x#Ehtn=tNmtw5b7Ek{we>V%1!;y# z8%w)ZFeXC#12LuI`Y*&r0Y7feKTm)9xKDnom}~#h2t=NBy}H&1yPnmbY{?PdS9bA1 z@Dm}=a8lwMtxYN(C@=b)K1l=hZ0qsJU`?BI=DJ#Rpiw_jHO{su2(WInQLcvAHJjU# zT{H2mpC6%`^4U}3*(=)II`BrF3}<+nIQPCd8I{{!v)&o7#8`<*s--0&iGQmjv+UxnQw(m9b_Q!pMR@0N?QH^im)J0$4Twb zkp1Z>VpKIlxc$zFpDN5yL57C5`JnSryD^s-AAw{$n-qK(8)JJ|@gf`oYboxGW~#3G zy{ZigC}N@~dug82zs5XO9_EPBeKR;D$~vKW*hk&vRal)qeRIT+=6ytN~# zrQ;tH^7(}v1~b$Fni48N@_Aa#+Kd>1h=k(mZ%CxrKb(h}*5Eu(6g7xA_cTYgQ~K+_ zDa5c*;tRvg+}$6gr(08*0F6D~X%+O+xz7+Ci90RE-QLTbmYcnOZ^D;4`)Ibgoo+{# zOxIFg_C4>Z=hJNQ%l-MknmDs;=XctSK;5C*5V~+uE|{PpsmiwCgrE`3Q{8lvzPP#! zI%f^C@&0Dyu7LU&qZyMIy|*lD@z`c=nJqQ;Bpsd87V5tB-gM$}hw0Z$+4 z4q58zXpxRez(lsbg3GgH{(8`&rGgH+_sftrpC`u5-JQwffLW9o9|c#yu|B^o|BU-R z+vU8j7l|S_u&IzVtV1hDiD`bATV(6MUXo<{?m!pVoW=wY_^)4w%z5~KO?G$E^8T-m z>;R!r=f4VV3~kD7Is}JG!=d<+!HFEm-DI$aH2{`26D;;$LIx8{cr`x^;b;n$)bzRM zIid}4N=Hk3xCAqfM!_=v;;QDk>s@V;{`xts=ds^9+B{;X?nROUWJg}*6SG5*B4{(?A6)vN6#MVsc1~qw zB}_jYI7R0ey5}5@tZO%51~p7HKADv_EJ>aGiz|Cx8h%7xnB~}C*5_Xh%^9pJ?$6fs zgeFEOq6+k=YP1dXH$>#v6Sv*I0af$gqff9p_G_KO;*ZO_Q^m8%( z`oee79ouQp*lcX8abvTwZQHi(#z}+5W|K6wZCiK!&bj}4#~I^%*dO;8d(A!9obUU* z4oz^cF2piq95$)f=SR&n4IsR}snt2GW zCR+00*y5{u44cxqTrhb?lO`s`0jTPCxqo@%Ab368J*Qy(GoGhO9G)iNa53S4ug0!5 zRgF!kvi~QltgpH*o>(qcgh*3$YD%XC++WHOV#9s@ap7L(%VF)cg5<~M27jYxRE4FY zT3vd<`Wdd_yPn1Einf8VMMBAA41{780^Gpt7CR{(LR@fsvBT2gEiQ%Gsq7nCjQFxG zhh|@dO+8h1M!6O5MC)t_DSwTonJT&_QFj-;S7PQ2DdyO|3#^gi7<7bdM4)S?b!0?Q zB_e+kI(eb2#?d_6I+PCkakP)ddz$8}fDu0LcqeYi_o4f2tunUcajIccuFgU^#QqcA zD!y^Gqm$!GhZ5pAg8-cqAxw&pu>6+_N{}t=w+z;jW+f7SBT6r(LN1MDcL~Z^+=}H^ z>Rd6|i#Njskw+9U%v=_H*b8^_;W)eJBkBHNmy?C1a{WpMnwh=ce@ScHi;IF;&!T6< zU(s(Y2ct*eq<4`^K#{U5?U48EUt&o~(Iqk4Hdd1hE)RC4#KKQ$#yhR(qJq-Z%=|tq zi$7&x!OW~%kBD2m2E<{_KdPUKG>gDcPpGVGc;S4&`%$fQba8ABG#PT65}ye4`%S zX8#LFHzg(xev^2c((XNy1Aq=%&=UIQgV`}5BPRR=6ccif`pma+-72Kt_uiLkQ<*&< zBvCpo?xhrQBK+tOsm??-^<-mgJ0Eaordc(=sO2VqR-6zj4)8Siy^WmooqrZc!Ncd; zx7~yMfqJ~kMF79vLIn->m}l)PB8!V&A|Dj<>!gf-|OlPH!N^HD~Cr# zV4>QTP~U#sY=P4@0zGAK2vjW;{2~vZZ>0RWCfT_= zeCU9+n)-w8P-{i5mQ5{j$x`;l2}(u^kL#I?^FrHm63rmm3|Qmo>e9 z;30QS%`z!W`8Yyz??q2ZRN(OEiyp_2zSsQPH#h#@yOa|{_)OBNu&M;Yzq-s+3PE60 zoL3D)dMEhs&%V_Giw>XSpj^&WO@+tZMf%JDZFLSq;OhS_hs3|vHgbbkI+?Py&5Un9 z(Sx_>@j~X${Nu+Dy18yQXXmxRbmSQ~fNVQi?x)}F>*GR=>DdUh?2ju=RzFyqP(`}n z^V`eH4oB~-E=kpfmwB+H={7i;>t{&EIcS*wr8SB;?!+HNcNiFR14Jc*4^vKq#iwib zQO%5%bndo7$V#&z#8a~IrfF%lJ?tv-$8A^`-j`uZG7t&*w<$~iclQmqS=Dj?FQ;X@ zDTel^PQhHfD;-aP=-jj8Xv&LFjet%H-~wweV3ncXZ4T3FvllzA*xBVr(PL%lyy60I zy(G}&@Z(~Rm~>)t_`X+rb@c>$j9XuP-KP`oB;Vpy(zOD(IL>1fC^M8X1yPue&c~1*q{U zeKtOfs5r+2{dO;`>O2o1tI}=H@NcK`%==nbq^-5M)?Jm9{J%}3Iy0FeOyq@HxU4We zL*7^kj?BEPqDd;h$QLG`SJfYNMQneJ2v&3h!zu|b5%<`1JtzKTC*gNFZpwh971yC9 zjZZFzIaurW3$i$|@67u#q9w**GQuAIiQLMvSen?I{OoE(@PBSr$}`bg6t)&mCd}mR z(mNi;JVvKVD2C9rl9l`e_h=A1v=*kaem$L;adAW-tG~jLgd>V0B@vb%I`;Y#4L*a> z=PiJKJ^VFf(!%2JchtK1-brpn*bk$Q1PMfii-Y_Mk_A=(z}6dpVb>zR(0Laqm}8XO zm4SS}z(RJ7t)v}3XMxF?m> z)gR=HO$fF-IP4ynEe4)tH;4pO300aHkXO%768%>b);*rOCzWGN?Y@|lr$=?Bq;)py z9iy#7f1~uo<+}O?J`8s=2Pd0M!G0R9@mh=~*Xv7H5<~3SG^IevwYS=Mn>7ap!;iE2+DBx>lNzPi8hb)1QopX~QZ(Rz#zIq< zC5n5-II+La9&J5*p{o^Kp3X=f&WB{NqPw2J7i_!RwjtuI3hNnsAW@)H>Uxg!kdnZh zq#~zN(9|qM{jN4HP`R0PT?9yLehtxvG{%N}B;4yP%ctgu)Fh1ejkwFYpihowFzJ;d zlRvh`>d*F;rx{NGY>i(5EuEb{`StY~ofYq!VcN);ZnYgKPLN&X$no-=MxlS%w0o8OM{K0l>2%a@?15AFeDJ_fe{U#Oyz zSSoQFl*R7e97wEz_d7F$7th3tv#lwkj;j9mKviGB&y(cjTox2}2MH`mvu!jceQ#?3 zki_W`O`d7PpprX73=uIx_3|Ehxj&`a-{0ql$p`hQ1IKFa$cR*%Sgss(mYhIF)lM^X zEgl!MN-8#tqEdR-g70oC&*_3g)(D2e4JCI_w!%e2sz)$dv$cUhI=Omo^#D^}g!nCc zlqog(ugn4tHYgj9+0#b5Pc-$hYaGH6c6YdN(#YU~fAL})4>$N>k%d2BzAiXI)JDM6 zPS@M&cPi*FuH{cr)BlA5Tc8kV)B=;*@AaC`mU;M!i17|6E<@Oai-&cD>Z zH=@!}N+tI3KCe))I!Mf#Jk23hLih^X^vEVm@;Tj)C0o}kMvbGLzpI&74pX#_1wOaF zl2u}r`R2b(b-BFyRI%7;vlC(b+J#%9=z{~Vy&hmdI4~k1D>zJ_P8r|N!+3N%ShD;} zq(9uTslWO)bMVz#hpzB0QGQFMCW;I)aP#OXcs-6P)~Ywi&CrFmptDduZc`^ukmn9U z6D5v*yDfnDVtNki(<}pEKO2Qx{Y#%-Sa1~t{h%Dx>9G{l(&%|el{9maMS&00N{Zg@ z<*QzhYr`zYZ7>q!(6-p<1NDvJ1d$CSCX0gKrv}gb?p!*dJu{2VvnXVCrS7R;fd%za~ zE%P6E1{mwxOaMG=PSDeT=-CRON)!XhlQv&HAtGibo3p)yPaVDjnM65*5-Y&3ek}cw z)x{_^a}FXz3K2;HlMIgcNuD7nq~_oUxUQmR&+!wXnh~tBZc|%^IVO(%&}D%-$+?B5 zBdfQvIPUAFwm}>QTF{x7(Mjpakt*PqHJ>3gAq+U~Ffc_pDpX(=x&EgF_{y5_%?aaY4> z`)~IY>%(KkNCD*$o@Qvx?4eM@KP)LsSP3N?i9V;MDkgnitTf%SKt3Z@@gJJZsXwY0 zpH(k za?A94n;JB@NVJwR3MVPZf4V=VR_-5X< z$aw;_c}7ElPJiFvTt>V1)%kT%{7~Ye(54{%LiqE*Mf1{Un{R5*(V9lctrhq7^;k@t zNtLbw-=+H#JLDCx7h0Ck22ENH#4eFmB%Pc6H7u)o_@^o(Ez2fpXyDAt;!q7|pEc{# z?eNGRImH*g=&L<&+(-7)=bD)T<{GN;JQTcAzF|X%3wt$3$3I?{eiWJi=CG$M4UHo# zgSqr;nEWa%9S7H-kA%G8i@8s=G$&1Dm{=4kivSN%t+W`XvvA?|j5i)1%jggFzcN}T zb4FrKW!)WKi87Jo(G`s+R$GuBUT%jc-=BP6o!|lR!a*i>_GguM5R{r>uc{j3VK7Fm zAFJmpG^mwswumz|zPxx9v2sdQkAU@?JJ}(!M{%U$?BKF&w3ez`FoXmTy`8>b+b_$z zqjWN))2~mw@Ig7-lR{Ex+E(iPwzEm2&ljJPQ27;8q3jR0+u7PUpVmU*_r2(r_NSftIq+br&Q3v;R0?fHYIjooJ zLU&u`!8G86ijyz)xGr7+HQf}?H#SW8bC{ppuPVf-)YcXjxXzw@Wh!Z3PD5RF1)7Af zm;dtYx-F?yJhr*zC`~fpjP$#w6#36mtxM)goL7u#F`>CcySciwSEEJ{(cy_2M4bF3 zqh`y+v5lGd^4>CyAG%AAyP4DD1gQ$3x2Tw@VC?COMBaxvv5HR4(aRxVf~BKaBv1%S zh$sDZ#bA@?=fU=@Z>Ok^M5G&Dgdj!d-l3F^_tDLF?G;k>s$`jaLs~5?* z-tiD7z8bEmAAcpVE?2-5A2!dbJfu&DKyYF;QIQ=7tD^Md8q#7Qlzbi!CXPm6v;Nqz zQTk7KGm}0W#&IA&pCblv3YeH@(nV#M`*hU(S^K$IZ7TShPhz-Lw(QF(^o9#tC@|~b*Fo}gq)L4w8HkhaP z2gCJEZ;=L*a8~dTgJ;}At|$@D1H3E@^Xr4|-eF0%0<)(WoaYcXLK0DIHkZTBA!q?Z zWT6R&PNsQ1?iMLfz%99h@p`=Ahu_MQ8>0$dTUc3nLFn9EtkoAxJ$&vDj;}RpZH{JX-R*Dsv4tVdsDOqmTarvzJtw=)Y@Hl1WE8P=xwWyyKj`WES%;{<6? zM?T~Wr-(_1t0>FP(=*{9KU-wYn|@w9n9KZ&6TV0?I*vNlzcl{}u3p_uSk=k-o?}p{atgPF$K>Pe;)t36_jd?S?p!2;h1%sYWR_uf zEkvN>T6lQ-&T5w#U-D6N5^DG4-y(6?$j*r}16?oI!;*5rqqpGWgMs>3%eVsl7>o|n z6}Zr+&;o%lqx1r>IB-2NAUOakyHNQggoX4COxNk>T&U4KrPc~lGE%qCJrqO&d3bnq zyD0g#Wk+MJ!b`E9hOzwIh3t|0ogKlTnDZ~OMCupd3@8~|wJ}^Uq@=1^QS^>aP}zzq zLm4ygEicR-k-Xk|hp)IHT4ZHxyau&&11;C;%B;=!wEjL!6%O%R=)F@C9a^bP?D9y0jW{A zS27F%KjSO9B!fAR61@GNpDwqp)Wm5$u#f0mP>Um_@)i2S`SA#dh;2r)a|n3Q4Ml<# z+@=pG5pVuxTN9LgQ+^yDhf_WFFHxu47a&mgreEdyjgP=)gAnnRSLY_+!hH+ojn#t! zyqpY6-!_q?Z=lrgZCFT@K|)2{2*yL}&yo8taJ}eU*Lp4|dr1@2B4kvkO$Do|Z?VYr z*_13O8*E=abHXpBpT;Asj=Y5B$H6)s6uclQMU{$4Hp4tJ1 z;F=7L9nMGD<9jWQ#l)aKG+2-S4znu~j2c{ADI8)mfE(-)NX(`zT?=843lj8qgC&WJ zD13SyCiJo<3YDHrRVZfVtEDlrBKCCG`D;AGWyHadHLGx1xAu2#ImfZnAu`N`0dDq) z!U6qwnio}=Nxnz5k;>#e-PU8&6ubpJA6NdO@pCH$`W}PXBoc`s#PAWtm|uQz5Ejf{ z`R(!$sd*LZCj!YHCFs-k5cHpX1Cb)TZ~MvxENj(_sS1k`sr?289I9Ek3kJ=jpqee?x zmUije!C)Z&($dmDz{C{Oe>6B=9+A4XF?{`Hfk z;biot=#UYtJC7s>EXE-ApuTuGn48u^re%{L)(TzK^m-*oSi;?gDut6e2GKEno zANq!2B`yRj);YNbtjRAE@>w_t4%;=ZETuN=o?$I*ZNMuHxY9wyU{6-c%CizQC2^&0 zSjWQ7YIA&ip{%y#*^pym|HB37n+_^j-G|QbjL~JrH>1X!-bEku(mP8C^5F__!<)}O zKXxg>Co`H*px#!9XhRR>!<5CZB(gk1E2^!nB{ldR0Wgw7iA5yK==nNP{prMufbspe zWb%qwCC{vw_12*w@zVXH6m`9A>Jr%r4beA6LGshoqHIqJmfu%StH09yW~TBsCS+I6 z$=^0;j@_Huph}p-pt*M|*Y&slKCUJPspWUc`UVVlF4oe2EI)LYXjZyE2b*`KXJN_C zuKS92zD6*3Bzja(a_V22DC4nhKEoh%pd}C2^|C|MrUZj++dq8{U_ih9Je&wZ9L zND2PL;%bG&Xhs-7W&}a+Pdr}&gz}kcYSY;nLZ}A4)>tb|1hScb8zJ^4D~Pzdq^|G5 zd|on&>V{;8p(g%S!-Iu%eg&7d@Y}Id#6;Li3{X!jwgK_n-rl-tu9wx<=5-`sGX4L4P#72kX85eT40r0_SccpY-`8URC>s@k{4H|AE1@&+E z^f_l;%3-;jRbRqsab5sgNC0=z@b@Caws~;SlQ+14-?;Q%8fHElP7iSDezg_!41OKG z&NdfZ9m3o7aBmH@g4Uyhg8=wN$RO<Ps2IWG*{?YMm zx=z+>#Qcmh-9u|KPGr@#Ddrxx{xoMFlBnv1ZuOeU=|Xj11O`sx0kXF8U$$CT&1Pk@Oq4{mJebJHz)5B z=E|hqr9ePVvW(Nac9&i}1)FR$&j;eNP%0yd0OGC;U?erR{L4T<3}K#S@SGB1`|48i zRv75NTbvny~7FR{;K`13Er{YY7;L)~M7{IB#2PYtD5ow_WVpG-> zU?8cIgdw3^yozbET1@5TM=qJW`o81wF$;)%G85BW&ntrsZ5 zj&w%#CjgA7vMD{;6DZaWFR9m4n;LAnRX@%%W^B*wP_$zv&oTc zKr-@u6sILVZ#jzyU<_~6vmQ?0tesk?l_iG>kl;EhVqy%p1t_)s$A$6$nOj(Z`3C`V zvozprPD-AE5iR&v32>+UIO$pdn3D)+Q7Do8b8Cwj2wN~K@r36~DnTlLrS0g1K!dz> z6fCAvXJUCXroCPshlw-n4gMS2vd?3S^P5{O(gcMYHw_uwU-11{zAV}oC9HoDY>Ptb zC3n3+H^{WhYHV&~`B(4hd(z=QrkO5`<`GY9C;P8LU>#0xY?N`1^7@-Gu9AI&ja$X) zQx-*)cWz@{A&-TG639SRua+MiFF{@6rYMaK<{teAtz;Yw_?eufg8#>W+Tu1WPw=U) zKEX*5>#sUFP9uB?o6#TiDpJMB?n}Yw@zMnp3w{Pw$j!k_+Zn>nZDC!zeUHXuM+a4k z)c0K-ilp~M&aCSzdu(++cM2)#uFMQc93h$?S{bk;!-PI}iWA12B_$<9JrLJ%f(;sM zQ!f&*+m2F66Aaigd#>W8!Pui>tm<1xGhvS?rj&CHehQT`-@kO1#jeg04K>;k4JFkQ zj7aK+!qb*K#(Kv6;m$}!ZjdxodVe#D<98j|Z?Ksoy$u^#VznTd*)0$h3`;{MbWwX7 zG}we9=}Az|Ilx=#LF%V3aUKy7Uk_}GUv}R7gpPl|#)J}L+&L=kMU25?VE-S1iPq8o zCos`$8%78baRQ5mxJq#zcZ}L)XXo4M=p?Z8fClIqTe6SwkOzne3>&Hc2t9R==Gtig zT8+dQyXinTy;_a2)P5s?McEUI+TKne&|$t>k-~}RtBVN+E2JKih>kn4k)V0EdYd{1 zb`*u_{>5^m*%$yUQkH+7ueU$`;@tF}wY=xUPlT%_ikOMUrDXi>4IRA#if1HeZtCFxV@5`Cveopxii0+QW zX9(tSY0Np1@-wGP`~`0+6OG-)A8SnJBT-y0+ZlJ`Mb45yNRqQw8hX=iy*ItB?Blhl z!PdmaJ)g^l?rt)G?0@BTJ#$CsAp(oGu(Z@F_~i9Z5LxEXPY|baTWgiCjzCWuN-CqO&4#nfDuZjz zkoA9;7oB9{ZzLfzU*8Xg%GbYHoR`8PBlA_8&@eE=_yXQI{QM6$=f-3wS)iwXP(cOF zKdq+PGBhK=m;BDyQsrvYy{9aV9PiH^2XVgfZcZ||p+n}JeC0uD2DV;*Dby^z&1o?& zns*IiQnjds8j`r}BSm4Elx2oFn`aRagBh*#Vh)tOZ9v8G?gLnW=>R$5z?9^FbEmyi zni!{UIU&;JXhHz)bb#>QPMgaqEltTHFtDw&T4b<+oku0P3G(K#Q)eJQEJ^P3+Do|$ zg+WDZWxRBy5q0FUB*Tv&CWgiKDVFp7-1^6fLrAFE_oY&~6tDyI?z)wvXrH_>exP0rIaC>(ly|{+&(^5Nacp zeItcWya->ug3sinD}a)VD{k#0l7IzeZMI%kg4nVI>9@>oqKQ!Nw4`58p#@W`r?X5y zXftEJUo0=;CtIJV)+LtEaOQtS$n%AEj#S?iv^{QJ4)kxGB^;x)=zND@z{Hku!i=pW zGdsg6$@7SM*FhFTv{q{7@jhKe-}(j`*=?)@lM1K`HE;DOE_gWTS~9n@BQm$P))A%Y z3{ZL*ya- zzv~M0Jf9eGV6|-uT4e7f?aa7{*^f=Rb#cw9wmyxBr>BUDF{`!6O0yXU{j~GD&@)Cs zNpl$2$ea!a16)9M0D3!$7S@O)?tf+qBT`&w2btD&eupXyvk7b1g zG;9Z6ZQ7wKNgu+F)=g`krP$k_4TN+o&0kn!7evJU{Gu6CCI($_olhl zE}(iT;dZ(B!W%)9i$}6byZ@&IWjCVMfz}EBc=jJk$os zbz}s_;^gRmU_iiQGoGEbm`&xrBKrCw_@9gWmj_!5@|p2ht<$P)Oeg7L1N|iJiYRN9 zXG|UCvYFRQj}yLh5SS@}w!SaIu13T%b=~EX)Zfv>hny0<@#+>`*BsB68O|%p(~?_I zHqU01WoXw%eWPx9r2?(Ru?ILFKX@}@BnL;#!E-9u5oRzwo;!`p;Lp2{3McdOhCF8` z0>|E>8$%!8kbZn(1I5sK zUhe^_#8md;`ve<}q_+yWU1hsxe`x#Lb4s>kn-zS_XBv&?3k>QPijJ3>8l`aPd*g4k zJhSDeCwM)72oE318u@)P>1LN#r`E8-b;r|?z5R(U=JwcR5ek0|K7MY_{*r3j*i1vF za0p65v%^3BuXkbbE5giILLPSB2LW1-q<0%?0`k?#+=l?<|G!RiDqt)OrhR!S@UEP^ zTS|tidrEGMHtc?1r3=UT-SQrU28&4G2rq=$$Z5g(t7vsZJ4Q|y#gt?HeZ@hMk9Y>$vVS&t~-zhcSQ|*_;Z^Dh9IRVk*T7v~ksv(g>#({&pcfeBT#xQEKLHbhl z9*3jVbZf%7&wpWIp&QJdP-qaiSkx;0;^fP_!9n=L>$w-tdn|`uuh&m{htP|`X;6%( z3dp&9l`Y&LuQtoVK}B^+HF}y75C!g316G9Ac4^tm=f9~Tg#~JGqk(O>shWcBgCS7E}vgk(y5isiV468L*|~liP$p*6s7Cb zjJn}tFb$2Y{JanPo9-xOs!>1G_-Vdp*%GUH!FAe7bahi!ke67;s7g0lR_!!$QD7BS zoc?}1FLFOUk{W;gIIr%{yhLYTwEA^VSyOd>pBs$;t%UAs&DZ^WuAk)B?c8IW(9FRR z^?r&6Q+L>D^rX4!w1AR~92~d;yJ*5-zUrPmb8g^e{3w1WGS6=<Qz+aq1D$CZ``E58Ezpy(oj;-yz5v)ia{drC~iFK|3?TXEFHFFt|dnK>mh%NmCO$ zl?YM!$+_UPK^2|(P*)Lw`-P1ePnQ|PQjCawX>a@cacBJ{#yL`q#~JMd7!%I?${mfr zx*o4_WA5ZJ9$Vf~D?3=Ubj2;dS2Kd2$8P@4<0H>bd zUg?2Ij!U3I?D;S%yIRsCvr{?E30gC^TM5B-6$8t6BMv;=;0~NUY)ES4B+N1J@G^CG z_kP^ue{7R!nmNR7e<0taW9-cgBLL4HfB-dZX-&;+yPou}a{gTJc^!fovh*X5@znX{ zeER#@*69(VdveTS&)MW?EmWycnC(~;`pV-an7niUhaK{OphX^R_>dQJDNC?A-NfRtg$1?J54&b_ACJ7(Wh-mL z1$lBrx0`=+?Z>P9YG&w*PV8|_53TNdg_}XIal4D zq}omd%dhr@Q@t2wSL3?v*Lm`t!QHszqzy@2)s3g%a=Fq{mXgVR8OqiiebY07nHi8! zx6R{xsc#J-Fp1`c4NMQu{mNd}mr0|+Ea-?A0cs|LLBgdaK^nm#1%E(8B!r5I7z!q} zTa!DPH;!69U-Ud5!#j(PI$q&CGVIq{F%@ysK6V%7haTi5(a|Eyskf=*JBybtCQ#(e z$2Ok#^g15IAKGqOVskmxha%Ai;2pVP6%*_1x^H~%SfeKj#ir+nQ)!PbqSj&f$%c~{ z&t@xNL<@!Ii|>(;cPbW9wmJf21FP9}mzzt6MpCf`q5XWGZSc9*BXVj1kE~E7FKDs_ z4RQnL7GwJ#jVMLQeb{#LGI7b9nG^w0!pTdA;$2#Ni0h z=1}t}hiW{&=g=E9=i|hDUPSS3rjH3}iAfv5ld)hO zOg!E8x8vax{p;T)?XM=ck^=r>Vq4-3!p}4(=SP$k^fJJ}ihf94eTgSj`)gx|Wg?^W zWML97FXPq}ul^8rtu7oW-yarXDwWUq7I?ONV)>q#(fhX5ywi(8F9I5r!jBJ?;f?9# z7%Dw4Y*0@|lqqf^?55}a`);c@ZM$Gyl8W%Uhcr4=finm?A}@V^X?cmnk zK45>!0L5q|aLkwOcV|h#fH6N4=N{&f1_#4HLob}I{h9suo&wbJ(iU#=@>5AQIg*)A z9&+2RJHV{*bxGTbNh6dW%Z9N#q^lPe>xXfr)tS$w=-we5mpiE`zN(jVcpC=|rPyXQ~dT9Zakrj+_}Kge#}D9Z5Nz1|42}SQKnVvh1J- zk%fp`e)p3mH(*L&@Fj`1wi0+{JHx)r4%2m+eI-&2gIkguGJ|^d&d4{qc&H^f zPgpEvWVr5ED34iH%0*+RRwtBWlQ<$ZS~(Xs;`t!+BSuS?ViGUs4(b;dlMz5_B%(++ z*sixpOCPfb$J?E)G|`!{D6&PclI{ z(^4o%V$$dm2iXeix=B}5QzHpkaW#Jr-P~hsFt)T5E8*gVJA-A>VHJtNS^tl?p6&YS~Kq^Wi5I( zxDxh;M4d65+cZwh`w>j~m#L6jBc ziKjrTeXo3PKhzt(c#O?RMT;7_CrOtN7jqtLkuW4L- zc^cQ}eIS`FV05*{iwH#b?6kv=)(tW;YgbU#^jxwfaC<*TYH!CWT+mSytdxVXC`Cug zb|e-R`l6}1`N8Be#oafEamf8kdWiXU@1sA;j?|E~LIqs9;sO+|1mEY7Ta*knlYk6f zH3~y<_3W(;CWJW{w$2ykoWN$Pq)b3G%QAn9W@!*;h;=b0HoS8Gk~M@5uXNMdDCkg_ zymEoEswXG$vbl24v2wEA-4$Kt+FkwpF@eHU_g<1L3qFnm@Qjo^`y;ZiZdONGigk|E zW3}(16FoO2aL;!tYs)C3VdS!hdNE#n?7_9+ks4xRobU2{HN6P--=62)>h_=C=jvArc&yKyW#M-oq>u6+6EuGOgSc+$VM{PCbRLXdhbd~z^Rp3*FPN{ zRft4bUm0Ml8Z96{-T8cr{BB3DP1xZW0sTItjmKTsAr2Fp*Bh{Fb_IBF(G#uGVq%8b z7{i)~*QDoU0NgCdifD~yo2uEuS@gE$mT&Au*|Ty7yKRN~y= z+ZvQyS}^fL&iO$jQpkO0-pytB&TsXztA;N(bKrbC{)6w|%=OH=AWYb~DFPu}{~tky z=`A&-Ugt;$!@p&T@g}{dz#zY$^{NdKs%ihrd9jZ+pI6_wL)3}q0d#2)#e8sVya0%x zkX)6j%WM1o5fQ25GLJ6|dbwD;i+0pW%)md@dFZu}I^d8SalnwsL$T2Pp!#uoeK{y* z+?0YgjR$%<%~jbG^;Atet&zWz3vcmDAtoN!zjr$#6WiAv8N1b+HY^hoF}T`1{!2f1 z@8vm9ZI@y(kC(VhA3T5?E#>R`Fb~l@rd*VJwAvZVNbm-l>hyX`MYC4v5B_)xJGAerOgk<~hKtP+h-;JH@A+Je6A1ftV_2oh10i%K01e>_>WPAh zGyhG2L7pqM;1V5)?){n9$ru+`#5L>t%S${_J{o26XBHg^*cob4khO@cD<}O@qAZ78 z1Gig}{Sqn%oYWHe>o+Y&dKrIEGq*Qr+tnD4{&^tHTdIpZ?}p+z9%Z!Q!l~xMvs=)! zt*ouRtxO`-0OR2K-FV7bU40(-blwwARldl78Av~Ti~q;9vf?HGq!#}jONuG%^KhE% zBcnG0rw37P;$=Zkhr_$PO74{%>}9)!WK(+)D4}7%}`x|BSdD}j_;4<+?dwO%H4^}Ms=IP z>o()!;Mo>!rP0){k6K5F84n1`0xDi#lkEQVy2>Wmf52RWyXhuLX-)?%9`;RbI!{Pn zzrK!zCK)I4JyWMPeDjHywaWnpnov6{%II?4hsTmpS3w_UCZ3T@Jj~#ogZ7O%evl)g=ekbOh zJ(Bawp|AVx<@+U_PL_z}@2+?w&b@m0j#hL2RGXC`qA#7+Xm=L^dU2nb^{^$p4@Cvl z7^hGrM7L;01C)UyS`I&k3#*~`g=N$k7pgaHa+Fo8;XxhLUmuA0JmjPnKqPG6Ah<-O zdA-*36n*1kqC`WB>;H!fU{3$xbK4liT_CTfRm#f0Uf6jWuFQDMkCefqV5Tm|(PFmN zLY!V-hp3I5*AsPVQygiM@+(_SkS;DKdy{6|jo?jZ@ zJt1-Wwcf~V0(okvaYQ88Xm~DzQYv)f=Yek79*^uTZI|Vvfj-Jct|b0+u#XX!yX1y% z?Fhv3v`3|~_k+&v0Cf{-6ycEWBvMyYPhSvLVGUS-B~wAcS)DA=MTHkOT8A==z^h6GQ~8ZNfKixXQ6SyjN;5pf)4(5Ne! zysyCf_^(}N&_)>(cGy&}2b`kQBm~Pn>D^u|_{{8zL0bDwZh9t%gm_*2p~}w7>lRZ? zMju+Ls;Q|#19($uOheM)=E}mty=Q>azSGxeC@3gS09ozf~Cx>3F8e8_;O+ zdR^tQVi&xazXwe^4No;22oLHxM5LFN!D|ci z>YU5Fq&#)h3;EV}rm}aHmAZE933l3I_xBw)wyW8xu5VVHX6MV1U7%kL4$n9%A{@X-;F%Rl>P>Htib?7>ej= z`RmG2|LVN zH9Juwvz93PG_ar1FXDNa&Qp@&BXwzxN(*-1!FtS_8tbFPkzNsSOu6uC?U)vP9vg+G z0^K+mWL*Y7=sVFX(1lO5&QuN{dX|lyB|JA|%pfwbe-t6s)lS8JSi$i-*;f0HsHl=h z*DI<%UuWhVd9{3#0#+RxTH!2% z(tNYo@}_oQE|yBNotm2R;}jI^CIdb$KqQFW7fj4-49(@a3g!8?w>S5;Zs2h@7xe{; z1)1!$4DwMc$9no8h2CYK#qv>q=1G?Myf<5Lu(%K7ui~}f^)a+Q1!C2{bV9O5@k*Hm z@Cod|O(ZR;VxoRg{ZaYEvTA#FB(Ae)v*s63m-_G`8~j5POK;|l-(CH(0xVo@sm9@~ zP0VEIxOsB(7rdW5-{$_6yS-^TzlzgWX-O&7KAZ#WTKT5KmN(CAC3M+G89gJmqM!Bg z@gp=aXDd#ayq59?4`biVEw7g(FrXSyUw?j>w&0T|@kg9RQZ?X;%tTQ)po;|$u09r> zXzH6> z@gtd`lvVOcu;VA#PPYl@Xru{Zfg!CDBe{=navj=gDYj2^=J}` zd>cDr$uqrXs_redB6Em)+~o1ujY<3AN8q;MaVP=ijUXfnY-;Jl=Z=n!KTJno2|M2( zR@ce*ESOwQR8p9m@q6lLW@Z*mOdOq@)J?SP{75Cqvo^I-YzefRc)4scE=GJ^ehq3f zH1586U0nz+!v==6@OKnZZP<1Eai9WLYnD<=E=<b|S?_}u_kJF2R2w&pxmKSW6T`YgkIUa?2FKXO#*dwY4ZY>b^-u-zt4U|yt^o_pPSG$#F2mJ-0OI=h&nUMXTa&?U zfKe`Pe8`a_Ht95^kTBmw;|O^80ES01L|;5F?X}}fa6F$pJQ`>pCKh2cCNV+st*qe& zaqqQ@X?s(pgq|eJI#r!uK^x+VI*|#t0$%1%4HF2yJ{Y%mOAo`xVKlse0Ywj_fb+fV zbGzyHyW>4;Pc)@1{q4;jyk5pm46ZYT8iZ-Y^5X$#P!KOv;Al&%U+=QsjmX6HdWdp$ zPPu>w^mwHb5H)@Cddz;w&elSfdbL>`d1RH|>=h)5#`J;(B7paW0`U~VMIS}*du2z0 z8#-M)TlUb~<35acB6lO?GSSY9@%a|3Q-4X&6-ofVT#05L&JC= zHK+nDe(*=)7c$?WYPUCHq)W&hs>^{fz*Nqyiy8hniyNAMoMq8!EQ&RFG2pBiNRMvbS{?POGyy-M6*{_Kl{wGig9I$3h{GmD)Kqi)g*=1S+b2UhWg z>?_!PD|Pu}q6apF$ov;a%l@raOIkIfq(gX9W{C|4pIN!Rd_}}Fe>T@OJNh* zkVr4LjKA)K%{ogVA&ctX$RynPOJ0g{)h=izoqoe16$=$xcVI@ON-8b&mmQ8Yr0wyE z2EFtIIO3s=J_##H7(C?PLNRhT$E+_;i|obvcBS^E61;6TPSAF5v|=~l0nFQ67GK$? zYW}4A-vo^utKAU)NZmU9LTfbX6rY|pifLTm%(9~Vp^?sPbtR@K8yiY-Hlp(xhs39H zm47%w=Lr!4_UwM^5~kG31~88GTQ7_402{i329T{KRbRk_7sJ%JtgK{{O(fUR){zYB z$;+=DSXVH{1z-6(gYl8hD_9ne2s$|4pYK{>?>xE4mRMkS)Q`HgN^4+e)WTk*CuW4- zh78YQML|8DUEC{+lhim!j;c;q>D0Mo)-0YD;#*i>UJ-CHdng`>bFXLKb|*cE7hj+s zU$b8taL;bo7p1VDNz(=iypb-btIvpE;VWJS|H46fn9hV@zGcv2*Z zNL$J4jUPa}4UvPvk+bhPw?5uz5(7&gh}zs`JuaBuTmxqVru@LoN+s*c3P88Ko_Kxip&={GN;-Ia(m(v|r%kG_ix>OtsY8ZwLol$Gc3`^MaAC#qw_u1o-{ zS%Yg);=P%}CSE&uTLQ1<%@Q)+&Jrl#fIrfjKPZ06@ULY7R~jINA;KHGH~(~lb7a6t z&~`)^r=aO_@#&tWd6~miIrngOB)^49p`U#F`F(Ef(%F!!xk?J*gvAX1{Q$dF9Y>WU z3YT1($9N97E1D3qJ%&OgrRF?OV;}yi!AgUl#-AHixn143_PA+)#%gBBv%VOjEn5G) z11Arm#E359MsEmj7@*Nzb7)&t|JfzHPq_YbFf>n6f235W!Z~UQ%1576oBhop%g3QaU@{k`ZkM5n`$u{+Lq`YE{1l zR2hqloFdKsl@9O1HG8WQeMr^vI!yau+OO{~8ujCy%(a~EGJEWTn(2!~>m|w&NC+c( z>tbgl3bK#Y0vEaREIs!qe)6;@;amzyqK{$te4KHB556O^zh4g4bSMRPeUvl^Rdy-G zVxTZ?wW5hiAz@@k-db$8`PWP(Fzg@-JH8lYgVFtrmu?l*>c5opJ+vhJDBcg!8&c0I zvZ8SDbiQhM;=wo6({~J+AaR>h0OQ%U#6_gsqY8yoOR({X8adjaDJHInCM-)S5 zG${n6BSwSHY6@sC(vppLkax#XjT6TL7wz$wiI@*(I*I4IM=%UnQA%^2VkDUG!zktl zyV-q-2!!+HX%-kupu@Tc=8I5f5U4M;Rq8U80}v}`O1Yd_NvKCbpG%t|z|wd<9$L&X zklu)c=lfFu$MzhsCvL`~f$sL)6i$BM&V@8?=IDP-&btY7+urwJugmCga_m#+ic4Vt)3Xxubhvy`A^2&zzBT8XHZIA zlgx)_4u4TQMy?IJm(OOgN=ET&H8g~iD1(Vy#!FC3Uf1;&Hi1Rrd-FUOfP%a1wDj+? zgEcLDe^j!S)AO&a*YWpEgz=}H2P6%^!A9%UIvNGyd$Ji5vm$5-{3rWk5wiJxL`%Uw zBtCh(gLp;~eekKMk}~XSuw6wXD+8L77^arbV2Nbq#Oq0SH4xGSUH!tpc>fdD8nK%6 zh0@k_%Q3Yc6hXis%Ns>OxDeC)VKQvlP2BWJSXY8Io74i)(2y|(=s;;;O7`dFKSa^T zH`$V3ihpsFDJnSZcvBg1HA%2}%iq396SnW|*r%R2yf2WnqmPBa!EO+|yPY z8L%9#!*r=gq}{%P{(CF6HXs3a(dzrZ7YZnCj)B49@p0Mp_Y2;d^PB`Z%#G^qy+SPy zYQ_iVs`Y9jzRiuRb-aQ*e`bo1V0OElKiujOP*^^f$I=@47)A|EbZ!h@a;-^cm!u-I z)3~6?)2OQ0@20%eWL`>XHngug^Xrv|x&8_g$0y zN2#TjAu|*l-m!rL!%@=F@urdX+gSG|cIRcpS4=?5ag;e!?8GE1hAz%!_&S{pGW0`3 zBOhnh!y2_1D{0j4Ui<4t^e^Aa%R<#Y`oHnl?Q1@Tsexb6MnJsl+;Te3USSO=Is_>v z76z_v!V10+EhD3l-{cS15Q!0NNwA=N?}WB+>}H(WFS6W%fE*)AKTVXUX&?Cp>Vi`m zG;a800bK_oW8?kdSUMsuZ}BSyt#~>J#Fyy=ggL^ypCg@4I8R5V8=2{5%pNVhhYQS; zlsiAQWb(SdAq28=4!mclryu`y{YG|Pvg{`C5BfVHvYtv(Y^?+OtWa7?N+lf=Q#=k9 z)(r@jSp!9vGJ~Ix72>_TyckJqQ6Im@0Jai84E$dXjoMENV}jkMk;$+VR#U~A4oBa~ z^vc+*C9^}?DBdqeBU57Gg4i-)UwPMQ9^E*}88+%rn5!qUOZrdIR_83btsH9pso`;V znp>~{i(Hw|?EQ9p%26GDUN!hnVokUBs%>R25Q3OZcQY+>1GYbiQ zS+gyisDn___x~^)uXwnPS18qLBFQl0=jmK)`CM?UOvW`onYzcp>CJy^%v={)sZ^wn zhiuh9cljq5k*VV)Vz`P-&%ru6&Cl!3YpmFIIcDH-ktwN9l&hOH6tpwmRqs8^iez^m zf6xx=)>1Je6p)y2G5W-V1hYNtd2P3aodo3xSDCGagaV1&U>oZl$oVA|T!$s6$Ep3W z*(d9K@!8IHYdVqi%28h?SLn6L06;43QXzIsYy0iil~{nTaxD(X#emCgPr#t|j)hkZ zZoxoQaZ#mT?W8Uo`gD>)wrY;_`-e@N^Mhigz5x_V>v;dzqJ}ClGX^j9Rmvk~DkQRE z2s%aPzrs+oOiAiYDFU#+ESl{})E^brX|-04Fh>em&R=r#2q=HcKMa|+4DH(WHOorR zbx^hfJxP)Rzya{^@b>UwqE=wOv8?XEP&f>xw);6bDS&52q<<;R*cJ#Q%bNbcv4~HL zC+^f^xn4c4=?cp_$8YvxW;M~Yh}FLfOrGmqtxSxKAsnVj#Hd5K1^lz$tj23{4qlX) zciaCke#9PqVWRxr0MF8+(``an1U0a7Sv^!GI{KA@*@?<(S{TeVqHonV1V-Dt)K5D* zwvNW&rnJ4G{BnOsKZbU*V*~@Z@G7*L$cVv?j0itEY|tR#4ifwB4pbUKU8c9}qI?uN zCUio9r^1l2`f+;GR88E`+OS~|wB0b4lGpSguH4o?;&PlFV%6C>H28I~$bO?*y%S}; zjMq7mU#Y|x{!W1}?&7jA2dbW_OYzz4b7hD`(qL*laO4kbY~M#kH~Er==K3EdJsWLd zeiCd1k&B3iM{NN8uT{~P)6pv zvaOt~2D&EJv_O8;yw&>kOtJ&t8Y&+hupK9IL?Qwc(kVj9@-$w(VXX_pN_pE>OE(%> zbniGhI3VV9SPYUuyJ2=K|Cu~QP_tB7PAWrx`X}Aaaq<7qgT|t$E2BEm3x`7 zoEQDV;%|n!+_82871?O3(bi zrF+nW5L>$lVnX(1<>X*~{(giTT9F)DnHw7$J8Qpcvk`x#L)>s4XM`{h2!Tc#yOXU; zLau}Jd_Pg41ofrwAG_=ds*moHO`Wwxf~Tz8w7OKVKMEFX&kGOaZUHg(L;92g)Pgfr zJBPwjQq0K2yaI9w5=Um;5oU7MtwT-h5f^t+H=SDLC31_Z8Prz!Tp$|~_> zRCI=0?Z!r#AGm%d`1zCKjGzK?McJU)`8^|1NXC9Z+j(9RaQ9uq8QeihS6Xb;(Ykuq z*@|Zf_ede{wzLvCP92KQDe-Bfqo|FsDCuoW97Eu1b7tvfsjY4kxE5emZmS@M(FB@V zf8nuV#d$B3B2E+}-~0RPl0DA7t1;YiG(`k*?>?U$QqFdo*$IrAY&qeOCv7O0nt3V8 z4D=bo_J`uVF#s7Co2EnaO`)1~aia~tc*_vX)Ul>OcpMV-@3l#H0SOs}V}ON#XUNWn z^e2zk?ZJ(>I@C@O=&bnCQdOPPR#zVYDbRChK;Ld0_bvVNnb8kgM1e~xdgoMT$-Pov zZSc}ClvWI#TtakK*quq_*lV;;a-bobusQh2RxRBQ-K0)y_G2&c07IHIz2wBksOx3; zmF18xk5Hg5S#9BdLnC8zgtod!M8FddS5lwFI>HFgDf#M9f%emsNZ#W}&nXQoFl}k- z>lD3DoX2de=`uoD?L1a7A5xt8UWvEBQ^iv*_{RK?9q*vi_jM zgNyLt^4B8so9Fw&i3;#*=vS-2X4HCu(=ccdqQwZ}&Y7QG$bj!PsnOWh*-&vxt@@SH z!(Hc4g;L6 zN6HJHpO-1-cn2BffD(KgLAQE~0MG+#tBa|vgh&8g{@Q*AGqeecU0m+eK3dVLkdTlStnf{9;Cw;}6u z3DAk*3t+pOYDl$A9E<>b6n^6d!5_%J1)ylgs=d8Edq9Kl%k32C(#m8(?=UF)v6cp! z=WX){MIYF|neyb{I)4W(>2vpO*LelMv+V8rcA$9j@lZd#j+(sv>SNAf0_BTS0!Jys z8D_!jg5}U+8VJ{Zce?}Z7oYyDu{p$J`DWFM?5kgsaRZ>U@|m2f{`}7A-Y`sOJ+A?$xj41afM~GD~+F9CSJ7^oopi@EQF&cG!xGgNY{?ZO-_ERZC2B zn*DC(0CrCyV3SPD#mM~8GSj(wpGc4E1mz?a;c}lss{h>`S5s?HjE)7Xr5^aqLNcyyLj(aX)E0)SGt(|^^<%42H}0r9D6X$E}{7@&6(^0dTXk%+@iZ;iF2; zX&hsumh92A0uD?;L!3gn3Oq~pD*+RlYwMLW|EC2=^I?GA`!F+1P8M6DF=+i72$uLu z8J(Hh&ScdzI*K@E?PhmtO%k|(oHvpsn}chvDfI^Sh->VKg`S^4#K$?s!{GnEm7#WE z9&{k&kIaBj=K&4y|6K6xXs?!am+j!DbVN-aRc~bbH`;|do0t`CgaMC?mF@7AZRg6w#1NFKeL75IUwSvO}w|?4w&J2~72Vou`eIJ!`lOLqTmi_ir#S;)LD)y zauew0=uU55aTuJbTKhXDT*K{A;Z2H_>;3?xuC_uAAiRqT>l6}9uJ94wWdEx1N4%J) zj~d-@?#qRbPg}i>GPX{B9%jce-v%roIws~}ZcbHGSC@_w<2Q>*pD*ANP>sjy`lsyQ zP7fKG?#cT+hn+*7|ctf~X>vDhKZ)0~Ct z`s+m*(h{U6x;(}VB~+j%vp5g^*DdyN@*Z~jf*=@}8CJ&!B5SjM$7a&Saco^SYq%mR;I4ItX0qJ zsOFh$b*7VYfzh=h=Cqxh##C-iAZ$Mc17zS!)|0W$BA8Z2=_DVwLiQY}NFubeYoC1o ze5MDcE-mEr0xi>pj|qp*@o%0zx}6`s_#1z+IQb5Lnq3|mE+h$qmqRp8xUXe)m`w6KSTxk(OV?4CvTX+zjQFkaqWF6> zd^U14{xXc>1G2eyF$!cSh)ZNHrm!qh$DLK-w^GJYp0rtVG^nCTDr=TtpdIZs<#7^l zP1S-=z^v(Mbd01mE{HpVhh?-JAen16gI49Z`sJTb)R(B<;0AXmUkqOaC-j@}rmHG@ zuJ)0A^2%UpSh&0-2DuaL{W}N>(~agF4^*$wY`f<-21xk)u@~RYv5UuQiQn7~gDlO?Pvk6kA@69{a=;>EMsrdubB0%(y)#vnYTZTC#DIm`}#qH(M#6L*FIr;?u`G{*zXi==#5 zc#y;TMU$-Y`rPaVvt3}KYYdv}SA%EgE{bq_f&~oTB(hg&cXZ;{LT;n}VasWmpoIX8 zAuoJpy{z&~SAe@ISW!HJ*oJ2J{;Tfg$ zB=k@ex0LSfhHfpbtGgut)jmcppO;&mZ@ooQ5E3t~JL%7THl$=n-P3=n1>y*X;~Vz8 zQaIX^aQr#Ew(n~;-cR14&cC=4XJ&E^wC;Y(rBF&Z+M5gi-bLbz06*eqRo%MHyQSJ}$dASR*>onW!wh26!1 z!BEBvyQ3J=>*1K3KmN{HdWeTPt?~UuuM>9jH*%O`R2wRAd7KVq>*Ivp8h8fP1L4Js zPcZR~l5*KQ@zWv8O}i#TC;Q0x<}iuIlPLScUW_E21p5qiZO0@{M;)`sz#--9uzXhx zdKKFSc%0$=R7cnmBobTO4Ej9;&vhbCG(k*?+~3v?WqtihjKm)etwR;r)#pW_O>Rf*E2|i{A=; zw0=0wHtAkZ`+9k;X?nMZz|Qr~14YIOU(+RDG!9ORNcPekC9#2i6NcVX>Eq~cmmD(O z{q_A9G?Qkn&4EaFB7~ldeoWI8U9KWHBs&2#qMqO&hzM<_xhaz*nOij%MpKbG`O=z+ zMLZ|@$fudqKls;Lk-AT-^cB1T zkL^&gIaraKWtN!+IbGe5^W6*@<0%US*w`?^bfZ*D;r4ixtHuL;( z=}yRhIc2y>5W@u~Y*t|+#p8LBLa&2wC5sR`Sx7@jQ?8`nfRUB!p~E@xk0J+SC;`vu zd@Lto$xgtRtqOoUtETEe1{Tw!W%5pCfOo>96lqK>vy{StPoo$z!fdPeH1lhsz5Ac$ zI03KmRzsgpsG;`s#bopN^_red6+6%FOkTEIwi#T7-v3_*yOcBceHqDqLMhKIEosiIeSiih^ z#C@oI9gU>czKLt%|v{s{j5bA5i=ToS$IP74SFLZ`gl;+iJX#=54 zb^~S$t>zIT)55D^8Q_uec7=B*q-wK+FlfO!?Idx}vBKR?rOq-G4{@!2#A+J4XA0`y zaaNAxfq;gE_7TjIp(15$WR{^^MgMm}3g&x(rwt6~>qT>&Wxgcj=t6!tfH;SYW&pa8 z>}R*z%k5zfvBeZ$OG2sDNg#iXT5j^^WV*o-Q23yPTmkPm-SU1tZ+tmI{M;H)8P{HSG85{btz zEGDBA@~Mh}^*CuJUw?=0{jjc2HYiv0JfJ~kjLF>&R*{N1r;X6}pgve!U&)ZZ6@rRT z;o1};?7;P3x%?;g5vzzEO&`QJ_tR8ZToSv9lSKTa?}}tQXBA9uYgP^|XU(T)PWFqp zeWd4MyPQRSw_lEb0%Vdv`s^Ca|KAz=^}v)qpIq;*srmlFVq3NN72$>ph}`wcL&hyg zUka6RBl$sy@4w&6$JlFc-0?xqSR@q-9q8$>@?FJQVsa!TJ@8QcSNOWobK-8^J{CE( zG&2MJ94-wVuSq#62~^Eh{oeDoKJw58ZPCXp1w3M+G~(oBuell2MH*nxR^W5YPwD+u zPRJ9HEG~ow1>?HkYn}?&pHDbmrFs8KrjQud?mcvJC-T~1CZ$lPShqL2*LEeFyE6dA zv%8?M`k74$M(ND77BQIs!*NYhnx0McgPRQ6>DPqKM%%{l%I$ybN@Kc0XEX1yG;D4} zDzoBOM7dBhX>iXRmh6ru|!6(jLVy#|0J5RA6@H@BAc_ zMcG2S8fh*@o$HkdE&diHKyeJc2OGk48xeIJjR2kg7tJC7@OAIOHPzs@3MLu*@nV&r z4K3!vq>TA;RM|SI>?~!956TD)l>l)yBWfwIJ-u1Ph^h4$I0hUOU4M9zMs;$(hw{9G zb1KnDH^m43yURD(t`PW9c4BRJ*>{=O?VnW-vEEF=iztec=&V(D=>VqfIGBl`?>h>} zXTx4@nqZixv;3Hgg>~LL9DLOG=Klr*3gp2=&$$&nIw-YP7JG~s&j}qLJswM0Sjp)8 zhnV-ZMN&yN5s~*Hg(397gX%MI&YyWsRPU4WcF5spv5DN#?nW|{K)m&YdxV0A&1~2~ z(nAI)LV$;-;+@XpaXD%Sr~?u}&_SE|0w1vBE(rwc`+>ygeCF>rl$4YNCgRnxGz<*y zKF2S7S1sf?Jq`e2l@yZfb081SiJ<+b7&N{+cjn0QGS^D|ciAeFx@2d_dFo5hza5fx zZc>hMnxqcy9(DlI{LX9<`PiCBM31MzYPVkk(i|R-nvsIL+joCQOirH?a%Z1J4XoQq zu4jvwi|={;80s{TjY2Ca3W5L(VUpENs%7=IwpxO8h4G_u^13+M1Sbc|a;BF{5Zd)+ zOR-&up>;$s%9?(Vo3psCCM?lDFiDUVku{@d(Px8?^@ub~OCkeJGLM!=?Me2hrqE&` zAG%}|kaS}6E5~|Tg892v|QN$}{f`_%+4*G34RQ|ZzBwOU#Lz*Li4mnHE$y6zbf zmVM-d=Y8nyHZ!-q0tmc@oizgSPWbkiEg0e?3ZK9=mJXwDWa<~ysd;zGbgVUwLN%Pe zn1dmvb|_vsX2qd^Z)wsQSgDv;o0jX5Mn0E~wd)zX8n2XKSVc*Lf^Z_cKm*GmTgAY5a97XGCznV!>-alj*97_)i_ zt1>&jBKLIpKL#87Kpzg?xUnr6Xf+>kxn#@6{dka zsi2{Ux2L#514s>WKwe9C5ExYQ&-E9;@`~y<+npZ418T|@OE6?(3oo~Q(7ylG*+{?V zT=JbOCE{mCvNd2vA`O+wQ6L%(3*dMlFGokuwfr66Ia=W8VhsfbaLQ?+t;8_vM#Hb4 zM(FeCG(GaT*B6A;%d28N0q0NCqN4M>+#%k&A?ZF-UDY+QG46weHB=swqE5(;3J5r} zo6t1`QzTS+_d1o7S>*hbhkk|eh%pUv@sPF{J%RN|2{FL?k-OA9(J`F(Yl@getS9$( z^79dM-f(C4TYc3~=UYNZ$}bx$-?lD`r;Q&_Vn+(o0XTr8Ev@S%5V)w8a~lmO@t|}y zD4a0md)~?CD$$8-EVSy@kV|$GYURA%09)vH-IW2Cr~je3bM5cZWP$%o=v-u}hUxVt ze|I06LkQ>-ZI5Zzdh;?-)1nAZX55k~s{182-vHWj#Kh(P=S#)O0ctU=_)-2 zwNr4ibnvEE4SmcLtzXp!k{+Sge!~{!bdWzwTCJAWs&Mc2szV-+Ee!qosDI=lm`3n3 zSgGO*@AiFpy7%hdWJ_3x%EN_iG^~5^6qIEvz?>3;B!>hNV)+qfsc_St*HhYRRyB4{2!?68O|+&lPQ~>OkAduKgLx=&-U0nl&?;gP#At^lvY?fRhw5O=_5@ zGoN-fm5{HS32@(+tKr!tvlCa`p!^x$A|(pSerLE4@!ARBYABj=+eJkj4tkj+lN-j8 zGd;onHXTzk2nk6k)Ne8>WYy%@^TIt_Q`NAA0=3_p?taJLm`VCC!7ItOrA~IX|GOD{ zyR}&$Y}ab+vapOYWF0?bJVBsB$(u{gQW`@1R4?)?KEyX4pbpxdtm|w%5BBI=&qq%% zBKOISuleEd5b%;i$mRa*+*90Q98q=cO2S;lu$6a^CvG10!ak(Ps8cs!!9fesDF9fY z7I459UMKM8<2JNdRS@cqxq3z6bycetv2IjrwVG-KaWt`6jI&6%I`^3 zYJ(x?L;|#O6Y=F&q2Qy9d3J!n52*vfC`CHTyYpR)I7cdsL*Cs|)_yLb`-An2`=0qF zr!bcF1hG!$8M<7(pvh@Md?CvLc6twD`8h(!A=UL}#JF3|m6sfYTXks}sWfXuT&mp- z-R8~fB;NUrrarH!B`A_tvU>mT#kwwf25N8Ydsy;TT#yy?2to`-UHqINaa0ZJELYUY zE{GMaCKU^B=*s|7r=_L&Z_}@-%r`WHEr9>AjAi_lN=r+7ItE(Ign0Kwcl__xvuGznAuL*&&7#J?G%1!r?vx&b$ z6Xh7&#jCo&v`;sq5x>MhMh#5#YL~37tI@+a413JRDjKJfkjr zWb3~UiU=JP={n$^8A0lDG0Q$PRJ6Wu>9h6BG;?!XEe6x?g0FRG*qx{t4f|=-4Y|MI zYiypzh=6sV=}D}QGy}Jry}>t-doB*x^G{G+IRHxh&H|^DZb>XJufQ{#)n<51O{Ldb z+e^hWBL$!+WOLsPf+nNVm;2+1_)6J^!oj!`v$8;B>8pWX5VacKT?P_X_K0~|fpAm_ zGo{EJyVN|lV(!nrSQy|$3-RB&8L*@+a6L{JfG}Bhx+ebYoVoM&-iMUojKY81fg<9e zI`niGF|=sBKB`k$vACy)^@dswUf;@Zl>bdsft>7Nz&%Z)=?)c=FjI-t7f^Ndf0Z%~ zhpcOcX08OeJVLR!wHV&qJL$9{WtBUf<5Wv2T%NuS?DHP$Pdbt?*b~N0-El{@np3kw zYFO+BEYYxf(Ewk^L6*vRn+D6-x9*48*=sLOX3V&yo;R;_hBVXN=bCv>1S-gQ$=js*2QW=8qnv2sb(9z-l=f@hyYAeVC&UT68vMBQ&EwF$FGyE{2TaBgk z#K(x+CfgZB8#^{iTgb5-4%FYn0Rpwp=!RsHGf5&LaM_fLGMbXXxPCPKkiOkgpSqgq zX1V-H)MnP4*(*ooHJyxuFy`eQ2@7N?bnvK{^$-l0#8O2G0I$D=Ws#wVU4R3C1X$VN zfC4>Y?pD`9kT$Iwk8Nd=l6LA`-h!94GNn=lL%Rh(J`BsrBbRRDcaiBXnX;-vajuid50aI@26>Nf?Ntfn^N zGP#s|73Bc(pM!bPPB+&D+>48w9y;NOML(rwC?zb#qerlKj)Q{FNCfikD^b#RSP)P^ zc6v^LlF{xS?JnOJTELIwRw}FkAl28WlIXGc)IDX@W+$%TN~9)Qvc&pqvqjGj{8=?u z#$EHq>S#UQ%fjC3e(Lk?r#zPcNN9rN=Bej?#50Z42kTf}2d^GVn940xq`)ySZOorj z;w}Y*l!9+t?`6b)Z2ad=YGzkjy{|RZNlraIF5`XD?AQ48@aP3rrpP6x z<;cT1Z3_Sp{RJy=2`+UZdscHgNxI?xxq>>5p}i2CrA}SU7RDV7z+A1FU{cfZZJDV7 zmHmYFkN_=YVt!9A(9SVDVa{#zGNuI$8X??BE{^2JM~)EE($^=PxV-c2bs`RfiGd~4FsVIcrvK|yM+3%Bt+Rbf=IY&tF8pxrX5g# zQ!MtF+J{VI`IlnuhblcVZ`PT{UgMh0-9ad0KdG|Tq1px+g%&1HN?kaJIU(|Kn|vQ} zOud6K0|2*k194496a1lGxgFeHpDuvPABM?+*z~S&X-vuv{Q5|Ngure;&C**{&wUW8 z3bZDCA3*lauALb0YIJdZe<2G)0y$m3AFe9o=aGs-?Y*4W5c`{g z#3x_=cPlDLOZ7#SFg5>M)0+}p-$aA5xUgTWK|Vx-{%#<^#$8Y&4vg|<=L}=;~wU`~Gl1g5gp@+~P40W)` z3VU&$b*-C^2Bi^qMcO7k-JW^%M$M-^tanAnpQZHp^_`yEnZDx;e&g~u)ZAvVv>W7* z;j`b~wCYBy57JHXpN-`_ z2(@#rbSE=mEJiFo-yC-{N%-x#Er_{Yof!k!F^34LWQyNcD#o40M2HGllCIdLl}0ZW zE;qH?Xe|;D|Mt3^I!D0N+^~N4uY5ZwntWDJ|359j>@ik-E;L~N-&x8ow*6`hk(AO$ zM@b0+Ov3jaaXG#AzbWxCqm%pt*<76JyYlU{b7<@JK+iM$`C3p4B|cGX;45^5K_;wj z-()amjLq|u!;$fFt+&=NC$L<^nNg`Ny{vLB8}_F(b>>D>83;f?5F<)@O>29}E~6o5 z#AZ;%+h)7#&T-2=Z%>rK4zN4Xg6e%itP;4X@1G0n}A&4OW;%Y%(~`G`ThkYEG`uV&u&hVBF{6l+bqXB)Df3wGa9Mbe5~ z<$V}Bt(2gJbB%LeNInGd(nLRYx~9_pv<^Hs21G;4jk1q@@>}2~#8p-x%l>jS{MKb@ zpwZD+0EX!V>Rg+kS|_J+4eQYds51hZMuCgNb9dPtIz{MvZr%f^@^clvs9@ zj-LJ|O*Y*a={G}aH~LaX!X zV%J$Gg%Os?3t(THpOmfG`IVH>P5B}xGwR6CKqvdGkjcNr&0Nsp>u$C=PO=plH<6t& zsziS~1Vw{Ue0{`*#^=W}gznB$Bux#-|!ibHAd_Xd9#cvBAAcWs4 zMrL%$g9ivJ&XK37mkNL9h~C2l&AqMZi(1TAl~Qv9PHvuQa%Q#Jm&1?M$tjox9Vh;s z+HHF0JA?XZx#Zg#b$nQM%a|)lrm|PHg#}nLK!EqYzyNv_EFcmSItdnzpz<9T+%4Yv z+duRcs2!Jt3R#35!&lJQbM57fOw4%*8tniab5}Feoo3ldcIQ=z^{?aBU9FaC5`C2} zPw?_eKi{$Ckqtd@wO(^w{*!z2&H@SM?y&6dw|syP0PW28x9(VO zwBika*>KL{WGlUMfc`1}lzQ5Rc%2aVGlMZjjZ4reg#DKvio8*)R zW10_}GAKgbSupqgg)6V+CK`>nLo;w_aI$Ri*K#z0&*^84J@~)T{SKn3uq-DsQ_st) zMjFo@pdk7mIIrim4p zK^a={Q+k3r1fh>7fM&byYuRe52_i6ImpVVZxs9e8;wuvPQH1sr*bnj3rHR!9Q)q{Y zaTo-*YO8@F&oSKg=2u@J(&{-8&G$=Jo2K#%9B=egF9!AX9jManGg(UHbsEF_IVJRfAp)z+R}3!V?hV4@!+o~fq9{Blud6smTEOJ!ol<~9 z6N#E>H`|W&j7u>TYw*af1!zuQ-D!)7yv(IhW+xQGz}CZ(qsH(;*VQ=+3yC1gC81BOzojFQ*=0}+YaYZi1~U0cq6%3gRPIAIusmS^E&s-~ zmExe>&)MU6uXXYx0pCi!u19(KJ!8rgzprmW@30S_#hq~iD|@-R_DsJ^$A~~wGTLy@ z3OIIy&I7RBYeN7RIG{HNaV|<*l{Q=Jj3DmsN8-=t^g zEkBEHR_l&+aV}Qi%oEO!UU)uJUnONCM zjY>y-w_GnK+>06D3s&t90~4|(+RO&rEa*Mmo?2MR=bbUSUV%n$gBzz|Lbn&uAGzwt zhnp4VheHWn*889*M9()$@&BpGS6O>KxsFYWml;-07(i;}`pxpGm9kQDSE`grpQh46 z@sf)pKNe}5)Y!niJu37cU`P!TI8cqQN%v)!H8UA?y?-bjSA@6HaHGsa0kNenY=$GX zX|$c?cxzh=@rCHT@y?q_0A_86KQeaA*HMut$9W9YTyCi(Ga|=UouQapY3kpgj*cV{ z?WlLOy!k)J<_m8s4u zlU*KJd$qLAR(AS_-0kfSW(Ycr0=t8s)U*t=pGH~9NkA~zyy)U(BkPpv)+o8Q004D` z_$f6Ox3(<)dz0x<;e$hiIGIstaV4$y8k-q2_2KU+%(}{_W2i+5r^NDJ1g`k5XK7Kj z@Hhg2J*G0Prq-g)t2Px?UR-qkoCCPP4xU}c(Duu7Ol7s_WUHG=qv?*rqb!}hlG9`@ z*6<%7Tx`O}SatKlr%c=4RJP8a^6yR@C?TgdG`yMXQgm@vjS~V3%E@4y41wgNUo9qi z)ay(&Lq;;QaAmuSlHieJb-JwZr33n}baG*FcJ4tU$(~A(5COoO{H7ByQz99^&HcJZ z4!@#Bp<%1EWJpyJFakw;`FqOE#@5259;~ zz3m}7)J6U4kq-9ZU<(%&cbBw)2uL>w(%m85o0bmg z2I+33yGy#e>x|#`&-0wybHN3(pS|auHLK&d+$9SC+UlrZ%TQz;>s{JB<2fuxbOyl7 zqU;#L%I#N|g-HAzKq*Q0jmzmI8tEV2h3)u*mGz_44C{;PVKuL!5$0PMocKzEm_+%F zcyvbSZ=?%t`E5m6j*s4y0@$6$t;^aaeC~z;h#zex;`f>PI3;QNoAc2X(3xw}9k$Kh z{4JfksN0ng5hxgZR|UIXmFYEPe-&4x(zClZ@$Pp7d%iz+c8qr0p!=EWIhptu(eYE# z8Tzl|?1Nu1!8o$^{S|joQoH?M$8ay0j=M78abH1Qw|2VTMM8og*JW8V_~c$*T{>quhFQ8_R-vg~Cg*kY%_$7atdmur=Be zp|GI3@__I<+$g25v~y~~<)#q-xvTXN6^^{_zrEqNFdDG>j$j-wv3u_b3L^!SIXF7j z22LXq)vtL!+V0+i&FqoD2jKs+7CLmg&+aOQqi19%K0?^{AC(fbp8 zqqR@{GH8)H=glOZI0R-Koy+QBQ-mpcyNjuBxcU@`lZ?#t&^8Fig z3tX6i>FK2cNjz@T_nK))9As`aco!$jjDtH|1)@i5dhv9;#GPB2iT|G1?4SwZ#q6!7s+Cqf>ZRH zf~|DcYUEvDvVGm%bZXHT%Cv2QGTM8Aej;r--rjTaF8T{fXb;@aHU1^{(t*yO52o=X z#h0Z^G_`$v*RkQu0&#`ORU?{DhY|ZA?v)LrDN}_xF1M)$0paEDb`r|%KvgVcMpdR? z1G-X`Bab2opO5xbFjwOspRJx53CQ}*|M#zP9huA=Ww!J8mxtk2L8UdAdY0Kcsh2Wv|@InnjLxP}?{65feA@pnl0(@3)Y6t>mcU-p10m zJzWI2aA5>$do`W^3}+OtR#+Gw$YLiSdFw_dxXt2pK7LlvIse(p{e_lt;Gbj}h=2KX z=tA30>^1mtu8RqV;vs66x9}}CfA-|v1kU$=T6{`(u7SR)LX3|aQiFmY1D~HoZY!8V z4v?%CW(Vj(;-C=MMKu~A`Vl*dnHLvn9&PTpyLMA>9eus=_rLw-pNWWDZhCbM7;vB} zzl|t5I$pOqxNS0p)|YT6U4V7Su`w@)ZKqb^>;?Jr80(j?th~WAuvd0-6WLK|0hKKK z(_u$#yH31JZA-TB!9k>t+e;8keVrp-qr*jxwc_ZfpAlU*Aj~zVtn&-1zk|#RBCISR z8&S0cb+n$woDPom9)qjfk)iYh0|V7T6mw1>h^3F3=H2M2@Mr#94+;6$5l<9$M8PDq z*bKT%HF*E&L(T1*-*U>6N*=IXH;Yqy5fZGMBQxcdEC8RI zYLW~Y9j|7m!<(D5(JikfCwLadL_(By5701VWb^uNI0JGa0|xyNci7bdnPE(5L@qcn zh(h(?33WIoX5t7nQYRN#9~?9y6!keP#S$y}r;d3z1|$7O(J_YP+*W9GFAu= zdFkTSEQ$JUOJI9Dt7prwUAA9gRuvcQw&FB;ZvVVB;+l45A{4LexB0P+{ zEG3Fia8+x&2AZyK?(^TPTaF1^a4596myZ~iirw=pe^yX#r~dUJBh{3q+yEYZ(a!#9 z5|5L?qc3`%3@F6gU@H~I(1iy)&?Iz^1&r6D(vwvR|b03XqWY7o(cS`h)&j|w(}?XP`x-+fwsZEH9#8#vNm z!v`t)O^g?^0gPNXkC6N0_TEB+xDaF@T3{-`D;Px0epC%Sd?Unr9*;)OPc=Y7KqB;k3-3VW6{fF6DQs?V|$%NNdNv(ELGM_2^g|0giL|DlH7WCwZI)lzk>PSnLG*N%~ z0OCrC2Iq^OK4Iz->B-QJc&(l%N@Q67W}t%v8Oo~Ha2`R5_3vLXXl>8YyRB84d!r&K z75=ZUl)mlkn~Al7SmO>Modjk?GMJmZ8ASYOpzr&vL}6F8xjvoo7WEIU=pqZU7)NrT zvUJBc>dc9=*)7D#Ta=mz-e?p3b)pX!>%Ws8Puq*0@sf-Na+RGvQ-NB9Jq6>~yqals z4KGINLW$H1`V(;G-rCBPbZ7|ZB~tEdftwG4u_gECoK|4;1IrI1bt|}?D&}OT{}{Mv zdut%k5i;5=Rd#njgnyx0bnvO*n}vLA*Z(WSd`m2t*y5ECTr-yx(N^i|3In(YWUqU8 zpoz(8*OFgFb$k}9TBO6zA?piNU#UEU*Grq5eLG$m+FtwIm5i8QEW4ZKa(Z^3G2h0- zOL3ilT0kRH%~jjTw`mrWr2yeP_P3bAd{`mta2;&Mz`qI)xx2C0O^=Q7FudL98Tf?1 zF$A2v?4NdB%58P%had$T(Nc<<_aG1fglZ3tM3cXwg|8u^C()FligAdk3Yjjhk=?7p zYenHE~LJ?KJ)kaDi9;c_JvP@fb(13S6b?V8c`(Yh`_`? z1aS9<%bd68dEaZV)@gwZ$|gd;r890%K;d){!~J>crn>dP;y7+0UXgm6F*b!JDJ?}9 z_n`}7w|s)sa}?EF{ps^;@V?O)jPH>nCdh_ZgFpt9t=m&H+1ulIw>`|Y>wX#=%M9le z7?|3*bVpm{%3Rj%G+d3;udtIe zKqMwBW<|);I~>#~r-+WC;-8m-v@(rN~3_oWQ%=>M$V9g%t!`g(&3-$-!`tqfQo;5X5kJN=r$H82tJ1(7YvQ-In{z zj)Pn7JVCg44WYJ~=H$8(;l?8Ws~&XysIs<>Ovir8pEyX1{~pLH<~rP65}oY-{MX`k z#Kz|>;Hcv+`t}jGg-|OBOVIh&#Dk%erSSJ}rzT37ON^6#%i)$Uki0%mv-2RK6>2;Jijtxc=7G*Mx0(MCnN|j zxt-06+Z@gF$BXc2iyygC;lD6_FNBNS+R!cKSWd0}D*X+~7P(3{)UHrum>{4MH)1Qa zoO}7Q{OyypWbc?aj?XtPo29_n{3e5T1){YEq>g%erbai!5N3ojEgl}cU;VCDUnC=} zchemw?SQeNq~#~CfLsEPN$O^?6v}X9_NT8gid6>f;!vwwwiq28r8fP>EgTkeFWrb6 zD<`RIFXl(LgPVsWFC?d6XBDx)+enI0yu3HLs7-#P!kk@!KCpjRcbc+yk7Fi;0^x0Z zXR^`NJF>Jcu*R%XE_=sx&2iPgB>B5fn+-s@SyVSct>-=4T%GdVixKkvyptW*=+EAK z##LqSs(f`?C5YtH!^W{{HH{9VppkAj`DK%rg&%elKN-Ni!lT~*DFklQ^|~tLymY-s zY`8}Y@XLGyu)K0=;srEVb;nTB8KLPKdN0^^KX}~A)!zXTg{Kk*ps}In&JHz0W)#T26x~>d4fq zdxuET%{RyVkn#r!Hu-9&HHDL;#MSW^s~dP)U?u&-U#B^lga9u<#-;D8)}}B3e3NQ` zz;6x39b~1gzf1hlV~HVyFxcJNax{f==MbE-Bp}uwz0KSwh&_K^L^tx0zf@e~vkHPw+RkT|U zJGjcYAcs~5Lg^N2u54pt(>k=x7Z}nq+%kIX%zScmG%P*F&we+wy5C`JNJE$_p3CiW z)H@o`-_en!-cD$C9t-*LhNVlH?v}}8gR|u~yS0#iFsA=E)TZ~iiB^nsIEuJ&>F4P& z0fyo3XF)c8RNS>=T5Rplbw7S$d9TCLXZShnXJxZD7;IQBK1ibVTW{ftrzR$!Go2^P zh(lBTKI{8d_4%}$YX?m1RHZ`Ag85hAwo78s@b3*?9c@ zWc>-BZ<~lY3$@!veEY=vHDSR=y#Ny<8l=39)n3@Izp!5PJfFXLs&ME$_K0(j;ZI9a z${j-KKSn*zpWoPRYPbPc$vrm3AAY4N?HwIW`@HtIAHU`n5XdD7d%&(|qSB-DYAI@> z4mNRFVYXk+?nr3;=+CvlAB|YVA%_%T8lVsEza?-*IU;p8Ew3Ac?g+u)Oc4&)7Up}0 z5M&StUqMwfF=%dS*&G^j0t+M!&Fr1KzWvG58xjW9M#BP4!WYH8MX00*;qZrLj7x%K zbWu^(zGP(ou&R~_c&1?UapMknkL8Mrdnm#q>`cIV!wxmpaz&jlUzllmQ-#z!-^%Pm zS3rb_)Y0%YPP$Z1EAd*hN^b@Q=|%UvNNW^L4An&*H(_5j`>#-B+FIXXx+tIlx(!MC zFC_QbG!#Vs9NFXo#3)J2Xe6smI`<&KjK#`T3EJh&7$SoUwO5lM~s7o?E1!Q6${0{go{R&YXG_JY^Ks zKSmE8?+ue)-NBQbbmzMWcY*lhnyY32UgJm-b@vkMC*k-qa8X7ZSq@(Ab%VSF;bpm@ zq11snKsP}}PPbFb)bNXHUxYo866U#Z$j%Pe^_c2f(twj4rb7Ol?mo!&m~DG`m0u4p z4I?O^Tq30HYxZLj(BZ}1WMuSpcb1v2bD`DaHURh##eSIst~$1X zN4J?C!Y!C`TdX!2s`e>bl(>3_G3m$v@-;)s+DmYr$*&DjJ=*Tjwv9t@XBjRx;K~F+ z$NWf0a0^`+xxi?bHh59F`!#w>hSCDZgmTH2oYl4F@E|blov=%ge_Ueg*;lPAn(-J_ zc-A&aNFp0`>u{;Gj()UUYj>+|D7)a);Ks0ks|lohMk6z~>EML`c*yfx`c_-4gQ`P- zoV1-H$luv8IN@!dj6&K*09?gt&=Q%z`|`8#zGMjzj7MdYFGruZoZ#KD3LybJtK50- z>6|a3&Kn1@HVIR<-ol9?1b+5yfRQH#Vh9h)=MBSm>EORHy`Ct%WO=jcJ}Z!%?HkOP z|Ab?Slc3VQh%uX z=8PbhEja3$?$onk&Sm1>Ea-O7lj$QV2=d2?j;+t-jtlOT#0oJd3o-?r0Xayp5c7OEt|){rW@mD;mKGApoF6EkSuAMuKZ6e0PdJWX1g`5D5#Yp5 z9fkP?Y~J_wTMfV@am8q=l=CFV^{+>=BPB1u%iy3DMgPxU0PD|8LXg3kH$e5)U3mEtz zJBo@*qb<)a_;Y;6qF{z7nJrs%!Hq=#drDL2cAAw_E@z2G$qL*Qe;2nYsJV$Mc%|5C zd^F!65i9N0{%wXN#Eb3-9_;iygJM|=w*g6x zh4)X)9y5_h8Tfj_l=zQLl2+`$B(2R32W6+|ZhQ;tUWTv^f5`X2& zplxwG_B;>ixnA6Mdij0sJFsM`zthA_SSH|2>dRok`**`4_NTI|ESK77II4@f|5U-p zvUzbBYc%xK?y?4UjkSmRnuW%FLoH-~dDqdoz}WDzSSyXOFDbR136WEx9IvRm@X z;u=0c10Pkol1ro+_henE=|{lF7x3&ruM^x&Gq)Y0bJ z({Y#$jPV{>92U(UX}B*x?w#^h$%bP;gkbrkF&u~g{a9*}roXDG?Bb=R=W~z11l13Q zp|wy?PXNwKJh~t2GqwqpujadV@8*DpnwX1s5dAX-Dao4&6p=ZvE%ostW6(3KgqlDFmD%T-{c=4iy!Nqg1zB^ROj zS7eyAVMpneK|YHOYN|eNBKr>zG6i+bOsqn?6{F8elQ_zY$wl{__@|NwTaHRFcMLMF zY--t};(LeboylsE0&dI6b3n_^-Lyg`RM+{Yo|n&V^^lO;EKQ2OE7N+Rv3cmk=?9qo z%UKCGmnCb$=pQx3i65>$8PB!(rqzh!0ffhB`WHVQ>gLxHSC{#4&G;beM@^K?Xt%ja z-SAj6#UielWNl}a^E2^Wc3&?%_Hx~&R-lgNJz(*EkYXYHL7j>aNEw!Te12)BsF?_# zE!RoCjsPdLMb`D8ACxgs>XLx;h_L=!nd+Y^1~F*3Wm~= zym+9*=}vcuqcJ(rYQ*VSv7dfKbJrTy4)5pS(P~ZyCTJ-1aVJFs?NqiZJ9b|?xKw+0 z_;wCE!#yJs6qI@PkZ}ODSx+$cyT)CaRdhdTxAE6s{!MnBsv>abo59CV#knpZe@w~LErHt26FsMx zkCzvc>euc*U363R1x0oK4)+V&((Qm2O)>g;P93*k4$wo9vJs@STh~7t4SVvlk4@5*)|R9cw7f;)u~mvz5GnF{>|X}Z{9$sT#x>&t!;eH!kBxrPQRG)GnZgwc(wI6o zhbP+gRWo87W{>S=MsMdJGg?l~g_Sec^2S;h$MxDG3PV%?8_ z1frG7<3=eaap;8p8tvg%2qGSKVm!liR~N)#?^cQTOyw(^U-SfJW`dSj0sY*IyLQdv z73B~807h6o%GfuO+|UJc`w0WD04!6f@DSXHy@+7m<5kzORMMAXWO-DQ0AcppD%FT@ z;mJ`^QG9?CAR<9RMK3LJ3IOcfPL7US@yL-W33YXKzru2?z)dn>-I)lSFrG^^f$^{mhqOU58HlbnyW#M@XM9so8$50kMjQXSy;i&4=c#8B}bPH1(#v4b9+Hbwi zxA}#7#Y_h{u5`U9_Kj!VR$Ek?AL0n&FIS#%lKz$9`oVJcp7r_p`FdikxR_c2SwSM$ zsBLF`^DWSj6p~@zs2%4ew1%LjCM+s3hA~l`k&!W1(Q@(U;Yv+I&PMg-_Ank1rF|@K zc?*%oCY7yig8xojjnVRFl+Vj;Z^K!HhqqM&Rt**qb#sHl(0C4FH8;7ciy0Ld%{vHwa~&UxKQ~k*lkww+`l_(bjQ@VzjSN7i-Np^9mj6RvmFTI4d}v^X z^B2CR$e}@Cw)qQF%C6AsN3Sfpf^nT0<7k!rDWM($doDYo}x8Tt8Fb&2j~am1cuFz>W1wK*Wrb*H>clCE32gx#Su7KB_#5 z+^S|uxg{sYhq{{4fF!&o&2BoU&8`!x+Z21#%_Sh;>vAt3UKxyz#jW+2(GL(XgF(wTe zaZT5jan}Ch6BOyKkW7xW8b-}kA3d??lygKH662#0w{Z=G5k(a$hocA;6g300AQD(>={lr`zo zXvSbkaNuSwZ`)H5p|M=9=SAgPPym#ia0TlsnPc4Md0%TxM_2)*cappa>lkWk++5t; zJ}u47{EfS0zWMq2;Q(%*`RVcTb8rAW+TZogqs=|&4sYLF%`Myp?1-9>Gg9AvqanQB zBYC{wsgRFWqbxFlD@1@uN2NnomY=*{<07u9gzRC{(|M_Jgu!{sf;3buwcu!9V05;{ z$=Y}gkIAd@oXj7objz(m+1c$GP(l%Kybh^8bLJ@#CLR6Q7cb$R|G-X&;Zc1S6}i2a z+#$*NNU!Lv|56%3q@Fw(;hEl#2L;3L@gB$2b|#u~;%wXokJU8|X$<$dvxJ1WA@}k6 zdrgc2YBI;QKRd}YL4=1ByI3lK(4W0#$JV1=urASy4P)cuApUr!a<>fHZogQOZnnsAV$n=Y{`{MDp4p z8g`%mlT5xJt$5F;bIiNV6D^=IX&@#?^zHlibS9ZePaugRE#0$>QUQa&h*^@PuUFy`H^5^g`*A5kjvKKbnl0TG4$Z~&0Pc~F_5ue>V| zWk8+vlFpXrF-z0x&*qUh2dKs%T)SUHBK#fqniTDgyGBlL%^Yoti+`%oQ2rH(bIb&Jq~G1${RGPPi;m7p5|D=^ z%7xf*Ek*Fn(h>t1&VlR98F>1(bvb!|JQm>g%zbj*=3XiklTINo8 zl5kkx2R}Kb=SH>RWUxMb%zxaLfHV4OCCp}MV&sn%U<~fu z0bp?x>u&eDtfyxde}P+N(Tti*#v1NyDwbZ}jdiScjVXSs`DL?PTk<@uzaeig=mA=^ zlcl#qD`a60w8wAT*V=!E%szOwwQn(4A;+4?BJO6jwGm%mUxR3KteY&nxfU0Env+1^ z!RKwp-;moA5Ix4@N6!hTG4@{BfGZ^Sj zwY%ErE~Rkmg7qo%H6tsd<{*RYg{>b%m+~{#VOBq z%kv^FA_)_lQ>7}3`H6T7J-GS<)Dz>-JoDwv?@|Tg)A^Phw&2&H3$Kt{cymBM_v04D z1|&6!bz71XxdBb}fFU!jUI^{% zhd9Tbq>$nqMOFxxUn0)^)Or4>WR7wCb&&4Ono8`FKrL zLR{%$&UB3w-2Es~Byf?(XfTw&kbSdMGJ=H*h6?h)+z>ZS6YqfUev{>wH=+O6@Qja= zPLgG|OFU0bYNH!sx7rXJtn2-Hwnu>_ZIT2-6?M0f^=09V7n!iUKfHY*yoaT1JMwbA zaxjpJTh~smPHlR&sR^jvCp$iGJ9vKh=(7_=@s))|y}Z;@c51IGIWzY(!P9zfK0NJQ zVQ1?Hm7x3aM+J5GE(eT#e!MJ$yBR4q zR5?F1M?^@+ZO_&_ZBp$bT3k1{J$?_aRdklL%Pv%>YJs?=xo5SK%no8mUHGm=^l)4-Uy$&)@hmB^@-C{))( zG!5q@t$4UP>~>0oa#QiA)YzH0rKced@l`4!;xB6=UMcwImEMz39LgYaMU~-}2it2g zrQRgdB#L3i^C%Wv#=JjobKy&O8vIjK%=e**Z*t%9<|iXO#`iaXX&bH10_Ze&Q{L*2 zsMkegtby9q%Xo^q-27X$DU}GeTHKRFxN(i5)ez^csh z{9wmOs4x;N4T7oL*;hV-GTJ}A2*O2ry3NkV+1lF?W|uo7^)w5PsK6si3vhN&G1(Uy z!mzKMq}FPs69PAbr+t8|=84*KtK}47-(89h`|$8aSo$*3CHpa>#dJlrvlM4D>;pX_ zH&?fYjf?h7lar)>(b*}VZT6rc;^f5Sq&=!HFW~Iay88QkNr!0;vwh8noBh?QF9I+8 zVuBe=c2zKUzJxY8R12c^oM?FmpsBAWZm39)7Ax83k)6dg1yB&y7h!{!n$2swqW}Vf*eN<$q7(`FHG32Yil381h)s45DOPKO=n0eW*?@7U zXN=rqH>6HaR1Ciqz1o}?t7K29Zmq_nBqzvk0Ye8xJgs(^4T;cDTl`anR5C$=sZ_VT zCO#Z_+#1vcKALx|DovD@ylmzxC?qE4{sAG;LN5(SywnhOlrCZ*4%!dB z85-=BkqS>lAbWt>qv~cKRXVm|&Z&CC2Y7(t&u41CEN##TS#Dc7s;SK+gY!Ki5}E4Q zy#o#Gdx@Y;K>HAu0|Q{JoLsx}*Vv38`ls`jz#_8L1d6f`_eP?&EgIt<;w;Os|z z8fBkxLyve|iy6ei&ya134LM&*F#SXM5e=&0!-bo8nEn4qNNB;F9(p?V58efrcn7UF zHCGH8j2k{Msf;wgd?#N=T?a(J|o;h?Yn(1;!w|RF~wAVVCF#30aLBTmlN+cw+ zTnbi{xHb;Z^M&c)0ubN=Xj1UHvWMxKw)uLI_rLV73;MZ>^4fPcz-hI}Q;u7qv`8ef zjICPOi*h+SI!@m|zwiO1Inj^=iX4|@yy4~Pi3zgZChWxj1m|)gd-gy9xj>UgMv9N{ z_r==wos=F%VFBVurnddv;^NaG`?0h&xzfwOw=Tz-&5!z;Kj!$!$VSNqf7&U;wozMv z_TO5 zx$|s;O_~C8?yAO`-eDn6ej@trPxCYokq3{Fk&*VplM}@d&1Q?Kd{lD$H|x0|3_-ub zcWpZ(1wDQyxKp=XW!oY6$NWE-I5HP+AV(U%tENc#_4Dx+yihzsUJPIyU%#ps8}OKZ2b)r{pKzf_KeMc=1XI>%*@On zK8AN-Qfk(Ho)NP zt^uBdBMuHLdiuh{wHXMc>j?rS_JFVTf{Ka}yBMX+r+UtQY=jGOwHaR2V54{JE}%1& zqFSJ+GqL8HiYtEwsJEkyG{-{hZw@{ z#u$$v6IKgWy&@qFF7|7qBb0j+D(u&mHMO9uM)FGkb>vl-Wp=hxj7P#Q`>aK(-xxFM z$9APHVj4&>bih}%F26>4d>N&lyxrAG68R*XY`XsDEgJzN3sUM|Rz!&Ci;8As4tovC zvxFZhy`xUS-T`X+TINLeui|gBF3!fjX^!px@3=+aXR(lJ2GY8m)KXs*QMd@{CmtB) z?cW{M9J=QITj=MQ>%3UsAiig^@30QoI;6$~{YcTsvpqax+aol=5E>OQqgi_C!BV<{ z(jd5}*8*|aoc+ZlAVf5>Q;scHC(cjZnwwTU?rx-V9_=t`PvaXCoeIuFhSbBuMPedV zGGjNB1WSUZ(-i3OnECjwWoeO7lFIRLKr^`>N?d89cKJ^gU1wuXUIq*djkic>x_%uJ zA+*jqUrfU6)h4|2C}o~ahb9&lit2y=W~9hD1U!i>kXs;>&yW-nuEo0VOLdZ7US38c ziL7*nAEfoEt;*q)AJ%*bmy>rUlW<}UIZ zKXx7>$MyFUQNBfe4M9# zu~Sc36bj{I)*1HBVYd-4lSHp*q1L!-7JqTqzRpF46YJTIDbz%#YF3Dl(xRk2Pqv99 ztf-KZ4Suc4<_nNZ|0c=4|1c>=eA{-f&H!Ke#2qM5n8kp=YizKKfnYB&9F?a3BSWtN zvE#S%kTQa!jH#i6ijhT=wH<`>CN-{1`%@|UnH(J4WD<6AXV^RXs1IS2NLh&~{V=X0 zg=q{!X6)=C=5kPfF%rL+6TXMj6@4)$z!604fI;eV22saEZ2#JyG)A^=F8TOxK6^Jy z(tXQMcm68u>r<_T>PPzajp)aOfM_a%^>^S|a9!V+gy&fr&%QO1splG1r*k`l^dK|6 zvj`7<1Uqxbt??9D{)aP?QB#79#Ht4eG?fb*rjQQrqGKfAOO`|#V1Txa1qp**l@vXB zbkr-DBGc+9>AhPBoL|;FX-<6SWhm!=ZkAWu5(?|jCh1RUc=i^ST3ljcK5ec;|B4%I z&7twtjIBo7vPYIw)&&FhX1awNFsus=`H%T+AKS*|B1dk4_5KydC*~&%e!3=mbV?! z2?+_&yAy=`0}csjW8{16BN&pT=peUlnDZ&XpM}6(2lEYeO(CD&rgXv;kP%c*p6?*)eFSxEn|D#I~N*h(gXy-SCk`avl#&*A2 zn3)w!PfanLzS+3Ij>)fYT`6C!`~ zC7}ICX=Y0`u|U5ntqnB%UjX5w{e4YUEv*tLS4@$bv0ab%bbkYiiysQRHdG6V5>6;gMwCd2>_!1Gsq{cYgM$w|l6{*?6R&!6St&yv?pU-cxF zUoydC4-Pvc%3?VmFsq>R`3i4;?cet}%=cuu_&5@9X-2}TTnmdksVp`d9mp7?C@m4i zDN2Vi!P_>V_oWn6*zmqJao>IZhSEF$rIAkwNMt`En?ZR3A7R!YR8^i0%nw_W=kP;y zY}<3bEx-jI3%1^EO~*zT z9Lj4h?ce$S>eB&Y)P(w~XQWw!r*2!9e_w7Dxg1E893_IRuOWuus|w98XS65-l3Nyu zKHV_F+`=LS-7X#jq`npzrXAuN=n|HZj-~%28iiG&P8#~%b9%crGAx|RYSfqW+j5Th z&jyQ4Kfa5R9S@<8s@gl?01VIiVdfLXpZ(b=NH(p>HvWt&7yiP)+`5U|rxHR!K!9sd z>=qk6R8~&T-=9{8rw0dLw=VBT73y@RYDEtplqcfc$zRXy4G| z3Gz!3Pxtl;FCU-(cb$%fJ-M+cH&=X=yTlcg*{g$+iVVWHf#n7}nJ^8{@v4gZ!v%_d z9ZZSKuDy)TL;u9a)u59ApJmFL6+A>1@?amG>6ae5ol$Mn>E-1k{hb-$WpQTaH;A-h zBF1zbkG0qrXnB+I!2oks|0w~2d7J3 z9O(_ZxSht^$!??%np3qH0}~wt`&$EmIhfbTO;_Aichd0zyE%o&hHE^9*8JoTQuv$> zw8>==R9RVAY%gA(AFF&`U$lF${-YoM-O}Fx`wv~;v9prt4hgG6f3aE#>h1^7s{i|F zvJ)GoqWq9@hz;lflg;ti%4%wC8{;j`$BW{?d%Ca-YW7!@4lN=gA}p|!vnXLHQHub# zn^j!=cC$Yk2kswlfY7Ec)!QL*;shNOKUZ>g}(F$drT7U);9)#^czZ3Eub$n#G zOhD-G!j}T!ZucK=jvv2o9nL`!awvZW?_L@10)*T-{2D8O3PJ7xUnt=?z)-CfBBqQ` zknHE@r-!9%1e$D^07~lxav2rh6qHt7M;({FCS90y4uCxA2gva_Er3v^7J?tC7MMZ- zeI@aq`I5qORP+VK2Zejplm$}@mVH%5WI6rG_h!QaIC!|O+%~Jr3C2_Vz%l|&%KaEa zRCH4l-w!detJ~CX?M(QfY;V}|*j||{PH=`17fgj>P)KF9x07Ul8nCuwFxVQ1{iOB| zbP=7y4G}4%B7CRzdq6#nUei)#Wy?cYSY95qb}CJZKHz-YPm0{~Yq$nDfYQdh9|}1* z_%=`-VbmY>i&@(rRMOy!D7IQ#q7hrmSzcS3XzT6h0Q@`i6jP}bh`quAMN*iG8AaBx z9Bt%vQ$R1O)P6WsA(g8Pu99zX#}ar#@*M=c<1Era!*AQDy?1yBS|;j`n%WX;OP%`Y zFfcItF0`V5yyP`bypTj95U0*iL0{vOf3o4aPL*M=vZS&*)HK_rD^P)#5NC34WeSJ! zeUM61gb!R^Dk=fke(1_*Y>dKm24`qmVn-BFgT;joOKYf!cJVPsIIiP8l?lgM7+5foe{dk-Xy7F%d z((M1xqjO_8hZ87#!rR?w!pmOk9Z*w5 zQ(=BJqkM;HtE;PRWm@%#+sS9ss!D=R(}l{vwd$|1gv;H|8p zs#=3@Ft$@Vs!#;NO#k2oUUtHk`yN7_I;|K%{d zjez6cxNP$_Yby8?wy?f!AZ5zmj2qMoeEFoVUXR?70RA4|>x#?Th`WVY6}#Qv9!=nd z4Lr{4e7((@O7nIVv<&0{B%2_e053O2W_0!%yvInO--)nOm*Y+lI zlPCyJDvti;D3I12Xs6nG!Ih8YraQqPM(iCk$hNN2)@}^G=)_pgFy=Ly@8xhgzfF@s z4fDP}UA`I&B{E7MB}$Xh!kXf_ib}Y!US1l-THh1pHUY z{uN;>$@v!?_*EJ>wJaT5N3FGitLsWIGI-m%cQ1)T*1%PY_F*}+ue;98+#|`XMiHH4 zX~Rze#{D)H7L9-iJIEd0TGnO%)${*R_m-qN&EzB%etx3Ppr9!Nyu7`6DSXM>jZD*Dv+>r}}9O z7&S5lD=Z7Z2`BB1TK$rjw%Ux|XLa?{GgpDHU{689+NllH8T^m#54ELVe}79&IsVUW z{`-ucnvM3`1YtQ0Ff2pI&fH*0z|64T>@POO(1ohR78)${R3J_He=Svq1b8Zq8dHU= zq9O}EcAvl$AJAA&X@T|_p<@ofep3=5K)+AeUX1$q|MV31b?w$NnL z%6hz4WL3cU=i&Z`jt+vZP+2uKs_^UKPbR}ZIW3(59{%2&XMi~T3Gsh<45EWorXxQ^ z%*=MLK;``#`py7^iu<{^_!Xri4uQW{Ae<60S53`pdc$@Y20g?jEL8gc%4Oh#nR||G z&HwrzRy~d|r=by)GGxF|id)=DwZ+Y8&%g2w=y7xo>p|Pn`Mw2guqHkz zOue*#oe^_Tm4O$Ui*5h9yp1*6qC!krE_neCz=qucOhn4ffuUBn;k~?to~7ksKb6c^ zM14b0eVZIF{tjka{*8Omnd2FaXrE78VTQ3!RdX;9LU;wiyU<*16L3;huCGA2g3vi_ zWhV{uw5>cMg@xy|WKbVaW%Zo65%kG#mnRJuccWwd`$ob;^5Dty8)&)MqxV_UDf}+w zs><<9GLROD+QRz!`qgdwbTJ8CQ(aJ@;J7$Dzkd>NadeDuPT_Z{9MsC-#VeQT}l^H@8*S zl0TG=ASrd+$rZbvN0aki=`QwV!keZIJm|wOeY^X6XZYzDV2e7tC>2KeG!QjN$oT|% zj!*y$-$PUUoyo3b<(ihd_EyZ$r`kBR8MWK*2Ju3gvElp-vz8Agm`-y?*b^4+&8u@J+~nc?JIgrfK$G%$*FDacl=3S5&x}Vjj~noad4CZ zq#K}W;O>M$VSa^~adc;!9h4Pi#F5=V5TH8JREbVxQ!cz8Rrp#n@~|=Pt*U zrswvy;vl<)oLjCA4t<8QoKI?BkZyoTM zD|i7nD}arZ@;_`G9c?Mk=9U;4utFaXNLq0o0hzy!aGlYpqGLSmWbWR+wy3)YV(bI0Z;&HqJH2(Lmh zeM|IKm0U88A`5z0_k2E@_S-o;;Sk_;iqUS(Hc zYz1{gp{Za#;&{}XY<rd?mv!Dd=m;yoE2B|GXw1|+B+;c%}TD%+&tKX4cBV}^r>~K$MI~E=a}BW zw-#INdC&uhw$lmBQyp_5azmwZkPDnE^)y(@$d}2X_Ri|m;4bV6 z16-1#D;2^JPi-~W5nptQyNhKx%c)s0shQC;kwAeo=y0vpB{;emo)4avZ>mhruZDTx z31Y3*KG&*S7th{5XHSjAkkHESY31dCEv>EgYCo8`z)erxfIYt;YL-LdforF{B5|w1 zPgOF#+1w(%ikn%AV6tAWt+3LEfyRmU_DYm{`Pj1u_OI?`??`0eg4c@U?DhcORP`OV zodV&x&5sER3~rgw6RzQiB-*npx9TJvDdccC_Md&d`33b28qIHWXzPBSo3(64`|G;y z{wGthwi#j#Z%s0=8iG(P-+VQ3)*>;z@*;FG63%a-QjA46qF$TBjiaEXcyi_PS&Tqcr>Utk@g-V7zCDe?y# z+Z+$;R2LyVa*#0&J~ymW`Jw%(MxbC8z2x&m%5TAa10}Z(t9DVURBNJv zI3Fmm9=k_d&>ayR+%7S+7$;lqXRCX%+~p%8{MyLBmt zrCD)9D3L2^lq)s$$3Ix>&q^Ngfd)IU@-pbHLS=jtrL)};UBzHf4VbZJRcNi+IQ7>= zwHaMr4FdXtzp)TC`awY^W-)0Q5RN%mGaS!#c%g@`wEEiq;&_1~1jv6EvS-ex)e_2G zJu6m!_N5f2V9z#?U>=cu>lP2$XxKOymXVr1r&DNO#!JsP)n3&66sed}7P(3>dmsgt zMERL^MenPO=Z+uk>^Ke$Dx;^FG(@`5>WEELjeBZe?YiifddeTo6|xff{f@(@G$p@JqM!0*?sM-@e7#6NRrbrfM zb>PnBR1xp4Xix~}7%m0ycZRvejU3*znyWZ~#*Z%w>Eh;QL7gK)0xB)seW6{F5gIlW zL(S@rP#i%B-0@6a_fTl1`xfwh*wXzyDnHreFn@ddN_*msKya)wchHxZ&J^|SLD?Xr zik@Bc)`gzOIy-FOC9c^_O}y;+x1Cm$WH+x=!Omu5ruZCDy|e5JnMF)gK;obL62v~_27+cspHZ;MN`cyBrgx))D0ZkJIB<(t!)40K} z^$QT>QSisY_x(XM#*5G~i|B$U9nCqL9&+E`4i($DMW=3hrhiFHAJ)$fJAMb|!O72C zn(n8$Q7-^Wt7`vd7b)GeAO~9?;C^Ko(wcEFMF9}le$=9))3n<+q4TszP}es)k6RR4 z5s?O2?H!)I^RKM?55%|Lp_4R3I^RboRI4~_Gn6Pg1}H8$lX#t!KmU1iv!`;qQ@9TR zd9C}F0mt!q2IPFbLjaT-lXx(%XFT%q;%l`|0FKXFFjHs&qibCx=K;T@Z#MP9_~bTY zIi(Z`7rXw_s{WaA#+Ch5q2i-~9E-t$HB_Fq!O*QpVfLJFxbT%owNOg`K)xxm_?OKz z&7<%%oq+1B*AFhDNs2RaX+cU2lX>VbobhXNCO2Q@om&16CZIRO zFwmNTiABY&)c9TPUj_R-Gec_^X*y*B55C>~#C6Q#pwXgc)$kNQ!H9Qxd3hh3&E^1P zM@uA<{Rx4Si%5Pe4*Y1k4BJT`)CIY;Ov@=Mq-zWmtwCj`4Faep5)l|&ZSwy)Or4~G z$f56J=XpTVc;=hEFME6~6xe>du#WnBb;2Gi22E#}!jIw3_zLTHgWTx=A95)ngTYH= zg@!GC3RDczmfeBrv~?yFt24tFCW~gEz$(o;e+X$(bx{6jOk%&RDMF1a8%iF_I8v5~hqPJY}LE$L<9=w0r^C7;p; z0&9nEXJSkBV|T=xS+(^}?4Xx^PANMQRp`7Td!g;^ikm-^yK}ik9j`i`(Z(?ocG+Hb qd8u7qA#Bm4YgrEp`G5ZzzEg2n(xcQ$-ThwiuXj1^cC6SIeCj`sdC^Y* diff --git a/articles/cross_loadings_strong_priors.html b/articles/cross_loadings_strong_priors.html index f755fdeb..43cea6d9 100644 --- a/articles/cross_loadings_strong_priors.html +++ b/articles/cross_loadings_strong_priors.html @@ -155,7 +155,7 @@

Cross-loadings## Number of observations 301 ## ## Statistic MargLogLik PPP -## Value -3871.066 0.000 +## Value -3870.984 0.000 ## ## Parameter Estimates: ## @@ -163,52 +163,52 @@

Cross-loadings## Latent Variables: ## Estimate Post.SD pi.lower pi.upper Rhat Prior ## visual =~ -## x1 0.909 0.087 0.737 1.081 1.000 normal(0,10) -## x2 0.504 0.083 0.345 0.672 1.000 normal(0,10) -## x3 0.663 0.081 0.510 0.819 1.000 normal(0,10) +## x1 0.911 0.089 0.741 1.084 1.000 normal(0,10) +## x2 0.500 0.082 0.344 0.665 1.000 normal(0,10) +## x3 0.662 0.079 0.509 0.816 1.001 normal(0,10) ## textual =~ -## x4 0.998 0.056 0.892 1.109 1.000 normal(0,10) -## x5 1.114 0.064 0.993 1.244 1.000 normal(0,10) -## x6 0.927 0.054 0.823 1.033 1.000 normal(0,10) +## x4 1.000 0.058 0.887 1.119 1.000 normal(0,10) +## x5 1.113 0.065 0.989 1.241 0.999 normal(0,10) +## x6 0.927 0.056 0.821 1.041 1.000 normal(0,10) ## speed =~ -## x7 0.615 0.078 0.461 0.765 1.000 normal(0,10) -## x8 0.732 0.079 0.572 0.884 1.000 normal(0,10) -## x9 0.684 0.079 0.537 0.840 1.001 normal(0,10) +## x7 0.619 0.077 0.465 0.771 0.999 normal(0,10) +## x8 0.736 0.079 0.581 0.890 1.001 normal(0,10) +## x9 0.680 0.080 0.528 0.837 1.001 normal(0,10) ## ## Covariances: ## Estimate Post.SD pi.lower pi.upper Rhat Prior ## visual ~~ -## textual 0.449 0.063 0.314 0.568 1.000 lkj_corr(1) -## speed 0.465 0.083 0.293 0.623 1.001 lkj_corr(1) +## textual 0.448 0.065 0.313 0.570 0.999 lkj_corr(1) +## speed 0.460 0.084 0.290 0.621 1.000 lkj_corr(1) ## textual ~~ -## speed 0.278 0.072 0.140 0.414 1.000 lkj_corr(1) +## speed 0.277 0.070 0.131 0.408 0.999 lkj_corr(1) ## ## Intercepts: ## Estimate Post.SD pi.lower pi.upper Rhat Prior -## .x1 4.937 0.067 4.808 5.065 1.000 normal(0,32) -## .x2 6.087 0.069 5.953 6.219 0.999 normal(0,32) -## .x3 2.251 0.066 2.124 2.381 1.000 normal(0,32) -## .x4 3.061 0.067 2.931 3.195 1.000 normal(0,32) -## .x5 4.340 0.075 4.193 4.486 1.000 normal(0,32) -## .x6 2.186 0.063 2.061 2.307 1.000 normal(0,32) -## .x7 4.186 0.063 4.065 4.315 1.001 normal(0,32) -## .x8 5.528 0.059 5.408 5.643 1.000 normal(0,32) -## .x9 5.375 0.059 5.259 5.489 1.000 normal(0,32) +## .x1 4.935 0.068 4.801 5.070 1.000 normal(0,32) +## .x2 6.086 0.067 5.957 6.221 1.000 normal(0,32) +## .x3 2.250 0.067 2.119 2.382 1.000 normal(0,32) +## .x4 3.059 0.069 2.925 3.190 0.999 normal(0,32) +## .x5 4.340 0.076 4.193 4.490 0.999 normal(0,32) +## .x6 2.184 0.064 2.055 2.307 1.000 normal(0,32) +## .x7 4.184 0.063 4.061 4.306 1.000 normal(0,32) +## .x8 5.527 0.058 5.413 5.636 1.000 normal(0,32) +## .x9 5.373 0.057 5.258 5.487 1.000 normal(0,32) ## visual 0.000 ## textual 0.000 ## speed 0.000 ## ## Variances: ## Estimate Post.SD pi.lower pi.upper Rhat Prior -## .x1 0.556 0.126 0.288 0.795 1.001 gamma(1,.5)[sd] -## .x2 1.150 0.105 0.956 1.374 1.000 gamma(1,.5)[sd] -## .x3 0.857 0.098 0.665 1.056 1.001 gamma(1,.5)[sd] -## .x4 0.379 0.050 0.286 0.483 1.000 gamma(1,.5)[sd] -## .x5 0.455 0.061 0.343 0.579 1.002 gamma(1,.5)[sd] -## .x6 0.363 0.046 0.279 0.458 1.000 gamma(1,.5)[sd] -## .x7 0.826 0.090 0.664 1.012 1.000 gamma(1,.5)[sd] -## .x8 0.504 0.097 0.319 0.704 1.000 gamma(1,.5)[sd] -## .x9 0.564 0.096 0.365 0.751 1.000 gamma(1,.5)[sd] +## .x1 0.555 0.127 0.284 0.799 1.001 gamma(1,.5)[sd] +## .x2 1.153 0.104 0.964 1.366 0.999 gamma(1,.5)[sd] +## .x3 0.859 0.099 0.674 1.054 1.000 gamma(1,.5)[sd] +## .x4 0.380 0.050 0.286 0.482 1.000 gamma(1,.5)[sd] +## .x5 0.454 0.060 0.341 0.577 0.999 gamma(1,.5)[sd] +## .x6 0.364 0.045 0.283 0.460 1.001 gamma(1,.5)[sd] +## .x7 0.820 0.092 0.650 1.019 0.999 gamma(1,.5)[sd] +## .x8 0.497 0.095 0.314 0.687 1.000 gamma(1,.5)[sd] +## .x9 0.570 0.094 0.375 0.745 1.000 gamma(1,.5)[sd] ## visual 1.000 ## textual 1.000 ## speed 1.000 diff --git a/articles/mod_indices.html b/articles/mod_indices.html index 10bd4cf4..26b2c80d 100644 --- a/articles/mod_indices.html +++ b/articles/mod_indices.html @@ -183,17 +183,17 @@

Modification Indices## ## ## EAP Median MAP SD lower upper PPP_sim_GreaterThan_obs -## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239 0.015 +## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239 0.014 ## x7~~x8 32.891 35.539 39.626 14.716 4.604 52.733 0.079 -## x8~~x9 27.117 12.160 2.726 42.978 0.000 70.495 0.321 -## x4~~x6 19.784 7.015 1.388 36.713 0.000 52.503 0.454 -## visual=~x7 18.162 16.144 12.432 9.849 4.183 33.098 0.013 +## x8~~x9 27.117 12.160 2.726 42.978 0.000 70.495 0.316 +## x4~~x6 19.784 7.015 1.388 36.713 0.000 52.503 0.447 +## visual=~x7 18.162 16.144 12.432 9.849 4.183 33.098 0.015 ## PPP_sim_LessThan_obs -## visual=~x9 0.985 +## visual=~x9 0.986 ## x7~~x8 0.921 -## x8~~x9 0.679 -## x4~~x6 0.546 -## visual=~x7 0.987 +## x8~~x9 0.684 +## x4~~x6 0.553 +## visual=~x7 0.985

But according to the posterior median, the parameter that would have the highest impact would be the residual correlation between indicators x7 and x8

@@ -205,16 +205,16 @@

Modification Indices## ## EAP Median MAP SD lower upper PPP_sim_GreaterThan_obs ## x7~~x8 32.891 35.539 39.626 14.716 4.604 52.733 0.079 -## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239 0.015 -## visual=~x7 18.162 16.144 12.432 9.849 4.183 33.098 0.013 -## x8~~x9 27.117 12.160 2.726 42.978 0.000 70.495 0.321 -## textual=~x1 11.011 9.976 5.705 8.318 0.000 22.179 0.222 +## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239 0.014 +## visual=~x7 18.162 16.144 12.432 9.849 4.183 33.098 0.015 +## x8~~x9 27.117 12.160 2.726 42.978 0.000 70.495 0.316 +## textual=~x1 11.011 9.976 5.705 8.318 0.000 22.179 0.215 ## PPP_sim_LessThan_obs ## x7~~x8 0.921 -## visual=~x9 0.985 -## visual=~x7 0.987 -## x8~~x9 0.679 -## textual=~x1 0.778 +## visual=~x9 0.986 +## visual=~x7 0.985 +## x8~~x9 0.684 +## textual=~x1 0.785

The MI is still recommended as the best metric to indicate which parameter is best to include next, and we can use the SEPC to evaluate the likely effect size for the respective @@ -226,17 +226,17 @@

Modification Indices## ## ## EAP Median MAP SD lower upper PPP_sim_GreaterThan_obs -## x7~~x8 0.799 0.790 0.742 0.383 0.487 1.274 0.049 +## x7~~x8 0.799 0.790 0.742 0.383 0.487 1.274 0.045 ## visual=~x9 0.519 0.494 0.466 0.132 0.334 0.688 0.008 -## textual=~x1 0.272 0.298 0.314 0.175 0.036 0.513 0.130 -## x1~~x9 0.247 0.247 0.248 0.037 0.198 0.299 0.021 -## x2~~x3 0.223 0.223 0.219 0.037 0.171 0.282 0.026 +## textual=~x1 0.272 0.298 0.314 0.175 0.036 0.513 0.124 +## x1~~x9 0.247 0.247 0.248 0.037 0.198 0.299 0.018 +## x2~~x3 0.223 0.223 0.219 0.037 0.171 0.282 0.015 ## PPP_sim_LessThan_obs -## x7~~x8 0.951 +## x7~~x8 0.955 ## visual=~x9 0.992 -## textual=~x1 0.870 -## x1~~x9 0.979 -## x2~~x3 0.974 +## textual=~x1 0.876 +## x1~~x9 0.982 +## x2~~x3 0.985

Here we see that for the 2 highest parameters, the likely SEPC is x7~~x8 = 0.799229902211115 and visual=~x9 = 0.518551878229323. With this information we can decide to include one of these new parameters in the diff --git a/articles/model_comparison.html b/articles/model_comparison.html index 17add0df..067a3bff 100644 --- a/articles/model_comparison.html +++ b/articles/model_comparison.html @@ -255,45 +255,45 @@

Model comparison## $loo ## $loo[[1]] ## Estimate SE -## elpd_loo -1606.39367 19.524548 -## p_loo 37.91537 2.921249 -## looic 3212.78735 39.049097 +## elpd_loo -1605.98527 19.536493 +## p_loo 37.44917 2.909146 +## looic 3211.97053 39.072986 ## ## $loo[[2]] ## Estimate SE -## elpd_loo -1647.22147 18.812473 -## p_loo 34.87839 2.734948 -## looic 3294.44293 37.624945 +## elpd_loo -1647.26511 18.903569 +## p_loo 34.95449 2.762597 +## looic 3294.53022 37.807138 ## ## ## $diff_loo ## elpd_diff se_diff -## -40.827791 7.917387 +## -41.279842 7.929763 ## ## $waic ## $waic[[1]] ## Estimate SE -## elpd_waic -1606.09668 19.490222 -## p_waic 37.61837 2.880782 -## waic 3212.19336 38.980445 +## elpd_waic -1605.71645 19.495760 +## p_waic 37.18036 2.859764 +## waic 3211.43290 38.991519 ## ## $waic[[2]] ## Estimate SE -## elpd_waic -1646.98657 18.792019 -## p_waic 34.64349 2.704638 -## waic 3293.97313 37.584038 +## elpd_waic -1646.93028 18.855412 +## p_waic 34.61966 2.701547 +## waic 3293.86057 37.710823 ## ## ## $diff_waic ## elpd_diff se_diff -## -40.889885 7.921946 +## -41.213833 7.934142

In this case we can see that model 1 has lower LOOIC, and the ratio shows that the LOO differences is 5 SE of magnitude. This indicates that the model with the estimated regressions is better

 abs(bc12$diff_loo[1] / bc12$diff_loo[2])
## elpd_diff 
-##  5.156725
+## 5.205684

Now, lets look at an example with a smaller difference between models, where only the smallest regression (dem65~ind60) is fixed to 0.

@@ -334,42 +334,42 @@

Model comparison## $loo ## $loo[[1]] ## Estimate SE -## elpd_loo -1606.39367 19.524548 -## p_loo 37.91537 2.921249 -## looic 3212.78735 39.049097 +## elpd_loo -1605.98527 19.536493 +## p_loo 37.44917 2.909146 +## looic 3211.97053 39.072986 ## ## $loo[[2]] -## Estimate SE -## elpd_loo -1606.7212 19.392807 -## p_loo 37.4012 2.862995 -## looic 3213.4424 38.785615 +## Estimate SE +## elpd_loo -1606.11048 19.433361 +## p_loo 37.06705 2.878051 +## looic 3212.22095 38.866721 ## ## ## $diff_loo ## elpd_diff se_diff -## -0.3275254 0.9063163 +## -0.1252094 0.9510588 ## ## $waic ## $waic[[1]] ## Estimate SE -## elpd_waic -1606.09668 19.490222 -## p_waic 37.61837 2.880782 -## waic 3212.19336 38.980445 +## elpd_waic -1605.71645 19.495760 +## p_waic 37.18036 2.859764 +## waic 3211.43290 38.991519 ## ## $waic[[2]] ## Estimate SE -## elpd_waic -1606.47884 19.361093 -## p_waic 37.15884 2.822929 -## waic 3212.95769 38.722187 +## elpd_waic -1605.79055 19.391122 +## p_waic 36.74713 2.818093 +## waic 3211.58111 38.782244 ## ## ## $diff_waic -## elpd_diff se_diff -## -0.3821645 0.9013668 +## elpd_diff se_diff +## -0.07410337 0.93308009
 abs(bc13$diff_loo[1] / bc13$diff_loo[2])
## elpd_diff 
-## 0.3613809
+## 0.1316526

Lets do one last model, where only the largest regression (dem65~dem60) is fixed to 0.

Bayes factor diff --git a/articles/prior_pred_checks_files/figure-html/unnamed-chunk-4-1.png b/articles/prior_pred_checks_files/figure-html/unnamed-chunk-4-1.png index dd111b1e99c84400dfd78a125adf24374075ff3e..3e03fac75cefb5e7c37845b0d3d9733681f66a48 100644 GIT binary patch literal 85448 zcmeEtHO~2*efEByXFvPQmp5wiSmYnWee;{UV``?AvTbGUT^S zMY7}C$ITVn5v2z|S{_>WDqf)TC(OLl4M9*%yMA~`fm-NK7^DtE6_;Rrxj38YP@Yq? zCcn|^^ux_7hM+|bt1}T|GNDuziu{MzKZ5f^*vY?K<}_xzJ|oH=wTfAzbVVd5#a>f8~UWG($d|mkbPtG zVS#8a9ev0n163?cfgvIP)2B~0<#i1PkVkeBOl+^r%h`ZFmL7RzVkbZ}&PoJCiB_^+Lc>{MTAGixs+23 zm=9Q-h{$`53dgvbGbidhmS@yKW-C~NDX%frWb(pa%?^$)d{be_qTc_KA>#Qkb=qnj zjJ|?0A)q506DfBTp^$xh9E^xcmN2j`k<%VXOG}IYQ~&mJu2@Il<3pdTap_xG@Hg|X zO8Hd6y~+=8rcqF?w2HI7VEml zXF*{~6;$^w*K;GJsFQ_p=v?&h^LQp_Z)+|{zL~xHE$_v=w2`eFH?Y~i-b>;Wkye)b zY77aJa=yzlv~SJJ+prts&q@;DR~lyK!-5Y5V@|st9v&ntO_ryozA5BubcnFl&z@ag z1~RlP&dd<`-0T!)iRj;j1$swEN1qza8f7WvkMi`g(zo4gWCcA|%`8!4haEoN9|k`D z#f!uY#__BTi(#DsRaiJt&{WOPn+ z*Tw|Y!M96848|nKM96&{%#S>_PXK}a$a>b@k;>o~xAu-&Yg8mDkJT?63c;^PRWt4H zO-)yn<$dgF;~M|y`|5K;4Li*=55!=;_)g?iEKrqR90`7^*h>ChKWZ;08=Gwo&%>pA zy05l2Hbt&Rmz4^aww6v#RW651Z7`~U)-7*T#m6o`ZEon@6yD$4@;VQqqk0SO>(z1N zHSZoADLGdNlhz=yMX*n;Hvl1RuCkL%k%Q` z(vfO|zW22CUS9aYOAjJIweQRQ_V2M*A=hT63MM%U3QBw8t)Hf*CTpV7eHY28&i(!U zpV%!i{4c-gXXY#6F|n}fEDk~jvv`q2Y$UAu#VOu1%xPLy#ecD=P!C?6ewQ zCy9{N^^;RsrV39~kBp4a_of^ojDn;U_5g7bF@09m;(7RB&JFczsk^A@dv+dv zm}OZmwh8$`(br@OV*dv!k_z7124hGVxYa10x|YnZyXdpGx6fYl?|Atvb5Ekr+3(s2 z6lNoi7j7rXY0u{7=5BhSDs$q^$GQt^uwVaxUyQUGDo@EEpAc)9ra)&K#dQb=5->UE zZ$-F@#&v%kC;RogCVp72$TB}4AKQhf<15Xwz~^4&Tm@|%9UVqJMx+>ZHeZj=#7)Jj zUd1U4Q|@D%&^_O&nxP7pp*0a17oet~FoX+%yV#rK*)2(!nYZsv89yLV3ju|DaJOTl zzBga@FAO@(0eM0MzRtLJ`Qk(XYEHQ(mQ?AU6YE1v(8`dbxHid)wRVS4aj5PN0LEsD zOay0cW!RRNlar8;l*@nhKkgwGQBqR!Kp+J0XM!|}TDIjK2w&!6BoIubj*ll~JXl9M zSl7)UJd09RhZ9f5*nAt3X9Z( zR3aUmi#n<^C+;o)5W-PA`j^C{_R`C8fi7Wy8qpWNtnMk(V(Kp1I_0T-_p0$TGgk#i zk8JQ@rxjHDd@UaPHw_ltALP=wg)>3k=)}w@e>tN*-}};8j88f=a3bpXfi~_cy6)ni zq{thLDP4#FsX5g%luxkUwPTo9rsq2&BO{^CC&10zs`JUbR9wO9b7qb`dr%iUpUR5n zO19>o?O8k4@y!&VY@BpXPd)^6Rs7|FOjd>gV`EA)*@Cqwqddg!=rQ5 z;Y(T#UJweY)%8CE-yqpGr}oTHl>DjY-v+Od*@c z=U7-+mQCsm&%aCt`+WChb!>Ot8Z|+X7LeG=vZ=$qH2wKK2qt8W!lig0z^I=9f?nnRMB(AX043Q45YLm?H{=8hn zQbUmvwEnu7E$_>(2gP0=fLeh3w^KU?-dQQLjX#R9>d`*ia2oTu98!ry0$v0zSOke;F(4vZ9-X|3$_D&clj7 zEol58G%~!O>(wmtEY*PErapdbUrR8y`EWDfjmp?#e;JvG38XFkS6}@^pe}3#mhJvu zw3yGYhovt+6B{?WwJzx}NSv=EI-g&y#YzA~^_L8*yEqJjA=Fn_S7SGlG_F`I1b;KdayHF<=%>}U6~%=%<{;vWgG+<`p>Qb9y%X?tvQT-j9o+B4oa5k+t= z$1qS}Us8*v9ISx+4JnAGzL?qoq27xYCiyilv~ycnH$INhc`^*w<( znkmH9^|TKK6*UWvIk*8X_dJ3e>0@t7#LLzUL|&@>(g?0z4X=%BIH|AGo!GlN1SAcD6e23|` zn1S^aSn@^kIBEez)cI}c3ugP38vaYD-ZX%nQlSK7s4$qg)?VVEe5#x4>rKgug&c7g z6aHGnfx6i-CpM!2E{Oo4e)%R&DPP>3+i`wssunP9m*r4Ww9nh)+vUfH#~^hpe);>k z`k4pj)8*@2vE?UNp~%L()aUM=!hdQja(Lax}3pjy4z z^+sO8G>zfxeVREkE_PVQQ2*>j@3?V-0^JNkU+Qxndauj|^hTOQrSibN>b?uay`{F> z*qQlgXtE)wqm2jISF{@GPZV0C#t#l**0%hfI0)2U;==SK&ZBkI_1>>Qpf*37A-J-o z%d~4(oc9SD{*eQPP#Sw?AuTQ4#e_PF z+(MjQm86VJOoB_f3tN*?v~#4xGs z23<%c{AQe5)G}y{8lE0qCv!^-eRwpQ2C5Q@9hfCUJ8n_#&*MZoh9HW1H=}=xHS6vh z78**$*<04{owW?`_!{(P)mqGTEH#hxCY5V~+EDy2If)8%qy6bxjd=<0&`HS1$RZAw z+I+LNyeAd2oGh|n!lvbIypxkQx>j7tWeesS7B?n(5NawC5?v84lelmNGmQ%EiVZqf zdjkW5Z6MjjR})7P1}uWmc3*>5NrB`%dUgN^w+l1jfnpy4DXBNN6FBo`ba;mJC? zY(@Hwct>%i&q?C9@`W*zr2h}`E6}CcIak5uD|2VbCBf`py%D zi5*GPV|bSQA>s8c;Xz=xt9Q7XjLf=)e~O!U2jZ1umN_01EBURybC|JQL~3sP=&E|2 z#-+2lj(l zZ#$k->{|G((@3=6#m&PPY*h>H6hGvpkw3O1E{;gIC@b`yAxa~S(m5H78gx>2qeEM{_wnYAro_r-MBcm3D-bxF%FJk!7m)~qywR5;T3mX-y zdg4Vs4RIfdv8doLO&F!c^2*pMhd-4U>ZNf9R+QMCA|5oJN($LHuKLgK8j@txs#?rL zo;L+SyzM?L##d#p|fyk_mNR`^<}%$G5=w#2m! zsPghFzU@>$FHu6s4VXp^WgW0KULRkCo&L%)7Tt41M>KU@SrYJbM(98QR!cPyNO`$i zqL|dkM4Jcf7%ju)9QjTBQe~`H6Pl73>SBRGkBe=wkBjG`sG4Ev@BxXhJ$WuWE}&>J z#xm&3(x6Y~<~Ld-em_DyfZ54|LiB4$@7t?FQNL};CI3&-cRr@n9lL=CW9fEHk#E+| z{cbpnhpo41dn{ZCyadkK=`1C%Sjm^HP2bsv^n5|L9s0z0<^gN>`ucd+T_f6jd)#D zuvn_wj)gdBb(b-*WRBL021d&IaDvh>a2V^q+&oO+HvdWDzAz@-yhG-as&Mt|Gq~F5 zbiF(CgngYf47ui{755Rkr5V@+-cYV+Vn zs^5LEfXm_4$qVsbP1NNs0mt8gA<`g6PoAQvU$K)J3K2(6PhKQ+qD)d{DI6*76dL{4 zn>%;A0N;N9udS6cW$@qzQQC?xtK;F4@$rCGBjmqWuFcl@qw$}={7y0P>1Z^Ky4zi? z6^ZX?_{HPda^U;NE)_NYz18n}u&v5R*fFMF-tXvcrYfBI+Y-T}zYVUDEo|<1#sRkX zjYOU_M(`%M9BYI5=Tq7g+_YCCzYrv{U2i`+-%CFEj-*D`m(z`##Onl}g|pwr0&K-1 zQ+o>=F?NV>lG#gO`&fclvjNGfZRcyJXdpWhrV5sP>~fU!k||`)h}Uwqtnk1({=7*K1XK9H3#IQ-3N^2vR1V zbsemYSa60FO77wb`!4;ODet*_)BuQ+M^fvVJUQn}oB~7ChFcBlPHp01w<*uwtCH34 zmA3q~@mIF)+vm__Uw-Lg)VT>A;R9+0pxH>v=Ez=HcEG88a--b1yXHbLXFagePDW|8 zQ?z#=A5~&qF39z~A3$d1_9oDI`{RD**=lwr;t-7(rK7(=6!P)O7kmD=RT4paIeKD_ zvXQp0uizcl#%~VCr^S5#=Hh~2L8XKpO=Q9Y5q<4FbaI4;ht$fgJ^U@CVDKzT2zI)< z%7Q7^xaMkWP1&&B-gaPwy=uL=M1a6a!FMBL*giw;WwcBRHDuS*N*1XR{#b32n|o`y zb^=c;TM@3NR!*bkLY$=imHoiD@r7KDkDmcIMXZ;0N-|ry^*bXv&r34Sj=WOeQaO)s z@QV5ra{%eOXG(deuxuycZ$(JVE^1-1A5y}O<@9hjA9sNhntYlT>bbSi4bm|}RvzY^ z5=S)++5A-$fz*5c^5^SrS&V<-I-hG=K9aafWQbK#%;G#}lIqc1+28XfcjC)aKj28A z&Uao<7C!t5ALhE%Bj{;tw;uD2K8o+qY)_u@ zOJt+&n|iVW*|6nhcyU$vLoEE0U|QK6LG;$N`V8#N`?--C{gPupk|vQ2poIneCfywwL8B$Ib#*X+-b-5*=k%G^@gR1m_VUR+o&>Q(!a zacb{IgNT06_2PHSoZGF+GQxAMfu2|7u1 z#|?XEIVAqEQ78}Uw_guQa2*XloMA&AGYZ4r9gmP-+>%4XRjR^*T!U~r`w86e;DvoE zyMDu7Hy`Izq z7r#_@pgs`yT_b1t8)+b$J{82-yk}#`#S&7nX9ClP+(-6*n|(HAnAa2w&-zG4?W0dR z1NT-xBTDbc&gOLCAUIx#@B{pA{c|;dG8}xcw;2J|_GUSdx{*67NwWR9;15jMsf9dy%N#b}$Ul<3i%!w+q45 zt+Eom;z*+5ls;d59j{KWS0YG?Km-O$#44IPj=Q&lo73jU_ z)leI!ANi8uVB2iqA}mG5LP{(I*x;>N@-SkqR*H$pag*AjnFch0j_tshtcL?=9OX=&0&D0z>?C(cbjsm&I* zGnrVQ@BMUd8((?}cvSx6dPKl=p{y`ok`#Q?$arIJ$=2%hqUZFJ^d7lrf0hZ!-$!G? z{-rGx@7*RuifoB)X%dIOnX`||0l9>DaR_;Mtr~vyXUN_THY}kXG_K-gZj_@?O;uO> zbrMwK&~J63SCMUdqZMtY`<~F2Evb43)$6DH3Z#l+W3kD@(qY#UQgTv2c`VfO-i$2{zDU*0tmYWCgvU#v1s4l-JTP>Pu=Nn_V- zytev9%c}Iv^=$Nw z+p`0Ej?}n&7Uxf1=wxb`@b(xfT&@|3a45a{DkRUd=|@%G(Y0Iz-ha~h8^=1b1&fe| zh(N)a*wm*i1k0WeX>pZo@VQj*VNG$v60A{%LEr41Du^e-jHFL+wA77xociloGb`1Q zy3_Y=tg$sYP4Nn2Bi^6e(pSbRxAy{w_eCN~13v?pR$<#0k#ak`V~aVZ?)K^nIA@!{<+-J*tF;ZLPtCBZ)|h!wsX) zQBK9Bd;{fXFX$iSm_YJyN5mY|g-}c@iU(l#N2>-1Fx~ zaFGryyY0;+%mFGwaSd*isxR>8M)D__i(`=PqPD|#2c->btCF0Yt|-iDq(>W?4n`w# zDH%1&&?`Gzy#E-kJXg3}vbSeF75e`3xzohwrBXGBsha)>#)B-Xw5K_7y}%=C?pC zp)!VKEpLCkjM=ObWbl)nO)2GvLZqSJ9gpxMK}iEeN9e(*BWXWyw)%!#ZVMD*6vkH5 zo8I!XmW?!hfAMVdlc@fqy4`{56=~Mf`eqpoeB*O%lnFO{DJ(TDrL^$u`dUM~O>dl_ubU-g1 zI7xO;m0Syo1);T^#%lhu$Cw}Oi=H_j7+1;2QjR~CeMkz z=sohAc71+uGX0Hz76dY4GS%Z<0zX+|;37FinHigt>SWAx4(e&kd_?vb6nbsQxL9J= z_|;yOF=J8ZmOK&sH^twewSz2YEE@8O=+~C>68{>4N^ol~nC|)89i%-ul56=+qxCJ# z)`-@xeY7_Uw%60!1;z)v*@-zyEC*_(Q!}z;2Ok(S{>)qxCO@SJEdViLAMu}KW4R>8 zss)6f)+8b3O#4G*g1#OHKg~7eK{lRjF2t!?iOjmGpR&Dp>iKM!@qTVhS~#rK^CuDB zBNVe(znkQoFsAJt8{5*Yao^3T>d(^@L^j?Y6i+cSiC`KfmqPC13fck1vfjA!~w=H4ptL$NZLps`L>)RQv_X zj;!+*-#3@@A9AC1#WOc(q$s*#0;w(hKlQ;oSg55zQVVezEn0uPPuttv6`Dp`L|~%H z$ouhiNXYelQ_DkA^dFrY!q|SVS5eEO6$km96hXRrUu}wKkjObU%#xLfrmJ6M{+ax3 ztY))a=ypDQ%Ek$#2GjGIu{mE#hI13$cb1n7CCXmc6DXsZ_}XTk1OUslYf9xkbR9NR zm+~KEL5aAeSKQn1%`7MvSk;cP^p&z73l$ynu@M!FkXIxK3Kqkv@++qR<*Uh=5qOoK zM(lO#xs$btECJlLD;9Sf$4Lp>uy%7d*|xR=(5cZ0)E-!#__s)~Mi4-ig&7j^dD|j( z?V;ves2;hQ!~Id+d)(Q87}W+FdNc5}rZZ08*Apap@_dJ~W(@DjN#$xl@iUyAqVjyuZdQk>5orgOf)et6Pi?QKCXH zhAvJUYW^Hjw+GEU-C~$z%m+(lzQnjyywOt<=G&C4;y7q{7IbTy`e82Ov=1@R@f^&o+Sd|5( zm&}2=;OI$ZbuOX0z7P-Bjj|HOWvQBW+Fw5lBK8VCtzy@osUC3XGtfW6#*DU3_PRIc z2c{?U-y|X#vD=nf8h6v|TQ14i!0ruwliQ!VO-;S6{YVm*htI=P!%kyWW@f6*>Wk|X zojj|6hSK?S-&=&$Wm!z_^V~-&0Pg1mCD?rehl`Y=X`%$_p4w)vwevwHq@U{w^}xHu zZts~5lIiVyM5x^OvDZz?HBEHdWtUH`zIh9mfGEk&8@aR?xzE3@oGD2*|vkr1_60;lH=FP|W%fsvzcBKV*VVU~u6# zmS8AINtcV1%c>^FW=HrhQNbO^OVL?&FL=%?S@$#y3S1XjxvTPuX?g6Oybj5p-Qn+h z{<_0Zc@iZKnwNfdyIDbGLAw)h$*dKcw`I=ngZNy{Wu&?bmsy@2+@ti%(KCVbYnMn6M8*8z1!{Y6tjXgNQZao5`LNttxbABJ{Nwgi`*sXfG;>wg}o>FCL>_Roz zj_!xOzG*eZh|hu62f!cX+>&mlE-PGeXonPGI*e$-gIbd}__XdwWL!2*=KNn$N{A z*4cXS@$eqS@K>hq#$9NgKD*yh4d{L8(t0Q2%W=K-L6YEmHElW%rtzJY4&M6D`uT;! zzMYWt%Bod19zc;NMIS@8~M`)iJ(bDvMdUauZI57qB@RWxtZf(`N z>!5Y-)31I4J|ySTcsdMp1{hvM9leFN)7#m4Ltn_Y$NZ9;2G+{HIP-3;Qg zSZ~BU|NGMIEZsA2HWIu?PhR~SB8MNUw2!koVyTt9-gfcJH5;`oz0V2dDWt}-pbpzn z=v*)#2)ri6jC2sbAyK~HAY;=AFX;K1F2=Z((>>oXHhnAiNc*Iw66%2nRoQjTo7FUX z-I{*w9KCQnbl1zh$%omn?9RCW+q8H6PsuSrAwFqbqL}GeJN!tHtzH{@t=r3&#Zir{ zXQ9Nhe7~pUriZ_?_RSA z3yDiRf)>KBQmJ&V(!s6o1%imc@0xrg)T-dgCp|j*q2uMIwJr#)qMHXtU!4T;)|M5ukM?ed!M56m5>p5N(f;RGq8WdP zuSnuSaML*%a7*^m|dYqOe+1l2jNOgTlL>6)kh+5@yV4FQk z3pJQNRR;A}=A* zm;T5iuSCyAY3+GQp%BZ8*4QnSo@N`{w&-x=D+e z@2|fC!9l?eIPK!V#gtT%uIQnq#}2q1sX5)qH!d2Yo$j9RDE3K!ei+CFv{7~E?%_JJ zKtf2r+or>dnZ9J0=*xvR;{ePx_XlKpT3Y17Tx+6=+n1&^{{xBA${F)q(G8k~I-9l4 zoH_-wg1AhW*K9{9Bcv8L9mS6h&O9hHqvhG6>1-2e?@%t6i)F#=RR&#B=hBWfYrr9s zyPUScGo1hf(R!r9%0XK1V96M`%x-zoAPDGlzh@&>O@g3s^skd6iKqW+Ctp$gUMD~k zPUmLx^oVw4F=!}hswN1zdw3!2p?zT{ZTYH_nr)4Pf;U}2f}eYOazafWmUbTvxX>a3 z(!uwU&jg7XzIFF`l4_-B?`w@BOs5Ow$kvAOxm)ZkspoicQdPyCG^1lUa5&#t_gr@V z>e~)!L!b&6Z6^z)Z-=f_r3*nkEj9pGXRIPr66vNm0_H1wLepXOkj@9h3^D47Jtojl+L*)MYh2t)ib-1187-7Y z6k%=3xKeh1;BkSxxS;+$Q5Zn-x8;uTX|fe0hBzT+_TI9q)xTDy%sbk0*q-FUm#C9V zq_Mtb9Oz@f^?4PU9dNFcz`@_D?+r)db9Lh8>;!%tk9dHYt^PjW- zTJ@D=dz%0B01lsL9F&0+N57HaW)bUZ&+ZVP|0jDw6KH*BeE%=n*~5fk^}y!?fH? zc6$(d%dp6n>3n#0Jws(Zg~*~!Z3gNsFOk`WgKNT=XX|ycpM+R$i(c=OGGqiL9Q2Ws z8NZ#VV0e28Z}JJ?8kAYsvGmt!q$FDBaBBbROEJqIoK_R#Hb1mmt9AKRSb8l`$W1({dfOdQbLS?nJ6}2tzz`EAk z=ce`$UhCLvmS&&Ilm8k+rYtpU2z`hOKc+HTN;A+M5emqlwO zqpUzySy#C2Nf3LEd*9Oj2QAQbFkHjgWLDs~t9A&8dLuc#SZoShE8uW7EguTyr3Y?+ zb}672RNq=rE@Q;M0P+;HH$)yyHreys1RqbFf@ELv6kyKW7ZFJicB~h6wjA(LabmsD zC!*Wl-SX!aardF0eBW&^sKj-UytDm<>c4U){p3b-IJ372I`t;8V@q_KGIZCSzs>0w z{*ytFKuP&aeG^1{Kufa$5Tx$epwDphUBHjdk?C2Ksp6|g8#G>2 zJb$E(FJ=auFFD{8tg}yA5bD&qdUwr-6iRHghLB1ozW#Kpi8f*I;eN5xPJyHLhi(1M zftn?tF=gWENlupv%AY6n&CLS0Pl`I~GhfI>07W+;TuksO@zfiG3Lhn!RM4BKULRqW zKqB(>s5XD zcm6|XUu8T!je)6dOzyI`1UcdX|xJNxlPGYMXsSx_eA8;z&ZCQl|`+ z@gXO+wEC<~M;Y$K_0moZN&n9U1S*Os?_ggxFG5OxIzM%FssW)O%Qf6mcO8*NL(Y`u zOSgWxof^tnVwPo+TRKRq#m&y|?+$<)Y2PdM9e!<;N-|02G>0VClziKYRFM5LloR){ zm4?raT-P6!p5w%DW%{hEc+eeli=$}3=-8DEsa^J#k_&jVK(mlhE*6^3r7jwZ6{ae1 zRu;NwSO7Li-_CyNU4BhqB&Ksk1jKRcROp|d6f5vms&LbBaR2np1?B3x-q(N%$fpsg zv3xf%_h$zp$!)oQSkftJ)FgMLW=a1#45<1qA)$eL^UtsXKK(l=J9#LHyHM7IHQ(OI$mRi(b@d z5cQwmc<>S8r@)6Z5Y|fQRjQ0|gGjF>XUJ~&MtO|#VO%7m>)ynCk_`ycry!0=`7R>^ z62d_hG=EnIgIDC@LYWzk9w!)CAgBuA8r7*|_!zDLzdhfM++9lJujya}`KH9CW-?_p zE9+vQ)l0hY$S$!KS4`uGymX@!y_8s+dh+7mAKPaZX|V>QG};&Lgx;VGX9#NlQHDmjr6R{6^fC+^Ha2;6T-fuo%4Tc(h6Z^KTBsYGjgm=EtSQB@EMx7T1OClRaZ3%|B|}+3 z!8_HqpeKCfp@J@)XsiIE!3OHn->=Lk+g)aY`;v1ZVKy_OPND!fc27Wycl-ym^(3d4 zV18<)y>(GVOj0*nBKDB= z`a*hxU(|&I)?^Y|TyklMt{!gRc5GtQXes+@&O#hr5|PR-qyC~E2x4val)WTr=kWZq zNyt=!dat^#C?c5OM!Ucf1u8?v$sm0w$ zImgKUrA_Bj_y6wgEHql`TkyKuEK<2x&jvqKL|;*SQ=vmlpVr8j^zUwkR_rSSpkpX) zCGaYo-o{CyFmR{q+$fyV&=Fs#6bj0Yt;iHw-?t*HbtkM^1Ubx1kh2{CgLMxashn>U#xke}vUyX9l=#Bh7jgs#zMT z>i_YAQn)F>IWZZ*@e`45!WscuvtesvQc`nz8bXqe^UCKyZ4=`s4Rw*fgf<*BjQrZL zeBR=(U~g3gpOT)}m2eG~!F-|YENC|8a?c$ZCp`rSIMYQqLUU(sG9 zf5`?{fQO&Ar>w5EcF zxrQK%iMPQz=n27}!A#3oH%)}Cj-oNG;=p&iwS1y)8`KrUU|%q99`Q!eEbFU*gyx7B z))e#quGie`MW!pkxPT#g^bfP5&?P)O@YG3prae8CQs3ea+%F}sx`bH`_j^5kyuSH= zHz3UQc?*#%`7&^?gfiN!uZf|cQxp8R*M}Rp&Jg_0qP{Rs`%O;~pNjaF0l)6~Zn#)YybPwuHH+H+C zen7dE22H|HYI*7(!1F!!U=$X0uj}Co8XKjL!m0_PJXOH?(T*D~PR##2)}?Oa78l-6 z;_mK<)ciEEvyaAeI%9Najtrp~O(z^#JdbmWWRFY8WkF@aMwtg+Xfe?M6N8k+e{ceE zMYl9y#Ij@V1{PvuB=TZOB6{+{XL={hDQUQA04y6pShotAo0M`R!LhHTE?Je$WiA?y z8_Jfkf{P3m5jMrqW1ZW`qrr(;W?M}AoQ!=SqpN+&_YPArA`87$!wn(E4A@aK4b!-!&~|;a%~Q9FGnaiM zdU+8r)6V;zr$LQ02xm1d2QHcTV=Ex(lPf{_xSNZR(kbnl^Y?7}z%39t8<!6>2Ic+Y{MYs2^~vgp*mtj{OA_ zE8xDhhH77JpX0GJtYJc)x}yk!XHObF3ArQi*EbWQF=!3?GPp(6x|7}(H;zl>tR%HRk7pv^y$0uJ7D=C zGhG$3=_Vm)eM8bsf8!|5B#>$#$1J=zPhyRtCpdz6TD_02}NM|jK>gyzPvQrzmCM$ z)#Ee@n%EdKx|Yw$W>@l^Nmvx29HD#5-GQFgB_-w{+05(d_7-HT=UF3jQ-5`0m=TyC zMh`3T-ys7#@rLXh0p)#NoMJxjy3=uvus*r#3|w_<#MqMK-f&(HG{_1$QRlrls) zI}(X@M#?BP;8=e>7YH$8b(B+)xgf zg9)4YXfThTP5)8cbU3DqE_g2u4T)2Z zAv+h>F2OAxdv20v=WMCt!{wPWf2sooDiGp4nPeydU`b18Sr(1IFjLfk?8?B?#u0{BOy@!#snc3n8}}iPyQ`Edmo~v^JRKz_YvHlP_KKK@;}Iu` z{k-LcBAIaHyH>=%`D3m>ALj8HDECMw!udh3FCV)?=tmO~imD9^V)l$X@|P35`QQ1SU~nF^_R z7ye}X0Ciwbg;soCmuF91f}-w>=Vf9I!yBX3J3r>Y%2dAK0Y2Z*SpImqt+hnn8>6Pb zY@Lt0Ew`cgj7_E`p(^}nhEDSqYAF+yx%%PCdaZw>wZg~#&s_kNO%tQ0M{CgAa$Z1nx*twj@?SK5a0d2gAS0)qPqf_Ctk1rs=@w_sr5&|(He}V?!G$AZrBggnSCv+d2kXE$&)Yq{X zXYejERoXLoA3m}q!Ptx}$e6&gDk9FiUhL_URSjE;D;7U`ZuNfLMdwGW#A{s;nTX;4 zjA(BG5g4aQCrgZRB9&&D^arX);}L6yI`c@E(>V zrDT8xVc}M(GQ~GuH)B2sttP~GYb{zOc(|N*S>JiZT2TY4+j<8JriWA9*3&9CxqVCa zj)y_pWoM}1>`?HH>N-DBjpdyFzHb?{po#^?2CtIDj#)x*7C=ys|$ z_#gS4*d;CbS4S9CU2IXJZ50u=GW6B8D=NM5jFo#f16e-2iRUFrVhtn@2|Q@Iou9*p zijUWoYw6?nSvH+nYNl{~fVGpncz9$rJ|=V}F;74^BRI z&y%jVnQKCN$UZzES1+kaj_nQE9mL$q)KKpzC8f3=kLaPtRE&=q{cBlC=YroRUq4A+ zDpWp>Cqzcd%#B7o`oUD~fj+XbEi7W>vdYHWsQ9nOhm@7Xn*oMkSM`c5kn(4a>8;p5 zI^GZbh*Tm;r7Nar_3gowYW%$9S_VD~I{ilb@Ate_9&-))Eea8{!%*Cg{&>hJGe{J- zkczvzW84FzUijg%(sjNXBQ4dJ%FhuhGsNO%vp9<%|3XfmE%dciiq(f?e@KC@Bwi4% zltJr;vnC}iJzzQ(+*}JIIU8A)57RMyadh|D*E%{HQOgJg2r3l=$F@4NGbC;^Ty+$) zRn{_7g71Aq4j-hXnatz!x+nb32_}Zc&SrMbr-epE>N4pBSL5XhCdo>hj?PeApklY% z9|$5Jd;Y?*^adMw{lHP)a+zxoCb#)9Pukw9n&4m2Va=I%ef>t)riD4RRRM2|D0X^~ z8JJoMf!LvUrm2_w>$n;^CP*+yY2ft@DpZ{4KWhI68L(_eOh*!%gq_iis$|(%r0MDO z(7P6Lw!eq9r-luy>;Bkt&yP~>?tb~r4Q@J-lxR5P=aALRLBWlFuZvNo)(6&Hy^#7oqa|#vO=XolA?A_Q74O#gu$`B{) zvtef+fR|enI&(Hfqt!=cO!pi=)M!HwYrN)=!K%_Qq)Inj#UNKJRnsoggyK1a>aFlQ zeEXhT@7ajtWNvXqjW2A*9zwwZr4V)6!`=Dk3B8t3PnQlp4J&efPY*&% z#;8u-;c33UVeuD{)%e1Zm!ov~b%}DqJ6;3gN>klmgWv!G8SwxMJpHvo2`DhlM{o-#_*@=(X-qK5euQ zY?OrgN3cMKR-de^@kE+H@R7Av$a0O%oF#6C)7$vok1Ul!VYmTEXqUJx&cMot*NQoWrCzdIyd!$>`udaX75 z%^}%tN>ay@i@E9x(!|WDqnzzdDzAF4(=|&d1ea_{opX}kAMxUGVX<{`yOCzm=2WD# z@&Xb6!k=%H2rh8(fSZed9>6md^k+$Hb>z~1XDZ;iDbLbo*>@CdeK<~Wh714*XBaTJ zop%@o?qmP}Bh+wtn3+DGa>kjdT)$L(8@7J=Qm$KYd#66aSJfm=>$N>l|MFp>8Oy;! ztGbJr`8`f`hTyNZ%GR98ctf)Jp{ulK#`Q`BhcEq);(37p--Q|qY*YG0v-B0Moi$fw z6xXyr1-@q=z=UrYnRx3ay$s{l%fjAH2r0w@V3#3lE0AKKS(q1ASo+8Hcb1<(AoX*L z`t%2**L9;t%Cz2rqXH+Y@Yd^ai~M1xq_d zA8%`^7Z$!i(fZ^(n8yc46cRC0|hBa5d2h8${D1Q76v*2ErRPlhRxT zL7LL?+0EW{iY4*(D**DRoN6okd{C9uuAos7g^hdXGBIh3ga3iS@T5Fe5QQ4>g7Ado zG>7L^H#7C1A)U8stBZ2>Su1Mjl`W7k^q9yMn45H7yaysVJiL@Rlj z)QsL(8? zGv|S#-0=H%oZ>uTu$S;{Bu$sIy$s_07KisBX_I4dgd;b7*Ckz2~M;3nS#y!{aX`)bIewH{zQ2xHh?${I^PSB^UTaz8h1I+Dkh=A=R#D!de1sPRy%1-^LP_hVRbPX zs)=-xC^e@)9`<}DY+oLZb*xcnd)Xx&H}ForIkOuoTLqG3T5BqvvhOSbOk&gz@3<}$ z5@$WNo_m(_D9$;9&Gp)z_)mKE5604m?wQiQ1Iax1?bCIva5w*aXPw% z<33>tHvS!sFuf2CbR$7)dzF8#R9=2;jG|yftVQ2q}$JKl0!df z;&FeCz#Zme+|v59vDYwm`_J_&F{6H)e}jon*s6KOT5>U4*!F4z9HDhNt-$Pj=>99y z***Y~GIF}!I1=Di*ZQW~YHYw@Yu|g1JIk|syfVWp>(C1P7&hXn?tz78OKA$GB%i|D z=`@O0g{wI4{n=M}{_Q5Qevq6Y#yeYQ&!v2*$l=S*kODFDf0BE}*=~T$c5A z#$3uJ-NU|2*2*My?gbDiJ$)i83y&n0WI~Xr9??EsKeCkDBmc6GdN1cutzOjoCfjl^ z7(-p@l--0m9k1J-m`J>3RbyRkD?*k&o@y_<#FXQ<-@1Gq*%8ynNUmtDN#jvSFcnEYG~QsH)eb zZ5O&`P00Uevw#%y4S4+@qp&**M~9`9e4KO$W`SF81738X1Ua-t7Yq*a!X6hS`ZLY; zd+^mFXK7`+MP*RaNw@N!TfEn!4fU?3_I;;Kr|I<0(#U^V?uDp)GilP5Qs?mFG1=aJ zh&QobR?>+Vy9NVE{hLL18<*T};s$K}=%%8KCO}VCz zeUc5^&ly*BxE!ATHev+XBx|B%=pC#YT?1a3@1Zll_JAE1YSJ$EB)BXWs-u&e5391O zxB2K_Nx1_fdRgz}bSr0ZWQfp6a=QF`j1Xgar!#)&)kjo1&18Aaxd;5ZE2s%qm6lTN zfUy(=Bvr*8C`HGQ5NTCA&C)^;j?}-k&M?ZnF06s%2OyURo9mmJT(ngPg8So`3^%se zQ`%|O4&no(S>0QSb+E_chWRnEw_$o#D)i|(K`aMmnog_8k|v}xQE^_?s&p~R>M98O zGl~B=9o;`bGyQok@TwD6wR!YE9*@7rSPUqs7^Ns z@0@9e-%5mNa;BzWn$W3R;op%20rX*)?5&+kS)o7+c3UPR)zz;4d$%~Zl}Z*D`Vtry`{6@r zYaR&BJf>w>0=iPi&0bCaX7j8;e7-2;CO|1K7HAj5ZGyUU*->@m@6<gLE3N5K_!wx>AqX=g8f4teq>C#bJ~0ZbHPj|(2= zVG7LEsj%1ik5#Sq2bXZXSyam_bQuK!%6-U5W{b-i|z@@3>VcGV_=Z_hJ}Os6wY|ua>pogBM$%g11FodV#VOT;p|-}P%e^RYK9~bB&G`0g z&8-=gZny)>oC0=WlKmp+6h#7DYauuSAwx>h>17qO=z95>AwoEPiKnESn>W;lqDA|u z?goyFw3EOnrYk&veO8{#ZXM((nX|THm7TCDs-~Uu92Nz46&n02_?z1v!{RtM-n~jU_ViF%DbNQ|pe^e{wui!3J z)MGw6hs{eh1|eHJU;1|wcO4M3n5}LkpuDGWb;J#UQ!XRnd_tch={_v4w5nfxOv!@0 z!%Y#_(@uW*MV|Iz-9z%+WPsOH;44QL;!|XT$EacsuYs#&$Q@JVsJ!%-AP)W3&Ybl% zAHX84+OHvBp_M<<9yzfEXU%&}1x7y6&fi(+<~Ah_pk2wlbjdMJUIqOoHra|wg-~VM zLl%I@eXDe{zJ4B(5f+zG);Mh}N0b8F>Ke;mac>Y~*=s$z?h}kIyFYkvxw*=)E+NI@lWuJiawd-T`%6jdJ!_Lo5jZoBNr^U+Jbuy<6*5 z>3kC_y-BOv`&uWSfv522H1ENG2nL3vFwG0oAF6!+`$**g*8a`fg^ev3*LVt(=+;0~ zCRUrOU7$DXp*ZqtdivE`pSqJ&g`24441WJ=WDQxH%4?K>8RlHDlkw}zZ@>l_Ecij0 zl&^3t>gu>S5&4DQMLd7u!aHAJd?EWN#+Hx83l2^I4D!0nBKAky8ODs z`%(nHX92>x$ljLC=+IComBh53%95x;5Xs?>@IB4?!?2Q0@-m^jpM&2ce>r$m=euyi zG;zw{7%fm_6=w)%<&-fy*yxSCjV=$erA{bY9318ICX$MHzGg~bR?vhNc@tC_cpf%J zPyqth^UZ#Tq1^Oq!qB=Cr@PogUtSGx$7jnWeHIW?4l`ek=MB0(5fMT7^|8Ro>q9M2 znELhae4igxzv=`S!%WHQ=zy>Rza_H217zi`t@iRb&}fx#e>+`KNF4X;E%;*PHA- z@`rH;9TVP+W{a?6Bgr$-%PnNPQ}~IuGis}BZ(8!*jWZ=W0B5pxXXY2dB@A^#GnM|~ zxLK{>QT$9IENMRb1!F)Er>5i7piGLbB)_R9{}offahPTbN8{0rv3?j^NExYYNltZQ zsCGnH+4f-jo!=J0cKCow|AdMix{NYL8(Q}EsvVemImORMczn#wXrB#@42;pSp#UxT zcyPW}+id@-8mLbEA^qB!K&zILnGj;J2wXYB&?e=EsPv1(PBq08;84;;{N-CS6v`_R zT|WGwb!3HebvjPEsW+WkFTa|PCiX>Yu^e{Rxr@r`>PXMm@i&oM-Py$t^u&Y0ITyo^+xO;Z_A`;!-~YK-r*scTaF<)$zTYRlq>N>?!#=71Pi-xZri=6Hw)#Fko!bdn zDD>Wic*Y6!p9NGNYkdC%FkHqdCcaFKP!HxT#kGK?`p{_Wq;@xA-7Kk^FAuy@o`3oD zNyoIdhVuM$hC!;PF!1Xu!4kYy?Crt$^ats{Agnp#%I$4$aI4(eh%?jMJDIWLmy;a# z0Z~^?S6&L6bNB&Ec}lu-Sb3Pxyz*P>d0k2K4&FDd9&PiUdF0=!?<{a*YQE@ukn@|q z9AWYzUo4- z3{hbG#(hk{En6R$-Z7qdlfR`kx_9eD9}b2;C0&tPIzdwoS_94eN*~wit~g!YE8*S_ z@%Ezft@jcI=%a3HF6*(Z2oLe$oY#g|4KCauN2T7Q0>`Q8!OQ(@5RW-GSs6O9f7~rlkx+{eI{LHW z&1lq?c`A99**X7W_)<#t{RwCB>`76DL`oRgr|%lE}GuYHP-CUF@e^{=e;Ek0a z7m!ZI$N`J$Jv3^)OeE$Aikhc|sof+hJd&ww;)E;QAC~EH%2))}<%YkA@q+r{E~syM zHH!~AO7ou8RDEwB&7ASQ?DjUD^J?GlqzlEU5+Ny8aqkPZt!3&-OH=KrQ#2>RVwHwh zoSaNv%rr&=6?=M9Z$D9JjDBp=tps6yt)$%;BR$&~lUORBcXdE(g->XS%U{aQwo6cP zOP;&yjfKAEy$Onrmr2oa0jDhtVW*11zlek0L$1eD#@2`4pPZ5{C@c-i&C9*0$_TgI z;qs3%d6PJhK9-Ufs_<6PKa|I5-f@0@aH1B+Xtr_spXo#CEF0Um6#S^vc9)NbqFv{7 zwNy;Ya7|AV-91|CI}0~Cpkvm{Cya_jRRr62$TV;?ZfRJCY^R=$C;tVHYJ{uMa_VZC zn9J*p988THEM4$qgXT!~gpN_NvMGqJP9nq zOD$9sAu5W@`QMwA{PprmisX#+`r)NGO_JK)UiY_Yo2?Es-g+R0W5Ul__#K&HPVH~x zE3@0ZN9wcH8k2>ZlGUbO_}fr7&3JntdzxS!DJl#v-q&4B+~pEwP$lBT{vjtt(P7Y@ zA=iDKBht#!S#hdMKdJR1$ReLGUwPz}lBJccVxrUjt=c-Ts*;x8+S(kv19RiIyf_Ki zZLHx@p^Ms2WK^tAwN0Ng-gls>xU)cGXKJb*DIu`UX7Q6%dFNwpPWnW0cwf8KTdu@y zGFoO0{K}|H>Lff4J-w$jweRgIxYA`R-n*UsO%cM$dkm7|7rSRS35iu_JiPO#3nDn=+X>M9)oAbCCz_ho&M$OR?bak@-aSR<#qh zOW^E2=Aa{Rrw0Z`yLGcGFqn%c-4 z!UU(4ez7EO5fJ@Jig4SbYt2__@?KSmPHo9%5yt6CX;)47$(;ql>tzQkE>K|J!y<2t z{`>0D$aMCI!Bz&xx2jJgx=Q{9v5)dRks5U5iaKCQOsF$UwjAf*Tb|^WoXT4`jmp~` zC)Zv2;aU&7SnMC&v$(5#m;c_V5`na=G~e8nB#D+;1i`ju!{K)`njBGa3!v6vG{M?1 z&1dT3UJf<-H1m;jdaqRvHQKc93~DxeD<#%yFK}v#ue|EJZCq$JgS56LLwctUo<}p~O_cr5S%C1vln1}K z1$3+__*PVCbuSCv?G*~f?Cm@{@orU7PH3($d03g;t|33CPUIwq-^EK{B8NS~Vinz$ zF5j=Z^D#6W)W)k6lJP=cpEIVq3AG|u@gFAB#mllQbHy1WGzVR;|7qzSM-x~||DLrp z;TG3aLM)0_PCLh{qeuvZl6ZNT$>{(vJ4{?&Y9g6k5LG+nqeJWO$W>DkVp;M++%ebSAr9ucsxm~!|F!>-4O8aK*4cUL8LlC=jJNS8Lwo1x z%jWYxXl_-8P6AgV{=gNjyE*RtkFx@f`kpf+oVoqs?|BM=8w)(3&U>JtU7%(TpKBN! zBie0$&tKNq_@%*PQ^30a^Xn*qf^f2QNeFKb17vQg?fh(Fk@PwyH5;O}cdb$w_E*)Q zEfspW+9L=)t3V^$a7W9N#xav5p_D1edj6kO@XsH1Qv|VeD{Z;Vf2XGOi5+u<>_?p1 zS6=sg?@SxCfex&@^RzptGQ^OWd3l{C$P@g)9#v%+AlS^uFxt8k2yW=Uc_Tw_`2@!! zN`~#Uu&AgB+b&1gVWRp+j^ECQD3k4jKk59dtL?Tn!#OQWlWo_hE&1`b#p%-iXS*Rx zA|fK!38%Z07>B~u2i!Y5J6s|A6r38y#LXU`%oZNd`UTLO>w{I8PL!>0c2Q_b;h%4x zY>#5}92|CKQzRG}XlDyL3y$q_q{i+n5O@+DF8(F6v$N~P3MY#`e~_C0S1=S34K-`n zq0`*k{PEoFCns(Na%w3^xH%dtnNt()vs3s3wMYuO*?0M0x;Ge8!;d=)kQntOwp*w+ z(o7f(c3%p@WHH|&ODkS%HlW6vwj0fVPrf|<5nrwPK*;f9%7Y(vnolCH$PxY*M<-2!Bu-*D zifkl|di3pGW=Fi7A)BgF1=;4>Q4iix(;Ycjl90M&5}PmW)SDfB*u&v@;R1cIxfT^u z8Ek!{%;6>Z@h_r=Y777S;{Pqqe_#K9c~R(1_-p*HiRRa+3vGdnKbg-7TyB}-W&s^` zu=2wYIFn_jEteT1FAF=p`qt8Hm5m*aY zI#>x2WNA{OHfT znm+Jb3dNTplEQg%D|H{t5I-3&(n~<>?PXC~8dF)Kj1?7oz;74mrHYIkLB@6U*1@1; zxLT5xE`j+p7{pEY>({S>D6%)*G{Lp5%N@I^ye2yhh==YNUg?DG5!2e>mmIsBN1Ko$ zDJxZmkeBgf9n^XyhNpU1b@SdviyNF}jXS@NC(6t)p0S4r@X?G0Eq~Yci&gZd1V<^`VM6evfBmS(8saE{>aYW%hn^`)z87>yMl*FD!c97)+Ln^_pS5>+)l; z*F7|Rs-q_rY8=`-pFGL-_xGuz$Y?`ltz|vdN{kyS3HeI59@RrrVA+s`1|t31ww{>o zl^lfC+#)AxA8+A?+#yVZXaT*h?A$J0)pfC=jZ z|26b=&$oXAXveNboQL7ASNnB~trcUxKNn&>fw!Q|@E_IPei&YUj%6)WKi3xZp~tf@ zY9C5Ic-atpG0!D?wlvQCk-xPTxq)su{$-E%tE2?2_}1o20dK)84!=zyL#$5)+mUrG z`%awq??zy# zP#zWfD1gaDz>zd0ulA~no)e^Dx$siO3_mfhKd{V?d$ZmTq_lH(9ug83rep#jV*!Cc z2oJ8=lozUjb+xtJSfVO}S;IRA2ZyaDlSlW@BqMYPa)amf1@oT8J%cZH_E;XS^u*&5qAW)R)XmZV3sARtoug+tZ!#MPA@`o(;yO zt@?WnN(}Noda;LIMS5k|d?6{^dN@+kb8{$Ie0)4HKWtc3SQtHn$R$a;n(qBO%gT-$ zPRQ3>&YL!1l31{a(V%HyqYt2HMz=|D$*DYfA1M7g@`Lv(n-A=qh z9srA)zJ81kblC@VSqXHxweJ#qHO8jwj2on1 zm(Yg_sUx4Tj02!i@_L)A<+@y$3-Gv0sz9|ixIgsN!}q93w{`D#5&Da$i>Yp|);W2( zcyeEJA%xvD?kSiiU4|`l+c;=g8tM2LXiKWwqCzrUdXpalFEfrkTv%}T07~Tq!DNJc zcIJCw;WqgaIAk0}He^uqZro*lI1={z8WD9w3)I?L2Yzh+R>RhI^G8U27~T37wfxjS zg!4Lfe_Tw(k8BX^X0>|Qk%-(Cev|L>zjyRzW!HaSHlWVuxm}IvCIvvh0x3dGhv@}>ZD{Z{1`E-&j2&kVPrH$Y(Ms{B+bRq^Cj-$WVa@`a zH)G;*iE4{+z=Eg&gT(6)vW_1hHq?05uZ&$=S4}%b$TR0}zR&EjVn_sr1NHpc^FR9H zQXj2pY1yOQHkcY)c8yw&mxNC(fO+&3KjZir2~o~p-80lS@@QC@!_AuHkq2%V#sJ1q z;TeXXK`ncg1GGR`d?2iab1uqP{%e}uyLYsU)6>3YvHZZEq&EE*uNL61d-Bjt`?a%% z+xAb0e}bLyS+Wl)EiEl1siN@(*?~dxT9PW9i1|sLEq^CAWlZPY*b-xgVu9)Z{PoLkP_AztKyC>k)sy;iyya~IFv-0daTb1uqM24go?ZFKAcSTW z=gh3IwE>AlLly&(@#xQqX8_aAg+)d609ttQ00>#f=c1Ok+iCHgeHt#z6+w3W9l7C8 z^A^*(^Q*|c-MYoPO&~Tm&JYB#%d+VCeuKr|1b$AwexN!05n(Co)5|Y@%hn9VAScQYy z5_OE0_5nOCZA9t#0Fq@%^t8SY248OmU+3iDtyF-|&#FVL?oO7qCFSHsV44A<4R+Em z*lk>!urQ9Yr{M0|+MkQP2)o%OCQFp?Q_1j8HdWKv!1u1WgQjA7lq7!A$k#uG`M7*3 zfbi&-zg>pUHwD+*41QV3PcxMeR3FU@ogwRBZ{buPNpzLv&gKT`QGJotBa}AC`ey)? zQDtUk_IP=E8WYVC+z*XGfZXnfD!r`%_x-yumD77B{4hy?U}6}`GN10@iDHA~v55)Z z5B%UJSSjtm9(Vv457!u8f_2u{oC@$5U(6fY0r)eNfpUy|ql|D*q}f&ZHtxSLNR zH=;V2C0-??K6-lP*jkaFzaGebM+rQX0c(7dl$UF5!cAP}Scv=SzoR)V0PbiNAheJ98Mis@!mSeq1pCzzT(gI}KB%#BQK~URE z=f|&WrC9z!=jD@pHNKHFCuhyM6xp*1CIV{3pS}@?%_Vs4Gk@Uc*elT{J!4g7H58vP zS_de_4X|q@gOTSW6Q|)Ksx!-&+kOVADq4s+7S{FF}-a}@C0Ax^@=N-GA&Q*%*e>m!fSkHdtUY?ACjzEO{mmDT} zA8{@GW&)G|tiH0c(tRCN%(E5H&4hPhhYt{&Ueq{*Aqg%s)%NJILhT>KrejG$o{>$Z z5#MF0j3(m)o@*@*0RA7^43rP+!4fXextWC4wEbuS1GLX7h=86H_4ptkSl3yGpzX$}kO{UBHq;6D1L19& zqsghMda-a>f;vSeR^h;G;*d zybDz8kHmT*F9StL{q>i)&ky6isj&mA%RK6D?+V_&X^VA%WRGfT8i*?x>bWykI9fUF zxOnH^H}FDc)LI-+6YWqV)$L7vM-zY7{9g{{t}?5jQANodPKr&6qX(E^q)!eyNg>0) z6M13h3pA^3*t;V_EpO46r)^9}qU_3w%dR^-G!L9+JL7zx?f@M>hg3t|EG<{j%;9?2 zvU~HM9Igi7zkD~{nw4t%(f9!?0l*v=!@ux%X67=eoxEtK^D(Vw{YYRCsomwt_D$R9 zdHW%AxU7S{eM4h@em?OBfJG*gKxra=v;@H-may1h`YmCwSQi{P4gqt3!%dEGDNR2j zgtm!2q`t8|@23_rV*>oJ=Q+W=%1MOacM;ny-yVp%EHqaE%PkO6U%aaZYT^K38;X(; z4Y*x!65HdxinnC4mNz9CPAooer#KFKN}YL;gZbb1?ui=K>e7g3B`(2JQ&Z#klq-6tt~3rHEK5s zO&{J|By46*?)!taqSXdvt@hrZsX>ySv|pa?1}6<~LU4$U>YTIj0}uq5mjKcq#OIu6 z0P;!W`<4NuuDoRO1dGa}Cuj1x2Wa(7k^PxPisK6uw?(Y>jW!=FEkC=61+L}m_NBlD z{~GMmdIf7xT9VGo+l8eON2M+$4&rtugkc8{>S}9)XujrKe>EWhnu6HMK!eG|GIJJ8 zH|bG4sw2I&v)(%6HBWJ7Yi*%{-la7)HNOx+1j{>dbfV5QOD^|Eh0qE~Yz`qv4X6xy zkzV+_45+@o?q(yaU3fEGPR|a`ae<-wbA1Go=7jb;-b5FI<&lM^O<~XyR+fRvQq{{S zC&?NDmcZ2Cv4Q2))zx$VMn>GfE^w1?(RCa}n-gq*SU)Bo)h@Ro^*24z=Hp6yjdiCb?D=hIm1L-~%nTcGokmI{+_xU%Z(pLBRo{$cSze{CA&(EYzBeM2&SqZ~ zU$x32y#h=Bz|}aaew;H!kn`$0urex2(?8GkZN(Nj4`^KjZO!b7i3zN7KzYWo^w{!` z&C*p+8-^6Hn*!D;2hsx!c3JgAYZUoL!sV05BeWXdxxEhK9|qsB%eY%h@-;JumBgTs0?z>gE~&Oj==}LmX}Qn z+IndJv%QN%eh!@G2R`dS{NU%)!)c&-m&ldgYF8470GyW#FAQ*zhca>)@$1EX5cvl} z2V(j4u;<%@4ISE+jxSyYofetx-%zEIw+$aQ_kaRg>Mq0-F%53UkjAg}P>>g@XuE-R zN!+Y!53FkjIb~=>n_(5Zol#uI&9ah`5#(f~+GF^0&S5r+DaZ!`__hRP2u2Y|S^sdC zLs_}ma~$8ue#d?0Q7}Fr<8Jc5*_8^KUS$ znjr_<2a_q!^=T~W9Z1m^8GTkeM;9nrEatn?<}Tt>$Hg_imKybge|5@4-a+xUOcX?tTxy!UC5`yq4Gfn?el+d2nQ}iji&}=hOLdLjc3{Fz2Q4?Ck6& z@KFesES?7L!W?j41Rz<>9?BPmg?&_HxCpBLrUpyoprZa zVEcwzRx>Dgxk?;5T$i;qNoV%zD6{>BiM3fKxerAqHtm*GW-E|k0A2}zE3_$QNQW%a zP)K$`CELw|IV{y6hbtV=Va(;zVUGk+tBh@9C(nNRVSm)kO)J%DhSM<6HgN>}ng|Un zhyB06*x)%yOmYfVU)0Yks0vPfiY!YM#wnwy0=$7nzox4RvSrWJEDtoChI~BE5}0ufpR%&zt(>?H zKw$_;66w$rJAiI{_=N9=2d` z;GQ~c?U^vd{{Zp!u4RPp8acSo2cI7+G6kL}wQ#*q;QDQzU_|NXPltA|Qz3AgkuA zQH^8N?L(P0;3mXdsxS5bdo2PiglGu{vgF_A?-HdByC^WWCG%p}pNj-D{^TboK4^E# z8jhE3{v1XxW&(heypu=pC&jM&wEK(Q<1`cu}y#ii{-hssWOi~)I~%Gu&7Ms~%m=zXbEf`nk! z`Qe+M8B54}M8&OAKnU&p&dF(Cs@KDKsS^v94!L3F`}#e=+U9krUi`-zZy(gME~o^U z+pFv9%5K}xSvvE`Aa3{x1)#%7z<7&&4f=TKZ)ay9Xficrs1=AN_XXS%>vPK*{SO{V z9ryzlR+|*w!wD{MJ9~TaF^2B%LsHjs{7Y_M9|KGF1$}uu(0UZV z>5$l$1d@sEefWGsPY!{}XF!&pU@_VE<3HZ>PrVOvVNUEYQ)c6e$ z6(5v%GKMU9)P`&;;%iczD&y;5>EO|o4ftV<2L8hgwF&U%Nsw5TVJFa8zPZ_v1hqj; zFb70De!X7z@nmgJk}v9l)3bTJ;%rI{=HCn$b1~HuIe1bIu@{?a93B!8-*^FTI{_dL z#w`ZC+USZNMt{U-^wZZV@4oeXRO9|pQ*%lQOHaccfFaRiG{=eH=X=`C^}p+87Z!q^ z$w1p~i{aYg@{Hl=D z<<|FMrgQYKzWdER>|mjM{ICF<9wIseK zN|bW47Ff^_O;w+vKYPTB8Tut#SbEt5OPTAf?+G#@>$2%!?(qNXf7EUXMwm6>pI06B zlwp~se=d`#b`tm9yiMd46_n&l)mcY?*E-Z=b{M66(F$hMq->AgkKe4r!mPMaCH8yG z>oW{*YBCRVmA8ao@LFdO6&p=>rsubzKAkR{+}}Rv6hp8GL&~tAr(!WmDdmxSy(&w0 zpH{`M+)6MXY?(XW3C6ShA(5?AlF^TYux}@YG4+JlYHSsi%+j)LU*AffbgOP4ZmQUz zOGj-^4eFhv95kMUfk{Z~eb^-BjP=8-Pgqjen`#($N#6d!D!)yjb_AIsJS%GVhF^cb z@_NSgx{48N=(Y@2^Z4u|7E0&i+LuQ|HEX`?kvXg9cQNtnBsj}$D-?XttkCx?f^uH> zeag`KvGe||ch8Dfc%hcPZ107_189~Sqq=S*+@iJcdo61E5GAHTri3sC>g17 z@@Osx^}8*7*(_9cbyPIKAi^~9%P|($K{Wls(wT4iocdeS+u(K)J;^D(0D4Q=kTPdA@K)9$6b_=XVXw}xM8|{&PrGAh;JCv6dPI!dwQI?+uQYAEIDAK zi7#z)nG?FX$mk!rDBZSr%bujO{AGGbTZ}l<~xYOu!keN=4%-{R{ z^7`HYcXSic-%;b9k$67~W=KElTFLs2#7vl7q*R-z-nAlzq~RGnXueI|mw-G&h4d>< znbPl#eJa;zU<-f!fc(129Lv#Kh zm=mS0@J?x+$_F1tOR#oLVTUbNSd_!QU!i=*h6lAM=s8F+ zK@{~F-Qbn-S+grHGKX9CezjBvnLB?>P@Lzs6Go)gB!wI5C1(Te)#$pR}~<2a-?dQdoI_GmB#1rrS=t#uY)fN z>3_bSJbc`nJj~#jSPM<6E87$-yST2#1M^SCrEb*ufYx{2r_F@=;XP0BI#FfqC$8bt z8c^x0CyT-7_Q2qaa~$?H55&_B^+csMOa#cqNp3d(j{>fwF^*>Itv^jPvKu&m)T6`; zi$d*OcV-`^T%nJ}gAN83kEUFZ4lWp@^0F29W(u1ei6TEh8 zd(fGG&wIK%h9T0O3BW?vob3O$^FB#)9cDt04cM``t1-#}yISGzamLF)RuCC+=7+G2z4R-Y=nsLUGXZEPsK;He(3 zi_Jx`U)IOA8WC4Gr{odiZEqhY9Ux5}m5J!aW^RFIDEj+KY4<+=#0i@lLjoO~F(UO6 zD~;El<(1w$@i+Kq14MDnBLg?A9(+j*(hQu)=TAIx%RkICv?yyp>3TNbXxw>x&()yr zXCh_xskO)Ge#0JdP}x&gEi0SCtVN9wFQYITe-pQ=Hl7{pFVt=foks@zrTQ~!T!s?Q zMB60^q`a7LAso`NoZt$t{Yx9TyQ&)eLw~Q7CfkaZ|0)W4ml>yCso%Sv)V+Q5?e>5L$x+jiz^(h>;>+3UUf{pM8zAg6pc^tac#JuUR99M_I* zXOic|UUIZB_k)!c^eporYZ``%uIIJs#=Q)U6y2rn&jp32wF=Ed?h5hRG}4u|q8}G| zvJ)W59zk7ydoxUJz*I-_LO&4Wrg}v~YOvz@vqm%Xel!fNzU71gZkrso7=bIw!o~ij ztrD&yz~sbvJF2Yx$hV#JlRZIYtE@?bG@O)$^3>xnC_|lZsI|>}skWa!=!rld*Jj=6 z&N9i8amc5|TtNedwlI^zr$B2TZ>xTfOKwM7MU|aAO$E82(kWo_B;UPeNEQ70mt(g% zqAxm|#jlviwSVt+s#jM(q&0D`m*?i0xwp}meZ7BI(ZElXR+mHN{Gml~?u)&{Bob<`O zVamztHx`_eA3~GBit!G_BMGTEww1!;Px^N(-oCJv=9b(YfGj9@U-?T7u(7ZR4#1XG z+u?e1CQV-@sGdrHw(1)8C4BuEO%O&DH@9WZmT3P<+*+q|ygO=MeH^eS)4S>~F7_5% zZLf4<&GyDOt3tpaPA~|vW23@gPnh)mKK?-y2@t-YnxjZuRnh|gzVH6*1Nxw3+fXno z*rqqWxRW0#u#lR|`k?r7#rc)P^N`UE4i0a955mmavJ>9K-m#)s90W*?+FyrUma9tK zI}rPO2w=g1y7{N*oa6&q2Aj80ySg`1Zxf^Ie2qvO=8&PjSkIuHm)G|PPse>teV(Lx zcj-5pHQn|goK8&hO;Z8}HnX&Ki>4J14{K(HdE!iDLcy)>XI(>l&c?`$M$plP|CFby zHQyPVI}X?Pc85LHXi{6z$R0Xj9Zta6xufxaX!;7MsK4iJLO@DI>6Ti$J1t`A?v(EC zM(JLE$C6o@4_wxO{e-7u!;mGdi-aGTmGtbQ4smg0VqFQl4>@F1U1^nw2 z2BuNEAC&jvUymW$_K_X_>NTYRKACAqD2B@Ua(f z^Ct_QrW7u&vVg6Db;R;YwEy((%=9bf@+8h^ua*1u2rBjj@b2O5WjAInC3lM)Z6W?~ zEr)#WF1_D{N8q4q^91;oycg*I0bz2twduwpN>v^_@Z2Ou**BHvBnJugeO<+lTcauJ z663*RYa{*E-n#wZ!d}7}`k*^C6XUVXa$U6}^XRF+{86YzYpH$oKmW!G664lSw?(*= zS8uw4_0fIKCQw}_G4-qUd|fA9mtQns-_f&c9ZCB1_L{7mZCC?dv40vcQi90w7^UZ| z>>FuG&TE^>IeQn^f3m6Crldd!6{p)+elL3C;gPw}l(q`>c02LR+OPId2{+!TS>JbG z8zPIVx)DB^_;;y~lq>^hqTq^qY;-$&-_(|_QQd|vaP>HoRi3c+ooDixuxT)}7?{4& zgc;d^Yk7j~CBNV7>7!?;k&)BDl!n6qLioM8Txb9EI|`+52tH{Umwn>3u=<6Z21=~W z&41Viz6X^8Up72}PoJ?rO@bP{s153lO{?}Iwu4`M^L~y=66<3AXU4xR>9R+ku9Cd_0BH8ZX@lC5&FXd-7ZJcHUG8 zDYWLgj@;@5pW|`k%FaQA)#Tou{$uz;IbUrY&TRh#Y7JH`)IGJ$EQlZbbQoF>`J7$a z<`VUiokmP&<3f`nd52rGCXZME)5^;}ma@D0hiHceE@(Bqq*7-q?bw|Yi(>!em3)JH{$51s-B&R^Zje|p6nIk^3&qU+aM zd+Hy1BI`dtB1pQiUht+jev9Qgza~oA@bkuTzn7|^%*DWT^-KZB`Dr^@M`+o9;hsFP z56)-a&Onb+Cz8W-ZqCReJb0Kz0yD95b1}N_#Wf+Y5qMSGKWv=*7+0#2T#4kMfn7-i z5oL-b@}G3Xw@PJSjfwSr`lszjK1FNmPgn9v4n+|RSHO}sKsxYG7z20%!6mGI=C5Wr z#)41yj}Rn!GmbLg8R%DMb9I__-(v{LCsVX^=;emU&OkFRsSYIz19aM|?zzE>hJ*|t z+n`U+T_7>?V7oGzMcTdBql8x*xhIzFGTpajA?mX{5@?sAWan%98>y$`^)2op!0(sc z*%2~wVk2uOwPHt0es^kkl~;^Tiq}Kk})t}j~YHeq; zk4{lxC0AIX!cd(<#9v7ek+Th!y@4)-3E*)RAK#Mv)j#B_?51Da3z+G`5M5oVn2-CG zktZTyYVB_M!|qD!BtKJ;@8AwU3RA$($KfZ?<2vxw3XH2Tq#f9<*&f2Zd(;1q&3*55 zC<;v497Mq<)-Cy530CN4bN-X@?8FscZ<+cvEw<~3SjI4_q}X4^EEN%OzGTMwW!+Dv zz`>ISYu zb0;EywjF7$k9}BB)!m~^L*Maa4c25sMpws64?+-n3nscUpb@vYcCY;=*tCBneU{}v zvadRvp2zJzjl$EwP^&U`^KT6O6qO~;M3`P17Cn=>G3XVQ-C7)V`9Q~AVYRVcarZ^W zQQL3Fd;OlQhEmVi?B+v*mBKX16DE1gFO!;9o;SYZd8gB5?CmQV-YSg+f_7>WZCZe3 zh3VGdLT1p@rS(ZGn$f=3Jl)K}J+w2<;fi&ADr$VB@bd-+mU&I)gK25)qm&L5ZFF#i zl9X;~zb@Z9F@h-g?+PDWvb~wlkfyPqA=hTp84f{FkLJbFcuovTTi2Y8D3A5hfCp{Vu z{m#|EuEOVnx2G79+6BVxz&hER%ibPzmi|Pna;qj#(+V=Lt`k!I=PDH4&eGO9A_)G2 zC~!=y=e`AQZI^%*-YatUDK85tZ1{bYbJVe)4z^s~HwF{zxE_#JS6I?D|8_84!gIl8 zVIULc`p9NXclE0G#^!e)U`+(yw6DW%HK>*IN@ z=AWXXQJ4rv5BkI{CRlI1q6~Z-Nmw){N1M@MC}o<~6MaJu5#6z_b}Pvh9Z#5agBhtE zRIL>Trd(Km6UugMJ($xb)9?QD_>L@!qre#-kiNkm`$SdC^2^#nBE^}lag4ZU2`q|u z-JN^UZQ!g0+jwsU%5T1DOrsV=z?<*{HGkH4W9l@3dMjn?4A<-F#(j;5+&FR0ngiTU zximZWR{dW|)503Av5(ZYU1bcNlcJiCfp78g!hztjQ+bj*Ah@cK55Wn~zr|AUZ74RuxM=u8P~gcJ#~E_`^Knz)=+?x zfUEh}fq~jxd58YFgIa!!QQG@nA2f-rwG3`VX*2hV$&pY=UPY+fh~Mm`;d*xc$&+Fb zXCxJ5Av7+8=bD)#D--?I@vcK)jd`1xFZAHAROGdlnKV|BCEJYFFHVrP2e2FU#``xo z+Md94V4TpU(+-lX>u2_30A$R>IIe}-S|4NjCCrbsc>EzO*X+@Q)ycaEm3;L#@(jWr zkZo7q&dS&Xoy#|_a7?CK+diZH)w*)MfU`>&x0o~`844>dYfoy(#my-d(O$kKlNuH$ z<1s;rPrHLt&7nS4IQ*FJ%#8a- z`@~sy7a)dVmAw&L|FY_`ptCGuagj}dY~eyN>!khxugB{zl%+xulnyfmm0bd?b8r_3 z-#-X{@Tq4neg?8c5L4fzHN6TkOur`}^e+A{kIxIhupxWK4R@o{yC7tLxl%3<<{ny~ z_@Gy`hmYl2|3?UO0U^W>_N;mazgy6I!7bh<%eBSZ|6@({>e^;>Y&9Q?&tqC`{c=zC zbK6_Lf^(Hbx1R$+)CXtR)PD6@)B-tJWME|+D_wJ({r`;rv+x~CtvrN!$OotVp1v_! zzWcXNF?dkn`PbE#7w-+^mk%7@Xey6Uo@-I;ShF#&A5I#BmGcpTcX3u%@k)*=7W$Zv zdQZZ9D92V>U3ZfT-vA?VkMXuUS}7?j!+!;3X0Za?f>4z zz>1iU$V~{F`McVL+^gRQ?8^+o13!}JEJb&A*EV$sV{i)>lN=U<>2d7S7%wW}x!)TcJ`$`D$|y4d$TzMX#?|h%GSm;2?EzKT zu>vg$Uaz*M<|az9S`#5p8w1N{omzqiY=~B?b6e)*v6RUL2)4t1I!J*&G?AM6<)8Wb z?Mz$)@^=_mwQPV6y3#@mB1Fo2WS3{G5!m1||1brzxrbGYsjN_}N`{7M*7j#U4`OnN z;A;Eu9g0)rT{x=4zl^6LBpXQVBmu&~NKE+}QbFnWs$kv3Ll@X!M%^G>IowbP+5F^> z=r9v~V>O||Q5)JdPaOZke?ef{vTgx52I*H`htb^^2%KNN8OQenY8QE5q;vD=HVpiu zOB*n8#|5GJiU*W|Omet-HH7SErRXJmJ?oAhsyBCg9FOFjxi9Of;of=4`ua5|6~hSm5j6% z@XuY*jGSnuD6t6+&bk^2VgfynLTO-k4NOb`Ky4n5BJ_d^vI#(T$NL!zM4)CIJ)?QF%HaHw889au-<@_27&{1?CF3ktg|(|6#62jZD7$Y=BF-*y3E;;pZ_eFAg( z-`YcttsRb@LkY*aW-Q2Q_Wu zo+fwZ4cc^K@V-Iw-b*y2K26=g?>$)AL9a+@G~)(B6$&>d_)H>Z;KZ(y$pAV-8MH6# znKo`+{9Kyr5Z~z)z}0T)Uk(Id+Uf%#NG3F3K+q(Ff8A$C_OX}fe?kDnOkW)C2qip? zLBKGTS<^7p5Z)uTA1}Q6*;^hARoj}7L8sxgPB?A9z;diHhl+RJ*Ydr1d5ht%9Dl3zFRN;1vH+akgUwzK`dSJ zS+m(AbZQq23jFNv@8b@G8e%|zAgukvzv;O%#$=%ZMc;wk_=MNdh zVk*LJh5_n*$0j?4uyLa%uj^x@U|ZvnMDqvNCqV;33kr;GruL31YKVs=Drp~lf>kn% z(f0^E1rQB2p>m&$hBdy}OL7<|I)8%LG(lC=mvJeNSP}&0s_eHvKiN3KC*1$*1&B{; z_y96}&aYgT-x6<#K`4RZ)+I*&X5;xIe_p83$hEKWG`^jWd(M?32Ei;G#awQmRd>Wg zlY&!j^t;8|7~jtSY~XA5q?Df$9KfW&l%fIuZS`9nApIKWR*;-$e+Xy5I+fA#Z)7{1 zmxv)W!T?#uc-Z(^F|`XN^l`pl9Niui&3YIA&YSpciLG>JOPMQKavw!*QGSZ44q%pTpV$8g30m zhY+6EOLoq=Lu1aT1q5jSTX~27O+ZK7@Y9|Z$NQXdy;Z3n`WexHrLB4aR{T4>AW2^X zBQS7ek89pNLn1295TkIMsguBFb!fJiBopa10Z$~7Zlq?Vv(Ok2GspvNH)Xe9Tb%@B zM2=qnC%h2%6ikZhSHOdiJS;2IkpfK|D*-v8ZMKQVC`U7oN1DW^JY?&IP5qnN&E1-) zyBY#)#YliaCWVr}ute={rNH6%iTxg?`Xzy^v6e-{IqBAhKJpTuSZBxhNk!y)p7uz- zwfDul94qJj{MI}646mq-h?6s<`JX*1hK}u0R1}I|NG0{)FW|rb@&e_T=-&v%$c3Zk zU8lI{m%9!@V$A29F{5tNitB(_yQzcW^%NxMjzgOl-$P!RegApN%ITH;zaTwYFzHye zOX2rz!T>5h`s>rCe}h}dNr7VZ+pjDl$f_Slz}%8RF8x)7Wz9K-%KA`?PgLtQHMK`H z#m4de0&%OV#JD{t!Mf4e20%xrO7-Zz#{!WPhB zp7xU(XE%NU)A+PgC@Fi=63|`>MGo#LZ45^L9-7JhsLBS z3k5sU9c-HdXK{JEUmuw9SY#&`UooDX85|W3MVTc)!Je@QrIYs5V36aURabF2X3r;+vJ)qg z*pG7uL2}5b#@+?dRpEkjx(t>_*Z}3s|0BV@9%?ktY9c>n*M?h zdQi zMzw>-#%0e~D@!Y`AB8L3gFL^LqHdUW=e`zxNjZd(2L|wvAu{m);>&LvAi9!-byPYW z57ap|0+d&F%y@}l;0KCTGSyuGA34SX=AJY4AsI57FE5j<(t!3+v1SoE;lq(nBc|dK zktOI&WgwED-n|+78hel@N08zY&aMCi#CV=$y%BU4uQdO1^OuGIKxP^uDNVnuJYRRj zfH-p#AK-KS9|}0cJt@9VJ(x221^@{y z6A4BjilqDJlWR*9Q1@iD1@UWNcb?vB3oY)L0}zbWbXrL!3$_LpTl@J_fW;RUl=)Xz z)irG@Ukn?5iM0VbxtMfs*oCxjUcr#nz{1fLrg2#Z`Or7^yvaA$ut*xkdn&|~|MlA^ zL6%lljqPH6ku2((;b}zo(3#agF@3Ce-h<-4G>7)&#ZI75_`hvI_=i<>_>+;sffvyb z6JHl8kO1q!ntyeiv%f3#7L~B4W3z%8p`&v*we>@=XU1SC=sXjg)h1hqQPWZQPtoS6 zTK)3`RN+6LlNiHao)y^WBQ!D8Wda$0G#_5}n)YcC-+9 zC$6B-KreAO|CyX`6B}(vkH9HB`@8GCE5~0 zgLxfw7n+lHWH4TI0_90@M42}(4C{hu?vjfgLc+ZEpz1SufrK37e6Iwuc6E%%dIYWT zG{{7h65fyEEaJ2er9qz-Qc-sWgBpMwFAs#a0mAjjzH-sy7O#W=P^~T7XH3I19JMwQ zM+RVAFKK$KsGvPiW#R+NC#eq22pV~wOvc8!d<-h)Sg{tLF}bf5$l-tBzGUw#9^aBy zEC=Cpx|Il&m^{%Jj?w?aa|7hyiD#;CAggMDZBVwoGl3Z&vw_79yL!XAC(+x6DeIv~ zy2ZT6>I)hZhnYsV6s+M@yATYU)|vnEyIG*J3RRJIou>9&ypt(Odc(@2Gq4=0q55`k zZLFo-VxN%$L4P@PvNeTPY(SgNbiIzxzC|&AtLUX+XV;SeY6!Ik4Z!rOu1d*(@`OBF z-mE~5IG@Le@(S@Mu`mObIR{pv#!L7{93Huh>35t(Ds4O8Gge6;uNgCvn5YjrCZ5m_ z$H4Ahu!`v0kJFAq4Gxp-z6gIVAyhC_EWZmm^Ad zNTbR9wQ9FlaOUEh*g2@IMkJAVGqFBf$L9sT7C#D=gi^d1_=zOMrIe(#p0{M->%G?n z1<8fI<#*R-vofMSb&jx%JtvY>~`CpB{4$D+yccIc>rgynty-dBD5$;otJhtFfyN`qa%9OUf*dA|p7qP_B!H@8 zDiX=D`R-4cgmo?Qkyf}CIIvVcN=Sbf!Aj`adrPLDe@*N6Q;E@akR--fkv+61+MJ9z zK&jgpkMPESe&fjdD`;#WXyQ09kOqMC#t~$WnPc8qM;ag}wCnD{#x&4D4B>h0>?51D z#9G~Z_FjesCpI;KL>Pq^m7MT`4N~shvGe^Fqz$WL0Ue)H#xq5=&T&~dpw0j?ETYz& zpFl}UjeB}YF*v0uO%tUpp(|4ypYTDc;vqSa4+ksu&;h*XmC!ZPIs)8)|2Z!A6gIjW zv9w7`=I(PK#`MXMMJ;r5^)i8)FIEcS_)>T@Zlkz@DOCz%b2@XyWQ_m=~Cnn;cPwpH{dh`Yqgppt#G`oN^m zg}un04yM>8g|#aBgTgxyNNG%D3C=Zx#B@*0X#wS^vcJKI;Co5F?W*x3XR?)@3yh!y zT|wbIugZpCB<;&f%8CbIO9>z(m{m3kVc~a5dAU16=*JGkq~rp3?oXVR@f%p2f{Ud9 z-`;zD9BeU(%uaGqQ^h`=V(sJ5SD=9d;-cQb!ReLi8VYjbcrM;up}z9IV+F5@VLEo_ zP3Mk>==^Q*di^%yDB)P6{$b8%%}&r%$6ZKh;IJBLqZ(}F0kSaJ$XfNWbPgzOJT*&r z0gvKcAN>BqSjuD6%jJaO#yY0{bmd|$RXEFz@9Pb+EF7UB#Ese2^$`tZU*`@yV4IYg)^Krj<-M8_#GVRQ96ROj+$Me$`m>rWBL?-`N*+6=_7 zv0@2m1w8n-J6|@Cpy9>+x}UD&ENWs<>FLrq-!v9_X5Q1Jw*ds^wg@n6bF{(AzUm6G zZ_JqF^01v@x(6T74TM7VW{$S>?hUTYAXpdxnCI*KLDa`=$f}$iJnd^Ath{+|$zn*F zGk*2Y7(oHRtgipY!M}HXhkzCyXrrE9z_uyUgDy%RKH<#k`<~LEQ=ntus@C&*Prbd* z^(P+qI1fyZ)Am^_F`9S3XBwA>T7g{KI4I)QsABd<)Yz1s+>C?+3so#&UatW(BpjDZ zQDm~A8?JJ1VYxGggs-pH4QM>SYA7qalRc}SJr(qypznvIM4ktzukBq^kBGOH=Q6cp zmIZZ&O6&mWd|~(qB*vOrpU<56gPa;uxRj*K8R+AXgN~sQLB*7dNh*g|DQ+PQi9FR! zLShTE1A^=K7?`$`gCK&ZXwSuf4~6Ix1rmijQGF;om3wpb%Son0i=R;6SuP+nj^0sd zA-2&S@X+ld!L(KaK;XiVlGD)0HjpUdChURc?zTXB?s8e5gm@74e)|=0Ar&D>C^+7zPoJX-V#RXHQMU&t$5f`Y8GB z@@J;)jzu^)9a7XlZ(1JmQ_0`){vV;6hW&g^6u#-0)VE8myg5dT@ToQ2jGqRh;)7AT zCr|m)$7*EPHM44CML8uBnQFiJY@;BpSsa$mTVJFvl$M}okpOa#*j$js6plqY0u0Wc z`tbI9wO45N`yfhz_+yO zrWSdATb;mjM>n`9f$o)(VW5`=p>(IC0i$)qk?*=0qj6rwEUsX98m9 zQ|nAh%*tXE8yT}r=JKq(@Sym2CGQk{ zgOWm?gFe%;)3|qt?>s3askfqqE#-rFn>h9E~cpmKu_)fsLmy{tI9gl7&XD>+pEI?Fvpoc;^w*@k>$BHcVQ zmf69BF#psVit+&>_r5BqhD-nCoeSrBi9iAebXq{9p`x?>Iwmxozw9=0#0ViiD1=?h z|1}&qh7MwI)jbGeoPxbv05n?O61iCVNyLe_5l)_eDnTc?fA<92nf}e}$5VCRL+h$^ zPghjQ(&EfE*$`z;c3k7=TD`QYvpyElxLt&lPfSzuwtJ+ zWt(t3kaUl_5bOM37h|+Fp)Opr?H6<8qL+9!82umUPr}}154LuQs0hP&g1CG~fS%L_ z`ms2^gQ5(LFImh}Vs>?EPp_Dr=sJ_s7@=Lb*gIMPj*RNiIutZYwRq9X5#JClY&6yy zhx@Dn_L>UPfbCn^;wGZAY9EDEGkGOp(P1R-7kHP)^EFff_1Cc^?LWa$DQ+QyM)I4E z7fv4yg2on+B8|Vee4ERF+{#O;+Ygx5Gb>M?Kw(Zo@Gm zxZF}eMYCXX*IJ0zn9}v5@EnUQmV&+7_O}2ZV7gPBcoW%-@2m7a+j0J~X2&Xqg62)o zx&Y4r2hxy0@5rx+^l=iG>OTmXY;U=;Ot0GKMg%uWyd6TN{q4Foa{h68r<`@PT`3|o zXT`MVuGQ*;!j2HK_->42$C%s1%3amS-M@HTOQ2W!O;lA>#x}TBHH`#UXVD0pd4SAX zA`-AQ)Q)@qX*kdnhZIg2I$!J!Q^p$r&2%IEu>`e&PsEWq*6j&I=r-{Ir%4B`PdDjP zXNfE8|B|ye#-7eAmX5Qj{7tW`A2*<}J2|4}k;^!IlEU*Fe*+^&ZI*5QbC-bW$}?4d z+WrdqY2NEkT>Gi~j}wZe8v0YV$>*`x_kDDtks28FNN*>*V2^hD2$7&rDihEFg*fxW z-hA|X);TX&cB}y4uj3p8^6mD?CoZh>7O^>v(O<|EoOIkrJFL z0y5I>j~()#w(Wu%m1E_D1XmNrohpx1y=Bg+Ldm@qG$T6#LTo@$He2zQ9U{0lEXG*B5VlN7LH$2Xt{ zMXzDrhU(x^i`&-nf-yNnxv)DHzU*9x95JxL1Mj-f%>0KCWwB3nOf)rU6A^N0#nn#J zcya?8`1y^tRVv7YO&43ffMq!O;qB!jDj3y}d{tAIo_*3h*%4hxHk@dlQ)+4w>IG_h|Guq^^mE0xGMD-n4 zpE*v53dVWnCb=7VfR9YFXJCNFnC2!CQBHM>b+Z1&V~j}9_nRxD+Ye53i$VI?nOa+ax5C?N2T;H>Av2o>1*2q-9_mK5@5t-w1FQ9TeX}x! zDu!m*@f(c0KK)}q>-=wEZH_`tn0KRBL_Vd*cJR_{(_GL{;mK5mJMdp(B#P#)nw4_-a zjWv6UlkTR%hT^F%r6}O zQK!g!{fymM)BIghrfz;J&%h`r?6!bgrQA?k7Y;?Iez(&20sOYT( zr(5b!)uOs%&EFLdg!6m;yjdKiOH;PB1*4js3t9?2K@q4W%A=C@1q z2hHdalmilbV<|bVnc8n3)3(k?Ap?J98RmSHB1P!%=B+J6aaMHJcpUTdx)LsLGH~EF{9vN6j^yw))~Q4QN+wt;c`~z}#!$u# z+Y&4-o%2zP6iJ8G!@Vj|T~eo)ZGFhp;dg zp=<`Vtk|)ia1pr-wr%pl=ka-tR73a&%Wn$ybs%aO#4lbZ%a5mVh{kCDZfy|pzR zz3b@{!5w7VdEc4HoLiB7y5q<7%-uE;O!}1vNXB zcqCR?bJ_GPd<$ zsV<4H=P5RuchsylLESn>=;Af|3yoDR(_pal{dVCBah0qFld2W-MZFRb9Q-HP_+7`b znS`8MXmH2`4>sdwMT#J|Fx9dLxV1Dtgxa%U_;U4H)&7du?W8<{IE1?{f&@g!=Vvr^ z2XP23`l~ZMr&YU_Ef!+~HF#L;fvTu6ybKWW2SKCt96(jPVyS725ZfI^NR@ z8fY)!(AL6;4wYvXC{ir%Px*^WluxyIKZ^QTh`y_^FGRlVu2qB#qFgKs=+<2S8m{j& z`HB4Pownna(Q#;9|%3ugD#IPjEmPGgY}W0ntawC~hb>y*z#C{xb!l*{*zYazdS z-V_dP5MjsEf}K9!lby{kR59<*gO4L4Y?ta6EXT1tnc1;4HD!7Sms`78fF#N9n|L7$ zg+X`r`XDkyyarr;U__!p*sf~g#hR0mQ)Pv=r!%)<&(9opgl%+65t0+0p%6xfByOjDrk`Y z02Xr);I4$?W6KV!NSx>>z_C>Om0Dk~fq~UE*>YBp54-M!?Mf8C;ZGWch#>Z|!I=50 zKMbf5r~g=i7@p1~SauA*5(|7A_xSysT8IWpcKgp84I3qRfw*fj1X8a1-1#6-zHt+J zzl)YzWHd)h_=v~l-N50Ag@6x%=F9$Mj=PXgG#v6(TXxDMK6QaYuGds_bn{#@6uYUj z-jRkwgoKtB%OkUGsM|hv@Mx?sX5B`e{8gs)#G)9emuQigYNYn2Yt5Ecp4%Vh@?|jm zr*gnA=KiBn3Ril5Mv+DUNo@E$Ph4*)m&fI@-Mvtu7S<8{Yt_=#n1ww87fF|V;<8Uj zs4-WHrQUVqe6^-ToP8~+{xRFLVks^EH=GeE(rR_pX3$Vghi@X=Jj27opalO`lS2ky zsdiMhA)@?q4@0O>ZLU;h!}V~j%X&$&kxhckztWT2iw3K{;PhDvw6=xmo0Zo%cxx1v zsuyc29QhKbnIbxUKFpHHQHk|aZ?vv|^~qm%wYm7MXKq^g;+Auj#j>NY>D-%3r&UB?5`K^ztu6O+q-t6FhpA4fl7miH$xuDK3{Dx9 z9nl4J%y<1xqOUznJd?PcuMW$db*YVQj{{F_>H)Q^N6gBbhO z=W$WDo-Bl<<&YZMNUQH#CQxBJ@xhE&5->3^gIK64IxD?cIY|Lu}&Lh+;ftRJ2Jw*X*pPlYN!+LR{6t8z> zaXt;-qBbNV6ILiPQY|-BO~h$BZ&I$ggLw%T@e-}A>sfWHK!vHR(?O(=H@{PiE;M@R zXPV04W3f#~0}uKJJg*D3Td?EhBE9?7DV4XTBJ^>^XJFsDKF&!~rx`(5vK4L>J5tNq z>epO<1GDH>u(!R3!j!A>ZmS%R9?`@HH+VsL-SLiImiO^3#?GA)=8EJumMed%ds`k520;u9b{JdKbidQm@GM8>#Ep!Vtze$k zs2x7Qe6}942`yDy^1S#^q$O0{OW3qT?JdXVS(;jLO1iy4OZ@bld}?KUGEsB%Dj#Fw z31J&KZy1z$BHt4DS=C570m_9EbWBQJ4qSgINDxN$x)a8BLy)Njh+Rp$Mnhs>^lnB>$BgRU}^Q`n8Cq z^5iO;j?>S_zxKV_M2vA2lv`Y0DBaU+t?N9k8d1H5YBFry!=Dpjm*Fa`lX$9Cmct4w zp;vK|-bt}k8LYXVPLl;hyWt=P{@RArB>PfDwG0(HLTtx}Vdk!KUR4H>$cG6RRe4#( zO-&k)mufm&uaBO6^v6qH7qpyhft1X?MMJ2WdndCu3>Jod@EXHhvMgM1kM(hbY&Dp@KrP(B~> zzEWE9Pi~CRW`027vmC#YzzyQ9On%k87OOY3RnBgYeQSZ<@UefH+VD}zRp;@n2}MI6pg6wr zR4rJOikt5tqqeE5cIY-+^p7gFDHj6kq*+x0>x4Q{?%S61LEM$gYav5iUe-U-Z3wno zu2Ra{iY%6uiFKc*v??|juLLyZl?sq-QY4$&-n1*}$yjYg`53yfeTnFkac`6>fQIDgkW@eL=kA9+eJ}eqtqzYQY zs?&^)OWFU)EWYv7>AbOWV%$VQ`}v*rcg0_WVvjZ{s{6N4Oc)JG%TNRqo~bA$54`yq z#|pQfJ#HxE(!sM*7wsB@d&^B*OeBu2(ac61{hV++TEG zbrto!Rs~1n@fmvgDef?odY0&X=8a4dmwoi&oF$f0bTc=QX_Fqq0?bfn5R z&b@LuBrE*eAA$L|Zf%1q)VA0tQOYA4S$lk;a?qBuu|^r9mSo;fMHmWKGjX2B)OvTJ zsCBKsbs;&03w>mQxF?<5jS_7UlSavac=6%{a45;cM+ttl{!EqwVhx;^4d(7Y3gb#f zoE)4}B*XE;;FI@3SOn`R1+G^D;omnC)1q2o%Jp=*cCL(abaM|zVDYoZlJhtWqnagw zmN29$t5IbmBKou$9t?cOPEe5$GteMPbY3*F3O3@WI*y-}bzdwV8kg;d7lUU=M>rj@ zWl*E~hv#tAYJBWTmBIhhM0lXc#zOwQM3S?Vf|jh^8GgG+XT`pKX0Dtm!~5fy_3z|7 zPn;@|X_EQIXh%2vW?Y#Ygi5ZKT^coL23@JB!x4o>22=5_M0Be1(frZD`zO><~y< zQ_A__XlY}c3ZEiUTdiDc3rahh7>rxWLw-)M45XB^7l9r27;L5>X^fc`lsgQgd2w}f zdabJ8$)Uamkr^5hKOwMe9L+i=RYyxgR`zyoyFcR~RO3xt|!F`qB zgC^?Z>8#W7zdw<$gUuAOaop7Yv3`3}1nE;uBh!44TYe3sv#MI37wQIK$} z!dEN-$YDvUb{-wI&tWrM|M!m7uiUOzPf$RzPeh?dD7tgNMsTm?ewT4Yot0ih(f|Nq z&@!_=?7Prqzu;v*>@eK(FdTvt>V9A>7we|z%_bN7$)U^xQL6ZlzX0;zqj;6Vh=cgH z74~sb_f=A;=g#>R!@*MF?{Vh(GRX*yXYV9!aNLM&%VR|BYrIzJYEoGY@rF|yq5L*Y z!HLhj913xZO(d%=3UNyX2O}2Y(30vE@BNb-jt*z%bi5D4U-IcDKn@6oglT>WR^*-M zooF=&jwlVNgr8M+Ej4+-5KygmS*EViFi2YAL^0#8rI+1wRH0)%PXUT*fYRrcQ9Gm zP$3m^@CiCC)>2wb?W2-_SM1>sYa&ZG7f+sKkC2>PmcakwQ@yvX^3wH%x!!5j-k0m4 zeLjtL+Jz*l`;szl2Hn|V95I5)oOGt&nz;-%<*-num`Sf8Mu`ml*&&!kw1=x0Je4PfU34nD?V-W?Ohl=Gwi{PNSprKe$fQTV}!P-bZD|$_N&c zdDAGHK_uyZBXp4i3bhJ0p?b#dl~A?v`zD^$mP(#X`WG+R42Eww!iE>UVGEE2A=mf5$z;LAp>-uQ2S6-+5r~3Qtop?OT6CSL<1D{-I3MnNvD331ngv=F}Ep zGP3_nV+@APo2o-dDMRwy`L z8Tl8%QW6#k*f8m|ybRb1wc+((s&`F;R8*yuq3Vc7?!lR?UH|0okw9WH~F>Dtf#=&6WCNAEE8;|dJlc(1@?6rJDb~Y1xbm;{F&rl zfZL=5wQ@E0R3tI=I>n^D4Ql-tLsDYYzS>cnHK=lPZVu@)rN0F!vkc?wq9UA)wk7%t z^PIOigf$Emuc0-%^w;%<;j<>Uzv(GSDn))T&i8q;D@oKOJA^K_T17R^Vz5KbF5>m2 z3>7Ovf21>wWa+v1tPdqAb4@|CBO9NI+X=-r&iT(5!WKui(c>91)9JI6-cG0vC(}c@ zVC8Y6jL_O?5lYh5K{gMmNf(DZ*Qa9%5cb$Ypp{Ua`nUS^$uDXd3dT>GuCDr{U5fgf zj1+rW3;5-ZQch+P8V}=u2w_<4Qo0F?i?>pobAt&ISQ%-DIJfkpPTQ3de2DJ!3mFb-|Qfv3gD6 zhb=b7jq>Z?boi{rYobwMUcKW32ypn6#Tx~%!%+9baGKeq-`Fx)W~9A*DBIU58KD9q zDnc%vqf$&T=Bc4@*MmpS6Bw76YE%Rl%+RPjwk$RRx?&npCPOW1=v6Zp%NAAU1-l%< z?<`}2jTWJ#UGpiL$Ff{19VuyaDVSHwb^B5FHi^TLPiQ)e!w#dU0m~>7NL04voXs4k ztJY6Q6<&2Odr6kGAocHNNt}93L1zpVuFLN4zafs*p)zN40UoJ8qc8i2Wgb~G1mL7G zbQPe+4TggRLY}7kk%gv40ulZ&Sj&_MoZnwA%ac%*rTlcp-&cdYEJGgX7dIIMUW7)H zP-tjbeb^_8g%?Nz-}3T4!Di;?lXfKR7;hdUr8jRxtE~oN5Hl0E^ztG*iO+5LMMXu= z?jOJ(oVB6O3JEdCNdW!Ppju#=5ucoM&O441w1RqaRPh_(;S1+LH8q z+?7!XY7AG~+~Z(FdAc44`6pHb0l7TjmSku@e*4X4_}|AUqotrM6M?V9c2RBLr(wHM zmr-C8Q2@BWSd^vxLeW)Ej|^uOBTc~7CS_vJG1K>-dl(%7xGZoKOqChAK3aI=yA{b( zRAl-ST#b$hE_U=90(UCkgDXd6&_#N|Kq9FEnKWECaCdksY-oF*p>3s=C+fZWtxf)> zw*qwDNFXNkBri^u{`A+cb6xLCmBk`=a(s-tr%^U@tE;4#fge&jXE1WP!ENn1i;Iiv z;MF`{67zOxEd06Xe0fAN*2^LEsaF=N#Qv9f@KxtpC&#PjR&h?U4Tjy54D|Gi1v9gn z1f=nAQeI&o>&0TrBZs-rN|+jdE(8-Z)?zRE0@3j@uV<9x+LJ@~y3zu=*K1+))Uzf6 zi60vEy94Ni@oC3IPN9-;eJya{!9}@5?<5f#v`I zxJ~EVfcQ?3GD__vy^U(mAr(pcbyv{iqyb${|edA;{SlyQLDI6eo{ z(tGJ=#>U2>Zi4@s^2WfgDSiu9PTQvsP#=%GFuw7xcZu8LjZR8Tq^TuAkAe4fA>NC$ zLh+Af>%WljSUztfS%^ZS#O3b)f9$9V^;C3qr(}}UJr)Tzwm1C&f@q9 z8=M6LHS6Do5XG(Xm&nM-dJiwI zgy@qkL#vzze!NxY;o%vgzw$3X#tmPpeXpzQ?TlLb{kz#tKopQoW-Gwl)CXU}a%-xq ziMjds;v~}tCPpVmMkjY9X`*`1&(9r7$jz=bs_c!v*VkXaZnGODg{!zYImr>;_2&xX z*vu>Uwlp=ZL;%Jf4?ZgT@Rh&wrDTtZtWu`M>w9c!v-ab}rZAqmK;hQvfOtSmdhqIG zZqEB;6|m#zOwZ2Nw`yFBfK}oEQ_fC@&R1v<8ZD_y_eh=1tT4lDA{?hhv)0Xz-8|>TM z+!Ui(r-C);)Vl5+f=Tugqki3rR#sLnQX1x=>LuWMy7+2NHlChW+!k9KS*c!bfpqew z5g6esdo3nB3@;~ztAacd8(bAu_dbjt83bBI9p9z8lANHX*2sg;J6(zV0suL zjbCbq0Ip$|jGWvP9j`0pmR?nLw%vq!!OD6)qIZIo&}^4LR7k-51%LVE!aG_gNlQhA z*Mb86@*W^~6oC!KASZ!)J84hb^lzHam(~_NzX7a-$Y49dqFr0&h{vM298m+S9U{w9 zmuUBw4Fmop(h*slS_97T^OG{5D;=Rt$Qp3=@~Ba-E)DmDHALaLN4;g>C;h{tBNiU? zu+%v@J_oOkqN1W~l2#M{VkLzxq3G$nIV?9&BUP4x(8~mPwGFDc?+?E8tzBrj?K$Jy z3j^}C){V{0n|FgoASO{qasPqY;6=a@9((^$S!eHXeVL8| z=6j2+UKU&8NGdNtRN9j#rREmLGcqbMKE>;#|{u21CcE-dwJU%_VHug3BCy@flegMf5+bhmO{wrCt)VZ45*-i=Ry@1jFe%o&u-esc&Y7Jgj zvzBfCQR`cPQvT4Sc!_^bo*}wVAiR_nir1?PY&wC%xGEzA#4&PweEig2>$3Rg{H&$9 z#l-`vy1J>;Mf&2LR1tynS20WcB)oil-Yct#HsK~h^&Uf0Q$ls#0#Q8g<80&2( zeI5ADa4&qNdl6XSLtuq(>w6SxvmW4xxN_uyuR7ML4hqA>%&e`i;UFF?0Cf$aiE0-| z$G-z4QQjaFvD^E;`c9J|n_R|=*0RnQX#jd`2QxP}M`rYZA^YABgCqp=%Ef*a7JA2? zJmU;o;;b1IQTIT0)5mFXvix&TYXLD!4HS{8bW~?_db*ZrievRLTo!R-&kha6FHbH< z6?zLK$i_+=)cbx|RO@91nmy3J+F=DWyTv`HsNbLD-Jvg`$M;UVqzn2w5M2vFD1>V1 z>dtvf<%CM6tD1kg&l?Gjr1h!`9Y2Z#cngd6asZRSIh`ky=fTgtVEo4(f3}H`x#(T4y z@{;**zBQ7VO@{)!BSLx-3}a`N?Q0C7Pz27iAVWdsybH{JHdFu`H~?dawu2LR6(VeZ zZRM3W$k~7=A&c##6%`+wRNHj}+tH2XKIy**<1i`Itk_0`cNOzY&$-iG0M^B8E8uq| zVYul7f97BsJg5)EtnhAM48D+vBJH5^Y*g41e_cYj#g9cbDj^S*^!K533WKX1o?xGv z-E(%qKKW~u7{crj2t-K6_r5iuE5OV(9=8>5TS+ey`$WbZHF{lLRaNz3Y7fjk!}Rs- zaBT0mcjGf0>O2MqUA2UWIw>;_rSSR=otx z!V9P7us*}kkk!@I#}Q>IOZJxdCnr=d`VKUP>UPb)euKowtV;q~S*meepbzxf(;7lD zgSh@yYX@iYWuu+Y17as?Ccj+9%uVFVI26< za>o3>3^~;&8Z7gzsN?3@_3gA)^UT)ga3o&;HC2OmN932Mf`QxGgXgdLN{-*a_Jwy+ z?82-K!1-a_`ik#8(R{#*`2k;H@Z~PW*OWhteWQ~S>`-BsqD5<<3$wsJwUM89ZSer8 z9%~Rr>>KumuRd?HyB0_0m3MJF{-}F?brGa{xk!Q&Fn$-xMG?1@Ra{*B3+(N!yIGAw zaiNE^NOq_Liyj1XtX{0QMwmt}Apm_F1}rYKqRx{-oas45*HT2Exeu=b>$5rHyTEw| zVY1P|fZth(l3IRYv2`s$WB1w(J=1i@LzJ3J8xw8{0gd`P6CS+AlkcxIk6d(HW(99EOf**8%4yAy zw6rv#D5*;ab#-+M5cNvHM$tVAVvcdF09u&|XaVPtEBpr^X`(6zcTNf`Mn%VgjLUhY zz2|TlnGi)Co%(JK_r#1E0NqtfDNTIm)u_ZgRIu7#ENea$`V(}YMYsM^0^V&wJ2ML{ zH3WM^Xu`=rQ3EuH6xqC zHJ;ThH;*|0*#!$1+T&xkP6iCtfOHgha5&g$buCH<(TVa_+HMh4S$IL*AHs~gkU?6Ov>%0;1$nMNlIDOXyk@B&-njOd<1 zUiH$BQ2~as?gVfB(5h*uLt4fJ5{cA_KD21F^BSIGy*He6Sx7A7KNUD5;Q)3fQ^a^C#!+;gmwn zNMTrqE&rvtnc4bVq_d_48~ChPDJe4qat3%4jzulDq+u?f-lSOowiqG$30wYYa)Q8{ zF6coVQXb@&t$_TyggG!o7&O0MiH?&H1oqg9jZPB7`T|-OR7)t?!F7Is>qx*%GHkrw z`5*qCtVK8|4H6FW6()+fJKH8TV?mzojEs)zSmxKsA~Ag%<8Y=Jo;=`zJ%Hr^*H6Ag zO1)2wtphpJ8<+9Q$<1AZ!in8e_)JUgKp_65qf~PZe-S!=?oHLrHc*7LR(d>v_&h8b z^%AM8w3FYezumh zG#~cYm}pr*BI0PV)kg36YVb{Fc;Q%nc?9e{bBVu!@beoSax5n&C!&-!NZ8B z)LbULd5#ooTu9O9X5kzRmibp<9LC@%-JI`mEYpuUslo*F81u`Iivi<>%g>54Hkc}9 zNk=+Z5$WqvhC&5=t(G;C0z^V7WFf7h`k`lj8NW>paD22}xX)s>G%KrA$Z9+QJI8g& zX0?KpTTS`#4*k_?zb9auEi&DitsBcaxv2x!o-KB#heT@H|FV)P=qV{~FHd`KnzO`z z6(M9W#TzB%cx;oa^o~)GU0*^Llymd}`EXS~^x#*AUdBpoVRfkLrw%j-vE` zseub9?4Efvd@yI|Y>0BS;HTKm&CPWX>C}(1SE! zueyM+PCx||&sI(@Zr%>&N_*-xXbuuKFYKD&OoZ8K^9c@HPy%>D1k!gg@-44$6*;+{ z2k`Ehb!aT$p%D?b^*j&hCxCa)fkR1@+!NLX%Ebi5lc&`GfChIJn#_u zrlkpl+d8?pP=I(aQV`rMz3*G9-cCTK$j@041h(MAPdVQ=KHoJMHttKI3~e>IpeJfw z+S~8#?cEj!1l-wYHt=qqcT#>Q($!kXP>#6=pWo;TI3|MHuS2rqN?h zyNY+l7;v9*tZu)5?s)WG;iIPJg}lX<%@CjN{lJz3u3e4yKF}W+>BJ$e#8NMj8DI}y zvyGLG&YFf+8Pi>Wvdl%V-bvt_w4;K}0J@R8n7)a0bvON16m3;9AG0%VE50^(p9yNt zn@UH$nxF?l7F%%MI#l0Yo+;obBf1K@tUccm4B`o$%su1^T*o zNGI(RIFc1;Zn+?Ov4HOA@X(_j`dG<))CTfg4W3}rQEtPb1MYvpLsL~%brCTewl0I* zv8BkW2TRIjOKt`stwY+DgaEseG(W{PAE?m0!sv`aSz)Ydm|<2}0YXL!u!b^>QPX11 zE@M8w92aMrnd*84^M!0lzz5*?=Hs&pHm_IorhwNIBLyB?&xD_FZv${A5#SZ~zI1vK zLZ_|q;R6R^z7r7Ko5QY_I<6d-&|$?*&L34&jwNpFX`)Ws)plB(W|ruZqv{cB{}jFj zEVMRK!Fc6fwSe)-7<+%LdWk&x$#mEG;juA zfoM$L;sLympH^=LVBls3Nf0TFT6JT8CL*(~@q~`PWnq^II6fK}o7A~;wF?>KNs^Z7 z6w)F>n{`d2ZsOVcr^6eQ=hW0i-L5B4jt8~Sa=@5Ja3mP9mR8xU{*P*qkPETZBoO6j_361I@p%~FJOy*0{aH4ze2E@L6cuM(0g~PwZ_VUm*If1$(&nQY>5F* z&;wsu5g2gj!%&A(x=e2|)M18AsZDK(@W2Oa}dMLlZh40I~$ zQezzL&+Wv+aN{E#J>AY)3O04vOX3J1XS5`fsO3p`>`)chxVh}%WoOXvnS)y1x`P95 zy)Pg+&ZYI-gNSqMF}tR$B`4J1S$>phjB}N_hRDgzHj8ph1iHQR=g%L~ruu*>W7Qi! z4&&Gi#tR#va4wt1{Z;+rQrO4jk711L9Kp9Hu>gH~N#45}URA;$B@58t)oN@t$S_oWXdhz1S68Mjg znb*cnNKwAYaS#IdU^qZ-FOf-4j8|09+<(uXqOam6^7;zhsJ=j`tf5hzRsmx9k;j`s z>UTvpkak9On|}{Id~GsgiGR&4<>Xg}LS@0!+R25g)m**jPV;BnkmK!{3xISKKye!& zplI%vgW9-=V;i5K5KK0-gj?*&iL$C{AAmdd@NOrhc^F3sJtWe^;;3nqDDnmtF8C%UEDupQ&LfhC4dH+FduWoa*7Q7va+za$kM0U2Iee6 zzy1QID>4e@1xA|>0#yt2V8l^YcQ_HhGo2Td39*sAyl9WtSdaK2Pf9pCE0!lK$RgD1 z9C+t`GI}LM)t_D3UN~#>(Y!DXMO+l4??I}VaVAlp<1OeXQPPA9wm&zkyXdZ*Xrjh9 zs<)Q`%T~R9zUS|?gX9?iS8F$`sblEivR%dKFG1k>D74bMcWuP5IpkqJI2=&vr;a|P zhrIz1Me|pzxg(XI={z`vdB#Dt7vU)MK!2ye-Qjw41w(Hpe9k+Nfw!y9Tn-8Q*H~k zmFgc4{<&b?6E2iO8WfK|_P4^q3&3RK{F$F`m6)Lnz|OT7Gw~FISxH8p3>oKrX+h8U z87eJZC8fjIJ<}fpe};Ttz0`G0;X6<>pbGI+vqN1M_i|{59Kcd3+;{DwXvk zfeS;~QvhqOYBFAd6d;Qp(P3Ef`lHsMBdmgQ>-y5m`v&^%M$q{K<}2%e9WKlJ^!5rq zX=J&xJfOvEeNVnM*Wf+>o6RLmZWt0NWS@2m39Z_`S*(F3VJo2X0`#qev|Dq4;19OH zxOW=Y#%cXT6u4U^U%S000defo5K58?Ha&pzh7Hqihaw=(9_*z?niH)aKG3 zX;`RM7r0OVqo5Dkk(5XZ&}AF16oQvUFb#&R0hYvM-f;p@*t?-Ln8T(Q={hzM>8qg= zk;w%}(^9^EMa6^H z@NPF4=x7K524Hc2k;=Ndx}k&G&**p-WJ)18at(k1kUCo+DSI;Jlt>RqJbTan1t+G| zW9L zIgLQUrYOz2C9EN$Z7J?gkNPOa_j$vb+w&HIkE2AUoMuJ<&GwbJNj!iJ8^DFI$+(R} z9lQXwdtcin_V@Xft5e4I`=IZ+`UKuxLtm$v&Gk(g>48K^oriI(7JwA}Q$W1Yu+xk? zy>`m%_BXJFt)L3`)iEt20jU$?m^!y}({#KwbrSxRK^N#1JwVk;gV^h?$1iy_R~44_ zPCaSkDIJF|egOgG2^n`^!yM?Hq|S9=6@e`aIND=ZpEG0z6Wi#s0bgby8IL=tS_RP;xHgp z#!4V#V#@Zh&;J_bu?cnwQNgil58H|4*39l0)&aWkay{kn?-JzwFZ=xeq)FYtZBUtn zs+;F)Gpti&1~`qgtbc%aV<~3Id+Ocdt35X>2>U9a108eH*3{H=H$lNMAm9IqvcQ0} z3-7b|Sn7Sb``_wIyCQgY=0CqbRRB*-{^wU8;kUjd|9!{)SJ2*#uLN%QrEuSr$go?R zoiw=U1)7Ti0(o%1iWuV4O*{AhyW9QWtN(vr*fHYqw%yY*$OpT+=#RqOB2@FeQuEG| z@-PDnx!KyYY}N}DwkVDcAdpBgFZzzCLnD}ip#ZVorFQ)}|Cv)l9wIJ}fpP>MR*ZCR zcOzf<^OnAL?Py7%0){qbP=g>gYLN1Aj)fVTr4+c4*rR`Pc;ebO;3dZB$V5`O(V-Ci zql)#m)cX-|pT)#-RDF2tu6 zsg%=LBReRr9*zyAzWp|ZQk~N1MP4YP0(~sB#R}__c9R?xW=X)WUYqQB;^})o|Lx#g zWIfBe%mh9*)C7Df5Lew(Vem(~tCH5B)r0ZE&G5}Bt|z2E82jmsH3mI=be`omtHU1~ zR=b}^&2en}3AVUM5uK>;TDkUpBh>IcRyhdnB@e!Il%F~K{>0XZebeC46+xetS;m}cNN;D* zmQvLqmJubXZrK*Q8ZMbSrt1*l$fICjwq4hU=yga6ZixzRNuwpeA&f&@?tbuc`1AZ- zCu35nC-js7?GaXT5Fu=TxH)|=*;0C{OHUKFrSo+@=Ckqg&!_eCIE@ISt)e!R+SlDE z0>qv>ODEB3PxQOf)H&hSbOljb>;oveHmqKkh?G2cn9VinbJpJD+N#BS0azm~JjoA7 zPktA5JN{`9aQs?$b^6fjTB^qr)nc-T?Xp))LM@nm0+<03sBf2hR#Aup--7=*8vE)q z_Ji-Sp`DM3B9Y)vk7&L&@GSHZym#?jmB20p|jl*#WSUdKl2akZ@T=aPjdZ*w?3Yq z*d7Xs?oFolm`&5*s=*mu3)#x-etS?$HA~o^l(p`eT&dukZue0w>0Tf3mA80@@wt9R z*3!@n{ssawtU)DZ#+Hgme!BlfV^WPezgxGuZy?s@zuNJOpCCdM@fC+!tQiYPI~F0< z>JMK3I52urvg=!vONS zum>CKg$BGn`rJ+oF%PRh-yw83Z6D?-^;@W@S_&Y{uBdDOYd(F)rrwq;-lkbXtUPzD z{1N^*qvM7GwczhKuibt}B#HIfV=xSc`Y90d)2)zSr^ft^JgEXlM$)z&0X8aQUB9FX+kRn;_?mjnLJ+S2qEOWm(VP>lRj4n}C9Mv|IXpi)7)8)+Lh|I>KYerm&=`k(; z%0&v*g;_BTF~e}OCuo{|9Ps5=ZjfxVt>sH~tN~15G@oS+E|%UkVRXk#?3XwhRU>(U zD%^jLr?dpW>c7==b?e{dB#3Qjl(7y=*(d*Uum9Km+2l-pJ#wEpcyZ3s*-a0d+5M7i zwhuywD)y}+rH{e9Coot#Xkd_-Vw1YDtoiqTKe#B=lCW=UvNYNd&yfKuNi5P}Er3_W zMRISF3$u<`;S6UPm-=Y~->OOy7%|$nasGy!$bm2tQ!22|lG?m!C%G=9z^G}W?tZTp zSz%qQZudgg_R9I2sl2+VcFfWE`#Mty@uQXZ@0Qp3Iv6eAYQ`^Ye_Jj}YyWeNs~{i> z_UK`PXZi)(Z@X=Md#-ZB_AVj|F2i)jv5UglX0OB{lD6@xwB&N_55mX8`6!ZZ@}>h? z`^@BdZoM2p=SG|qmFP#ok&5jG`GG+=rGlD2>3*Hl-q`=+9!Y`JLW22^oxG(lXJqN0 z>nFU$qdsTuJ*usdQJ>dl?A^>QovwUWNMN3ZWKb6`cK405@8<@Tb!0p368BS5Jq$2TV~MrXsXFwkx*B>q3z>ZM-+s zXM-|IJwQzg+PA#%i^v-}18`N!{vmYR*dLvUkLXe{3Q}UUqvV8M`wldts_#4<{6zM* zV1k3cw$hEepEw~V)m#&NBICP4 z80fGk`u_dMr`vOoaSp4{d+Cjxp>F_>3&GL+_OeRT$Y&-0S%G?LrV!Dut7am#l^x_% z#YFi$n60}ouHEV90NI5cnuz127+7>i6YWoERaa;7R$0QkS(Za~^eyv>_myez3kI(B z>_U?unbu zzr7%LbqE<_lMt`5J~W%^*ch|zd^>tH2G15fczWo=K~1My?I=Hc zOFkx%GPCr~rg=dNQfMV-`FAndn>;7^3D<`n_mxS!^>rc(;((K=Iqz45WnerDqX%Iv zWhI26ppGO@YN>cSRke(zC3XcCQ1gQ)eO20Hb#wWc&4GnI3Xx&=sP<;oo~$1`GVJ`z z=~_Y6$$R%tL{^HW;&+o2IIF#TlIqfK_g}UvW*>TB4#7*Rpn=gSrG{yf!G!-TVCQn- zm5s56ITbXS)OYs2iL>wpgj5F|L?}%7NK4PveS;=+f*Mcbc?wkXTycB|wiXlL*$~O5 zwPavQbMR(~&XsbrbEAuXy()V)*+36&gM1s5eF6r9>Kd-~gsdKi-O|nxS86XYvG=+j z*#e_0Sf-e};9;NQ1o~fuP{*`5@Abe(o!zZ!)*ulF!&8ilH)->s4vf(~P!-nTB05S( zfnO$LarpM@8^q1m*~<=i-80L$7ZY4mf}>S5xawH+uE|}wZ0;JX*Zycu+v`yChgpv! zuHLc){ma5dJ9Tni+?jf(88VX%u@Fpe6EM^NV}tLoo`d&#Zg>kJguYxdY>fe@-T_V> z9zK1)45Lh(?G#tKvdev+-09JWrV2F17Jsgg1inPVupm=p=k6%xrz_sIW5${3vCIX- zbWv8_=w}a;s)@o365Pvlfr%t>&tbu#y;!>lytTsk0n9Xg>{{Nb0FCh?{(uAm7lC+h z23r%hIBRU}aRtK13E<5N(No^{caJv~s;*!^oL>G) z#J{UHMY>WlLb^B_-Mhk^X4*a;Dw{pe9( z9Fi?;MC6~_IBCp1z_r86u!B-@kuZzM-CeCZtqa%^U!Tm(rm`g{%C${Mv;(vi!bm38 zRwdD<<#HG0cb}+8_E}1wktdr@6xk1ihJW){%JZhtJ@s)r2@Oe;eX*;fN8fIfQO&u2~xbPh5mXGkbVYBq>9lrS_a*z4*2=I7NKo zFjCE&D@arBd3n)z_8`6Wgu}iuIp_7mxT@6oeEu!B0oVU|7Jx)a*O_5s%KKy@Y4mZH zn2_>}P2+U0seWQ22N*f|rCSCLCk`)9?Qrjnp?t{sp|I<94;v81mi?`T|%@nN29_hLy|vqldW7l{dTqcokY>lSw#_H2Q!Mo z8M;kz?fDZmOU(p^<;0w3jr%D=qyqg~M(O}}*-M6~>OEH`46ONaXq4!^!{J`??F5-d z{H8wpi7H-~N4VCWOXEOKAoIO#23N|t2_JmfzZui7yqzC+Eesl_^K>n|9Mvs#zq!k| z1m=T-Jf(XF%giVIQ!4#|A~xS_0F8QJUZM*lQyOKE94lEBU7~ah|8QY9wwetUqPJtQMs|_5NFIyAqO5 zK6Bq?88@qn^p-j=k>8vj%nnjyG#?U{oUvqt=v(Yn_$1xX$eNff zxP;cemTURRojPL8xU8SJ^mu$oChfoGV3s+j3vd(mt%R8F373aEFzj*E$Bvn`!8x*T z69rAXI?hC_4s0}0RSPjK`sYm16FE0pz*jU7F$`YiJ%l zI*wOi2_CktH7@F=yhR&a3{exS@_sIs-I%?YyJ`WBuGe&~`ZTM!cR%8>d@HVMmG@Xp z4BggU(gA*shK99+sPMNw^eNeH{~VdU&<||5wo9n2V@{YFxk_fnh!G8qoZ;9z4FR=! zlFA&xvU*0efG3POJ>p`C({^=`e`_eW7_LTiR1o)bQQq(59Shbgil>i{db%j7dX{m1 zPk07Rp5oZPoTJh8V5H^41~Kv0P!6EvrR=N8BcPu-fIxWj>8jsF9cG!o{F!Xg9_L&| z_7!-@aDYXM!aXSY@f%ARL=S*dz;B5AKwBINkmHLtqV5Kb`te_{0=FgUIo+pWyJQZ= zM@GDY4LL5U)*#>M8a4cKS9s(Z+b)5JFEx^>R*CBkxZA3&{fr*O{A zZ>x%2=ZP)TS4ax%D-jwE;m641SwW*4n+WAeU7x_c?)IK=;54*sHF)l-dxzidl1NyX z`m{|Q76l}r#z2F01L=Ew@8)b?-)pb^nGcH5y z<;y-Mtp18Nd$eUIW+C{)H!uH!8gRWUhB; zyEV5>{`6keqAGi@_9>Rj-awov@7Rs!tycAIT#t4&sblBNIwfN8vV|P1?@+8tO<*K- zb!;`n3RQJ&jRU-o7+0>uTk?3Y3y_?LmT)}79|x0%&ZX*Olq*?;A|12}6xe|}DbE|Q zTtlYpf|7#Iy#;HRN1qoxdP-Jw-)*ZpkUdTV4iH-M%3_QeNbVJGN-(O~jj@XE^HYk8 zMPGeM#bFCLX!MA03G|k)-_?<{hV{HT{Z~GJxX)ZZRsL4+k40^lx0h7%x>^nvW=V+? z|FyOK+E8K_y#xg=kPAj!j2BCH%uE<+2K029Yw+;bMrmKDRFi#ef05&jy^|(R&i=UK zIzh@oX-CxGx4_T`{P7R$x;#u1zuX^a5k5VANF}EAbHA)ps{ycIAikVh(Rd{m%`q&O z?oAP+tZXR)Ti!7VJ6Cr5M^G-1L{P2n4oDvzK98@Mci&i9#%<^-(cLkz%-atI5ep3U z)T}SVSHpQM^G>;L3aU~Tcou<^vK$vdb=S1%rT4w@EqgT(OogkORpy6e|89w!4EAAT zt$&l_HbMbBdv~hY<0cLVLs)H8)V5bqlQyAH%XC0bzOcTt`v8AbUSiyaYn;lsNCZ#T zF-ypPIPEXL+TB_dV%Bqm0_Wd)({5MWSzjQ5vgRy()04`EBMtkDf~8*78%NZQ=B<1` z1@21Q6jJ4{hyFUT_GfPt=z8RFE_5SPwFn7CGR-t4^IevAr2$;&FriL{=1)x=55y6C zGES%u5u&OVb7IRgX1vL(SEufZ7y^IABO6r4Xn0U@9Vh`loyx#Tho2 zt_7=uVgU#+LU74SyR^3^DxSeHa-x`S$*ZJmOfw7j%u4zc*=KO^9+!z^MA(p2NAlgO zPb}#zrpwD#n$_?WD0}{+N0&@Z=66@;+bB@YQ9fg*#jyn5@nIAUr1icQ7|gifSRe1@ zissG&`*f7AsFz(}YUt>3m5`V8d|dmJGiKf@=w*`-2{WAE!pyHU7M;L4#;%Iozr-G! zBjyK*Blu}6xA4HWrI)oN7OIpQsR^_8R0u8d=FGC_zFSLJ-#PO|LgJJ5MPGBgSOJyw zh8!}CrPec;tko<8ULIIzVrYZTR|Cr>Kdv2C+Rgdy$eOS9MBlI)qypLE44U+l&f(6t#vTl;8#%$ zH^&mVt4}`4qmtZ3cuj%3N+~>_jS|WW40<{Al~*m%0aTpU2x1JT`3wl zHHNi}VcEsbU3aKUrsX2oxOg~hP;f7N&6sZqlyoX7usl9>Tm^m9X9GozHqo~m2HF6A z({mSon|>#4sPjwL?*tSCi|#!o-Pg-i)zm)B@JkYVuh?Nx>GyU*laySsDh!;Gu)?aG ztO_}c4gTZ9b!P)nfm}Y{v4Seb?yZ{X+dU)xetAs-uOw>($%JOqN4AT*QTN>bBo{2= zf3O=4QC$r?pNXO7+013r{IS8Ls34O4^cKmQ{J=b5<_i4xY$|T600*4$<92S! zfjKT~iA8GVC4057)(6-U%!+=Cn%y^+8|bzyXLKrJKs zA7xuR|8)f6h`N#tj3R#nGBLE`HP=(T{^$oqZ#-SdwS_M)GPZ&MFqIBey0OMdbPjUkx| zytlc)J5){qkE7n>SN#@t$0deVnZLLr%ei(Obi}=E{#MniW_%bf_8U{jdCV7+U3B6) z$LwHeW%9M@c=yl;ehrG7x&MNHsg?tgBf+Pbpk6}vaL_#OjG1zelY7RXrFoHd@{_8B zA;A_azAr-cX!mdZo!5ou<9s6(aZ;$>keLWf)+<(-A!u%CgseR zeF)pm_~)^1y$%Cm=Ii|Rya|g&TUuJab!s^>4bMllELRpkbtIMQHUWQn*Zz}l{zc1cpLTHTk<27MUF4j6#xCI<4!r(kw$UWHNiP-n1JSot&_*HHRBItiwFHe2>s2zk(xU9eEl_1fwXFmW=hyTWd7!zShRkeK=$=XVyv$ z^i&ehAC-$Y$kp!}S1f`fcu2BUi+D&-h}GD5PNhuA!-HjVLSLMpy?#9tN{p%^MS`M& z(@Z^gfLJb7!FuqhwJqyGC`VCssWBnuQf+IUsYHsVc2;CrlLlOKfY{j6WeY3mj23i9 z3b5(G{%;rkb-~2&sh9m?D0O1n!%B5nRN#*09JbT3&po#Xo{TL#&2sJmGp1>ftNK_z zZ1BulomZltFGh5#dE3*Zk~E^dG~33HFGD?7l5d*GXywP`#Eau-w)+3)jKe1QaYZNQ);R+Bx}N9MH%=8N$_f>$)0X+K-a((>LaCBwk0 z?N;{Wm##((SSGAtphl2Gy1;9nIm0S>ODpNL0PT!PjIVvCRrOr@_l`iXz#ua-R^kOR z-kh^JUX@EjxNYP+SRiEPf)7Idi^}@1%s+%1WRuKyCuv->&YveTjcY?~d7egPWo!C@ zwEN!Ku#$%;d*iAREY{d>NF05}B^kozz;SEQ2^Q&@UF@rGAPsE>l}sQb&FILW)fsgh zRMx4i6Vdq?FOG$JGL49zjW#NlYibRFn@zq9J%5_2w zP_E*kwZYhLbcHSNpe(b0{0McuelOzb4xbN8XcDNhUqt!=7Eg zbsPAW%RXT{*+Rapkf84-23QW|#-@VeAwSB=k*ghBn|54OQ5r`wy8$EKF7?Hs`d#~= z9nTd(01E7<5IEdz5!8Ck80s6ReCQ$BMRC5o$~&w|D5LS|xI8)e+9;0&?pv&4rgaS} zG+KD`<@h9cKldg(w|UdQ_Zc8ImAroY7ylb*%||$zav#i|wQ~kI#4(au7J9aG*(_iG zo%!qKJzm~;>(P(@vf^VX%HZ=I(f_h${>b_V@ce^c5xjXtjPx#BIP zJ8cAev{5rP3_5T{Ief5yI1a(tZE(Mjhkv{d?}CuWq1ERe=Tg=OOP}Wctw#jO=-&n= z%W=-tG_5N9UCcaF+ySzYP9|Uc5cqFD=ObJC7kxX`q!FMd)Ir1sF{yQ{ED-8kBra#R zaemkkSij-*mcZ-f3LoVKUex(78NV^O=5Nezt>4D*@Lb+bln4j$TxpiZ247i8h6rhe z-u5Nr-@ZGxf|g=D{aY&FY1h2Bni-kuOPi^^s|WAGoBz|ZZd(Kcj^>JC}0%zQU#~4S*C93 zMoc7e$$edv2>aAy8`lQp5@jtSE-W;i5JkyT<6H%q2$~YxFyiwfrW42qA5>*(PZx4h z$qFL~N952rE2rF_Kiq9Ecyj|euY5DJiVQoewC9)6%ridwxghy5#U`==5#t_pyLtDg zcxL_J+nAO_WeIoAb<)5yZ}I0MANOP-R_9-sW*%mgyDf88s7` zS;|bzd^WCR;!PfMaU~ifnVb%Nmmz;&r`*Jp_gQKyeXfSu6j6S1wiecLMF+`jK_>wK zcXv@H(;>>D5J!xRW*vFmA7EC>-&)i{k`b4N%Vhz>(Obi&s)FIyRhRVN$r;>=t#v2- z=5m*}-#j67`_uC&C-8Mj$?UD8cY^I68?_v{l4o;uL3s~kStf#)p#6ZKgi^j`Qk zJV^ien>Q(b+dXtBVt&;EQWNKl*n1PfZI7lclIfZieW~NLoJW7ZS`l!DF`_LrlZI4>a+(%SI(DcX*#KFK0IIbA?L<|@ zw`qJ=D^~T9H*X%NbDC8$1@pwHbB&eOu+JL{m)O2&Vk*tyT3_36QV#$H^~5jE`gwgw zHm~qabj?hNJTPBhGV)R=%N0j}i*n$ov!r^JlvUaC*}ClAKYjA~ll!mV=95We2&^0* z=_PvWm9U8STNJ~UzZptR^|Y6LnKL%J82({|+jbe1xYypCd8e>ju+WO%0hZJ?W^5YN zU3psPV}FJdO6;wfSOgAixI^k$v*!dBe{Hs4Sv75Q0F_k^1LIovEdR4PrQCp__3rvx z>?L75vz-{Hm*)+Mh1{v*6;d(zIvrzDj$#V#<5FK-wIxl@WGT2yhl_kv%W0xPbK5*J zg4e7m_2Z$YVHmY_!qV=B_Ha7Y}*Di}K-2Yf9I(oU3r8i|F zXMqsP!s>FnpXy(kSThZ7u==t7x$UfKSdlJQorw@z)R;5&CMQA#zEhrN6o5xD1dQDbE-}D@`&O1*Sb@%^oHU!Fuk)CFU<2(=(BkUtS(l5^ z;g^1=aQJPziQVk}6YxOGZ$GZ>E8V7tH$ZM}{BSBhkb29H6f{o=f4C-@7x5tk1xDM6 z4Lr}GI>op06Y4UL?|3RkJSN{0*(JM8dIadJJVl__DU-|FIm8AS^e!u>mR+{z$Zs!o zx@uKhEk7zq?@DVs(P08B=$!0*9-Gj)hFaiHrBOY{`xlPhZt20O)6&ecjEg}+;e1iG z;B+d!-N-K2`C>>CX9Fm}@~I0QQWa3{IDtA}RJ5~pHWu8I^iRP0vb9o&Hi9ZP!;d-m zf{}oNQ+UOFthn!=1QD?241&2Opp~P5qBk<^>}P{sCFaz%=>I$eVDBgS;NgCziz4gI zy(I0C1=GeBU^heEK5R*JMey(~=p!VRgh>HuJ z5zwBszDD)By>$a#xDKqKa(3psVOoDrTqOhPzWu~T_cDW};@LDme+80lrUl#_Xz>8l zJxOqnYkE2Uy^=Z z&O$}|L`J-hK&JuJyA^Dhp4&GgpRq9s(Ts@W!bQ7dIeLiOlYkGAygLCuoLcYfvyCs%iqVV%U#42Xd7R?mJ)Jc>Bw}R1z zpsrf{ctZ2&p#TQxgEn1|>WTRDp~gis@JE)1^EZPZ9V^Ir6r`sgIo%qI-=o^We?UPj z1ZOB|D)l#CT_|@jM+LjaB~AL$R-2$M@CEv|cwozajo;kWdQaJd_RuQk?E)>(W>IBI z*cA&5M;)1BKJpLRHdlk^i&P7698w6;2fb(P#pf%FY24XG=ObO&2a^G%7v?9b4zrn5 zN1S7hL-b)SvPx9irJ{ga_~*AVj=1@+4etv07jc@{Sn>%y|F_160(5+?gSqoR%-P9560psdArqML1fJocOmZr(4dt%2uF{#SQz{Z?hygbmY(lt?!>DcvO{0@9#> z($XN(-7Q^idXplh(%szx8|m)Y(%tngp8I*e?+mia{Ja9;-eP&IffX9-spVkwDiI3nYY$55K`xR<&!T49< zr$zH%3jj+n+zW-V!8XI1dM5mHe}Y3by8o4*K-a`hMOCkbp0%v-D(E%ileX{_4Cn!F zFfrPT6BmjQL^fn{FMK_ruZ(}kiqrX$^4KLoW!ZbSVBi|{A)aC5L3+4!MA1W!wpV6L zUJT52*uJ4xw*D^bv)5JNK@HeZ01X>bQbis81GY`^L$&>8oco?R_X5ez$K&7&9>-TZ zpTOfhqW2A?x^L-(GPvp+FSfCQ_KY-YSff9y+ok)v@f7UX3oIJ6wm%{f{_`zV%VYk; zjEuQ}fH)s5pSl>AMAHm?d&c#uyFtnW3yKLev6Hv$t?U=pN%PNXi{xB(?H6ql+&X&u zAk|Gv>tr(3k|>nOiO7yn{%r_z(sZ2eE!oF5D<@dRBfrB>?tb(AV-^^5G4tqI(iyRk zDS{5|M}Z3_eoYpa@^ZnCl^7+JI7>kXj{G#13V=A*1i|vC_f`&hPYIb_ITN~N&B;p+ z%Gs#|+ZGDmmTkw*pYPEl0jc-zh_M3!;pr)v8eh$3env1*_p}7;3QpW z>QbWm5E0|#A8C1dCtM$TvBC5+i?n?p2BZ{GG~ zRp^G4-6v)tujoGxMS2Cmp12>-wNL=lXuAAY@Hb5xB{N@PfSHB)IjVIS@yic;%}2{g z6Xkjzp&1JLn_&S)%9MtB#CY%bx-5RmkyJb<5ui^X;8K>w_y|n~aGYK<$3UF3z2~15 z9tybE`nmr8e^NpPhQoElCi`fWNHpt}GvWy!95pu?vU{~)^>b0)@JF;-ktA+#Yf!;`#e|jFf zcuw(Lq|oXERsCIZ9pU5H(~~&XjrJxY|9*7;)FBy}&0-f`mLw%s*&-2ONh_T3pi(i2 z;!jW8q&aVtefU|QO6vg%Bw%JtMy1q#<<#HOc{R!hJ}UniwmWeCI<_KBw8mN|C{unL z016?jjfUAKkc+MdAWqeR8ffq9iXDvp<-<7kyc^wfvnQe?U;yJkDbrhC#|tbK$_e~smMRJX=dQnLaUmBJur zHbwhkTnp6!FH+o`%5F{GC~|_Q)vyrbL9Rh2v}~}~AEgbb>H7@eQ)2>8)?vi3p~l#f zwFTYQ#9C>X@sS(RJLgcB2f|1u1;$^!B2a2zF<@F0SyWt`ck2ow3z2f0bPLk`fh*P6 z1)SkdLk$8+xk1$ipL-q7Pox2zG%_cOqAY920$@>t5!4n2u`8k}TA6P9j%N#r!3>1w zj`zm|=GVj$y>~MbBNZBW9*ZEgoqlZditHQvzJ+oqqq3Q=cJ+%6LodKA5Ta&kJ@CGu zjk|h-@lo5}STYR|3z`gFLTa>zKEDe6xa{hUdn<7qY^5RdcsLuoSw0E9_<%dSulVfT z()JxuW=TSp)3tfkk`H!H-UUlPEA8-rPjM+42O3~i>0aYk$IH^51O)&Kw*}>Ra}s!_ z?U*;VfTg&J%TQ+8{u?*|4J@7ALF~Dmyh#UGf%R$B77xKAt2kn&K*ft@TBc&xyaW3e znv>0>*eo#~wP15%iEQ<>yL<~Vbm^bg2cL$A=Mek~t0e_Ccx+*4nrFQ9EtMeMb79LK zaH7c1<_pqA8>V|rzt`I{*W;0R(awsQ2K_-*Z!9!$#i~Xh$S;VD(<$T)@!l$oA{ut! zlmoB^8S`+Xy%zSfBQF5Rf&g7wueO2rcf)=vJtr)Ul$~%~Kv6oz^5&yN(isND?IRhr znN&IT_w8mm7BP1I=g2>5TDR<1cR{v24AH6>AMqFkiu6Fj2Y6!O{CSQEbI+U(>y!X7 zk|gynkl-7Aqp0gIh-kPxe~%&_8$lq0FzF(zy(E?scY)@OyV!kJi#i{vAWf$8`-H;~ z`_;5vVw9C+ zxSWaSZ0=UlJ%PCH7Pci7@HZKx*t?J>=u0j0jQ1J*PFOUN<3sXPUqLL4NVNbOXez}D zf}e>+HZ8-CD&6&2BdgK7q!&~>a3HGwCR{MzZmc&g-j{i&IhHMzo+ zO4)_s(eOIv)FUT_52@FX8%KpnNhS5XE5XY@dbG);8A9t>`IQjdZU*;t~g5 z4ofzL!w6AaaK2%pt65VkOo`k3n;dJ&`pUH&>PAIx9Vkdk8xFgNMF=B&LGVrfzzgF1DiFyx}hDn$}w*98^qQc5M_|b8ZLw0X!!X-fhDQ^Kz zMHN>}0to&_B|C=>)Lh@q`TC%D#oGGDV1iN66tVuk1_8$n(a1lu3OsS;$cwF}^mDcd zKmU;>7c7fMry(4Id|nPq+$;b~Dqq3g38Fw?FJMJ%0ZwJVmlzDZ(dRBcM>^v{f?pV1 zvSV?gmHme*a{JNDO-3aIanhxCS|Fw5PUN@o;1YzhS*EZ+n#i9{)fYhvu={7MKPLUj z{mCW=sBrDCA_%MTDPm559(jjAUUxP3b=fqKJ{Oi5@ec)2inV?w?ca>+_+!Kadce25 z8fAPm`Vh~#<^wFQn_r>e{Dnk+cC&-1Pe8Hkfu)A_jW5Nc!o2DwZiu6zdKaRUr8ob4 z+6rzfG^8zPbn$rJD*F>lyAI?)8wJ}#pyXIB2w7JwQ_*gXgvoV^SrN3A?T?5a|IRGP z)lB%BJxed;0p@W%DM5DytZ~LJ0OtvJc$Jh+%lYt4f9Q7;&{i_6Uf2UBF50XG+mJ6} z%W-R2Bj5T5FqBo+HM+FT!M2#HvGCjMjuBZxBS#Ra93;MHGuKW z`;4K0)!l$du@KBbqrewF7;s*fRTxqULQAOc{x{UnSVzBet4Bp9$prSR27)YrK2VEX zfCv&gAYFer-7xVS%IX7s#;Fzm4^jH8CL_uw$D7Cli-8ol7Cb^Oh@8Aq$otZy4MEBJ zLqnd#PhoY41tj{q&R97qDXjM8db<#4%PjG`PgzpXB>s9tJ+zOaoV^pkGMd=6qvB4a zBT&N@`4)E(08-d?gAly3o7e-K+44K$MzZv#4$JPwF~4?$8vlh3j-Bzl z^HS28GzU%|0B(Q?EvSFzmklWgi5&hRi_bsDdL1Bi(zN(HFkTboT+&N?31C;B5>!T) z9921paMBZxNB0tVJ00SU=ZZNbJL1RPxaExrF06p`FD!F)*Ba#TQB!PwKKVO)zVd|h zb~hmFeJTrHna!IEIXU!bDSod`d-ArV3cvT(_c56$ZDaO5OcXuVYl0O|#fj`2=_Hqh-b%?ga4MxG#+7OdWW@m@iWim7cR$pc9kgU1l)WN~}N zGIH(Itopf1?jja`8mGQcN{`3_Ssvz~CewpTb%m~}I0<`Zki&hEXB|M&Dy;u%S%k^4 zBeN0*133!*;~b!k)rolA9j7C}#|h5l?LHITqJwbmitI#CWsuJ_@g%^5F2S$klSBH* zsv~hHFh2MY&Xy;=GX`Q5Is`__vRy-A(nL*}8vY;_l>3selY42Oeg|Nm!#Le)k$5?} zIeoH@l@ld`_CN7Bj$y&8R$ws+-8L zn^j5N+{~GNa6HFD^<+bvE;Xgq$M^9A-(VU`YTn zuty24SXG@}yrbPgmZCMIgtP^}5v)XV^lDh7__zRQ9m*{TGWm7@VV~PU z#({&{anI7GXe(;@V*J*U>^cC~=u)_TRrb9HE$!-e@1rvkCrnTrl?S*DzdGb{xk*7j z-u`Nv?PytJ01fw01yn~pLRsB^rBN7J+-%?<0fS|?c1C>sb(u>9X~=cI!{43N`O;1(P5A$pcCeoBpcaQcxDZ@V#wSJ-joZTF(xW z&D_&%iC#+xa~JOiWH#yMHGD{jnz?a@EBc`(NAGAC1t7-QV%ZhO0KS0repb0+IWVv} z8&8)mhnEh645*4IOAr_+d}BonuF4d%`)}Bn<3aa5n^p&$s@Riw^sHPp zj~+MCK<-+}ygtg(>vBxIh_IW45ORmH3+kakpr9?M>9-!e_y1j*TdT-pz zy5Am-%&vrT!Ke=nJtQug&dYSm<)t2LBP}#b+z~@mk-1ZT%r5}-(Q0!_$Coh`5Ixd> zmfl_(-QQ%BCO3x$OdW@lizD`U#Hi;<0vL!#mExt^W{ZJXJMKLkgG$8tbj!fizZJ=X zGs}HrX}eR)RPtS*8%OkfT*t+Dfq(HtHYoNIaPF_wH`7jcf|KNgUUkK^WLwV&19F)43X(yQ`Hn(|Ff#OQ6i@=e3)ZExxORe zkwCXWO58PUva9(c)y)@#lct#t{#g>4djUeg+1u9>~ zT&|kAqbw*wGbXY@ItutcycaZhkOt3NduZwW1DAxK=^Oq7I-$+#`Kt&KjaLGX-aJpN znCssc5|=%#u z^qE@$)YE5u(@ht8IjQQ`SxW8I(}Ip`n2r=WfV%IySGo|UOxDx3D@&VQ;%lmI}r05XG{amWvMegE8_wNkD5 zQG2~{3y~rbSDCqgmgRkgyYNI+&kgKWX1e|wd&;pFcT>?zz+&W0?jrq!S-1d^3xfXG z^!bt{!DHewkVCTAMk(m6G|?2Ti186(zS=fSE!K76>-+V=chgbI-wqKq^QE(Yqn&pJ zYy`a3+d#LP^@tsAZwitk92Z7pa1^avY-4DcO4=_Iw+atF+{~EV?yguY*zH9MC0;ne z3tPU2&ZBOCJ@fGeOlJ4*w=5KkX!O52fdc_@5o$)tsS$i^=)R{w+0P!_A0>!2_yMh; zB2>iSPQCVZJUkzzR4(3gy+6nM03Lg^_TUqjlV~C8CyF#5^V2&@;t=mDnLxxLgZ|lKUWP^=-j7@*cKjreYOo&Jr<(+1s4CWU9 z>?pFf(GbN2&KQ|f(6EUpwR4Cl5tf)mq>{NlC5nRvlbTnocc^sHzp22$5M*CRTQ`Oq zGqrSa*U(*kw<86T4 z(Nc|lUZi#Wu3)(PG9A7pl@pbuqJ8p>xOa-{L3jQN3VCtdU$rfXx~T4RIyr^kfKwLh z-*~$oo6P>na3aDSW;cnU4$;y4fg;*uk>Yd5GN=5HFmJU;XK|20aWvIRQ~D!i5VDj^4K+oc-DSc;7Ec|Jlb!ja@V$3k@yrvQ zdhCa;^Ru9--D(pSY|^AEX3Bb{357K|SG(SsYD?NWUp=A^>laGT+KsGxjT?c;%B0~1 zAM9Sl&HFf12X3(mrmxd-4iNd^;3TQzt|HFYYPVOB|c;Z9ahe$*pV897xBKLv zd!cV;mLwLVRrZO6Y$wi)V?-%7U0-Bdy{l&0rC?)RcA1aPeZ7yYCv-2E>_XWDc1zr5^`^C#(l;ekQ zmQDHG!$%F>mK-8}RHc@-e*%7lDb;5;4UdIZ>`^?aJKsM2Cbi6!uP6CvIiygeL$8=8qsg?8{yx>y%w)_h*TD^tBQ?d7{mx6~I2 zB|X|_+j=Ja_9M`iq%h$mJ_cbwN#udlcs8)?1X#4sp?{XU?~#VjHr=4e-k zvumM^;^kg%kbj$=z2!t*j9qYKmfS@)q(&$qEtP+{RSp*YQCh52R<`EB)~S(n?9&Nn zzT|reBWy<4?VUF-W2Ya(b)2Inw0LRK3{Ev^^91TISVZ1vZ&**^ET^$zs;j@2d?|2E zL<47Xa@AswRQ=L3!Ut(9_4bI}MfO$V$lQ4Y^n=!l4W|(7ma%S_VejFiHZ}^Qvnhu1 z>Ty6~kJ4EhXnAf-BgMg@%{W!Psu2RkbaJe4IvrL!Z=t2OsSjYVMkms=nm&kGVk8F z9cPLG*`asLCJpk)%9(i@Dyu-zpTzWX?m_`=x62)Ce(jkxowi5BoVW-dGDOBaewO91 zWQM?ECQfjB5?nE4~m0+CM#`q&$3+2;G&7g zN6`=Tnwf|D`S0u{y6dvqy!`#@Ef17>67WyovZ5|VFDbk&V=X__CppMZ^_s8WA}2R) zDq$GvjvT8JVB+U*4pWNs7B)N>LGp^-6c*4CRzF!nn)5HP-?t20*1lzEbm=%5)L15j zX#dp05K3ns6I5I2vk%Xy=UJ&!pUzlCIArU=Nf(p->uS_)%W-gEGM3+ehe=y)cK+}B zEiNLgOpp}%zi)frM(Xx7RgGJR3`(rqi7^f)_(?m7s~JADx`ND}zI(73}TW+2+YGI1K+9PqB-@7e! zHkqoHe}oPG&|_Y%MV7(AN&HL6p?1#1kC}tJ+jE4K?L`!8(UzG#UJ(kzRd&VcYbZb} z4IBSL!*?yqN&!m}PGxs;uDWH}1VsY~O}RtjS-ViWx( zM!Mp%oFPZ}2m(j23Dut`u2gk0ZO_Zh+K#tx3WzT#28j6V+dBw|Ih01yCofrOD}zX} z)>TA%s9`tw%5bhsTJvH5xeya_SZ3EotYt-xeQ_otN50FHwEGcq4KGq52- zd|IY7Zas54=9Nf^7{sBofT`H1#5#9Yx8zY*}|Cz*^8=o zZ8;O+0)^o~{-qsRCTzYk09YP1&5mawk%S?~;!>ztD}lpuBTTxd%n25TA!xD~B<&<6 zL_vF(PDHXqPTFM@<{s&+h9A1>pKGD!1j1j_&~tU3L~#|_7MQ@AZ^_zDu$=zkIK{}o zH6k^ZNjGRy-8^b~cf0!}Ba40eb7q5JHR>XN+Nxez5ursXLltKG2L$4^-RFbFC>&^v zE?257csY68u+^T=+_h%Df%zeI5ugskBKs}I7A4Eks6AwHMZQ?mejd+|x(=Bnw9V6D z{{<|@sDyf+M$#-y+9735B6-TUv(D4s$};5vTl`Yupr<2o`2$k&O8N5~>=eQH05y!* zo)D6uEg^W`8e4jn;n6M15SfKcE>5D4$qNG`8UrIP@GqSAYvJ2tCZDJWq-oc|xtLzw zI(zi3OR5&1G1B48$*17>GKC#VnN*Q*=>U`GeZ28iZ>Hca_tOpk@6>OLzQkvs|M;L` zk7a~~cqc^ugKBUjb|iL<1cq%WDIrUNI)P+2ci;o5UAUx=L3{mt zInMn7l=m190LC1WT08~>H^-e=S5^ByOD!c%^AJ!c40$2~jC zzjh4HlGifn62nHm+S8lFm=4lWorHNjJE7o)A5yr(Ry-!)DM4C;bo;`qCQFubLTX1O zTe$@?Z)Bvg925Nm^n&k4p7uHtUK=cE#2}X8PGg?az7@mUo;MObcp)kDN|a*rlhALU zhkDUDRezXVfZGK80ivab`VsFZHrizX-j@*S%u5QL>bDdjZwx0c0>75S*ACwMl{la! z_+FIp)bYG+AM6#*+Lkm#APU6ve>TWvAyo8ot(z5H(rGzh#eTC*c#r}nJSdu8*kb1{ zG;CyaCe}%Qb3a|_wK08$zkfS!QE=yH;#x@LzI4azK14WnKM?02>$$tklMw|`(a5U4 zhla^jMQzhoUpdOPP^cAYsOlx(es!8*KN5ALZ@Pt-@|3ZfRrjjzTV>81Kl5vfCCft$u(NOeFqJ?&6hS|`5d@Jk3Jk@2?=hc;qnvCG(Pa&*{~RB3mVlIFma@FbFe1AAr@ZT>tHfU!%3La8 zIG8h&ulDonFgz!QZY;OF9B=r9gp@S=WrR|^28)c86mm{Z4oZ8j-2wqkdh4eb+gO!t zIrL;Dxd-(pf4w-i+4xs39Ta|QeAgP^*Ade$Gem4Th#%Pa9z&}xck_CLT)Cyxn`0>p zhID{4_&{Sa#@Dw?4B8Na&a%X~SXfvGbF~Nd;~wjSqg&3Pr=N`nnA%b<6^er`ogoXe zZVyCNX8lm4Rpa+?-(u1mV|gm7iC(in>heXKM(S-nwY&bfg0&r_&tUT(>p+c z89|)H<*N=vAx{mw*#IuJ_`KiYa{K*{lfH3FE2~Dnw4qJcy;+wR;9f3|HwW$byK3x~ z?q82MerT{;YLSR}8Jj-yJCSt> zQPlhX3jRAL(HaiNVhEY z4i4Gk1|86sQf8i3E$P&Pwv(+-z4wm?I1L`w<5l;=UdE2+a>j_6KIdpY9i3>iO9G=- zcG`o`TM1mKpgcHF(o$1B{ju>ZAj}CW1z8A5**@8+d2_;#wT=H?pA&%j`2Q|`5XC;0 zZ2aefkmUg{;(wQ1^rM0O-ick5eek=`$BrZaR~O_({SRb0=gAWNInYbL#0A!j?k-}F zv7GKCGPEn(=GM^Icp;Of1~csp!4?#Ox1fDh$kP!K5edzK(HH16y4pz5LjH19;vyZO z#I>Ek>Wd|xdHd~577rs4*(l&a*=)Ra0(Dz`@4P_UWBNl|8m`J4(A6}ruy7~)M`!=I zdMjag=C#q#Xo@iU55GwP&TWL}(J?VGsGyT+m{SQp379DLU<7964HbSU{){BPo9;z? z_}a_sCYdgVrJx)Pq$7mY>-u+1OPObbKCHD}Ye#f#X0ZA+Fs-cGbf&^AGT_17+z*UI z9D^#EyNnCVm^xPN75k72+A5jyfO>Pdi!j`F$h zk$G+F@82-O$nN4cnldh+g)P|R0(zF_stD9O+uIG4-wF#cX;6H@Y|VQ--nr*ypmm!l zSS%^fE83>*C47Fiq@;wpbv5U}j0YNQ?z)4oD(ZmnCw%|qH(%E0VrQMRdEAxvKm8`r zGt8iCfi#!1?gxH1b4w*DGX~Lj?wF}ClS$@8g@?rLDl+PrmyuDWIXQHj>5aJ4Qws|| zz3w((Qn<(SzTIhh@}eL{}O7 zR+C*ryP<8dplz|E-MELTF|1w!m8()V2L`~6H*<>(EB@rYA0-@9UBwV!_2jB!Z_I`N zdsn__sEf*7Wy>d=kI=8sW|Q5GQY!c50KHtJbu(a44A3~9biR#r95OaJAt^?G(s_7z zvv|>>=)Ls73!i_v%-`kDGIkY!cI9v(j4R+SvJk_N$*bh$4r;)0R}mVZya@ zgItyGL3{af(AU^-Q|-6Le}!vrG)4PiTw*7(WH~WhXgRj$qaVj_nqv{r>(&mf#n4<3 ztgg$W0F{HT!GqHRlP68BIDv+Za1Z^T8rx?;FH#TE=MePBQQBL83aHAaeUMg>om;$y z48w`3{q}C|52g3gol0*-1XZkFK#Bglkv3$!J89Pzckco;d#Zi!t}l>m+7`ft`zAy7 z8;})Ca|vhILMs@tyNY$cMk|6d_Ht&R}6Game}9jWwV>DV&2`}o*e_DHSGe5 zpgz3u{Y|_bb+kN)K$Ih$O13U{G+5qe{>Xq5#yr0CqBA@W41)ewfD5=QeSrWo5xQ>> z9QZxlB)ez2;T}4(Bwl|S_sISA_QfsxA03uNTf;!qM$>by%8<3v3@7wju))8Z-UA6i zU1l|rxIcjYW~7ZT04t8s`G?X^pN)v=?BdjCDWg7dknz9Y>I1$t`P#x~l%mNo5Qs`H z*gIi+HloO8E9>`4;aZIG9wLX9%My!z4|mAGwD4jEep{U%xDnK4{A^(^L2h-?^LQqK zXW}p3)6=Rm#rN-`a0p-dz~{GtnillTewx#@NOz(uy)0kh+Z#2XSfd<1IUdVU%#XP) z?mHd56n6VGSfsk0b*6~=(PL(|+KPPj$Q}1~(V(>|HmeZG>!RwrR?IjS+BY;lQqj_pu$>st}!fq3rLuu7U znGB;_r{5LwMpx5sE}%;Jd@AwNN5o*1i9~$=7a+W)&Mq!CsXx;lzq^ZyuiyB}xv)^! zSjm_}!7-OuaH9tVtqKVKiV|ZyYU-f1@ZqWZ9_U}Lz}qQYt6Uf`g#)x~tKi6K|4)jx z9}x4j2%Oi9@lZ{cL@FNMQVo`3UofA}@tsB7QawD=%QFB2&hy)phZvC)Az@&Hp<&3_ z_3!R3mH?O-+buk$;?myXfGYXN^R^m#HY6v6Crk$fElC)DUkbhZ32nxnerZcr>4pew z>{L{Kywmr8MXljGcO?v*--7HF0=+KI&U{F%0=yE53e7%EtG0~sq#U?ARE-9(XA67o$tDZ~elxM%Hk7P>th%a3cupXt8-sUURe0-h`&X zouR5~?9}*p)#6|a@_eR3-aXHDI`EC&jioTFkvqTNq^LIP3`vC5>&M$1r0W7Ba+b3- zNFSfvZ>r;;+~XT{)L3|gOoJkqrxp#AXyeIhzdR5{V=#&v`4;1l;}?^14e}Ch=b?yh ztu18~-?uQOh??dzv$1^TMUz;unnmFY3`6XR*0tCGJ7+hy2c)tWC;j7Z|258gV=3CL o;}ZYB=k`BW?Ek%=p9de%5!_Z=4Sa0jkDaUKWmKd~UKLXxt~v}$})J^6xa|51W!&@QVjw@_l7{wOdn!^|1m@z zGXifI?-gVu!8>?eN;C(7H!NpaT{j4XIs*9*C4S@B0s?sok&_hH@Xp#_@bRY7&N#n? z7w>A?9@uFsq}unF?t8~mcjGI+eO3MWk)r)eA6zukTyh%E@IQ|kP1E0?#xdwVdie3t zQ?|}Zyty~w5u6+fi&p7gCOU6rLno>~B|$!|O}kF{+<(@y6-a%eyStkjn7en90^Nlk z>c`D{O&D&?V@m%2*Z;M}W(Vp%MfnsNIl$RhOGigH zrqHOBU->Z<{|$Y_v2X>gcL>+!Nk~XYE++Me`*gDx{PCLyFht8R3I|u$_R=b|JY!NC znb{#~33tZ8_uK39d(rK5Ny(^4*K%PQu+04V?F5W**}zP(xpoqb8|GA2d)^4WZfx~C zzk5&_g276sc9Cqi(V$kW5evWG3s&k%KYb&lihhHB5yrK-Clg0?`Ohp~#M6GoU_C$U zE83%8TU*kzdRPoyV74Ro!`?ABWSE`ZA>2_tcPAZH^FTr=#dlH^IOwP`g*S-$#ToE5eEE2o7sQGIwr-W8{!54XtbeB20 z(t~gXX_#>j4h{&x2M(_9jO@x${xv_N22q>?*m@F(WFAvjrFNZvX(eOJj7k6}Y1bI?zg(ghR zCn_>>U~x(_zoii62>V?)wsRnk`7CUsmnqjD{fKmV7ksoLU#+;md}3dfFhNcYn(|3F zUAd@Tq{D5}C9D3TE$CCN=VDvHH5BD=(8`&PPD&E2xxN6lld&d(JQ1y5&N;Cv#tmQR zYi%jzPtr$Gvfr*pM@Cf51hem+jGwDWN}B8G*ok?4-y)zDy-^*q<13K`|3~D%)DEZT zxI_!)Dzv!DOURIX?k$!7wP0-Lp3)r`;EP9BFk95dcp>4H9QcbH>-roX6q!`Q|&S7Qeo0v_X zMdfAc?!)@YMKOMU@4Fs5QG9o5L?XOs%qA9_h>%>RQLFJx;3V7bd4jC|&?c75byOtr zx0WqE{#O4|1Iifx%{g=KMr!Af_6Dfm*g9S6jJ(&Xh5XN-Kj|aF!~a4iXP*$@;|IEY zpDI)h{a=N?zd@XqPV$)In3|kqq)X^YfiVS3bftTMYj4lkhW`So4w;ML%B3J9Yq;a*;L6#e z&e^_Dw|g#*m@tNnv(K^J%3TfX-=CbZLBC13;fPhRcbHjBMJC1)d>a0Ii%1 zBzc+X4RF*G zol@)&_9X}hb@egboGlCKsMC1V3f?YzYH(pCt5C&oJ>DLTE6img6CaioJ?|DF|6}i# zPCX&w`0jS!CZ|BaMg?ykELU~Y2pyIrP0lWKrLQe;W#RjsA1++4fdqD1YNL%Q3)Drd zC#g81FzTgTncE9y4|U7>fm|`PEx$E}T?TV?`FEb*28sIq+xDXI+pj8O5*$IaOia!; zfxB2ceONs#dTlSmMmmR+OfBHLjsuelJ{5)+z!;}I)UA(s2@}){420e`dXBqq&3>*u z+ry0~ZuVVj3usSYzmAL~jjkKMvyRYH>D4{4(dh zbR9-)LTKHnwq}7|iE=H7lRtQdB<3IPwsdpfPGt{JGw{WNUn{4&0X}{*>P2Lm*NivCc z`exXC(I39pdXI-2W52lOvv`}cWjH=QPMmArVwGQ8%a^LiC?qm`UA^TK@15fXcK&=u z3`PO5bJ&qvWRVSD*}TMPU?IlV1f;~2p(q{9(3Sog1ylNv>YkGdUu?rChnk8?81;tW z$kpyZDK<9NSadW37Z=xmi3~v)oN&MB6w~Mj)?Z3rq*akL?|KK-go;3IdTQgge7tz( z)sOq!1p~I|mt-XKrxop>VZZw7dFZF!9&gUQL-Kf!-WNlIgF_$0re@ZTU*G;W)C$F7 z9X3y|GnW^{zAlGuAfRZ0AYioF>vPv_@QU~OOhlE07j^LKVfv(AI8#zD)GP_^Zewe! zhXgs=bEQc*<|F`xw_tXh`8`CeUj{^1@0wu8-PaTd(QaP6=oP&QEfC3X?t-_afba=G zeq-1jG$lwPmU~Rwt0x!Nn;dPOosY5!gpXh&y`oGs@%Ma{UgkAe{EG|DgoFZE$ZY+j zXbR=)HLu3p=Ik=y=j1%9m1~QSlzo@EX@G;C=wzh^4f{S&KfH2%XC*_^6oF6O3j)5)eKgEhlhut>YlNT@xlAd z-DQtb*8u$@SD@xZLq>M-C~2S1D#oQO`$BaXA@9F*kM#&`F;}_BNnmlWthSBIYTnYi zNt?1300}PGyK;vt3&@oB;aT>$1fmzqD*&fhW&=Vp?|pHOCVSg*BYW&YVoEo9wiNf( z=4`c6dXqSh0^vJnqy#6b$~-i{8OwFD(uIc64b*o(j+MrYqoF=rUg002SU!AA`;1!= znTY~%h`WRcx5VD{-GqQ3^c#k3WtCp3Uw}zzDF6WqWGlbcwbKu2$BctOYtOWX5uRCW z1D|p#CsVW5r?+^r9#l;Ro{Z<^{QPd@z*|~eY||l&dNbMst>=C93W~$cNSN>*>~bU7 zP6kAtk}N0FUk(KH&?N^>l~KKyW77hJfQ=Ri0Y4A|3=_c$hupxc9mTV%+E;=kaORp1 z(no#CbAVRv)8q?iswaog7BTEG7g6RPm@9i9(c|Ldi=yt^J2>2q08OMp=?i%c>E0vp zdhn3atdG%K2-8}4bc@_{=EXNtNq*u)PO%t|$csj41zgNzZQvL`9OdKnT~^Iy!Q|`f{k& zS?^M-@zv9$!TOx71%eyyY~}VEz zn*Se{tbR;P%yxm+QBbOc+4R;rZzA{15B5Ac`^fnvQ*oz29M7!R)Oo;$nSce$QQuEz z!*d1P3ehO8O~z%`=OW=l8s32NzbGHw$V2Q7Wa7{B*Z60`H#p4sbz|3>4(C)z-|$l0 z;+u)h?ZusEYOr{SI#)Au)r4;Od^5p3`K6I#k$g)3-6hT2$^xm((P7oPr&Cm3zui>0K2#O ze`lhkpxBM&y63HK^fQ;N?_quyqFwlBvDJ?NrMYGkfA&rde zVO9gI8phmP%ibA1XkN6OQ-=9HvZstIyOESJ7g-uOl|UV0xd8RIwig#O|B+RKg0~#` z0(LLMbL}_3_5Acfrp)bJ%9$5t5{jtibMo=>4!9Yfd%;Wuvz1*!Q^Z6-f$YXX6)t_( zES#-;Pr=!1?pnpQd5Qb_qcPSvkH7fIqa&xTbQRE%++0ZJYHDkzMM}~+RZcphk#c2` zwQpSCm0zD7T!(G>w4=|un#mT8C73NSrO5N?+TD{jV5buZPf8^)=gv@^0O2O^&3PTM z@;GiEp(`;t%PQkb5lf*vz`%M=mYZ;=4N7=`%;DUeTv^F{P9$ty!yD^bTSZPlMU!*Z zw+X7@-@K<^i3yqM$3EMcVk0pSsHoZIU~3x%O5<9XCFnT^h{Er4yMw!fbJ2|PB07zI z*Arwg5NBvnk^j%XWJNP<{NY;5r_bY;P^faMy$<(Var+VR_xU2SJ&S{e71x8w0XdP8 zvMX1R&dVG8#Og}TewMjg0h?9Q;c%CKRiKA-n`DF+dF1>u0&}{)5v$~1X_al8Q3uhJm$@OHG#tgeJ06odeq zm-BFGU`ZAWcWYD;ta+_YKK%O<#-xSUpHBSPjdup!M@146RQ&u8*4nx69<=1Bv|o)~ zaT5|IkjtYRF|*A%o;xp`qh(WV8Sv~=tP)~=Sh4Op8BoRWJE{3;Y<9_oFUDjR6wPHr zmBYA3@m7N5qL6$*4cD&99<_wgH!sRN@zcJNGR^5VBcq9C}jyV8&CY!C4W+kBGmzxg2>E6NbWYDm7oYhD|A z6JY1FJA;dvL$eyMLT!399O1LNJnkVYD`~i?(JiMbWy2Q#2v4M5L9(k}`097fjXzwS z%G-C|>Ykz>r(uhaKuPxvom$MH1iDd%Qr$joLP-!o=fNwP$5w{A=@v%hZY5?P7q(K9 z@M%vkJClY_MnWX^16Dcjs=S=>BC7nU&Dvor+w~VW{kiFzxsv9SFXB+0tl(lOP8bgx z@zdDL3#;e^SNd~(Uv=KL`z5xj#Mxb6FXYiz{gE zC%f%_dzQO&DArSPCemq~BjQL?4+}EAAU{$lyA+ugk86rwvCJ`9p}ij%%Dy|sCr;R6 zxj}`W7!+)6pg9c`5BF8 zab!d>JKj5WiY||#ed6;^A0+(u(&F8YoEe*0mAbO}t&DGv$nRdzsb&2aHatPU*N}T$ zUQ4f9zk)Km@~6Br^R}i(91)kNZC2hF#}bXNRaF?#ZV0`JFG!Bm%McESJ`+w%Pa=B; zw5HJ)S8P!3v3{bJS+kfK+Fi=wQ@{a`R+{e-4~D78Ma0EI`R=3rjBaPf;$$Qx^N)VO zSUYAG{Ydeb-mkwM@xZ0r)T+#{a`zqPMlA1ilD8c%#UH0h%(%&3v;LA9dZ%KPpu2-i zn+#}8Jnokeeg# zrx5hLr!iYhSx`5m*!<4Gm;9&Dl5t2fM<8(p-2cta$UA(RA!q9soi!4o5fN;|G^akB zvYXSVDXt=sE=HYz=!Sk`FsspH*8}nzB9n*+#Po(d;V3s%_OSokL3R3a>HaiH_~hbS zR_oaZHt+qHyL-SplTt)C>TN$1u{*wnqmn>U7@n~^RAg7D;)bmwqrTCO@65~N+vNQ` zH*nA|G)7MHL43eUOapFWr|EU$H`WBWnBF6#B}Z%fV5z~|w|nDLw!ThDLq zj;&lRCu2A_U&&|H+wxWnc%mP1c%sVW1Ta7Uv(Odw!mWhScs^_;Of;vxA+w-Ya>xiF z9jJdV=eSLfJNhLWKzM+3K}6x`)`?qfzML7)?axVuF8IPb#bJG&jOIN<_jAKX8p7Zp z>hJx6Udj*zFx59Se`oFpi!Q~XhBF2oZQqPRw}hf(a%hmLacCE-Z95(Z=b2<+Bt* zi(g}Cy-KU{5!XC?GF2csa6a8s>bNTk{834BjG5V_r)KRKylBbYhU|6~3=}K_W4*x#}O+Vwj^Ep)*iaxBtQo}UOw&Et;|4#U6R=xxCfUIz6&K}p0SBPz} zB=2ucR$Dnu<(02Z!nVbq+d4;F5xTjqV8o~j%8UR?o$fabbZR)x_IP= zbp7xWs_wWQK5~nF&x7yVT&sc&B)ms_x$+8b#DIC=KH(@X6c(+S;sJ zoYxXKCIpy3H`!8-7-|cGWvZZ>1~*l6av10ewdFbxp0Jo@wg2$7H~Gp{k(XD&GxAju zRn;4P@$-)5dak8@K-OoTR%#Op*6#+5-&6lqg^BNSorwzi8u6CXvVq@K!)-b<__zYV zvRNm;+y9(N@V&JDCc_U7%G=8%T&ble=14>`{RC;)UfzzmzhvPxSRU(kc_O&VlOGXi zrxfGi=IRKem{aM_LGO^FPYgoWTCT;gYp&79p*$HwD=eWO&}7~H!A{-kM$(uh3m)w*;bAhX;nmTQ^ zBNO~*xZJc4B^k6ZsBG|^#T?t1iz?*KEPX#SsHV7?WZ&v#sZlAVEN)8TE##{mtc%+z zHI*r>O!6YO!N5n$;qVD6Y|#Di@~75&VsP)eR$I!LUm9@~sNV$WempJTm4R~WzH28~L6o-k_b9!8h zudegNsP42DgY>g34ata26Q2%r&~flf*PjXH-(2Bto0`==;v{A~r2DQh_mJ#X>W~Kv zAb^P~*?y_3>7$F)Ur03)BW;6ip`XpB`P<*yNASI_&MV?-hy(#K@gDU)Ukag*8Pqys zF=G;NwzMve!y_Q0(h9W`qXI|(o+0|;&>aIADXKQ)OjBbsSDl zBu4KGYv55|R{=#4X1r25b%IQG9R0|Rbs%99F!7w@tRQ+VbkOfCVkkoSAr_F0WdRU} z5GRxk2w#CIl)p4i(*3NQhm@eX%z=4$#>{CW{BA~bBUQJ^8M|dNj#N><1ji~_mTlkF z#Sf2iQ!^&JMFM+YduRWa4wNCGF<|5)Y2IfrB}UsHJ2R-{peZ^3OTds#(t<0EMCnr% z^<<-Asb_SgtdYk#TgSOfbaU;eha5UuGQz@sZWoE>%qa{r87r1tm^`l^P<-y;WsM0s zn7g*?u!p?()G$su{SO6=4MAkkS{>IUNq=7a#5Buzbky&${xx5V6j(Vbo$n)e>l<8? zK*OxfU27N@NkmO%--~DqyCzS*(QacJ>o?$r{S21Ue!X5oEirA_*swULmF)B}s%?Yu zV@wWHYZuPQZ9z{y8F8rXW9Py4%-Jm);^f^t?APC|6tiHtO+*R48Yq3bABRESd4x}w zu{1VujZfkW7SDg-@voJvf$S;8EBo{!225qm9x zIoz~{#w3(bwdxw;e0z;a9^d265`)TNkQp$dp*j6rDu$e9u-QWi4QE%uHF{K2$B{14 z=Oc76$Xs8=E!Y&oZ;)NRG5?-x<>O}rCkq+$zDFiF?K2mkl8 z02&{0vv?|qy3OHtbK0Y$HQXa$*lWJ&TY2XIi-s6b|16_qlddpp=e^R`wDM=AOZs0E85Di1Sy<La8|kmT72{DXYmGw&a8SK4pe}w#?PD+G&()wJBQ7X{%yqs zC5M#pG#O?0-(_{a$^v=k#<2mlmInQb#QuB}S5GWy3t6Jf{v95VGte3Q{Fzx^N~x2{ zHh3_KlX?joY&fLd-oIs`ZZ_^o&Hje9qzFJqZye(z_6S91TvguTdnIY}%U7je`d^TL zq48rkY+d+|yLc46j78dRd7qzxrtI&^SpxSr&=7{11<4Q^+_Cp~OBPBTp&JcYhfJ|1 zp5Zd75fW6n1Ts)tF$s7DGVrZ&BvLJ7#~>`!PUHWMx;@Ws&P2u51S?xM54E{wNJD?-aogMxJRDqCfNp>2L)gtq&V z=xgM{dX?yl<>yU0IhdWL1XF2)SL=2YmpHVq&7rVlL+ z|DCB}|Dgl$ZvLtoV;{3dpEa}pCucu#hA}0Rz$>2eoNwD=56I&|VfV<;&k@2Nv62Z` z-PSp|Nkxusx7yo2Hslfcxgj#z6QQ>(4{3FjsT(UD}zL&isG+n#F7My%tZSjsI zcFk|C0p?*6_|^)3zP&p~q?n8((Ngy_Bb+kK7qLx%3YY}mC})JkB3NBX4c7SF;kuOO zvOvJso1Ai^shhc)T>=Y8HHDPGCcAc(!}oS}ZE#-EB@{ol51AsTX~p?mmM)Oz#YE(a z3kcc3MT?rlXaV-uJapvZUF(+F!8zbH(d<^r&?t4}bvIC6b(%O1IYJ$nnRq3feqt5? zA?J2-&;Q(UeqMQMWcVpMvWH&h13VD-1-fd{Y0bVNFHoq-g*0z_vMDxLMxoHxL ziNWHTh-!kQ8v8%peTk1Kx3nt*3_((|#$^*VqF)dQ`iaVPAEuhnAvKwNkNn;Oh8n#4 zm(!t1HjA_rC?f?mP{wCB7k2+8d6b3~ygvki^8Hza+m?37VZU-;RN=||%-VwczV0I+ zD(VaksPLg|{Ap0CqSf;JxIf&945!lKWoU48cuu)Vt-sC3(ZS#TJ?}i*psw^n`zxpd z6P6c7j6-YTy^c`3V%RpFi{3|rh**RhX*<^$W8En)=92`_e`X)hIzSLAGlM{5ORVn5 zUwqf275Cvd2n8S)Z8TX2Jej_9rs=ldN@@lH%Etu9fi)ATFzY4v+$Kx zjfgvrx$~^Y<}t|VqEQK72|mRd(V_X)D1ZLBNL|4rW^&fslPAQ^H{wYH*qH$O&`9|k zhBt1SF?CHBa`>N5E4axVUu}vo`L@b(J#;o`ui?7>VVYWJ#h;KE*_kS(Y0%aZ z7v=q;dCtV=vBdD*$Ajj%5C17+)MuCb*Q$7(dBGH{?nxrF^3U0=>QmznIL|!m4oh&@ z>A;S>_2IG0*CI26nr?l}(Kh8n#jaXo4N~xmJW&6Dv~evAWj)dp(pxUiwZJI@6ECTc zc3KlPEyZkG%Gri-Yd0}*IqiRm#lYzV7^dLRj?DY)1%oj)Qghy#p;dF{-l|aFmkA>W z{}B^9`^~iR2VGoMz&P^?52#0Dh;W+OC@KHod|af|;iOZ4nhq?9J3U++(~D>pQmqe1 zkFf;8Ps=w9s#-v$;LhuWYj*fG4{m1Ps;T4+a%BBC_o03;cQ9y~Y#%pu@h+&p69PE^zGL2Su|f~;E#Up)Gf{;S879u4ko6)Cs7QUs(yA| zX>{wQqVU_J!P$jxYoPQu*YhQzuClNZmF>lvSJT_zWcg3=GQ1!z!F97lEDCRtizzgx zk?jT87e6<<_TXZsqstTYoig!e4&Ec1tk*)`<>VnlWc(nDSZcqpuUc0hL*V8_|5_#$9br&kc#>$^5a2`pB7{c)>YGviOk0G50x2aT;W8Y@yYPee8T3*;c5@DSw62L4;3HPXQ_%10ZA8RcV zs$QXSGk>yc@w4hiDEqsj?AAQ_5$kQ};Wj zt~7hqSQM4O>F8=EESkTY+%bb>tPQO!^_3Il$1k(%wFxsF9CTk&qcD)9E8@6EH(JWd z4$#R}^$Rb4B{g>S;LMHVH>6B8S=(7!(leMoW9zC6*` zIJ=#bRnHz;07PEOa()Uk2+ovDM?Ymi!Q^coDF38xEZQWk5v91QgiNv~)NNL7t>yAD zR6F%97Z8C`-OPc;UUTn?s1|UXn(?|eO_&Gd*_3IRG@LZcdwQh>^u|JEK2Ho=zkG-W zz(cKSZ6`I8u2^_IP%dfag&2T^Hwxr=#|G^62x8DlJqt#yFiZ>3C_<4x(^U)a7d1Fc*^DDjLH%n$lDD8>{+gOC*K&_~LcEKfj?QP(d=XCr z@>8Q*R?C{x;L&bB-Oq{GxU9IOV=*!io1*9KR#$*bAgqx0rfHIr4qb&=A*U}lvQp&N z_j&3^M*Sq5#X%#9ti=r>2B?ql1hOWQ`Fl}_@@w?_i`l8EFGdtEdb(k@N2y?3?0kC| z1}jCOGUFHWA}(HEm~rcO^QE18GFH3w{S6wCfYjy7qi_N?D|3>qrs_wTZk$TESqpkD z_RZnQ&YIXj6%0=#Z{T?an*Xq8?N--ux?cix^h=mA$NFFb2v#@B z8X^8o8o}!!JZ?5Xe;JnTHro%HDZa9izL(1*4PnPfIetVr$KvJ{5DZ-?{SXD{{p73J zxsQqQ!_MfUik!T_%P^CSw6E3XKS$bvzezX|0J&CASVFCElEG>5z#{Q3`eN$svAMas zeT1(-yx%@DF-B@_f|M;0$8C-dXE#qb2L%CW9<%zN_ojw&j_~$}{O8rR#%>-`l9t~= zDIViy=jo>D2K;9{ZaVT6GSIxHH18eQFD=jjm#c`b9o?vN`r#rsi8rEy%X#Iyt?lEy zfCbyiO}qVu@)OB!WVi@@XM=dA8Oe-ZmoUXQ)&5fo;VUt2H-kMH1udMD?B}}E3yYKt_ zX9V>mH+^e=FmPS{Wlyi4cdZbTEmALB?^&C(9ny{kF7a`%aZ2s0>a2vWm0H{3&tAYe zRY;wDM4@lKL6o_>4-h6yxeh48CYeTjozmHxbH-;KSPkpl75q5^3A9@7H&p;v%0n5lc$ zpzmM+K(bfhIUJ|!d~HEmd&wA`G6l3{dQ*oJWS)?QI8(!D%X#7t*3*?f;zRb<1Io3^iEoo~ zQQ=t|rX~V!*!I;ZCVzbp=Z1lTCHarE%tyA>o|SlONg%7T2|K$BxSOXC;5*f^Q02Lc zCXFYD&v3pjf|$(wIa@dYo)#Tlk{KR9t!4hRPFD_bUB%jj_oD_RW}whj`u7NWODuF4 zlf6xr;NPbb;75tL4?I)T#nGT@489W(SuiwB#mer zvjSK9gMhXZS;f#7y?3JaJ1GpkiDPCZ0f4kN_p4|N?S`YU2p)ke{N-}tOu+f%E2!Le z1)5Z|s&MU%bmZs+ecv_4$nK{;l>qWOHWHw~96ky^@F*wwXc+6y`UX7pCJmqR2qns2y|%amhV?em`k`mN9>tR z3OO@CYkNaf7Cu!)LFxGk1i6y>Mp_%5{bQutR(F;7^?9P4?Th%z@61K!t8*%qYju5} z;veBDiv!*vc14~Rj;W=<5e?S8Hox%y9Kd zH8;*2TcUxDB{Z62DstK(Ti+>l1?)urqVP#(G733{T56`>B$`_?$I>#0fn9^5O=B95%q ziFDhH)qim=VX!2|giPx7MkK#ivm*P1P;VU{KSteDmb`ENKk;lt$gQS;UBsPza&?e6 zmM4jw5CV))(4yJonF>VbML6QUdI63#Gei-n-;T5I2{Bu~R4DnuhJ{X@{=nKa0L!h* zaUd~>)%d;Q_(7*xjPe`nAv59^U2zDDW~m_9CW z%FB9hL#xm51<%+XBHNUNnH~zkvw4io*cp+%Ev?GRHu|2g`N7GOR6`lLW5c6IDE}4d zphv891Cs;)2SCjo6s=8b$sK{fvUAOrJVReO2VUlYGFV3|P14!DyTlrd2=j_rG8fo7 zkK18*w@u$c1Kb<&Qb+<=)cjp{N}f}*ldh>nMB>s6=s(KqJ__)GEi3-eM&2Cizc1n1 zsFWzHrd~JO${7hUA%i$9E?tFh+cW=bE95P+TS&Yog6bQ{047=Fp9|c2=MMeb2^9xk zMyAJ-ntaJ!zloQ*SN4M5P+ws+$R4)Z@*;AxrQC&i z{`OE=*|d=waUe4r#iOGA7<>P!EQ&}KKezN6hiKn=MJofB6e*O=s=#=dMa=%EEp$nB z2c87&|CU1fLq=B@bXgAju#%+>h8zbSDmLKX^XgfUmAB<{yN6YnFVL)uKk?Kv(l{$7 zs+4XftCLbv)7M97+?E3C*77ll_r^ysov=?&8=D)PB^Vub3v?y~gfO5wccrxw9*A3p z;!NEc7G0v7I9@X6>KdI?z?*D!eV>65qj@hznBc!VJr>5t0RdSLS}|Oe*c9F8>tsV2 z`e5+Z>V7_fNfJN6e!16Cit03~H>=b4D||Fs;fYz>S1DxwP^hZCRNHVCVe$n6IQljo1gV4gwzX@((Ug~YL0R{AKqZ^_DgGrm33V#ne0KEo^}FaU=ExdnYnf>yG2z+ zRV62IIqhr88cnAwDy*jGZOe|>gTF(bX~z-|>W8U{^|>Ub>W9%@(y%2MAFrC1I;5tJ zwpuxSMd>a3oQCR@0*ZE#DK4bJC+Yr=-JCLEWNLagZv*KfGn(y{yEI)LqTGo#mlm^h zfk_Q>bTK1SQcZQE{r-8kE2+`K9@0BE58s=0Lvtp_t+(WN5--r>8F1ZjNds7*gkmh+ zeKdsZ8@z4!9P2v1tf2lH4FX`eRUrkdkr;|NT%3so<3Zv8 zOKDUEI-*P08fKs(#}M6DubFzL2{3?p*Aw&ebn&72p=tgfH9LnabdM&sR8ydVP>=c0 zQ@B-kb`@X<0UjUbBgXelANZ1ZwIqG+5_hX|xVsE~cMQDV*)GTC906%GxW9wz%vAOtFs>Nhi#m|vXQjR+76-QvV4i`G{^jFEk7TF$=461 zm^wCxjqPW(N{Kc}X{Z$g!eF0(r+Kv2!v@I$Wo6(kkpG}z0HzsLL+4fFDD>Z-LG^TH zs^3Nz_l~p1HkD;2)htse43mM;z>gUC8eZ5<5L*P3z%hq{V6qATkPgtvd>!vKlp)C`6C;DLZ6 zv5|z`;@V|PWC}IXRWXw~G*m!LT@SHD=mYcvYbALw8Qd$h$J_N3J^`mC%kIrK9!hH3QC`pa-)b;VQ9Cgvu=$HCCi>;#5 zk>-V?B;ktW-DHzLlM%mCPRC=)iLojPJH58&5j=udO^x4fkfewcmF{+JQjS66nSj>Tw5{s=olo&>H%8>PJ=+Xza@hv;L@* zBT(={lZx|8aWh{oOda_$As#(t6MjO+9%Ouhoc4Rnht7jo^T43p&lIT*#34XTKN19y_WP6NB)Hvu zFUdl$kyJM9@z5DdOp1<01OhOr_5=-IA<@oqoTBc3pj z?rk{38#nRBe1+i5ZVj;Cv%zQ40>mP>b6DCvJIv`CSWB;)sjv8$`5`Dn9^u3rppvnF zEv*-t1}ciJp}oW!GKFS>EJEjhW%cCqcR737fqbt?D!(NGkFmSjf@gDDSfj&$9X(X% zA&}?WEg7u6l8L#q+X|*Ani#}|$nIpWajc_0_W^}z1MO{iqo8)$ug7=-Ww}C7&CYWB z1fziL26-Z}7>RemQ;jYO z@O;WTgB_*Lv})p9VLgo*{Cf?Y(*4jDoBb`gOf29(;BVgkH?K|ZUU*FXjED{G%ceFF zMJtwR{n$il3ed&6#dk_wmlUd4s>U>?h|s>{y`D(L5HOX9-gUcLwVDURUzw;}>=rdu zqR~fNFMq6NYM#=wcGWsI5Wl^b0=0tpA4WR56ROw$B3$O1D1&2QRQ#si7d2m9f7oC(j3A*8UQ+8rqc-sduf!=U#2b=U(>ThSBr9U^!|$85=R zBrjgVj^}n+tv95vBlVm5maqKREXT-9b9DK+t(+?%A=cv9oe&I)0j5RvSrwDVYQm{L zSfIF2DNdA(o2Nle+&ikmKLipui{jSnH|4ixdh0Me&JaDW>@V5OI-~8H9|D8EWxB-o zg-)!@1{kE1Y0d|`zAeXjKE^8lVC|y|+O!(hph0p!&<&}A4>;z4VqHltA=GN%2<|Yn z{S#l%w;qE$DN^>S;8_dJKC4LsC2}72g9QtdDtQ3oz$i58!dj_5TjLfvZ-`2RzRh1w zkv3%4*Afzrb^fVI_2uY5CH$HOOncX7z+<;%xBQP#b>?-r>nN&a35(gVs-S#DnjgLy z@6mwg!~fQ9(Z#d^s|E=B;6&d}A}!QxnzMq=Ybq8Dy|Gznn2o@lz2n3H?V-!g-`V-m zcQ5&eZtdX#M&JP==;(OhOajB>>bS|{z*0zN>6?j3MiIrliRDy3so62m{zF{TYqeSnW zpiaRmq33E@-W7gs_)C>to4|Iaum3g%2cr6B(W}#)yjl4Ah+3VMIG-2IH9f)o?w@=Z z>h)dR7W2hW)%OA^kr}RE%oInXA^* zF+vq6`w%-f_okm--D*H!7doUzz2C7UZ6L^!HpkEP5~eU4(&9X{?mCfrDAYj3gnsxp zbT7l<;hQ_1rd8Bl|CiTC2kL#A>J`b(f;?d0B_WM55F~zv22(J8Bw&VC}_9z zPksH&!_OkF>_)W{s?Ne!;Q1zTDpSAK{*UH=%SycR_>k`^m#IqfH#u|lc?+aR1Zw6! zTC9nUc}~rkl~)2&O5A9&fHXSID4lX&RdF|dR^LIoZ4X_0KMjmohZmuWE(K$h@_bb+`);bRglquMeJl&K)O1?w89b{?(nr#K0Nz3< z-PU&lwwfvXU$APWnYTLr?QcOKR0XLd1tK zgQPKz{fn;1QS}$O>f-AO-`nZVR(wcsK8SsFZ zjN7&z^U4_yi~7$cW5?oQ;v-N^+*z>63}4mgnMIx5l4XDU4(qhNRGwHdium>G8}^AF zpdf^m7Hg%Gr-olbRNYd^M*rm;CIlCH3Q}Y9dM2WVvR^}8-Uj0-m3!@W4232!T;a1u zFCy?;sa6i$$^deNfdeIwTcl3>mB?FAr!!{TeL+R+d?POr@&U7QQ0v_dq4Wt|H2ss4 z#fEA+LwDPWU^$n4O+Ec{k6vyie2B@T4kx+H7X=DDS$rY8qHnZZMkc=N)}rQ~c#rtb#1QN)YpT)Fx+PpW9j))sOq^;R^A}sMThQ2rd`h+fRi0blN-A`E@l?w8s*AB`Fc7de@tV93!I4|O~ z@X^h#8n^`g{=(krY%WbS?MfgslFSflz$HGpm>A%F_WL9xj~E5_5jMq3;a0uJC2wb> zr2oF2XtFJUHh!YU3>Hg;mL(U_zTh$P@|4KvN{fg)qI+6Do{C=UtrZ*f;hHhU=`&Y+ z0Vc~=)r4g!ae76CkWpN4pkIk7{w7u2%gj%m+ zkBuPb@3ov@EmN+)`YO(bJvQL}b+3 zmI<3AUu}&iUDc*Sg=Z=nmI*S2h^e029R6g<)*u;T$L>2m)Y^+u2*AaGET>IsMl;+7 zoUOEwr?4=)5+G0^n4Evf@d`47YzJYVj2UG&xoV*esZA}A@P&z`95yp;bJ`r9M*rm= z>8DO0Z#Q$b@^~owG1vo3V{+c@MaBQce1cEZ@Z)w#|R0 zgww#VKDitvmj9$L#kci*HP`*&I+J5X#k|ACF()j_v3)tX}ai-^JSaVS}Td2T~EYyCQ*>l=tR|ECVVQOv^!Fxddc| zKOl|x{%nO2dLN|?W9%Eb*ADE0AXv+k{?*Q!;maIe#-f2*@Qg{e%iit9!w1v>r-S?( zp(rsu)Rzz83u^fku5qtE({eX?4H>v5=|3?m3hezPI9UojN~LfcN2$f5QIWYft+ZPO=7) zx;B=r7Plz*6L?HvoJ7w1D`wWl<=Z|`Sc`OuM85K0d9>K8Utc~fle}7dS*ZD_$N}~U zB>>ZoIQSMK%iLcq#CTeKt>q*6}=CEG+9EQGn$A@qH##Qr6mi zhC%u}S7ck2vXOkfC?cyvGNt36Unar$hH3&l_?R^ib!GPWbjbEPWhPi zC4*jGoS18psmQyY0=t;v%GLR58T2CaH)#jye@fRPDc@a+TtN##{_D*@{GQXqgl(N) z9t;HBpvDrNbX2cZ33+$AZcb9)^rg~8FOlXb8M_=qwEDU$8gY)c$emo(GbV5v-<}Uo z8L&gKptMbB2a-7)hp*kDBoj}P$kzmU-IIbm>jt5Ho>s{p7P)>o7Ti<+i~^`NAs+8< zH7hN4{}@QTcMS(CQ$aUG8@e?aV2FXyiL2;Uw2ZEnk}s;#=SGwNxKC>KgP1;Z=ezFG zj8^V_(hWKu?S}~epIO}g4XrK&&1+eX7tG6ooF)$ze$(g>sr)9OHZwMeO0pbU2?UOE z^ZLHbYgbI3Up_9DJbJ0q7o40B32ZWakofxfvjncyQ?>lug8th1_f56*1pGEH|WK*U$d3@7g~^J)Vi3h6;sD!d6yvs5Gk|ibPElUlRa@?#}%-YZZ|Au?@F}Cy!d7I!JeSx7T#(X1+G6o&}vk4?uPL?Cr6oxOOVybDTGkbjd zh(AQoApF1|I8wS;BH46N!7rOH$g^TWslyH>61^FM<_1S}|B8ys-{e&nka6C>POfyb zE82=lWA&%vV6_ur$mIBoKq}FXKT%&F%Q%lemv4Qdn0D|huHZDyu+U+b`zb+#fWB9g zv6vxmjy`IoJ=EnNl1nUTDldQui58+&c0F2i{7GHPm%iFIJa0>Vz-@B2-YOk*-K^}= zjIQLkL1R(cA{9!Dsy{cy9x;mm{aqgQcVt8kPsr*u#lGxUUU2*&ZnEg3oP#}c<4t;n zo+pfY$g=Ucu%7zlQe;f5!Dqn$cWtR}s zo~A03e;zIZ$(24Vn$rghu6ts^`;sun`2z-g%em^6jA0 zRs3LX`@JVQG>LU~JQJs*9<{`9W=-}!lRtwCeUPG)J#w$@8gAjX%0j$+otE4IQFu;>byLi3sIAFf_1tI5zymA$!uA7pHmB_ z7gt|VD{V41(3Te%K3+~QQ32&8NRMsX1PR0%l)WBT>qQh!@pg|@4o8>6G;F5ZtB>F$ z7vE$FjaVsa&-E)-LQD2lMuHuZH67m>P!Tk>l5;hy%N6Rq+qgM_aOZ!xkz4r!Iy$9%I%;X$2OStcopM{P}moya~J`1Fx z7S|mu5h-vrI@xW*N$;^~1{)o)(VXexPE8ArK2-d@$h$7hKv!i(ICqz#7FD(z6e74W zfs*2`v37$ecBKis>HDt{P)kF*SIAf0SF5bM&p#;$c<$d+9`Mt$!%KBU@R}**gJw-s zzf*SZxBLsXM0G2wPTNO=M(nZV4%dhp?y^bcE`Iag>%iLojlOQ&S}WTp!)5Ax^Q=@x zY4b``gYsw}!_ey3N%?E5dbeHrE!*E8(TnDLiemdTSsnePf75#N{Yw#tnZ%K^N}G@C z95aya$!IR96Y{dYPZCH|5qXXX=z@*5ouEc&eP*^3jQ&J<;T6{^*g-3uE+za5!N}X z_nHW}u5S!|m)eqzck;;8V>{DOP;VRMFz;k?X)c!t7SJZB%6@mR7G&W$ZD(K1rISsx zjpsnL_^BgO(bC;QaI09quis&49XFa^M?}TJc9xxzR=8Bry+=Qj)$mFmEUw96q>ZMe zTBUD!MBX7ySQn)HKDS64{;jR3tW>VLH_nNU7wrW1ORLXD$ClEAnMh2{VwOU^MH-)wh!;}~9ifynS|7$j7djF0P$@mF8;Coc~=KlSQOmi7N zPG+cJU*c^Gam1TM`lh|)XP8iq{PWFGd#U=I#jjJ){mPPk@rkV**vWlRtIgNXe;I_b10>9zW)E)=idLOQCizvNl|FwZHROWmx^IR@SvP=Qu5sU*(Ag5hV zgR?NSuPeYaD#S(^>8C5<5sieRcWb<&z1~hdc3qb?V?6qmcjnIa2BtM;b$t4THyy-i zCsluztWNKl(K3#Lf(Ze;sbtY{W|(>(llk6fB$SDl?9)QUQN4{<$L_j#<}X)9U% zi*`Mb$HMyXOqeB*T#YPT9`j~d6X?nk&D-DPr` z1WJ}7#QoUARzmkP1*P1N8x!l z#R%%4Z6zADaLebX=#q8UAE%dv+~0AJ1D>;KrI`*7kUjk-!j^f$wnJp6KAwFE zoNH16&+`EM!Og=8YPVFYyeg4(nz~wKrtmke#S1Cg-+xlru3tH_cXl_9$e+k!kP3Mp zswG%$KzPD7aoqaS?{6F*K*6I9<(gyEmyK}FYKiYJYv3#D9*SFBC*P2shG}VW9sN!z zGRymjrvf`{{9N;XftB-JEX0*C=1gw36GmtjQ92oM7$`maJB~Hm1PDaA(qc_VMziZ( z)w9qABKH?^CeYPmt)%i87Awyb~mLllLUH(RL?x z@w*(*Zsq-MK`*uUhp>b{w>M4f**yxYv((gPC|Y@9)?VEH(G;)qfXvzwEhn^cc@k0k zu>IeO5^SxU7x<|S3=DQ`D8{%xZMy~haVcvmm2*g#4d5@3e_<1 zuFR`a0Ukgz5{i7n_2;TXduqY>`aMeie)GCzRO;hIEr|1|S*A0&8G5wuE4%J}gr;jT z7xt>cBWr@HH|j8Db-UsGa-$RBmX59Z=v|_}(HEH&>JAJ?OHSk@rUVXm)ICQrA{h(- zyYL|hMfDdF-qFgQ&4w9`_Hl#PXtK3ROi&d{qwEN`mf{-7x<=ocj>b<#(*1U?vu%nq z(zw4*mdiz1tphRz#qZVXU08*zCAhaF-LzOI7F^)Tn)M-Sj$)aA__BZ|6RPuWb0(``Iy)3mWyZwlzr8`0Sy%1U-xOTtP2+PWRLo@~f_^*H6xF zkx{dpvw0X5I>fjxwhQc7xE7<^Wb+L*=YC?oDeb{!zi5Bdez2hVk|0xET{3HL?6}O& zJN@Z;IJtO{2s|2juC7}jWtINQ@sP$B-!#EW#i=k%J8ui@zy8a8(sbV39rHEMk_BUi z@AZs7M3;X0s6LzjOBi;$<|p;NSDucq;If2bF}=k6s(G>1ZU?Kec4uC8is{EQic;U+ zRw7NKca!pPDqiwwCLF}3x{0{ug$TAF-X)EIt9$|f;92@@TIxJmn2*_*U)ks8%3J7c zk3O!n?HE-9Hceel?kq`l&hEC-wo^pxHacc6Mi~l4T(AGQedr2ygyorVz=v9w?$exn znZx`Xlg7kGiM8Biji0syl^|sbcW$V~8XHPYV&G>+K&FzsQq;D~i%Lm)>PZ*_0skM6 z{h3bnW)HdVf)qyjJ~pzqq@`<+UreDrWmzEj45=Lt&Tl&uVlfs74vx2E(RfDogC)$HAv&lAw@0T zXz(lAJsdg7o>-;K1R*ng)$NGhvUvDJJ80n5T}@Y;yGO!1uvb;&@XSFpb&=Dqf>w>EM%D8|Ub1 zAvQ?0Q02Wm=3;q;)RL8$x7p_3Q0piGjn-Ao2Dw44npm1&0v&4nU~vW2Rfg~XP#Ora z3JLAglq~Q-XUPxRwr3hJwAE4DEX35yL|>mlGt{@!W9c|gGfB}6^a%7iBb*A%a2v9GiODy zD{)CBk<)6;{lG}(DS1ZGa>;Vt)=;D(DA7#oL_(B*O2lab&znws-P)>a%6N;Db0fmXXrYU_D`<)G>FN_UBM!uh zxv;6AD+&vp6m8X3+0J*qRjr_N38L3@jA;9Q6)$^LA-jkPIMd2Td;e2aR2)Fc%Owg- z>OwNt<0@6WH2TC1YD@*`gotXMwkNHl+_*GKo4XrLSW(k;yD&fI%Fn=_#!<=!du;i~ zGt1@TWGpO&3ltA4cBJK&6-?w+ONVV#0k|6mo)H1?U8wyV%uxSH|pOGd_TDhN9G9# zrbQvSxfQYECD_=xww9=JLYn5NDDG}c#hhPGdE7LLy35I|in6j>S@L& zMfN9i{xC1!(GUYcq-6|dZQ}=D9k;ofV=JXP*X~t^(SpaE{4N|? z`Dm%cv7m?EdISO8S5R$&m6>m@Wc-RHm1<1Jm1>Qa;3^|3QEw8*7^l90+l&g2oFy#b z+_Z=T^y(f{{6E!AtVM^efl)5Z$D3N_n&KOz2J@ZBMNj3dN5m@}6@Ql+E2yQ^%#DUy z7b9=Pe-l*8JULgb28BjpM8|5`kim(PvlDaNz^@B8i|zo z!Su*-t6Q@tvyZ}PgcM3GJ2g#AQl~N~YhOJ=8?&8Z%^ZNPyW%7bMHT4znu^w>j zT=m>t#jFVv|1F7+8q-qBYz})8pMA7UO!6;JlehNcdJL;#iX)aLNz$`q>b2SD!J#2A z9@l{MQ#c}kE1da!6)&egx7TFy?R6-6=Jok4`o=Odfl0mpy%)fye?iI1<@9h17NU@O zvEnZIX$=hOlh*0en#G2l;KS%d7%i`v-l}Yk=1`B>eev>T=gY$S^JCZvgZjf{VH?db z^lcp-oytO3{ds2dp;OT7@2L-e&NBAKaB8VV?KV5kVto{Z1<47{3t$7V#=N4pCCh| zc<0u&*|f!0#}xE1BZlOSqP-nb>f$G`%bt3czmwg+)tL9o~-##1%qo) zsT|l`@t>C&H7H5``!;|cw446t&rXy8;{W?<(SUf|e8v^~1?u(Ju%;icPnuf(^x^V- z=-63!R?nvw8R)*TH_21Ql+|YZOPqDQ6~_!Ww;Ao;`FVC4*7V|;-_0Nej39LsH?HPQ z6%$a4;YOvD58CVengbsmd_h01|IpCmL~m7t)QsF?6;)>eAJ zqko6=+6P|T=z)^Bx@HubDoh|(D`&tYSFg}d4YeoIc3S!F-|yvuRlgQ$p(#TN6HVp5 zP%tzS4B>RYoCX}`*ZleSv*Z-5j&Jgzk6q~(@1Y(?#+2Zsmqfd6gNfb|M-24gOeYTm zct$^@$TOJ`49h6;HRB2R%M1+-+lbybJbC+`4*&E-5KVdd5Aa#lNhzYBmW` zK=Sm-lZi!9wHg6Sd3SerS5bOK2c%6UPI`2F+-GMSYzVMR{xD2VXx_^>$9}x@yWw1{ zn)sBAps9)4S;gD?#1-XoFyU@RRam!>gm^q!X4B7&8|4#z@6$EG*;#@`fWC_(T0#kF6>c z=Ev^ENfr=h9Z^M7I@M!ikN2z9CMbJ@GV5MG-9po|FA@J(B6`^u;|dB2jM#XEu{_oe z4*nhuS~B*4bfFAa;IWdE{ZwfN;zssb=4zz8cVx{{<_^=z;!-nBjAX2G7DjA%JJ|sv z_B#J;sH2HaE;0P>{m{SXYRf1Zy<-NI3>zC8$1nkMC9m?#%-Q`$9Lc8_rnR3Mjr8>i zx(FL}K>;l#7-9bVC&Z z4Sau4d8E$Uy{}uJ^lz=_&J|$yY-gvKlZ}%^aB3EKhay|6;fX{&{C!E*>&M9=4yK3G z98^5|ueg`Zp-%MKa0rp?Yj9#Q1x>`lxdVCWBrU+RGDb@VB*j`VL5VfF6RodH8vLSz z0bmRm?LOWyF(tFxBP)furp4UW)`sE9>D{T#@@v-o4BW*S8VYIMsqKu1`5ndl4W;t0 z0n?sM0QUzB%(uVU+1WYu>vX%Fs-IWQaH^!6{22CRX`&CUstWYW1_6a&>ie@K_r>ee+QzP!Muf zbp7AE!vWygG1Tw}D&jJ+%5}h@PC5NEd2cZ=Ft`JbkI!gcFo1V*U|vhTio83ymimHF*Ei@a$K_9~yoCo`wnN86x;> zfT#Qdc7yRbaw@E=^R)v5)PvFXi1kV^7`kgmU_7wMV{7Kq+1Xht>U)-E4$Z%JqCFE6 z48qusI2QxvJNotD-<5|99NRbToa_a$F&21W<%b!#Qrx};K3g+KpoxJhoczBCIIhT) zT0bn~OinU+WxLBAaKF^EJ}|V#e0xGhry;qAcNR9#aZHi{+Lqx;YMHW1FDQ! z--C&RpyO9|c6PofOp>R^tkPfI&q>M2fEp$*Zh(#~cyZGI;*1YWL(T%ZMD$w+hYKyi zL`fsfSb>EDl{g-;CcHOmAP}{ zZR;d{c{zs;_mx!J+1a@cO$*(Y#JdL@c2k$KJ0Gll|IYq+_IK1(2=VnQ=(m?$u0&&- zX8fZ2uU6TjTfY#lx{|vai#}Zoe)c>A_V^C4yWle+cY#2W?((uS%H}u47p1s3YIs-e zVw$(Ls^T+8M@Jo&s2>7Y<8i<(KxZE7D-^tcaNq!#Qnn$j)H{Rw`}^~(_pLH+T)k3* zYDH)7LU~7}m}uZ!C02M49RDdO;kjpk-K#(xzcU37^!5s@zw7R2U##%nsIqbgu3w23 zM65$m=aR!-1*>YMxHjq?7b7DhTl366QNTSueekP#*Q2<|1e{m?8*2n`v9OT8Zz2p3 zsemqEUzS{IVAfsr(+u#84U|jEC`cGzMzhtiK({=6=;Nhs6@o-z0Avn$A*?XBRO|Ft zKp$kck12QS|9n-?%y?*G*)#1DlVsE8WggvC9s6|eMRLkcp1=YJZZyIW(H&Lh)f1bS z$_)jh*#(AoHmUyW2emJlQmud=P_fZ&YpbZJcc(?WL?Eq(HA=x7MP1#eCnwh#JFN0LxpVq zqUR*QQ7RAwsOv&s%O^`7)4w2 z)O!A?s;bHZ4nl%h-!K>SGzG$(dZ>H5x}g15+@l*H2w!k4SE7E#^B6ewHg;Rt-agBO zfD!%~cgYIPcwm_E=-tZ1;ESZAM)v>}zPd8GJ}V*e3tRLXB7Uz4Z+xA9luIQ#8o2Hv z!|5rg9SU@hQH}nqOH0E~fBz#ScvZBN`M&o(#cj{;0Nat}`!-MxI(Y3f=AMax0hb?x zQ<3_F+X+vw9hJCqz!)7|U?Fxi zFtkCXFP4neqcVZgAgw{a6Ez+MLHFQcZD4O--wf~q5$N$}bd_@Yl7~W{N!p^X``*f+ z1o_D|YQamy>fEU%hXN?S1x*uJ5JRk=0iKbXgDL+Dgmmy{NrmK;DdbnZ%AD6|q}TMLSRf-Nd!3|4|T zeL{~3k{5<6WXkLbF%mQ^J%f3#0S+lrD3er@Yi92fHMI3#*bT6Et#>Fb0VL3UX8aym z=ufE0hdKIv3eX7X$`T%b@i&}7V*ikaRe=grV39^FQA+9%iV(nyQ#*y%57&K+l?+&P zC#d>aTwJWYJZI1EoLNT{dC#eMs_k#W^{<6eq&P#xlam3~2?8_i_P>7IRB*-s%s%zN z&`{;I4~?CuJT&54ueFIVEpH_bqtz!2mAM(*Gf<0!q3b+;@QH0c*^vM_@WB~O< z`RgKAT!9H)s2oc!#Mjb1v&p)dt({=I4GoRvLJGL+BZfffs8c^n2%c(q7s5*b$~vXv zaLC^`#p(3+f31bRF0Y9;>PMsyxa-=&z2$N027M2rgN`Jl)qi^i4L@*z(N3k06J-kD z7N#dx7M}i0OGlS0**zBHnUHUDJOQ*g+pq`fW@KlwNWE82J5iL9c}DrZExf}M#RaM3 zSzZJ*S}tyG7?;gO3)`;KrpEUC@(5Q~SCdGCMQ>CbLs=UiQ1vN1OpN*#7BEjR+k*;3 zLPEkn(pM4`!eBOz`-YTt>Z-Ve#Kr2gXsLPxlgzpHkn18~C9cgr)U_;)MA zqLk*EaHH-t@Gi|`2fJkSlu~sa26MisE`4PFMydWP!L6u!YX~-`aJz^n3!onq^l-yr z84+Q2<79N9qh6i+>_U17RNzYDFwHu27>e;Jc6@wf3Y@8%p4Xk)bSMkzr!TVr>7 zt%Z+MoAQnH^h8EnClnzs<978>7(k$N0z}H1wwR9^fGpGXTJPe8TiE>f_VxhHAgG-U zYrf{@t}YU#ce}XJ0VcKewYA!<=^-Zd4kFyyJHU=IX|^gXESy)0OXFE~28XW(d!)Cs zovHRQBG$cSGkOYfg)k;Sp~K0`#bt|f$wf=UJCey=r&B%CnN+I#sGW_htQJqM8T^%F zi5mWg>F+JVnF2nvJsFN;>1Nv>6~&NLpY7IpP%CIaSAnW%P_>|;Hb{Ks{TlhVEO5f+ zrfqowvm0UNFz(wgjZ|UY=6-wSeLZhykB^Uaun7?=UYdPRKu+5&eK77E0z{~cSihcM z4vQaH_MFU0erk8zUgXaS+Rn{=4$#cm;eCBLGj9($j*%!izeA1zr?mE04Hr zU(L$uDwF?qD~A>^p?fAnb@F}kxKSoIS65$s3cb8HOu$6-J+Gfh{Medp9;z-l$wRkd z6S{#5fu&m)LTbR$yMXCe^S; z5X?*2yF0xF@O-J2W9RT$<53_Ovjyb$i3&R-cVXJPrkz?9NLV@U+;X8Kk;71e!{eJs zv!jpA&7gO5xgg;>L1C4=;(y$|!CV=p59DJ23Z zI5*%YeofTiU0)P3BPD_ySj@2xIq+VY5-$Zya8g0Z}|!o zOYL00=qaPZ9!>5rQSFM)Fr^NW>ng$FfYPKyTl!^7!szJes6dXV2EAYmQ-DcsIFJyC znSVYu8&c&iT<~| zi8X?(l9ON2Xmc1xlq&m_%&@qG+uAT3X@K(d(D3y=Qv_#&qA;tXT{R*AO5l&+OkBY9 z(|{@c>gCqe+^2{uRbWQXJ_wPU1fBLxRQbL%low?S(Xp~spJ2Fkt!8y~)&CCo?`7`I zl_l{5Ag3~fqDsCmI(!x>HE@y+Y#li1jwD_Un#{$`ePN@75hg%7$&L&uSB*^d4Kez{ zxWhW0KE?V-IJ>Kvm`t>C9QzSWSH6&`=*$M!UDsRznl;j9n_1=i1+u;hHa5%nk^_e3 zqv2jZ_c#7ZYSQH(;^aSZU1 zliyf*;O(&{*+egnUwNSBoYL!h>NSaZbg+|ZWK)W`;% zE2X|1Y(jl(Sts?5G&BOl&zx$u`oLq&YhDNVDTda~- zcZT0P!e^ry>F+=FTc2ScRt!z4N_Xy zmp*l@Cj(Trf>wjl{u4R}Wm<$gR|mb4s@F|H)}Ro%E3@cP;Rqxpw=7iX4wx~U!)I3s zpQ+J?gNw?)yr^MtQ681WM|dd!*U@^bis{;d=u->QQoo`!Z~M8OU$oGN0| zsW5jHJg~dC@tN}Mk%x_mE@U})MDMqqc1yJAcl(-%i^oVk1Mm2uPVSKa$7&=toRMc5=RdzBI(%1$s;>0)eo-gywEd!Mq--i8fS6F zpUmsBlrQG8)FYFQM?4h~aknTPsU)1b_W0UlAMnu4d+L%~_1y>M>i=TqRp^^ZQZ1*} z=hOm0&eS?`YlX5l+rO=2+}KVS|5gS>GB24|x2JcG{6Jq>ZNF@0YPC_DOXt+{trR#x zr6q^g-Ke7{REvfQ2Rr#)<&P8EyN9WxTR2GRn?2Wr)v4}sdfq&p)Lk5Pc6pp$JSz(0 z$L>C>W8n-%?M8 z9-wx0Afhse+Z)v8DhGd%?M}mcQ;Ly#gb74xosM6zJWWLkq#h+FzkPa=OOs}mj);_B z08LOa=f~+=;D(xK!Z*gfXdBRRlLYAYkf7Nyh|&La>-xeR)t$SER;9iLpFE|eR*Y9s z&Syw)!(_d|h@3&3Ql`@=uSKSaXSJr3s_OG+i3i(t;35|njAh{P4ypwDCvTCuTBe7hxgRCmmGZaQyrDnxX+p_?C#CaH#F2 zG&A|1eh3huB%QcsE|l2e+92@t+Ar^?Z@K_)W^b$iiP~NKjF3lq`h&@ygt=SADZ5e+ zz8Rb%vpqMe7D*@8u?bqZ6u{%9vEx?o$w1=4se5Zf#C-^L}P+Fz(?&Lm_BBS&jX0U3XK4sNPQcV0*BcS!uq}ocNRazDQ#js<_ z*2ov5wseYGrwTv8BZqGuaIV;64X#)&ZMtsD(wYD(hUSrEf4@~WzixSY6i79A|*<&;O%*)OElJ##;9*ma9qie6k=qZM9K27dh)O@m{K2_Wsv z=kN@_?Q<3I&+T8z9-Zl9@fsLj*OysQRuG~==fjbJA2h*}-#>+ST;J*To(bVdYqKmp z!-8==QwV!|%+IPSG0`KqM6B{2ut+{a1aEuwp_ReAy&J@k&Bf+_^#cl)$w?XihiF=Ww_fo-XF-+6#Kd zuF)KH$>W`}4_W}B-QlHYipDDQvbeLfT}a{+W<`h8a5Z9!3DK?QvE7T_A3*MQMQTp% z3#{F;)Lj~Mha!O7nFvyk4z7y2EJfn~$Y_JEX(`rl6r5rq12_s@=iUyO&~_0$%og&teKed`k?u+Sg< z60!Y+^hEvqWL`FyY(m(m9*lnCN#1eh?Km#hUmT?n4oxqf7#|-`@3a)Tk{mGqOsMLw zyC0d)81;WtJ%l-#z%$Cqp?6c)s~(KkS4yoWSj}F7c*nxbB;b$ygcPWuZ>~xlXR&** zS(q4b1o_{40k8>$)Ntvoo%D-SD(CZ1FkI>X@2?hPe&@r{i3SOFrh0l0KV6vb^jC7c z)(8E!%>vm+;1QN$LD+E9`5UByEZ6_^P;yB zyVgy!k@#11sEMh#9G<+SgG-qyoF<_JUxex4`B>bOdVy-f}(mx?&|u6Gel)2E#E9xG~$G}6-X86h#Df-0NhK^eX7(+TdB4!1q* zXn)pe6H5+b-w8+0i*#EY4*r8n`tvxKP>GZI(B>U%HRNLa&oAd^{Zb$?<%CJ>ALWpK z+A`-+WtWZh{Wvh&EhL$e>Z#aVdDm}u*ZFiazS~h)h<7NZar3#K>nVfJo~xqTMQEtfCy%Ra9`csm zY2H`py*GHN&#ABb`#JX@deeV?tC5y#v8p$#v`Ul0%AD<1o*phQei30}X(w}SXnUb2 zO)|N=B=Np-F}Xd7HP0>|D;_#ET~Ed|dlGRG&UC(AwahAXOYz;W51HNd!QGgxDy{lJ zFn+96BT!Gde=_7wunoKHF+_ z6rX;!@yFox#g|lHfrE+t;Ug>$i^adYG1K=G8J45k8&-`*at|r z`o*dz=4e=mUd(jq^u=VVa(M%swrdyP!FVyx z#d+w|)>6h)swgpDF><1vsM7Z=1qPUt%>6hUxw9;W^chCh=o)HCKd0`BT?=GP4jB54 zpu1J|x~935EHSUCcb2TV)F9jzXBIP`F^~ww5VcnNKC%^C32pz5O z&|vn@vXAykKT*_Pgw4KPXdJTbeQgk_EYnzHg?9u1xh-zVR?|6btfbX=h6np#5pZlPZ(B7-4a=QZHkoojl}8!CjMf;(yV+NLQg$ z#d&rW-?Q|b{u%*Ld4Z{+x2e{;+CqH2R9mIrA>tfi*l52f!@r;Jv!Zh$UV{fwS1=do z``~u?_(y@0_u8+M-^*_i_=desdh@=ND_5s2O(t&M;bOL4ba(16n@4Aj=d{iRQAew; z)xD_ggB!}5Us6)v`$B!vh6oFZe(ogKRa{P?-Oc`KIX^mm1UJB(I;h_dn{z!U!uRft zp9I0uFLFa;BKp)eH)zL{aYy0-%@rQKKgC(zm(o@Ee=jjOj8DG^@;@JOaNLex2x4up z^H~{mUkx;olT(hNsGUhmy;rV3BJj@s@#J{at>T|-FL;C(E!<6_T&MB=hqo>cTEDfL zlDThB=T4y!3Q=En|FgtI6INf*g#*W7qN_W}w|ge;SiVHe<+Tf>bp2zcIX{J^&usSo zzLi|)ShjB~eKOObdJ>|I>Z@B}WUM%Rzmws!6DS`grm}HG|ABGQkEA${NC(M%ZoeJl zpw?v~_b5h_h=a5tC%j5}dMN=wak;kEo?*+Bjt|e^ep)7fn*TBg*yh$gzV`HhhloyM z_NwpGi|x{>g{QQWN?troL|yC3+h0Dn1eSOX%W`=#V7+b|SdE3qm>ScW?|r+m)iZ9) z^zrOz{K3#>7GA1zOZCAtsgL>v&1SRnb`T3&i<3lvmRH_}e1md;QbSW8))}U~{uaV& zYHw_yXk=Gpo$E={oaX(}=pb9IDicKPmcVK1K30cDM@*Nw(-55I@y2Jz^)KdsIoxmF z%CpJ0?3`Jd$#(z~yw%4^p}TNA#*}?!53N)u3NCIt*jp_nhO# zJ9A0AM+T(q?1p6CY&PsUAAe_IL(AQ(4R4&WJHoBV59;qw=L}U0yvu$~;^l|; zFD!=+la4|!g@yjOR>kqm>y(fmZ?!F6Qqk5Nmb;?gN1fI`3d^#!aQ--$FAp_sN*55` zS3bBLH=GFfR-mP(t%*kNY0*#KR&zdAd|vpsE$&8TUcQyHdWxLKxwzk$ZD5}DV_JIa zJoOTU|5zBqleXV`TsD?cq5JOL3uL~%RLez5SU=%?84l7*ImYt1wk*1NXHA?oas705Y z*{GvDwUbCpXKNo`yfe_!*?KhUIYhnZ+|*{i2=B8%S&=Gpb+dH&3N(AEAUcp-)@Jwyh(N-l#1lGaGmd?^;(&zSK#K1 zzFC;{=KX0LKlYdcC~Ewc3Yf)QyOw$*ijk&S07h)MlPrOHZf|PR9hc_OIygn{Wmn2eCxfuklV@Rw z_m?SXN9@G)YR3+d_wtc7udCfWd2@bT2unOxjUygAnfdeL2z6ggsQFM*Vt<(&fZhCJ zTnJfO=P6Ob3%jEvF213{A8-}*Z)g?atT%+Z58~AYeKb=GG+ULq8*AKu->ij9t=T=w zk9vr0sNR1>;-Hh!Y8*d=@*kFgoArX~L65fAluA zJ$`^P|DPEyx=3cl_L51#3bEOcH0Ap%RF!mi=)q_A4+GY)>1Lg0o{N&&;k${L< zZdiEyD%&<=DMgoIhJ#D>2wWp`ed$PIEFF4KSgrzn&CsE=(;YDvGmCR7SysJjx=T)# z79J%$0vmlq#~xi16%dSw8`5NOv1*KQ(qh;wDi>)SkQClgzNTop@dl8&uvpo@b0L7A zJ&7c^aq_mnB+gt%w z+L7;8hq?aaBw|FenS6gYX&SCaB0Z{J>p0m$-X?}zm3+H|eBj_EBcT{yb3dZRm^1Y% zzChx4Lpec(g}(7U7qPGXp~1Dr^(@dPZ3gk1@C`HTwZ_&dzy%?P_PMky0oavef>`4 zKxAFmZ+^Jpt1sEokeZe5LLqiDD|)&!sDSWAq{L^B^=;~_beo38gD{CY)1sz)^QNEe zV1OpeJbe0VCti>|z<|7p*wTG>C~o%(7h88jmdVyk{cDM4pY)!$d|(E$*avvcyF-1< zNYt&8y29_~4=^&Yco&6`tE3?-ezoW1zW~e3Tkh1We7Mdd#r5*}!KgO|MHxa}L0#0i z0azIm_YT9gX1A)#0kfZ55`mi%-V%AXF}kqL_Qdd&-2)H1riw|q-rFTrQM3nyHlSQfEgOi(^^IGB&i4bF z1auPa+$J}W_~CEsyw-iZdon?{-A-I^a|mJf94`~GSEDIb+{o86nd z2D>s2SReLd6at54r@G8NgBE@>6R{$F6r*>2I>FdexB$3{C?6)=bH12bM{_)?KOKD5SyfhLgOMyv?eMTuo7pt z6M0$&S~&$87Mgp&!jeiKwzlawvadIHC#{8G8@wrnq%Kow?;nTV#5(#9BL=F0d09{D ztY;>L=_f3dH{#ABZSjZCG-=J<=}T{|$1a&V zdK#hc&6!TCITP!0-0=ovyK@Q=PV%ftcXZ6|#5Y zc5)YuX#X^n9d-JzBz61+fjC+w+p4LzLsQ*8RH`z}MBcs0Va zJwmkl2KqcM@Vh_4ZRNmv6Ej%y>WyoVmT~IiJ1-a6W-yPGYBjkT=QYb7syOSq`D?rV zkbqL9&9EsxkVTXyczE{BEur~EzP@_5*x(Wpd~+bx(^Xz(^fZ7&zv7eyow>e#c#yW zU;p3%)~}=#4C+X7B-Mm}*337TK*MC7yAOUdwXycQQ%as&z&zF9b`HEgNlE-z{{X(3 zLKMG=s1$!65d0Agug2b;6)+QJHUD}KW0IW|>52HXQBN8BJU42Y*IeeoL_RlcQPkh8 z9VwJ*zPd0y2-v#C>nlv&80B<}6)l4K^jJy!I~7xKjgfEZ?l3)JMt1dnky*K<=ic-$nv2o9o!c_`Dj6V+Se^XfBgTo+rCPn(T#aZ2NX?GcPW$2#K%d z4l}ce!Ej|Nu2AGl+IAoOV+0qvcPv)V8%f81N-(Cj zN<1$*i$h_u;n@(Umj4BRPIpW9-)Uwd!U89DRq*5so+F~zHC-Yu^B{t9n$M-P`e$;e z?kfBZG3pDql;R6Uw}l^JjUd^U{)kp$5gUd+G`4GO@2e*49a;^5KV-)KHQC zQt*Cuj!f%YuXS_QKd-@~x3IOm;|e>A@Hrbj^l(&F(O<7X)APdCHb2c9HDTYWu$d2+ zlayroy=j8keU|}0hWhGqPQN8bnyiT)3*Ae5Nkv`g#TizRw6{L0>^e(5z)sT%&n$?< zUH|6wm8GEd#Mx_)YIhD6?aowG$4^Qg|B0v>G!~OrTZkki{=|)lqoRcXM#@K@mU|b! zsKn$D)U>byv$m2m``#v1lk@7>%57h7IvXq3wk~1$VkYGjlO!8{>NkT9omRrXO4{!d*FiWKe^>>4 z;EXmca%2`$0*TliM>BV^f*batE%f)$)+9_xA1q*n-?_@s=DZXOYB36R){q z%9n=X9JJ@!;?pHZI^V!yaX55tUBB2Fxhmi4s8DN;0IRcb47wg6@FDzb23Yh3i#w`I zFQax>dA+b0uifM^6>@j*f3Ki#^lwj`z>v(@AS!{3)x>@p_v#ff-xcl@1D|it@-&`( z7mX9$eAAz$RNudZ7lX$q4|j^6@Hg;)oiJIjO|5D87J1P8!ro9r zS%ynJbz5;cG4i9pSs7Y{ts|!-ICqZy%l?`l5BvGGc(g`ff5Qr#{!YEh^Rzx$Vek+u zRYeDLx~1L1CrosVkg1~N)$O+#$itZ|cE3zo?@|S}e{&_>5DNW{}-%?`yeRWaQP&2!c zxgJI|Jx$cT#W){s)V@4@R8Is0XVRbS_70jhj2QZwpBd_%A;+D@+z;NPfT8y(rsaT{ zh~|~Kdp5Qpulqxhp62WJIl>7`*i6)O@A|CPAm&?}@5rK^Z)OA2uEhef5$&JmNK>8l zT#b{p1;T-9Z8BXTe&lbO6E-+a^M=*MUsm4LtIUAU(613)r=h6zWnl6ajg^QBcJ{y9B!W&vtaTe+#K*LE&BYK+D zdrAntPWAgJHGhC7S(F}UBfU~jzN+@dPi~?tUX{c&jlhZ{%>ra#F;LK6Q47}y7v_KP z=>!MmbFZLv8T#nlt08{7;{A7hMY4>^kI#V{Gh2|nTk|#u2W7RK zve!N_+R-3CyM5%&-JAZ&8kz6GFZZU|sZ1A&l(ZOm&oY)TP$uCF{cgS~ceZT3=hANjWdZvLabE!->_he%{k3LWIr%!BPJ&Q@P0*;wLN~tO)wjpzBb2TEX z;75crN+Ugf{ge4;Y%Cx`mPLA?=4KGn#Fj1)Fkn?16=-u_I3D{FFAs==x)#^X6{zUJ z9XrH_o?(&{Hgk)rnft@vsA%(F+z#`yK2PFJIV9-dfi22WG8T7L z=?v{CxO$aj1a6o&?|oE5sV-{qV1nh}j+*{G?HUGEpN`sR^tX{{;VscCCK^Uhe&#Ye zBMHmLPH_E%zb) zuvKtE$Nht-p>tH4`$QvAjO?Na{RJuFkQZFPxLus|@eqA~8{jMS8$}?{!pjQGV9b+% zhO+3zseN-Fu$i3V-NIRsx=sgcLW`Vf%X6~6`ta=uWvP*no|!DX5BbJo{N`sPSsjMc z1|r*D5o6&Do3oXHcWiQjz9#i#MewvpacAxy*E8>DgrqizyKsQup58Tdk}{}?Owpv> zDMZC{Sj0#_iYBk`EU5$gXq^QuOg(z=GyZdgYPv5h@*4GE`gq(S^jn^`$)z5`-nJP3 z8i*kYXyJCqi*XM2+hH-!ZI0)CPPBtS(D6x^5VPS{yf|{>ro&1+0*TS!VWrxuoa?CR zS7+X#fSxx_r`p4+F*%j!B_$$-avf0y2*v|{IR6b0CK^6bNqOms_+=$fWIh0T@rQWX z=|tVai#P%Lyqo3K3|<4fh%LX2Q^6u_QYpg$l%0bHos2kJtY{JQ>$>7p1HR~s5?^ZB zvTho4Gn@H(LfL*&>se39FJZ;RnGs^sY@k0CCEz+(xG-XyqYU>D?Dq7Wn2PY1UsK5xDVLDb9LUH z83^{Lh12+qNg}M_?*6*)g?A{yI5**z>3-T@4tuOjzOa@Qv!jfXuaPY78f;#(#_DAb*Y|i_a;`kgSqWY)Gfl^ zi5(bMMm2i|>)7Wf>wd&s6vP_2pc0$19hWZAvj=*S$*?dOt7A8f%(MWxg- zJb@``yl3I9(ExC>D}=u}^t@-ozLOet%x4h~H!p$~u+pq3Cs7G|n&TA>HOX0{VkO!> z0q4`VL;^oCRl#Eu16@TCw%_j~#tN*eky+ z4H1X*j>Rsn=D9{z{yY454j`QHUBNs0sgDnzZWfO1)1ba}77_R6N^}U~n1r9W$H6Li z1z>dL(1IU9X6+6n%7%PjX9iR9AE+JXI^M2keB9a1ni&aO|~HOHG5i?it( z*TIFYdM&p7A4gWLOLsHe+6sXNGn(9!9TBA_3_$T7+gZT|Qq#qlr*MLEx#PmD_Qf!z zrbLSWKB7uFbT#B#Z2ftQdDz*Z&)MpbwxdOQYgfNy@;QlT& zjG}xKi$@V!H`wq{Kdu#eC4YFxD%mXgm;OM--YC5K-|3Hoc8k5?yW$q)t!flg&{I6- z5$=^3pCe=|?M+1(Zk&H|a~?|A$`;3KTb-pWc@byMK!1Tnu{WC^Ue^+nMolswB7+}v z4LK%OlRchfYS+X1Vi*d*ht7-$Ylb(kOr%fff~lf?=MyQyiJk7gTuz$VcVzOZ5!tM- zm&o{?1sXT6?l#{jwavm)RXa2TFlL(~oZ(z~i$N|?-v}&-32>?#?xNb8RcMMl4MZ{O zzrbp`mq<~K|J1+KIuRn;;A>UY@cXA__%4^HhMi&Vr*6CQKb;3IJ^{DaAH7@Z3xp%I zip=}buua(elV6e@ArEv92ohUz7w3LAZGpv7aI=VXi?CD^n0 zg0>T?G%)pi5#LX{Csc-?9xopRQr>>pv!*~CWmL^gJv6d9#YLnD*TyoybMvO}rh@ zKRcL+&m&`4h%MWzs}^kX&J~U{#xWC}I4zvgM2oNFWg&OpJU+15{GS#;Z!~*vJ`6Cs zIs2sEmt^7;;yl|XgCF9|qqx^9SlM=1lKX51GPne04*?HB<8I}iQl;4)!b!l9^}a$^d9-qiavCAU zEN{rI>sXvu^z!*`0}qiJeQubf@wRM`x8J6qgo);ix@~Hjx23DI96Um~rNtNQ_!)4v zeh*#c_J`}K#Ws;jiYUCBT*xv;tM=eFxU#{H^V6f`FL{(0Tr3a(K+6(>Te|l<>Y5a6 zX|6FbDhty^?5225n%{EAY|lPNc1Gm#c0v}dD`x-N@4~ zZQkER>tXsjGLMjr@@bie+0~rS2>Y$8fQ;r}15FY}h%miZdz0wW{9mH6-_=fr4Y1eA zYk|=coT*`QyZ{MOJ&v(=n&7Pqc_i>^)RRRIV6{$_m((JAGx58j2CTInnJcIYZXOK1 z-5|mz2mfVi#X4eavQmRAlGOTPST-Q#NgWUyyJCXMe8$;^^4EYOk1=l)%_$uXkhyC$ zsQl4WoC0F&=72bH`f}c4O}d!oU^uO5ka`#MQeAJu?34G&m!E*D5^Py){+6Q(x~I-e z+ckC8R(2=2F>Vn_V6bbxXFkYeaBpN=NT;9IpKVHoX6MhmT^~@twqvtSal@(40HNrK zSB~BhaR7jdI9qHM`)$Hn^z~moioBxIa>_!Ke!-r$mYft$$aPBXGlxn!Y8Cv#@+ET_ zU)ImcD|^4NyU&o^_Qw(=Kq>eOlySyl;4IoiDzZkCbQAYoDb)d{?db@ETL= zd`e-$gwK|C<@&2V2S{6Qh0Vnf{=flpMaY`hNya?MKiuFXE5gl!B$9S%+ggE&3L)a+ zEnPqN1<%(ShI@py|IoQwZfsaR+R~Uqh9`TpT1vvYF3+|K8PN~GI_eoAa9?N;t_Qmw zfnx*!;Z=@|J6x^!A=Tq5M)-VmJr+m{qeLmQ#sl6@o4pyhEaBI+j~p!PV=mXQYStEh zS&_g+_o}NFHf-AQ<=}D3)jN^(Oi6g=pa?wo5eSWk^YG&Vln36uF*4z!LK6-1@_w#Dpde z6tuWntUeAPK4oZbI!5I)C)@(`+s!q*9EEe9ul2?%Q0o9k3=STzwEq?wsOp$;hYN+b z{%v@pX5zjUjb!pkCd{&&<2Z|K>BPHjq|OoOJ6#0Mm@+Axs0D6Gij=AX)EjC-vw0*@ zFHUg?_o{TOWQQi3Xgs`kUB{@#KulD;8o&Ded*wB9H=D~-5RUc)XA><|A6*@hL}*Q0 zT97Zv+fZ2R$f3|B8IbD#4xUK$%BcO+pGXfpOZrpz9iz(&NW)y^x%7r2FmKiu!!qWx zGV79O&I}`>p{YG>fVo$!kjPhm)ql-ZtKd>c6#v9d6O;dHdmvnf*B*UEM>LYf#N`VT z0tuj#SDS*{Pl^D41kh&%_feju<3#*dWGgwPX^X0w+B|_zmrOy@ZjA)du_PCG-)&eB z=WempiUNgbPM{A?m0D^b2%p|%+OwBqP_9?$G-`(y_T23iqE_To{9MfF75g)Ucn`=C zD%BIW@Ur%mD*&}8Yl_es6hND?BJbbqUrrpfh+-FZDn@$H%`XDgLEJs>*ZaUgGa(?4 zO4s+11`9at6IsD6CODJ==uzX!NO!0`MV`y4t4&Y+#q5*WsW9kHR@r$>Q>BoZIDI~= z%#(Fgbcz0gr--GC)9%CV$C+WVy!L|M6n2`~_|nm!$D%5`6@O`5@lc9%$R}v9Lud`K zEE@vgWJtc|XRRus^GGI>+*Gos(?Fl_|GlBf+&yR%wU}?R0hT$aXwZTqKmaZAqU4(L zjQg$8g=kUlFv)l)CSJOOuk!q5AJ&z7iy{oGc_7*}rfxRj6Wp1g6A z1nf#EeNZIRNe6t$>LV02XaO|P>guTTh(w&aW~~E?Eh7}{KBg+eKrRA7Hx{UGXe|H{ z5I2VT;Z`;hqv44o=n-siwZ%J@?pYYN+YZ5_ACZ)k1|c9m{h#_`yNTas!)@F;9+sdC zKrY4uk}dU>w5s}7`s-mpJCG-6_%jt3`8E`sm8a9K2!vJ;-7#H7GOxTn0nsWomIA%pwTa+6##=h?OvWaF8xX1xvMJhTDr%)HShN-*jo*x0h|tQ?e9YL__@iE`Rd#CPD|km=zSRUWBlalJ~_u ziw;zhA!bDVTxKHUYv*WkB2+vuMMQe!^xqm*Zjrnu1Hq?*7j~Rq3=Qld*VaWZDx3LL z^o5;JmHsh5$zf8B&&q>~>j_ZatoJQc)7;t1(8hHEbnK`)^4q=WCH*ZP_>y{}_&Q~G zQdK_C`Yno|z}Z$-9ea`p;jT>Hx@>ZjKV|Y)UjenLvrpv@V_8BVe>?<}L%k?tCtI zGjZj^n}COtL~#48h7)m3*NExT__WmXfVFpRyr6RU@J@!bx-?n++op$Ke*#S&tf@Sy zBZ=L5g%=CUcx&5fIqiBA2sb`Qjlqb7&_U)sC54= zJocH23eWDp!V1yQ@9-uHUn|b@sW+IBK<136=z7~e@+tsH7U(+VquWrWPx-_zQ$Qin z_JmHMubt4y_t+?r>uI!=)67fd&8$O^rWX@3qt;yO;yaR*IYf$YUt;MbVqbD#^uOjO zv}%^)?hz>r{Wm=-YBxDuBpcZ>(;4-Lw&7JwCEkl^{VEp7g}UORF6kc0KIy{x)6S`E z1N|C*)6y^cRzdQOAD9Ly@k(gPje!i~pN-fbOc=$-r_w!PpL7Op(+vRrU8UukIP>W1 znmWE7snAei{DE5{QnHV%l#YQBBC3{_rDjy@+u(vz*sC5 zq^vScD`cHlPvK=dgussTsa>%5U%G8USCFh2xL0u7W0ThyA-n(t8;g3sss@V{nzCJa zT}B!hEgUMlnS$MUUspeXT5j49dna1fZ9Rzfas|!ml7;Wc!>BLu7vk(!`|=w z8Ay)P`FODQg05&yy8wmBR!RvN{&ppe+Cfep18?;0Z`1Es^qefyF_7C`7wXm)|?>3Qk8Nb|2n7nS;7=XQ`Q-C{W2i? zB((IV|Cn%UnPom4;TkQcn1U*h!0oOo)t=d9+)Oqmc4@v|REgUVgzd!avxp z0>{$6spIw&vROqsI?AANPxv?Bo8EH=Q1kyMXiyLF|ITns3DN*>kdAtGFIDA79pqmZ zU7-XmcGRY#J#BCCa`2=3z^;~`eBgPH{+ATaDFRJ$N)oO~twa^~Wm;{KALQOpndz{P_H||8_{(jg0M6t6qcS z*B|OYx8mfZjM+#C15~zfswe+PEb+fK6$Q+ty9%l>fYAU`s;G2#O-ES`a=% zCI~Ma*9wJ*vmXk=gBA$49@nku3a&t>aA*`XP~dCDOE(uM7oU+&%;UgQ;-8im*yz3i zlpk^ZXo&}K?wwfvr_q)I&rx1auk<%RHYBz*-edWX|8t5_&w8gFOBy`Z^(t@=tOUQL zLPHi)yq4idO&=+CMqKT?Kqt-&`VmTte|rijOck(zU_0POfKd2}hh}_=iXe;kun>y; z4e4FXa45Bm_=~INNyqp}UQMGj^oOp%Cigz^jx#r15(!Apo!rRrpx?gMCqx_~bGE4| z_J}f?Z3NwJLt+aAOKlhr2b*ednvmYX9n`$NA^x2|Cl7tAJEyDo$<+kuh?r|AUp-Pw zvTqV-OAHf_yAV%w9*8VL}M8CN>UU9)u zVl01DKiKqB!uhrq5$R0UC{KO#p7eNL+`kI%e@d~W^ zmQx&1e*|Tv7K%2!V&1d9{>+@44n)MaY&#F4exi-Y^iJ76y!YnW`-}5p*aM5jO{b64$}56kEgNxnLf#_7ub;^VE$RbYdzoz z3o=-v_${>&2#qvYrO0Ty>Qh81BK|ur zjA%Y0{s-6cbY)My+XPmKv0ejm)XNXXrdnYQvL?oQ2$e?WPbEwT>?|8dvl(fM0OnTY z`1n@T!1c!}#+)_UQFhlE!;>VB;0NfVGyr`}aHQ|cy60_26?Hz4!E@aMDyK=!Uy>jg zkC)l6{(Q`SqU25yfCj)v<`Fy93=Y0*5R_iensn6_nIi3oKo99h-<#`uK9@D&OC)qC zvr&T{mS8yOjDhwIdqZaWq@>D$R4@i;1qMmK83Z(kHx|$l?|(#V$$#^5QyQ+n?XpGE z@%}vk>+$}B3sTw3XpQs)oVZwyOUss|Mw?~+H2|=DH1iEFh0n=C`c&_aX4v>%W=9o! z(VLK5v$Py-=N*pVyNdVrUPBZ8uraOo?sa&rTPnyh|3mo;Is};dA~f+W&5x&Lau&Wt zqpG3>v96(}PCX#W7${PnxEc5$I^qhCuf6M~-M{K8TYq^>`pb68eQmbgD@iJhi>!*F zm~37GuX7%xKBss<;n-^@t!MpWNWWvi4W{Yxi8$YGZrVTm*7$U9I`WZC$Q=M_gTS~W ziwwYzx3z;e*>4G>?0 zAh{^%wayBX@|MI4!)Rw?qK?WuCVO2C<&N_a1NN2eXkVaBCa(Q}gB4xH!&6BzAlp)3 zToAIMs9`TnqgoN>FW-uof0g{^`3nR__e>Sa} z<;E=#4KwkRZ(QxPQCWvIF-^Tcefo)t6#3i-HTP5iA=PR&GSNF~pXe!RVE!HJcfKv( z2Ktju?f~!GiN0VV`ysWd0r*w}J;ws%OKt#kKpM`GI3Tj36ul87J)?XTtlzub*7YesvUy>3N zH=@@i^x9-jN=6-s@~XLxOF<1UCWEaYxN^Lb9FzBGq~q^}u#%7>Of1iHNx7F$oJ~L5 zFySxfX}GeKq7PM9^?WfW>exJdws5fmAjK6Yj~jhQM}rgF+ne{2o3bM78$h|;*=z_` zYb?SvLrKMTMEcI_JWXKe;V%9X8fEwC1+BZ(Jk&|;E#l&D-#_91(!GjOUVoQGA|&2{ ze%yC>(!FN8iT>&YS|~S`lGpoMZ(uz;Pu<85=lLP9rie4-&)Qe7Kv7>ukdzu`ZzZ`I z^&~u00#ek7w2a%ezy2!}K(dtW)dFBmlKeR} z8vjh?%U@Im;Hp~G*s!;IWZ}MWk>6N!NR|7AUsFAn!T4P?f`odThGo4@=6icPE{GQ- zIS;bw)zbRLTy-=m$I4ldI|i6e_XKcn`D_hX^bPn7T{#b3e~u)ysr8a>5&Ni_q*Rpp zTfeZ4lLNLWohbpnNIPLJ^<;C0SW4P5V8 z-k2gpnUyxJgcma18uj|9srttf+qm!aa=VOJRcWZUX*9Mua*ifB%ekyTxYtR={P-N= zEFOz%NR+R5`ADVx2@)x}L)G5#u`n@v+2wK`setw;FG(pBfe((*)P|2m-S89((hv0G zUVC4xyvCZWR!_+&&zj60cm`Q8E<{tabDUA#h2aGXUHOBm&DS2Iv%6`?$X_~`==|7? zkF_$f!t$gbL=5c$@bYVdX=iZjVZ0=4FkUcTE|~_2Ec+^zOD%MPQ49synBi^rb{hS#`f-hE z&W2ZuOLOFF_#T&{R`=wF7++Y;BNZbJr1Kh{RoL!Vd^(RB((BS$q%N2+t5HI#PGJF3 z@R1T*v_`<>{4o-n?im4+VH*m4JpL}CMM7`dqOZP_bAjzCQOV*lXQ?K<-xmTiJi7H;&~~CxZ_BnH{snj1CJxg;S|U0RB%LA_g*qZ4*&Fs z98zu!YP{v7D%gY@6`ajCZwX1G=JN26U3-bl3RB(wd7DEoj&y5I%;}8IFr{eP=%23n z&8PT9w^f%wgkWVC#e@MxuOH{HOJ+ajWt_l^Pu73vAl*2+O)I`G9OXCFROp|&9by>U zXY>?9K{3w3A7C3NDU>(VGdW-dUpx39^^7uGzotTtJ=QMzoJ?m!Ue(c1oPagG137E&x(Jt0z6=EOVk~RkfR;?Fn z`w~lZn^(LC6kfo|n1*ZG=@S_{PmWVc6hiImX=>>X{9>UFR4$>kbDV7n~_KQ;J$q~LGEayC8{6A7sjGnm8eoM%B>;v2L!1U3*jphb3Z&Q4CMMgR5cN zh#tPeSg)DXnzsw0@o%y)8kZ?G?+Ki>O0uPwz$(?$FJ! zb#5s-<&>`ZiEd|FG$N>*cfMK)HCw;jA@32d_&R|oJUcOtwbOc&z=WZnol<&m!d%+x z#|#Wod21+tx~B=L)mX$9I?ZCmAZo~6zQGGW98D%^`N7OLKx9n;7sWlfKsZ_$ZWCAQ z(3q1lQC8PjUi{v5D|TnyDWp-HEm`-~cprc4B}rGGX1^o(WMO!}4?0@gKb^*tw8~E9 zOZLMd7L1)w7O^|%xbFU8aRfZNZnG?Dhf3gr0(LJSWDh?0I3lq}(dr6i&o&gvm!ysO zr-=0O^h_TWSq{tx5~n;!vf2yh z1ks}T;r;7K%i?I|9T~G#^M|TO#ft>`PiW}%Wh(mZ!km-#EHM_32BQ<7io$aEhZsj@ zoaJzhKYpUL*|$8H>|iI4vcN2xrB+VZn^eAA>@Ii0M>3@BuOD^>In57`HbuNNB z#H7yQrd+hTxcNa|qo4wxn1dkxe(pUQFoh=TLC*p=uo`OreRGg$J;cBm_Wh6O!sGtu z8uG9Uqx)}7Z89!L$1hUc>blscoC0v& zMK#=oOQKVyiyliH@^W&U6z5f~*T10qABQ_Dezc)N3x*cIrd#byp4o|p&^Nay??+cl zbuE^CJwv%)buipO!R>+6t1UOLHkN+zpQyZv${9npXJhUiBXZ8OJRFeNZD^y}^c>AF z+8Mt*{_#+>2D^@shYGimlwN% zATD{{AEVz-^Yz-soNMVczJuQ~OM=FDy|XJca*tYNkE*F`Y-_w}C{R6C1)ibJ@`w?N zq|}2M205Mf6@7AqA@FTBZU>Ruk?d|i`Q83}KSboZY{gTwe}8Xrd4osdr1bPyOLF%D z3fW3xc#Yz#>mKv!t6rW@UXQ7(zB*?VfHP&?(Gfjeg+H(q{*Yc{PPEl=v$Hh6rKMm0 z6@fkKT|+jcxv5O6tXgK=je|+}6lNze`W6yQ<0>B_7a~hXw3w@;;9nIsU673E8MvjLqaibYA(;0!EBu__=DyCI^~EN_nOLmISd2rTA5B*`foCo z8q%+dOGV1!AUF>CI`zFONuAgs7NtRtUu{rFSxWil-g+AI_>wgDG)xFru~0Z!o#v1+S(Yij9PH={HUtXT`M0poWjSY=y1En^Yd3#X zGLV+Fp>FNnOH}5;Zb$ZRr;65> zQFzlT8;l|jqqi3FGkkX^zDHo`6sX{OL@vYuyUY{K-Ub|6WJs^zT!~}^~!ejFvS$?=r*k4I9Pgqjzw&>X8J{}Y+l#EcY4uI znC8gWd|8%)!@B%KSydG37p|9du>xMM|1zQEvHPMJ^mUiGZTK+j%uw2Fpwb!Bf%~Z>Jz>CM z!{ds9_`Z4f&62PQJYqey^UEfRrV~jd*i_GU2aE~DJ{{mKh?$hGwq{P22$(|1!TEH4 zX30lNFAZy4x`G-iwO}HUNVx`O>8nD9<5sjSziMffWwP0uiwL*aW&>#(s5-sXY#W^# zDxy$*v36)*s7CD8zgIMVVP?4?bM97XVHQ?hx$@s#_Dl=YIH!alT;IY#+`u!7=F(t=cD6k^ej^SCc>zHb}(GWv8*R;>--WHxk)2(B)73-aFWZWEo~Sxb%{ z(cbz&A2Kihtlb<~7`pEqL8ZXX`3kHAOHfR$cfVP>cdH0%98}%}klw4Ld&-{ZDF1vo zH94wyM#o6;@_!SHkXHY$9ApgT*U!ZGGPS-?9tXD{U(kwCDc@cEfxV>oR=6XszJiE# z@h3>Mw&~sEJhf@Y~&}sPdsa?wau3 zaBvZ6amm8jvm>)5T65GL3!XSJ=U>Bq$<5NOiTscqzU=j~-~gMXMGzd$0&1r^H9UDV z?$iJkb5EX*NvHchVhEO~#MHMn-Zl6P zJ}-_P&?Pb`hF{y2Q?-J~g1V)~*vRnN+L|QyEuo{IQhi`4- z8U3RqALL<|F zqCD!%b?FEIfCYt?;lAU-T|FZ3WvT<1hEiC&fI0bZ3-~Z*=LGNo^I!amaY@H>z7W%0 zqNf@fmTWe`l0-*z5T7v5D$^K;b}(A9cPVeaZ$u>Emd$)@c-Da}<-NorNYJw_q0_9P zx@fE@|MH9Od)=Qn76jJjj+W|g5ykncG-s#C)c%Ppu%=;wml(eOYh>y`TD2D1NQ)DV z8?B&F$q7+`s1VIDC)w-F(XP4lRUJ4D820|^oiz`v);qgA{PAAokT|XgX%Up#<7>@| zlZI3~st|fK+Ye#tqRrx{{V!dAvvf_OM9r*1ln+F|yDU)txJ<8`Z8Yt`eBqgsKr6~t z)V;CoIP)jwW+p#{yZKSspFmvmtXRXHr=V0;BKSjk12x388+$k0b2mKyf$C)a#HAsE zj;a8n8WUz0&ugMHMj|gob5qvnz}2Otmq+uy5{B3 z!p`V=*_7V+zUK~oCuCyo53eR$`1a1^ok-er0v;l?ImWUSIlPSZE8W|$%R zF>LqEtXR4U1?tNtI69=^n5^C$DqzN4mv1?$Mq`f$A@K8FGi+c;Rd--1Sp1sMP-A>GTApfUPNR{V+t*fCi_QXC!#YP!})@UcAb$f`zMr|Yd6}} zOH~VgCkomKO=E+gn2j@<3Y*0MguJKDql)%!-B86cz1@e=JQJll_vy3)weO~PSkd`cMsnA_^ijz;pG5Xn+HEnveCLyO6 z(hvvOKz-$=Pp>BCgwJJc)Dv}ZHxtOjXsmAlSIIH4Okt{SW+fO- z#g#v7eh{|k^XgXmANL@RDieGb_F9!Ay-k`nyjZwku94-7vnjdk5x8AXx`*vVrDANL z2)mvIQ)hqomU!8;<$K-za$N<4R=wgJZ7NqhC7zXBA)^<{6*>8mznRhxV`*>iJ^6U; zjUvju?84d-p&u&w=yJY4PBGV9NVGd;`<2C#SQr!kN zTxFU?iI-`**Qh(~g=9>@hPLYW5u@ze!q1oAJ+mXZig@K3-qSaW7V{g`?;YzhlZjPw zcga;&!W5Q9(ko!Rm0daBi_(*MN0TtF9L@_A@o@lLyi6J{PCklE- zgD1-r%iA5_6V5~XCUZyX?H~i1m6wTlL`Ma1+*5RDIzr%37OnW&kX<0`*KI41r~Ni* zw`|6{NjW3Rn~mIS`7L7`lm#xzG)y%Ob!liBDQ~D4A{W!#mQrbvj~j_mKf~nuvR-S{ zk%AWvj*cwGh=<;NNHJ1%_^no%t?NC8X*EXfWAYuwGq{i1W)n>_tl8Uz;THb2dR?B< zlfsI=H@yNaXkDs?hUs70Gr=U*rWZ+g2-#*~DkdgBu)lx(P?5N_V*K^x%a`i{5nf(i zcNnxqv|Fqz!2rL|fBf}psegkXhvCf|BY$zfqjJoD_vgxQ-};Af?j9Um2**P5%gf)x ze6DM2)%w?P9XNl3}AXEn{XN~-XL4u-&kffxfPDPZXdww1& z$pk$QlmO0g@I5kOFBV_#1UmYlhgF=Oo_+zYbWIlNo}2F-9N3q- zSfUaVwo<)z3)C(T7f8TtSppqS`GGXyTFX8l$+MgLMRqP6Uwqj&Id_Ng8nFpt=#-L! zbB_TA5(>N9kBk?n1Rl!Q*DGy?Cg*3HU|VsV5XTf#iw%>jLph6lBIuLNWgMQ!25DP#qD7B!m4$xy(cy{ zcAj~MY?U9|bj`LEG0_&7llPI5SwGF?&N+pT%kLNTK7Vv?1Fp}u%67K5>lThYIK2GDGo8T` zRhAb5eghm{czAe5an%oC-07z+(@4=vg4VSpg}OAH|8-xe1R&;r|JtL9>+!!19+dJR z8vM^c`>_Db{(m1<{|hV)bVP=|C%`~($nJ$OewYFaerS-yk2esnnIr9w3hB}6+wQO6 zBIcaC5@$Z6a1s%j{*phvi!g=v6m8)^0&V&Q_SKHqy;02f4hNW=TlMw&G00@cyi5b#}x1H;3uflDi# zW}2n?*M{AWVr)BPFxccQE11;YYBiP@e2>9Ka3VO2M#>LI{mzJCFKWt}a7o5j;4=!G z@A$-oA}Vr#cNpgdOi1F#UnyYFlGFh0g<(Uq2u<0d&QxjtGQ{PjBB5*w*W^ zTfGBQmaV`{bSW?%J-x;ad~^=@Bsc&g%aprt9{yszS~f7j(>Y;HASH~G1Xx3u-ER5|%MH!p83azVb@`}3%;e027kxx*K zTS`t5pWUoWD2?50H3SsUnB$X^hE^rb{lkRtq$yx?tSq=M-TN%90k@x8y-_mYgrg;Y zQ=fC2z-Ay+R8hgXq8BBYnVY*|4q*=C?B@sHWz?!zJ2^f+P(Eot{mX979+DbMj^Z

mpKM5 zRTzH+^ZwyY2OMad=fRE|YoA@;+WLR&y;WRQUDW@(0f9$C6qQC)N~A$L6_6B^Zb4dF zq+1>uK{nkgCEdLVMY^QBOS-$x;CbJ3aqiB=|MKsRd~~zdnsbdg;y33S-)Wu^7X+!f zi&_Flh9tt5SLkAerRaEF`QSnbtGsl z`SA9(01e)EXeI8;o}t)h!u6Zi8O)j8_AzEFj^m{LFqSmA-&nF79Rbzb#l=O+_%B~S zC_lV?Jib2{#?`uI0`1gu;gRqlr&3~K9Lv(4D`?M;?C>2CwBR?i{vmD`UO1R&I_mY* z{u%s;)ZkWFOyB5eo24VE@k(F%bMuW!8nRQH*}I%5G?to2La*^v{V~1u9X=|07_uY`nK69W?%s4uXTyCI3G}MZ zTWJ!>Y|#?KVqjo6iBEgqvlpvP?UUZ}NRt5|S7o(Z?pp%v;Zo;$?8d${YJEA)v0c!M z_o!Q7%dKfx4~?SYU~O1HLFho)S@1zUztHdAVaBIVht4R~xN~3<$pXbQ;NFafUvB`0 zPu<)oPe&2#@JB&`g1mNQ1a8XSPRswtC_3@(IkDfPUTIuetUuzsjnajcNDl4TP4n`` zQOr>mLPA1Hlr6S2fK{~y!V_7GElXEV&s7Z|1nI%t%0>HFk!=gh=H})iwO|8l z?zcz*HB4;q4sakFHH_~w=Xr_Gmw4)(e-Af&5LHm<$=&bCBnOGwMZhF>b!5?W*-33g* zWOFPtEcN3Sap~CWLcS^kG6xf0{l|$fxrWbtcr>wEu;)^Jf7mS?_hEG zmvPrykCOC%9M*BHwL)b4{siLzbk8n7O+or}CYo7m>>?CfGDePWzL`RprONz=!_XLZ-v-ezIOiOQ&vINd zK0q}!p-tko0Srjus|0Q#E~GmEPXu2>$77woIiRW>A&0^&BO`p+m-OoWPZ~=Z*K4An z0dn$AC@zCrcMEn4er)bbq~{8*5znrR)$CcUbLA&uf9AJ!g7s->X>SytKfKL554J2g z<0$9U1+i?8mP_4y%i7fR2LOLVD#II?89(uO? zCfSpPMVL?C|CcWOvOeY8Ytz-&8(>NM9vjuo0xT%Mo|6%nnuw9YlbE{Khtvhjx9Y;; z0vVkiNoVKeFowKL^(-ACA_u_UUbn!>qb@dIUtiAoons4w&KfX{?>^6N?lS|NjyNdenR$H z*dos!$OwE#Q?Aw()9kYcR`nN$MCtqrKG|7WajYw}(m_q{j3(&9Nr7h)0pVmvr#V(L zosNY6?y&%eddXer>a<*E9(R5gNs)#4b+$Zxd02t%Z;H`i0^!3M=C24aQYC)oCLvkU ztW&~h`io2kou28$1w#+(Qy|5_m3Hy0-Uy>-D@|-(o_Gt+vL&?cwZp>#gr?c8bf!)depVsH4!% zTh7J_5vtRwdFK0#J72wMPEJ~u765|Ee{RPp~{RG{iz#SzA_SpQl)X z=8+1IbNYsV%-V6{*}wBxh^ipetq>|d)7Z54@81XImMKVS>V@ol`l+V|dBp3kFy{}X z2+6|cSR+_MKxjgJSZp8L+}xaoCgpUjRSQV)>Q+(8??S40-Tz=b+|$v}(sF$QPF)Lt zj!F=fiUG9CMi`j;WnW2JTAJ}1C4=m-HHMa9MNdiatjdR`RJ62e&euzNJbn}v^+Kr7 zFw496mZk;uP#s{0`GR_?M0l+bUrJin8jfeOJEd3Wf?0J9L!3R*Ha`DPQqben{I7wU zk`kwuBJTy;*Wvtj1({u%tgm17WZ(`u{kPdfb#!zd5(W-Po&HF}jpTRUO-p<0oP5*> zd@09cvWH%GG$3U(1BiEK+7X#Scla{}#iF!YWVv*8?boj}F%XIU-SB{n{I-6|dA+Db zmCWGsWmeA12;^qOM;+)wPxbq_z#z1z>I&}E4*iS~#>QJxLBIUzBzE(_4O96gyO;mer1G_D-z+)G3 zr_l_n_n*J`OLC>@ev=6CC9t)Ox=`=uC$s!D;aOh!)Op?}Z_yc{S({24id#KjN;Ufw zd-jsAZ>y|Q3ZxdA4;!sFaaW=jTsuVM*@Pus;(ToX#ouYgIr;1!T_on`4K=Dp3JPQtcQHs zhNN)G;-B6&ycVH{fP9YJ7w4t$=-%=|L$ng9sHgLgh>K4_Rnm1Arh!B8fr}PIG)Sa&8FpF_T?7IWJ z+AY7d^ke(KH~bStL9l-b*_=Oe%DvP9W}J$a(!$cR*7`gZ9r4g{pLG=r-MjtU7^wl# zzH6l?q$r4ol1v)KG&C!g05?0Cx3Q#baW1vyyN6S2pC~4FOaIf2kT@8E#?Y8Kjm}fE zBE^&fpdJy(Rs+#a@np)4kp!JNQx(GZps;um6P5r!D%|2(Ov9ybPA1f{n z4tL#tpKKEKKlFdAH*w52Gz~gWkQuTr&-;Xc7y{oSB68>K2RveXisgQ!@Iy0ib~=l^ zizN0XKftllzq~D``T=s!v|$}-^E~%Ts39p=xJ8hq#-b6}jkDXumy8ha98)<2F7vcA5+J6unOb@(|61)r>GPt8U_O zZ|_dq{$+iCUtb@m!`2N1hb-2CWm}mrd9e04u-7MT6YG}o$17gZ5W1d?J+=RKmzYgo zJY*W}A&;`Es;*v$^XtAPs8B}%8?1vwfzs9|`f%G3S@%S`NZn$!&i$+!OL*FT@~up@ zcAt;TtG_!x*q1~S5)#HCUB(3rmTX1F2kw?2J#K?- z!UuJF_PAxT!}s$5M%%P+{<%XKAYd`12HdhiXEq(zq(*Z;-BZ0@=xgA7_2yd|X3|yr zW>cz6zR(gKWNz6qUUVto0beQVoX*-Lb-!`^8p0lviEWW$+H60GCCx}{zr47pQoq~I zh<$2VGptDtv*w)nlC67FkBCJ(cDldc4k}3S8U8I#tPridsa-HRiCtxVBunG4WH@un zM4~?qdA&*i!eWabDbH<0v2Mn`r5)R_%xH>rn80wxS?(QJzUQS?Rn8l)Srt`O4sMxm zV66D}_%_ZewanH&#AX-Ac*#r@oCFODkT3}Xe>Yr)#@3)z{A}n6RM2S(3wM|S<6-** zS{2_H-?pS(rW?3J=Of>i7-HG@$j$60F8ihTg zbhX!Q76n0wVZN(6bJ9LD%AHb$&T))(F+NbEm>xevA)Ufua@c~fWpRV*uI_uOh`=o zC+k+Jn#ZM>!kg6)jlf z(zdocDQD4;v=1885&%C`il6ghn_dh>41oDsCI*gy!@#-fO%3q+JzC~limRP#7Sbhs z2G1rR;P_Tw1NmTfDh|5lsz4(AvR0j0nSbUktwq@q$3Jj6K0Z!BX22pX;-+R~v?!@F z40V=2C?sFAva;Oo%?dQfTFbaRrnn`-6LbNwnY__WHXqt=ERTa)u?*R5Wtw?pwfj-y z3j4N@^ffYEo0p>QbzeWSF1(H(AMrt+ZXX<03u}a3o^H)UGmq1&p4a&+6`f8;BtKj;jXmzMsf5n^0P9UAk@`SGLDu9Dcy%F5#piCqLu`qfz>`%)&btQ^DW zjzJm0rBMOa_Oo~xJ~v6u_3$NLE{}(XhW1GD^If36HDk(2of^8Fd;o_*HL8W}wH|)c zUF*Y!ZO312aB-gB2NoPab$v^o`$|P+P;1aS0938e@H%I&M`Ub7f<1fPGSleAa#^F# zw+;jqK#~27^!V#MMG364N$Qc|-m&#HEw<*)sD0CEgBDw&L#-+2$P3iNEX}O$kkoxk zKZ7EIbgaS{8cd&`p{eTzS8vM01VD;}F`kzwQu0Xm4drRg%XDp?CZ=scR7hrCac_<# zkkNdy0vPWCpPw`Tt-Fd+3U}VRU%!6!?C)vTUIi<%|=`ozILm5oW+6|EPN~kLt4LV;9jUCCxZ#Yktw47RdwFRTIHjBGN zF9x@FbP)4~+WE3C-9=`Hu*=di-kIMSM)L@swBY&P3WBh@KMV|YJ z{p14M+06sy$mnRI19E>8rbG7VX4i~2<9&U*o}s%R3m{0d1AqCneW$q)*q^3g^j!dM zN;5e9uDka7K?w||pC$=F4yaRF8$_#-K_rYVsS_i&@yN?g$! z=&mi~)Cj|3yuag1@A9Mmjz1Opw^1X1EkAO@ zz3EQ_TNzF$_IJDA8iLsehlUQ3X$7*UE^sS1;mOFJBGUxTH!5_7g&@Fs3J&b$mGy`2 z5~jQ3Hpl8*@bHF~^zYs3IkJ_9gzsE^o+{W~$|c?UQMgnmugv(|opsia`*e+V6fH-y z>Y&mP!y>&e9rnbY?mQTFc3OfM?!{QR8ivwke%%l(%TFi@ZNKy5}! z*E-N6E8Nu{jd8mvZp(;thEDt57;q8%Xvd#fl?OMXt$R2?JSO8J5cT6NqVz#_9gtr4H0)- zv*)L?Z<{YE5pV>nwazkhNs~cxcSHTi5?h8YA~XGJ(o^tL;JH_$o5-H`x|)to?STE{ z2$EJ7ONjiaow0!8%l^fFW2*bolB$YI7uman@KXL-l(U|`_108v9Rt(F6K=j<+{-E<4nZ1LZk9j?Tf3SS690S~!BlnrcQ+5QcHC&=qAtr4U4IN&P>j34HwxtlD1aH6mSDaX_ zQ)79BaMN9|rI1YAH7Cq1O64!eD9hgzD@gzPxeU8b_LQ_LJ;e zih-b9;zyDK^l4ZO=DB4t>B0LA0dHoSVvB~R7OSmZ0Wvmn|EZF$uI^IxrW$RnY~K?2 zEPTn)SG8&95KldIpzM3bU@xEts|-7YJ%Lstgxwl6%J&b}+km#{D%7K85#lV}rvw0L zMp!nu{RtTPYsqufRz7Jwe4%zzo0Bz-^QB=>lmPHmBAMFWNVHsL!u9jv3@oyM0}xb zemIRZx9c?B+nB0#C2&r5j84-*3cu0NsA6}Qh>kpUW46(83{JD7xp?#-jJ4mqBo{-p zd#A=)Hor^IV5C9_LOXtXdb+!qN$hnBdp%U-$1wIK6bxUW`5gb@veCsced|9N@SpcU zmZh!L%HoVSLZTyek^2G$oy@>X^c=cf0@;geP8wt1Mt(Nf&Z_eizcjH__LowzK2``3 zj*c5+gY2JT(P4Hv1bfcDr0wg6-nLUg3TB~-Y#e`IrNjlKhjU4gC?B#X%L4J5LEHjU^#(-eC#oes^2&%*- z2Cld$YpEA|Ni3tfxqO? zjVX?5)%)yM7K3RILg&r#^ERs$7qMBxxjGCtI`0UzjJPAsUVB_x@27@+{A~9x6zk3I zNDApInw1{m7W8B5F26m)0}TyM*FPIC*)`4>n`EuuTr3vd480}la9W1pBx-Pfw4Kdog@yQq`gltBdczjE_ z>cUN(rtE%ZM|zfmtTLX-fOB6mvb)dVg`rjI!32fbr_kOwJK5684?!=ysl$LLpKlm`c8&aF)om(rSDYOMlq8=5G`{7oxK0W zP#l^K$@G*vtg*5>u3mGVy=^BKYpv>+p}pC#cIlzP=fPA}+gbySnLRzGO!2dCEq19-AKXt>mWPj}?;-Q_%~QivxT5 zb>zw`N}1Hh2=%4S7x)Nddx9_&D9Gkb!YJpyNfOv?j~oYz?C69XkO`l~V|QN=+`04Q z486cW%ESt5?*ZLaJ@i@IEq{X1^=Q36cSuM{fl3(O{vB01U&=~t$}H=HX3R3)I4H%W zmoKmWX>k+u97)D2PG|K{B{)ps|Cnffd3-Zj@R_RHDUtBeSkhP??PH1mZjGje4S9jM zW!;q`?OSWHB1*RM3x6Y3pu}?M|du#-!m6~nt`I8?{yh=$r5qS-b zM?-!zFb-YiY;p8By+v7y&wf#$KhfV&CNFqL-<)NAe zO94mC;|KM%m6Za2D3*d~?MsvH@hfTJG3Sh8qd+I`iq0+P?)cwwsC4%9P&FZ~GNs~fT^xI=Z zxf#Ml`gl>^Lc~g#WG!*LiWb|aL*!` z7<5-=ZK&&7HfNh_r}*%p$L(W9{61(YzWHwVu%ss64_}BCRjFm6uN1&s+mbU4I%XZ5lNRuqp}9-)-tSAd6I?U%9-LqxlUcJ` zuVGXi7_eg&XdsL`g4k$#sC9}26!6C*ypL(<+RtiRYd*t}^O7`SZp!;=G>e+IFx=R7 zoU8LWg)=Ql(M(SMi5~{@8B~I=+wVYF7kD(EAL6h#7Zt^#d z?)X|~nUkj4&-?Zy@RtB5afeSWRG;STR!CJ+oB2@a*hAt&`enn-7g|pnd~p?N6v*?P&jx*jk*88k5qP&GJjkhMIM~`{z z0waBPD@9+0>7t`38p`ps&h9!b&9z@LeH_9X9gBHVce9dk+PkO3IdfUL;4a)n_}z)h z3cv8qN#1Ve6Q#+6h+$1Tr-QL%yu$PXr_5;1-#!O54Gej>Z{VZLizLmrKBMQLq3b3D z6K8CXq-)&T9rLrqHJA3qO)w@@Kb(%38eE0>S5%9y?`?9JAVqM-i)gd6zWAQ;%(2CO z0E^xVJ%i<>;9L473)aynOEWawy~98y=6c5W?9!T-E=i=UlD0ErYSgl0+l}AcNBd90 z6X65?mxn0#ZXZ}KiNPP2u-FO^Y*;Mo3bzkq90GqWvs-8>%QD5jWnC`)bY!09D4~N- zr}#^zzQJ{Un+k1`tv6oZ_U1E$NL2UO!vyHvzd`M{L)B`U?hoJB%CJ6R#-8X-J#>8a zTmPn)5gvK<-Q10ksx>h!G|=_~t1mU@=Xy6){zgFWJ;pHG z=Ro8rmtgob%aSDP$g)F z{@3z{{>8adFX>+9SU2>fdaP(@^Q=>9sc|9k3NtZAM5z9{DK=RUy;;n^T$FF1VK=4; zc_*>-boEFVw9|duQ{C*KAeWxCB?GPG8q)bIa zjgS@r>H(ccn3`ks+ngwgu1Bh6#ETAzS|r_dz5n649@D;~vAZw4b~U?g+<$a~SyYQ*d$`MYM!NEi{J7eibRW2E0 zO3#NJ?v=@KbhnUn>#piP4)0T{#+=gLd?jbqyOy2v=mAp?H)Dq;b$`Vk>GEB?uuU80 zFYuTH5?}(uyQhL1-S3Ji(cxs`CcMDQxA@9=|0CZ_)@bzX+@*5w4DncDa~%gei8=t= zjNp;8byK0~>B(AuKjzG_V79u|KTOh2rAe|}K-#un6(^k*8ENdzQ_G06M2Em*N>Cf~ z8I*5p7(0A&p=2$t*O@65rn{#51RnGq;*j+!l9Y>-nS1#@tG|SGQMsXe)pN&!i$&F~ z(6X+WO$F8N#B3nB`C35~&^CkHe~D}k!MT=8n8~WN?nz=S_k{J6Fqc{f&2FpsaRw^Y z%B5+-#fOXDO4l7(J(facbf$2V^42rzPLy<^+YvOnvN&?WBnGrj*x;@7);F}dW5{6u zFjieeq?w8-FO^$cv(}+UoayiE_e)Kth=LVAz0<`RJ5iv zn;`)IDxUd{Dg78tz%v`WahY_&BxTk9@!;2e9F)(QMF_)wmQJ6huF`{)FzEim^X7cN zGq}w?aAP#jYUz4?$Eo<7xuun)pzZ0>Nu~`*x@ni>CQEeb%aIm1TLzu*7UcY(|Jry) z(x$zr3;heTWE$g6^sa<%WBdp^9T`zd78{hOpDC+ydX5vO^Tb3aXsd|ediw80>Us|! z9UF;a%gMG=)IW-Z;N3031 za}p-dnLTlGQ}bas;cFL6*oIrE*Bqe8ucViUZn1{XKlx?Vv2&>}nWu5C{qL1iS;iMz zh${&y@#t7qxIeZ);0smxr1q8d_gFUxvl79!nEE;Mc*%j4F?6VW%7)6s9zVJD=hp4r zac%A|k7x1<3C1F>sW9L3eqj18PP}yaSmqiiKB1ynf3TvHCpUEiNZ(0i=|U1G+Rhfi zvcyA*JcHIO=x#o<>tw_R&~Q4SGvuc`_syPVFIoL}#QhSu5&iz%s<*EJFbWBZQ}W#> z9M=&z4m#359kFr1SKWN;&F%H2XDO(u?B5F`;l{sAOxD4D;nqGYGuY6&mBjKRPgH<_ zOin}a#Roc0`{Ci4tQlrZ;V}Ji(QKz5QupR3dJZSeC;yxH-A^YE&Yt+iG>Gr){la7z zi-oQX6a=tS!_)a{c~3in`|}Zkn1LfxP(nU^W~h07r4aK&_0=V6x9zcfiOr8 z(VoZtl|1`S8`VF4Y2j?y*o3QiEEKWG?2ms;;5IR-{MfGGBMwT;br?;EZ3im~$5~7@#1q@lboW`tPhz z8fW7sEj;p|LW9!q=u=OG4u-_5|Mx7wUio>Jb0C6MQ&IMF0e^6fbMM!#q08R`|Iqsn za|oWw@NfpgmL|itX4S{bj^xw!x3yZG;77Q>d}mR7@_tzFSfFn-=YO8Shi1RSp?7?+ znxTsyzN{8?rt=%4RqI^+ue923tMYyv2@~y*`Wac#)Wosx)q6n>0PYi9lJ77}QgLVk zbX$jPG*g}=qW2G17G3&|d?CaHk{b>1b@qAtUV#qyF$4pBB#fPN+unN;FFANBuT4pO zVV}Z>%Y&XbkFAJ&?Nc(ZvhC4m8D&w{Pu7{nImR?=opobqAkM%Os_(Sl#oNu}{SuL4 zX}k059^{El%-%QD`v~mqpDsyaMS+2p z_N|uA2B|!d?uc3CUO|(L#H6&NiEq+hu4C(m{OL*DCF+yLy_$EwKUIf)3S6s}CCUi8 za(!kXaK!mh%Lj5p@wDIgCWIlBm)I0arbeSsrbx)H2He;ub$tpA<$6CYD6io(s%oxH zuUS0}A6@qFcC<%b>F=+Z&@2T9R*Ly(r}zjux`6h38l0h;(cbPdR}lAF5?Xed^2wW zqv}9i_hXvA#uM{gw{3;=2G%(_f$FF2XsrH&2W~ll(#KC7T`Fz$d+35|MlKj1b z9h*^6%iicWB{?W7Q>kj}^vPVlW6Q5o`{Bx;T0YC5y5^%M8H;S|Y(+Mn_hy#P2L~LS1VM z$}sn1F=@?eBhO1d6;XRGzJC&~F=yrNc$O?7N-z3!0eTdJds)3t;NrB?cY4<G!P>ajP&lZqODG#v5%n$aF5Cv8ag^Ba7RW^feT9RJg`5WRpNpr(r*m5WoaK*w zBBP6XD6ON;Ib`zUk4aHFtH#9XE}b8z56er!xci$#PIlUHSH-V#92Gj2*|kgAnpQ)f zWNdFPFf|v~_1GMKUZ2Qv55FF4P5yM!FLvKS*0rUUf1D1!Tv|MP>8{P6*V@7FHhRz3ad1*kl@-Bg_#I|IS0z;hsdMo)EDnn%brBjNmk8CpAjp?O#_L>}c?-}BnP6dLn)ak7 zrZ>l?SmH)FZ9sFl!T%oTovWfZHk$h1Ef=fh?bqU%u|_5m9`cs0nQ~oXY}v6RTSGn+ z{9~FZyX$$05`TS!wcKE$1#(LvOuJwiKb~=<|7v~XpD7QXJ%|%hn2=6IlyIIj(lUq7 zp%s1zB{T3SXU-NXYCW^Z*9A0^O=Ift!rA6nw7#q-;kcraAvdNwQ38+*2r?oY#o7$f7mJOs`+u%?CQYb7=Y;7-Wxy%bDefE*$N-KiIfY@oXMclgUAo-{jc~ zJuzFUrW<(n#cnh9hf-i9t0N9-WfDX5E^s&fr*o!LN%g;$ zaJQB*l4bB1^Xwz->ZJKo>6Kux9}YhZxq8uvn*UO8ee4uZ+*)NCa#H1_k7K@ybAfX! zbUGtJ{!Ta!N1_e}imZXd=DETPX2#`MBR$!--z$as?x&UTK(e{u`@syeAoI_Bn#2aF zaU$T4pF1Wp#thskh%4_h5a3&GNh>M%^ZCoB3W9g;fkK9z>d7&9^Tsg-$~_f5#78ir_0IGr&q?;`-VKxqkkpVk)4Bo z;X0X)yFDXxWpP4fJ zgEtqOopc?ajPma27NhiC3Jm;TE#zK_@t<)YI6#I+jb%yfaLokoy_)%d&mAs16_Ic-gj9M#yUX31 zXHx@v0P(Ep{O^T@mADUg46_V)Cg}!&lcmKO>}3p!PH1nO7d-junleml)RKfou?*2w zW#bL1TsEOTdjOo&M%yopQ$*;25tg+=bsW$kyQ7vZPkz3C#V(S>a8SaEDLnqp&iZ@h z#XtgSyTu1sn|yI+IUnb>W3P%eHb|GEz4NOd`Y^7oWEC)+`jw!sQ+??^=Sy&WKb;Pb zvSDPF2aOU@rcYJdgrRLDPoih{_S3PlR)~XJ%Vr-FCZMY9E~dEgJkh{dGd^f8oMclfmIv}PtRXKxo0J)9|%{&zoPDPu_7D~8GXYsEJwF4kpz zC$Eo7i<*=$r;6##xmsRqq9&GKnt${xiViYA*f0F%I`-l_0ehszoGKs$`EZAgVlb!? z4>}5qb$kY8!YxV5_h}0=vJJy{swzqD$^&J*Dq+g;{l#O6!NN^5a6 za50jZCXg+l@ruoyc++tMnO7ONMK3Xo&G|F$pL=wKuU#({ZKuw8^*v{|3>fM#JZFus z$M$(vC#@<27q*zB7LsPCjFo`rv>ES)BJUOQcBt!=$R8O;V3d3^%8Aup}GxR2#(~vF8sy zOmA!Wm2sO@S5wmB{ksx^R%Ew_adBAjbxe$hiZ1lT=F&z&>t2eLxU4+1h5nTBYcUo( zc${P+^P=wY!uFo*PamXW zq0*U2cRvgkyMVUTlquQjTi3Cj{Gj3k1gBP}9pQ2e5<~!|J+)>#=(fSGy!k&JXSl%9 zKsm(oc=iv9-m|irIw+k?N@FFDpf~yHfY>h*;XLeY#r7o|4Zkw>D;0xI5l7G5M9u=s zk-mflRKEI-e=maW$ldSd+l6<}t_1>Vp3S_Uv09)K3%sko!>kXPz58&fD*l$i-*T*q zUAU2(C~qG0J;W-tFu&4Icvdo@-uRQY=u0d9x49*P7P9q>|jr`Hs7aio?qOLXh2Hq`sdg7jwD-X6;8N#FBk?wp_govuK zJoMWh>{vBr(RH`%6xbFytiUrN+@!sBn8b#r*37XLAla8n!Ytmx%T1wTBnw$v*E`!R z%ZIZ6&bIRurZ^gCTV$!4GpgPEifABM)7_#t|8j=Mv#Ih%R;K&OzS&>tP%hIEO;_Zc_c>ybY5o}0!G!Xx4ma2rJTQRgu(E-F(@ z2I}K?jLba=6+D^(#E3_xjd)#?YF4gGyj<;=4TKds8B_emtJgD=;rmj(|gfM5gl+j@B8ia!)D^$I? zG>qlEQ_TO}`xmwOo$Ct?Jl_QWw8ir%s^%@mfi#X~=TW12qA z9ebNDHQ-eB-kEZbupg`FoE^KRzRSLXyC&+obnR~VvnkQwfEeds8vblLx|&U(NX(#Z z(9=le6p`R8E}q>zBTPkiv~xZiboh@)82^%Td|8t1W2N8;EU7U8oe*k{t_jpU$z3dv zuZjk|D!w0sFhi8CKFV$Ru;avO{i+Kz0^-!`<&{OURx78A%km!Q{!w%Uhk=)Ul7yBd z5cR@O1*`&!=5WnVJU%l5JkFWFQyr(wXf)10w54I zN@&Gc80Kqrk;DQgM-Iw}kM64as-^cYlE`#l@RxK?iUS|!{h7ZQ34MZyb}vw5)I`qS zzo9xPsw`vsI;5ANP;$}uh=)_!J^?Oepgevr`xS&IS=E7*LWw5QUykdNA%^)Mn4$ia zDw8o`Y1YRO{oG^xJYrMq>8l3w62n!$yLePsk}7U@!sDWIoO%A-{DS9PMxB9^XAyk6 zAkJcN=8pu+KAPiQX)d@z!ReN2CRs{Xxwqy}SD3zneZ2MWSz#Cn>FD^v|BPgogw1!V zren!>#}r3SLUV%Rdoz!7+*YA?_bw#2qS5q`Q#MS!oRHry6p9He?0fHekiv z@ipNP5r7GT%Kr}BY&p4|;OLTkbsv)OX4ndPXfoMmC}i}NR!&F#AoRTo@nKPEy6JLA zQxab2d%lX!Dn5p7zl#U&-Lj`uYCwqyCK@iX^1utzInE?*vbAdRoDq>S>2bU+C8QQV z;DuJvdX`$~ra75>R{lEW7oTOB8tb9CYHh>yB|s{jM8FNV5JBgsm2VN2yo9N^5?vty zYkto^={OhEW6A9P#CuL_)KmReUz9No=v4P~Yrcn;E90zDVdJ_it z^pDhG(@ZWR;D+G-`va?{k`Vn@XQgJFTTAy-f&`~~f`Rt{+BE`2iohUuoqO*{6Ol(Y zCy_^%m@tw&xoS+8C2XfSV;N%B5HCl3=n6V<5Nw_W+z3*06c7suyZZOzVQre@%9|hH z5OB-vGBHsCo|SI8>h9<{;#wS{O1XuWmC4kS(@WQ8Ud&y|mC%tSDP=qL067+SgX!;AyFSEO<rF3OX-B4rA%XB_fjd{R!1W8fMw@$i>UGS!n zN&aN{m{@x6M$FXmRJT-92PvVm{_d_ zXBLE;W~N5=>R%Wd!+`}_`um3;K(QJpN|!&M(e`Qb=!+}hD0L0jI)Tv8{%ZyZD65m@ z|7fDLlHR*?WjeraYD=CVsHpSBIvx~zm=Dp}Snue4WpIlpmM+ucXMOQh`-f3y zqvLt1)l&HCSM-8NI*hzPgc@s(iIVlF!g{CMqah>thU&LD zW8I(I$sLoOG*JpLZD!4Kcq`=EqYY!BPwKKZe2M(XZJMbJdG{QwCUR<2;qjol1cZ1| zjGmR>nX?CLRJzOYmhJCv+~(?bt=b$iJ|YYZh^!3nR3TXoL$DR5i#-36Ll~48XV}`& z?%bPom(EeZr-B~T!YKJIc|{_Nj>1Z=UmdDk#g(+$`!pf9{f=yG&Rf8b_dn!@Z0~E8 z)eSLLxd}bklAe^Oq1DrUEb5xQZT;wz5n#^30;Jl;Jk05DrGRoCOU!30AJS^ZY=y5x z%uxE?^p~e{N)3lOIHlsbBeEffW)kh*hVyDOo}4|l?qz9{`o`AebgM}j$iw}cd$2OGBJkz8v*K6G;zW2dwgQi>~PHEomNCj zO{g@dpv&i)tTe@}21X+W!tKH`*0$j2p*O^b_dVCp6DO_=o%U57+?Y01A!ytgKE8!Q z|9j&HzN?vn=|R5S%`;2b1SNj@K?5W+C|d%gvZP&vL)dc=fLzPFxLL-Bv?D6mk-M7U zGG>JhpiNq&OgdObnO{Jdh`MSE*!gp7{o4t?>;=n}SD7Ipx&`F``BCHo0rSRGxQO=X zgF!YD=TP5Q`ect!uop7CZ6kUQkOBXEc~DE_gdykVX0;(pG;I=;7y-`vvl6rL`?eiv z_sw=WC2zI%Wc_!y$7R(97510AM0D+cG_pH}cY6eXtG&qgy9Wt5Zr#i)QBF~i$xu!W zi=v7_A>N;BZwj6;r^d!`AV)Xf!@g$4wd8uD3{{A0B;CPe6saB%#{%aW@IE{0cG@g0 z=KCRou1`eaLEcf$+050kW)}3ye7um<{2Z+>&e3j^#r;KafRqv01Ubg?()sNBys0Rq z08F9Wm5^6SHl0tdB@R}=Dh6L4BPbyVKrj7$!IVI3%NMDPgsir@+boaF!B(fdu}oCa z7Azv@E@-|@4dUZ|4Fe8jRNL~%WNh%uGw&eh4IiEDsKt~*FQr3o(n6Dvf3I&4P;RIn zuE>B^?JAaWw57xI+4jR94h^lj**hBAe{@QRI%nPS!dUEB!xkiy=DVEBWs8ksrLFT3c4A89o2<;8UpuUM($$V+M8fKLrJXt;b5G5itZmHuP2vJVj@6<-;Cf691$`Dez4K+JWh280ho zRZ0p^9?&$P9Gi%FJ*^YRxmGhLj_#||jLZA%@($0Q)Ct&iw*2?zj^OBlB3SH@H{1`H zw;`tBin;Ryk#-dx9w9^G`sN>QGaflw^xUfa?>eAXVopVi zOiaW){5y!D7$*Qo^K@2khEl1yGQ2I1qMUDOxz}TABT*lqSQ@);-=xI!Q~&P#kSDSm z71804b%KOz9;=|>M9;mRdw+TCcfF#<= z=g7&f^qH1fUvtj8A0=hDG$`qoYs&aO&nQD2wx;Mh8t*Ln za^aat8X*EX;nDlB`6JWA7=um63&Ov5;0kjTmI&qe#gr>-31Im z&PH~M3M=e*wD*m=P`7D!(+pZ@nE#uR_0vOod!lhEDOsuZ<$|H|%zgGhD#V61M((z$ zc3#3Cx_P9bC49A3!ekJfB-y249Uu3dpGXuDygsPbq_BXAwV_XJpsL1SHt?v8wE#fZ!1CuG*XDQ@?yCFrN+A_IJrCChx1#akOm}jf^DBz>f28 z^B}5NKCzKQ1*x#hxG`=hEY2u=+y!xOAY4|>0UIm7M;2ak7k0;mU(2?>9hrSb(CG2< zWzF@j!-sD8!S>kc(#Bm4#qq;MhPni#3}a2(WQde}p#GSf&8DIs1!#Z77LR(WePOoqC?qgekPscE|j2y1^^gkki(Md?tVX<|KE#&3lY-L}XvhPAl*|Q8nwy}&E zyX?EkKC+D6bA5l`?;p><&!5ld4_+^?8TWk7J@?#m&w1bTc7|E|e-L3FMpAp_*UyxY z?#TdZIsuTsa3lq6z7ewIZNzhw0SVQalXnXtA4aYMHY7LA2#u^41XJwlzc@0G$lm_* zGOMTG-Ny4nfKeWuup$W04nOWGzVpw-&&U(#!9i!gr#7XX6)3dY+eGoIJNoM;)9Gl^ zHy&apHFSN}&ZpL#3S@8N#nMrvp;t-aPC0|>lKD+1;qi67UwNGsD|eijywq}YC#tK+ zF%tooOTfyn%WW&rSh{rR1QLyr#ha6jE^lfhk-6F+ICBe$3aoFV6MHt&Sg}tt$M!FM#}JS7(%D;EfckDW~VT*Z#aceUQqaFs=yV};bNcX6Q0X)He3QY%9MH07nw~oen=4C z9k?b9C+C^hb9owNJKW-`FhmU7_qH(={V)Xue~UPW`6ySUaQ5EZPq#jKu7_@(N) z7L@VUR4VM-OM%Ebz&hV($tXaKHE*cuKC{^i&B^B6CC$w2+r&PLbV&oj@K|7D$dO$jq@fC1GF)Rp?nZ}+Q( zAg^Q&08mEZ*U6ug6jCZhrZkC$G9>&cq({b;?ekHqp%5HVW;0fz!iu;Us*zqlPulj{b z0i0^70?vI{&1DZ#FfRUNc;Gq_#@{Fb=J^ zz@@`L#tPrswLCI@n3lS`COfBO2j-8QxIf+rHY-tEHNiGKk6 zpNZArR7HQ4C94+FKHW(UG7Ba7-b3%eT-H&Xd_?v-i9WbOk3>m=q`&9%Q(1w_0fC_A zW6Fp~3=U6A<-bMGd?z$QccKHFY$pKtCLSZv$f?Y(y_#Y^#wx$_P_;8{xbkvJcEt>9LhCz0I6-6pbZXy6>-vK? z8uJ4a@w!f{kFF4n7=@L{hdkOMi=7l?QDRbQCQJ4=>Axy3Df)kyI-UhUmR-R}3P^UQZeg_A z;v= zThx>Vp0u$=NVD(<#v-?m-XbyFWnTGQx{+aVIcrsKfJjDGQrgt|V|}Svx+0!==k{Mk z0_X>CV3XCzo01KvPvzv<@NMA4W;>3e{Xzi_hjPyK2kTlp5oZBKZo-Qaf{9tA&6?oP z!+SEYj&U%6EA(4fltWcG5x|0cf~xThEAff=>?|-vd0%92$tzxYy{B@>!fxevLbCVfL<2{^WT=PP_0aK3Eud))bqtgSL&D{#dr~fO{ zd>jF#Sq(Xfo{URwJAK}w&y3}dgW7(@&Um|=yqj5#WyRK|&tQCsO%Y)i!SSuM4H0G| zipyMfrgmMJz5CMF)b;vczUb=Q-@wsN)@9h|-%I_i4-3PAQ0D&hxy+rsMdwR#h--`KE2)XPrJtBeF z9)s@h2R29H(>@-z6J64LN@13>>oN)o!~3eXL(x*3jk}ko9YvwYy6qyv63;-?UH?u; zcI<{$&ogd?K@qirra&lq?|_!pWg9N)zue$j{lVw;K_I}QWuOsOj0BZw+(fkAyS|*n zfc+cOWPgf^tzo*)-+W``WtzpuaxP|a`F@ytS`j4SGKnp%X_%c%jHyl5u}=Ud!!-M6 zlYH_iWDgpGLV_{DN8%-p|B~J z>Ryjza9+dvl2n)Nxr4A|;z(9UBJ<%d)y~+tMk2RY2nFK!aJE0z2J>xy)v;mTP!y?o z_$1JCJy%MM0&?MZ)@)I`w!CD*TrI6q>-|_R$c+4Aq%rzbyWFSqBT$dQ@^r5&V!wqR z$Rgh0w=5)>iECpa(6T_e)fFvgCXJL7tAy3&slPPJ4;QhghdNE1!*&VRBwX5eGOSel z^Oe@xo%V*?qqA>M?RPxoV8`jC-}Vj6K~J^+boRykwAEVx*WWfc01_V4Z8e#y)Sp6t z^#;X_N`_&ArW8Eho^FoDwgl$~bt&Z2hW&r7$O6O=Ay#HQofFFs2 z-$Lj}=Yj|Xb!f45G7h#)FhUV^ANh_8@~%G)^eh6GPkwDlPwQyY_>h8HXV)k%DBCTO z>)Vnm__(KS9Bpf!tSo^$e3^{|!y4|N!Rhk4-r2m8k!SL)vW?@LeXM9hlrWhomRD_I zx(r=zQb`(i>^Qk2LKVgSRD*X&>88WC`iyg1Jokn~A^XesaYS!nPH^UHzm0~`G(hj6B>>V6g z8q_^Ad8Il?|M4{^Vi_}g+fEOrnkAg4Glmhkycc@u{|GpeQ7DM_rLVr`|1ygoGm1?j zkBh({n{DQfrjb)yA5S6el&LOSV1|I#DLuaaj*_U6@8d4&0TSEE9b(BtnL5#=Sq^RGpbH+F!FIGIC2 z_ZH^V9~}+hTru*j5B*fA>a@;G&h0@Ao&&K1OwN1zY*qb6*5 zYwRJORW_@!0Whb{rO!#30N7^E$5@$<>U2an%)ky z=of#@&!&>Foo!8hwnltk12G zSQ4lGa*#WFWf2#+NLNYzB|PqJFuHC37axu=y+M=SBiOUg8A1zg-*n}l66Aays#yda z1GP(mf@GwPA5Cb{(bs(s712MBrYm;jMD!v!rf0}P|M~j%%$y)%%j`EQ6?M3Cx~?TF ze5O15w`51ee)avO4Vq0tV6$M+_l~hx*Yy^TgAazk!!RsNaLX?<7%gh8YnT<1=6% zofVAbn(f8!u9Cu;)BNT!&_6!gnIkAEnPFD78)1MzW4Wf+%Xsl8OXX8{9ews)H-J~# zd6F49qdKpxc!2qzF&E=2qrGiE^_Y1kUi$g>+?x7@Ntld64Ykes`Gf`CR!0Q@GyQPs zYyM9S6f0PF4PZ%V_7AmmBtKHU2Zjz?Wz9Ak*nn86rg)<;5=Rocjg$y2r7+MoLT9FPfPlJT7|* z;upt#G|P%09^wbwxJe=HjOdN|6=#Jd0tvGJH?TFRGpLr&H*K89>n595P?eMjx1?ZM zxGEqF!j3j`G)f1>(0!!_?*yB<{`DPBm-W`N$uqx@ZMI(!4c4iopc~E6atEKnUTyHv z-*CRPAHl)Rx)Q#WX@`HjRw+zJMBE`4Qh58u&rB98ETBU6fQQAQSPDbeOMepmyY2otn(1b2=zE}+HBpmgZ{i{fJb(yLXd zEJ2lr;~USV>60DMZLlMJappp3gI_}FCZqFq`eDf`5k_>Z-_WYQ0nYSc7!;q490D;d zPOIo0rk+{bDX`HX?i6dT-8LZ?Yy7M}Zeh{z9QGUh?M@ zw3G>+yNf%F@t-QM{oNYRD|ByGZ6KQAt8v9m(TSQOk>0r*m&B+{3X!939F}d_jAMgv zNr&0w&rd6t;FA5W>6*E>^=3z-c}2QEGyJ^fp3Om3W+#7j;``yd1fh%9NQ17g{~nXW zFLBq#Ib6D?Lf0~h$V^UGjNH;YR8AuL5f$(g_-FlXLl5QM`3!Pn7LMQJ$@AfxgqsLL zQHALg*&+A%VXOL1;l$Q`N(=h0UpmroxCiBRUbnk8lRcjWq+2!WN)Tm#$GV*8RugxB z*-<~uO%eVjpQ$_U!6SOafPGDIR~O>p01YZk^e6$hdQMfBQ+`duGoTdtEC|o&$#X8; z8J?kr%pI)TIp;T)jz`nETgLs#5exI&#jhP_gV~KrYIHo-)Y#M}X}u6HQm)c=KUTQY zy8@5tsaJX0Wx2J6%cyx+kVeK2SId2=ZRJ1SfDOhw_v8Jr%KR#-kN*G%Dtz#z0|tQdrQ;Tow+k} zsEbEF%C3h@pSo?VeeB{+*GD1Zrv0j%d_H||_`_UMY~}lB{%N5O{fER#*q~ZrfumSo z)+LqphoMlo>kIFq?%xk6_hFxqwR>G+)cOKV2cOOthw0~;OW3|p!1cg0?$616-uiX# z#DpHs3BRyPk&Qi4^wWfh{-ul~=%}T?O%nv7iCNXjG3EX&WT#>n5j5T|x#ipgCMK~E3Tpx|1g1noPY8?Hj z+nU2QT3xq5LV_$(#f;chlw~1}P_Ni_)=%@z3dymT@8>b$2DZM4F|v7Z&R>I4Ha&#vUS% zN0SP(clz5YCl!4ZEKq;$D%7~X5pkLLs$-hUYhGI!-|aZ64>eL5Bo%L@gxBVRd(LPDyeftWIBIofrSZ+ZhiDb|q1-h4SP^MMv&_eke$ zOR1yy2~%6N6*pgijdakkV%TCdsivWp{kk}(I`^S+-uV__O687>^-bic2)(Pdn=rk)w+xySyA zg?ck%4y}LbUV;hdb$GYy*l7((tY{N~mmqqsiX1m|F7dfJsrhAd@hSgbTUO1T=Z!on zTr{EOqLOO1Pa;&>f7!@QvUE${&ahcG7Ym4<9=Ca`5Tb@?^sBWrXsRmOd0I?4nQ=Oz zUAM%BIfTl3a{gwHx}|*Rdz#BfztB0@{c824wHnNwHJAzMJr~-Rs$O1qSD~3OUuS^K zxF89i37)UXxPJVNs$lB(i!-YVnF(!khrk7AN(>~=>=W;}QpYVAeXKv8uYV&5W4Qk(zCEevb{2V$~9D#8?W#y{z z!)|11=`81eW~^J>tEd$dxLDLyN(nUz9-}rVGsm+2J%?2>GGknkXEYy8&MN1BgOH-+ z?Rzf(gA{WoFFORFhtuYO3plwXiofk$$=r?0Z;_g8B0~&>6%{-$A1{jDxTGa9iv_ zFhyjZxAF$7@IP7vnO)6$IC9GGbT048K3kJ8tZZ}l6XxyWy=~)O&<<8ZcDO>$(+k)V zCS`g!^SF}rOh0^=x_2n?cEj*@#7mxEhsnHl>=iidc2_FeZELVYiHAyoOd)uaBjcwsRTv79Vne;v#^xE)0_2_<`#c?F}dRq!`%FLMUQvy)vkXkn%*V2`eUcEv8;Bx zIF_AfHkQFruJiO{{D&c#Ox-2^GhcR}8=GIOcC05cORY5-RZHJUJ2;}?Ebx*?H zUbl}nzn<%nCn0I~IUSwxj}>ivzFEH!p^N$!{qP8vxG#LH?yEZ6;Ys z11tA3x@tp_VRiD z$fB2n|I?=(UcLKAJuGLNOET29tnrUN@?Oaog+kibEUV%!ENJmI@x>5VYQ`FCbJ=@l zw$+BxW=26qs=4Qy-n&tTxhYQjw!2TBzEdq}2*^|RXeY_k>nk%xTg&%%|`qgLGG@> z{2y)PoRnIdeWdmRcC22!KW>?Xn^Z>6yOJIgJ^L<)PAol3Dr+8E%ppZXVE3-Lhfc3Hu%$ z;Ca6M2}jO!jP;B}i3ElnJ#xNUllL{-XK1yXKyBK$w~73}QjcQ&RdO}KhJ!4pPkKVQ ze@SHt#S*~%_6nJZVrU3A8{(q1jX-d?8t;_I$->pw1@0V7hFS!~US!GcsGZMK9PCGn zf@z9^>D&|36fJ({A9Nb3wuo$2)N>6iZO7q*Y?j9tqn_{2gz`M}RPlmab2`I z&%%SfkO#A0kPaR{%%c@G(;xiGU5zA;Q*YGfeF{`nR99HkQ02S+oGTo-0t{caoU!Ws z)hlFt8=>=4sL!G}RQ(enOCvEAhgPW)67$j{j(~T{0dmbIk58B#FS3-+cqkASY$E;g zVWR}w?2Ln22q9si5Wso@;opXw3f-vH@Xh|>mvzlC{$*`;WwkxIqna?d7 z>&(}63#maDi%w2S;WfANaQuqM!1qp0K7wQlCiau#c5({~F9YVHw6yQ;LJvj#dp{?N zaNcKvzt?z0QLL1`R*3tkas8f|S!x@ajX4&rd7S}+!AyfjGvOu$`i_nwy)WXz!^5>g z`&_;s^LnuD`J|YBpl;}EBZ$PuPf&Mqe>$A*lItgDLp zF}4=aCRu*axIT-69Iggxq08nUSol@<@#qI$QQ4%QF4LmWD^5vGWn`CmJua@G;QQ*u zix<6~gL!U-g{Ffj`|cDfS`JylZcEEs>6`);z+YlEJUKae0J!IV8ZH^LVF$uaGMkNr zG31Tt8=M+HmseNKQGgq7kb;JTB`qoGOZesJ^LOvw9TlrxExQARY6imXRHfuT;s^9K zZPDy9QBhGG>>L~e(6N`Bb3fH@a0cB@0-exzY$Y8!Y~5gaHpsk>+5$3(r$v^ zqVjFF^dj&k?tt;;$HpOT(#RH&ARz&^PGK+ocu7|EW&FmW4N_yCbUOa*4H!daRyP(0b`621-odcZWVEt)3-JH{6Zrr6x1Nr9 z9@+clO25P1K_JZo{J2gdMSut?KFwzY!$n>{GB$Q-Zw&?GE5o*AxzdNYZVdi__p)e{^TZDf3>2vHx|YI3 zZR~ZyKcD&u#c}!36!9#>c%#*i>knQa3b~gpcLYs=a0hbu6NQf*zD(06hZ{4VPD4uukAZu^H~m_4+p|`Y`Lh2TS==o0;ee?yJ7%x$XU4^Uw@qt5gJ^!P1sETB1AdlC5*C&&=qkhSg6 zclu_lTgFq=C%|p!-)Y+EJu+1S)AW&{PO{kju43=l*vc8v7euH0Y8Ot#$J_gE0-vaf z_r%0RDrVKu{*4*k`C`MnTqbp|q-)8H$&To^28MO=``=AYS_}ir((PhP)8OoZn;Zka zGo#MXspm1S;^~jB25g)I-I@KoS?_;Tdz{JWps-9F)ZB9Pdwg18sYU3NbH)CA`pxe7 z^QL0kn`N?qUNkagB)GBpaCglot8cR%<%&Hf4@f@t%d?^XD#Iq`7(@m!ft++WjP8)h z;vrrs(t6ha&h1MFL?IcNTb(=bg|wuRhMU|c%_ql)&>L(~H?@3x4!KEIn#Bh~%Su5rDPUG~5F^Z;hh4fL66Na#elG(x-34Np6iZCyb_{3$Bm zK@4PMcv!}82|hoL!D8P$<{DPS9X4OPh*N84$XGMa>7z2Tuov%N?s&<~&t@YIHVy>+@1iX(<=1-#F%VC$P-V{Yy<5iat%+ z0R83f+&ijq3T;|IGLE zensV1|2yRTaJwh3f9?#40;fQcp?jSnv%p=!ZMSS>bvSSkSg`csNYulZk;$#P9P)T_ z;@TLo=)f3gk;=F5=r1loL>g)Od9&=zTkAiMIPh+$3&(}NQ=ZV*{9T%Uk8(G^Oc}{^ z7gy*Uf0Ot^UYu3|==}J7r~Ij90h8csp^XILJ7+?Z>`4+fxV`3)bMZ0i2@mMbtKld2 zIVzm%-`MXSyVVlUTCi*6_irJ(wQ@7^^u8tris&ArV6PnoK6(|6KbW(-?26UN*p@`3 zyy>>jTLBH5?Qx#wWiG(PcGO@_emzH~wF3=o;27p+Sm`{)75gCPSech0+`I}H%_i`p zP$;lm*Q{YoeHGBSd)^!}k1?_}=CIy>cA+knTQ#SbPv!CGhLyejBCj%~g@gW+YtmDi zK+A&6k(^2r^Y{R8n{f}=XOblu$qz~CO5Fegqhcq$k?lA*553YcX#&}pds z&~lp36zFh#$7(nWaHn9Om%_7Q>r()Af5f4~D@fyp8ZXtq!E{a*U!TxnyL;0p&21NK zWYrsoJb8cR*{0O6S-@Hf`qPKuCO&736G*MR&jD|w#z+*DjA}KmyTvEZr1==i`x?>i z$RQ7MP?ZqiLv@xdqX9vP$$R}9gCB5se_MMCNaj?H|LIBc*=7PeJtlIKFBXQzY2}Gh zOp*v)x%BLSO??fh{ul6_yK?v%VW$Au{A(8tGi9aAXY42+{j=IM7t;OA#r3qwKtICng) zQa8ukH0VTa)7WsU>Uc;pL;$bxui4Rd7w@Paf2$YzC6Ye~++jx7LdNZK$|<5!+@t*R zt=rLRy!2}yg!Qa}%MESR4KS!0ck5Drq-a^xyq!q`dOD9wh6?h!P5KdQr~D|ZxqtUe zO#ECM*lKQW&iu3;-=YNkxMB@v2B5_Uu6Gyn4(jl;*;;(nFKESNTqttEz5@iYH{!Lr zhkYlT_Ib;`W8^%`ll_#ao9n@5{04`?96j^*_jl>KRrQ^=nE=U}kgNK3#G|8{yS`WN zZ+4q)O{&}vh&@*IYUHn~zkdUW2kZMW^_1fv^hGrExq`MG0}N;5J`@qPv#5QuR?{g* z9KAOtkFSJECWqpn+HMG7PE>*S7ZT|a^)*T)_X1RTdlMezQ!!oCWzNpe7yQt*px1~G zWEYxvyDvX##?HcD&x=corNt%Kc*)G9to pm-)f}wZ6};kpBPv)wL1@%}*{owcggRC}aabk8d2{{VJZ#C8Ax diff --git a/articles/prior_pred_checks_files/figure-html/unnamed-chunk-5-1.png b/articles/prior_pred_checks_files/figure-html/unnamed-chunk-5-1.png index b79b928b50543858ea7ed0657b9080dbd0c62985..d8b39c0e362c6ca6e6c393ffdb0838d3729b9826 100644 GIT binary patch literal 59231 zcmeEtRa9I-*Ja}&KnM^#K+ptt*8~U-32u!93+~!@65QP(!QI`1ySuy7xI@n+-~Y|S zJkPw%T`TEctnR*5r_R}D?_G5RzsO5qyd-)F0)a53B*hd#AS4$M2toe^GVm8L{Dcnh zg8WTJLJW8Xu3OPYFW?2$MpDBb1S0W&{s$Mnb!r3xy#q;!eN=WyIb3pe*H-g@!Di|! zO^vId_7W9_1EA=3T zJR-PbFCzB;um777Fw|k!L3zifHa|bVuarNzY@qXGM-f>!7VVwIu-k-<#cO*v9CKP% zvhafHOqad;0uuwHc`h?TOsqd?-hel5etmq$g~a;}#zw=j33z4+C%k9Ig=ElTw$fx| zB2bJXL6XY1t=8L{wHxZFtvK(X6DSFn&lu-Q8!7p=m!J6<1%6sHea1F0AcnrW$Bv=8 zD_a3o2QH(ycnHY~d3|~w(~V^0t)weSo3;)3I^&>$^3>%4xzvF7Yc_#>nyal&VDI4< zEe3e+OFj_RscQZbW{hUj#uo@fkD`{gZ_Fw#=<0AT8q|U;U=nhhH*+f4j`*SZy>&K0 zWk7F8J|i9$7MwKHGh=ccHW#@qDSdwP?~)8u z^i})c@y`;=7Zcq(t1r19cd;fgSmx#6xX3?jIB0mxdT-fx{Y#9(R%ZM0N7ezd(UA-l z_R+=>KWR9(y16xC36g4*kiVy8@gwWWb=bzk_wV0#^AE2qEiF%#=`LYmfza*Wzkf3u z�AX6S{9Fn&|K>k3_&!&CL(&(no4pW2M30LNrh&;S}It`o)iKAKu*ES$m!*i*9rY zlT}q$Pvt7+Hz!UVu3VDNI67}z$IH^hA1~BGVWE#4o->Zz8s@b`2E%Y>J`z5y?A`8G z!0jUq!gm^uomQ86TC9p6Pft!xekEEy!SC`LN8bZs>CW$d`vURvOLuvnVS21Y((10e z;gm^^C!Jf%Z`1L>2jos&+@q_nkXIQp;BItROX=w7kjcCrPEFpU8ueQ~SR7_nS6BDh zrf`F1;DSR~QO%Ep2@H_^{QNvU;aLMD3F)dK3HjapXqK#bfEk{;Jy%|?%J;DeFCwbeEg!g?JN5^@;avmul7K+K2({ERCf z)H!Xi$=&{{`p~OKhoHKuiopSVjkRhW!U{ulpvDdi*x*qE4HQ*lHkRC@hTSepQepp_ zgyucb=aH_$3jEKBmR1gLb8&gTh165xbad}^YVX>=1Zt+YDxY!MdD~X*92&bq;~9K$ zJG$3!j9FB@LttPf2P9V5#v}q6%G2TKZ_z+?h8oX5JUI*9_-K2(BJRNNdA*|Nn zVieV)qN2g!q=I)s=0_wY2Q3JrRN@rpU-FkaWI1(~I$R_yPX|27%z_7Eu$!olYg-?W zSWY}Z27@Rx^Cc}UE%TZSCLyk5dhcf$ILCJQ`T6NXScO3;loDYVhC~Hade=t_*M=04 zF8%n7>~_ZnI4p@bmX?O?M?S#eBoH;}+Dm9@;twCnARPQX>T*v&O4@>d!{p7n zO`MvVTJ36`43v!8^t=}_5z)L#K!SopGLB%b$WCm4Z20^)50kLmHm_2&P*!0nDr{)~ z1xv;AY5@SWXddE9{hGD=AuB&W|8kb(&7V-_Q6W_VgQr&~8s;N}L_~MT2H}EE1Z4_B zx0@|MF;kY2))_{v0BF^!*yx|w|2TkZnF~qy`$g-a!XuB7$w2xf&L7j{2`o4^QE$Vu zi0~HGzr%|^6#+<=B9JfW{u=6K+hkc(&7V^VHGRg&wDgec?&W5P7oq?rhrszDJN}zp zmlhWR&+LPSMgUKt4aYt%0#EVf>WA|=IXV3s9;1#+O5e(7yEiP^QSQ@YHh6U5DcU40 zEstEhdSa@t7(vtX&b76*jT;sQm?V6YqIcJ1B!q;w$a-wHEyz4QJLlk@PAQDip-We4 ziY;+VTfh1Bs!yR=$M!=i>7qy zMA;VmrWtXu?o0@Qp4Eaub(dLib^vX=7BY5V=Z`ixkoi$^_grWB^b_jI-rz(ct^M1b z?@n`$OKRb@L(dZhigeHi0VOScm{nekBJ#%Rn{U!jLcHGT6kem89(%AeSb)^4Q}doA zgZMil5!ZtzU$9KpmmxVdXVbKNJz zn1UChy)FylnPZE;I>s_3tO=}>bJIQVcnt=p5~qR<%4f~NGhoo-2G6kLa~inOln=+% z3zdpxJ>)TxidwQF!61SU7ZVD?-0cv&-sLhdSXVbaIQzAwJNeaGgB5=nS0$gmLcZ)s zfvYaPq8JUZ{PmXMQ+NnK7h$I=}Fu|;Iz;BaVV-L6bL5<+{JB{<&_gj~5>)7TEz@CpD? z5Xfg#)e`tj4%6vQ@TZxh;wG17A<#|&Gl>!FW*q!H#GuYs-gglWMxwdb5Epa6jAoTM zDxd#0i6?VP>1#nZ{;Z75XJn-+N+}lXB*_61Z6F)g?#{Iy;!@&d}+^=*g4Tec~VV+M2=W8l8>hq|10;d2|+SR!;E45@N#-!)-Jo@Ldj zTb{DMyuD7cNJf}LG8lwk&Ha+V)gm&3idIQ{^Y~;!GuNXO-Na1s2STu2BdDr{p2rwR zk&9@Z=<;ydlMbw7y-lv zOdzI{TlYSo#%q9vKf*FZB;HNXGk+?)-(W=*EB#3P18Plh)?m=#6|4e` zfr;5_9c8K5(a`~W^}v6!OtAn9?0>8%sup$vbGxQkBFy~)(4zP0@m`m}Iql* zoDg>)N?@Lq*1#hAPWTmfJ%))b}ErD6sc zRijW;Hw(T@MSZgkjWziwKx&<^Du{4l9M^h(vk@+w?2-9zLae}#Xsx!w6;*4!zjHT^ zJLz-74eWjRYIe=?UK#D{%k;)0EVck~nfiWxD=e&l8TptVW z@IXtE%BGhEmy?0qW2|)H+~DvON{51b_+0?r3zsRpaL}_rLmIC8;>{hZIqkjN_R8G@ zK6u7s(Q!!|_fDCv8rNk^6B2yTaD;O>aO2*>3~~NSpz)a;WPj`hT@#0yjT?Piz z1R*-`PKGliJ-3qN*Ve_4VFwMR7G`DzgH48-nwm-AnMaTf>&epE+S(JUP$Swb8V5id zO#txt>Kzvsmv_(rt(|^)kzn(=w+CR^8U}+ZpzZ`=pwJ#KFE6JeNEHDormJ7v9FA%% zo*G_MJ=fY*_)OVA6Vua9aAg2>4m@-M!n>3%ovmu@hYR~tTx_WXlp4=@&4}ZY5zven z%i3*ID$`un13Sxm%q%R5;9Jm|JfO?XuxQva&~bDTbVrJghh=#~v1#s#B(PP021_Sh)$)=aU{tAeIU)ZDGe<%jI!63cl$oD5b z0n*llLHBoPcno>=;A?~FdHGe7=m#dTtijlM!9nF?UABb-Qsc0E#^EDTOIyN;m=mMC z>};dRk)3-^mJ~^FHnu7)usgbG#VT(1%?UgA2c=X$VPGi)aAR~$Ipo_+VAhc?` zN*2PZO9XJdzSFRo$w_5GbmSF_;w5wj>ZLLdVW5i5fQe!P((Xe<@p}ivcaf5a=hs-_ zJqtzE*6=0p4c_?Px?1L~JLk8^(S4iTp{%)EM;kMNV&7bW7<$mf&L_J*8VMI}@Ngz3 zpV_Sg_fKX++MF@cxlaVzFF?d~*SEarb%A!*4J0TAkN?HW4dHlYtmj5=B&C<*Awvov zbwdWl1HvyvGv7qW(nLGnUmfx9HXOr`oKuYJHVdq+#ZnYk-lHG zilDMDPp*MPC~VsvbegHHt_DX)XIsGyQ-ae^^;b(DJYnG0`z2^vB2^k~?P+Cs`1bZT z9?-36R{6$vhJ{vjeMa762SV#gAY^5%mA6>ll2nSZM=I|r&OiNEDGZWScWnT|o8tLm zlhB@dEI4T3A`ORS&y)i?c~AmiL&|w#KmJEG2L$||x|z0}{@-_>|5N+}2z9LgUbJ7k z4?zDEHWed#<*gD7nCw2P%$nzlOQ13ZLC zwoA}n&DDrNn5dYTp|)o!!s|%v(OUY?XW#L=)k5V+I(hHRTh9E*S*8z0fnPO_=e$_P z?YY5^vMaFR`9xPw7VVx=x_Fv0GZq*SAe+kBbXOUCl8t8&B|(14qFZkeKJzuO_aaea z@mixToP9v04Xx6J0gJY3IhCH}s#+bwxEDp=b4M~;YA^)4UcS0{EAgHpGs+u58`XUT zm`A^aH4NFt3iFWaivX>!AriO=5kW~9!k(6*YBBJy8I+ev`3-HMJj@-L+j{)Amg*7 zE}v#N;6-5yxt%{!7!+5hP$U4pE~$Ba{H`4VO71a6)az9!M3g~J^lsCcKuR->kLRxv z^IKjgOwp`E;}*Aj;SrTy3iuE0^osAMM=Q_6Z4PtGe^!(dW&CCn0aGo#qAA|$>Y(+6 zjbo(=I&gqv?cKxm2Uot`yg~_kNVq@d5x^Jz6)+ft^2Jw8T0ZFt@K2%vNKl7C{+6@ra#1z zuM7yCJ^ZF>l@%B%^}~!JYOWUys^+$b9_c0omx&_+w=vvqaK3**QinEBJQx4T(?5EF zPGcVXH^s@B(`!Ad#BVoqSbk}|gU~e3K>SzldzN0gVBMIM3I9ENhl>jv)?K`CU-Np6 zl}L@5fmj+-F!bZ#WX_8!HJ+U4%=UPlZ{AF_J|qH(bOnYDJG+7MI#8*lu9?2I7t(FG zjMw?eNTHO8Sla78GvP(v?T(N)(o$8#+3z=O_Q}&^JRJ7amAMEznGkSfDU~QKw_YEp zh22{Gq^Dqh{*tT%^a@Mh1Sy00UQtacp%QNj>!s|P;@n>)l<AI!vi zY)<9_nFLQbgCnf@=>{pVRhe2L-X$_oG2}5aG{RU>(-d-g63bPi=NJFzPOR7z+KoZr$^as-gh?%-S_XInX4bE4&Tt--ik`4 zxop3Nr15s1RQmHq3H-KeYDG9VkX%xTYE^m^jr?;8l0K2npKDoK8{38=#DgY3KQ!4n zo@Ze)>+(gd^S929R5BYyH*HIxA2lYR)Q|}tqlkAZJ=Z)|_yzhh9M{Z1O+8&N^}s_eqYPcOWJy{Syw2i_s}Xxy zaZvD*jQ-nK)y_XzMO*p!VHME&4uRW;7bvg7-fA7Nn8VE?>D8&78U#D2wNp*_~S@-P$qRwxPn(6uvp1;gFO2>~xM@e8I- z_|^24h)_p*!HD%yh%y)pjKZcBXjlZNgJebbtUad8;-YvO@%lyQ1oPyHc?EJ z8|@_W?@mnExuf1Tx3Px(--;R*w8fX-o zXqd}rDYmk6Va2z7OGd?CnKU(pH#V8F(g{+X6-lh*N;*YxX6I+jr~+&jFFS-Ww??2@vPCUprhJ^?P^~&rte)hIaOZ z=nlD*{vi@*GdbT6R>jq=d@n@%(Bh}pnA<+YePZ|4!dV~Ry3}qgNmQ3(fi0QyV&Bnf zIWeBo2?2fg^YrR$xbe(%jS6;Z_gi`mxb(F_@!JucBmdpzN;ev;Ai#!y4#O_t;tO}y z#)d5Fzlq?=1+DyYwl=@8rka)cREL#04v54Xz*+Cab@r2-Z$I2`K$@DAK+yT@@QLUT zT#5EnCvUL%dGuJYZ4_pOW6z#WHw^`acvdZpqHG6F%=cB{I(uo%jD{|&rtir3&&yVW zZhqWI-*bhQzySYe>=dXb^`9uqmk-JRYezuPeezmr<%j#FBTCb&$~?;@SGxR3-RN6b zb0zCweel7yA=Q3C4V~xxp#GH*gdig_0w%9F@b;~ynAqmlK7uuJBVq>Ey2;SnnWa>$ z=#u0WZQMJOvB~)EIJ)&m zExc$VSr61w;l1_PH)%cP0dGnfooiR$x}xVH*4a5uuo_`X_sB>nJ}il%xa|L;oQwBV zpmThs>+vY6(@m||O$r)D5qjA)u<%8UrVI#rR*DzW3lw*Y)_7j5&m z+cyA#=s{Yj4;W04=8&|lH&O#a;B4FZKs3nD>uHDI=FN*U`;moLY^3e|+_dnV$+rK2 zGY9B8QtEhG0ztdM-72~fG^I~=z~3EXx}STmq?F#R0?;Cw6v~A@DrbByKN+riwATPU zX--KR7#*ABb=e*p0387sCItnl^zCvISeqmq@1X@6gEW;Xh=@^J;aFCmf$}<%@T;#{ zP!9khuV`SXH!oiIwJd7ltWSoSF=;Hf#TF9J)m8XZHkxUSza?j@(Q|*(p~dsfQ*LAx zrOrrgb5?YactJ?_WB)CeA2nz!B0Q9y=*3-gqL^_u@ldI4U4&j2zaT15Hru%^PhD+8 z5ozj2Rm0=yWHg)3b?!!joNL-$)lMmtUUJvR<3rlP0lgO&hr6JAl!!C}OO1m;b0}#c z&0%gKuX8X7jnRto$&Y~EDuDiW>7TFixo@v{FN%?a<@6h7YEOcuLW?X*|5X0=RhJ96 zYIqsf^CzV?D~vI>+HPx~29MM4{2)|}#fcv!8gq=_<`;@^Xl;$PGtb@lPI(H#>l0o8 z$3!?d9_N%y`dR%d@pndA`WNN|X7|4G00b6hf#MDtF!)+P*Ka@+6yy!ellaB0ef)(9 zj=%{kvjH|17AC>Dgy9*#j3!0pbh(KoM8)&>$O2H{7wHK>F{sooT@XQpgVVYDz8HhN z7dOD<5%8HvCg_c{kprd>>%VIVmTIniQkzJKgr&A!?~>fWF9?D8k6-nVWe$;bR}hW| zPRYd0;CG>~F{*r&C-PX=@>zKzW8MIWvg<{Kl{TC)OJhSxa}f1V zmx><`wu5@K7ede@mAdsygx~` zsbXd1DY!bZN9Z0Ke+mdbUUq9r`{qUlyljduX(KM=9!K`=QG5^bR#}6_ZYa8ImdZd< z7IIzJBE-WhBfjO^&lSRU>X&uHKKgovQR(#sD=`GSX+2aTX&GJ{4rqJYHGlL~{bZ-b z;kBD{0#%L^Ncr*YIv-Fx5O(k$ymfX7)qj?+ApHRWXt|T7oU9vMns-Cekx$~MN-j~DxSu6N6U=8gw^lB0%C^}rUU?>JIpM06 z&*O|iOgL$e5%3ViM1`1i=OWTOnKZkB9-Z_MzpNYOg#a{rc`aemu8?Jmv_)0Nrs9Dh z19TJTsjwD37h)}_<}O$aSU38+yBW9vazPDO0}h@(l$Yij=5L}8)C_CKmvo;*jl_b~ zPfdKYnh-G;ku5+0$Q~)>WyVpMZ&X!&rK_bac1Fdq)_0P=q9MyN(Hl!aX2+>L3=&zj zZcl@Mea5d{UcuU0V>xDCiZ;f_M<^TeLqZp7BmnTa&rz{62#%m5N8HKbvyk7osIYqw${|;n6jiIqeK0Jli(>etv%G9bX3{$-W>@gdIb?enq^L4tvx4Vnbm2f zgJH2dsBn_(Jlbq-#r^~g#}fcwmaEXYsj1Uj4PU2@zh>|)hrhyZMQe_EmL|N#0FSz; z{mg%^x}>|F5EoL!YDC1q4Z;2y04RxmZRu>G7n2}{?|BKyghKDX>A5oW)2nia;`#gY zg*1n!`8-Q&+ox9Bu2k}{rV9)`O7D%f?12N*lB9(-o?qjNBw5WuG2r6&3GTuF>W$E) zXpc>gR>XtDTWe$O($D`d+{*0u8`_;rYC))XKtRYoi2#W@XjBkW3Da@F8ERFlhf=VUkIhk-RIab+O8j zi=VavYu@2N@JO=kw#s2nAtPIo+j$PR)D`|GSKuW$Vb2|+Rh~YD5X`*Ya zDH~gW{H11G8}rYfw#tS$o4#VkrL_e{bGRT-_o~AY1edN4hMW!=9uYkAb$q7c4q?rN zS{wsdVvA3$i)O`dYc=!@FHjw5+=!4#M@PbhkjlAIelM^8K;P)NchVg2hZ2)w>Ny+h zs(6!Daz?adv?vVxN3Jle{)5=R)7q7KV@$pmp?@Jft2tLT>Q!)e5VN3c&n>xNBaOV3 z2C~>gNGJjzLZwuj%*zucg|vS;&6Cef7GCMyQiXG^^j!Wp<;Bdi-XXF$d#^tI(apDR zAdY+dtFDe<)IJ4V!)JdyamjgS7sBv>fS3$m8CkRZ{fy0y&~Dy#%s==a#9im(mj+0p zvTx5Hep{B5RA4miW5&_1b;b4Xbysal_COS7C$D%I_o zU&H00-q)MS;S8y4X$|Mm9GaYdS8Rrd{13!ZcZbB8sE=v7Z)G%X@|5K;w&GjwFD;7$ z=sOWt!r6*Feyva)x$cs%=iEKnd~Kkl1q|O%h%VG3IVLBKghaiPa9sC>erX-r3@Iwf zVVNm5C)eT6nK|6zdBAM`L6&npydNmU&*;I=O#R&x?rQr`2EZ}x=9>IGnw(_DgZV<% zIrj$EQXr$b6c7MPF<$0sLt;ZDqVlWMLZWdHz|0qGA|?1xq>EQ6YtL}VhC!>72xf>| zZqx`qf6rBIT<9DbFsJ~eD}&uJ$UUMZKkr4%_8uO_?Q?J6VJaax^07em@xZ(x%Qaag zaex*ij(v171Q&SrvZ|2GhPt*{YvyFj8wuU`SD` zwO%n`?Rg>+5A_ecLOo@CX=?Gaf84GqD6+c~w0)gFMhXsE6q72EnhG}as{u*Y>&`A* z@tN(~swwwnhdCVjUf+~-lGF-|Q~JD}h2=6bIvI7sqUcH+NXt3J^Dn1cqx1dlQENz= zkM+m>cmliXnEgz+63vO;q?)FNs`Ji)V*9r;;?QnLLD_}K-P-OrD^9ay z%U1dB_fWBpDeYE+z~_$8i@I>Nr@5-_9kKE|yP*!dDZ#+)G)kFSCz4nB$)Kf+*dJ3D zQyGCF4>Nv9?ERWZ0~b`fHY)w;O5;kvp66bbI!>#6xcK7LtM)b+(!I4F8BLdtqL1i} z<%^!0sEPp}b`}(_Z*oeW$lR;;>a`g`04<@~X;LIStE}Se2aG;=#FK^VPj~u0fb<^- z3Aq5pf=DoMZ;f7T62PT*oTUp)&uz}@0YGO<2P}wRGqvaLdb}c*oeD*>eqnFE*sDYY$4^xniPGmftL73{;>ZpY zA(SV*+hHil-l1${UJ<3a2^BFFE1?*~3#^nUu|l#YgnFYD#5v?6t9}d5jW&;j>IEHt7UZ zGtPi!CZhZKYCMOy`Fz1ixRcTH-|2Rhe_czwH=${{G4j@?@9XQrZuuG~{@TNrF8HB< zLBAil?Wm^-(ku}D`OuZzuQ8dREA-dNzALpWITVkUa_cLBN>EQ6ICOTC3|bhNFWQnm40&Sx*!NRdd{wf?AGj z)hUchUC8bwP1z)B;XitdhwA%!US>z`@$>2ky1gPS(LV^A_$POQy4OUL`{YYhbwBdt z4b11O6PCUOv*zVD+d94Ja;-y>9qnu-7@)?%4nf;8-X z@uA1Bf0c^tL`TBod(~oEd1)3zEflEX7-4FcY@3>6P0S+Si^D`l>d_O)Q>`sk>|uE! zle&PG)Oa`I$bbMBD?m<%@ZwfP7v?jJEAw`j{c#-ZxLIfp0yd1o45(bNRuKYblw-u2 zU0X+fXOd5FX?^-RZuC~%@aj2jqh*(Yt~!pLiXUCrcZha_ZoY8tcB*+lcEL~q4AT16 zq6Colcyc9NU>PmS8#}?G*}s?kL`}~EQK#ER!>PQuhNp>Kf7yM~JekXsV7X2s%uOxOzisdMo-2^jJ_pdc4_1Vxc+zqLGtLv1*`i zaGX@^n`NE+9KPNgS*CX4Qrc83`qPHjxO0&Sv%$0O@drTcjO2m+5_H&8s0f0$7BL0U zh1?ljB+d?xjhV#dE?T$ePx@nq)SelDsq*yo8fU!J`v^`5pixVX#J#nrA%GNq?gMfw zQVqHfj|UIyz^`F z*6RG3R-Fd0mJTp6&1{;nPiqrqkrPRlsyDb)?P34x7H_@SxM7k_B@S*-W5=x>WaXTX zhN^(^!S1{vsG?T_4`}^iIYjnWaVCyP@Ur~!(TanpdWywrePb0p+ z6~SUFtD`MNNFX7(rKk7>XyrGbO5)_zqWz@%5BZua@z~uYU~VNV<((Ziz|WQ}x+vgg zS)-E}aMWwUA-U7EcE({sE~7ru-`WMWysVKI94 z3HC22+Q_dji092@tY-sa;^qU=w~AxuRD`8=qW_J|e)D8aCj&bpv*lBCA?|F&G@v4^ zrVY&jOH3w*X_%?|K>Av!k!wA-oGk(jmV^#h0^pdXz4uqnxI4kz2P9%5il`eXq!Kf3 z*Y8W``?Oep_0kQQ+wGYE4sw}$3-^~W2IpT}{pJ)y;0TpBo^PjQj3>2*08G`$Z!s(0 z3UzvAh}((cYEpFs9*Y(@;ng?%Q)s!hM|1L}-o`frFcDqc3QcsS$S zHZ*0(88nAIQvts z7HSuxyYVeTCb$=OZ`V1WHGl?IVHQ_PYUC6HWf|<%KUOqnFmyE61$h5JCCUJfn8bT6 zcI~0KMy=;cG)&`j+eK%?No?f&_*QA2QI}`;b?ML++I}9U1wgPP?XnO{Wz*N_+Av4Q zzW8KTN^M6NtPYmUkKu>hf|8+j&A~u58;kSx&0?%NqswS={64Tiy^(z~ zhRf2~O#MvV{f3kMQnyA#Ma|2Nl4AYQigs)`rTt6{7U&Q{|3RhG`PXQ~b~`%MLa_J$ zdX=#cuN`}$8w@;z^~n?5GMtlLe9OJMO*7=gM6nKMV28S_SlXIAHTES^Sb9^s=Fsed ziz4#u54~Yx8i4(OZD_L~kj{b4{68^i6ZliBBXY+kwPlVce>OaU=OLtf7#rae#`>mI zzuQ%7%)G%+BpaG^<6!um3)6nC#6**ZdwQRV=dQ3%nGN>h9)Ko1gz3YjY~leaO3Mv| z`r@rn6{^e&y^kJ9LK3O`oy4)^WCv&OwPohuaF6h@XmOZxN|4q;z|INLpDo*Htx0qS z5+&r0`o2nFH+(zu^-cusFM>i;MfqPl@tg6cZ5HQrul^J6aMl?^e12l(w2w{I^F!%2 zq1haW%g6uZ{5!78oWphL%jHz|;N(AYU06U*R{Ca=}ly307urT2ehoZ9IcJ;8!6{kdhMRa61S^({NB})L2 z$YKHyI30XM4$Z7;pWsAycA@;TAFAh`@n9RDKWUY*QZc{}AcaIQa{;u^S%W|`P{LpI zg8PE8I*lxWmL2T!K^5nlluV9uJT+o|Y7)U`v8A{!ImCm}o3*T81qv=@=p*|a zd^EwLi501_&62cQOuI6FPI8HRi)qblbO1(c1~BUF2mbd;hIY-){6v!wwV((ed%T%- zXS-jiHKUdG(YdUF0fVUKK&z7h3<}rF5+-adu$a zlbQ>_0VD|z2=h8B@W!KqRn=~q!oE-6yp0x??u@u-o(6)~?*n*coYR|3hxn7RP#keu zOBGztY34j4kM=AlJD?}wczpuaw%JV$U+~d+jGyP{2sdJj?y7>&=cZd;HNtN_6tyN>%X)YiSdV|eicADD zR(^52QJan3P1WyVQUab7g^H~__EegP-hSshzdt4{@!7+9qYa#I5Jd0_625IEICp#J zG>E6aDqZx5+>Rien+yAEd!?xTilhZ258;_Ik{6g`lsW>+_|C2tU2U}XVD?;AOzb7O z5mPTyx7k4Lla;F6tO5h~T#_ky9ZVB|&wpM<;5o0FF+ToeJnT6HVXP^@)~WG@KyxbN zefD*CF)G$cX#JqpFIM3!lM{CF1<{<^hqsW#))!}8`%bKN*IPPQRi}{pQSFH6V zHhodOKT;I>>>foD?j4tQI&TW;Apxd`O;pfw-j-Xpx@qWxbL~KO9h|W5PN(sNv5=03T&(53bN5UgvYqc9Hu*ju-YdVdZ(9* z)u2m%48r!h4rXUu@IwH9zM`J*wmj)}3Yp0~G;A9mz1gC^v1=hfOgb97$?lu1nUYgE zc#ANrvugUMI#%Ie$(8D^L9gIOkp7TxS$%7>NTfV?{E7B8vic&yZ~d22=861k z-l7mN)83b^_D!;94@`1ywxSU0(9FBwrEu);+pk{SEBiJ54^s=5ufH1Z14dKd<)Hwo zI{KbeVOa6$d&QT4e6DOfljc+x>YQ%Ga|0l?7j=L6sKfRc&KDG%Op!7v@OYorACXS4 z#;r)$Pwk4o$}TLqqBmTg);{4){BDWm-Sf{YgU^eBRtKgM zS@K3fL~APs;t+S8(ahqcZP z5)XT!EdRRN!3|`Ieo>xX8_lQJdL1UaPuk7SfV=Zn!e-M$L{LNvjFgI$wp%4cv|53C znOUjU@fp|&_B~oKxhAqb*L&aXN!94K{fFow3|TqGm)c<9$0EzY4sfc1cfrmXtqeY+ z;jeJ(06CF*?K`M`DJwLw(tnu3NCe-|&K)Is2LTrZD6fX=D7&&MYCb;x=Z4eU^N(-7 zO-AAOSpbFj0DC`e3{@QfKLXCA#J3&@ky<`&7R8qB0jXi#3IZAy*U!E0FUVl*iX4EY z1;D;w5#H&4d=m=A@svokis18lAO#?n;-18n5kDkqT?xV@rGUmk6HPyoao4EGg$`^~ z1aE9k>kh;{*$ae9iEXO4Oy2j(7S&WyOIywg_o3vJW|9x`zMtA^y`Z^sYH?P5g(q<0 zWZ~xUr59?W`h=LEh}|t)vz=g>h6IShyUzpcK$wGllmK{MZ%VgJSEKl}i3kKfx?Z4h zH0OPg;%75T&*^RaGv`5h3^;7y4AedttY-x};Wa*t=+daDqW%jU?!e}n_Ka9=7iQZ1 z=yu19Xvg_$1gtFscn4#O6H{+UJtTvU(kA+DfsNFl`VWnp(`NFl-bjwP9BL+B_%)%C z_`1(N0QD!eNw)GdAMrLRkYi-qLkS9%k*S;(?i6l4sV%)L`Ry}R#p*kyUO~M9#Z`X} zK;Fs0(3w!}>N|bVPJKiae6(il9oB6wL^EiS-@dbVWso+>lxC0l0~mjqLf5sy*sK5S z8^tI$s0F2cE138c=hdz!F$f`dOW1~MTTr_-v%S$pbI|5wgVm~GBH&b(YiVNm#00FJaBA~t0hco3 zL1+{-3LF{<`Nhc|sw$AhhCxBWZirBShF;Ro9x|qh^X;Q(37aUR#E=ta2No?Vz`{F2 z`eaTD4nt#dT`U7iaQp=o2Dz~NJk+FEvENi_zRA_Fk7s3q;caY5+AfC8|M1gt7R(@s^6+=dy##q)!2Zr3_SPSz!{8OT}4R!`Qr$N62DyFJsh zpjaVt-=ff1w-p(<^-TMZGl3&U8$rkgbPjtO@<6dA(fv5|(nrkrp*N#J0*c;lG#H1YvL3# z|2+$k8K^7X4?H}2W(N>CxF@fxV+P3*{zm8n)GL1RI{T{mB{5vdY6~1yozMNaIK0XS zuB0WoK1&T%tqKlC$Y<(4O@WwM>;SrqtYgzq<07QEx2%-m0+^M8q2HFb`}C``P%fa8!)KEuEdH9~`Tq ztl977hOcsc)=f}0QV>G-Y^m5lhe7>!O1T+Hzt25a@t6HzM>#dc8FcHWn8^X>>C4?u zQa&TpCap<@xf{hz%d<6(D4>jbgB~uFBG=D@jrDkxf_%EF1YjBU^QJiFhk%6)@8gas zE}^0O&AsouI?|3y7&K+cqzUv@C?$POIa}2xDaeR=EGe4FF&BTRsNpkjHLq*nN_Vi` z?rI9;SA+|Cu3{Z+s51NPq@%ZDt}u-*Mzz0MFYy;eOPCS$+fU3xqkMArqz_tWLOgFy z{|vZ*G7cUK*Z8Sbs7>=CHpzD#ducob1$0ANFIwc&g%9aSGl)-Rd`HeKsuD8DUL(u$ zT{w;?lRu4Ho1J14z63SWkK$K5f@`clEZ}fM5`X3*bPx(Qe3`EFFLb-IQ3;1KADpO% zIiVvM>o&>#_&xywExbHb8na8eKRT!>O&hZ)<|O;TIMSFEd);852RDk;06T_*m^)5I zA5KIWhH$9vFTbSFt9?s4(3R7a{6pIP!nx)V1X>L0l4&V&ea|Pr6E%0dBr-$DOdTs# zWkpXqp+$Vov;pT`GF^5=QYntzG&3X_&J+_PQ$tFzlJhyvv#AXayJ`30=#C_cFfQx2 z_NPGa6=`(R5lPIU_;01N=@WC+SSE0AyViYB0Y+2BD8HAevFyJ$yuFDx2s3~ER>x8) zyRB*b4$25-Y)Ow}4VO~fg%oV@?yLkDuI_cV2hA6+RA+4kdyVKzip;!g50?L2?3uY? zRN%~7*DWJ8q^z~#(&x(_6f$Do^TNF0j)oN2&vRcof)522MsTx8I0#Gn8jEw$7} z_D=!Pk5i!qJEDRdGhai_bp(yuGgElywen=Q3`75$8s)@?pWhbK_bp(RcHm@{aq$rg&I2AWLyef!*FuaqPUxkNU+mu_vM-Gy^K7>i1Kr6Ms_l8svuE@S%~YKIX++B$ z*-N$FPDMrpEo}~V=M^1CWVzFQA(va~Ej|(0%m2ZNtJP6{^z+RF8e?&MDl#(9CtrNa zX#rx!_q(lVl2Py@yFPQ@?vV<0*Z#n@h4EB+ii|%-#mFEN(N@?aH!~6v$*E~terCIC z$6U4{!~{9Sc5h8TUQt~y@KX>H2|CvmILu00l0@dhz6L`l&R-(Uo1>4I&|yr8sYRrLNJBjjlcF3CN7AzmliGl7hhJ)>>s$<& zkIbU~s{FK^b+b8z#r~2V-paziqO*|n`w-#+xlL@3s;Ikbp`rooqq}sZEz4Mx=whk& zbA@np9V9)p6m9i3k>>HVC547Wqj%$f{vBtLKTCq!OjWSlylvD1dwBflm{;uY0R52u zU}o&-t&w5&82%aa(S?{}QvT+St7ftvP@I}$1Z&jlf z@jIygF43~U*yqSZLwxoV;gR9W-)KK=yxTw&Db{)i!;-ULD9eSv95wR{O|cl6;$Gjj zW5<4OD8zz)#l~Ebs=0MfKLE=vRJi}a-FA=UX zU_wPO0rya%@cD%+O=`%sD?aM<{Yg`zth>}^W*MF=myzkXWSN`=ix?0t^<7$mXaCJR zr5#!K+9^O4OF>)hOE5mP{a%>{xqUxqdrNdC33TQivKnYyhT}Ga>VE?!hrVox@BSiY zL%}Q!;&BUxm~sQN?aTKJ_d*_w}nK{Xn@>(-?U#b&3P!qA~ zl8d#DvX%=Nyw>fNwaIp)e^zV88)|$?Cu&LJMDj7Dc$I4Ps!}4Cd9}JINM^O|%d--> zuJnOq>L&>H|B#!n{<){e#wVfQ>1(}1F5O)Y=5l2(nO(el6B+Vi$3nkKRI`twDej7) ztWi&xTwOV5@QRC^=Wkk*ZRld{tLCQ4H=VRl&R^aPQJ#51ZiaFM(6>vBLPyKjHev+4 zFB2_W-3E~*$W0UOCt@f*lcMT(KVM{a0i5xKNV^40=j#+Fn!a?VEDxS526ixYnke%i zO(7|sPz3Y+?%1gFy55}iy5ft>Y>TSeroXpc?Z+*@ldhA3^_{m*YtS~RD@WXpPr{3>RlV~wC?s#nGsX14x*Az_wd0BP^tLr~Peb?@q z=%qu1{$FP{lN^tp9osotN+T!xbqy>pn5@A6zdn2aID!`YAhkSKdVDr0LBIWEc5K)m z3VptV5&irpfmWGi~sX{>UrirTB6D+uD+EXQw_T)##zRlf|rDFIiJW zGsiXhOUwne`LyOF(A$Idk4*;H>$&HT$XLgIWJuk>U|!o$9+670^Cx4`@xZ<49!(D} z05a!~=S$gp`34e9YxSto8AU$n*UD4uZkMb- zlJY1CI%%TRBjLHKBF$nKXepP`e2%Et#?RlT8=!-Vc3sO)v4e4_c&fn7djD^a1#+i5 zJqNR5NAarwCDb3&47fJ*u3&1jFuB@fp>dYTK-7gg#3T7vw=SNf;w&ZuZhnVWu`ml z6IxiHxSWF6=U1#WZt-|FF6D>s`4%>kUfFNRg2E#6niQY;?`)9~rH_)b(%rs)dBW~` z*cLsXGD9hR})ZHG1CbVf6I}YA}cQF zi7EK)?Cqnti@h;lI=8KnyOWZjC;Bbj7{DGmw(<_~*4&PmKSs(Bf=D7D6rBayuWi_k zNUT*4EI`rI-01G{YdjfW%kBqIg{+f&QY%+2y?P;&Rn|KDzN#io2*;cT*jLRh=_olj zj$B1m<%Z@QqtLX6+1u&ENTkcvHu;Coh1%rRUbA>)CsMz99xS^b`42Aq#HZ6#1@fZa zU_-k0jty;Wl&hDo&Cs$Nkt{z*4>Hrg3O|mJ)QUix9)&nWbI+N)r_HN>GPd)NQN)J0 zu3fZ0^G@@lIKoF*uIiIoi?1(Ku(*`c+*eXcX-50my5)+ix2{6+F8_YLK_8XC7j@CCyRa6{wp%u$b7@vwch60^&{lP3X0WL3IGlO>@Oq9A zIM*v@3rn?o2kAvHHI1v-(xw}`DaEyQ`QbagJnpV|;(;}tL+6^$WqIG=EQikl&W+A} zK!Ti|cQMkxhuWvjP0$3^XA`0gEdio?fp zg8L|J3H|{u)KkMVasDY$RN;>p3?~Vmn$)2+0X68Uzxz$nO3P}E5!zS5u_*=?WE(Ea zJP}*83OteFX^5f13i}=h7^!!n7nupa@A;JKK_oo~IsuoSULAf6xD#YiKWe0x{!hjH z7(w@8A^yS9`_Qj$g$rMOj%lyEoO1}b=q+$IQh`#owN0N9AD;jkzJ5rj)uT*v+qf28 z&S=HUw~tVX-YFcR#*L>`!H^j&pQ^v(jM*)B-!p2jC_9K zc>r@YJ)TiCAWM)i7rqm{FBE&^TYs4-4P*gv`LIDgj&_I zKSUnXB~z!~E}uO^T-bzR3GnAe&8CV)xx2#`oWSL=Sw`GoxmpDMPbQ`#wDD0Io=vgk z;ro8$LwM=uU@Ty!6hUD}Gpj{6itW!WuRkz$#8V=2raNDzl+~c_vPt*i*Z#^L6++E_ zXJVpl)8kTvA3MGywMZ2o3Q*h^`*xT=qecRadjMpk-YO~}3O5*yU-ZqC7Xw_Gi_OKz z#oyUy?pZihBN^pv&_U831z(KjkS1>-;ztJOvR2+CMtQ7hP1oq_6Av~9BnM$eFFi3n z5&cdpGEo!zDy7_;<~kb0l!#r7U|Tr)m`@;Wi!c$Op>~5D+dNFhq<lEWG^ChHvza$&}K@?i%8QT^O~ zygTf=E(tMGuTs5-CD>?aDR*%*^ah<_yzWPRHmMK?!eNX4aeCh>ez=He2KgkX#XhFQ z>ce~cqF>L6XWVK&4QyYjxeiw?njQB9Xk5_J>pEJD~Qi;Wf^fd zLcLlf=N?N#{cidO@++YnFjCxRPKGalNH6QU+hLg|r0Ih;)VcfA>dM9Sw--Sl$ED~r z@iEBTBRNcTD2f)oE_^e{wMrPuC>npQ_z%rGm z3trxeHs@u=A_^-K{4}?<T-1r0*1ovXMkc3ee3afA4&BW*h)W;wEl+(4JSEbS>kO)@)5FIS1jBdhnsFq z_ARDj-Y6It+IU)|%ib#Ptd-V$Q1|aWKy-&8Rs21l=Lc`c>n;C$hdILsA7`YBO0DCU z*T?Y#_<%j-FEKQsZ%N%-2ppaRce%BE~tCM0sYIfE10tbWO(JNhN6P1`<*Dyja>ifn{F)nTJ>2GL1n0zJ*0S}! z=3fX}hoCR9RU;NZh~O*C3b+@dw;;U#{rBMKvyI@Rkh8wv!z|bW)AO@*W>Lkw;G@OP z@uOQ6jEA*r8mTeEgD=a{CpXhTzFR2fytH?zY8VWPp-+3saT&>6J?Yl}&~A&$qZokR zZG8#3TSe@jFS1Ak5gREtT_hj~}lM}txmIrP+p zx&2ft=ulfk^{e%7mh!n3{-G$AW#-DWrWyyx>stUu zrEO~1B=`n0q}oRyt1?UZ;*x|P#!67X$U+9YcNA#;TDyM8}^ z*)|b0Zqt|&$>-FoZD!FUOM6Mh`!VLP(7)fot}0 z`w!=FlbM|I#;vO~Gz^$i`{BAgX_0|+qGb;CAxp+eYQRpXOvRuS_LzN-TIa~8x3F}S zfjM1TE-YqdlLlEw^AVD5H``@ORao7UP zsp_+_1g@W&z}T;;p&jLW5B2=Ymuijhnq1` zhbY}vAS1V^uo9Y-n$f*SG;x<}<9l@00}`>fUq_Tt7r+`Fs90C7({D+L2jF1a>sl7( zyYldbo-3ZE3>p~6nW<~qD)Xw7?`HzC<&`;*_y?0}ecn~JVXe%3MTI6E_yo2TAH;u3 zCRzv5q2TPxb$Hs@##4X@Cv1Scl`yEM*~c+6e=JB9=!O`yi6%_kgC{&^ZI-web{;xA zli7dC>k7aS6+T@_mH7J+6zYd*(2*%0hx5(3)dShwt(<&7ZD~HMFQU=$um_28JHAC! z>s0-k)wRZ9m>cIi7Y4_A7T~MwF;P?9rkrg3PH%$_mLG-SSCXd%wZa}*zHio;n>n#8 zEknh%zyGbA7xdp*gah9L_|QY8te5q-%pjCg+pd}0oNi4=V${OVIF;t{3 zu2t@))z&yc_qhM7zJTHD|RJoTG*_2TU}#_DO~h zV;z0PT3&Ie%%v3PPPdPhSUqjLQ=y@ouHCH#O|DgyeHwM@(vhHjWy{jCqnBU9*$ zmk8;o{ag|xE*D^3R)D?nDr8p1LUVaL?9es!pJ+{udL^9~X)CIE6R1USQ7!#zVkyOs z;G{IK2V_#5g69}_dQ(BiAXn!LFw?g}@oNeA5fL}_vO1M9yC^UEf5sz&lEi}bhTg(r zuEeF3dVGjFs|1yDCay9PVRO3%@!Qn1#;M-b-pXfL#NUcTLJk^ZiI_r$AO#4OFlf`WEtzMn7u+YcUFiAm{c z7-#}#e9HxPdLMzXy|pC943+hIwo|WjHT_es`JB6?SdlL`EyW5Xq|=+fP9DM4;3;Kj zqb~jCsIx>Gg){{V7kqa--H+)L#!^h@{_|gA447tT-&3cqSrK>#BJ-Wrj#&mY5U~pI zqTyO0{*iEL|CeZrW%H<{0Jh!6k>_N0Ecx1~*K?iuqw&V_B?;6TAU&)jF2uIMxfnWp zBz+d~(PN-+erY%2dp-8Ef@1W?8So;i)Hr0`kh+&w9ThtI9{Z%X>|!$|hMsq3=I=u{ zA^DsC25qW}wEN!8u6)$KX|2cBK{2FBoA#202FYbYsS9UM06T`7ZDPHd@Vp?O-e{p# zRP@P!PoRy<(rpjR2Kf~=ho5uTZPF9bhRZHb-wIx{{@C}eK9U0<53kVLjHrv!{A+o+ zUFeuurbVT-g5Rpy-}du@DDvw9Q_KJDJyNY| zG)GZ6JuyfasZ}B(zCCEP|synr${9+u(5yWQn#7*1M?i68s2dk+**EYQKZ{ z5ruyvQQ$;ZDP=(>KYUp1$xl6^jKZal7d7R z#gUTk6y?!BGJ+!W_YSVLO$+H-Hkj9aQIjIXY-akgV43)PDsR)KTY0c(BojIRzgYmv z0S$#+`x>+#%QBs3EyBOMLEL@y&>1In6_RnVn=e3L*Y|w;$D>J(2buCE!@;dsFzGoH z>$<_8dF8P`d@Z*QuYh>@THnep{2_WFp6cH)(Xy23`x_a(U8O~rAeps8=c|+b@G0kh zl_x5h9JUMqW0(3*^Tv$72bqO^;4Jl1y(dtWP27_9utw+Wuw=cF&Bh_Z;@yXzp5+lj zv3%=fJxh9;e(ETI{^a=!X34gkR^H^BiA2-o*I-`!uv1X!cj1o-hdI@J1hHbrI3Nt# zM(MBb@*5%ykj%nN%)=pp!sKyF)<3+09?~FxZqOS)>sMJ%stx!pM5lU><&SReH1J*R zFbCP~P5C=ifoIPlCG(QYt+p~5uUIGt=ueE@`(=x~L&_u!9(3LJZZvkUuw+^mpL0C@1nlo8FA+ZHI(J(%QkftVnRvZ#$C6yblkT~7{>sSW!`VfHNF(Ol zl|Xt#+CRVbwkVBM@=S*kOj5!+DDwX5l13sXA#2aj8q8XibpiH|>$WLqIKu9~u5aS& z?bibJCia(n>lyRQVJkZw{24>}@w)_eNU zmyu--o}!xFn&3{C8udLKIiRucLXG%Bm;G&c#t*lOdOi(s9rA4$ySw&kAHm_MSnkil z5=K|Buh@k6rYTbQ-!y3=xnJ#@3$QiwOY@}Y7?_eGat98iOq~LitDSAFE&%`9NQJw4 z&lfp09c)Z@e!zv++x#rpSldMploZPlQulhQ+rb7vCZnUVd&YMNRWv`=yVv!WRMaC! zEn~-7rv*pc}y=H?o{~il=hQ2$*-E@yr`lDhQZ$r3_RsPHgp3> z?{*YEe<67;nhu{PaC2051j5z=!+At*&|gc6+mnrMz#y@o>FiStJo~8 zB#@Jed>D^ldyN3XScHnZ-|u0w?}h5W?V{(8dn$tne%cNqm@hL91Ff1{Ua4aLq~X;l z!@h92JNFj;LvqM4yAN9npMFBF*`1EtCB&mwwDgHWpCHS|WiM4)hR|pBd`|V%J=cvC=KfJ2ahNo?tnh2I9CUrkct^*REZQac+?2>;UOnpFeu#Ky z8W}Nx-6k<-;p>0&rXf~hR=VH)?UW0vT`s(24<@5?O4q#x9#KA~o&T67F4xB_NSQrX z6e|?Cd=lQ{gClP(uxw{{@_aC8T^m~xPW8?ufE*+yFWb%3w^L0MP0Q`n77>yhIjHn_ zv@Pxx-7V6AT7~OG-7kwi?G(ke_WJKgU{lE@+9N;9orw+}O9e z6;1oNyDr#TR=iHlXP)e;OUr!i9q6hq$E8SLO(C9MIl%hzC0)F=*^@42W}L|1k;rfU z@UcpGKA}*NGJYfYLV5gZbuDUwmSM3~A5qnF17QtYyK@yfwT7kR5`2G|UR4o&Y$^|% z^oI##P)U8xdB8BB9gY6t!{pwsyl{&Z%CK*~aKgi~?^(R0l!)qaMYC+42RaQT&GxE$9?pw z0(Or$DXmO?1_|*^KKTIBQRF7uP9RA|bvX6562@=Bh*QNos@4HC)MY16;6nF0xjBZo zS*L$6j!XFKc-PA5a&oM8E_xu-d_psbtSO90XwHWNm4@a(dPvu?KH+D6}v!` zY#DE?5B$VoiK7DUmu<~WX$k|2!FEQK4+424qtn9ud9?wt5vfRR06)8wuEW#C*@b}l zK0zJgfI!IAY5!VHN}ban2r*zpZlxD%FY>5g2-0?%U!V!H76-$g+9@eR#NyW=zy>Xs z{>QS>i$E5~=3X9HTZ~|>BS*w+<>a7>P*N6`fVX`}>~A;sP;S<5y@G+K1z6wfBAd@F zG)a|j00mldG+sUGxdBmyfA}s}J4c}{@t-U z|5@A}QoV3Gjb2_ECh_mn1THKOm}epJ+upz7X170-9Od1;8V@6D$#1$rJ$^(A{i@RW zY9R9E6oWl>AiJIF4ZTq9Vj4J2xuYj-;5>?r=YOXv%UZEa*c`nvIiVUiG7**?3Vc!Kv zH&*Vl@OQRbba$l9wFNRF&E8D;15Wy_jz^`Rx2?&9eKwfw0^KFh9OhG0c&~1+-p@G( zGdqY2&TKmy59`;Yesv*yq?Dk6wM3@Xzd}&&vs1vT$X1IBuG|KrS0r|EH7BGNJJEw& z+xJv+TJa+6>*Q6@{!f8jX-6m;DVbH2P~Q_lHXHTau$@ZvD8O}CYp1BeWiJR^0@W8z z;-lCLzaG?&5FMMri?yAk(xVe?_y90-t8l-=*t!|0o^uHUM%;j~KSh>sC!lq{j+3fBLAKmB z(-e$zbfpbO`?}IuAFv7fgoq#_{}DIi8Z=*w3V_Rrp`LQw zgdA4WLdP}%(8PU|-dLT<(!so9C;~t0CAt$nM=9fmvU4APYcbu z-X15G)B3#g_eya0-fzf%^N{gf>oHQEeC&Q!b%QXh(k z8A%f6$Qnn1G>d4cP3>F#WIRUqCFW9nXQpzoc4PoxMR-pEpiaF1oVx?Rq9Bpqo( ze~Yf_ITgF=EAkYf>>i4Vy^b2yk~*$qf(T`$-C&5S<< z&Dbe4NW*-*r@*Y6X<7^&{d=G!s~l`86r!B?>cbJMCj~t|$mYwzTiw2FtcHaHxmn#4B>bHclOn>zHd40e_;Yy7NkV+`K+`@1vzXi@sXjVo@fgYR;4MyPmhHjo>U(N;OQPawV)BFvT>>Cz-%6OHxS)a- zOfTDv6=aF30fPNfBoxd{-Q^3C1^}Y1`-4(GZlr67DbXOp{7+rSf^dh6O`cO!#&RSQAm?|Z$d;~ zHI>|2<5p=BA6M+f+%5mzpi9e4K#2N%Z!N30;p>O=mu&QIbdJ?iloi@v^?v>k6o6OPA~0t3P|En4t2XHQN8v_bkVD@V?4`@SIhTWi zBz-M65iq1B^S&u9t)g)izG#ThO!yD!X3|Gqd0m^wiooV#`>cJ`F_jcYr5g6;W!Ko3 zEu}P5b5QmNhA%MNiV_^i?^=a8b{=RT26%(>5e{YhN{AaEdVWvWYVgHq4|ynMDcq2P zEX#%l)xSS%i#n^S@@lnpPfAg}u1;mhK(uTN>l-(yG{Fo5Ey{29hVmUj0bY1}2WgXO z2>1U@2-9lT$mRWS8sKZp)wU+a=(*KtX${c8xIa=V=6)?TKn`B!da}@U<)|}nyl7St z>md!9i1Prt#i5N_7$w<(tg!=XkY9rM(AS5z^6eDNSoi*8z|=c$qeOvZ0_vW* z4aZF+xAik4j4}Md*ufXtOB1|NF0yQCsFcw7ecBgRJ{?R%GLF&5jH*f6r zR<(l%k*AQciDFj^KU`u+CxKKHIs2&V8v{n&y8+Zh-h3H4Ex*U8D)W-NJEg{K zxRrh2n~J~RbE=wr7(54g7^SJAHk=$npynS1X}Aj$ltpQ8Yqx)m9?VoDC?rtzUtKWF z!eHQGz$Ku+U}Cdes=NgkeGwq_!09bb5x*6r{Q!v*T=#ZE4 zT=_)GuUU4NcqURlGquvEtgJN7RE}WOvyJ3YaqrF#B%2*GonGB9J^Q2LzCE?Uwhvkd z_CZQiy;FsuAknm$hFnGYQ*mdI2DtrWk@g5w z)XzB}s>{LTDi}u}78cs(b!Be^HXnzyS@1)B_(d5AQ_8&u`I*adHQlV|rnDlw|JJH3 z;$-nZ&)T4EA5VdF`BaAfTYr$!dOwvM=d1%(HO$PUUv}`Ueb2oYwRx@0OLJ@XWE~OEPfWJ?Wz#O=U%3IM=B$drPlDj7$Y{#r#^O%+GxTPnsQoAcM#SgaJLxCy+`= zfFHgmA+AWx6I%Isn-=f(ux>64EGRauwWa$JM>at5l2W;a<9CJaWD0V#{xHa_s$3i8 zptDrx3^kBdZ_hFIgCb=iurgCzYVq~IQ}2+LB$^m7@EVa}7l_|s6q#>xxZdV}-B^SM z{(ruqeoAR3bcBr6N*=?TK5~D;2}CsyONK5M7!%AX8)YbgLy=>DeiF=IP*WBd!<57= zeJY~)HtBV4$$-IHFRwr9Z|`^eHZu@2F#^UFvOhlqG_z$8bj>Qozak8{#@g^=;Spf2 zSueqebKdE@1L}f`x}F$rom_gqjLUw^UCPsJ>da|8mmMe4O-o6t+F8%))L~-u>2l+TR&mEeL6tG>^<|B zWYU2Qt(C(}Y0m+`)Qx=h`QTY2I*nUcCahaiw*HE=V1n4d`r_#zipT|vTXh^Ba0HcI z+rtH+SmFdAaw~P_lZ2{DDl3~poZ3O%1NAun8OfM4 zh|&=0;V(@KwA?{n6yR>(%Zm|2dhI?X)!JJ(B%ss6k5qq?$G}60HueCOQ@vkHf0-jD z$rndu?T)B%`gjmotpbggyffMgpKfMU;StIsNsu&eB~m|rIMZIr82MxN6VQo>fzRYb{r@4)#vZi+^ooeW2ktbWvqw0+*pDn)pb2vW0K}}C*9GaY z$v)>ZoCh6PKvQ&tjXS0<75sS>Esx$X{OZrNHzzz045CvATwx<(!Ys4rCFmrV0g{HD zC}&n0JdgPP|4}L=(LgM&b}Fv6+0SUjPDajos!w0A>q(|YvQF<=1P#)0dk>;iQ~K0+z1e!xD&ri*V7 zxxAvvfWCpN7+U0|BY)z+U_YwIhn($VHNxW>v?2-e?$BUF{qGHL7E1D2V6mdOQE0?h zg9O(sh%+@3535-0C~jq3W*O7$qq3Tl6m*bfA#vP|mYQ^XdSx{Zwxq5BA}hv$CkC)F z-DeQF1~3Abfg&fig;EYMHXj#^Td0}PA;H!bz6`h#vcS)Litjzbpd-Oa^2(bN1#~|z zwYjw8Quc=x0rOFgldkeJL`7$T$Z8vk#W7J@-LdW49ei1(b8ZQ3G7SZtDEOv=yBsfA z=_**j7_(D9gp-U;(x;lz3r-(y;$TbKrV(VoWY{g7M57}T*%XWa0#QJ*{g z>vXZGL{f&Gf= z2B427V={L|y|sH#hHDbduJzSV++RnJfEk$>U#YuR}&B z0&bh>8Um&ux1ZJRr&RKTIEdT)Br6C>1+x0GQuW zQvBs(eKT-%?4gc4nTIqGl^iP*l!ey(Gd$dWfe)-K2SUTuVt{FqXyP9nUg*Sxv}c0* z(+;5WE7pPEt?AK(^?}TN{V}J6W9Z;Q&L5#cOw$pG$Cy0

UkuRapcT`q)?3!=DfVyF&r7uRBxuz3uQ)&|(_!Be&kx1Id#Y+t`r)zj|)@oxLT9{j&q0Fg@2Cw_K9bxA;ccQ!fxup%11Ik$N_VG4q7Bg?T3l*Ld% z#v`he=8y4T$Rk>8e!oeUt+?cAO46H; zkIHAcaFgM-kE-jbkEmJ^uSJ|oF!TL5Wa?MclxX9MLm5ti$i_e6e zLgFW66CB@b7%(=uBVKq?C?Dt{H4}{vKh};@>D>;3 zGV>8MkLPDuv3se7-^+fNT6wZ`S@X6{hmeXw_vIKc-$g+G32kRDG;MPMvS|STD>L8c z>9g7QS1wA0Y$>U`um+hZa!tnIK|Os*EnGt*84<_E7K zFOqaYm5O3o>lYy537 z9J6XR@h17E1;JGG8ER`12QO))6zN1A&zB|k!wR~#GgqEZTGi$`y- zNawN9!Xe9*rE8Mc6{wb1%ZhplkIz~;)RXyWW*yD^{&AEmy9c=)E@H&U4O2bcZ*hBT zAn?R@Zp6`fzZRKw(qh50Kg3yndO-Pr&&hivd4`q@Nxqh=TWZ_#;FDqxsbNX_@q7p4 zza~hqjf#Xf?el4uDGx=_(-hjr)4ahfSh8QURKZCHf49nr$Y#T?-Vgc^%?o|hnOe59 zgmcIp{nqVW$XtB?A?+_7j*@iBc+U$ly%3Ie`glIv8T4O4WMLICUSu!~60!FFW!##U zz!|J}pseurOFDlhHkC5(&C3E(2%b+~n(Inl`t;SA@3|UWerR1Rng1k`IFtP~omE#9 zr-&b!>NrA;wbCaBtxX98Rp*pP zn7jNVz-agUO7EwhmR#D8p8Ypi`e}_wWTBMDDgj}XLaU|4MQI6%EPBZQ_`R3TIm?uT z6@qK%ILko2(d~3r;*PXJw%J(f%ql8NOyYmT$kmtX3M9zfhN{6wH~PBY z2Y?reV=Pz*w|qLPe!K>W^r5V= z?8oBBC{O;G-iXp%iBr4Yy%8?5S+-eyVr`n)k^FY{xku65v; z{^${lq0JQ^zAk$*D@ms)Vo~UC$$#LxrE)&hKNF#NWp_6u$&D8pHGJzNc79{qnAl># zTe(rl$pBRsAuOA7nG3ss{)w=WT>G=JqRf4&2HuX1Y_|S9=*iAFpHrMb7PLhc_9=Wn z|L@i_rZW|k?NA#znH4mOkUlxvF`&W}aJ$c0C`hD|W2-nf2|GNW-#R_MOoi!M@>L*V zQw4uK@5XRq`%TLF%k0rsINBUlGwNRW;7kM=ImO}qx2jyMDSzIkW#FN7Zyr$vLgsc; zx1T`sX~KK%9kOcTlOgfGU2kvlZ;}w!DU8laQqHH+;%A`$wk9}KLG3iB;P?)y=c`M{ z<=-vnJ&3@oR*NGS9P{&B;%?=9b*~(VrI)4``qk>tEC@9L@RIs0E4h z!G~Dh2ITIL5a&_ z#y1Ylwu4J^BD&akI?1G(u>R-mBybZxr|JyBr&x9<;BIT&o4F5&t!KV1yKRqw)$cR_ zms;NP=SDhDbJeyh?$XO*v*q%@j*^T)w@m939F!r>u-+-um_3_TImC|SD?7t@E-z@02MlgY%+nV4c zjPCr}TvYyaoa!S~m~YSGBi%=Zk=LOlLw2$syymQPI?%-=WLoJ~$s8PmgD7}+kIwzi z`OR4^z@0MbTO9*_BVyQgK z{<4A;*~!L4Q99Tb)g$ls>BqV`DxP209OFp#kkLOU@zM0`$ zQZmN>DMdMms-E30ya@Nfk2$i3k`zyMLVxkxH@~!ns5-Hm7~u6b@4%m z_due-J*hDUc4V^~|BI@gin!jL=k_sr6dIcsyS3E~zB3iI807Eo@4DRpq`jMvLRUkoWiEX5 zsAKPw%iWHd^S1j#)I;m%CNs=@rZ~l;Aibeol+-e8wZyz2C9fW5nGhsfnGp7?Rny^!&B_dlg*CGg+(hHs@my{L%_30Jf4 zrbHI!HQd>qGgH`%c?&0gs7LXemdw4C$DI#5?-OV5UsZjt8OxjxDxI&r?I{eiXZB&b;zO}wnn42f#vdhv>-l_M*XusL*7Yt)M|$uP=P_kC z+P8a1|JcJn7p5;rF$r^=__?S{rYXf5eXywLo1Y@RnElmw?en_6#VS3qtn=kFnf7m! zN9hq|0Wr^I*EuD4X`BQd+oW36Vf=?LhvUjXy5|U`D?}+Mc!C&vQ zTspn>J;jJDyZ`CCdjy3Oa!(@bUU!NwJyGF>n7^d@EN1nu1#>LINxsc36R+8lAsg2$ z)AdaNI=}o5-#uMoyq1~!XZG^oTfT*FIZZWa-D~?Ik`cb;R|Yxz|x62zT- zSY71F(4lZ{Y#c%4grB1AP1?g<6WYi7ZU?fs2@DJtQZDv{UcvYXIDEwnsN3^U;#ZG* zJ))H4Au34fb&EG!9aWK@XEePZp_e$csGff1z;`i5yS>-OL%X0NX6(H16sQx$)EQ=4 zDfzy?gdhcd4#~yN))vIknwlLtsUbas4$&oT@vd(RtCta^Q_L$D>;J~<%gdoikWr% z()hK$1~+m#kR6fW4|Di6`=WTh)to`pI&aqiBaRv2C_k@BX&+a2`S&|O%y&eaWk!D} zE5bo$RzXG^^35D+mSyzB+(Lqnhe{CK;|}WwnO{fF6LE@t4!m7w?;N7-KC?4%SWKFp z7}l-@`?q0@2%NPSvf};2RJZ!0q}BW;o9rvnoEFwH-qz?ztHo(fgnati#O8GWEpkiW zvL6&m=?t?2DrIY<;UQ^T47w$W>vb<8zZV~f1WNWh>Psv|+?7+gs(U3_;@O!gdgR^T zHxKc}u=O3Cyn26`d@fJ`@byk%}}#;x9W&@L$c{5DPl`W59p z8UxxXdPfl**D7zntwXl|;-LSzo5y|_RAb{um(>XHKzg`ULKG33ko|Bp|C?)P$qA%X z2dKnm5hPGn#l`&(-=F=qKy1#<dE&axW^+L zwS$ZE?1W?_ki zNJ^oxewo|F4FXB@kHgajjUaZF^A=;jgtd-Ms_#$x?W>NTQoccw~%Np36cwRjUAdScksZz+K(VQn@dA#-);@>e` zzWY^4dvd*oze2C?U8{x>GU?@1z_s@$u+{W>ybOFb@i6-g5(APb%P5W03hg=eh`uy~ zka*!Z;vK5Wyy*EUL$(lpqbrerJ=;Y8KsW~ZH2=X?em{L>uf#Lp>yzzCf&TqV-91fe zxzhsqL-)7hg%MIP(@6O9jwQg80a&&A(IlBqK&fv3A}TSC$2oV6r->7h|gPko-K-LN(9_qie? z`){GYQA{N*kqSXDv)K~Fo+TnsZG|bn?!)6N%;Qr2=kP1F)ng2S{Gpo%;TG{&b7fGZ zNW1hrEn!gmD;hh^=8y$1%?=>vR5b~072{#m$7D!==?-$ZfG?N!USb;9Tuup>4e_@nyGPI>lzAcMfFF+MUraBa zyUnB${B>mh=Ox@u0ZvS$!H*pm%`3R#r<$Tgo~xYQZKc6`afa{^vFJA6_uFZV%65tY zF{#eYH;CM}vU@s35Q?OfG(7Y98_&vnHWjb=$kEws6Y<69k41q*KO<$ceLoFdBNWsV zT#kD$rSN<(rBna(U~l&OGbpP%ae@*=3!L8d6Z24Z96Q&vFy~^ug`p*I*e-X@m)%W6 zeNTDH?^EG84OV_`Jl=Nf3WA@UsY-h;z8xKAPjbK{G}LMV+Sg|s?(25!Yl#^6^P3uJD19Vr~Qiow`dMtb74pw0IFD$>qibny*Njn&^4{_m&Z1$A=sv^>Od z=DS5yHXbpPDEGs+jvj2_>*#5TnB1Noo0hr6vdC=a3qK;P|2aExs^cow@<+}u_JJx= zsxfa@_m6uAk%F_c|5fq*BDXvr5{qaRM_2XkLewK}tR16i(|xUQJ4A;?aO^-WF3n$h z{LZKRdKzr?H2Y1o8aXmD&|t3zu}cS2O46w#xaVnidKTv13)YkUP_Y74xC)eT5Lb6q%_h(SGoB?#mf&RI~9a1uv@KWR^^5 z3V7Pk{*W<)*VUP}2~!9C*H?Byo2y+f%#@G9hZV@q(;DqP;U536x-rng2NneG?ZWpA zS#U$R$KU=P8#^TxkIY*2Yc+A4ken$x1f2M0a(@}g|9cswWRnGQyW(2fl79lFBp7tq zx0ECn7beqBKR!h=W6x+{$vFgel}PhLwK$gDtHk&?jSCD!x%O}I*$3fsjPq56zNmk8 z{a|)5v)1Ri`rcKvbgqxA|COae5=6XmJLZFv8j7mEcOe`KW^8EHGhFJASDc!y_wttfb6<(_MMO}DFF4=!=<@+;WQaHaB zZtQhUDhZ*F-^RFZLDiJZm$n%GSU>t%$93j{I0 zoTA{>>#S5Q;9HO55<5{^i2;mOuDFvp8OMw@KL%Dy|H%5;+{V$ssH&KiSC&ClJCgE~ z1JAOVK(gKz4;iywR_Il_lnz00XT>DQ$B7gK3UzSfWPk`T5ch-Q*5D_4^bX?Li;>wp zV{)1<*?@ z=n(RbuF2OG^rj+Jv);!Au8tc0D58!}fJn-q(5#W0`FW|TZ=cmoYEq}EFA>%YFU#fm z-c^g97`b*rNb<%x%s=wpS@g8Y338og%K?i{dg3|7nq@u;FMYt0dVP03eSZe3y0G=^ zJXs*~WwIuaOgv)%qEK>&xg=10o3^p;_+mW+xi8|whVm^bLsQEzc zC0~&#zdHp+L7QU@TsQV=_#^$ppUc+Z4k1p`^Q^gneT}1P04J_J;5|(bIw`H24m0$z zd#yd)(0JZevB1v1F5qBy+`E!O$jZa|u`^r|tz)N{$jGdlTfd=L z8)xL+tF|i3SubkoF4)bm?59n&$=HahqlIHx8xaw$9T$17Aop$sb7S3pE`1O9{0qpn zaA&p{mx!)ITmQ;m3-CAZS*fZK_`&AN z^VyFrCf18$b}M0gpX82o+>`x0;k8|c6ALfE(qQ!t_mI#V=yR6~(i64rTue2t9iFCT zLd^T$rHXb)FIdJZd%Rupytv=t6r+n7;dvHElX0G&Fqr*eYH6^5RA3S$ul1Z(96qyD zyGgq=N5O}0T)p(6gxHccJT#s`I<}H_c=K28`1UV90O894hr7;NOVW08r`9EGFU+6W zX5zW<1$qs}vwGwQi`PeED)}9-C-h|GM{04||;|5eoe9fT1x6{)TV`eIV zPvsN6((iP^!^7f zL*(6)1+a@gPPFuW0?(5Qq@qmw0Oo9V|JN5E%rMI9B1K)`AOqZyQN&&8%c@QiId z%k=CYrPLQ*`UHKCSg*ViNnW4Og|dqW;inIO@mrNmN7U?3sKS2gyr3+JyDsAi=8g(u zllR8%Xy53iv8d`}h2fikG_jC+=B8p&kt?g8rBS071q+2XaLOU!>|Yhco=l&5wx=+z z{{7XhphRXY5{Blo5Cp}eBfwZRDldGjzo|7_$L%5h3MrF67G28+o0c*&drgO&Hu9p` z48tuevg8;0w=AY#`+1Fn)}AqhE_~E62BPWx2);f@I;nP=@2){KZR& zHx5}?Qu-qAc*P}qV_NbIuMpZJ=yhg0*RfCl9CyVj5B-Drn~0&Yh>ED=v$x3WdMiE@ z8Pp*yrxHDv2FGPSew$PmM$WXqN(8ZX9W0_VG0cCCs_y;nd|G#0rHqZXDBpxI2p2NZ z7P{y_2-wp?3!;|8<&<$O=&k>DfeU}&cbSyu6Ws1RRC3jv`O{~ASjV$IXMg|qrYP`h zHhcEE@KQ<_A7>5sS&EYhuA?IE!@TNrZo88-SO~S-`SjKR*NM%UA}e zYhZw1^F6_H&Aiie0J>a>Y&iKEXGi341cuY|ZPDaw&_jv$i#il>X&gHsDokFIob&)R zBY@jH&Mt^4KYybsaUSV5Hj;ak6yh+FloY}VRsaULvG#1g!<&2x6-|QoV4K6XrCxE| z-~h@{{(3pck^2Y8^7M#sY{&bK18_f$=gOacaQqslfrcMFaeV(4F}~1fJ^JqTOJASK zBxK)`_kABqffUHiQ-5p87s`EE{BUQOA)@sl)Xm#7mD`Q{_k2%tE?o`BS}OmJQnY(; z6yf}F`)j8MPHXc{u}#`*OS0Ceukw{>DnX>#Pw@c{;?Gqj%a(MLQnI%rbpkuoll<>kYwhtFB z8tho6N1&u$z74P;Eou$H+d={3?+8ONKau$~5?0*Z=#Pla2V~gMl+4g zOEc;G%LxB0`#-KgBJLS(7(s9uRd z=p|-E-%L!ZBDQ7ojS!(KO8eo?lc|O)K%9^Q>6yH@e|cb8J|;gvtuE_5UgWvq$B8s; zr*AE03y*&(op4bfiGdA_w?9dV*F8RUMN&v{``&R6apNGC6O6`L;0YAODD++1JH3$b zKb5Q_TB3ofrPkp?cR8&C54)Ul(p{i*`~F*k_g`%493yyxaAUI|dff$3HfNy08;CZ` zXhQ$Q?4bIOe@)zzQs5QwPT%GOJ-j`=WLQg5y3j^X_m|L4z0^HAX&8WgcS1 z{eXG?3qqJN!%S_{1xo=WW4@C9mcli-eigNAL|EyG#pCCR0~h0Ic!*gN9C$?M7~nup zqnX&HZw(^(Vm);X$lTfAxmF)Ud5BK|=RRkPqn_g%psQKbUegnJ_?eebI7-~{}i{=$CXkWn&f%|}b5(2At zrtVPHonjgdYhSv>?5;g@SvXj+uX-9st;bOY;PJ1U5U4bA*|4yN2Ac}a!Etj+m0`yB ziEhzPl0s^h0Hm6eLwL{_2rYWAqv0<#a{2I!El`BnMHKQ52pQu|yP#b1b#!s&&%2t6 zZfX6^Lz8w?gZvI?=ErrO1w!L34Xi_EF`!&zxE?wi0{gtk;N34;@wQFne>K!j$oBUT zn0&|LZ3zU^gZuIbUdUa0ga?`lEW4`@#Vz9ut4Lzdf4Cb$L{w%N6(=%eVXNtKr;kOW z8L%#ei6ut(n7IWK+1<~F30&|++h*DR>`1!dsaz|?-7%b)Ng6#nj=((rZ>!~kDNAmV zi^3sRUqaY9RSX}Z_nYCPEs}kvm)@YEOa+pIaGAMe;9O``3eC6)_5%+pQhKvf0vVB4 zWndEjUAJdwJi6sf8o3rt5I_q1_&-mi`2j=wxk|Yx2WUyoUtm(2h;Cqa;wjMY`1Gr* z>JYydyhshtjtJ-6Q6m6rVJ1SG@$yRwr1U<-Zhpd65RS5pNK(3ef)<}Q;9!D#=xg}T zyy+6vFC(Q2`mjf5NpNu?akm=MsIR<3L+d1g9myO%Q*R8nb3pa;UxpYNd!gCNFcE6} z>K85=`4fr`3-@sa&~;PYbB&IKp!n!)_%p5cV)T%z!I+Y^0Q4UBu*qMUkU81;Ty=|$ zv7OAHTc=%Px*o2=;q^Npip-n$6v7;qfFXz^HPqp_`+&*ku>D-BT)SzsakrQz(euHk zj;=-~toNO>m{{dpE3?JDZ0{ir_hb7b-yKkhzUS(nwN%?TAc3wY*3Fkr5;(kYkt+Pk zmsHx(J{^aI7HO1+xwF;>-UN`50kZ;m_aCMq$Ghg;-|r1CH&67>wwJ@TG)I_tAdxc) zX@P3^`CS;fT*?TLqGBDa>Xge4-jdVw8Of!iz^JBeMSm`BfO;xXGwN0IGN+Q9_A!6gR4exN?k6=S2tle0DE~V@n664QUuG15* ze_O=VoQC8+Ey#eV_%bOqQZ(z4ixfa4oqXE?*a$+0b$|Dh3x?0(SQm-oI3gkViyUuV z!C7utN9k7kg2|Z63#~NCOc7OQgqIAHU$EiQlnma{A%z{UVny9e9+D$&u@lxEw90TH z;y{bY@4XoagKJ7}2H(&Rh%J4hqZ$meL-6OgJn2UnX~th~chcR(&_Pebr44Oe34eZX z##&k8b8+NJ&B?-6&+Y%&fcMLs|!TGDcK!x0L*?7;a4Ht7@<82#^v~WH2Na9;1#*JH+FOov&kKx4U$UGh& zsqwvBri$Qc^p_LxPnLH=}86NlQkBV_L8CC!kNSl2nzxIQ}9R zrB^-lyxOZ0BUfV%!)50VxauYC4Xss|U5t1vZF7XlteKyJq&pAv7k10ZuFsjo2?_El zI4bqlO-(Rs zvUOXk(}i6|sulFaDQG9*AJ625#{{U0KrFri+{y(g&C&TqUT4KQ%{9Zk1>WGSgHIe& zv9m+j`mD)`l1GkgxIC+W;^!50EO^AV)tQ?o4xcmv!O#c^joLwQI!A{vAOOuc~K0%asFLlW>cO$8UYm<=xViU`A{;wLt`7B^QEl~fc-`bR!lKP$dNlY3&HozBsCE|3X*`G| zypFB8S3k7+KUc}a1Rl#YWqQ$D!J1Mfo^f;{qFRK9Xz(oEdaITTg|~drVi!R8o z^2*bpBubQ8iYd42qCdFV5(SDh>cZ?_ zrNK{-06{9{RFeHPQKTI-G^jW=K)y4fT_fZoLx!$UGEVv^cXEd|sO?F6vF zyp_Y7_>?0(rN_|b@t0GX6v*rBR7HWUQ@|{}l*Kw8PFsECMB*ay55FkO+I(2f<9^;) z)D0d%&u+dEDLq}(?C|!BM&0k(Uq6c8iPgM=2bP^9%R=;sigO_+#eOdRp8I9BQy85^ z4UKWWnFM~O+I(&^ly~rdw!MG>Wf8G+VnJgh!8Wkf7M;@rSfy?3DPJER`cd@r{%d!0 z@K7Dcmu2Vq@6X>ubk0K~DStge3<4{!H1=!H-_8FbdFAbpj3?SmB>vo&5*N`9Zz?Ke z)fb*TS{$Ya-ke49FAcQNJ&n17%Gnr@kmF$v!b)z#c-i6*N|p0KHbnHGQ-zk(!v4;T zv*qP)Ar^&~awqVzHDO4`m?eMLUo&M_6(4JJ1!y8;tN) z5>%c1_-5}&yyT=ApIN)NtdJRT01?gaZWOEKbvcDo?;{ct!)Q^4@m~~Z5DDl?f|HCG zzK%~4^etL8Gzd+AXLa)SUsjmC4?rv`dQApLPqZ=mMV_1#1!j@*?p|PB!R84arox&Z zcZFsIFpfgngk#gd{VLL|&f2@A7~bzTm8B=5jb?P5EMEVg*|?_Jr5+>A2eeN8Ojr+Q zeYDH%#kz?;scX|som0Jc>SRX=6S#}Ha0kU4Qtdh0(1=#Beh?i@@S@wzpsN0;`fq*2 z1D9q6?{iB~WRwd|h)2Z!6a%W9a|1;ZFEP)h8b@Z+f@?uWdpapzN0>$+z%m{yhU>k3 z#mdP+%t@$RJj2@t|Mb2RTUHaK^Xgts%MaTZ%}hXB7gWWFQmS-|>Ywjt7i*Nw)m>vh zg6PMx)!;V0)}YF@9=Y`$MwQg~pen*l8*GIMIbyl;jr1*n5L+9D`t~0y@=j({dLExv-Xvkki#jn<>+=*M8 zV2V{It+3-J-Ne(cp)R0~4UiT&f!vpcnt*?w#{oX&=CggNW0X0F2HpVTLkuzfF6Y-x z*%XSYRJ7(9AF=1w`<*9Fev^6*$$s6Og$A$A6>@%dN_Z(DzDhasWh>mn#?~;b?|iq< z#pA8!ha_IEwvWct9EHwCsq1JH*?%b4GNLLbLL~72r?J^f!q65MEVXoUIuLR#U;!C_ z<+dl<-~E>q^64!*`_0&klExIb(<%TD8K~HPz#JTk9N4r3hc9ijQCf8dw=?8e3H|@t0xcT49oUBOa(rt zZ}O60bSAk5H(HqfkC5Sqxo^`sRKRdDZ~i0>-C8eO>`} zwVE?akY<9>UFa6i~e}@$K-MSFFse z{?sN1Vo!8euwRg-Ei%waXi%DYvrnnQD(G_PEp1O|O^_>IBFn#>b0f_&x%8We+3@c^9>a5_0HAiCn^PAOBqM(HIYe{7` z>XF4`uZw_Y%E&~G$gmK{Wx^7v6{8FSCp>ezPW z_)gnE(wwj9#EK7Zt|)0Fs;U%3(id{FR`lNxGq+#V!q{3njhsUh_`#qCfY zY^Gsw$9E2XhgjIQOz^oh9|+vx{A5Np5aTM9bMCuJjZ|0#ON>+TTyTD|?q1l_{}x(- zP)FCnC$Lc0ykhVNSQQ64&T~hM(Ns^CwkW=eG)JItLKENg;C-A{TZyRqWX?tuui&{c zC~%iVhHpRx3&!yTt~e9p$pOIiQ2fsv6=gI9=R~q)i%6)t0vR=%eb&AMgjSsDNl z=}~m`U(3B;bXx>6O1}zm|6TJ+NCcINr`hg%m&ZnTihd}=lgGcMlpIo{$iUL~D50RE zdLJ73i2m1Wm!8-s^){N(EbiKyVQYKO+-Z8JLWT6el#6gJ+g;0^ew+`6{Ocpy2MJgt!;m(3A{j^$2kymnnX_M65m7M^IqQpM(roIVIZ$l7+@k6< z*)<^!J>Rhx^DvbN<1Z>aK>e=Lxt)IpSgSz?C1l_o`}~_Cm^6q>8$yj%dH8uqnM#-* z{Y9=znvpqC`hoQp@+!^M^j(@Notx)4f8g~P#e6-b$tgy-m=-v|9lwWr4UFee=h90r zr!CWY)-pMdDbDab0}&;DbtW$(HdU@48nt`CE#|$S^#DUPqd(1#WZc(gJ1DZ0Fbt;C zN{x62XR2=IL5d6+&0a&^H0d6*6Y(`t`PnqsM0Q*)v4tA1NFPE*qhD&u|6;lOL}bS_L-%(+=tXdh+kXs_cHZD^6Xx zXj-Hk_lh+c?P260+Q_BZQVnXeO;I2MI^5;9mN0K9B<2u=(vVlRRtokV()Qw_ZoWZ@ ze=i}g%9~BzwersH(&;m|e=;*fTbM}P&BHw>lO@+PDtg&**FBE{9KtH6<&n5zx4@wJ z-Xe~kE_=G!i@wwoo_C6;&rBAi^IrJ!ROVUs zsj*r_$Bb|%Pnd@&mHb;>7f!(#ZatJmkmp_3taK_sU#dg@I4lG#dkyH4XFRD~VZWCz zIOAdWKn`BDczU7BRf4x#kRDk#_-HIdkWXLSb>=Uz0I}G2@9ZIfw+~jf886P+7d-(y zF~D4b(Mb{*ayk0P%cs`V0Tzn_Xs|h3_zH>hYKV?eTC<4zYTpx%BTR4pZdAcR1C)gx z`w;A*&)Y;ex(t7Ss;+}g4L-ml=ECfDkb(GrBmV0)!HZiD099JeweOx!JY@U>58bS@ zqH>=O_vl;`g2{R4QN#_RKF9_ut}6&KN=B_A?Lk*+jHN|nb;8t&&#{|#T{{sK@$Am` zg*!@$ejgiO2cT(7|K(TC{mPF$FA1C6@0qc3ieQJmk5EoM+IN_+3F1hFiRRmkxIn|{ zxq9c%AS{CC8o;r@Ja_nNHlM#&1IqrWmumE__mm}Q+A>Mm(|ub#NEpmq`lJYZ4~50$ ziT{Mo@tc}gwv>fBYzrcBjr2%PC0l*iPWkSAV!SdIz9wuzbFyF2If+9^=^4V()pUrJ z;Es^Rr0gT;63J;Znfl9(Twc10n)!-x*|#LyLOUrDbq9~b^)kR+Z>~+z@nGnnRwO=P zMjTzfQ>+1HAKLCx;!7HwRmwa*0?tI+r_Lc2cIm|7>pY;Y*^|o zj{_E__{l|Rcp@D-3a=W#5`4lq?zQ7H78iE|&D*gj41`+lBTP2;&+S5A9y~CehpD^X zfB1NaH-7?z|3oNN7MMmReBj_qt*iL|ror)wBG+V|Hkygrf^a|y;=?R#rc6ZNvZO}6 zXEN2K=+eKlDKa;NDgv@(PIC@+P8)eMG~o~=en_2OTI=_(KkuyV8U)J#GLdE3ERNBWJsTSoi#zcc_u9MJlw z?}s`6yKZ1vlN55F4Of>1g@iNrY18O#BFu&Ksz9(sgnkH&gD8gRinrK(D^Et7PDeUmS zG?Gv*j^P@!_FiO1bo^3xPxf{WYb+bCOsX4_2gDsJTba=KyCyvT<%aN5ain|)A145* zkoaf`HG*&F429t;AQFVGe+|V)C};3ox;S`dZ9jy6T`8Q~4HWK?$C7KPaqEy$6<8zg za0YD>cp3b8D1Vw$z48CfZ0K+hyfeL1*u*ST+{~eP>+n43)ntFOEA>)s3H09#9^}m6N zjP#m(hT6z<5wogWe90)Wd@MS(RHNG>6PHJFn!s1AoMAvpO`9Zmh_@6@u;R{xVtCG)4A+AV_`WF}s!L-onWUY`M`0nZ;R!T| zaW$AI*Bf#pd@lUH5hLA)x93M*6}ej_<>wLPa}%KBZ~Vuf0@1%LsnzdbQ+3m_d)eKA zSvSWdj2~sqFX?HjQ{UW1GL>R*XL zAN0tPpMaOoH-KVIonT^I6j?eJFj8HO<9^#iq4I;V>G$cIbc>&cWt7P5inRz*aX04L zmd`F6KJg)hwL8d_C=;q$tJ#s)_Pvq;fepuFhpKm{kiq^PgCf;)T=L6mzk}3Q){lM|MS_gQfaN0^8m)ObP8 zpOSwB|JR^gpVC@wdXQ)1m}h>3245q_%39ac$VH%`8uTNY)8IwHqS5Zt1%{MOazZOa z6H{$tLR>DmFWFP$JNMwdB#QBE2Ow0wZvqx_U3p1J1it**x$IkK;Mx7l#Q2}^D!w#} zR;}mxL!#|52n@pjRZ~7sELail!g9w_96%z^&I;;2v?5Ttaf6U1prUZZw&9-iR0~e5 zt)(QleoOUwFPp=7UAxvT#6J77S~P&}Wwg*%*&-PSkJ?Q{^j{fM%6X^p(2xTWjojaQ*l+&A1$$7Gf`|h#P8-K(EVqe_L`9 zpl~4TWMHB+;CG{KL;U_z;q8oyKQ!1$nsL=U>UIi5?bh+PF#2ZnD~dlELtqB1vVVN* zPuk*2;sax7DU|yk6AWHl{X-c1Zls@=V9}HldjLrhbI)~ky7jYy%jToh>$J@i z<=H07FjRe&`XnOL`pzinj~3mc;&}iHcq^6)kMjm$(IbmsloHyZ!Ds?-#5E;d!Lv3PWOEHj*>t~^+W1%bErumn$WM=Abpsan_ zFojAi+Xlt-@$yP%ahRq)8bOUj_BxncTwdt^tBd^KEWqfTguKn*tck<1=w=WMuR>LY z3{tG^UbEj_EO5W+0}?)k4YyOI7F7m7JW|SqJ+c0CNx}k4=Gip;hi+F?_vVbRUmAT< zo$vuY^f6^OeoOuo??J@zJ(SKrSz2|w%h={gHHoFYzW4_imzn;Tyh!&A!r9lY()KPh z0T=b{n(G;mNWDM5-2&A$n-rZZ799=gy5F_88z8S@F_->eZ}ML4n23a-S|MoGqNhyk ziB?Kq7@XDBnpRN!rxp9z;CDU9hsSyQ^LKaD1*&+AdM4TwXsQt?#%HuVLWvC+@cwuq#lE@QJ5u8P+-)a@XJ1G0I;)v! z6b3Gv!>}6%FLIJ;W%s1PisX*ekgnMHBMK)N)X4~co*XhZe*kyI?O}I#b^1sxSWYRj zvT3vMSpChm$NRc>|85!2313yaqU7%QjOGCHRE9CswGsw&C)+?ujZ>-IjZ_>~?Ju8m zOw{>pc5unKEhRD);zCapI|sJ*{Y8q5Hv04PdVxF3 zFPd}CL(zPv3I*TMf$xd^lH=_lqjX@Bc**1cjpfMIZT-3VJ)h@-rpyUvMSCIjBy@*l zMUQbVD*yH{ev~f+X1k+=*RjrL)hteUhtDEnV3{J8XPraoPG*s68SD08L|WrJXag^1>qizUNX5ENIePcCJiYrO;{41S`c3#qw*Y z1KVR7u2)s@#cr3U&7KhR6O@hen z&TK28(ew?^wO#Dz$^J)1I^@Y5QAEa~l$~*HqtzdF9R@q=ine@HN2L)RH_+h{>dbCy z|46?`i8KXLtqR-i)Yszg3$iltHPVgy;VQO&Y73?n20pI%$omzcr@vplgKbTZma!Mt zwprg3vH-%b9GIw~ir`hiJV-m-ch7e#ZtYeyilsI0U83@9cVRtI8~AHF1>P_9Kf5!l zOpopV%=gWgc0zxRLn0WenC7sij?23>xxK zyomL$lZ9RhuT7{Iuq%8Yy?;}`@Dg^M2cw>rpZFFeLLZx=dYw?F729Vh1@BN^H|y&0 zv_)oZ{g9GVLolbvU%58A!eu!YkkIyUM0 zwA%W%@87z(_?grFBQ^4wjXrvYJow{MxQ9lr@18^z2)859^4Q5$lle?fv@M%c1>G$- zZ)>J+w76$2KV>QkGpkWb(5XVC;W67lH72w{eMan)tb~|O`=%W3xd)cHr$r3yf?B8j zCrTusr}PT*V$4q-;sq!?h%J4UV(zsdpXwD#$$y{rIXiMbCw*ZqEn049Ytb?=NPcV5 zpkp-*`VEM(wpFyk`IjVrcYrx~MFBS)uW3NzgA$I10yVOKd|8v=;}q#&3`Y8UIIo%l zS?Mz?aB>*W{#~or1sxaB1xkfX(M#@XdM-)C=K-B$DnG((s*&p@xl}X%v{S|nA^m_! zrfX_V!2zJqz@`TW0-yQ5o-6`3GZ>a{m3p1WHB*{7{HYM*hC6g619dQkeG%01r%+8aYr7V`%X_bZ%X456Ex9>XFD7N5{KTYfUbR0ue_RapND4W^1m&+=Cida+KJuWP zy-OXuEaTF+o?J&N9MdEX)27`{eGA%RTDFVqr9JE6M2p<}^iF{>BrL?{fHcnk-^Fie zi;Cc=%|pL;IBqzcgD9)IpH0dm`Sbpp2o&wuQ@U>l*Fh&#!yBg4#^STF?fLP|H`J(+ zX0!@?k!3bDTa5Y<3v6so6v3A*B4BZRaNc*Kec*{swK_)DgFyjwT&!zN;s{buAIYKkoV>oDhw^p@zQvciZ#V|Yc zgrHWx@?0~!!E+qV6lJiH zN4s~UH-?r=EZiV)!NF061=@y;dCQ&-A9@J>8Ht6B;n_9jMQH3wv7=Zx1@7^VrV~eb z5%6gnw&o^h(lhBN$Qh*d{AnZ)F3T8KTgy!>VYD4Nn6JtDv?_66Z34* zD?f-9$Yb^c{Wp2P z!`S0nSAOvc)3XZqma9}T(Ps;Hvqsr`DUOt}f0lddq)E2RMDqDX34o8!0mE1ng| z9I<)!NT4N?m$jm{@6x+y|HQ9jwVUTXHdiSQSo$q?a(6U-o(P!!yvQ9MX5TM*t0Gev zak2M1nbg8l72urYBElh!qxdqYIhPu5yX2jhuSN(hKxzk^JxHl}L1)V4-o>q#S&p$E zi9K@6m@4CeUWa_TueY^5lSsUB%O@?rtc0sY=bqN=A#vTF9*2|fOXHLh@;;W(5!X#0 z`wjdjh#zxw&72XBii~Gy`Dugh}avo7i7ho^Nf23Y&cb2ZB|ojellE(IKP|} zk2VhviLyB1pT~FFcJ`ArGH=@#sa_~4z`_Sd$9-o$&bErkry}L~UY|cw6Bk~Yo7JiU zJ-`>~m$9c}WoE908 z9ZphCNW4X5IpudGXc{Zq6%I)15~{T3q;VJYX>N0gPX>t2-94c6G^f_^QYSr*!n>|| zYF_&4H+EAl>jyb}1t&}m)#&iz)+WtAzl@M^#x5keY#jnSzOthKNkzA*UBYVaQ6}DE z%6V@OmJSBj+*`?w{u+h^)}dsJB1jGt_b-D|`-YtjYXG@hO6*3E0p&T7r`xQhI8R;1RTF6C-grS}Q{%x`X) z%!1@J<$6Qu9?152eJ6(#Ubre5Id{+XtgDcttvK-rN1KH~9a62{);6V+pbSOn>wL{7 z9PvK+_N7hPB)m^Rz=CbSr#q6!yiR*lqc!c~;L1A9;8$zP?kHBNvWvD~kJ{CrQ~Ep= z*QskGPOboty}&kgvGrKuj%lvdSqit;$&Cyut){%p60JQQ4Vdi7iji>JCCcvNnW-up z(RSPA-%lVi->J@BcIp`l9;9ViGJHKp;WpMGh$!`KZ-gFYGIM;LW=|`LEI1w%6l*_b zIvVc0RXh+a{iC9&{vb)B_ieZ7r|Y+A-4d9K9(tA?Bx!36h|Mu1WP4hNX^8}tUnKZ^ zy<&ij^sNkDPp2j-JrmHzP_#wJ!7aLUmb)_Qp zzRfc*AU02f=GkIb(wn%wz%roog@OIkV*zVUM6}zRVp|`JW9ctaENK7fb zhof4=b`CL?i3eAdKE0}bo$vGqCpL(37blS(c*vcL`%WH5-bmiDd8v3s5)spNOm6W% z$-DbrvtdK_6^G7`Beq8=x~mg7e`~m-+5R?hbNq;JKi`=ZN>ZohK*6)Y_ig5+(cY)`BvH+ ztI9kX-NJ!yY3>aSB-%1@hN7$Aj+t`VlSXUk6_N51fzr<%XKE|5dA1MWl(LCd$X&xj-(eZKJ+zXPe@7S-gBOH=s_9fM>@u z$tnNkia*LktBfd0o0P~&YCb?$;T&M)ulJg(P5u02moC`9fio>?9bXt!3QPrBAV2@y zQ`VMP6X51CC#Ck2X)-)aYIs+Q75Ynp-t-%~esGFsjeIS|j!$z)4jNhOeySC)H#Bwn zdqPc^I4w&Woa#6bIjNz)-jjC%KglqjA*adtv*RVS2BHm@X){CM6L&NApQ66){C^q zm;5phs`$t~5qOYqp>G;FlgmN;V2&vEtvtQwj!6zF`sv%ph=t9SmzVERz9k~*PjVtr zWhjXYaGsVYR1JUm<42kkWWh66^v7t$|40pt4FjyTi>yPO@4Ph(H?{G47U$`sHonTH zhc2{?>4{_XI5T}NG^HyN-pF-zkjF+WjvN_KKgJ?^R}x9RA%2K*v)Qh}+pNS#3ceMK z7E&W~t35NO=)$~y=1Y?t?~|ubx1SbleNv6a(wow_)W+K6t_Kb`)#f9NeM?7HtBsK- zG1bet!Gqtk(i0ty-yoSmratk7@0qB(%5};iPyeOqYVJsX-}RoJ0%JBgbT48VL4Rwo--`b^h&( z^ViczN34Qm5qPD7qG14WX!OJlk`w&DpG{3py>qc<6RmXQ$c7~)z9T!qgjlxh5xvM` z>p?GOCWjV?4z2R9dGQ{!i=KCH=RBl1?k-*um1`5x;CvfyQ8RFEP{PK?Wv|2HjHP7H z*}JOlNTpPty-1ExC*J4v?{Gn+u1Ap|ucTZa!Wswd?_Y)*q*S3pdTzxIv?U-VzL+Ld zJShqNZnwW~eY5IYd!)-0+5GO|T8i83_98p6(|4PkFj5`D5!5P)wkhn7FxB`?THnWE zEJu!1s2}?w>sClvT9=?m+``?QTVl56Pf5F1c2LDlShch|?sRUQER{;4obnm{Osg#E zhKCwzpRcKXjxu`x_&ZXbmBZ|oJ~r0w;@^KjB_GAYXpVYU+t=90&o3!5G>RxnIEeDE zjLwwOlA<~)wDAiLJlLur7>z4GM=fvT4Zl5d7PdX5NL!;LH)JH~v?KPm7KuS6)s&Zh ziV}->S991LaQ$>z61L{3xvNM6Hc;8q5P3$_ zM6(+X7sy`E5&J%4*_P%nBNs-)6{@?-RMp_NGlhe+g$7wtKXX|>J?Ujb);<ON5FXP5AiTxCOskCl^1r^>c3|I#F5 z#sBnBd#m9}xl%>X=9srGxdu)Z#e;iHiw>bt4hMQ5tCXjf4jt9?mVjnkAwyI}$|8}n zj?76{T8F88n;MG723OP^0IXkcDNTQTvHJ1faQ%k^(;q)A!zn>bm#8e)j<*AVg@Z0Z zbkW?;AS(_$uqgAh?ehOj$W)10I0IWHMjB41Pm6^gDu>bARQ$+;(%t5%6gyCaxn#7z z530$jkgcEQN>@4=fW+qBsL(iv#c^?{1Zq4p`5(1WEkaYsBCWjt1HIA9|N^!%Si zM#*unH5EvC$D^Cc%P#d!^Cn)$2kvx$G79{e`BJF6(tO1dKP=vbHQ(}S99DI-X(xmY z#8f{~3VxRz_ij@?1VJN>W4XI7_1U2`lSo+_rKkGlrSfIMI+Qm%1y6t8SjgL4#Uu=N z?lvh)QdR5@bO|uH5ANcFphMf12kE8S29IUDUwkI*Sge;OXcBNpggsYq}Tq!QlXuo*Pvt2upc~MglvA zAa(VLozUbvaz>0Pm;}h@w}ZlU^6hoHM*6jhsJlDzCb1D4BLjLlxFEifRHG_7kl>y5 zx@=y-D-S#X{^g?6RVE6WY$vxC&wqU5>%6lJJk9|@LytfyL_cKOLo+?O!DIKW)+)Q- z^?w-XfV?+xras76Z*ceArzZYc8K}fp93E~UBy*$$ghGpNJStA@o#}Af^Myz(Ftf?@ zG=gdQW{L9h6(zfk%$3B|Vh50qCG@-{^q#xMhx-?!r~J)N>4MIIQyK7mS3Q_S8LK8NBI3E!c0^5OrjfwlrFqE!9YBML*n)-IXxbv1*wh z4tgq^uUtISSA~ftel5l2G8V>3(|sp6TVgyu>aHA}(~yje>t`jMCR%d*H}b|+sv=F% zCS-nAd3;PckpeA^dX2IIt}pVzuHZY@3VPJ?a1%xbN~{hqHxzjf1VJ(9R+-ed=@JSi zxbebLh9-p-XB* z+nW~_LhJc+v?k0JQvw1W9Ws!lUcCqlA)*|VXnUTP_5~Un8^g3CKc8@?VS@%b3eHem zlUiHPL^)aUiYv(}q&!Wm&Ml6!&R7_1UZn}Md1iWL{Tth{~*4Ez0!d^{%prUT0FJ%?L}ARVkLdfT>q%UV>g9YTT}RV~*U8#z<7;0eJG( zy4{B#kjdoZVAyUoBhUKC^@WLKalt9>w~mgETIN`eALxx7UzljSXs>^_uK_y(uG)!LLtbdPT8w!(R|64@Qqiu6@3jh9-#C z+2TtBK|UUZJpr1?XhHWxTPCX>H$Rr$gi$t~oSywXIx}GH94fNDi|;KzSH~tZ)L}&2 za1d2UbM}f_&b-CcddDQpl!^7>q8|F{XvFldaSFu4oR!LQ*D_J1Ynf*;UgM1{IUk6rwS2=vL6wyUAD*Ah{epY(Kkgk&*a3ljsV*Pi`3RdJ}8bdylf>`)X z#wA0TOR7b}GZqlyiy4=_5aDwp;m4Vi4@|D;J6CuLy=mMDyl6Eqnm1(>{vr?dHZxlN z{fg~_uuYS){r7#`y#xqN1^wyw#k2atIeFoT*=waQFr$!@Go8mUR;GWh zfw^Ye=!VgQYk8~-_->KhK@utLZJ}FaeCIMvdnt^qY5u2F`4#5lwNlI<74?)>YhHb< ztui=*v*)xwFfjr8&Am-JttTAxXW8q~bJ+Ngc+nG+E1l;%$riNdy-^c*OXBqJPZ$r; zFOYC0RC6|LJ{K6=VgrAUU!kC&K*Me!GWb4sg^0i$9V?^Sj2%s1^IigtozRwOO!Z$H z8}gA0zD*a4`234VBSS+G?isfzZ4|?sIUi5shuTf8Y9zHdl99w{-;j{`(X_W>2fe68 z5GEo%nB=XuH_VzEKjbl$W#-uT#x$h}FDZ}I<$9D`Mmo2Cs5Nu+{<-$nj`)aS-_Yc4 zB@>+e!J@--UR_Us`!FX0PbOCK@IUMXHbej*l(gmp#f!IQh%+XdHA zf|av1$Spvg*h%)eiT^9lv_zi6b^jxeRPc$8t}ez7SU5%?cCuT|H4mRtcD7{nE*0|p zhwb!|*z3zztuiiiSF3Y@M%qfw<`UpVOA4_0^?^8D9D`r5S?GSz<`}jUw*TmO5Ps`F zv=h4fFP~47Na8z$d3xiET}V1K^^P9F-6_?8QL+UtPNjXLfjq>s!CR_oYV3y%;YIz5 z-|7iNP$)8+Skymk7#qE6eU4X`m=Mar^39}WuhbjdKCuM4UR+DKK7!@rrDZ7--_Lx( z>dEQXLDW1Q8-H-8ST2$%DxYmwObU)1f4#W4=nVHg-nD2An-_F6I6pZ*_hu1+wqtP@ zr&DPQH%|ZwVubD*vIs0~LGvcuWHjUT*Svz5D32|&78u$B;wJom3DG@XbD--Uym!w; zMoC(4RJUTWq zteP73^Xz7v{oIohGQk*5CXuX5KxnL+XJ;CE@CHebQOy;=HAJ?%h@#I;$}CGHQfv!G zG<<#^t31bCTTDYADOyr?BqQ*>p;~H&?#EPMpai)B>WJ_cf-b!>peO1utK$z3wFZEy z@dwJ}dQ3Z2)II36D;ifL{tQbR^*Y|b1H<|Pm$N|_jp8j$#aphoI)X!CuHAzA>c?xtdCc1ONxuhW?-t(yP0L}9E%9-)J=J< ztZRogQa<5D=_Fjy#nLDqXYg4+Z!OOS2LdLhhB0hr8{_$-f!-~trC4LCb?jvJkL1SR zrdNipKAqhy30s;z2TUDiigQ!}zzS-Hi2G>XFf8O7cm{kdTxU!{;?~-*do0eX7Gbg= z7VyuoZH|Y9gpQ|@<+X6$)qp0*Lh?FeAk138jCaC7wlxnCN-re-%I;q-)qcUW1c|^D zB!U9gc#tW7V3s#10Vs;;9+5<$PmI=N<>>sotoq-%MjH{!4_AQqm7GkSl~6cia~4&8 I()*`>0t9@NTL1t6 literal 57813 zcmeFYWmwd2)CM?ogP?TjP}1G0bSvH6LwA=-heJ0iCDPp`(%s$N&Cu+R|GV#A`)NPz ze%rY&0RiXvox0C`?(-P_Nl6+Dodg{O0%6I@NT`57NS+`Nf-x#G@Ev{l2?O90vWdL3 z1n?Pn-HJB_0H4qtWwc#DAo9?cKX9>IXXYT#Tac{82Q|-(!zCYIJ-5u~vl-YRGiUt4 zrhw%*PfMPi_qUHh&WxYlzhz*t_$jLcmmK*ctTLEzvbgAXBnAtYY|%RYr;e-22$q9r zH%$-y0H?f?tw39LP5qW0O`udlA||7i(_E-(8hmQg^0BiZNLOr=S!_R=wAV(<8F_!4LE!aj3^`%V%ZcA$t;4|bhQ+|~$BA2X6zETM@=ikf( zaP8jYfnlCSvv&wx1Sfox6azt%1cdKsJdpxRbn9q?Sm9VnOhwk+gjCqzB2M~s*}Iv* z&Wn=-kzrw=t{KYrwVsl>h}NjBo3myd4a)~_B_t&JQ|3)@Utat+Bpr<4|9z?CCamKB z_x+a-^ePNvpPGG34~{8LkW2>!QBY7$`k9+b7o;u5lYFxkY2#-s3|A!c?LQ4)n{n`) zHv7@xg?mGerrHkzyUb#Ku4q95FdyPK_(Vy_$b4Dq{2>qsI8*8QI`F2Hn2hW}&)(~7 zy{m)Jz;kV@^AYowwWhk7>HOCBV0`aV$8-=)jQo`B)Npz}RQ%^?=ZMh7VAk0>D@sX8 zNrkIG3v*M-z21q7zK6?`ccGe1$Mw-dK-2T|js8r_tWHx0kqh!C3?a0K9QJKhAgFC3 zr;mCwM@Y+ls~6MrlsH&eneqBN6JjH9MGtJL3Z;VcDF{LBjzO{XqfRv79x1zuR!%xs z%xq2n^c0r>j#OV$FtmPF=N{RJ`xDLs-i@=QWLNuyvgl(0+DHC<9)FJOvGMWoUA|%6 zz=1&i?v&h`>-+AMr;d(}XBR~FFc~z4T9LuAZb39V_TR!HCN`0!gj=vNsT7EJ5wvIhe?9|j!ln~P9U!7pyC|SG`alXH<5g?p2RRR&YG^fVWDEv zhvxHze`Qd9ig~@6$I_Z>Ow+;ixV}xy9w(Fb%=S>&;aq%F&juq7eosa1*|%kBAqvAC zzTsD=*rtOeP?=nJM@PryR=@jYNJ&ed+tLC^QH5G1B%%bzrTXj-&IWl+7s{i^Bti0f z8qdhZ6MtCKyVcJi)4_Y38UrSRqT1FlEQu&~Q9D~(TYg8BZ&n)^)vZR5m?bUBTs@l-lW5@^+p3V`5H=`i){!AQ>hkw_%jz6ckVBMwLzmNEvGvw=5f@ zvRGw`S3nKtN!mFj&96s&3@~W&IC(z(8bKV4>FTUYjG8OVH!kcTa11Lk6hZGCG{k@oWR|4QZTo6esr$r9K}4 zduwX0b;amLL6epTOTOH%P@CVx_K5B@9`7|sS#I?w!p*o5HkRJYt~&KN{b`whhFaO! z*dRMcuW4p^u7|IkO-D-QFCqxc_8%sZ~=h7LAt&WD@E+{w}VE`pnD)EZ4ahP zMktkwgp;^G<$Y$DGY73r#t2TB@K@@ z!d)sA*Isf$)~;fH{qfED1xL3Kdj~_#>tBdpI*=NAUdqEY>-)i{IHdv{Se2I1uWWS* z3BQzLdYjlOf}C2d{5B`L)9>r5pFcZ2X9@f8z}-AP%^>7dIq5)F5FV&g6`r2>mVw?@ zpxnDmP#!ZF1$|CXDhTh{h=qgYP3)D~t+e{hI5qct1&By8HV)2nIy)`;BKm_Q&|0#Z z1*A$3o-p|eU!7Q%Jg$z8jvB({Xg*N{Je=WjaGF2i)eBO@W~1uaL^Y75pgfH0+{66a z+MeeuvlX$iu)J!Ysn+<0o11%-70d79#Td&22a$d`LBzjxuB97zZ6!ul9n`{aL|dfu z*9C{5|TURRnee@g1M*I$z9d~oqN+6H`P#W-tRu6v$I5V0OkyA zlw3}#Dj!AnY-DqHFJ>*Bl(gG@L%*>iJ5GUDjsbH2vrS~rZ|33mt2^9dtS+v)Jx=E{ z%s|SYULfK^;XhGY?9T%!PHYott^;7)SH75wF;{^lq(Pw7&;jlhKIR)H4I+&1+r&Y? z5?QEo2q39PsHdWc9pUKKLu$rA)q$Ki>%(FJBRE4bu0FA9L8wCK?3q)MF(F4g*i~6% zNIgzjas|??=UE8~v;qFj_qKL+nb}GO4k-Q~w;A?In3@(I0)4Z`ea`CUaL}%Zhx4J#k3`XyVtn+pA=$l8qQ}XyE-o$$h{jO{NSxhV z6ei>d3YX^UG1y*$eKF*MwQ#ZUH@>a%ICb&c+uQte!H=Or`5_@8BFKnfXm5IuD?_3; z790E|0t_F#odHkwUyDVTf1!ave|-(SENJn<@5Gxe0*?7ed+DgeC06kr`9G@kNNBRlsDbKv>z6dbtc z?tCS@en|LJ&5n;mW7rD!X?(p zevE2rMb2@~J)7Pt16`u}pfN{%cVh1nc@-aWR8x8|%=fSLz*?sR3ZUm8JE{s~ z8YE|S#2+oxJ$L9di8S@&mmaj%zGCk@qx>I3m0t|KAe-4q9MKW9C-3zX@`p?9QyY)j z(DPV5_#g7H*wDT|Jw0u{anybSYdd*$PXIkXSGayQ+3O_x+{_PH$`4q2|4CQxFVHI3 zUl;(EZ9lVMjEnR;m_x~9(m`XHy{&EWpon=|dV0FvjGw3@#cA*8=%m^83bb#3s%|Itj(pE!nT ze;$C=@W8b7mZzsR;8K8xMT6dFkXU4>Le=JW+V^HQju2|NC05Qd41MuUu z0$U`&yqkIlt5X6N{>ofG=K;v083?o*jA(X9-y2s$I4(GmRqIt?{$K?#_vzB{WM+0& zix?Am#iFDIUP~3Hy?#tYYg91XQY0vp-~+8v5( zR<3V-5en7zi@HkM9Nv`>EI$DBG85F0q~1Ok{(wcTnRl5ekK}Qu1K{)Q^wb2XCFqW$Zmxu1cZW z5-`DeG?WU)52DE(UuEDzj*3DP{^7wcX@cb9?jLeNxl=%LIKV9EH@**Td`Q2*~p0Ryt zQx*JyVfzGhP+1fUk^n>hEdCb2rN?-w*?G^Y&{P4SW&Etw0_J213A2d$(tF7nH#>m3 zHP2K4;zR;fO_vIj+OH4){ru%at_=PE!w@ZZ8u5Qg8gJ+~+(7?L+i}p$xrYYvmSaAp zTnP&vLR{R`r2j_t|Lb@EzxkrK-Z#GfglDy-U0^jkXp*`$IV?=3;f^S^_FCJhpyxjW ze~|_<27*p=|NEOl;Z)$zQ_&?K0WL07B@sL^ZE)!J7O;V4pPj?*C{#E`9PpB!e;L9n zsQ7Mk0d9aJg;FEI#$jiSE!C%6>g*Pq*qNW+`I&1#2d zNx6*Fe|}}i{uzEi3l<7Lp-~~>vA3by@}ZiYfxGC@Hl;jOEq)Y;d4@Y~v$u+%dIQ~~ zL*i>M3Uu%xi%e+DdP2&zKF>SzChl@mlXxj zgy6svQfwu)A&5x#`$w=Y-5gR&xLal7+@gxWNXmIZkXYw~71N`8>yH+^n!S zi9Mf!HT$)93QQ0~MG=}Ug1NKbX0~Rqw%&#pqRLBjzwcmNr-$s$`wDmaV}@*3Nz?ulrQ(Ln&xLVqtjKUOpHrbB5e{nQuwUY=BFT9QzZoETM=IdH!@R z0DOWyVbv@Bi}ve?7L8eC!fg2sHYo3P|7rerE{ABZ^Y-^FXye^ z`|I*v-(Y+%GS>qNBLxNXgIm2#QF4u=z{%vI-unTw?kQT zQrvN025BY80`-dd+>7DmAd3~bCYlc~ORIEqDcGDhT__I-# zFE_q;Fo5Gfpc&w@x?ar~A5s}94G2$7zp}W>AOU|^!96m8Ii_Wc-h-bV7FZ6S5MqwE zZv9SH1$mE{ZAZZziaEa&%D2!M{9kN_Tepb|6~ zCbcs=3Rs63cJGwk`vv_XfbPko8PFG(J}F`1!21X8m&dvg{tf;xmZhs5 z!jf>@`hA;kkX=B3lYveBw|j^BgW2o%V97)Fgw@1K6Raf!LqwKP1?_zKByN@0A~!4( zzEt!BRBf~D?kKTqZF5aKY83wW$9*wcxr;A`B?{a#pruiQ=*07}SCPoE{y}0|CNRI( zCOuyq4m>=-SUChl`pXd@1_cWy5^?}OsPG9tmUWz~x1+o&L#uHA9QFNKCbW&hVE(Uz z$MH7d7gq8=zMYKiZSc=Q+-=?L3o<7Q7_DqEZWT;mP8V2VyT5oCW@?jhQk}-wC;q41 zUpXNmK$-a4G}D`;j{B39cUX?W#+?rz}FW`nSEW@R*O* ztfDtt7l#y0d9FnD5h(Vaegne6ArtE+?9WTdAf-hj=3Q1@tI^M(u*2haLd2U_sNlqpcQ zTPB??RkHW~A8HjQh%ffFX7N&uavtphoKhSfVKEgQ($iT3UwEI&%Y!0hTK{79yn=?) zq#aYIFJAG7xRF-`(|Ww)9N!dO-EYG>G&2|lx|vDs+VY%H8&v+dc3QpM z{lnuXwFev~mnMq#1Vzq$0>Q9NnW=>zlK%=cGcDu+`y%ac#tLo@L>;4GurxJc)1F67 zW2DghgS_h@eJE?W|AlqvoC3fGP_@P9VQ7_oOWGA|80oPr4H&6B{#{XjD(Iqa5jFku ze|`EK(c3}0qo5^mJ+rieu$ZAMRL~NWls1~%tj@K$5oeAibX~OLwcTJ#EZ!--J5N^7 z0z10A&c|s(0aSU$8T;^Z#w+e06dbSPOZ2roHsj;S3x16JY@z??qx!Y_+l~j;#X~8s z!F;;ONf=F{(uND>T43xSbWyBCI2-VjYzx-WTV$nd-Ogj^o3;RZ9IcOhg=G~^Ml{(0 z6RT<=Kx^l)_P#4?Ppbj_3|x!ys_F4vfuV8!0Uk)W89v}=Kna1Pu2y0ds&i`PUk z#D32hXllNZSRPV1b(sK@Wq`=cDZ|x(!slPf>lAEb$E$q*jaA_+bv64s>7FCg6gU%X z_Ru1R)ZW~Uik0{+9aD(pyy9O8nIDkKMjh@f;G7qfz$876T0h-eT(2ZnkLM|zho(&s zZ8u9+RLHtu?!?9ThZdcv#u`ZEF1p$s!?7Tu-eFk|m0jeP+Og}h=R|l8?S}0TO+WK{ z`?%RNgTYzE5Ptd;aG5)Vo z5MD(h^EpNAA1j$@6bEAvOl^=hNp34#AFIb{O5|n~uZ#y)c>#!lMHVa=BKwr%SlLVzR&Y*F>?`*T>s2Kx0dmCmzQbbS?T9;a9g-cs%o%i?r7t^ z67n*7>NqCw+ylzLy-RCK!JOiES_%bK9w(weRMuFhBEotvH{|^gf1@};K2{SN;Uzlb zW8HGN9rrAD+$l!3L`VZC{k8=v7^=MoqH{oSlDw&pB|_sRDIvEMqF7+$MHRTwzIPk%*w3E2^ok<= z-6G!KGrufIokCl;A#jqIwTs{!XApK>oTJgXiUeG?u{D@A=x}y{?r2D&|2x1-za?0C zbC$#Z`17}?KXsz+{6jPCzs4>sFIfYZw76z~-xt@-ygPc(w|CP16_HlHG7u)$z3;{C zWzKRK-duSioP`Y30SB~n=ptxrtZ4u*Ui8^rTIl0wvZA=Q!B9vLP5e_n*c>2}(2sj_ zcqk&@b@hY`SOUHtR=+7jqhO1h$w2m>+Qi4Dmu#~)z{!A59fxPsVWgWCi%}chah!f= zte`9Q!Vykax?}+ZiHMdmDcD!kqKljI;QauX-D$$h3eBjkQ@l%$NI(O4A-cs%rWk&E zu~rIk#rK{wveZGDWrTiit95Q%=s3U`iA+T^boHh*qE`wg+CR!ohG@N^JgUB{7~ZMh z&06OpeuWD?ca~hiyl)+S^S^fi*ht}ghvD*G)6SXjrmevAM!K0f3l4`QOvmC|+f)UmNyX4>}-m+nzB{YaK+z$)m$KkGo8Ad({ZLA%j^Hu1*lx>)M? zIp(ZMuP)kF20Veuv3rZt0p$U7G=vN8D3r%iNA#`cjm-+ZktuMc zmv4J{aUEbSY9SG2`D-0pBz*DTZwW|`GagJ7fGBu1-W{|zGuC^Zq@1YY`poanU~+8O(?Ppm-GH1|aLguzzT8l1HMqX#arHYx3u z{Nk7kTxj(Le@zbXFm{L`4xnEk7n06fk1T~$pz#1rVbO%<{^N{-*DElM6p#`dV-0!8 zrXmTtLgwy6TF%un4K?_Bqo1>%T{1dLCwX_98GY-IfVq-H=ef^fwFE@OXKmq>_=-V; zu0~z;HN_DdtIf}x5Z%yp=g5Kl^6TTEq-~t2%5B=xCA?E6A}HPu#IoKq z)I9s1an#l6uU3)jp5&iDP}_)SwEd>AJR~(??uaO}t|S7GZX>Gsbr@*S4)t~9pA#

&9j|qHWs7yBTkyxUewPuYXBh9%m%%!tUfwhB4Cq1an0%tDEV1@%yD(c7!E> zfIN&*S6&gawNOidQ_56TRpG|cJ*bpjuE@3~XMfh*^_78LM})oklEv(_>fOtwOlNa> zoM7_@z0yQ#x%YkNPNf@;q=ZDifkT=2e5-I>{bc7@Qx1E*SB_`&loN&YMJh zmLD*mXOGwdq+soC|20hW{`2I9Q2E!16YIySJwyaeV-E#f5t^GsFL_rjKzSb20;KQX zL59CU<4>w-`ji%mK1^*%tJ(2ZcU&zkd5>Qr!`?7jZW1`>c#u-5`LK!CnoWLv%;2eW zKSb;7*_&%#YzhO&*P$yc6Eg$t71~|O!mBgBAM6-9;2Xc3rT!TgptxB#aOpMVhQr88 zMu(%dlt91#oL2EsWLibWvDL8;Y9G1XYI^gYnq62d*)V`PhRpVxmqCHX&jRJ^;Yf7)h^q9`Ob05{{2Vfm~mTidoh_l)9jsxYirp8C`xe%zSs6PTCSBovWpoBMO0n zN9Q!dx5OK|)a|BjGS2%Ph8-dtrJmkXA9B0G0`z1JaG}=JZ07`T(b)<_iszdqf`T}A zrnX~qv!vf&AuXX%fx+>|5kWj`WhkfjWCXPeZE$jt7j(K+dIKSX1%}_j6B$Yjk}*=F zi^%`rbZkBjmf|Rvf7sIoT7EVE?U$HAMOPf(-S4DfVZD=kheiKpfjS{+5%fd!#fA`W zO>NXPr_rT9^)LJee7DKJsK5iO`oXWzEBZJt#%(OhX_6D)I%Ul0(+n6yq}bMG3*EB; zOx>}9R7N=7^abwK2n8M`$izOArr|e zKxLIQ5fvo&#l8}sv0a}wZL*f(a92#Vs zSJLV?(}~hW<@BFNOY=J4u+pG(?3Qmp%Kd@VA(n3+HFRy2B!=qh3USo2H$PjN9{Ran zm0i6w40`QuJ?UE831CuJ#}|o35U7?=44dz@qR)|ZwQFq$;5P!8R>0CGkJ}UNr6{L@ zA@SFgEjqOt!@n)8P1=<9SH>m+52UjI$*&B?@*WrJY=#x$v6+-qqmgJw{L{oJu!?YUOoe<<7$1qk zyfa_5IT9c%a&k->@OS;tjv84DgrTx zx9$aOx%?sK^Rs7mA*E`tBxA!FpYZsZYz$bHc>Hux!SrQNf~IPpu{lPDcGUxu(3NYH zZF;Sg_Q*H(SaHXT7*Gcj0+$U?#=QvrBXe*LJTN2Iy}pE&^ZF1($v}a#HXTb_%g`Yr zX}UrUB^I{V5Mp!8j3tAf!HTaRL6BBC<>yp`ZlD?R9L`ez0Lq`FS(iH4zf&@j^fzVE zfg#$k$L?{!mt?2#Fd3*107+~Za5hx_ItLLue;uTo<0@F{mc(|1qYb*LRG0v+$)C~E zS%<(3V&;Cg&GVIR_J=P&^04kJDg#cP3-+ijT|IWk;FmW`Xuf(JVB7W$j0lYNQiO)r zez&H6!`5tLjlgVrWC^-q()WW|?9&0tEEyK0d@)H^XIV#GjnJR!1KsoSDEi0N|0!W$ zd~kkG%3C8|Tiz5jVKMVNYYoviW-U0zo1{oe8mzui^(>+M49~iOhf8mb?Jy#I7$)sj zAd8EBN5-P3H*)xZ(bwIan)1A&z0x+=)C=UvuIp7MS}}51i0`1?`&Nv$d&Nz=p=j6T zJg5fvH6ZAj=}mukK7Pj;5%O&a`mjK^#RfFMwaF?P zY}XIlU|s3v8v&=dH4n@kmMEw3;{6AVenv;njN{f=r>&(LiV!-0Q~%{V85Y({`~8pp zZ?Q5H$=lC@-mm2mex6FbAR@BlO#urBQX{V+dNBg(ExA&f`i7HO7tI?sz3SYoKj;D1 z#0wEltpj(;JU%2TVKRjkd!&5^Q5h?5eu7so_}=nUAZr0cUX$56mxJq0`>td0ugtEs zH}dj8x8fB=$a_E-(AIpGt9+b|2<-g3z20)#wDQk!`iUkJXOCKXlkFw0qalJhMxt4| zLe?7G_;8PfWF<1AJzetq;fT@!9v4nh6jP|cwLJI+cX`A^0K(+)y4b~Q6_^ZOZ&toe z*E&4rH8voh_76;`N-TXE8Ee@Sn!dclX#r$)dcp2iI+$a)Zup93^W&_9B2vZfuKv#p z)ML-gt0rhVCy46t(6*3=e?uL7$AOeHt^Mqg1KXjX z>lgl?$W~*#btfm=zT-HbL1N(X@inLE{gA&wkTDhC3e^~wgvayF9?5Jwz!zI0fU5-g zK|ngTH)C_y$%N`|>a)bBzGXQH_XwVnKmdpS$O@Ecy-FuAZ9oDc6pR#g{YK+waf5;g z-MP+>p65Db`r(Ud@oz~8mo98tT_z05HeTb>%eAy%E6>+$N7UF{+V4e3A^_}Z#Dz8X zG_oW4_Q<74HqY*O3)u*v+x~50@bS}!@@F_9?Cmzx+3brs(mF4~763zudzuM3jymyp z<;ugPPqqi`f3J!L?Cj(T--9&9tIU~U7y4xzc&RZ!eEI+c^X#9C8hX%YvI!s8BEA&( z6E~`bzZx8a{B#zcnW|LCzN5PHj0f=+^eXnqo;eE-dy`3*J`IQQ&gC8R=htaQ2=wk( ziEz_Qzc;F(I$6uN=xs|4=|2f!CP)57G?h7Z9CZ~jM7zfe*xNf=PZ*)uK_>-^0ZZRe zM1f1O3P~^iYo*|bH(+%tqMiTsp0B%{>2qIfz(vm?=N>E&0ND)yji`6}x_RL(L0`XM z)77c_kbSZapFz}adf)Bw4D%YF4qj8yAr+P15qDT!6IJ#i&kmFMTybsJpsSEn|9NzY z)|~1M8&ia|_M2Fa47qq;V^(oi?5d-#7NIuCX8TuGqqHClcD)qh*%yzl1m9YguULAn z!4gm%z#9n`q`2}R;cFXd^**`!yKWPIUiP1mG+7UvSIU?VM~m>StIbE zh(9dl$pb@l=i}=0%o|fbYj(^XxjmfDj94C1ROY9zx|9XBU=M!KSHZ<4?g2(f z_Wy;mEh1$of25t#Poy=(Lt3A(E;uzFJEjMKf=zWsCG87@!I?{N{>qW!{SsEjhw zU2q7ysBSXGiSwv>dQM!dO0mcF$Pqc>4{|3?{~qJIw{i`}Bumdet+TNnQuHNSe;vFz znW)%y&49M$6+Ne?T+&k1pP|?!OG-qDF}O(|mu8uV%YA$rC;eUho96HH(jA_U)Of0M zfUsXt!*h4GCwX$OtBQBPEm*p!=wyUV4>>hvZ12LxwdjBv;t&HAXIir*K!F^d!Ym~5 zaZ_Jf37;*ErysV1!=vB~x^=m5}0w|OK`QG5-gsU_dPVXNl;`tkq= znq3WM)(9B7V8rtQRc)pAbM8jqk_aGrEK35HbT{^o+}dHh4PE%0e^77a>KLbRV^!F_ zmrX}ip@v*XQHIzu|4X=b7+}wfF&ej>Ugz5$jqa z@DDm=q>kKuDMj0eu@_{yA=XKx*gvP22-pMoUR|~!?*=KXU02N?sHJuw&<*}x|4OWW ztK6de-=Y5=G(pUuv$VHYV}U(zvV~^=q3z0Pe)?xIoMtG`m5{y5JrnfY2GmN3C0s<9 zOgGRIh>m-iv$%@#nQYEkBc#KTr5Ez2Tpj!qU!a@r#pUz$g%l7`D9|`8@VSi>El&IU zQ>TipgxUItR6xeQyETXLLS>L}WApQPth zk%3k@bp9xHJ`ej(Xeh=?AAw6k00xu6-({zKZ|PC|dmP7$ZCLcjWNdB!)#I2R=lZN( z0N(E%xB;$Vt7txxk-0$Z&nEe|xMe+kT&M#ar%gTzmYs7@{I`gs7hUp8Mo1RV-*CQu z5KtiI4x2~{inr9LGI^#xDFKMAF5p>uAM5+;#m+AK>Wn)l4y=E_;0&6Yq2KOjJPv;j zKiieIDr@#hO5{gz^Ib15ek}s*2PRho6z)7SQ!Q@6GV127vMGY_7xT6weDv868oJ^a z{-~!J3$Qzm585bYq>7%U`7tg%BBW}YNJ{jN-Z5hYX~KPl54p|{1LDYk&L6_LJ>`72 zIA4LW5#ln}1Z#4&FFfPo132wi)$K_6wn^ZR702`9^Nf3E4gHj)w6Sy%h?)TmEiz0YZ*5dxjEv)=mx<}Z zB{-!2Ek^gT4Z6vYFvAhu7BEcH;{Y_$^l)XHKy#!dk0ZB_r=W?(p2l*xY#^I!btLSz zt)oWQHJ~yqA+)-MUDFbv^$9Yc?2;95n5RBWyZt-ek~$}G5$VXx{QiD~3ryZ=@ zb591COEW$z+DRlHfEeIKl zfynsi*ImWuk4c=U`2p>B%vj4(v|x^K_qG43KVMR^3)1+K>Q!_>Gn;@ z8rtz8_#P%BTY+r2KOu%8rmFruuY|!X%fVPkPIb!a+grko=P;oDJtYCR+UX+{m2Y1! zu4`YIeti%)j2tW0LOLLr*_pbpqFc}P|A!B2%t8jvB<6^hTaMG!%OB2AFa@Mug6OGW z*YZ7-DG@+e5S!VqGxFjNT-hnN_&^>rW|ilQ%x7wFG<(u@PV0?4?MWOTMwqY{H(s+g z{C<`dBoY|onJ_IdG@?GZnD&a0wQ!`Ysv0%>#IWAv$53avgarDCoxd;}>5rcrfx0Ev z^7(bZ@UR{G!>0YrFKF4|iW}&^Q!g^^;mh)3q~vGg$2{Wh*OACtSpn>e^U4!*1w|Vw z8m{9sd5q+b??c=J)5^2etJEuN-f*cSHJE85;0KL`hitD_iT(nl!k3BXO$;}Y4}f!C zkVH9*zUm!5$K$`vf_a!b=V}u}%TmAymJ8%E^x6*z^+gzBYx{iBOEw%qtPV^T1KLBh zyNg?Z?xU&*_*7B<5z?omV2W969lPc+Dae8ks6_HfJg>;p75$N?AHuG53A};PQ09Xx zjvi_;=y&Pqga+j`-&-h^D)G7bwg8b!=)46kG-vYm)A#B}^jVF-Mwvj)?de^U6JUHY zR`l^l!|=hT)U{#r6{xHKRTI(8ps1i~15AM|+S6j@R+l_^e8a6h zv!ivr1NDGsSM?iE26Pxd7YftUR+0W49Ej$q`s%0xD^&Xu)(fo+86EatRRHj&-2F3? z0|g#`#$7*%Zuk$0&tJZ5iw&{AfJ~Gh(@K+jiKya%0LZfpUozOL<~IV(D%I4@;+oZS zYJMwlTKmfYbDc86Yg~Q}{q$k*LSZDL-=M?zQHqMMQo5?VXK})~O_pur^oxue0jOMp z70tLD2<{{LuX1RMfjxt%*RKcw=Nd3fay{7uy-H+cflY#({LFSFyB<=ij-zGW%&&gT zyb@qD6qkqP^%^_Hf=Tp~A^_$}KsM(9tjE{pUoPr5_>d_VSo-~Hr!A4yIiTc1e~rGZ z41s>`r8yc`#KEZWEL#r6JF?pw*} zyswhtA_g^F0o1H4)4ti!x)v`%?EO4fzV{}IpYjKIwY*$1$0N^ks1%2jibo*$Pm=3h zCjil4juJNjZf+Fpox*kdOzOrv10!^SMdjgb1;DNZ)nhf~GJ*OR2;LJ6LKG7>56lby z-2>OB)=%SgVRJrgX1L!(!cGmA>`a4gQLreg6)tDJ;eA=bbrK6l4XIz+3XBbW2Zp4) zQbkMS@c^8gcd7#q33J@9ZK+?U5*HbHK@8#+`3y(@Wvld0x_loW1!T!XZct266)as? zwO`V_7nl@Dy7!-m=VcchT(11oLswKJ{+a#<4JN&d%geYkl5+I^Q^u6?uX7a3;dWTc z1wOpS?b{>K`sPFd#{gQKN1v{qu@0Vs*XA!GsdKL$l*FgK!U9zF<|tXSO2C<2Wf!Gv z)BYTF^(Im^a-0bjz!ikZ9+joSwWF4(J~TdX}fc-;BFCgHF%(s`2#*HT){AU*+X0iCqJu0c|pCWG>VP1 zc`r5L9~7|=Jt*XT-NqD{TdXeYNU3mASh2qcRU=HT1%MxT3cwlB1P;*h1 zlWDi)b9&j{P5Y(*DDy!gw^^Uv5q|oX;uFRvLt>+)b#MLEOhkOR&0^R1Ot|c}03QTLrADH6Yaz zE<9}W@>(EQ)nk)Dvszgr{f67FamjANOL8us{cl2Zu1(48;WES+$IWm9 zdVzOVfenqH=*`CXSb|rgKb8oOU zm-T&sHBUaLUy%%Mr3ajU;J35)6;?*USCSk6{tsuh8Ky7EYd-4$nlY3kkskM=b#eXA z9CxD+y>tPJ(&O;c`CCzFd^$_XOBiy6mk|F6=lh{ zygLQ@{jH-j4d=UX1Jq?cvTk zP4w3f|21?(TEE-!~JUSb#g zGWk5j!dC%0uLz6IxR^xWl6B!vj`n#;cCvW8WXxpTMXx$JRN0C#-l#XRt1b@hm6#lw zVuCshbn_q0^kNWpSi*37r#85^ef^hi+#Pa&{~Th8#dGDa6c!sf7J$8&BGYCUhDAzKZMCR9r*V43>2cYXCS{i<=3mP4@xU%*(Uhn6^*M=vy~WF{eT5b zNIrzn-m%XS3K5;9mx}*g%g8MeIdl?JK?e%h+JT}3fv7zNWw%)#B{}TP^2=CxakjYL zXEy~ef*BID}55|fiGte1x8ycjGf8nUL+yU6bOL0b4K?N#${;44RxcJC#y$UwQS{Vy%88lC79CblO(sk3{lw|x0@BmVMUH2qR57=wWd zC3Q$cV`x0D=>6{9ezEiZUj7;OrsVkPASm4>(sHDX%HZ`S+gpBGWPn}_6l+OZ%;Eh_ zb0`OHC@mw?aOrIQj%T!MYv#U&jQcH_u*hk{o+Ws z3K~)#wC~kYmHZn6#Ye&mrI6m2-%qBc`7fuQk@ymjFWlM7y zCQzqt58-J!eA%i#CXK}OIlHX2AV^t9SzR6)@i}j%kqx3gB4+qwV3vdTotoHs=2LFO z3@70t5(3C$?Q)$!`<@bVCDPUco$2^|9wcu(J z8%o!mj-p5?@}8f!Xvp3xRB;o6sM`lg`ETzCgOU#p#%Y}{mx_3g!&PGlFTBLw<5yIX5X1(2~& z&TD+0-zg$|m53&!SQENqVa|2HK>?~aO+8GH6K3M(brP-idE03GjpY+#zN<-N*&{;E z40qjWLQ_~^`UXA1*;cxPoSgi)D^-E>aN7`RppPnJzMBz~ivG?Xv%c1^AcDXq(_~iJ zKQiN<+(jiv)C7THnc`60k}=3J7%otd%i~tHa%hCnG?&iZgKS5daL!-^aw1cd`5iiF zXmz}vGLRC8^D&t4jLXMb#b%jJn2J1YRfdtL=jWM<>*|1eOO?8Jed{2nW%@jw%=j^as1{KFz6ouGu;a)Te`0SN;eg{zx9d7-J(nd{| zrW;_e@I(gL_sdK~_m*>;ifpkEf$G0$E)Uyu-S5Pm$8qt0pLoKx;Pen2iKkeZDpO$a zm8qsnyw$xs18c~fg8heC6=k;73$E z->I>Z#^*b~P&(>PMEm-PT(B+rmla&!ubzbta*?{gn6$n&q4`SK|UoTN$1^R7NF4-s!ONj zOMJhR=Jn+rMi>%ab6E04WR7u__XrU=S%Ej9eXeiL#=;+H_Uw$Nk2pd*iXiMUILe=h z1t&UrDmmwdvR-w86l!T!c%K6IOPAOar)X!LdnqbT-KgbX9zuFl9g#QX z*B;bc)YiJfWzI3nO^&SD*RHM{m2*aJpE)rU6yQhQjp=Ddo(eU3iVsN{3pF+cMI3o+ zxzCTjRa5~U1Ibz@*>G$-*9$e~kqKwTQn&**^;CEs^vmzBj?a@bkiTY01Lm;#G%ys6 z$i_vvem5-%gD#18Syfu-S)T~9Y{0$ZJkfiuEIy9URpA+hq8%HzFOeJ!yg#a=_?$JF znwK`<3A*HS*!oqxAIGJp1UW%I*73IYIs$&!4&Gx37L`B$c!H3+ zm8{>5@FR4HS%h_tQ-w3t!&$oegyC(pI%nFSnqzGw`l}w6jSmh~9T>2*o~1S-7C^iv zn~I=6qG0$sAU3d#hcFXpU>WUupRaTD&6(tAV0l{@WN!(%H`b05*<-*42_H^TCQ>ih z3^|(p%5_cxQ$IAK6#PoRzmD1_h!w;_6^=w?T^vZkh`Xb)Zcdv5`C;Iy0_EMGuOZ44 z{eRH(`=HUY>c&75(Rl% zub&Wa$9yiX^>Zvpr2TBqA9fis;<9uqhe^0hGXBcsKS6%VR%n;V{Nqr6@5#V_xSlFk z2^Xh>_Ql<94tax5=E6IHk%0@DSha~(0=v%{BgEEoB{9453~IxdQ+Yk(@$Kuie9Ddu z&iSUFH~Tk)Kwzy&x=QfA**`+NR5Y>9RP55z9Qg&DYR8MZSj|%qe!QkpTa@D47iPiu zc?#UV=6=^hu8P0hiHC-Ab~@>O^v37F7M>seXP)5j7j%V>*kIOB_xw@pN2+ecx38Mq zYu~U+L*%{;nc7dZ7mVBVccxsucJGOGlq(2Kf7IZl+UU^u{_s3mr5gAE*OhXK^-b_9 zw>v^EMQY=EvF>HL$K~HT6qauYK(Yw`ewJ2x&vo(PC$3#YAP;11`md*Y5Fe=&ziU1r zowyDfw1Htq`oo1sFRl$Vhf<6-RHelGPn_#W2{<9xD8`4QdJaWl4>n(vM5q|czqwk(I8 zyja|QU-rsKRjH*#S{p~iirT#+xUD444%;zR%7Zug#1(qTy|~d0FFSsD0s4t(U10zB z_m`lR-9iHj@>&HKc1Ar#30S9V;Q4=|2xOv^>1$0g|B7>6UJ!T#I`9Thg8%f^wHcyBTh)zcl~ZmVH##6>Dy3nf9`oVbSEhQo@s z+O!aM<}lj+3%4B-E3L-cj}p_@Y~$`u%Nsoq;jXOy{fHQ}ls$%ocvVh4{{mGJg1ze= zi+ULLg@U{PD50;S;wGk2Y5;E7o_Ik$q)uC#y)hFvr)FgG*C(oMr%?j(aN|0x?2 zc68!O0uqgA_AKAv#b@Xxl!@+XW_A7h=T5sSg*1w@;_mxMOMo;!$EMM(hN@(Z}(A)Zx6pu61CeiRY6Dw?3q(+#!yPg<^Ad8 zwAE8`WE;F11|SQ+`5)?+=;rml!Cs_dmr7HpULiB97zGB}FTLCTwFa zD_vbo2=ppxrq^WhR)SFzj?}?(?YfY_^z`K)LTsc8Q=)yUtKvtvw})_aBC>__tonw@uOv*uPZH+L)um=~7EZ_Fa+gPGXV?mwZ>I_fWp*y0q4)fXH= z%z+)>#vbb{K~D>yMHGd$nqCIv)qzd!%(Qlp5Z^-_tn63;MXSuqBZgmL=$@NVFfkdh zzsX!1X1SUnJgfc8M=P40+xKwS4CX2XvSoXT`jvRF!wr9m47&+HCIJYy& z-cZU**|AHgKLc&68M<7G*J2-}%souhmXl17C*0s5tV%U~Iqkd;t9CLkL119PezQy(yBKJ{40)=$f5p|JHRA!&+*Z$**8+BmzicYZVY{5X~@ zSHpdow~`I+-EDvkB}yZlt+ZE*z>}YVFi|>8{4dSJ^iO6+pwE*$fMm0+dEfI;<8rWa zwlR-1T(uy%fJoM^iA3?o< zlVG-h(22=gk^bd+3 zTEYNBqFCbb)gnyE8zmebD9-(cF$hc;bSYe&S``vmMogOx;ZZYVA8e!csy!}|6I$6GZMOYg@yhi{ky_^k%&hr1WvRWqJh(jlm|Y-B<{~eIu+d66uRAr zxQ^>HTp_2>{9vcM^Ek&+aFh73rOmhDdvzTo?7@{KPwS3G{VdbIa|~(uAAf&*=@!`; zb$II0P*q%_E%Zjy%n z<6$s$***n%o4ZOo$J{7GbNHQ_nYY?Xtv&{jpneyGgI_kjJudHq zhjwdPS6kh+px{UCW5{H9_@$2>N|Ek5dtXEMI*%77F3LYxptvW$t9M*wr_YaFfBvL| zjLc21NL3ubWSNy&=a>8RaqVfo->;Ws(N(lPm1>yxz6*K0bS*{#=8^$5-4nUb_#ph* z-#-c1q_r|hPawy+0x4K9Ejkl!Q>Uyjk+RUC{H|nw9#&>Uk$JZ^Y}-r3?mj0#a|`D{ zMa=9(z6wS1Wx;f}M&d`8(t2vhlppBncM&H$0EZv2fl|^3&FZOKk-Ah z$E9djs0b?@RKF)Y%*?(B?E-JEp^~6SFL^I@7Xc-VQn?~aV@IFiJ_3P$))ktwvrt(V zXMucp61)zB=|IcU7#bQ44#a;}Nbr|F^q3p$OFuqd0!pV2(22P$%joaOYZg4pZ@y2K6Qwg#K}ueg*57 zqom8GVmR%~EykU$GPb^^7;Y-O7-KJ4SVqSg%4|m3i}S1GGb-KuMZGV5LypxyAq$h& zGMf4~9E}2M|M(bWT-6A^`=W|dGmCnbjRj-Tj_s+@J*<%jF#T!?h690`I6Vx;sZt+}wXOjOpQ*9*vJ)mhhDA`VdgcOtgVK_HB@;2yZ)3 zLfl!!XZv$9p~z@G9~hcM$3Q^u$? zS~n0K>5{yr826$vruGCHBn6Q5D7$p%2*(z`h$7@9RN0@ z>TRUG87C~$=a;PAFn-$>;`8{6!!Kc+0k`YI9E**i@sI|f+z?M8X2@ZFk=ZD z(KTA&Obix&0fFALS1s}?Kj_#e%Q;mYOGn!M!M6vXxKJ|F8CdnG#d+Q8^|e~rk;3~F z6VK>*eFz_o>?Zy_N2{ZP8Q5gNmk->kv$zjV^jQWe$8?YIC9%H(J40r$|-r{@)}ETdLZJ_??S*EYTYZ3{o$>VmC#%xEJHDk zpf^`#(S3?-4qCg}+1byMmL0s}OonOW*Nc1)7$G5#tX2G3{JEZO;B8) z8~oinFOtpWOXPWsyr@+yekcDn_d;NOK>R65Hcq9LYz3YD!tw%lOYgLbP%^SMl*b52 zXn&6}gX$zO3WWbM2_5L;9tai2INpO&$$iun8Z(fx%=x}9uQRJn87Nt}`f>0Hh!)%4 z(!y8rMJ6j6FBTz_ZWB*MFtaK)$%bkXfwc3|)6@9co#l?mK4)cJMi$Iphq5kWQzc(I z`rg1A$#ksug>3e7xR=ir_k5*u8-sXp>@DtiL?6xKA-!Ilmk*H z^^l$&cpjBC>)Kyv4FUEgfe@@wYKQCfJ(ah~&E7V@vece%VJ*zsGsV%l@99Tds5(2S zM(Vg2pi>cC*U{jw9aI=}STPgH3sh~U!UxuM1G=~-E4$XqBjs!2F+~jnt>g2a6`Gld zfUcRiWJ)L;yFU9^bK=an>dfaiugI-OJd>0$%L%(%cKJ+W#blEZu@#Xj{CwX@-D57g zQQMO}k)oIh{==BC!^bNi6q40R98m5BQXkieEf{n|CO$&1hc!seou<`WBy)hr%c&9E zKcCT{Vui}g?rlchWc#8)*3rY^uHSG!hS2p3po*B~o);W;ZkvC~A;|E?N@1>&`kx@M zdTPna%M5k7P?-_U3W+g3jVjZ{8ZIP4;o2i`Nq47UtA?hld>n=rnP2;pLzJnYk;9tY z3}gNA#pW|vV9{}?A#Th_npVcDsFrC>J4M42bzsmIPuYD^uif`l(q@bMeHi;(McP4O z)r(jesr|G;ICCUeuS_%Crml-$-0+_HjEX(P>(zUItEph74?00EWh-E{75~t|4~#TD zn(o3*!>P#I9)8J}t@j5<0hyS4H~2+}H-%(N-i_Rr^M#6?SO5i*IRX^0@JGAN`W(S|B~yg0Q~h-|%|FHs5;uqC3?ht&C@q=ZYvB zoqF@F75&9!d`dL^i~HE+Vru^_M5ZJ^7MS`oam=nzI3icp>hSDdog?bIz3%$t<%ke6 z^CtScC(%|B-$9W4aOd^pE>xiyZB#Za&#?055*_##o(BkQW$KiEs#F-vqltA^;cXX? z!=LnzwT&PB$uZTIDw)%Mc3ZG#W^?7gE`fC|*u`)|!`~ae1ZJ|yK*96`qou`fcN1DKV+g>7+JwNGY?LL+ z3{k=-^`fpKdUpu7P{rKOzcOLWbEsl0z=l-dZO?R2!TQ6r=r7F&3XB)j-7snuhpDBZ zc6)o_W)w%C8blX$IBKZ_JJNh*9_T(FyfiFs05o*B%G~L`At+M0m;!%nM*BJ1vSxB<5S*{;uFArlSuLi(yT|( znGF2})+5qq6kDvZ(o(Munav^z%?4u+MoNB>`iJp&Kk{6=8{KT4{WRciAK1!VcFO`Qx8mH$S*ZcxGWjLA(8g1l5#Zx$L72hG~2R$yxd`Cy8dBcKJW{myJRB{E~Aj8<3vECqRo+JAH#QPJXkG8pm6G6J#{WFZW=_6xeGKOQ1{0ZzPt=A>t`vKx+OlIdoDSj(4f-)$hp?Vs-+Be(8>^5GiP;BFzezex4d=Wtg9 zMk7>~y(jx{xHXX`?){u5Ht}`3VZa?K7FzuF0U&Kt>4S^AJ9jOYZ)_<=q1Okgwwgry zc(9;rqZpfFNt*53bq7Qb0d~y`4%m+N0Djyh~8c zHy@AJfND6suHieUW+ru;^ur8LQc)$m3?N3brle=FPxqQ_KS%u)=$T3UChnCn^rLrK zaOU*xriMVPwixf1!90I9nq&^O>iKJBqOe3GJym&)d{?T@lBheLsje3Fbo7N}KRu@Y z8Ngc+rTN|0Y{_PaKB+fF;Ecl_1kfD;&c6NU` z@fVz2Xki%h0XvJJ&R+#PyR+6y_X+n-?On(=;s4J9@TOryVY|xiBNwhch_e2Z(E9$> zkMMrWTcoz?oD0d{SOE_Dp^8dv(Qn18kfZCs`Vwo9^XLnD`e@o&S^b|DD~8^JBFt7N z>pxFEf1vBLqzLCKFn8Fr-Jn>WuqoN>x9XmP=tEee;TmYn48j-w%gdbmH5Jd zbn2f2nX9Ok^Xc@%Vbni=b$I5be7`1p`s#3*oTNxUNKAkGw9&l3@p|&g`a_UypFxAo zsgoB>Dp;ks!b_>zK07GftRcQ6zICZK%4G^?p3kP2c(Ja*q>f7X?sl}uupfW)x{aPj z{nOBR17OH4nAiCB?o1Q^DB)9U>1(2Ghj^-tKi#}wYacr=2f>73(?)~X0OmC*kS`V< zLKWqD#NYXVc2CxY$zXV@0qTs(SR^!g{vn;5){1KY$&mtRt*QKl+;d`T;?tQyeZ;je z29REUB(FYP8>K9$a?A1w?xzF(`^W0b>j(li?B>)#Q$0ZpiFV6!t6i z%W?TYk6f1tmDp=}Xc8aB1pp1I%wm7;-$)hdFhf^Nn9fR z5A?n6E~9+wP;D;JX8$%VVve&e{b*12g_>AU(-)`{{hjOsKbPF6SisHxl&({R!j`jZ z%DBecyHzA{?_aJZ-`TS*ha>2wx}jO^|0F@L&`5I0bHuObi8@5i>I+0G^0^#?dWj2F zP0Ig!pplOAc?{6~4v9`(tksMO>C2oOAyEifY~Gmqqaf)qk1XwtJb&&>a;&s?w4yA( z?#fZ`a!P+)`0K2zqg&ddDI3%kI&)g&pN4<|1xrPJ&odOce{KtrU*o{I-DJZc#p>e? zb%!6lc%D$R9)=IPt8RV^#c23OQ0>FedYtyH`x{HIC23^$w7+@ZRhIx=w0Q<|nm)bVuX>P8 zm%7YEAGf4UqJ0G3S$R@9JWUu|&n{heV%LI+)VIubBMXahO^6++5-g?yO42mb3cBxEYO50h&)?|%qB*qA46T^ARGyT9!c$A< zBkxyyd9eApLAc^FKcoX)*j(!BJ_gZ6nTqu&>5^U_i!F`?-R-svK+ZeGfcdcrYu4bSf4587gf z2Yx{gm6wUCbPhQO%M|~2WI$}C!0EVf^D%gJv;uL5dl3bMf_!MP;7e1S?h+EP`PIs# z7a0Ig{lrA(ORX-frcO)dJPr8duC8A5wqrN#JI0J~_V8(_V-N<8ly^m{#RLHZQ3u!#pnh4*`5u2GObJGyWUDhcGwy4%PXhT=yguSYTA=zhKakhu=fATpkU` z?RcAlr66VR!Lo5Pf(FT_!*A!1nqwQTfg_?!hA6>_ABfjl2Gg?@eAZwnnm=XD_~WpY zym0?j)ORtIc9BaE%XquGZ$*ZY2fON9)_vnUBOChsZ%nm4guVZ2Lj06KQ)6Aj{0T(m z(Nlb?EKqX5ODM%t$)%(OK1SH@6SgZ|*zJNjSmZ9y;-M{|_tI$3l<}f(y@PJQty{Xh zk^h0G;$CkK5TMzA%&oRK6|FNM-82=yD2o1#e-WrC%xv8N4d}JUYGsi|b*DmQC^{f6 z0(dWt27q3<&NaO)evUoO9DAN1_Dgc);3NKi9&m?QqgQ^-e^BLfAe$X6?rAs3qTVlN zQ{l10MY4D2+(K<^-N!{o=WPXXFphSJ-zah#1``T^oaDYYqV;<;?hxPT!m%mxSK*O<2US zdMbq_DdOXMj2fbw-~A#F8~BY2wj3wPc(MEvex#DgYabLB=uKJpvcK7_I|Sn)XE&WU z(jZ?ha@xP%E^Uf*IAF`My-g6mT6v8H^8vtX=YJ${YY`!L>qjS)ACF&zR(LD6%lwwR z>X7=54JeNmu|y+u^p8v$kYRykA=Qx@xVZ1XQ`GP}?^&2>Sc#UruMU?QS8fj5hJCcX zYas!JFL{9mzuC3Z|D-y>I0cw*VU~|sUZdCuDu-jO@3o)%fJQx17W5t1q!+zp+s&ov zv`Wax=6X=%TR*D~Axly=Np3aHDwH_@M>p#3rk0(o3sw{%z-0ZBcrsWXToN|1&J2V4A(z)B}} z39;twFJ9>#rxD2i1{K}Qw`n_g_*9qu&DwG_-cN;?Z^jhP_@3jnq7=kn zx!1OMfqBw>pToU&uK3F6{7vJiXZTu{t**gdL1beEo3Yd*hUb@JCXfhH-=tDi5SE*g zbnlJN5hEnY*+`ooZ$D-sD|G?;mf+TKW?z$gL+4KNLSo_3zQX^g-$=mk%iTAFOeDg# z(Cnk*38B|9Jiphp7$70SJ0NT(sIh-Hu>O#c!LSA)s!?=<3aQQlCihAX_dUm>f!?vC1)_BKn(Y?HaJ>2rrzQ3G?Tzj2Y`8go}+PF`4Pzzc|S*;uT!%N?z z2xXb8WGvlt>ubI3yQ-#`?m0!oGSX>8cNnqv{z({t9QKp55GW^=jt~JWCl1{c%;kSI znbv<-Gp)nzK>6tSd`{2v^W}9PsVN1^aj1KP1b3Av1jz*SfBzmjoehT5M9HE)B=wTZ z8SK<|p!87RuNVK~Jo!%1qI6(nbw1b?TGDz8F9|!x0l+qzN}p$vI7+-+Abk}A{R&1< z-xV?tL(Wg<*CWrm=CQ9DQI~aBSW(1hV4PAyw)t<35V5)LP{P^#>>9C4Oby$0g80Gn z0>1~2?Uig@ygj}7sSbd+g~RZXQsBe+p3NapGWmOSVlXsQdyspN1@A)wu@t`Zh{D-;K zfu=&g>Xmg`PFP>+iAqK5;CUAM{Gn8&i04^jUD>&I&f|O{G?fYDyeif7@|&g zqxw!t!)g3nL5EWu!8G?TU7a16GLab|XWM^dFkOaM8AFc1Nb;(nLsg}_DFH8UW;DGz za$$|S$SWTV^vQ&H=>lmCW>$>{&bw0sv~g+ZRiV?H@6ylj{ir5Zt%#rNg9*Knj-Y@Y zCItgCuZpk`g5QVZYvhoS{Q6f|5C9?d9>k=O{Siu}>~6xtD%;Q2SVOKcfc`A2vp<(m ze5q)gfie6dW(f(YY)&J%e{s;@pPs7;U}D@X(qzcVuJ)LBd$=@SsW-I{gEJR_N$4G_ zjoZtgA#z&(trgSY9o?|Z?4ZYjdu5l54s?*2``VgxK|MOqWQT;EbDO|axas)bPg)t3-g4;fSlf*{NEsuIP7^t z&79^?GFh1EZFU!sb*~A(eVc+NADSwx>ewF&b=2?Hz|H13oGvXbfVPHN4H(~SK*SaA zLng$HK5woQkKpQBA$7vINcklx7Km+u-S68}dq|++p+NnIw%&GueFLIP2lVOt~tT7>$0y+xS#ftRi=hX;&z>SdFMV9N8b3F;T1r?Pqad zrb(=)8c9pm7xsL+hD3}3H&-E_NuupO;MNw<9y$l&cYO^fXV?z8d_dTrEo~AAle$zS+&6}1h%lUE39nkGCe4F+&5|Lzk4t~`r%;r?s5m% z+>XLjXDusuSMi=cD`PKAnFUilse7>fK;xb{MXh+k_Y3?Fs-yhGOqHU|ALpHea1@Xv zboCh(Qkf~49Xd_&{=k|X)!M*r^f`+rj|$yGbXyhPeWZvyFc&MH(PB57Rf{S;s;_~G z>fuaovTs>}vbxoYMcsoFWLIQ!x?~n)@+k#-HlwkYmd>Qv=pU*E43N!*Si$1`MJ@JP zz_Z~hh8q%;&7mrgO4|YXtuj3BzhRq7;3&lS7i@N+cmjL|R>E(}b1QYX#dQ zATn~Hg7q!yl_?K5*@IUfoS8{bBV{YtmCCux)bH#@?7pxTV$dDFs5D<#a|xMsZI&Mdc4-|kXZ7Wo|9fwWvB zK3Crozjb&v&bOdWXxk>bz*_^Z8)iWv+>bZa%|yBmj(5p>Cnl082`*u-$IdWk7#Cqg zG^3#E0y44Zl5t=nm|BAJre&sU7SU5oK)iV7r8gv=al>35lt{c*V7TD7p59z96{dx9 zLfggw*oovmB^rxSZZY1{Hrct_>VemQxdTm` z@$m|TyV5cByJPBQmET1B&KqU+D9{8HbryL*Ui+k2$)GjM(lrWt8Elz<*pv7Kz6?^G zgsXMLL%g!PkG^O4@;dYXc&El2$jRjQ!wfS)O+^eL^NLMU#qqHt`Mi-d3b{@d?29%MSSa3L97px#wls-EF{lCC{aW?KCHM~P^|=N0ZiTuf5t zj3>RJF@dJaR#6fdVC;}dW}tI4+PRjl$4rc--a9=GI(3L57lLFx9#ofW3!gIO`QKJ$ z+lJr8nZdZO7hjD5fU>=q3uV$zH9#5eO;-Cy*->T`|6pTmYH$XaU|wyY z|7f&HDZ1wf@p{vvr`>8&alcnkv3b&u(-5_TZcwml&r{;M$46DGP=2g#_gBO>=-EXm z)L?}RY}0Kl_C>~hqy0?&AABjK(7(CAOwkO+=sC4 zkSe|0u>=CF?xY3m`?OV|I&Jp~*SdZ)Vv##S7c_)tPk57ccYKr`XWH}j#mQ^?J+Qg+ zVmy*sC=0={dplvdGRY;;?Ay7X0C<3nXP*1)M32{!cz+)EtK{taM){)!$;iE z(*x`O$t0_;gRl_jX;1m~Z#^GfLYiOVBDfy0cCT!dF31){v-dwa89JcUto z3*SO{JfBc$$Y1ac2JMAOJj`pCqGfT!p#{vS=Mc&)EZ14h7>DA(+OK;~2t1pPPnghP4= z5BGZfWj!wa=p#9Bpcg!$!?6|KG9@$%52~0$`5F&P0ee%DnVl>g7c4k1dZl6n@p-Gu zR%5Dt?&F*{gG4f<{ZYLkA_ij}Pat3U0`c=|K_&gCulh~-owZ<3`z3Ib1vV`z+jaTy zVJKzy`y>s|KAx4nxXHblElv-BTMG|>I~4i+zEPk=`|gJwf4VJB$R~B-9neL{rRqEA z=l2QXG@MOYnB&;mm{XM3f%t@KZ%8!AWm3zu-vSd$3yck6wsOF=1Y1hoFZ1xn=Y6GUD$KLj^i0neI+?GZ>;o8|ne-nhsP5#~RP&CH`P`T0fc_ z0BAq;GURFOf6xgDBTO%$UV*Ok@b%?@Nji09dh>z^_^=3oLjcVSAyyRw4(^)^{wr+y8sKs@%0~|&jIwGkKI#Y~?CWut)};EL%3x-3hEXiYzZ@IC zdl9%t*FWe)hjds5fH^-iR{(DCwbF(3B5*s3?H7~YMR1i89mbACq}VM);ZMgS#2v{d z=15H@b|_36qz4m)dN?}5ka%qN0r%{i1lDIq7`$G||K?rmprL(k9!T(l@X{6I-RZo) zIvfqLle-yU-v{>RsTS-yn7sp>*1>-5F7*_mVxjJ}Z_UKDUP06`^yz{}i_6P^g0c99 zht-rsEm*?XV1U)8!BW)7n3-}**1oxFuGS>9B+#^ocv=~6lr2y()9{u!-0)5s^)}08 zsu89JLWWsQb6J<)?%mQi@|U1!ZuXat=SBfg`dPe0c0gpCmJz778h?^Awn^5VXeF|1 z>2#M$qAlKan$`|rdEEORf1P#>7L2?G*rIIks|Ywc)Gvf~Du_*HX$q`{XRg98ah3&P zmp7uQU_B!R?(3{OvQ$V!Yg);jV%eQ1BO6Cg1&&GM%@vw}m7kQaOj>{?0eSHFR25@i zb5{CGD!1ilzkA2z&j8Z3$cMwCU6#P>^ z%V%d&qC$b>DAO_Q0hDj<<6EW|8B3;s^nNlIwEFj`;|17jdno*eX1(&iUex8kxqa)l zlmfBjBc(MF`#v^c^bY7%RrU6BaW)L(F?vb5-{NHF>M<}9p(-M>*7S@=Pv)tZ?PH37 zVO0op(n~;;Hy5WH*`dxt?geUv-Ai6{NH|xVnO3HA(%Y+c2}yG2n&oWdUwRZ0R zf`RWsGWgR>-ej_FgvL@ay8`}VrxbIX?{qxcMh4!?K^DMk)v~QNnAkRn=aZB@tOdZp zJ!Dg_$3dA)D}S&BgP6eY~;w z(o4bI-0g92B|%w53|t;@OUM#La%@&E$O8Hqj*cl@6e17|B1j$xMSFf0b&@2pz|c$y^H0 zoUfwO4}CX&NS}+n4e%LyH&Q0b#k_RkIl>OnJdKNT+V` zC8h{e1ZXm;#RGc&5ZbX&F4JuEO98Ra=7eJlI1C{A%g4YEaFMl{S(oD3SM>b&2>7q2 zd%xu&aWzqo+omWVpejpw?tHWmlx4+ecOw_5(ElOqI2InU)r50ghWQo$Q;Pgp=u(%5FD@;GW%Wv1>C`d8! ziuA-tUJ5(hkJ6u7{%@C!7nl9`we%pUvZZ&AKJVOUe?>`{tHlp4F28vSP((L3>hUj* zf3HAE*yeZ*4veKJK>8IeUY8|66pY{ajZh`uqsY;^LSy^+l01M94{-Hy>b350r&cP( z?{IS6Ts?6&{^v(SJ>$7vNV=+Dx;bDgC|efmUx7G$CX3=r&m8%n>Ac+vL5WBiYO|C) z)C5lv{kyJ78fZ1?zdn6lz4HHO0kR76q>;b=B)Bux*OhPnW_khcB;lPB?@24*cxtud zL7|m@aN+V48(3`rt@hhO?j{~)T}9zWWZ>-zEno!}?reD*p3X!1i$de=5LBgF+n#%d z!gTa-$jR>8$_=A{?#wUEED&1ezqu#V+(xOHtrp<+jGyc8{vD4N)DzANkXhCdj)P`G zZ{y0S%g*&i;fb$ng^M2GVg!Wtzjvyl{Qz3CByNE{PS)kkv*gSZwSywvh2SsNy66NJ zPv}zKNeM4lnt?ZT*~Y2Dtbv8_`mt~eun+_~6@6cwt06)T1*e`Yhn~3x6Am`pzq}E9 zcW>l*e9KETdZW5}!~Jl`WW?>wQ#zS`mY2`?b_sDuJ2-=|`uvSLv->^a*?&Ar!Hh8z%o>Y$5mF=X!8LPjysOzG zz*{z?PhKzYPRCuegB&z*_c4B|yV`@06t*=X;6PEDqZ-rUeR1__E#SiHH@BWs*p)75 zHLCpm-G)9zHH_Y)mFA@6okuh_I~>GXL+K$(3c-i zz2ZW3PzlGWS7;#*=#*kinz9>KI`kl-pEuOf1}gvu9u?4_Uo2e^G7S~~d~RB8H(3O@ z!pbe}X}%k|8(V9I5@AUj}x0t`e#njs2a@l6bc*!p>zOO2(EcPf||xzRJcdL?F}mQ1JK4vA`z zhfY#Hu6QoZtMYWN3;x$Qd z@TZ|o#K)IB?cLZc+SM~W57emLAu3K*R$5@qo@6~Mkf6r852QJQBUvg1@=AYiD%`>%zHCv zt#s@)zy*;>4%vGrN-QydyiLUbeub^VhPwA9B)>R%M9LGSw#Vdo%e7W{p|bf8XU?h+ znZDYr8+6*)c6m%0UP3IGk|(4fV4R6rSV@&*u*fTbx7&cWu{!HBkPRUAW0fPVjYMJQ zv6scj+=RiUs4mdKDmqf_xb#HnAvl%(UY&Qp&f;YdVL^@`L33xgaY?>JK1>>KFbeOx z!HW4`J|lV^EY@EyZBg!AJ_%Xg-H4+zg$%Pb7~ij-Xd-0-Dl%es71f6djK~&iv_-EOQky^RKrXJw^B4z?y6yR_?Kk^Utd;zS> zVY&69y5a;KcPvtN3cT|=4NB%KYmjtjETmM;GbSEa5k}Zsb=;;&hAIrRV6@xrj36Kk zD~)c+LpLVe1g}=4a@=Ia%#arB^-?x-e;@{{Qp2P=pVW3m#`s#Ktw_h1a0rBviA@q74 zgkf^>KV;AUuLHGmLA>fB5sEi}!1@;p*!S5^<|y1+G;&34?VLKMC(K|_c-{)))O>lj z^`>wVx!a3;rkX+~iHYuwDt{OVuGHVhAoPH%Ce_~JbfJ8ZEI%p%U1eu<=5I}i43hmB zTyUl5RHo_g{J?S*FDU2W0SX-eXdfTU`gczo_DpY z85N|I$rGL9Tv4bJvAyuep@ml_F~IKJmh{rO3nG{R zK<#i|yxl^3J^DLFV1kXe zQZh4;U9yist?X=pPwD=XVTRp>x^4>S75_kZB>{DmA5#>3op$g`pa8W?=dg zx$;4{rF(k(MV^7656#wrp!?y`6D6K}I!I#Ea^woHv&5Gf7!MR4VRr7>iXqX^o4@Wu zGHf*BsVn^-Ig_BkiZ$}vi%U1TtOnW616tAN;z+rf4TOB20lihPC>SsT ze8Nr2Ga>lR%SP{roeCw%qnM_5raN4MTMxjwIM;o0OO|*%g$VmwYRdl%3fJ%Zx9T4n za0jFk!uymB(+6%CE-U{HGRKMGDyfWecgHEz>v<7ehFR2JeL8vDdTl~5>kcnV7$fB7 zPX;Uf18`@(HRHbE0BT?zUjxInWSwwELfmo$dN%2Aa``E|I6o{$-$ezN36qbKoBspy z3*12eHQH$_4(>kYR|%^S8uLSO<*FDcTu4OWpW!kJ=%nfDEXxDMy``Qtwk@@l3Azl2 zjzfCNY)Gc>h+#F`2@K$eY2|;kc3`H>t)gl{wj9iHD}K8gkrEtV2iYGFPZMJjFG#Q347J;Isc#-KNBpjLuB+>+Y3{l2?{d!hd_L!# z@05LIJfcp5>(_ll%%ymS;QRE6m{-plp^KpG=iySd(UR!qgOOs6g4@PiQ~au9Jv@&W-$%fhU?CQG-MX;fHU8EBkAIaRR9l`cS>zPhgOB$ihx z3bH^7rj$wbF5rSK2)R6(}ZX|gL_5qJSxaHF8JL4wrQ1wRPf_1Mc_0H;) zK86v0m4&=Z$V*Y)3t-KHXzmH$8{tJwPu`(e%08mz0e%je4jA)(19-mz43@KygZDec z{NQ2Vv9}vR+%#7Le}+)nA|nYCxm@X&payA4E>u=rNbpl{= z|E8$sEt0yj=?AM<_Bja}T55Ch)m#@N)0aqqF^%w@#_>W$!NQ|9vpUxOWfIe^xJROz z%9RsQ*M8;ydi^|S|Fu{6?@!#W#oTrc$B|=(5~sUUNtn%}mss2&jcc8vBCQi8@bw}K zE?{%@Xq+>F6q|0^W$*xg+m+EpIKGD<%%VTb7cQn!DK)?PjvNV_vka^p-ivYcd{K9b z8Fx&k42733Lf*PX>)_4zzY+FfXWn3e)0~j7*k5Ze)eXB}mQ~kRmb7jiXMkC(>$MZ4 zZ6@Gb*c^==-UV~;dLFUUC7_`yj0|0|uP_H~lE=gnlw)EI#B%T<#8|>^F z3MR3tZ78>5ih~Jzfj_4*aQf-yF&PqEFQG12JV@V5#?)dDjiF%-dF^)F>s$ir|dElh6w5HnX%d;6F&h?{1JH zygn%^kJt|VGQBAY`?nZ?@M8MZ`xkI4uMtGZtX2NBx?(&Z#^|)H9Sv#^gN|;LdQz&=y@U;GN%_G&;TAXdN#34cBASjR$g?TV#)UQ zs#LJJ^GqlA7XzCzP1xWaVgN&?ZNQ&T-GL}qC;I5D@r|>_d072~vKC`Q5`%Pki9cy`<7ZNG`skhaeh{L%Y+fjoM~}x;>emfN&m1uUGgG*C+4|{SQ!%Y=cVVTm z6Z6YmLZjjv<(Cj_L`Y*SCpU)eJKr=HhL;?X(din6Z737S>pP?3qxmI#^}EZ8{Bs;OTXxTSEP5^=34=`qCoXO{|2vKdu=$B*Tgq=o92yvqS&{invDUq_jQCK~u_>0m$a9@~2$2f~AJJv+XKKz|2*pT{sZ^+*M8WyRVVxTVa3l8$*|u-aAk|pBM){Ajhl#5iz`{-mGt0Lh*z6i znevqle<#Lx>1SpJv)+Ffn|T@D*P2JckrRXvQz2}bN`P8&jLwm?F4iylZ^*o3C_3;4 zLS;ZAu;QWnG6RgEOO2yYWZpj z(92R;R!j7Po$k^mW5-xsHZtO@!rc2LUd-8bNYW;lS%hzHoz>dZR9-%{S zh?>Z(XVP9XoAEXBQoLspcQgUPGLTamLyYG#YOrNNFcgI3lAFF)@fBSnY4d;;rK#%FJ58_y^0`(&gEP zUzYu*G|nw+ohH07)IiEZIO|arpob3N0Wm?@Bj@VF4VqPFa*0UrfAgDn{SJMRe#xI_UY?&CZxl5 zjOLp72Vy=?aUOA;LraGYiJqjFH~{xS*iUJtk);S()h>WK{@j*tXA}a(0N!9Vdb62vbJCB!}ki z%#PyG7yL{brmzDmuY`GbiNR*s;IqmHJ&$(kr zuE^HzD(m(=a4Gb6t^}lqO7i$9Y~0&%?DOlqTCqUZ}q~Z+~ZM}UtaZzZIUCp zk7BZlrspO%%=+3nuchhN*<{>}=1W5yjX`+aml;vk@|HjJ~1q;(!pZ#TR3{maznQ-BYN z!(_#fQ*{UxIGVTAl|+K*KIz%K_P~WAzeHD8;D`na(LTdKXLU}s`fSUY86p@a4>NFw zt3l)zdNQWor^0k@*l@)6js?~A z-Pa5()fZH%1=e5Tm5;mJY&0dEVP2-=IT;}Y`9n;ggHkR#j}K_u1t~^J=7M0LMrQLe~jzx>bkR&7^XJ=lmaisNCWxUBwz#Pnf9`WgQL18e=eP2kwB7CR*gnKNaT0d;t@Mvphj zCatp|f697gUlur=0bFdKA*`m#ZSxX*^nfMoGV{mTVkmu zTEidbOU#Gw9>um&QRIJ-%%pW#ht52&d{ps72CUdO9=d`hcD9DUGe}d^sG~%p>9!^z zK{?}duz9-&2%h_WmNQwTbs3@iRL1uu{=NQ%{s}!ckQk7K@GM=AN*U#4wXni8!L8bn zw>ZA`9QWU6X_4q+>ElyO;7NaPRVhijuR2p9t8K~$3pe=qF_&6T7x+crIEf5=@rsl0 z@_J8rRl#hhK`3*XPN2mkd9japvZFKHBOF*kYQb^S^H#fh>V;uRzd>}_|R*3Km>2Tzc0hbkYFSAj~{pc zy7_vLwfjk-KBe)n#o_oFFvmjsM}?Eiw?>aiJsoCv1Iwq&b$gYyn!|xFo5CtxpO$d7 zWImIIdYptaHCerJ^6vQ&35msbjs;Pcw(N1Cd0M@xMNr$Bt4S`5*K@x(Kxzh^;BQ;kbYD?l_o8aS@xuiwIcB4nsumL$Z>;D4>&f?|s5sf7Eb? zRtDZn3L&ji4%tsmJNcBAwNrqiCIl#&X~veaaeTn{ABh-Q#b@@zD?UBbcyg=`>x=if zq2*dnHJF~Y;M0Hmb~0(|A*SYj-0v>|Ux0HT-l5ZH<4*McXt1+d8V@ocGLZgWzg7@3 za;lB`{K_u$_-2ql5IQoIYihIv<=r{HiuBQNiN(yK_TNk-NTg|KcL#v2 zkJom7f?moQ{{6iJn#_vX@<$4p6wex4J(QDR`EQzOI!s$bi7@RRhCaUH|smtIP5lUoWOrxAAxWBZ$=T zdg$Q2tGDMuW4!8FIWALxua8?gfj47>S&NVb)n}it3Bg9PY~wp0JUCReg)gu?d}es> zLF%Cp(sXiTQaxg1!e@%RH7He-1j4tHR{f>@3j^0qzAX->)-jMk>O4alJh-?qx%D;o zK4wF(YL}I=3s$sMx9|Y#S|}aYv}m7F;u2&X`KSD|`v;ZRAVlcBd~`;8b)e?<2Np_W zLl84j+}95D9Zo!Gjw`zno-T@NE`s#7xatra`ycgIgOJFeE1&KfF=wT!_g6kkcJjCnzbL@|Iw8wZ=gY-(LAb7L4XcqmF#JhnCP?J+{!F4h zg6P^geBYduggKA2m9|&=nl5ki7dfK$=`AeSZQF<0eIaB8W0!gsFZYVfo+QJnw=(2v z6v^B(e#bssoB6x(?I7)&VkTt3#{GxRDhP-rs`nhhw*`x zC4c*g%WH_YD=Vf&cXmh#9(Pd+=gXPtA3Q%ZP+&& z5b6LRR0@4UXvu4xY+pa=i%dsM$|uRN7(dRYGl21&+Qf*9V%==Wz(utXdBg7=_-yj0 z#Gua}vU8}Pz4C$)6;SS8ZUmVl8|$QTmY}@OAH-X|hmIEbLq!o;_&ioN*IMJD@ZMcukT_syt~WLP_9__3o~?2!V*j8n$1V>_5@9 zjsav2Y-1zUJQpK=xYHu>^!O;5MfJ3&-^1qMU?KNU=230WVs|LQCI5{f!^|br*>araAUpT76|f;Vqq`~T&ooM`rhl`Q4^#%Met}{&_;${y*)JJqN5~S2%pMu zMl&3*gfSYw_9I5lgvm6&|1tjU%LT;lYtqEaGRU4=L$3o;XrmY$&@kZEWl+t4Zw?3I zMnwtg&Mo-w<5kCG012DAxPd1E4d&Uw3w~is#Pq!K0b;Z8#4ufZg{$l)yM1CQtoTfk#*w#O`|3>CK|g`d+u3 zOZJeD?(Zx&rWVh(gi|5d3k^>g_%Upg^#xVoNzv(#lKzP^@R=aNdWr!~`*C!qI73S*@J(jH-^lC;p*?@ zkCyHqjz1^C9&-ywoEA<yD2i?b&YmtY!Qo4|5bFHbbr}AHA0G^H2Qrbw)&r{|A-U5a6$$i}Ufs{z>OL)}x$= zc0e@Qoeg2nb2G+;q=dq&ATbT$$02D1aO^{fylE(Sx}o&D%ihZ)o+k`)9sHz4gUN)! ziE7_kjZLU9I1_ek_3`IRSp>sdnFQ%0sqP9b*pPBud3E`A!9N1O)C z@%7jab44md?~}=}L|kHM$-*^X_f5iVCv3}srr*MrD4ADhoiR=@hrEDPYr&uEa*ic2 zvQp$r)&X{6_o^gAhGNG5lC~E7Bp*`7koQtNyowKWFn_RJ#+G&IhaY-ea6Cjjz_ zsuFIu$K67?@YiFPFblu&uC4O+L3KaN}a0UQhrSrzb&wyj%QRjxaQ#d|w znx-oF)STdw{Bpw9x{h`y*$U`%8N2LZ7C>g1Iu@YvL;wR&_p4douA4e!I}HRS-b75&(gT0Twkofm3EJi6hmX z9Z;nfovcqhg@wb-(PO%uznF8lF)$5dP5AOk{o!zZ-r}p|NRG`L!(j_bDnZuy>-abA4Rup9#qUH2w&zzqb*xMwZZ?er-guGQYy0_%gX&o52TZ0|JzjJw5?>E$M@6^&tW2Z-5MC`B*(34?kGc%bV;Ze*of08Y&{j<9 z2FcY{=Z8NgVizm>3o zll-iPXp#TnE1l-%%Wc9_Pg11VBDn$8r~|wQev~}lFe?bAk@$RjA7=z?>(-MO!JXM!FvUAN6A z=~g5?F9sB}%V@+lQ?8I#gGly}dKLwatd!yY<2QCz2U?~M8G$Zo3GNHrO%iG-AH*HT z(9TynL-hfo-IfhG&INJne7H~X;^b{ukACT&S#Qqt&w5bfgHjV9;_`nc^Tt&DyYq}W5S<4RTtR1Pqgsk)!h72QpGb_w2*+PACB;6WWWYy}t*D|_P$Kbl{~BKDXnx$t38lz6RAzb)UMt$dm^?{l(S&xNGUj4Sa>=~7v8Do`9W5PM@5AR7 zT?RBxDO3m}qwea!`G9;A;Q#R5u3}sMQK@HMnzxQeTK1YB1t*+b1d7mkiv0c{@#zfr zBm)bT#0F=?y5=s8`H*J{vug zx`o2EKh^iH?fycyV0$ea%EofqPutiIXFhuHCl9z!BrUQVJ`o5oL`#nM)l0X{!S^BN z_On;#-x5m#-4S}2&BP7aK>Df+{5hYOtb#p`n9Q#+l0e=wYo)}-@#V&3KK1>R6Ql~C z$=7e+$@=MJCzo1g+HgTS0ny?^>jT(E4$GOHWMx976^MG%l1Q>&!!`WOCPudY^J&Q1 zD13gw>h$=qBPWq30>2hZZ$;Mb+XtepP z6iWUk6;Y$$9>{**|F{*wz9>}m-lT0A5G$tc?_=GR0jINb2LfW&p^v|K={!gv&Yp_l z6p1&ZzA+*Eb9$|nU*8w>%WD8gSDT5GIBb-(+NVaaIgknooab{o;Murb?DjsEbRpW~d4eEqJ2y@3!*AqBE|>gslu zUs-AZO1xP|mUq1|9R342%U|fAOeC2XA6)()K26Bjp)|hVMGJE#q#0V2j$chb>cGPo z7o~>A_-lA3nsCs$b)p4kTSHJk+S5?}otnU~3_S?kTjv1UC-?Y8GnHmPOS!knfG6BHPAWtcyvd`V{Vv)+!QUYN zC%ZKAk9eAo72QB}-pkiTy*_8&0>@K$8sd2{`>ezyRTnZJK{gfN0b1@*3D4zt?+&Yi zoCTyV*|;>?e?V+M-b-}G*pZhi21({su85Y(|0NJR&xe^FcNBX}gFLxZo_^`iRm!OO zW#Y*SzC*TIcT_t(FLDQctEb_#Ze-Xa+c(6-eG)hNT#b7#mq?K$-t2oHel1z;%KX_( z`Ho$29+D%-2cg@mcEfEpg_ccYD9vY@+oW1KOSp>U_5;dpv!x{$kw^PMpj^Qw~6E! z;wqib4fSgU`|g)n_T#-?KG^KqoF@e?z%yZO>L0dTyi<5?nqKm7tE zJ`O@K3p&iSrN183FTf`4mxxRU!|Ta;IfWo9tebn!AG?|lQN8Eyus-AHR(#Xu-ef*0 z(!qlXeU#%RQyPpy&~Z>CMRrdh^VV?431<5Cs&4yBU-383bmGdah~@D7KQaRERsHJ9 z^xJOO@~zL_) zVK?;1!9eI19+GN1B8n3mx$D$bUq9H-;3Dp{^6WziFiY5`JJf4Yg`p&0eG)BNYoFW) z(k&X87^Q}Ku4tlJM^#~N_&hJBdQukMqb&5ceJgFR&!l}gaU#d-M9GUyiac~z39_q*(HoYn{1EI?hh%Ymhz1OHXIA|^@uOfj3k!aDC zFVBYQf-}IilFfmSFW260koHgVsQL8oPWtwr6gYoA1kTz!hUv z?+L4+&rAZOJnZL$Q-^Lnkf$iz`Su7hc6g>s`eu<<>$DD8vg>$@3~llH-AU#L+?(m& zLPJOpSLRadlYd#=fr4F~e+5PfrLLFT&~p%}mEQX&<(ADS9L6!1*6C)pJZ+N`OO#8M zJAz2`i)co@xTITVzMQeS$bg2lM!U^@-P<$$F!t-$0kgX@pGvO8IloZtzq4upBB#QA z{Y#sz^Nd-{KWI4juh5Z9}+jgK3)lNG>2q8xvQa+f*Q zCeOQW#iJ9}Q=JZHBlB!yGSq=z1=QjQZAr4DNP=YypTQmKGSKs^T$I<36h`Z3L@_HN zT@sTE$M08+cDgw#uT%H?wD3LuMTT*k1>%S}(wupdW{ zA)!#llUyvr?l3ogL@XqJCb0~XVG6||m4S<5J#chQgk-Pt7j#2If?T}>)={|r(kzYM zdBRa_CaWv+Ev?jr!6azS&=qU_YJ&nB=(B)o<)^InZM$_`6lh=*4XbX-?gQ8fjtrg{ z%H|YYLMx4Z>)uJx#6P&x8X0YO6p?6xl7^JszxfGz3GOMXBn(KOfnL2~{-a5qkRMEp z_zfU0GgP^HIh*(l4%if;eWzek&jP zxJ$>Kqn11hVOHvcS)h1ZrPJ%8Ia;EFBWQbaub$Dz9eLQBKq_Mv^1`iBp=kwm8wOi!sZbcD@OV8~Tn{*WV(t zTTbrzyTq+^J^v|31EGsR4lIvd>kQ4k6CV)7gPDWXeflV5uWsFgw3Ege?D3^XNevZ( z=(glessCGRtXl+cqwuT!r1olDs+jQIOHBQOFBi2yB1fkb*E0wv7-n`$?v<_r{jKwZoSTmnh?W3<|j??b-f{uOQ2GWy7-BJ z7*>AF`yfEa20Xv=+&@cyk>xAtS9nA4zusx zsl9aBWu((VwO=E4^iOd;CxTPxav0a1-6|eVc-y8O4hm|Y?$quv#FPfm?Ht!fF>Z{s z4N4xPP+iPAuKVYUHoaXFhn6w54_Ea2-uudh;{;W1pic1;8OiGurAB4^VZV;b!@xl? zqzj`wVsMRTy!(Lffth`l&d+IE7K&F;=^e7)xw-s^2k;tHijAKIIK-v_Jrh2B-Kp5V zKq`W|$V=l|FNm4em4OqNMAWmV#^0d}iAE<&mL02wyLSU+O0Q5FX9Qy-&`Xb|5&N6f z_ctQ0PPvWLd;Y5vtd;I@N<8WsY1R`LjQ-bl_b>B8={XHX)8!>9)DEoX7=*Y*7>aK9 zP!U9A(HqtzLrG-@M%ISK3bqsqmO{nmDPD--tdCVpN8CjrRVdL>piN@n+DN02NgKK! zLZ#=9DqaB5vl&(sg~uulGC8b`4VT^#89~OtX~|gUv%(&42Spn~XBQ@7RqQp{O6F;J zE}S(2Lz?-LH$j9XGYMaTU)hyWs3>@_YS-=6@k(;-AOzZ~koIWU*VD86=)V3urfFNQ zPu-yLq)+7)L_-yNTZtb69Rs5yzU*>^IXx=kD0p)1{oyNwU}-2Rygl}ZKAq^W_91ME z<@Uw(`m%#XK@F7l#I?ziw#p^c@kaSQDnhUnYgCb9n?8p|ZPmARR92T!5l<&h-sBvC z3_Eaal&mZDQU1TsY0c;qGQxctw*|EgkH&k>kI<4TG?Kqx(F{v%`P6@Vb!MFTD-Te_ zE}`l$ouX`R$zGV!zwE789HAIl!IlhE8k3;1h^X69!r|8P$B=djC}L3AyN2(Vd5Zrq zhlVF1Wkum3HqX@sC_a}kbdnH^hHfG3R?LQ9X_fZs$9U!mH0RSU@zdlcDAg`uL0pLS zC!*uky_u~q@_}kjKqsL1HCYmvIkd=IMb9pw+9vD8@;dP~LmFM~`dlRu`R^d=8t`TF zxP zPMZzoH$$;V-44sQZ7K;+i>#rCPJQ-aHX5zPH?JH_U!){lhC;a>2C!E?yH18f4>f=F z*3anU7+ADA^mbi-+%-(!#x75iz<@1jn7cGG-0i#01${Ju(&^1S;o z^wt5B>rpniP>DG4xU!q`mVx&GI$K9NP1N3zgj3U_|JdaD_V+7s;yz~(EyH@XKKZMG z2HB_NE4_YQh!|71VIsO5kSOf3vlU(r#f4h#{wU^9xuL>3v-a8-sk2mX&?OOW9=Y|+ zd%Fb~8Wh(`7|Pu4z4^5FqmMvXvxSo z7BPyTBDh|RniWLVzu{)aI35Q1dav&s*fGHTvMh(kUrp3zzs-w{YCQ)Xz1E2;U8#S8 zH2iD!X$R`xm~>a0IdDw!^|C8RFQ8e~r&9ACFTY8@EYmztxysOjI-=sMB_I(0+MdEo z%j&kvI|PCqbo+IBe1p0=75HT(HxC2_M$?L=UMDQu=K*OC@MqpVI zhEbEo zcklzwM9HnJ0D3BVll!4G{(>WzJxx>8Q~hVF&C?Q%#bE0Ly$GkPPnZkx5uq<|astwJ$ItjLkfb8T z0Qu6w4m`?G%8LJRw0609=++_=jWM|}>bA$TneT9BC^hED{O70LsQED##v!F|m7VXa ze5FsjDrvPRfFxhUr|P6NI@rJ8Dqf(k@^d#30zDZa>lX@RqRE}S!{Rs-dp8Qr6UCGF z)=Xy;A4U#44sqD{#C~;xho?K$eM(9-KHwFlv6X~FcULPtPZT(c5g|DsS; z-L`58Kj~*_MChR4L{x4nYUiOo7Rw##Wn55~=CA@7z#I*&O%T$A(vlA8`*9zY8pY~c zY4{LRq4Is4Q&O1(6+ks&jEc13LF!5W0p0p|jyiOKT4fgRbQMt<%h$)ZByCb4*+C)~ zpaI=D>a3$Pa3d|K^SBHf|8J+@6#+D43hA5mw|^bWtYS;+H*I2~0dNM~5Xo>Py~v1< zw%mgPL?r~V=~?H;Kyo>9b;>XRkmN4r(}3wUce^yRsE!^G3s?F4xYIvzV}x5{VT%*V zppU7kfEWp=g}=?D?Qx(^lGu4BWW;i@OunbPc~qk5&Zy>zP?~)&;o{-( z|7;WK;na*A`W&m^w_UV#R-OB)+IsMlFxcUVg<4-qcp^Gsm!InS*=%C$l|_e{d!GHJmFC}i^r^&+rz%{fSfg+>r1p=kHdpwh0&BuNpHYZRm8NWd*2 zNj{d5Ji(VUVP&m=g*N3x-1Ow8MqUa1xTnSb6sLY8kBJ7<2L>jj&goID-VO2YW~5LRy3eIM%bG+Shr(SPj}rpg zV@F)_tzE%tuR534!B>8coCB!`Niv(_!%)MaT>6+s(?;go2)2~vw;V>j_Y%hC-z*rB z%$WN9%`!KK&tqzWs7zKj=Z7YA--mt*UXS`K6X~*Vnfe&o5kCCfuS_N(N)1Zg5Dj|W z#7vw``2|3+;joCS641Sx7Cp6;-fSfLFB-1OfOM07ld(JQ5M%z=&J;kxHSr(Dt?L)^k7gdkogw3HA~cy>)piru0lsHt(z|-(D4ZS##V4q-jKxnM|b_ z4(O5bB!zofrK?C^@|7IeHF+3Xk+=g3wO$Gf719235P=*|knQ3OMZS`Cck<|;KvSpE zP)drkE=L;&+B-&3wtDd&QsnCR(EDHcD>l83bZ32>l5b};ELV4;W&{yEF} z*i2oBx+r3X@QhfAC^D|-Ecr@>R3sXB+yf_%bXfGPlip?2UNydnhC)~$WNxVS^k5&E z!!rCEIGbbCTVEMBsvJybs~!+1q+?o-Q`K+#`rdlfFD8U@I&hOBrqU~()f5i6ad46m zjJ|W496B!8aZzv%hVZv2606s+qK-v{O8($6|Mn%Iu8mU#Ixa-IcTJYrx&Iklr=>9n259b!lTA+iSl{VI0+uDR)E>OaB+x8%fa%0L6sWVy)a=rmvHi6g= zL4FPZo6L&|)FxB0=NH<3lH|xl*)al3s0695LmU zc@S!A>Nof*1)Q3TtW@FORD^X5fYl8=+Vebs&Z`FV#w4TvKnKt7adnkgG%KcH%|3HA zejv4;r9HO*6)ez#ZpTW{jf*}{VxnuXv#Y|MitFo%fdmA*ep=jmX(~kD=&B1?-SZZT zhthd|+x{j`Ran)0e|~3zP48i){BO>zy6?L4cN)EK=r$--k?DKKL^C_NSv3n)sda-Z z+^Wp^UU37dDWIEuL0yUmd8eTfB*Kb+!OB2{tQ&5g^iU*U@pyM+01i4sI3It1Pcst- zWzE*(wX-wy_)@6ih31?K+iZQzY!&-?D6s^TiOjy?QQq(1lE6!!NprW%~0x4wEDb2s~3DwfBBvh96YbTp!;CF%AkX>UzlvE-vjH zjj_K_UuDIu&hr5^b@dsjByqJoWpvzlu<_RZtI-do4mIddqi+Q3xciddYU#P}^Db@HmA%ymOVuP;?)c!bhSRt5yuUy{69(E+gjt_4KgG~*T&Yw`!gFx*$nB9l&6eHcC%pf zH{}B>r3RerBuN~ejQjk~z%pYKM1jqsF^~J`X^_RP>xT-@7TFrUf4K9BFrndg z?+&h4l0aK$EIA>|d#Oh#rhZgaP8>rc12-5Zw47}f@pr$JuN(AAmWwNs&!AiAIQl;? z2*cSIW9zFTHJ=|ezlsT7#T`c;3~s+`F<@t%b=P57Rjxcg)svaGA~Z&e41Rc+9uuoa z>v4aK?v_vEctbnWguD68J2%T?sp?E;vOITRuXRX#)iqeqPpThc!Y;MD1z+gdX^O|O z4G`7m24202{o;0tQRyqPDCENSI@B$7J*#X$KT6pEZ*e#sO_6{cH~TnBIQ>f5hGJzv zYM{#f1|v52!oB&WON6txd~BZBO-Oz`;?NWJDrP~|o#b@ebC^~e{OhvEHlCAp)6oM} zM@>&E1s(kLWXg$_?my;NH*&=y$8&s-_B33<$GgsW zTCT?3C95;tNh0;w#UE^`vZ+bjVVNLxboE{sEerZ2*vm;I=cM*N((&%NjC6d=NKCzL z9c3MsDbs6rwA6xCYGHV>pVt;KYR!!QtBRZ0PeLk^e87Uwz`7R?G&LVL-WNoU82pHT zci$(u)K6kCkuG{bCm|L`b`IuQ`tAqz35v|ft=s!mMWl6`3kx^$>b)}DW)*JUtkP-H zZox8O>o?ko9N!cq)Rd|i=~iA3;l!^XcIGL<)PnA}>TD^55&t-AM$uspcg{@)x{SLz z1*tKw^-O#RV@XUE;w@JVQd0&u#;)gW7r8_v+TvLdE=#`AyLRaX<_ixlQDa7x#L|vo zQ#P&=#Ms_re$HHJ?a{W+BozsX4b;U2yRV$0!g#5-2^#y%&1oYaZ>f5J8#0{gt(6fE zTlpa1l(U>?!F~X3Z>V@L5GGFDN*a4$<-}^?JQL6=Jj=IPh8VrC z$uj?1@hQX{ZaiCcMF9!u9gI$wWXpe=;y~w%oUXgR(wxaK+dfsDC%(CSoKSI5O#*TB z-jONt;WTj8f}iq9->5<+TEM zSfx}hnhntCAOU@6SDTN{Us7qrT?wY6yU(EX%s?uJgt)Vzu1zJ5AsPCXIpTdJr;1B8 zE%!`u#L|TXIwSzsC3`t5M0NqLN>AmW6P35w5<&(YGJAuzniT}UvEWtesOyextSnZa z_T8nF_1Z2x!-=Gc46Af68J*$J3^btbRdBgaYK*vXZpv}E+-LW2{{C%9m6R~2amgU_ z6p08a^?s|wkad2GA4fIG>9^#zZT7Z=3KG+oJ5loUA48tU2B?x6bHI1@3})pqN*OFX zf-RC(WEwSJI+L|ghAiHhxPoUkJa3Yj5{`8*H5|TIi!3^O`{!uK)sHrwPeVe!Hf&5^ z`|P_(jdP;hVlvqE#%|#Ccjw>s71O z8h4+fpaK$8+QN>-Ela^}r0$i#N7|dP$6^*lyER0IfBwyn$QIAdm?nv19FmIH_>nZx z{)?%-KXE@S$2BgENJ)^J-khn-zfIT8A6{?t`nSF8b$9Bz6Y8bGKimfRzQ1#NARzo& zBEofn4vXh5#*~STcV`?CxsuQI*{+O3iOzC$t8kAK@i%zx?!6lmw8CEQ`mRNam5fu? zt)Qkyy_i>zM8qKY{*twRYDy=56I_VagcyzO^zCSyldGg}IN}2z&V|Ki&I^$uRc$7C zmvd)owwoU;2;GWkGh8`?CD|-!lpVni9%I2S8ZDoeUHW01T_J!J8s=}8RgRpAvPMj` zsH>$Z2M5}SF*O2>(I4w9A3oDm; zo9@1pB)O@=`u(K~_bNATzzQN;rC&6HzPQmvESc3T7a@pO<6kenywY~Ri2S4TmTN{T z%0}k&`-9K1Z#lfQkCI~f_d|ELT5iaDtWA3=uL?BhzV9zh!Q7ssua8WzXXu6%?T zBA|}De>1QD;c)~(%7v(_NgPBgT`}ZvtOLBvOJ&B_;fKdpSo)p*_brj}<^66jJ9uG@ z1l+u=Rs&f6{dh&pVtUMcUdtzoF^<;O^It6gyM|G3NbhACoA2{)Pt#;FvCQbD$)v&e zuI{pdc z`QQJ)zhqlGcZKr5=Xll_^4}!t$Hm*-s=9sta@2qKxQ^cAwdMcL(r5eA-O9HAjWlQ} z-u~8GE`s~|i3-<{IHh**Lz56T(Da$Vh6*e9IQ1cWcGYq9 zwRyHnYg@JsgWwX~V!1M2RJL}VlE>^`f39XiU3a=oy_7HD_j3U2D?YQg=$0b?T>O21 zx6-};VL;}u=D9Mip7*Ffb&LJ|p`+b3I_09V_ctT_PEidLwtIJdWy$U3Z#)kx^3TBb zgx>Eb;}!^Ze6c;UKYBsv2(suVyeE>#F|!`oMhvCCbSQQuVwV565V93g@=jymVL&tH z+pcEwuFp@}1tAKgs(mE3QmyN>1AeEL>oa@-yw&wSVSi2JYymIPd)_2Zx#$mUX%1#{o32%=AQG-y^Yhg{v>Ukoh>6H z2KdbZLs#Y(>XuekX%~Vp>+RADLR9g0G&OH!^#)2$JQx33lvgEVhvDM#Nm;($w}`p< zT!71RUg%gf&LBS~F)`F-w&U~HAh~04>Ere-ZEbh*^75K0T+RsDh6e@)#>B-1xf4A2 zgpA6y+?{@G-@Cb|J^mtl*otc^f^O}glDdInaAPJ8J_R3^@!GP>%a48C%}q^B{i(8& z)uHxj<3AJzA+OHT>`Xd!5ce%_?zO-AHG)3=n8$45OI=;v4(|oSi5=r{iP)!eI{(r&`X$Zo z_KNRHjrT5-vFBXIN`kyEA#a=FGTdX_p?Y&*bmCyEtk%R`zq~=~a$|Y4wG0Ct{6eC8 z;f;LVh0e^ZtXeuc-;Cv=E(cG~ofky{4%ADTPE5?qwI}J`|5|-1|9m2lfsdjlm%{v~ z);PIoqulnGi{{Pe>vB*@#NAp`^+fWPBG&PL`v~patGDiW!4{Y6| zx6q|dj#fsN#aL6q=;TMJ(1+$GfkhUYf~DgZhzOyepzOsnxo7^F{cGjF^C|v6uEr56H=nq&oAh?bAFZ$LKsvol_5))dyICvucG0#BokF zpg)c^$sqX?d-T=*nZwz#(OW&8{r&yi&<@i5)@`MSqQSQ%md&B`f6Y6wt8-qhh z37a`H?LZC>DU4Toth-p!fTUkMNaKBd0krt$h3`}5=`pwi)fjq#g+MM+2wntI9k7h< zcXow4aAfU z&%o#=jaVX){2UU!H5`G?oSW)*Y?Vzfl}qXykOG=v=3@^Eg@VLLSxUp3EpzI6$I@00 z*SktWc+l$Nk6R=g<8(y}@1MkG%OBeIjp~|3Nr?lA@7E2aNeQcpsSCPE^HwPHPC0BB zWvVY@&ZH2a+}&kS6{EH!^MX`h4>eO>sVA}nn}cV2V`@v>m8botd3S3#R5#UHhvM|T z-m%dTOZQ|;_p<+XpBeU57Bg7;Zy8kc0`SkD>Z|9TT*_}A$oKMykedALVr3OG+|Q~@KL4P>TWPifM@VwOjvu%8?~$OyUF@4m@yo|W`=Z}0}Q*d zd38u3NucH%m&UbP?Ts5xF(8Qz9IE4QNzAv9$XX#$di0MO&*fm4Iidta0%7qrMIDZ4 zfBk7>s*t4bFPCJHTV>UO1tx<|p-{9V*hBje`STs;ZHEkoE=<8lBcwjJ4AcTgNeKC@ zh2A1Q#nb0HC^X9U6`?g=c~VthE*Tt^%1-M|6t$aB+f_*-wdG_6!kgM15<3^Wm`>() zAto3Mj*QR_F4En7aT}cf6OXr$3kjZijPAjhO^Q`rVtI?QW|$|BduW^Fz}YT}3PDe# zTgN;*`zA8UUNYoclzA#E%{h@#=yxnVJ^kL>6Cv1+?(S~84JR{F$YdYYFG25WKV=xN zG7EIK%_HDQ1Y4jbW8>p=UpT+z@`!pfC=*u&t@*byiCdOQ#EMMZt>ndcJbvLBU^p)_ zW7ye4pdAaq46i~9t_@BnAlUaB+Ip85H94u}qlrW!F?XuI>jn<7$N~)WeYb7$2Fb7g z$rH!fidhsZ(H*WR%x?A-*bp5ft^ym_0#OM#4xf*MY0jc=ZRBGo!mz0fj9QT$h?zQz z7Rb&WijTL?l~XCbe~3UVMq{yuE9l9+UE)rV90Zwl`-kg6st*4T&V>`LKyR*uGM-50wXh-;wcJA8~ zvbc(rJLQr8I;($y27f;c;(p8%hpy?7-8kj)YUjfHJkXpr50uEAx;E7didDpC=re<= z7rv6?u3u%O;3gT+ctP&LicwM-kZ|OP@oB>P=n5*=tT&gA7_K@{2|H^z-fw}dTGn5i zma~fXcPt_G?l%_FANUO8hXao$4kVTNQ{V5+`Xa}>^56nQiK2TnC2TZmx}4P5j-Ces zy_7;TvDs{U7)Uj}MW(K-tYnl+da&3{AsS^6dg-*+G|xe=p?ZJz!)u5F6i%l_IQlm$ z!YM2C%jyaK^wQ6H_#WV&17@GKuX(9aN;GC;AHs*dL78HHp4VG)X9+Ba@y|2NFqWf6 zBshR*jKP_8=d59U-vu!3NqL&RSY&92+vUrb1>gKaa!CiZmCO`W{+h|jn-*{KDZ$TW zp>WWX8&*6Sf6PWsNFtMGFRLgUZ+3pX8Z|aH26Go`F`*rF6{Xco zyWi74-8IrBUGL%Z zUC)2;{_yjfK2n2$!r1(+`0>SWxK+r56V1l2R zppKe?H_SJ$6kdXN@Vby~335D0bH{TE8?`k@sBLI+WLDWl_^u`}=MXY84I zcQ|>LQE%y%-ml{1ZatHCR&Dp{73+_=uc2Co8bfRY=$6wprW%v;i(Bs&8;bWD*zE1% z<#lwN*uCWlHT6(J$8`gWTTgzXelzE{a||YVHdM{OxJa9zl*iP(;l|u^b>aPQSkz`i zMRHVa!+pcOWf4L8^8da5e~mz%z^WI7URzZxGX{Blkr}qrBAPy6y823*o}NA-%B?g! zyn9NkjD(dNr4{WFtA#jX8-+`#vt)mF_a<}^B|4P)`CD;}4-j$075xDlG%A2JR+BH) z7#4Mb`lxT+?bvH~=ES!ZN<^3{{ROtpG_vWzn2pHB%fQaCh_b7icqdKZJ!R-yzTIFp zR|)M3M4gy4mwVZp?N*A%o~X=pba9Qdqyp_%&cP2yK|oshI_Jh07X$nD<{KY!W<*jY z-ru|2rpFALDem`@n!CSV;;W4NUJznAu}n3etTTUTe{HZlUAXnr@Ng>9bwhGB$?ScM z0Cc}@GWX=|hJ4Ga>0SpRN>3B7TwZJNySqxH&%+<1n{|ta5#e9>??0feJ<0*wrGfU( zcc%1})a?9@>rPg5);Td%6hN2k? zRnt3O1n$|MRLI>6zkt%3w-bYz&$-c@Xc0>iP)i+(?;GS` zdgF#h7SngVWbl^zJ||HZcz3(uAavz9cBcOFrKO5KtkwJb)!FXsnSKvcut@Rc%Qf`1 z;|t%|qt8;PWKioUe*wN!TlDhqFE!v(W&vGv^z?kG;3B!F34wb8l zcnkiOUAu%cTcWZ)tQ>_aw_?i@a-Lapin8=PW_50HcJ|8h@Nm;ZED?bW3{-R|-vxQ> z=h|3W%K7i#sJfKb_w$GTJ_7>-xW<(>COw5WNp!Xq9 zm%4ox(h+6B^KSrb7tP<_ABiu%Q6=5=^x=h!Q2KZQ9bsGu>m=J`%O7v#jK(v8e9PnT zTz|Qj%sH-z8W+Ed*Yy*$tEtWjJ!{Nxj4W4^vk;ail`6UoMBKS=I-|&YZm!O3P)cgb zcfcMWEz_hc|8V*_krh8+P3qSD#TRkBfaiem*1BqX?Q0ivLQhpRuM}jjcikY+-F@yOTEXN zg>0reXFG_hIn`ZuId72y>%7|9-Y%B?I>ZD=29ZYbvcL27rInm(4MqCYqUe!9owjy& zo9$D=$PmY;)O+VptI~Oo?{^86@hZ&xohj*9Z}cZ8C(m|Au0}UK#Iq51!(_*S;9u0z z_POV272;3KI78Ol>Zj54UVyMjtQ)S+EJw+eN%SKwf_OLP;rk#x#h2jS^rVEWQmctD z3ri5Rx7X1YEuIpH<7dVK-sQX-?C^~d+)etf7ZTo9I^wtItNwTb5aG`2_GKE<*e+OU z4RvSA8K0lj`1Nv(qn%wLPp2QL%jy2&Vhf1VBAO_CZ>DBjecIu4zqH0oM7bc$|CS!M zt4XW9CNdZbcJ&O;c(~g4bjL?1ePAICf#inRm)1P|RZ|lhb8KY{~b3^VZ@F>D+l@5%GM{@b zNL5@~t!(CJOOlGr6^$uCL4duZs=c%e$K)nvCLu_aPO{@taO2}>SOk7vXM6Jq>OE=1 zvD&W*p?@bQ_>&CXE$1tdyCfte&x6u#Z*RF#NFfu)O|6hY4-?_gC+ft6qOW^v(7wR1 zqCLy-^S2jY0aj!gj6T zoLR`-LF94j{jGXslpE!VL@y<3CJb29qMt(aVT)q@vH)?ff@7sF|K@f{NVL0V{2rzU zdHb%eYiF+hIDgt<0#De=LjYhvIdx$&QRu^yl~3> zLQm_FxU<*+d6%mxV5^w?&P&0FaFr*$HCUQu)I1;SC%m(~h%1Qdn9~OWZqTz8URt)1 zZ5!jRCpfccmxW@dJ0DLwyj3?dTg0z7c0&2=Mujv*9G8g%BjZ_BFigo+ea!pdyTSs3 zg1U(dsmecIqee?3KZ#$&P(KgA{zu@ju;sIWmW4F=td`HfLbe}XU0toin9vi2^f5aY z-**Ld=#w>Rc8$h?RWb3JdcE-4@|gfa82%$znl5X=I@6Mm9Q6qq^p;?X-(~$=;kWsL z0pi%f%*;&cfO4t4q=weP$?0|`E zX?|VGVwt9Mi;Jx`IX#zX@FT$4J=RrUS7?`PRtftQ4Pa8A2dt4`-<`z|{}8LAoqi3Y znaLiozRRzzJ%dg={OU1md_y-ZF6J_Irw^0*+u&4GUcN8!P~zXvZSGBmBID5$^DekG z1=*f`9Z(9PZl!L!%TaI21bZxh659%Qmh1tV*!XXm9|StVG8zAu#C(e_FM(>P4Nl*~ zWmz#R5ILCH7#x|FmS!y) z;~vVp5iQ+I=Fa6(w%t&#!*=ouhyrz&_sttoyfHOlQe($Wy`Uzur7;ec0cFN5)7X>_ zQ1Y(`$wHfF3V;Og-Pa^QoSmH9M7?+ui1^fb@HaPh?-g@GHh*W64P9O>T43Ne1PeW% zF6$(LW|_p4?YbeL53DAdx*QOkD;A3T$`qWaf6^(rs8$K~j%Sg8g^J*eMnvQ9(z3{) z+tLOD?NhBB!X~~gs;-Lz_`qh5<8;6CtA8uampZ3nVSh9OmfUQyhrm;r_EexK4_6eW1Zc@HSle48N!GXj3n6i4 zT;@G%NJ$e7(o2TH+iGkVz)CB?G?04+@aI9Q@W!BrsPzmqeyBh`(O~@oMdSCawe`+5 z=gB#xd7Y{2jr0(iwtGsxd(Z~MjX1PFVC5t^oby872XIU=Kk{O#uCQ)g_Kl-|G-nBfFXY@4B>rw(mJ}J@1gSG6G=R70ci;EdPxPcLM=CG;Zv7#h zDS7~(YS9G2cU25NBOYS@Wk{c!zGQCN(^nm|w+CT&7*1qURHx03r8nd7Mcj{#t%Ze! z>trv;cWNx7>_qyZcsx6ZlnAhNNgQ-`cJ@W|HTU|tAMgM=6u-{Nd!5I8&%7Z~0+WE0 zb>W#Yt0ntjD^I87+3ES7Mk$qr#vzT?4ev5+TWTgSgY;a!h-Ivbg!p?MUo;(6Qt^{` zTdCBQU6J4v$G(ZWpmRY=$9|2&*#mgo&oI~e7;fm>?&2jDqwS!7%ZJmmMOU`na%_w8 zp?!Iu@88UVz#LSoaLfljocBisI}4eK-NclQDEI$2tZ;_1b5G3^GpcA0>)Vc-k}pWV zhIjw@4rtU!V8nRa$F#WSGzh4#zH6NdZFyh+!VmCs{y1KlqaJYA=d=fU!bPD zkKts;??8Foi;u57CJc$njujIN1JXY;dV!dN1vLiM?t{=w{y4)I=xT+UAD;$e-~y3M zcCQuN3f2sh+urbZu+}MT2S20dvx>4R3nfN?WM6fzZkeTkz5{KR3utY4H4L?I6@a`1_2pzxHBO(b zMS#f|KyGItkX{5kfj!%vR4igH^t={7v`LM8B^DB3*6yL#}t= zFc8&DXcEzw_#7KrI`34nf^YREX0SjO4^pPtgu#*h~HPz+vasPU=ZXVS>0%51>X%64c)2OKOgseViGNm*S1F5VK2ae(VJwdJq)^wJpHbBzapo@zcvJhUIL}CUCIjpLcs~_i=!e ze|u{P`34GTCy66)n&`tCR^C0FoW|VvDZ5|vpy3aj37afe8Sh$&)nahl#VS8H4PCNS z@8(wvVV}Lu<>DRRLz=zwS<=oet8m5XI#PgfMLiCsq42OEVGWTdGGM7k(NZ79ZF zL)m@DJCRu4@Ad;eD&-&f|5ob$OG>43axS)~H6gv+-{p_%r||G|1q{VpMv{@G3M%} zL~`x*+sWhWNn*rN+ieI=^OHLKZHMKFNh!BB*NE`&C@B(exnB;h-rrr>T^wEYz&d@7 z-{^$K=9?@HpCFIK57#6ET9H1t=l>*+xJyqZgI1do(@pQHG;e;>ujKn`2J10PfW-!W zjz9A*;p_G}hW;sj&vISjAGpwU6MM~#Xz@0;&HtKC9rzCS%t_ScoI!5QTO|m!T+qYA zpBTo4si=cdZ>c1KayC^?MZG1xa8$hGe!UWl7|wof8yzL?f*W&VXQ;Y~m4s%jv~Zmk zQ}(>a!3h7YLo4|`qIP5d{HQ=7X=*rUBFf)eWZ(%koeOPy@Azs&u<4x-zs+D_E}wvi z;S|J~+3e&I^{hI@u{5wZ)lvj48zf&Sxq3}kQw(NO(k8BOJ+>D`A|k7P{`lpQvivR! zF|V!PuliEHs7c|#Y3CDBuLPa|YK8=NXH#ddCT_*w&|C4=zy3*go3nkvvZTWm;!(W9 zD`K@rp_3B4TT;frtg;k%ua{S*a`qg4>+X8|Z`zYX<@Lpr!P|`W*4uNAyZI{zyX*y0 z-ct&vmQ$fcRN}a}22#+G_OOj!yycBuv~q2*?hlyT&-M$Zy*_0odwCucBq+!}#JAEIfK+QQ?fGC@))LHpY`j*gBMrOrEy6P+dF@`{nfP68qzGQS-e# z&q?m7pH@>?p!TB}0N~hf{S6?Q2&k;9|Mnv(q4NND^YFfIq|SG>#gAVo&0@AU)?eV? zm0(Q0Wd8nN4(7_bZL;#)8;CjXxZ9lunyo!=4Jh&mnh*ImTQldn`>A}Mk*_1sIruDM zTf+FvOBw@{%WOvETjxR-G;r|fZ*~?^`1#q<*uqVi?^FWZU;l~$PwE@nfxF~ML%XCt z2v`)b;k4C#C*AO*P}y>Z+`Y#88!9ELB-C!OIL;)lAID0atPH93dCpyaY}Jm_vuvxs zN6w!2nMl2yN}iMn09Q! zRV!Q|X!8>em#r!f0jF1NI!3_JmDF+HLWo+3)NfAbb0ZQTIp#0_#VR4%i1GmjO&ij9 z<_sCoa#Jj^hN*BgQ$Dg-5%=8G^Uq3Tc#{r%AM&xLFrOx27S9}yBYi^~;fQuJF0)mf zn<2#C3vTUVb(DML>R;sb=5zpo-J}sp2F3=5$}RPy?zqiM?4(BC`f~Ta^ngNQAHaxl zgj3#)k<Oex(K=2249^_&`BF?UTF^Z>r|@j(sY z*)y!Dkl;7_KkWn^^he;j#o`m(Wi}U4hIt)q53o#+)HhM{q30|vceJT{i$e=1G-ZD? zHe~++;HD=wvqd!WZlFFZ>GuEKhAva9QrswqnUn|9=UvS~!QIbohE^arg;l(EHZ9n&0yeuMQh4G(K=j$xcFn06Slh)XN?x7p?$DFz%C)=rQ5FG61>-o{z zFWD7Kdv!cS&@MQ4-AQ>9sc89zwUw~x>wGe=#+<6WEb+HG+)!r<&qNf%baqkafQVEU) z?mY=eBUZf$pt|tAHAGs)YM8d%Ram;=2JTz7MffCVe<}v`rslMLzPE#$m3Ih~Bjur{ zGbOQHSIM3b6MIj>pWE+5#vz7Palu_x2>S%$r}B7Rcgb--4I=~V5w=*r;upmD_qYf> z3ZHr6Eu_dp1lX*9z5p zlTB1J7f^_kR!919)ecPNfPlI6dDMi=qlb!nEL`gwY-pinNC?Xx4}}gT!qhK(Mx)X;uE%3Z zf4@31_C;)yap`NA#qT?&W!x}N`sH;_!e90plaqLt{!U|$G&-hWLHwOxu8XmV(;Fz( z6R3Qq8%@q;EezdF?)F&x-C2q+`SBSjla=fN2^qJ+0cj@bSN1m97>WJ_#W zQ)yrhXK)80Q1HW*R*`7Il)+*_IwmQhrWeQ&mmwETqxTU@OZ~_nJF{nUgY$fcSu1}zJAqK+uu*IIdOrgORl%?EzB}yLSOFb*gRlH>)xh5V;r4ak zM|lm=`A9XGrY&6YXJ)N(s@U34+<30!w+k_VjaZK;z`ne`-wzGV@gLhiv_V9wrsx=I z6E3xdV%1m~Dij^Qs~}!y3XduV*EV#QJG55P-eqNYO>Wt)gr6bV7$bd%);|&i-D4ab zFYN#$tCyC&b#AlDOY(4z4_>i5&w5C)(w3+)zXbkcV7m z6FLnIeDLk*^efi%Uo{tx0SJb7pVu8R=&og^Lr8Iu@|*hS&#+XD!Dbt{zxmO)puTb0 z5zxT^W|i=bEV>Q2sx$_?)}%YaAYdtWjba zts&^6%yHrJ*t?$6*e+7qt4{Tl4WZ)boAQ+|r2uZhxu-`~3~z{I%wVdXf{4g(_rhS^ zs;!i)f@cm!Z6X`n9v%Z{!aQ+DnwS`-u%NyOBhC&peH0vqG;X5_#lGL6`;!&IchH$y z#0fjsJu_+Ev)s9ZtNV1dAw`j_f{3{rHU^#zqLh6ax}acv^lPvwYvh)7an{m;f>MBU5Y&^wF;6$C0r70QaPj6EA_ zfP&837iH~f7p|`dilDZSB2A)t?xIvPlh4W1?{~V}AjEx1Tbf^5R`v6b(IWpCyXzlY z1oq>P-e22HdtZ(1nK0AScXd-d@Id4LTJiZRBB^J54 zxb~xGtG#=#mQM1+?XR&j)9-obLw*{7B6Ks2rfAh@bur6LN;4bJh}`rWE3#b7E70B8 z5bI9E7@DbDy*bbRmT)hm(dgaH=dxBi*uo=es?+{mc~>989ClKTlacoobkt}+E6$P4 z;gluBt}MXkY2yLvoZmV*V}$%zW~R~lf;0|*TQlg^EmZVe-Pik{9TxR8zP2&33c`Kz z$2Ee4v%L>{_oAR&=F@rqBI^D)Z8@4RrnKD9j~45r07!IRL{6VvBoT+&B;Ibd@r!3? zv|D}b_q5*GP-@|}=P1ntkMjO7kyn&UC2%pI_%dajN95os>KspnQz(f4@3IROe4i^O zoQwD5hYxVmSpvBnV?K)7IF)!z8ufUXZ0m{B2OQVJ8>Ol-T~J0UdBk86Z)12%910~o zW;#$+ZdojUm7ekg>?4eW#y_~_pGrUhjkXPwi&_nRPZ?!4-G*PMf zdxj@xk11-a7S#21OmXpLX6xj-g5|M3-<`EyNK`p)9^V<5S`b9@)j<;Zd=#N{7gQz-CE9IWsM|%|p(P@9SOb_Z2K_z$G2TSHx=&h-xf{j` zR2;_#gW0t0ycA#FiReB}9Ep8UZQiC&om zGZEW57mIJ-=MxO%#D{WIx%qU@MZl1b3w@)*L(^)E4785;#YU@jA(7?N36=GFhe`Q2%&v>385b}skfE#<`t06{pNCEN zntbj00^8&n^`mHX{dtPqwd_^FYOm(;uFo$!qoptw+-uR{S-7E^`Ap4Ft1tZ}u@wQD z{+n-@Mtjn+?jbt+-gD`GJl?YFz+=)eplxJ7?scY5E&_Avq4!8~f3SD)JTL@cpljl^ z;j3pZ!XJG!QkGpcjlNY!$3jd^Fp8CJTF8zG`DS0!-ad%y`JIjGTx3E12*b7vKQT%m zad=Fha%Cieq97WN;2?ZCWq+h)*D9cs32dmgiUN`<>X?KM!UOWVgY{%yf+q24Sk*@7 z$G2pX(!OVfw{qZE#HzKsIuo-CO9d6(nwW9*GZ|g|1ksOG74;Dpsv+CN^-F$n>6=D2|=f7mvh8^lPJ^5z;1@A zmTjT{-8H9Xlz|6?Mo-FJ11ZOGp|d22eB$g=!*&o;qd2s@(sA-V>|L!W*|FVB&-3R2U$C3R_IoJ8^bRpT6n*V>oC2t+CTx6wDo-xK~qPq zkGmw|^1JP&-Le)zyC)vZaP{STwA>8Nz6Wv*)qm4eUato7dG94bT%Jh7JqrK?yApcf zvMUeT6;RFCos;sJ+!Z|(0cA_>skf*v(|tkV!uB{Xq0I4>2Duie8zX92`xeIG2>k^n zjiYz={T!;BOvLL|&`?4xBpFqtv!X#zM!6~{*1)RU$`e*%NhszkNIffjMe(JZjQoz@ zp?uRaha#ttIULg^ina@&8I4+$mHC=<|V|W z>04C{ZG7ua3#1#pPzF80Jr5tgP4;LDdK4TWu0GHa;c)6sR?N;#PJ(3#3H<~VIJp0n{t~^b zDdO>@66@0;hmA)m&!^5e>p)b?Fg`FCdEnUnd*I&w; z5Iw%<)dWx`1uI5yv1ckQ60L&2tLp|YI@=2Q?Nf!SJ6~X^-BLPi*`4q+gDt^^dDm@< zafC#E%a&m2%#bJXQuqT;b>Au|rrNQP3OQ&=A8R*dPB`@Ecb;A`7bV8gKA|WQG#^uU zG!+CAh0^fPj2re1VzFl&o)vy>@8E7&m?*EqhIPKqwp8&c^d)fp#idPPv^+1RCNI@vl zYJ?21EyE`vI?N#r;x=70)5QT;(aQD2xyGm~l*`=t)(KGOKwK6S+}cd@^- z@E*C~L^ckF!~P8G<2HPZoFN+1d91)REzo%(spp|~EXYGhC@Ps+Hi@>+?Nnx4Xl3!U zw=0M_yP+3iGf>Dre}W>`fH+~LiqjNq!7!y1sq)tLpX%-EzkC3D^5+%K-l+qiPy)Tc zroC{i`?jdst332N5W;zHHLu8>e1}rhKR2b9Nsc6CD!{`pOMQ+zIaeIl1oXhmt6#|| znH>X6n-prwu>NuVl=(*%7H%%fK3Fj4)vZBmDJT&+{;JWE=aJ20=b}3&pH!N1&^lnF z%H|fSLj%u!?Zvr3sN1VPs+`^Zo^nR1fz%Ktze*MuDZss0Ed!i>*>UpnJ(Ha2>YO@2 zIH^^T-?`l$WpI&NUXAS3S^b_uEY1k7T*vi(!>zCxO2Mkdx!%s%c?N0*t-Vek^m5jy zCBY&6T;e;ogd$vb&^F~f*IzSHE4aII*eX2x55!pc(|y@`JQndzbMZ3Ng%sM28@|Wc zGP-;Tu_^&wp%6zQH+9c*>b}@+FF}i-T3gS&k-mr=fU>+M z_VVnWg}D%EUspYtI}>T`xHjR~o3VgMc~l4eIcd*2eOqDGr3Hn&Z2>bhVsIwRaj)=? zXA7nP8nB26e-@8(~nOY-~bJ}-e@VXV!E1tmbJfUx-Fx{*N^W8Y|%E41R)6Ms1}JjT1^ zdoRd%IY3fc;`_P_KPF{~MyKX7CgY~IWm+|tr*B))IT<2=IZe?2;M0s=%nzg9YMs@| zy=`1C`zrPaY~csAj@od$j*UG^vQM1%bk!@}YLb2@6#C{VU@81aN?XUWf1*OYqnp@!SlPFQ>ybn>#SOuYI{4C!_X5hA0`gkp?lnQm z?3lJX{ec9Y9*I|tklxP#O|-InqRRKwxjZrm&PB@mnwxb673pJj~ z-leZ*Yu2A1&Z%FW*8fi&Knt2-Pt^8gIBZbK(DD&6MT>jrk6pk9rqEFrKik83b7W?% zJt=zs$9z8kYd*r6L-&S!Dx%9rlxh2aR{=7XBij`4Mw+_2)fqh?8Bxhq_jfcgS%yv1 z`o*`6#G0VBIEkbzz-dJDb)ZOSjb(pMdQOpYPaZ9&gFncw=y*u!{)!ooy+#11N|WG= z+q&3C(2E>yVMaEQh|DS7_uu!Iw-TQ_7c%FR9uh1ueZ;a<&|stnT3m~Femv^0<7>^< zw_+zR$P>CNDY8+^x63#dIP6S0iB$xM%-dJq*|SB+na1n8)225ho&T5HQQuTEZQk_z zo2TVe=uiG&8BbO_Ovdi@#3SVj9~SYDG{xOBxmT!BuU=Y?^m$}{Tn+)Y#Kxb3QjP6i zHz=s54xqIr#5XFW{D_Ty+3v-EX+HExpg7ZkbdeE_8=5=P7Z*N@TBE*(R|zb+aHkHE z+{)kUYlgR0XBQ$HG&xUj9MiZ=Mx;x$kj@Ema8Lc&BsvOm4i1&}jh5bV;n!4~Kv0Ov zQ2Ks@I|ktn%@}u-d<<{p?Xd_&BY+ta|Hv&CK2Th}x`|R+(~r^)PR4xpFJ<`ghfn2V zJ3lR4(L80%@ZOl;W}Z6Q+@}o)x3uph#nCBO4p9!MypK#LOuMO;KObOGO>mX4P*I6< zoAun1)?Sh)gm#B z5F5mWv#2YQfUAiJ;!c@5DEvQ6qzZ}IWm#U^$1KXJAlsYy_3nL{JgF*4q&8M5nP~@# zJ8rtKPVgf_@=w6OL#>|;vJcuk#Cam5cR}@qiW@i>6H~waw=-|dY*sz(zj0XE%;7Y} z<;be)7r#`Kmzk{i#rZqxe90yQWmL%*DfNC__$2@*w|`q%(^GR2(vNdm#0pmSbS#&4 z>Ur5@(VCN@MMIGfn`Re*70O(PbiYF{fdIf6%re4KE+^LN_N;SRmT@e8O;l7D$7v)m zuGHIG*Zh>yUiMNt{f}{1#XFfOAJs(J=g~ggyYtyAbDTvxk-#5FP!$#+?Doe}A(l2_ zgv&Xed_Wa5NRME9Pk`(%rkt@DXdJiE0LrGutMvELS;v4ova8^M{qK=a92D3U)-tFz z1+F*6KHrx^0y-Jp3S8L_gkBd*v|A#{+Na&$WPIVWd+Bt}K7wy%1GPC>zLzv{uI>Xi z_AUf|xG5MKBySCB3$h||Fu$o-6*k})rekrBVY&3%c*dE&ToZ9@_=*j6=5pdv(gn0l zyZIoME`InCV5g)V-u;~1E6)}TMz`=o_JfIn#K|w_IMLmD0}%w#Q@=Lev~2{GZK+*Q z04u0lr?#G@yT!jYM1q`-N&ql#K3hqg94fobgr&HVAJ>_XzQ6ja~e^p+^Kd< z^Wu*`RZAt5n9<}51~c|I)75ETsVCkJ4|^5{5`MxX2e1>2$yp)vquOV@B$c+y6SJr( z$!hJqGVcn&{CNjO7Qz#aROV~*$PC8Gn6CZjyvINXlDjJ#3X&ZM%+wAXaMKgUVXrNB zdRg>iKxBaPJwX=3+@&Jcmp{o@>*~@O8L}Q}*?>3zs+KGt)w!BpdT5+wR%aCWkT){g zl8zM6fR_rBeg60=pa){J-wzN@YDG6U*ZtdRXcCkhq8h2oQyk#3Jg4j;xojg2L|WVZ zxe4z;*W;af&oQ09s9WDHmrCk+wLD2WBuLC#|AXF-Onh9rlOOGCY*LDV0o}Co{o}|m zXbxMH^N#1uYvMt^bbEJu)IiVk@6B>e>pu(%VlVP4K>tqYfu%Nz#|`Yp!TV75>RZDo zV0Y2Mm%VM4B>dZnP!|3!cp8T5R+zns=TbnJ-dX=CKUeBZ=MVVo_u;47hCsKxQnwfR zUf*;9p`JGzTY&)pg_h)Qb1ZePY<$xZbj%tlr!uwbwz!Cz88OMWoPS+P#7OT};AzzU z=$t4CGw5R)UH(AHbFgRFAlRU}{1*57x5EIs+ag1i;I54^pJ()|U@tZ3xc4;~EA;84 zg`?4Xq4Kq6^J&HIYb@$a_v^^}U=qO=B}w}xgC0r0`u0ANzh)_tY96eiviEnKlKUr& z>ZP>sZkdv&gn!Xrqw1hjzpiB-^YX$ee9&Or^f#x&-iYo%;@*yd>hsBM<|=eXL-BxD z<$Br_k~YBImX>X|t^{g8^X>RAbml!UymcYtRz%X^y$rQ?z%;EH% zO(5m^n|=#G+E$mnC!XI(fnY0)t_|ycZicymsuO0yPqo-0>Xa? z;SDxT-uKKf>c;y&uh3K{(;=@2bo?EWTi95buN)#DV6}AV&JqC_){ew!T8RYl<~Ey9 z{3(EKc$?+1`f#jD9)ypv zmqhSQa(7NWCo9MY^<}B4)x4YEpl|g#l60Kd4Xf87iD`|B#K&q5tgGdo2so8pv>F)6 z4F^BK5j`Hx2i(9bkHap>y~>2ca(JvfJYnCelZ(1t3kzKg#H*iW|2}Z7pupjx*B;fK zXLZ>}wTGnTS`21T%ihGI(`iz#0W0AHYKU|AkG0JGVv~?4EE4YyJzzfCe){=~Q$|GO z{Amj03Lgxq0CvYQP=hm2^h`62LT|`3COXl}cYpI>Dq zi}FGMZVG0o-32K}I80MeRMFq_vuC7oL{k#e2h_#MHW=T;KTSp}3&WE4eaS+@#xp;E zrw9`kowM#{zPkA@|K8i~OOmvcMx;kJ**{?{zK&94{*(hord7Yd^x*-p9F~p1<5a7= zTa@e%kS#G**ub&1+HDJYR~CV1UqIk``0eA@xA+wgZ0`I+376=hvf1)lLO8|h%pyMT zR5$UGg`zIh`Aqi5P#wUc!d!tYR=HKnK{bEZ1hPF>5{oIJXRcG3Xgs7;(s1goZSkBO zoawC-1rEjy_ng*_BdrVd#IKIR=z`j2DpRn!lgNh+4|uXOnzR4&j9xMGl6e0p5$SX} z`e!J_VV9HlrXq_HUGinop@Q*rJ-q7xv^u>A!R*4P$#={t%t79|pMjv|-NJg7+YJGw zlDPMdlv+Y5yA7l*%fx5;cAT7lf2R3L*pMaUpPhf}mUpb*QlF<=)7&P+84C#96 z$(y-5hNqr{^fBl_k7b z0^+k>d)Drs&nnG|BHhV}+2C6a9@^a`)RFfX17 za23I?Zzb(%`y*hqEVUZnBg+Eid-?&50F3-9oizRJoJ~Wl_(hSm)n1O)tGg6Gft#o; zyW9u=wX(s=S@T01Dc3nR;^Dcec$g?Y;!zX348$ln79$AnicAORbU0MU&&fXjCnG_- zS3ql6T}_mJ#|&m_zVG;i6VTeDd;rko?BTbucfb!L^Du2BDr^0p| zw?GHE4>1lBjZVB=VO?cg5-R}$ZyGAq->Kf^4-6>FYH)YxzOt_FGCw1z>ngKJij+bZcC^d?Xm3==W^ zB?utE_`+|3r2T3`~O zv}tcz)08@~(L2Ik%F98^Ky!W~EyeW14miTzd?wEA2c#M)tPKr z$IV4Y;~krQ2p*wGK6T{pp7jkPlLmN$OUf+pT)s0JMJ=1eYO^|ILc1@Il3vF93%J0Dg*IYtmzYvyI<3#&r(>>SajO#`F%!^jr!~&9zs1-Dc)V zgoi5{%z#6TLU;H%ICP+}stty7sTfycNjQf`u3$ z_Qm-dcU4}v=Y8ja{4+y1!ubT5i73KJr}N?21BZHg0Zi9n!7+;!E~q z1cGg9Db8SL>e(V$U!rWI#;!u6UMSt^C!2YQtS;L$ekh9$S<;`JBabKcmmU#db)Eey zhugbG)`|XS?ePIQXSUh9>d81>VLOvidu}Ld(5gXhq3&XQwP8G!LW8$VXz$VHaYzr; zTCR-CK>z98@Lb1q#B=q(MH_{touNI^=-fX)E+TEG?d0tBU;jv5@0t^=Q+%y%>o{6l z^Q&;I_#6UJtdJkxn;l=Qde*i7cSLR-hmV<#xqhoHXE4Lm!y|aygm)r#; zk$nj^{z*}iEV+7M!K({$Sdi{_(W+)i)u!=OP>Hx%;~!G#8m2}wFu zIwk&I*~=jnW=^@wXM-ojEoCp5d=&Qnvc;>%7FAy0+%Npad(zK3@kqU!c;!s~DiI%| zUlaz%+JZv!ZKa`*AXl)>I%U)Jg&Ohp5$+y?92D7#X4(<&FAsRLEv^vubLXsJZ$D>F z%)e%+mrB&(P|^*R0a?eq!6DbsgE%Z~Dbvyoy`dg0abvt<5OlhJUmIuflkPX}KYn>b z@fzv-aQC)Btu>o9e-Disj_M$F9Uwt?6E4~6@@L9v3`(I-TW>9842}+Dqzw%<63XS4 z*G&Iz_=0Uiy}z)Dq_4u)$AS7I9!hLD7oI(Bd>4i0ad~dnF|WC}CaZrkw0nuhPZxNq z-hIQT?B2H$m4v|QKF!jyc~1QMw&whnv^RedW^$|=^%M)DSeWrEFy5n(@xnib%Tyze zN-Ej58xPsfF>Gh`H8@O${5WS~@e&1;(PxaZX3m_2g@K=9+VL+?6p}f)^qwspi}5Xe zVJstI7bq9o#MLP-|2xp@TYoIlIQ$OsafvJ!q*YOX(hnRgYp&YfxSGY0nT@N|AbiMY zB3L?wrKhFC$T2dpfJ2IBggvPGO_ay)O{*eFu}PV)#%F}3&Zaw7#t^<#!7UHxNqBO8 z%rFyfpYG$M>?Kd>cP>#L3mHV2qRl*Zg%{u7e|7w1q4YUg@c@;ffDLD>m!Dm*k#94S zCpVUT>a2+(U24n35)xEh+u~ChwMXUc-C6x&fFpkugAXC?# zF78I+W>Y;=&#Itm!cO_v)U|GB0}3R{pxv>M=gtCrR2C|LQp~ z$=hW4_9-t$)JLTZ5vc%qUAKMWY|A?XXC29Jf{SIReBuykis_2qnnO2b-|MyBXw|GA zze*jZByD-v%RLp3P(?(y(+0tDGR6xgJ9!^P+Dz?{>@AF+ zVXcAQJs`4i?gF#IdSzEepf+2p{m}UFt$B!=;7Vx*am4_HbgY(n@sGLL^LJZo0#;GW zS5P4;TH8*=ah`!Wx7+0)PHEs_E?12pVI0{{jLtHH(ng~by<)L2$59S-G_=pA6vA1Y z#bHeA%35_I3Lt|L+Upd$U&|ZnCzOwSCMvBi^l_(_+u4t6ud(rwVw)~K20;j;BsgKDh8QMU2uBg+y6R zZN`S3Ib@_gEl;dRoDF~$8!lRdw?(}lL61q!H@bq@Y|S5|`BeM_Cs|xTOCh@j$2`c9$@We46Mc0M6*riZ0b_OmSD{XP?-5#qgT)V2$*tGs(r}x9m7+`y z9u}cT?{7Axim8;$^lYxr488gcvM|HH(ErB$uBhr7Qzl-lT*aQ?Tw8S zCx!e3t=js}%U*apKnLdkkG-!9i>m$l9ZLR+!XqIdrKEI7w@MAEbfXMN3?bbhq9QQV z&@EEZf()G^jUYpJcXtdh=jM6e_qxu<^Wl6rAI|>bT(W2Oy4Stpx7OZ!{UW9ASTy{K zGAn$b#~ScTTIB$1yqQu6Qf4#r&Hjk>@mlJzv#|a$EvtSmhJ&nYewiD$yhdiF12;Y9 zZ}94ma`P{3UkT7@4Ok*RHOwXhG1_U-mc%lkBSahJ8 zP9-uwPQK>L@@M}{=b)GW(9ikrCMMX`E;G9Tb?*o*HT z3r1bjoHI2L%f{=w^f1=Eoox0z!85zNOaO&LvV>5~*&3-jIc@VFvJU?Pbz#B4fvt;} zxUfmxN0VDUf1UafHzK~DbGW;0x$CE%GJ4s0JIvN@M(!IWL_j|YJIj*B4XptwR-jPi z-E+%x9FxlLj5f4thi_`mWz4^GKI$p1bIYf-O1bdac|a#qLG=FBoijvVl1|aE3WpBT zgIVtl^WkWyJN8-ltl@&Cuc#QaXQ0yqp4;nWR=S(1No{v7B50iz%Hc~B2}5H?WW^0` zIS+RhH}D|>@~}ZesEBe%-+jtH-mKvJe9CbI&rHgHFnTfm>LH)c!t z`P+sD)$Sdkvv1{@WQi1DgW$}MdWy!+_-l4}hh?T-K}*aEj#{YY4N=(( zYs}5MV#ws-F<+5Z=A6j=dfAIF*?G+C8;;<0C)&^ZkXuJ`i{4`Bd_8wMUB@9}RJR1u zpD`<=$0?wAce=vy!wdW<=>=uqH+9Nr4ao?C(Mzk4Z(;#af{Mu8gio&fzYd%l=5PhZ zY3k~Zey3m}d460J2>Z>OHH7`gz&0iOkmV{YyXjasmJ40IPueBbm{u;NAC@LkPpOa@H^vA9QCA0yxDC%wEi%?Q_34(T$xcD0Ffz7&)T)Y|_QL3}me z@S-cMWI)R7tVD1B5vM)b?U@ji`(m8HiYfFNw1DgGTKT8At{6UCDiU39H@!Unx~un7 zfsNJ*J}elgX}?8B$?$tj2N|9ekj1uLsy~H&gY_GdbXyTNK1NkD_M0P(eQR?%t18L7 z@DT=T{hTtdJPR}A77;Q%;aIBBt8QlG^Szyq4)~BqkMp)OZXxUZJJvMRdD&`+vYXKp z&)tq^uZDJsf#sD7oAf6b%CZ7{^^n>n_#!yAh`sLyYQ(Ub;qy5lD!#IsEfe5eT@L$g zY`Cx#DpMb-6x$n?0!3`OeW7|NW=;QXCO?V=KKI%xK>)Oz{ zl705P!J%oV+K&G{;yKAo*X!x_LW@7q^q+3RPZC9qsRF(QIp_NR=wyr|&33$N=Fa)A z03S+<@=oD_AP@5*_ywoI6{fk>#!{?y?dYJzB@vPcN%M2M+KO{W(Mda3mBk5}p>t^* zP6T-Fg8C)umN%?qg7`Fl`nO39zhgPEffQ>JA;s2sLEUvnV8|EB z=8udmn<%$GJ(k-rBrei*rQ$iaL~-Zh*Y~|-9>w&2IVRC~Qg~q#EUU)TE?1nOL@N5B z#_ZXVBxE>x*?$wHk>hbS;sK^fo!huGA#EmC2gg_5O$}^b`=hS?_X2p6$XJ>AoB%Mh z;n*>xTT^HDIi-szD1KT{86n*^^`^hf4|$%Sy<1Rv`NsZw=}XWxt`ZHiXF~-*YQ~uC zZ1aE9GLZ%^OjGD}s@!4;y}yl_rX%A|E#Yf^``UFW4ZIh*ldPomi>nipxBw|8Yzg6o zJs2ThYyBCPuMr4sM(H+rVZNG94ky)nX07a;Gro{hrw8%q?t-C>nN@~6-I`8M%kO_k z_A|*EeVC^oZ_X$L{YS|M$WUHs6OZucX8#xA7aMD~*k?D3Ztl3Cj@uf#Ug$Tli@Yn@ zxw>@VU3{+auLxOhV1XZ2q@kR*9;691ytGo|d^l@I@V=}JJ-Ew&K9mqgCiv@d`$*^6 z(b#`?Js!F6e=n0wwp8(GSVK zrA&ByA6T@AZqR~a)5kK~m+F&|u7A>|DtGw}8D-=5Bouyfx}ZSfeHgC;e6D2h+a;-E9;co%=pClu@6Q4{;64zH8#lMzj7I zzthg}YVl96^M6#|hW|-WX`EF`W`$9J9x(P8SVT6_wVcCs))aJ+4j`5XL>J*3wnWGIB&q`)E3x1CTvd_g z`4+o+utOKa(IY3)21vOsh{nZ})z5T|SSXY=q3LGFZp&k`AU^;rHz z)8FJt4gj8Hk^M8TzN7x6fM&r)Q;mdiYSxVu5j@I(xn9Kj3UL*V0CaQ9%z`^^IC6OGk_+sE!Kzl(AKf3@P6mf08;(&UY73vw8Br4-v=_1w~_t(nc4&A4wMQJX~bd`yti)-+KyD4H`XbWH(N`v{~Lp(Y+so zgrLVO&`~^UjWO*Tsx>FjV(f^jBU6ubsu~XMJk?Ea=-SR8t}jDRTy(%kA>iAoSTX$i zBY*~%IFDRRT&$EfldsjU&s30obo%w4wt>1_C8FYGWbdIc`E>y?<`V7u!1w9o(DJB6#G&H9I#t5kC54;wri5 z8md{s{0UbYDApJh*tyT{sG94@KQl4a%bdzOBvOr;%ByHRf6lvzTi%z~M4<~iY(+Xm z>qIc$0MFVI&BKBNNn&Ez0v!t0joHgN*_~$Xp0$wQCe4ZeSsa%;|KGsH+u!);IC$~Q z%w+NE%YR<>gk^9sLD#HxEZ=h>B7kIMbcK$ ztHt6B@cSy_0^{>r-Nqo&BGkNG{KQ`x0X|Tf7 zLiBpb7>;TvHtKJh&BUATVDUcfnqVau&aQKqT9)^fjc07};TV~&)gCeB96#R3khPZu zagrg~Ae+5SjGlmSPWuKyZ4J9`iwz~zpXs7H8nZL}%SH>Uqv9(=@OMLsYb>LE`xFe) zWPUuEb2*A0Z%Z~x5@{SKgv2PA^=?p>q6(K~`vCwl8m6gNNRb)cF|kMj`SU&hPvp$> zXfdU`>-X(r0%H z4Bv0BXC8O#S#?04I!uVn@8gUI;_q79jm@q72_>>f?eE%9hPEu_g-5G%64|_}ekmmX zjI>UcwG17`O?S~+7aV(3e28O!S)FiQyqY2SELaY*dSn$SDx8U~pO>4(X-obP6`5Om z@l-`H56P<>Xm>i2?jUtO;@>vKB=jS0IG~{Uw269w9|cmoQplCbs|MQjAtRq!q{a;1 zH>95unspfy@GFE?iJi2b$p$nOaT_w?U?mB|TP+%tpD&a3((=59y`VAAA)RsnVt8L3 zUu{IN-ovqW%TwJ_sa*{Vt`ECw^BU-j{-)F^KOgPd;6xVOdO*X(UDP#NJ{U@V#GfJY z{v+Nr|J4D?9pypqa=Pmd6NWj-Y9 zl75nb(eggQ%|qbtz8rBhegto1E-YlGbGg6Zfq1LEWb5zNm`hH$Zj5gcUD8-hAK=$y zNJ8(jIzUYAQ@qo-f4_9$S9TRp7^X>Z8}k8it*I%0pp_T*2~^YOaZBe?cZi!U9snEg z+Kn=`6)So+-9nGt#FXze>2deCUx4NTnkGOEl<56f8ZaVLah8N;1 zxlCCMN{vnE=~0yT16tNX`|cI|UC>xw+TgY9wPIdolc4}ntejfDfafmpp*cjPJV4A(g4CZ?oqxgZcxjL*ycem=)8Z*PQJvLi-w*Nx(?mLzS#zL9SH8JW# zB*Jvyv~;$|!oK;3(w;IpIrq@==v1JV&#MfUZ9w5=NY$sOg9F>d6)k9ZTEI3V`L(ju zuPaP~86!k+;4os6u}-~%>J*=hwZA=ckA}A4m0ua60U82Fz-<5KvpfdvlT-&OL~(B&3j{Z>8A-7(JDQOQ0!UOHJCmcEzvzBgw2_6)$gEOpOxSJ`-p zFKD^{vkHHu7I^UCXoP@IaMbXM9}TW6A?QgQcxthIOa5f0*q-Jyt;-z)%an4K7N246 zW#_a)OSgvXnl24$rauLp!^nJsf+vs4h~|clWRvR;&KiF1ugt*~8v`n9=*)d!Dl?$s_)Y*qGhSC~ssMEpmhim$n{ zI1JNnIEcRanMD7ptEicAk13Ysl=2fZl#G9s|3%wOrfC>J@YHE@D1}W2DKlpowj`Mt z9rc5s&oZ(G^OkJhRLc^GsVd!hgcA2z^!B$3Hl3Xo6CL2}s%I{Io3ti%cU4pXtb;Xf zM_SK5&ChlhVH2R2LG0S*`a?o^imGvO`3J(ihl4RGP2j|@W3kDD_AcLHdyg0hK_l&b`E!^00Yj@Zu+B$(ZCQd38Q8ZM?K2#4K0_tc)bS6Mj3 z^m_z1dQ4-|@dGW`p^<}lHV?vSt6Ge}W9h&rPz1@8fs}e7ZhRDJSvqVZ-8=TyZ+lMLKhNmg@GDxD? zLO}{Zfc#)R#qppjwDzhAL)L`XgIOr~=2X~Ntz#xw(wL~D!Bvv}T}MN(WG6Aj`d9cL z9B4oE#K2(Hrb{wQZL~oiO}WVBLRNq8lz?LFl${zgii~HKiKB7V7D2rvvb}LUHrl5d9odeXyUDxUYGBGg!9QxDK3E#!}5MnYi^AxmL3ufK%)AH$P&jcs433Hc> zXB>!6D|)MNb)AwA((NULe7E)4oqs5nZf~ILFttJ!GCWzU7AS*}^Jrlc?8?Uu(GbvU zc>lP1q(EY$;Ahk5J4FpuIw>bm;cvY5P&M)Em=+L7#Y1{2pr0Z!ga(I2!qa=iP_yip zD=eNgjwNyXe(EE}Y&OaVT3*jGHf-0+h+dm-?}lz1o0xdR9TU92wVL8pBTZv^iONqX zprt)dv+mt*GYVNBgTv!wzs02$}F7$e>qy`JQr*s)xu(C7ZZ z1FRi%(tUvgc>YFdF3CpD*ldnqwi`AgB5Joi_0hyoZsa(7zPv8Cvt5|^+hD}c7pJCm zk<5G9D76@Y7I^r`lqrvyZ(xxLBfKwmU>q55{ZdN&5x6~BQ6BYHXNBFEG#2(<3nx1P z&xF4Lm8arZF0yag2zPd(N1IfeETNdUygCJ9&rumh2wT)Thp2P;{MITF)hS=K-_l{F5L-|i+ z${F~(p(!rf56<2%@g($SC|x9erXu89a}mtr&?B-v&`Iv#&Vry79eanbOA?7)<=uX; zl|<}(7x!M=*b0vntZ22Ci&MI6kH zGc7xbGmg6h5hwK98*6bA&M2C=UKN28F@uIjdc4Yw34>k-+8}iEwcPT)*x5uBG;kJN zrM&_^lb!^4zXR%XT~ zAlRO;grCmR==HA!`znpFCv7AB6w7y&`!L8ltrEkf3nL223YA%`vsI`F+oau~((Reg zm=AY$3Xo)}jGMYD1<|VEMY)|5KM=V}ci7@NEoY5y`6|fQ_{S~X(oSC0Gw_$CAi!BB z(BR;`3!!Fu;4$p|T_ZZk&sOShmS5Vd@c|TSlDXmWx*GLirEvo%d^TZoGT$7vak5$4 zF0`j53v8b?BoXfRT_QJVnxAeXV*RC~@l8P5fePX;!Zwe61d6hQl$irbIyc^1kSO&% z>ylzldQmRUmDO5asiiP2kZV-39+zcmAa6+#M;6&7RDz&MSgZ@z;Hr@s4tJ$DnKeJS{k zpsqhB(d}&iCE!p@`_x4Dr$w(_R~m1U*u!rg4&}5>Srcg5G~M_@&>+0S2Nwa=U0B`5 zTKMKm4M`{Nzhr|gzz|P<4~_dM&$hTjCph!fMk;&m`r>TSstz5CGsB6Y`*MD}hi;v< zbfIk$Q3Kf)GEq2d6yHjYz+D-yB3IN z{}#oVe0AkZ_@8G1kdwu7{d3Y#r>=HOL|mMdb6z+~H^R7PL^-r4F%hvIW0&F0xg!>r zNv&w-nWMbfLVx~&Y(E3?=!)PoMQoFH}@_hdEy9jV}!oKBQ^|)tlgKYO5jpJ7k^UtDf8pOh4$@bWnJjl1q=#M12_o>f)nXK%6U?tupT8_BQ`Z^T1 zv~{SWVoTG%7e?$<6Cby`Rf~Yg4g9z|G;%6}XA7GY=b2c)Gv`tT^`4+NX;bbPYQw|! zHw6@uN`2Aj{>bdffEgY{M)Ds)Ao+1xFI^ww5ua|3Nyz)moQQ|smuJ~t$KpV;3EBQh zbyChEv_ke>q0_6>H*$0}HLxTQNYI}oq0)_FX!6{448M=1eU3kPCG%1w@$RL66M{cf zA8Nx8)=q)08b{7om5A9%E{af$%v@bn1P_5_-LaT7qf6I-Q zI{47!?cuqvGp%BozN-6{hvaJ{5k6^}O0}?*o5Mai@jv-$(g9Odi_{t8=SAja_pNOE zJu9wAtJOt0{`pU*VNY30+2arxtXY3@P(u1(Uu&aIFg<8miW{DQSj50clcfD>H#Rnw zL=hQ@>)qYm+Io6<3k&9@FIq$oF;@kJgEbh69c}F?uJyy8R{iOx8-=Aid*bxjx=+ZxpJ~dXpO?bAAV+g*)h$#mI&a?0 zm&PTI3Bu!IW9^Wx@}jgnvtW*BcG@fdda$0WLF7)VwBLmgn8Yu0Bu-xnCYLU$*mAOi z64pRkL;-xgm6c!JBYL#V(`I8Re^lk7Kk2EJ>Hg(mzs!Q0q-m0v%UgZ)BoG~YJma%F zEgG7Ts!1}luf9ioSLowiD@2Hjrk9tOhKdT2WqJ#3M~ESO`SASP!daj7`T2PRI(jjs zJbj8P)RR^;f-LU$InRrG#&t`}%g3Pyf8=y4?t_%?5S6 z)#^%5czI8u71S5^5QYuy?)uOX3iP={i%kjVgjqxC1gVxcw;jeWS#EC%BgJS$%~@Fv124ArX348ulcC-7HFUOJp6AN|BwH%`Q=Fm zVQtbW)a8ChyZQ|J6ijH%l?3D2x3hfn4N$hjEP!<3(K;>^40z81AImL!;`7>h%@HG^ z6r3D>(zEC7iD4{hOg5FwFof5zA?8cAM5V*@Mcx!kqxK_NS2nCd;<^cJUQ5|NO_e(r&!` z8(0~I@S%A@pn_J0^@egARbFzf=igjFr5Ht% z;de4lhgA1;dcSXpI6sN!HfrR6p3Vkfn-{7|8crs{+_xuC(}tKPFsayVy4GzoH`7$Z zATPmF(*Ih+{~$)>7QM{L7%UCxZ)|23fXY@w`Zt2P*a!BLm2IEBrIy20TgCW%Uh1xg z!zjp>wM*gzmR;Nnz&40sKDh7y6>zJ&m32w>Jt#7{cY7V0_BhxB!Qb?>-M1+#3uY=w zKPw(TT4G$|oSuzB8dlkjAFR!-0`duu*tHMWSYz+?982~))NJhZk=WIjJ&sLRC*M&g z@GBC>fq!0r2L)|bkC(ciB+c$(<*^y^z_AB|4TBF9SQls$>7EoGb(DqPc1DjXCmo4N z#4W0I7x_J_JM&DcHF=TwuSkhQ+cu>2RLDh9m77aPw)$=Ik!JLt=3L9{###`{G|Fhxyx;`~n4;#QCFfhl)zIn6{NLuWtfC|@J zr5GYRBBuuK-@Qdbf+7Y=`X$C!2b2`{uaZjR1m<1hLxDsHKmPab`};skpOM?k8g#ze zz*eDq=1L^eXLAuTzWLEZW7tziMSaHdo4f@~<83LYcd$4zJ&BQp09qnc>^zpTP?f_@9FLfn`-=`)7|Mxn1xr)2?s)(%5S` zP6&9A8EWLZFuPPENnly)MX`z(6O9vb@7-9Pl|}tFPwH)yrm$b1g7{4K)&wO}*U(i| z{$!l(ctu8e4RN~NwhgPn3uTbO;w01;e1i13+}~9nBlt1JQfQ_IS@e(1Ur#|d{sMcQ z(xRa`vR;^(*)lpfIC$FowEwPe*J(W9zL7ec3u>a?5sDQl|7W%N?lS{R$q1e7DgDy8 z@--LX1+d)VMygl2JHcSR+CAT{V&mNQEbKL6=H!*BVRs0x!HjFa)?yHB>CYtSBUf#Z z49(-#!v#7CO36&?jbMYN#m>CC#r^DO>cx1v*t%{E5%4Lz4&SV8GHvia)&fitz^5mK z&u&Dxx7yqbL=cY9K?IkXa$5GRZpi@$kism;3Ao8vY`EtbR&M3l6$i1weUcwPjM6OG zq)!qm%gbA>ewGzX8rJqX)sJGPW+9ZbfVQK?46Ty+()#M<=F1W47U`R)dP7*C0Hrj7 z_s1O>0&8oTqhNQmAnOZE`c&R+48jH^t5&!BbN{$C2pbY7ZPpeW{+&bH$|$=rjiDAK ztAS54eZ3MptT!_|Sd6JCLE`WBlv8TSegsig6>#O3Tn~JVH3997L}>tP$KuP8B+Jc_ z;-;d~(f|YWH^58K6kYN79GKR6Hi(lt(4U07BJIAfd*ZoyBaRG#6v5@)s9UG>MoH#c;FC2esJ!q!r(a4E`O?@|JuUR zl^mUkRfY@24B4s06wqDt#wM~w%1wjpfMOkng15>`9uK+ z4E}7=HF3z?46mGNrl;Mqw~x zpKTNlRPUtJXBGeR=f_7RkZT{fJs0_%w8Jr2q#LnmUSp#_wm_$lhps-gT%F|Jy?ZSn z=Qj=)>Sc(bz1tHnK)_^J0VYBXqL2I6A~Zt>N4pjW5M$lNodbwrfLYM~AFEWI&=@x* z%v1SSjGY!j24DFQlA|N=W4sKPmw;7bMCAZ_kpR4~Qth3mQn~l>#;^4B^t@seA*^hy zL)dXh_m%bxs`kc0#a^^Ky5bm69P3v}E&o5jf9Gr(i1HPeRMM8BtyS zXX@*Q>{`-RdEWKVq@TR%I{yjmJ0$h~BD$Q*q zX0p=W%o&kI}>gej_lcT2kh^HyTqob<^@Qeh(9;(HQtLq4$jd@)LcQj77cyW;d zh!FGoTqhbJAxVfh&d@qqTX$}+uN$zhJ3yVFoFI41Z?`t!fV9ve#)koEAq1p_t=N({ z^p#6|!J?Wn)-RePsg~hi6Pdm-5hqqRAMZ}bsrLYMnQVymja&yy(`|3lB`hf;`Bz>5 zlkjq=J{|k0lT9pd48<+kTp>~4G#JC=g6dPsy-G?DxAFygXgwA_NjF~94Rf6?8X$Wl%73yrhpGg?EMbcP_wkO zeD>&{vx@9EWM5n?r%fJsKGYt#`?;l$59Tp1?Dx_FsF%0s&$-gL6H1%QT5i?N1g4Lk2k_=r0j)({uL&z4z2M*uI*%5vKX@rS(DRO#@(`NDG( ziCaQKLg4_5R55d|Pbe{Kg4KlSM~v2~p0+=sC3cKDqJSPUMt4Rmtr{8`nWcdl?QJF| zCO)xi14OjXK2XZGgGNG)COQY1%#vEf+PQIysp{z#9EhK^Oj!QfWZtGB(0ugnqS7RA#mqJ5(c5rp7%nP1$M5D0>V zXWvtod^2 z6eK-=yKi1j&T@DQwlttOsfnh3$`GRshi?*GZC)m1y9McbNs@*bi;pDY1>uDx^LgxV4eTYKVDmN?}Jwsiye z_DX7M>Yv?4j6*+PX}@*;lf^eP9;j>`g^`DQ@V< z1VwRiaU`?Mtl9WBU;CvS&_i*MS%3gPTQO!8Fw`}DHnak} zbFD|APGZEw#G1TMr#*Z)IXLcoXnEa`UB~Q31M8zNnV-f=pZ;4_V*sz7-aSyo1-CXZ z*$-Ol!$&JBE3Y%O{4&avb*NR)MFu}ZeZ0LHku$(#RG4dYbaaOOn*!!OSlcs`)_52T z<3lv988;2tg;vcsCddv8O5!xN+JOiCX;0i_kz!h(K%>zzjh6>K0}~Syn(%Eaz$eO@ z-{v;00_x)9?rKMJNa}~OAtUsX^<;$5iuO>|5Gu=~z|vSt>revLOUQEdEnt8Ysy8w; zba|a*l^&v}r$L{VK3DYLg=)Blkn(glkHC%Cdn7jt{sET?=5V`0B?U zPP7_*1ngX}K`tCmF8~;kdJ5gVZrvnL^aA=YeU`Z zt5%t}r$C2s_p`S-U=`8;TvNo*Wzgs}<5@3@xnvL~4N;ZT@SPpX*W&#-V#*ELQ-Ju8 zY}74)HmuFR(qng~wY7ndmN>(*xY!Qp()CN8mS#H&h2k_BZFr7uQecc8)$r!Tc@&=g z9RRgD;A+FSfngC?PEAaB2QkYtzVQ2)4fZAY*Zkg7WIX%8guAbwoZc>H+{0i}`i)nYm^g5@yl znx4L+tG{1H6AJWM7;Ko=&~O#SzoLO*Fx3Y8RP#<$(gaNxvFK|KT9n)Q2q_&9$MK?- zEV5@fbumfHVo_ASwE>$S?<6lTpSf9k3Z2j~G`u)vAGd}iE@>K!Dz6*Ng1v7n ziDS)0g!9jCU|kH{+>VR1{A3_|hLu(JPxHZ_94FlYt7M03W5vj|bv5?Y%a?nzcmWa- zF4NXkbV-pnwTM$H6Pr7HTO-(Lx43F%L&yB4pNIvxHKZlGdgi0exvSF!c+R98sv=$Y1!KnuAq6yjj(?J`ov)-UzPpGzP)% z(y{3!FIO)x-EW_V)+dVdaln9<8eOl2fR_T>8&GHEX&jJZi7F7nolmvj+K?n!DDQR4 zJsIvR8@UGDhty&%ephWYpgI-mDD*hI`RWa~CE#a0&g%D}*-PHPbLL6~qlHIeuadef zYyr=76VBs1LT_f>iZBN7!}e6Sq|A^VVcXN)S?uQ+Ny#R#hycQCI?t=5_II~-%Sg`1 z_j)s51e-eNmU1#`=Cu12ed?wL%aHD`Mxb7b?UsE}ic73qt<#|quT%6OYXy1!--}MhOp?;W?t2w)jpD2{u4e_Pap8cHhTqR(v)1VW5H|Jx8 znd)$wI$#-@NRE*_F~1W8XcS2ztX_7^%bc62_x3ns$>(9{MTCWK1yacZ{OQITBQ`SK z9Z>4?G)eUw<1_$vuMuo(*ca835Gwc^bcazmiaxRPbc`y7i}g+sN=Bw@T3(K0Mo^|| zSl{P!-;z}2$cz=j0P=2cu0?!Kgv~SLWB`l3%i?1hOIk0mLrgDu=GWA;H=WwQn$mZ2 zt{|c8PhIUZ+vvyJ2Q1{4u0+IPjwX)Ro{tFH!bdEd*Ygt{|))sR^ zkh@7X)h{*ps7Li})xd2R*4=$rq|}L^rQT3v4q%}>-e|OT>(yqBO&7zZ#1OMv?@UgU$)un# z7_7tE>Ex7d7kKAx6W-qF&`>>YXCwk)Oh9`}vsr5KzDqRfq$3NP5s>O>mHunY-n>ze8!@Z>Ac>5%UaY=8YCV*tz619*w+DPTrC7a=Az>^%XW7fy(OltDJ4iBY$dLbllytk?#9H z&jNTNs)C8>yfOR!BLK%FJ!d;!=qmc6#DW1bXShxke07=BilFZEuLst5(RUzK*?bHc znXm^m+}j=1kwo=`fK{;_*a3q}e5tAiSglRj2yp~>&~>FZ>2Wi_fhB}*sbM=$W_Ftc z@tV3<4~f8?1&IF`xL6GeB_w$P6N%|^wG>F|$Kj;w5IemIOCCpX(7I6!rwU~juLB3nJVjHDDVe@x%d2U&u{i4EaY5GPOiOU9bpvb?BFBLA31|9 zY6o7MXC*nacoQy$4C_ceC#VjCR9RiC^GmRe!LRUjLVe^ zCri>+cX2rk15)D0N9_0jWzK-VAGJz0HCIgn9r0)M&*B#mpqpdJYc>5hfZt_^*49}A z5T88I(w_6~Ac{}{9Hc<7vB4zO-0)wr+LvAfZ{XW;S;r22qAQ<2f1Z$iv}ZLk!QCu* zCukwz@cc53keK$&i8aRSpEa&V)@Bfba22tchTtehmExA*zQxnP!2-t3Z=1C*n3$LX z91#XOCz99(;LYb?F2Ea#^ciAcz- zaQoEc(9qE`A-(4uA0uPju4{+k-u2W;1&lrtM3?Olwcj=NtTFlE79T)}8kx`(yvtzz z6>#hI^hT0M^)ud^VWI!8A7m}6b1wY^4h#)fjB_Mp2OLJ&%KNK-8G_cO=dbSeoByE{ zjlIClsGtA)@i$nDz`6AEHCFXf6DQw}&}%%lfcJj1iBs}M2rcNtcbrWZOT3)L zBkJ+!_{DP%_00AI&#kl8%=_uSCwxu*8)641UX+3Ucq@NsmABCd)BE@H&6W3*kJlTX zsy@0DdF{wPyX|uK-T-9(Ap_3nV~u&wo%|ps$^D}@#L@{e13#s4R(`%dC3V6^pEjQD zeY_@S6iAzj1PPSxc<0_fp1z!WY|RIY)7%f8LvHyE;nU%k1ogY|-LjiGFrIO?{_VV1 zb3a`wc6B|-E8WilU)?@^=MCTN?*kA0)fnHcw#djqM^=GlZL<#^lRLvpX}q{y3nhK7 ziRtlA^1omcNyH?Ps|gykOIC#GZ)Y7z=&u$tqN*g$#(J8Bc=m79%fsTCQ)@?~98;A+ zsQbX9tyMa{LOvK}UDWRh0mPfGYUR{vnMM}`+HAzR>4~*!DKW%lek68(t zh0(ckNAb34lKLG^Kyd>IQfRLhT?J*~jB+j}Q5S|X{-;NpD(8}y*K;nHJ0$)4lU5mv zBK?vbWEu=BA$cT+#@E$Jv#qapTgyBS=Jk9}D+1V}*-L6k>#yn(-lRD~_}?r2UH;_- zO*YSaSzY<|#Vg8wU^i_lb*AN2u@;%5C!TCXYP@X&67Zx%90 zFh|vTQ29iv7$v%LM4}Ra*>aJ*Tw*v|CLz-W@LBzAyITGz-5} zm2i{L*W%&ze-`i3ntXoz@L*tAzjezMn1#o4(-}k0gQQl;le!mMSo?YN9VgvgUjn#U zR#-J7tbnbh&hPuD`xvRO)Q@yFSIc+2f8nem(su@CX_qFkS2X?@yYXIL4EWGsBKfaV(5}dxVq2Xf^)6YU45Tb4mk#<}z+i-OJT{Uamb^U`8=Q)pH&oylN zJY^&{a8)5f>BR80NbnYRu$o7c`}WK+p0pwQ6mJ!W+4j; zGOM%oKr7FUxx;SJ%ZHxeT0Ck0gm$vmGOz&V)QLtP9xoTl5j&pQvUKubMoQxoHdJ$>i~dvHJcP9A=#c4OmI9skswITyN;wfwwBcXMRj za?vNO-vY^{^{f`HXe~+5yq^9{H(CF^{Tw~%QfLqu*ok=scp#H!S`0s|9P2v}CzBu6C*{c-tDT$Y}veHq%XL{cMNc#k7vNe zc^^)s*{k%iou%2CFr&u>+n>HP&(@=|ms~m@G1VDty1(fZ@C-~9+s_1oR$fmD>F?k* zH?tgSRj_qn^>-}jG1HIz_x5(Zmbz9^MrSPTje$Y;7?xv15VV_Ri~`&L?z*M^3v9Y+ zQA14mE!$@q;3-wA!xSdk(pei8ugm;a-$g48S_AjNgIha(>qgDARaz;X+HP+N?AXGE zmbQ5mV(MII;H=CwM4xzns!(R@k38TExVncB#kP-36GdQT0eQiFu}bbb0sS3z2cES1 z$2X@w{E)z{II#G`pdnb$)4wufQ1>;4A17qwF?F|U zlWo^bW;#Epf_GJMHsDvrKbij&X?xn`&6jqq%oLOv=Vo=Q@4XG?X-!o58ui{p>Zx=l zuhn}?`&T^c>hm5dvxIb_eIA{}Cj6PaHxvT`Ir>5U=SGii|23wx7)Ojj>7VYS2OudA zMt;`hr32tGu3<;ACtvQCsZ@ z*3sXxGcaoQFy^RYD1KY0G)Kmx&gxl+XZ8myfl<&rcU$rD_P|ev0{4Q6n8ziisjLrp zhR=%$Fb3r>N{8bf0S!fKMbS-|+KnxE(D5XuG;9BTrJc*uIUGha_BW3C!9m>BZ--`a zlBhp^U$**m`*FeiWNMNtp9hCWolQ87ZKNNcJ7&4LkQ&!iztOZ^&|twx;bb*JL)K|9opL{Z^@VN+3>fFghS&nLAeKRZ2|Bo8uy?$JjHWl2YbDV)bA&7A=475A^K6?5FrNZpe1hiPrYtY=LJt@a>XUhP1ml{zP=~R zyoMg1n}!C0frjHwBkt`T$lmxIs#TneQ{x4L*EcvV&Kkah`9P7uvO2a{Z+2HFbfxkT;7DeCz3#+F_XzgAD zkgK2H?oSJsmfuaACzDdO;P~E)Uz!qNxxeyD)n4A!Y0EbBotFmQyzIJ0{I8WJ)!Dz> zM>}cB2~A*Bqnvuj1r7so9hj{7R<6hAp?0{^U(2id=k~uWmcC4UyrMdMapAIA9}3X_ zQZ*3%Lu=K0cPjhmBXLWYHMcJvEOP_eQx=;)myinuqW3$@apxuK5l{;O?U|-M`xiD` zqc~@@t@XLx2Ix^LqIZ9gg6n04&u+m8_hhaqDz~~l|K(ZxvMLbHi}wKc_jBn7bOXb+ z7lI0S#y_)fION`S#5<$R&u{s?DAhhR0f2{UJQH4a&iisLP!2>zAr-XikVaEi;rx5x zLZp^NU$%PI`b~D;C^3?i9Dp|+uJ30FnZFhJcw2i+Cs(O?IrP&#uHM+RA5=WQ+^{iQ zbH_9CH^6xz6KpgUCU;>)>}OBRx8WZC&+^6Fp7v8K!b>zDtFrmqaks(ZdB z1Vo94?hpxS=>|o*yGto)$(s&Qy1To(yStI@kdp3@e)sL~|9VBN2^}eA-H2jbE(N@67vcm+(*Ab_i{Q|sisjMk71|T1o+fB9?A%6T{E_mAb5=xGPW&;hp;Si^*tPfTLr^msKQ`PWej@B(1(-`@l* zdd@{lq8Cz^19+0O+8iD6Oss(Pv+0azhbCXdCFe{9@4B*uk+-fpiMSOa*WT5`x~(er zy&h8jdIu2(Wuz=icpXtAp>P{Pn#e2=Y1pggmBrJ~!}Yc3m6=UN=YK2bGea1^z4=9m$kOY&I1xwMnf1r->y4g}oVO&&qFnfb*?)&|xs>b$g zo3F8^AXNbqZS#{?$+{Bwf|7@q4FA%Xd^{G}w=DRba&CtjSC37&0{%oMBRyXq)e`Qs z*-yGT`p3hR>4ShS7%-hm!o224#Dz9~O-C9TsKB!Z)2FB3!c!b%av~V+6L$B$b(lz# z<-&!Ahq+_^1lXDBoxiohCp2)(h35Y0xAq3OABtwjfiAUW1Yabs5g6c0n_O#|f<7TM zzo#n#jc~?D>R+6JSeupUcacz~*EG>#2nkCX<}rjFB#oOQH+Y4dI8p1hh=yg1)}tlh zL*RGmh8mNE#=}9>aU%hwiMzEWy^Hdvmjleu2pbIpU71%K(bSuk(U#v-jl?9W3`LiN zUW}TQ&bqH+jAnO5dtn8j=A64j{4&^!&mBm=X0SgyeY*N1Pdz-8=xEqT(9Lm)s<&$; zLa~_-J`P>-i-%`~0dZ6!<8FwJSpJs{fN_QgMPfjCT+x2(WcEc1ngwZ&5Jc$FcWL3e zY>(>-DvwhXez1%@4Krf>a!Lh{e-J*8sUM#yCH@`XSoQEr{-+%*K_ES~aJu7=mW@6@Hx|B4_Vymb{C!V)=a6)pM3l5 zGR5)tbsbvS)q6@X%~qKga__9T+T)%$7rb>rTn@_jhe z;%BmN#@_dB0kbm^$)DaYuAb1r%gN7WXB${gxS4XxpB)Pd7+9cXW6lp*edFKbb_YpWN=v>5W0up7p=3pW zaPH{-2JRc(%ZEEPgEt=-4y#IZa|y=8#6Kn6Eh-(GQPVy%>h-;4C2f&EWwp~hn+*{u zaMxU_`HlZco35w#LfKMxp=T(uvWf~GCa1F{v18zQQs@%V70Dv}M(5v!&$Ic4>^BEv zU~rVeJ;u)O#D_7*k|LDfqT>5#U$=wn0`yD*R4N%iv30gpHn^-Fz7RxhGwoIQ+MxF3 zqFh~wvd{^=azVSY-gdHcm zC22S}yjg|a9YNRUh6MIRTx;1)%1X5@vZsD&8m}l}2@PQ%%Hjx!r9Dd1rFUo=T_ry) z;81rY;NU-nS{|pG_dug3mdVmDQ4MSO4s2e?LBmnc1CUe=tHKgDT$R&j`VI9cN~&NR zzKo7-?3`b}{Dgf6v2L6k1{xUHp^{4NN=|4&pef zDst;uXjj~I?scmg)qQ4S0E)%nacgyhe_w_7^?O%QR;<rz>}%#dDnr8XO=RKhJ=Z*kaK5bb3Y{R|^9&D!($yFg5?Q zIOoul0zZo}HwP9y;6?@<*U&^@OlJJe%BFra1lCxJY3}J7K7A+Y=2#VdYiH8JCnA5V z#HjRm0t=*Z)E*=vt@`E7j z4I}g>OPz*=H-=&Wh@>FcO#SM*`V#f&XB-@etOK-r7f$C!$wX{8hgkg!pQSHy1<`rOza`9ZqtE;WB z6@NZtK3UUc-8FAg5uDkNM){qGjUpPZigI%G+`;PJLHBQSct`L1wns>vZ7MWRVTipV zLkB^6@7=w&*6KiAW(@=*FhD|dZ{3DH|<4+eIt7uOn)Ik*#;L5hM@N1_ceKPM;Dk z{!sq>@=rXfO+X{_O+cle1f6o@&kF+Hlf!^4ZE{TCe(*8M$24#{TtK`!f7X2K_B`Bc*=vX-G@o zO?5~IHM;^;0WO-dt>YJkukSSyXc-Gw@vD_-Km?nb@9_40)Bn}e97h4nFeBm4+@cEYHN<3bQVP?+%WqMXl8?##rHfqRcxD3uCOXN?6u z8U;1W%~b7>lT zKo;Tc5-si;Lt{9r&z=38!Ff8OFbt}qkUCQl4X%^?`G>@Jg8}IXhHO8Gb&gFQy?GA+ zfOcG3#erqhS=O1wopRRs{7{zJ%%fD-Kf|C`_%%9ty>+jQy8?!s@Eilp`PZf_%*#8} zWH%-Dnb@eqH^lb@RXmOXfGkNgzjM+L-H!GqBgaCobomVbrd^J@wXTIxj8em$?2uK9 z(E17*RTG`-uFHKA6&mLA3IE2LeaypM(^xBDyxism8QGQyHCMMQcSVsi8;Pn5V)?DE zf9MKr(t()ixz_iN{Jo{>g{cl;A4U(CCyg&Q4-wp9*rGmiI?>GZ)$64*S@w(*UY*#mG>sI(zF8rObceR}mwScae4w}1Z!{-?FMZl~Nu@^X z9`<|kn3C~KsnHL{?_Mmp4JbZIa4gnY;3ka2V|eE^k>ica(=}>mj_nm>Q!CIVR;J{O zA@ZY$1J1nbx2ZMK4m{ui;_5{O&?MxjF&z?>TVB3~J%4BfFGV~~N$p$;tM)PTlTncv z@~YH^JxaVoexC{0L<7O@y3F8~P@umgBBy=wjl|{V;sfEUt4F5Pbh`4lG&t0|_6-Ks zE`^AC;`+y5K#mSoPbSep-r)o)EkazGwvAE@X&AYea+>#FTp^s!;F?v+=zYKGyK#b{ z^;YQt0!!vN`P|X70#2}}BHP2DKKUd5kBFFr;FrP}XJ|$_CYXLG& zq9c41vKb`>j7VC8sWI||8@420&0oZslEq2IVhme`PP{tHC2w}8fIV_Y$D3RUsm~h7 z>KnxtMQq7Vu*YqccAksY9qAqYvwORshxR6t2I3%khbWQn$C9L!v0secNKg$&1Exae z<#90K0qm)bYFqL_fT^q)9=cBGhaKG0VttEfSnI4mHv8KZWDYz-TU5@av|zqT%zEip z&$)_9KFzd%a;lRDcx}Hp*MG`?DI!k0uR>ft*0fa#srDG8S!WF50Vob7?n;J|#4%hezDC*VbG%ogZ3-T)EYPQsJzpZx#yEj37p>532S&S7L^aoIr z+6fe@+DRWV`)l<-9~>k6&vo=y8h@ppN5|vBtDT-yBopj}&rzB|)MZLb@4;4X@;fr} zU;WmF1On*xLJgaQ;4^Fof<{DOOnF=^U3Cp3FJ~~GUZGZtk|Z@v=hEyZQryQ(9}$Ke z%1WQme0zI*(&X~eTsxqbpK8(`|=o78$;6R|Mvo{FNVY0dhaxm)0>#znsQi_ zy|%L!Z*iYX-W@(Vr32od2VU}-NWsjH_O0S3b9yh)o89IkkOC*lL`Sb5E%KASg#Bs! zUCTg?L)g=QRDgEBt8Jr7ybDRP)XLs*T~J5=|AhQ@~6xVQ#6@_bDAl4LB?9Ss3vBts!7&Kq%3 zKOiJdbAD-G4;u^%f<`Rc0Y92V-xQQomZBYIygW+W1ettv?D`dtA)B)Whi|=BZx>Ut z+dlHGG)GJ`^4~ULkU0Fa`l)E({O>#1;c~KJ=daDjIjVJEbAv^Ev_p=^j+mTDp*yew~$L61!C37Rv)f#rG~;HO_KR}y3>#e%m^ z#>)d_99b$A{*%w4oN6%0#S&!}GUH+6;eo@vYm_8T6_V2ogU55s-TnG9{HSI};PTJv zSckW{9WejzKCnopTh@RFHJZK<*COFiyki@+GKIRVxXcf6O3~23o5<(w@AzpSyI}$p|1gV!25J@ zajNd}f8V*VbW`scZU6_C*CNa38_|yU64rtJN8*%%eH7B5%4d|4)Kmja?FC6HCwkg7 zp(@9Q)oKud@|uOQ&LP-b<9h*EmlkHDDzj5c(v%ua9c@WSQyyR+r(=yH@A#$+;}JlAwWIbcu*AuKEB!N#!0R+@6Rs*X)>w})!V-^bXBW!ABe_S(6# z3fFW?f1%B-EWa`^Kt}tm7km#4pglqQ7QL)rlse8*!dvCD%GY?CwtIHW%o<4zqNNnO z3`b%UdAt)%e^iTKurqHtCEx@HL;xlTsP#hh_Idq>`elO_D!1;aMNmlGD4ho)FM(~_ zr{`a;P~%ASyt}sSn|uw*aAT>Z!R1rEhj;HoD<_TmOwgWwJ27uY?paKZy#&J475X&f z%8JtbJyaLb+`090*6W3lkzsj*hcc^{p)| z1)(>p?5>is{5QpUB(s^zcj!uhZ5&ua|8Dj}nDN2*h^0I`>Q!XHnf+B1;-ujt(}Tvv z$2&i3q+%X`VX^l1{;a}`ypRxmU>NwCHsugqbTySqdzAvQ#m|G3S3R&6QZsgH>lfcO zE3bgyF8wEdX6vUTG5=rHJ3Him9$fg0O0j1-FkSQs?M{!YZ=*J@(xQvOa`f3*w z^RQKo&6+~%d{1vhMYck$R$5_3^Z|cjWeV5-)jKULuD-VbImWKZ0uX2*-HqHcJvTWm zdOEHFfYR0s@@j2f^N%_4@t?d->i;dLwXjSW;-U>D7gN4U-152zrW-aC&<|$Ko+GI2 zn1E7nq0o0A5?PJdKME`8eJhKxEs$5~J&tY89PUE2a61SY!O zLYM2q@zpNQ^vk;O3KdM8iQZ|beeW+=|}xAD8F zSewkrx0N$8S_+E%T%mf@!&?On(Mr2KDH>S_n{wuPEIY>e@jX7i0vlZ-cJ%qj;1}*c zrVXsL%z_Xa0M(XZbLmk((l>826|a5#FPl*PV$ku%M({<=$IP*P9+IK)!NNW3u!_v$ z667*tMxTc{ab`krx(mCle8@Xt8$0`9yl`c9q)LEV8uIOMB{lzx1>HVFr8XZWt-SY) zGjn&1cDC@5N=S-R0l$+iNm?fVLByiYPoZ9c9LccmWq=(pazUnyj82MuWv>Z&rBAzO z5YMvV>H9Bzqoz{VZx;*k%1hvU<4B3Oki>u z@Q3P*=H!aXQs;B)3FE)G{^ITLGf+_25icxLmv|`K+UuI8G=$}Ep%`tv;bfMk>&w34-r%$;HkpwHcu_r^~B`y@J!76Z!D~svn@qInW1CyJQybI7G}wRsU=tpXx@H}TC zyoBor(u9Cvn8B{m2_(5ie*DBdE9nPP2zrlC+TL?`Tyu`p1?4l9?J^+%-V-%NB~%8Q za-CmXHuIxMisV!o`IvI0%N zdv*iITXGN*&x}*jy(j=muV}zqFmHl4OT_m0RQ&A_35Z&1XFKH0sK`>QX|wh;ja9w) z`CIMIU+*8$h*Jcqz&$juwRdqVapx!+keqp;!<2%TuM#o$jUJQ^1yH5(h^d@=wGnqX zL>sI%-?BxC$9QQYKhQrmwnA}rs+YggP%6Kej2sjgB_%B3e|B+O z_%piLo+$)rgwi@H85tMqABeEc6Cq>^+&Wt^H9emgtQc*EOocu?8|0h94#t2+9+e-9 z8N+?IR{%qkx^PTS1`j^}cv@buT;dpRehE08zJ)r7XvZ@_1~NIpS@lzZ^)LmNjhRJE zV<F@VEb*Q;aDbpc^Z;?kT~D!%(`rxxOKbrCiFLMnO@7whHm zH7j)@FKEUI+O!8Wok-(nQLNW&wcEOB9{73zgU>Nf%l+)l;9eKaenPeB`9|Ws+0nZ~ zYwjxuLYmo-?K&tQI{uzCtw?Qo#0FF=G$q(5%onppz=fYi^kA?FPTPW|puxN516vn2 z`htsVD%~wJ|Kngx2H4e-inY(O;v`%pUvofKpSJ5*VF`QVf4O~}?R5hJ5y;$m7#}~) zeI7mP9d%4aCd?kn4y*?jmb*d=*EV@J%lke2BX0UA>n-* z-m%*PcnmzyaE%u!gK*~;6@-V}kiy3|7D}JAYgQ;=XTYK3>qwd*bfZ~^!g$3b1rVKb z#LA3sEg79PlX;=BT+@z7_@W>{Sk8HST`M8f87TYxzR; z>Kv}1UPf`Xn)>2q>H{k1aszb_M^YpzyPR2(2tX$N)j7@*svj!`3=j3nIFUZewYzu3 z+I9+B=nN|?O3GRyIcOx=OocyQ`>y&4kq00;sTt&3lDPW*`KqkM?IRYrZ8lfN)`SPI z$k8K{gKw=6MZg-w?5!MNayu}CO6cob5Vd^>ZKbL92d5_&6p}QLyU%IsP{vN7#wuCq z(ST~Wrn$^tpB7WIp=Y1!Gx87?crH(~fo=SxPxneP&;HLNeJ^`JN?pgle zB63;a6Sy!dyaxAmO0m3LAW@@G>shh7XH@rcJI)O^LWMC^Q)1@zUzFjcFUu8KfyX-% znp{#F8W*H#q_=_|&Eq$$V!+4r-Py+*jt~VU{~4G4ul&q~AaX$RmKZoCV}$6#FZ zL9NDdc(R5n{N4BV|27}6JQ~p_o2xsE{{pZ~xX8+mHS8apEKsUwlFLpcQS^y&*Unb` z%i%`jXTF6@p({>0Q1q|xC_ot2?H%PHVKIl3iXWh4sisHUi#que;;W@BJLJ#TUIz z4EP&j6n(1Xd+sHFt(I3noi@)K^h1h?3HI#{ezDi}HfH+*E;TC<*!7qGlYbf-+qNhn zeJ7yT2ee!Jsy=CV>Y@I;%RksDVE0u)Y(F5@499DZZOhc=N0p*W18tc{pce|--BnrO zBNE#FAkM}5#Y@WRloQnBT%kIqDwQ&KvK@^uZ`!+mUPKifmdQ{RY6%_up&Ev?rdS@U z>OqA}#Xuh`oD&Y0`go8s(e(Ehg~Z@*icMo>F~7}AKBx7ric-ePfzI1HP`)VBjWXFD z(YTd~(RzPEzITuD*jQYH0*XI!n$Ky{?_0_mTsn0C(ke7Fq3bD16d#dkkABJoEk@!Z zTbCN$pY1+i0-kkZreG39$)zdT9GZoM&+Q0FI_1at4YB~IIF+>70jfiD%r?aL8w|TW z=LA)s^r23_d;<$3lFoL@0Ly8sJA~=@&@7boZDvz5t0SX%;N%Q8tueo#@SoJ)`+OrSBB$X!KRezsB?_|=X<>NE(Z_G3J%t|aHpbaV)@V%=}y zk_(uHW&gdUm19+R5J)>+Z<>gm1mW^9GT!W)8Yfe$4`7>ujxR?;JXVH}As3o=h~UB` z0I&txnhg(+|0&*Qy(z7W9Ktyz;2dEt?zh;>6}pkK$&QlBc~LHrD5D!;5ufv~HBjhF z#z{Z7P(JgGb=`@a%fG`Se=gTYcY?=8>tY6}+5|?N415?12#%oS7}UJ~erMQnO<)e1 z^oP-plSjaPEql${-Z;DIEh5K+b7p^h_;()7;+UMzAq|2dNj16WKcE=mQ3mW(Z5)s@^hxJKIP09BM{ZkH0$ppx)inojdN4 zgmGi>kKmRT*>btFYc(iGI_2@Z_|v1B__3(3#R1ixNIEyt-9ShZN>Z^%8iUr>EpAXB z4!Xu~r6)|B(@+-tI|pmCy%(7tP12OO+Nw46mV%YUiXg@3w_%9dv35eC@lNE`vS{AV zjPcLP@*WGls7pb=4=f3i_MrR_RVyFSH+%-`vLw~~*HucoV$yGO`=q2e4aEf|PgXku zNvWs&F3vWf}!p2#2_=O}v zF=IPbd|jQdHAIpQx@`VC(ra7LMXkeHDl58)pvXcNe>07R923=I^;hgE5fo}c-W+Mh#OExKKx9zE{>fArSgX0{ zCqbrtx@VMRyeY0rCG<~GuQHV}BB!SDQNL|xLF?w2e0G}SI0+BogJ^A`Rwt8GpD`i} z>5|S|I|AQh`WHF9469^ z7J>d69BiC*-SfJZL`?(D0XdieX4+AsjFh0;KURs&I!t4HlYWkQFwm10JjVh)`N%i` zq&~2(s=ZegK@|%lyOC+vScC!x6l)s4D0TO8cJ~}JZY9*^$dDi<_GPSHsI>p;S%TnQu*VD6Y9Vr`c9jM1%A^#scqTA zlFa<%UcrAzu9PFn{=o3Jdcht z_x{Us@Zmb6fg}GL3Z>GzBTb*~KNT-vLEm1qhq;ydxcLEQf$pY4+?FR|kh&%>rsAnBxHF86G=FQk?AQ`Q4Bru!Jg0|W5nc%4u zXz`D6+uqP%Ra*ae*pkfpf)(gM^T2~%kF5)Rge<7BqUs_OXCF9G&|sYsFlk3*RcD%j z)@C)haIduF;~+P@!~hxH+4o;gU^ieG&&XF~wQS!iD}#Qw%H}lha%Ua$u{Zxc6fot; z2?2i>!e(gjF)!{Qo&z-R$3CxPiitf%gZ3egWOb1oDI@=}?o$pidCX`GAtJn-(?;GO zm^`XwhM*?gd0wY+dpyid{6M;(E1=g)MWL+Xv}@cU_D;u$*Gmp=2JA3{-sWc1Ep5u= zpJg5C(=**6J{e|SK8!^2$c*9K3+0mZc=BEPN9EwpE@TUt@_4*WK>-rI`{TOs*JM7t z?iC?uMorsq3EcPn}14e$*7o19hFZ9VES@_NM)TFE}C< z^V)zpfkuRoqly-giX4F`6)kJ}jsk1&gXt&KIYtX3F$$HZ=;DfNaVWV`{0o%VolD;E zU1~9Sq5ps(G>6w&RhAzpj~0onW}(N~De6Vtu6^GPrQhsM440axSM@~3mh)0Sp6?ij zgsqTVedax|kUJ-jEHrfbglb_DdlgWz<5blsbjC!HCoYW<>%<1+J1B=~?9fc|6A;Ih96t0Bh*{=5_$y zl0XY6%~B}MU_L=$f-@_U&RfPBq}T>(sw;BidP^tHb@^(QOk95@1`Qaoyf3HidL5T% z7J}G!t?d*M{@~q~sk({)3j3C$x*fmQyGkSo%JE$zvTj1GnT4@ih)bw(^<1fo&_d@yYp?{h zZ`+v&wI=)4W{@aqNdf`AP-dcUT0`VTj1~c}`_99+`C9|oS6^Y}0uU;A zAWkh0%~~RT(LQN$T4g#q`g&EJ=sP4Y$lBAPRhw?CNIGbh=vl}OLQ12q`sexC!&=o* z9g<&t-giWzSq%dDNB4SSyI9~o?)z2rHp0Mq+jrbvoEyl?~ z7vcSi>5@DEMdUw}7ns5lO+|bTadNJuM`>$hswBLrtIbUoZeTv5XU_gA7_{dofBZQ8 zINkb3V`cUJGKOcnC{Zn?)7u+`ZBny;{8!6@|4EE3rG5SEva>C9cUMnV$7>^RmPuO2 zZ7mnOpLwx=-DvKOEPZ*g!VjvF^vB!mhZ$7WfAhz+%AyBf*C{zxoCEF4G@C2lu z>%QgfjPUZ~DtxFCnoGJGW+T9(M$?b;MoAK&%D73>DvUPIyG(sh;|Vmaab3x86u^L? z9x&!&m`x%gi>noiwoHwApm0BD*}hwf1`=g4$+X^sK;JyI)xd8|$Sh9^&RR`irmUpLc1UrzBu@oWM6Fq+ETv30>U`EJoSkSfL&`b+VgjoCvzqW<74o&}UaL$D* zjd~0Xl85U-rSi5tH_Hpw?fFEirpub4w)$A9$;9&!uqV2{ar)yPb1+e}s}7|lf^<|~ zIUaLaZ^!as-Yp!>-_ndmEiG9Es#caX>RZf}4_F#WaD{n(h$~3On9j{tv+xu(TN^YT zl6(*?wt2wQbU-rs;2)KbpvQ&Q1#{BgbFf-DA5HWb>;Rm_tS-4l`_ld8(Nx4>H9bpQl9yMnh$+$3Kp}^S{63EJj#`@AI3B;TDdH)Lfd0!TC0-Q_*}+H zGMEHPl}tyH^S%h_|Ma$0JA_<@A+R}|C7W8f7Pg<13~w*Q*WC4mvzfpud{A5aReOjfIo z3Xur{c6pWUF_!`)Yj+idge@U2UXn*+N$@AhBW-o~vi)K&0;SfO;xt44mV_ zP4QNbC-WYqBpu^<;S(bc9lBCDTwj;gULc8;Yi48h$yR94BFEx4EAhOIu6bJo<_LIV zLkA_H-L)z8 z>H-sMbP8IP7i#{XM~i;v_&c!LaW$}7Ma{jT!I08JCQMK2nq~mug$$V{)Ueze=7m{_F(ELF}YXi_W{3yU8uiZuBnwh(~ zOYcf0nJ0Np8aI;7dKVq$V&;GEs1BDM7VUn`6g zs%aYR&cWhWs%tf0?bg9dwM0rR89DqsZZR>W-t5{{SVyqaSgv;6zG5;s!e99Ry#Q7# zQ-!nF^9sREQi~MDrFJ7un)gNg&C0OPOh@Ku#g%UaCEvhHw0AL_a)RSkbIdhr&lOx@ ziNU#d=(C-2ST4at)Pa2^p$*Xqx3N*a=zQB`6(D^rq_Wd4SFZz7-uVbTLQx;cIq)@T znk)2Xag?zyh#9@6EJt%1UgzjqxXHA8*rxMl2XawsU98c)^88ru)j(q(`8fx8QkM+_ zhz{Silf_&cX|0o3w7^8DjPRtj=21lU(fOeoPg^_P=d=j{^^??w0N5PK-#E^5tKX7J zs^umLTBC{Iwl>!3

(4_I5mV58An*&NMA^DRx22yFD_rbd-b=*~URvH83~XAgoq zp{x=swz*3Pd9;y)m83(zyFBi#CZNPg_^_fV-|l6Wo`f!TFSkljOb_ffnGFX|%nvv< zf7dT*T4-W5`2t0=VF}le9&Fi=LVrJXDgo+jacp`195OG~lpO`w5dGiS&O#2|3{)xQ zh58Vbfqy1Tj7@# zT@8(DErBTY#!%>1ID;s4+4x$9eOybRx>}Z)24l@ZyP>=s1M$| z7i#-KF1+(3%5L()M*_CB;+XpZl+zQ@3a0E#d{OkCr5;*+w~d&0m7Wi0saPbO-WY?= za3@uW?dJ65aSo|DU<-$X+<6}x%#yg0!J`tF)(YhH*OC2d8++SSX&!y}r#9mXDMa2| z@hdjMYGC~}P%UfKrW)N#b#ONh9OL!$dq4{$O^|Uz6P@{c4qJOeJdwP~L~uc{a$Bh{ zVX}3DVyFa+l6+i>L;#uOFtD(czU&bw>pF?d%#x5575j^6+7}0X7s{6>CC@%@?r3&> zbYZC|tzqYz zclT5haSl^&&T*@ujATPMktFl~zKkbl|$+uuH0*3Nm;{I+k`YkRNSVJSiv z*dD$L<#FM*f=VX5z+$aXR@eZHVI@KBP?B~`KzaUaB=WcC)g8@Fj}($?ajG6`gN|(9 zU6)$SE<2G7R2JPZ?>6bJ7Ckb?Z6?JqB%h0v*6JOHXFi3g1%ID=_o`*@CXy_M9`m*) zXIz@@AeFzEA;UP>rqIu3@%e8+8mUHw?+j1=K~k3kFYvyoyJIWh9gN9@6Zs$SK3oP z6`q{O!*(kOYYk1s&8>8=8CKinHZ@Mrk0Tx)=G9XsGW*ZWY&cuTn8_Vjp~s+TWR(pKMXIPZajc%xoml z+NGfMA(7jNY^0^RUq$Gx+V^m?q!~R+8$Xrr#uYcS;t*A-WxqQOTQlZLC#N|>mQ*hq z$7zmYw{Z$w<%J{-`J&_?8dYm_?KkE*36LGDJPi0OXIEY0x~#U_n%bBEBYV$ewPO3o zF`a2u4x#-`GV|FcyW}?S_-Ve|p$knWVVUWa$>Malv_ZJfT~*2I#K$Np|y&_ql@ zIxMwlL3uX}c7ST7@<-ajOj)TL@Ag&c1)-?X(J1Sa&Hh+%G8?V|EP&7Cj7^4Vbw7A7 zg{A$o&a%xL$EEJ-hTMsEH_;@Tm;cY}+6LwvP}&QxY4(rNO{|TiN(nW?Q0wsj-rLhX zTEyJn6)HP?9{A&-CUn=+HX`E3Fa>NZ+aQ#w-6fF!L`t%lYIK)x4u7v; zdB3B`hO3Esvz}+G^!0$xJVjNLsNe zZ^8=6A)|Qwc<)>ghagAYEF`+wm1gp(Ki) zfM8eZPx)E!fs4SJ2W)PwqNKBYF$gl4#KGDmG8yv}EW>_Cwt@x*#XSN@rjd#2u3OL{d_EHkX*8h&D!&+D1Q3t3c%cWdD zu%grNKYS!A6XYIz1K0SD?{!PDb!y?puDJ0PvZVdp7zm6GLoCX*8C5a#E-*$k^i~!} zlhNg*D)NT`_Tv>Lk5#yJPXW=B-zN)%nNRf`?LUwNLWXvg2z2R+gPwx1kwSLHnWnxE zDXGdJe^W<;aTLLH6`anD*W$%F(TA^a)vV$gwDA&2zu6S`!RyEg?kTCOcQRi(&|O?& z*-fxW%lShI^ZT9)Ge;q-V$J_S3 zi^+TWzd%iaE3M?Z<2|Kz#rY?S19wS?{v-XdAl=JQx*oU_W3KTyX3w@9oT?p)DwzmbF^uz3?VhUmQm*y}TG;zP;cI3c@sZe@OpJXdaq7N)KV+TJ-5eZJE`ut~4 zil7HW05svtNZguh?e*)gQS}awiZ#W`2h8(JoB#q0vx+nAI_G0F4?UbH7sMg(My;@lVR!{H}3nASdC zF}40$E__UdPkV+8?a$d=W>`LOH619+Mw1wpLA{WLgBYec@2~9B&HybCuL&eW996BN ztRiKCb1Fi*qO79wSI%#pXsw<0(~7TcDg5|ZZV^_u=kP52PGktGbta`GgYTF(xF=f{ zsCWxag6M{Wsi_!X5){;29rf$e7F~9CVU2PbtD5v!+_*e0cXGwHwSDR{J13;8}J`MZFPi(FdP-3KyL%BG5~Nq5j9D|Qlbn7BXpC|sUs49i$TH*;Z_qHYF;{e7b!p zZw%$)57#8<$o8p>dj)4kUlv)rR_>c%)33iR2Y}kSYs%u@ttPuxJhLt>`+omu_#MR_ zf{UwOpLJvk9yUZThRZM?{PKu;z&1Px{B}XH(>Rg^tu$q0UxjrefAAWnHD#wYWg$C? zW9^5zz+WA(5wb|~Q5{80plLQMPg$S@6{|*_u#zHgB-;p zsb&*7F&Gs_v~N5m{m5&r7PzAt^Ht2uK<5q2hq6u(Il-y(+qZ) zXu4y~pGy>jd~Qn=<_Dx_W)PK0r@=N#o+YD0&OuA{WjE2lpl@%my=YJ22BeY4i}>Og z?wrK1_CqM2c`1+`FDa)<18>N1+}KNU)Cg(^lGFy5Xbi6hi)7W1j4hi>rkGq(?WU>5 zog~{x6P@cVGsN|>#QWAtom<3v!P$KB&1PgXEo>Nw&DR<%j%Kl^bSnwj z88T0!gizYxpYjwX>g6=;eVma+H#ZMtW+Zz7V;32VZ5{m8!aiSbX|41P6MvBOB6apr zl}UYxRosXmk6yA7FIB!aGBaI&4^?smN1A(Ibf{aD&>KUnDo*O?0J^*YV*Prwp61J9 zd9ghw^DYiLZQxF4Wfgxhsde#a_N7r5Q?c$CNq&0T*uUW^O4v|0cB!PxM^w?&%ZY-y zCH~;F7f4m}M?t0Zh~?-g#9UuoW+huFJY3RMR;}5nMqBL-PoC!F!Fh|CX0`k*se)OB zti2PYDD#cL4T?M~Fqv0s48Qjj@7~OI1Z4!&aqCp6QLXLTJxxZ?Cv^9IP31wX%~*HbNVm`lx9y;ki_nz#9|bXf9@(Z{1jw zEPR$h7#j$85?hae6F#Ou!Kv)2AB$NOIl&Sopf)=e&k{^IO5h|=sH3N;=kV7?%*O3aJ#Q462>2^LzaLTgX@#^zknz_bXf}&Gk&(|0m?C{6Yp54!n-k@o9px=gB`O$;!vpvdGpWe8{h8weF!+q) zT0rvkKmj7`ucRw2+UI%mYwLZGBxlhUBp@NDp+s*+cdkWXD$`g4urKDn7Z_a+kc7oY zSUi}KceTmu^TxqEIPqCRf=vlKqwRqK8qM^QGwE4oT5=v(f^v=77gV8pQHvDqir~Tn z?4s-|7>o3H&ZlAzyH(!?IdkgghkB(zs%fnHK_+50x4X0m>}W-q*&d^oA0>fQ`AZEU zXV|oNL{@*B9}PWxC-eu|5W^pzFb2ib-C^DbJ`}dYB6SVnjm0GPJ1b@4IY;ZQG4=MX z)@IKT#Ye&e!~XDSeZ(c2i?i?$eVwz{svd?g zLp0vw$82)%?+>j-rE)=NQ+p-7;x_fO7}4=Ya(TdPN!jgeL|w&ph7*2AXttI~R7sD?RtK-Z7c}DB9fI+%_zE{>qZvTq?|0KVNZ@L4UKk zOdHJMW`@+&*W+0}(M4=NMiBQ;6y~S#)`BsI*F*H>*p|j$`$7nwfGkt&@nUUpJ{a?u zls99oSashjd?O%9HstW%t@YVPuW|^>-GTn|V&tC2dso5q@f5ou+HEkJFyLsuGTR`$ zx6u;JC4WMAjT-|-N~eLL%?{fbAtS_8_Y-8%fyY_D9VMrz{|dYh1hca*!CYd)vI9LZ zVYoeQ&pCn=3=h|jyqv+3nmxJQ)|2$-)h8otJXM4lvP!CpYb+FJI_I zU(P~bm?q76!z_vu%m(-3!+!PHF4G@PTXx{7ILU>}r1SR}`ZIBR&aAmDEe~F$wbCjb z{r6MyLamg9p-!@32zGYPjWKVUOd`+{aid&u8)4~pFRHD*x=#$F8Fy#B@<+x-LDW|| z=iJ$3BY7=mvp1Qmym|Jwb8jmDS!dEXF$^i2%j@aEp6c=cvGUDnoZSgCgBSN+Ts5LrCv6KF|Ap{~!DRWgo}pi}x+# zTr19X=DN-w=!$sU3wo;0ce_YXipr_{7fBaD1F|=mw))`5i45qR|NL|T$Nztzb@FQe z3$3GB8FYbkab>JkgNCmk);zx|cfLR5>kxo?{h%BHD;}ezAHg@QjCVshAeU*o+vQHO zdBpnXL-5H)ep)4#2WHRU8467Iwv(fnFncDej&u!@R6Iz0ftuK75x1s&X#DGHZfA-UA z&Yw&S`DNA~cAr%&${C5MAAVPL_BE7lN;)ht6(EQV7DNU*0i_P``Fy(^)2M~)X8!*D zDH{>UY24EEV-4LrLh0Os;AiSjGzUF4^v&+Vyj-yhzo}FzJbxZk3FI^wKF79h z099fhQ`m?(q%iCAZEtUPx0x(kT;MJIW*9pr5<+A{BPv!}^ITENFX!of>uK< zoLQ-d*>{N2xduUt`Ltc$(NNB>we{T0t2zV)v!H_B#N3=8Dn}(%kukQ*0Jbd#+jjTz z^3nt7q-cg_oe!k4c;=|@#e+zRP);X9p`(tX&iZF6e4DQaUDtGV5KQo?tN0p z^1XaPVOaGFWex487Pj-ryS^~t^(cfV?p$vMQy7Wx6FoA+zW3>;Kas#?g1+4+T^KUK z%PR=?PfoBA zP$Evq&)U;BJl|i6A%|Fg*-M zY9X7CiVeo_u&}TaO6M<>u|(8DG&5CJah`kM@r-HSlyl|#TNde6TU%czS6R7vEd=6? z1L)`ahwrPb_dd0`o0HwY?|PW2+Q>lRKq!v#aB`8d4K+Ibn~baR$9Ay%p;c48aZmJi zz(uQHdgi;ht@tS4m)|0tZ{y6}bickl*`@33jYJ6Mcd8PW8)N~B-8f-6A+D5U3JNY5&c1Gz`EZ5^>$XlrrAGMGJ?t#s2fF>*rFycwSR z18y=ICddKNDrgk71?FU=Jqx5TOE?R*EC65cMpTo=XOYUJ3rhr(>Jf%6n%)_os?Da8 zO5SMO=A9C#6%Y^*Ni=YRs`&a|QWRCs!w(|?>y_ltILhsX)FP!&lg|t>m>$csN4B}o zB*`NLPLxiYX=5_+U6BK?tDrm7)|iJHv^|7TR+f~M=tjj|L_Va8rl+wHHS4oIm?RaI3Nz^`nUM%lX4tZkj|BCn&dxWLLrI}lO_ z{?B7?*yg?$Cyx*UkFBSTnZUP04!Bl92dJI?J@z@6t3?Fct}hKCZdMQ%fY|N$rYSHf zwhv_RacC9Q$)NV(ehpS5Ih|*Nxhl?W0AG0z?gQ_`$RQ)(R<3%^(QB0$oYqwz!+~+x z-fooG4)giWXJdZgC=S*-%9@+Z75mRiv58@pdfU2x`$}XeVA3Zs zC@#_SMpboCE!~!ci7uK%nAwOB_Olk{nl&kosF&6QSB9i%5 zUuEXDKj+j&dDpiri5Qa7Qbb`OoF)=<{<0_|z^`(%M)YP4<R*nEW z!U`p7Mgt`kgwYPn{kzh$l$9<^9g%}XM^ipxA(58i5t`gKp~F3$gWz=}U-6ZZ@`tn` zJ(uc>HhAWAqAk2&@>Ym{2aT#^p*;!bX5ghSohq$Oy@!NU^PtleqDYnWPfKC0$Qx z+B%r&Yo7x%_bJAG`jgrBGTh!vbyHiso9izE)S8oDVLPv|?BuabsULdn)GSZ|(Qe9&b7G z*<305t}XnsqY^V+?ys%kj`i19=fc$Q+co^kK0< zeMJ*MIa5}*XQ1EGs2T>wkTL1BFE44$k>H z$E8xd6!}z(#FgGe?Y}-P?$Cx-%1TX?0rV|gkNHv;#q<9Af-2yV4)Kk8frHHtybneB zsDaS!A!8t2SNP5UybliGeE_|U@jj?+;l8MPu&sRmXI|p}|LOnxD}aurkocdw0RQ*D z{r?-^_~liyG9HACYQoi03I8PBB0`q}KUgaLYYYIZaV!H!9SeCqc^CH;=0hnCB2C)r zu}t+P=P?L^qUx4Dx%g&l7z}Ase3_`$vK0t;O5Go@u_0Yv%Ts*L08T#-oMaFf*+89{ znVFh7*J}ZUdkl2G_mN}7hM40xZBN#hG%BFvnG7GUV?#rk1Qi?jX^5}YyJrX@!s6B; z0XHrAX=Q4Ze4)1@4oaCBzu$yZ+^u)R1|&$~e%Dz`+Dp!2{2I8*Kd?TvE}E^qafOEZ0B1f8P>h?b0_-J#f3$ni#H%K zXt3IY)#IS_9VoM)gvCXQA1tJR4=r$^S!?KyAgPbWd^ztHmo#`9I)blPVvw3w_a-DD zP!|@x?Yre^^zP$|(Yh~9q+Go(86@B?04oa~?P1X4#hzvDOuokO2)@jcyu73*Y~LU8 zfZ}n?7=UpEBG4iF18ZpCr>L(WMKQ1JqX~g5N4LB%%pBC_pLFU-^7PHvNgetEWQJ5J zf%CS4S0nI$uXsl*qLw7a&PDFrYO;O*{5hRz05(F!)^?i{wk^-ptc`lZeC^--rr6g2 z)doIDg&$0uNjN$-)_*8bdTpZP4pt@_kbsQLivjm48EyfcVqa(dZnB3VanaB`74e&J z<*67qvIAH;lnZp4>2iwF8TOdW%k#;&8ej%4iVUza8?swv@UZ{^P3N=l1;2B{=38c( zaHVFVb!9HDKHdi`2WR!(i&v;Azi^3r#GyP};$QRg*$~UN>_I62%6Rxr;OwL$X;2|7 zn$-=`<(Ac5yF7K#U#)(2U<(Kp;U$|=Z0jzt?KP&$l4~&v9wP&nh1Nir#^!Y?`0A2F z-+PcQZe15UrIP+Km*uHfj|FBO)8;0KJng8XJN3O2UmrYU{8F-aLO;Nq2rhI0+y z>Rl)ah~@kzD=i1Pp+;aUg9q2ni@<#ebpfjM1^@^`#)&-z_vyhD#3N;Ew{ zHT#1}522e*6dRP(6RVH6zySJ#+SOmbb_JlE^K>|)+EoxjA4sOVp<()_C%9O%!F*{6 zq||4lnZ=wI$1lrFr4 zAhhke;OP{oOBmLqO|R;f#5+mMN3l*|#&&vnHAfF=0jw}2@8o%1iFW})Iyb`(KeUZw zZ+k)>og~~Kl80#<`Yk|raBtB$06>+#lpkFHr#e*evMnswT+F)TEO6Y z30Vpv%G!4VUT_2h)Y{gTcF#=`woTNLL=tK4J3Bi&Pxa0VoR1;b*%$<%sW`+TP7aMb z9Mi;^;uXVQW=dU#y!w;ZNG}1%gb{q#u;NP;Unfna9Z-#nw{KvYh0zp2{I5rlPZ{ss>}Jssz@i&~=DL65r5k`PuYgOjcS5N(8q z1eVe~+w;ilp@--qcx{COYJMP1)Y*DIIX*uAHQehw?)+B*m;N`bVnk8VR`*=zzQ;wF zOKF?ytQk`}-0LjssZ{v!)-QAcBIEn2D*1$~Dqzj{{?a=SfFqj*5(GHLlY^FnezI zBU3_@>z_!b$AjpQGYKt}L#F$;2T=c-aVjXsrQda*gUA**n`BV2VM??r{5Z$&s~_i` zTUCuEu+-GlEVvQ4=P*813KH1!!lS7lo_&>%;Hy3$WRa|;0>aiG&E`h4Dy!$d?E49 z$OW4q2bJEF*qxK~K6Z&RF>K?itUU?jvxq|EdSwE_pigG!bg1s25Y$yMqfbO})*>m& z_3^L3W+srIr>C@_Jr7BiUM#9Mh5<}m0i4wijsPA`=VzK(*FwZ~L4Lld3d$Qp#CB;y z6pv430+irUqx&wgurSFytuYkZo!ijRz^(3-ItD%K-0#@&oU3J~wFcj{?J9TpVVb%|cGzBC}Jo5iqH+OxQzePlSyPo$a#IKCCW|1k|fFB@nZxu`R_H-8GdH|;Z zxP4U6>W-wh@Pt#J7FnQG*PeYHau;;*FKj#NcK%x(wRC8FyypztUMksS3DHsga`F_2 zja8!cd#ynsfzwu*HbHY_y;jGa^qGiN&HXl@IJjV3SV}L4~0`6+sW`j1so98$d@qOES zweUi3`&Xr9D8gRhOb#5>a-c(%&c0z7r|t$5w!m7|5*>TNwyR9%zJ0?8f%g0ZfYm%{ zYFqN~O^7t{4P2ynkg_E5U^gneq{J?8&GVXbJzDYV z-qk7aPcy3lep0Yc2@jYXq=LGm<37mGtkrm?!LlW~YnLQykH8scfu`c>x_?^pd;uqml*^=f_rT;KnFpUKP{77AeN_4R+7r8HZ(9?QGcR=LvkT{M`4v<5M9uD&sl67B)P-+y6KgD zrRG1uuiQVjt5Vsy#)(v%d;pnz=tIGK>&1%>f2}86uOF|wfK=Q{!%i9?gck7kYUUp9 zCb~>V(TWqll+p& zOpbCzz^~D8;CuR%P2`4sZo9mfLIIZQ`nmcS5Cf3Hn`9Zv)zy_zoKR`X?XwF%e|viQ z>x`DiHy$J%u> zs5l!6>uGDd55L+3=~#MZ&vKnDrS%BvQ{d2}n1@iPC!_Crauwj!$LG&Evqqm_9UE!@ zUoj9)o8%p}WFR^8BxB8xJHJ=YJ074n2@e454L!@f7A&46oUjW4-2p``nY<5 z^SjqQ4>t!m^3`gjS3Ku}^VRgKEeA6uimRKa{{#W7@Al(yZT59%cm|MF{SkUTh2dXWR?QgEx@>Spu72Q-nqa~xIQ4cNe=4UMErWRUJsOCI5;MX z>Xp7Fn;8oYJ1kIpSDLlH*+%zJ)_1g^3P`~rioZz@*wlls3zR;KI; zsg!h@0tDP%X359vXi$^nIZRL7p!9#fv94MO?AjU9?_oz$FY_r-&&seeNDLziBd?wo zO{X=$w*hKWgLxb70>G*Lk@*}Ih~?{2PY@L_S>+?-&B`Z(z05wl0*jg~h1u^+fsAQx zS3`G0pz7==9^_P1R1^S`wi4XWHbS%#c+GQF{*dM7wB2iL-S5B-rkO;Ds-ipybUdCgNBDyFYqjYwp={JDGLZ;w&ga(CiN zOG;Dr$%%+|L+ zH7oEhP=WEwKnYedwX^P-L1bzkXtyv=DE4F-aHuG>9D(pZ%@Sk<5VcAvh07+^`o-1J z3Jv0dXCjd0LK|_+BI$@Z7XvY-G~=!qFNrzSVs3PuWL>`tN|vB7i?r`e;2Q2evw_68 zm2A!}H2^et@ugah*$v1;`dHWvNRr30J|r2K>Hj8RV!-w3oB#Q5nJ94I@4tU78g}y^ zz#aVW@?(%{cvS}^$ige5*1qgCYUwj@C0tc4l)*1aowy(n(rBOm`G^1g_x~^ckh#H2 zTDQ{N@`oo}$QB*`o2*J=&!c=(C0-MsQ)Tt5UwF+P<>!1Nxg&$?BaiBa@5H*mLd1ujiJD};fjNP3d zSIy6i^R_rP?E@ld`Ndmh3DJJC?qLCFe1$~`;ssptsk+JNE{rU8td=bO($&_(Um%_S zwoHehqE{}$Uh(XW#q%31t)X^0d3Dag5n50^-W$7j61Oxe&WdR+^xd|@z-aiztfQx0_ZuWazFfn~T z<^*04$>3hRiS@7)yhFir5GAPRywu2y*6q#^pH$ZfyG+sgJ@WaB@%Ml%hD^rHIK3dt z`)GuM#Mhmq+$e=-+p~_YolT2#KAA;AiUWgWsi*pWlsFwc=LAi#38cIh@)i3ycyrCG zbALpz_^1EqH*obYzgV89+Qn)jkZ!$8&)(okE!(1DCxsnEh7P3ve^hPczQEr)&x^QZ zg`!c_Qz(W^3)S0s-D$4WwQ*`G!2ZqQ3`5$|QDg&Z0kYt%niF$O&R* z&^?tpkeK*4Btmz}f4r|EASzjn)7`6_y(e6ARKK4#SfS6_Ut8H*{F~S1D^0FYhUfQv zPn6E`X?ERa9k;Kct9gaT5JH|t%miq8U>UIjFW^z7oWs8eEP5V19S!yR{qHXGu}jaU zHw|A{*NB+zJaRpw@FYr%1#AET*nkZ43Bw6kz>l57dq@kF+f1bb2dt$}o;;}l#)RE; zdl3fl>3F=rkAFrRkK>y{byzqleMYJa#jid36PrkUC>c1*A-X$iNbhZ`%z+)F0xqjl zoSGb+f%jtUnLD9kMNA9tOkI=7wGxOu_-5;L*Ja$5Rqz<5s*&pHegx1%~?HZf+XdzS_9>?=i+56^@3e_pWH*(&cy?D$tH)ASN7a_LBP`1B>xu z*`4QLZ!y@&<3_Ko$MH;w#XRUb@#VP5D^7=xe1g!XU({@sI2y+F4o zTXbSw!hSX3YbUf40&nO#+jM7~+ek}-@5OeP(cbsS{(NMEzB75M#YvC*tbXy`P}`5y z$CVoedud(D4bUe7HmBQ_=N^Y7=N#y_hp? z$WzcxYH=)l^VXR}E{(;>&@E}dEgU*euU%7mx?`&%^bLjqL!aZbMU5*w0JEukj$@Qh zxPJA55`F)Rr0{3LbDcTzEK$0oslutavJ;tv(#sQKqsdH;g9Aq5E$L{yYmdy-dfDYF z8+jZfw%6Jxs-3W%b|*i(u3bkAYUbs0?9S%3Z;&l&y2V7*-Ic}MlU2!ww3YOeKLUgN z2ZDrm9Uf&UbUz-rxm&HDMMLRDro`16YzUo#J?j+T{2)<#@=)4m3&*b#%{(!Q{Fx+e zwmRb9-VxckeG5R|)S186DDAXbptho#*MfRPGrht}h?sSu2uv;_W^kovXOUCl^v9iR^fH~_ zd0$K0iKf@xzD#uA-nP%u>Z8PaVPw?|=h9~}UoVB%!Wu{3+?djc)0n~esO?z~I%D1^ zfLTT09QX^6!jL~1U9X>tIS(T)u`ocH<)2n$q$@Xe(0?VzX+?SBe+8p zWn>@K$v=Tgg*GNbWo6kv2_pD+e@xmt%tw6% zg+1qV%=pJV3SR!tywHji8ewF`zf-?AUe)ma+B1{6x6t#VdQ|R0t8cQ&PN(BwCDY$o1X026xEzb&$#u{(2=6G_0T*(o4dqpYzuqX z!s=- zTD!NTY(nj?7iQ~*zfYw)hZ3Y@;hc6-nONA~FV$5a{Kfw})OOXP%*-wmb-7w463S=zs0GQP0sm zG*rvG`i8RDx#-Ww@^6eG8gGmG;Jz%6z~gr1Nmkf@Tyk@l zQLr#jm$!k#$?S-1U{3O8v{{lkS08LJ&l0LcmT9?_)kd&tA(v*1O7*0kAUeaR!t_r^ zs2^I)VIT82g%YG@rTrpLo$7d_k=L{9;O5O>|8que-Xsea2tIakXj9PczaZY~1SvJE zs}pZe>-gCFoh7=Hj}ul*mmaxApZb}iZL)Mk*r7S~mu%Qm$NL`p5!>7|vv=IKpUtiD zaa!fC7Gx9kSw$=hA4g%;R$4Agk4@@>A(+FDh?=OnmWkI?!pn-P8_dHSMfqW%3=?I$ zLmd>WTAvIW#`knJe5bl-vBx5~;X@ZH=&VtNc;6{nE+D9R?%DoZjH-hbTTG`hxFztU zfC#Qx@tbY$n6RU@<(^!okn5;cefr0kdD9p25fhyGxy+)AZI0X>rkn8fEDF*$W z0F5NeeSxOz#5pf*T940>S zg%c5sbcE#SAW1cvkln^cGU01Ci3aOI3}uy5#TeEl{h!w3#; zcN!UNHRogS0hKrPT$jUM?x9`FP&1|%B?I#gkS`Nt7&9b`dOJhBQaP+KRQ9G(Le=s% zkLjfHV9k$XM$q@_U>Kc$Cor}&(D3HM2^Dv$@pBc#6EQ_G;xuWF?-#edg_EV3(@z6n zUu6w6C2)*-$LbUL!%dENVu9c{Sv%4y=@p<;K2KXXw7f80%_^GuBRPJGdAw6n#&^oO zSR{@*MDQ*>geE3_yX&az0gIu| z+zXA%T3vU`X76>(SyfaR6e78bJrA@CaA<8~cDCO03R}A8S|MuTB9G=vII(II1RZfi z$A>hpACzhT_@g|o)Id7=g2P4aV_-Jd7-tG^+=SozLzz-ovaG=?8tp;6{@xoTGO#C~ zg~e+;moUp=Gl&Ij}PRkVK&c*pEN6=06V;3Jn*!cGGpi?M^ zI4OeN+-m*c*jmDjpK1$t++MV8Oa?47l@~uOP<53!v9>cwOJxo&-{(nN20 za!r%c%;dG@`>B1m6t<$ZQeA)jzdCE5K4YB_G+iyQKg1p)BU$aYc+6EElgL3nI?QYI z<=C`O2!*9hzX@2Dppj|C;?BcyiCdaj%HcR7S=Cc3uYzmyM4!da$B7#}_3DMq_5o7Z z3!6(@Q|04F4{?X?5R|=o9dv&a73-ass%Tg?cIs&bK~F@TuMVZ&!^h(m{Lk^ z`B}co5_bOwRs<~z;xqr|`dD&LUWQ8UF31_iRquGA_64{bjcbz%O?l`vrrzC;_{v zuBtjE#QM5?;ITKZNFif_^qyVGgLh6`F&{sYCAy}rz4@!WvsZMia~1SdG)k0cai8uw z0YXgTFl!Rum@k_X(ugy6cd)%aafR1gICCjtKrxw|p5q|Ip~846r9b^Y4`Zv#u%)YD zJb^e;ZZ|fTiEcRM{eDG%G{V<{<#nI&ILmGoY&k0pkYuruHs zd?fp9zb0OuMv~=CUX+qP)WYkTP~E;4C5*q7CG4D#>Ip2n=dy-7zdpqdn4{V9@~qgJ&1qe8aQNomJq?T>dV z?nhhLe$g%DFJBvu4#E>IB30z2It5cTc9`!a`|S8WE85Hq$|nCJ^t)}1ZC+jtv|Y@0 zhV6NGUeOLdTBpU+G^bI~K$|NL6WgLCs>>r(zaW{7!sEfG1=9{HUMLo?noNdR1q2ZxT29xnr z#^jLFEcageMoQon%9>keH_^54S$x*zn_A@MOsz@*ldxpKDw{7fCIYOaqqm0^nXWf^qmJbzh=h{7A|(A44lrF z$98h8UA+E!AH=pVd{Mxms$|)kHj(N$3ly8U`RQX9Sq1K2!UTwnrLT@{B)*B=(g)aQ z+>5qM7yjt3b*J1`m`<#>E`9M#_*KfsXtc$OVUs@E4|Q4U!~^&ypo5r5ojqe{LSlhn z+j?>={%{&)<9F4Vm63n?feqET;#5=*AOwyqb~jlxI+BL9h?Y_(e-RxX8~?Uoi5*e< z3&PGg$ZG4Ks=qPFipG0=Ma6IYG|YWklf0oPJpX+N+n;UYkQH(WVUZ>*WW;PCEy`nV z{;Q$9SMS>rASAKfW0n0R#~Sr*{8I(DPuUyg)D`yGd6e`H2sTztl#T4 zO;|G;d%d?c>jN4FpYjV7@D9wQgeU)4fPT?;V@Yd(2=&dLNJrV1529AoFx~cI_84mI^4~W^z*NX&AFORoo zdK>c2dRqUW0tg!5KMR{ea&8I6 zmcKc5AtvcR)_Vq^0OoJiq! z<`E2XPn%zIfVvai*!_CV)RFd7=mJtG9CEW6B1vNcT#E% zghkIE>f4!Iw&LvMfE64O`rU;0@kSL>ka9SlA+ct?`dxa0RJ3-Vh zX{rTfNVJ(klxh%#oMjVG<3IW5N_XB0j1kkFdH-{;xG^fuhi(tjXGJ)YmyTpLe6nS> zc-WK>pxgMmmnfvF}gFLn=Vl6nKp_YdFA6A*f}+<3Fsbm7dd_YzMx^h@?Mu9vA5*H+H0y&@0MDJ zSpV7G-0x!aH+>+Ln}r7i;lJ-i1LUz5yy-`;{(5iPnh`^6oW`FAO=i?ZV{)Szi|;`0 zpeX6?AT{6aL&-hU`<|FH`VN7YuvTjU0=B@xETwqxo|S{2B?Izxo9p3GsiSZ_Ap2C! ziLaWeP_=GSCRF`dd{>?qd8WfVSMc5BR6_DH)-0V-ofCidp{?%Di{i6gx{vXe$!J8VMFf5-W#4q5^lvq z{7Oxq#<7HwQ-c*l^4mLW^c@|(<#reR+;#i0L7;op<9f=63$A&@Uiin++;5fi3v^SY z<0#JM1t$FB=TyezCI6Y80>rtt+4i)l%h~X0C8>vGim&ElfKJ>{{!KgG_ru_Ym(tYO zD-eOa@56H{1$m9z9!HnD5!MV>pExWQ?8awxceUtZN!999<8m~G@4O!-8XuAfA~ln9 zcb4#$v$@#qOX+PrmmDW@t4{&^a#{A?km)5#bnwjL`_)@V){U-kBSuo9wU>2!90jAwByysf9@*c&fs_3p7|@H48< ziyGH_?ElwEP7d5YU-d0Qa&2h|0r_Cl&?c!e?N69ltf<+zpv`G#e(krmM?FYV$z9pn zEDLsuY`42PDfd?+b9R=Htfe97ITl_%{imK|9ZZXnO*v3_ZWV{T^$#xWF7iZ#wW}Q4 zCnUTPo+iv6W$&XA$G(7NUPzbCgYG;$+>8b7aX+TDyrypU*lv~)lyPQgHRzXMr`pcH zlYV42cycK+GZ@ksgfacG5}SCdrXDx}^RT4pyxk%7%5RKvP1Z$GV`0~=lGfo&?K!;m zT`Q%@MA%QMi&UtvDye@Qau(-i3Hb|^=64=IFIM@y@PMHcpE3lU2N)Q#OY?WMIM;4s z`x39Yv$(Knn-65DsR;b(rX2ur1j)bL!-4sBqchK%fZU$<5tp7d2ztXCG(0+4Ck+R9 zHtbyart~Ix z{#hmuoccUb<66kMr~tLeATSea#$1qm8UX#S*dG&GemjBvNXwO7QMV;g(5y#^O$ z^GX=!N3uP0_|2JmXL7=1JFzRoeJJ(xiSOm6%RUd7GO2Emv^b>dCR2eAr+qZ-8ja&L zD&cYW-ek2K^>aL_bqhKWGS=)2c$r`Ym=U5=1-xr%(tgq9e)Y0>>vc0UR3PwW*wa8d z`s85V1|LqUQCwK?9Rg3$N=Z2{Pb`W-C|{P)hl%8&O;+qCd@#Ylue1n$lHuuVy%Opo zu^tQnh#{V#Ih$ll445n(NpZ)&t{=!A{nKoLW*uIF7k4qPEDYwxYR zUg?!IY_#>+QNoa$-^-1^*_RFXE34Pz>o1HE&V5^UCEON#1ajLbZwnA!Mra7n3DC&d zZ*zC1*zYOK4l0}=1FKVSa<|_HUR-_|cO_&C&pC9hKZ5iiUtc3%F~pbCE}xE`cP3xO zL{=8x#QoUXL`=r8Ix{56F1$0g=}ZCL%>wz<9~f=*7V}^zs+E!-)b@9}>!QEwA&$dQcib6dk?gZm)nmBtJmGN83<}ASefZ5QG08uwJEZ9MPIN z@9%qP+`ZoShlar?`1(ppe}lSDor~Q@88b`GgWk2h-HS)fSZj6U>cA|$RGCi*)fccr$|k z6L5!~B;#u@yuO}AS<1PO`2A}7m&`PDc{c2Kcha9Ry*`epwln%z9*C{NUES*8@ajyg zCdh20X-@l?Z~hFY?WcQ0QCu~8T~$-H7)_1f%;s0(Gl1MV5C`=QC-GRa$p^(_h>o*; z)CayxyVcm9Z#PTRB(Ol$r9|gdZ}2Si+f)0iL6C)AuspP_pKJ~Qa_aOfWpj?$?Y4}_ zf~lwe(f&Zpz2zg3w2|18i`gWSn7Nq^BZj-NPs}M(o5gGS-pfm}b3}FW740amUe?xb z{-O4$F8qpkLso)Uir=)-DdWxl6P7Sqj$lriH>D4&-3aXT-y?@{NJyQ5>z})?C|O= zoO`Ne)cNq8?$Z-_?0X&_78rQaw80asjq2;7Qo25P?Qnrq3o-Q>^-K>2+%EryNLLjX zZ~;fP_#}aExw2DqeEY=(ht9;clQ0_OH;LxE#6>iX*RAsy7Bnui;Qi_3U%#HcQc_al zVjN(dRbh(%@({&XAyAV|NQ;3Vi1x}AG2e;Z1exe#Pb5br0J0t1)gl zIR2|IH%o;!ipin^-xiM*C8shh^fx!#fY%qPo0F?cLNM_}og0j-E!R1;ce?QQ=~&8F zbr<0eXyE{>x2nfl|E40r@56rw`%fMbfc-`}zt?=P)7AU?qT4=%P;&Z0Ui$g+A=$EZ z3)g+ID;}sWaM$XcOlkLrbR4A#FSweMr6|lW)cK*S6RZ))#y39;;SYwyOu^=aq{0Sm zbI(AE6cZwUt^m365aBgq3L*LEqiJ?m1}cRfy{Gt1V~_e5ie<+h zk!W)kWb=`C5qSo9LrG>9-f#ll&{J)PHsG}n8eR!n>x;4VwQckK~PLOLKB9?g)aA^L zttX){?IFqZ;|BVXFk0bMJy1I*4d^0Xaj2#5939=bPs(9y|4ueYzU1@z>U#ye2E_VM z{sZA@co^xSD5q_|zT#GrYUSe27mx;*Ra6!_VEKakg^dm&^zFF7$=tH$_0n>IeTXnn z#I0j8>ItCe`kvRqg`&G8q=})lJoBslg4c;USa{8k!@6>r!0Oo-cI*znHObzz`xrx$ z*)AEh*u3lTZ|HS)W%w1f%fu9_6I+I&4ZzK9>L@??_ z%iUzCOTo7)m&fiEo1~gnU2ha!ycSe1j|jX^DrCT4i)zgORSnYZ*>85cQd>tcY3g^B z^X_uXAIYm_Z~yI>nk{9XMNaigsQY1t+++I(rAt3ReziA=c8g)n+)?>=7qI7Kg!&+ z0~&~doLAT^ALm^d?6@SY4mff@Zm90;DWfj6>yqVr!ttAaFksk)kHrhb5LcF4VoLq>V0!l+<5oj;Fswe?t|1q&a=@M)$DRF2a3+v-+X;O zUpsj!p+3E2{g92ip@%}-Q<6BbPbG49!6yIh&r_BOLV@~JP_;z-q@D36NFWX{pOkku z`|Dw;fP)qZ;h$#dlRbC#!Zov70k%+VbN3w{nw-*ByiU2&eT7Vl|6F5!8m`WUOr__kvgYtRAS_uN&LjcmN1zc{JeLroAx5U@867S51u7OcJCN!g?B@>-t(i6Lvd44T5Dk_|dc@+CGPef4W}*)I&@S zSAEJ#Z|r#zD(Po+ia%e@iwI;s%ruZN*e8kLZAEZI1C?JKa(2!y?j_T z@j*e8*826Q^&d!dbqOvUo_n*DEM9Z6Guv6iBdxrik%F)3`bG)$A??2h+(0E`yZM+^ z18~?gKf|5wZe7$p<^{>amh#mnD1B~cVUV5(KaOf5N+QULgRiP+sCtX~h79jcJ03Tu zv~%P>*S=790r7^xXnfD+{dcA2yIqoJWk9ow5}QfkLS&<(qYhT(5Te z7+CxH9F8NJh)l|MEuZ@bVT$JX+p!JQyucmV6H60h^lRdmeW~ZI^3h{#Qcz#G#ZVGx zD^&KgWU}gkGhR?2i6Ehz%VPimnt~LJ(ou>);O3~DFJM{HtkJ|SrIM4N5~xy($=^=; zjAHf?r?Le}{a1F!0aUePRBOLHIVCJJ_nO0c9p{U**zd_7V*O0k3=)!BF3XZ!f=#jV z8?_tH0dxu*DD*`m-b2K8~`opZtj9LQoosIx_fnud3>BCgI9e4hMMWYJU} zftV;8knQfI5z5uHPcPQCQ*aSiK9sl#FG9UnJJKw?6g8Y>v20`m0I&+kbUC&iNH+${Z!00kEAjJTiTE$f}?7jwJt zfj$R}9`5?Q@oV)v(wQSv=(RK8XzzSD+vyqQFMHGRfoNhpZpV1rf(gVYu>(wdlciX$ zko>Y}v}OKoNnLB}16xlHiwIwy=G1~{zxQ1t;3Ap1iYm6QI1&_2wrnK`%&ya2Eb{;9 z%AB7CkwzEdySPS))Ow;E->d5MhLucZgN(>k2UCYF`o0`LyAum{n>D#l?2qMwrFkm( z{}lI?QBkPfzbFCZ(Tmtpov_Su=-p!`Y&wawZ?gbKK_g5^lWtJ zqfn?i!_mQhkicjBhJg%4NU(n%w{t^rJCK?zBfuSgJ_hi}wF^H%SgXH;q=8zV{rAVb zr+a%3ma3@du=F@>n^Cz%=)3)3GI&K7FT2}eV@7SRphgh)&96=+>^@FSL_@rX{^|4e)MEArZH7U z9;XcM|F}lRZJ^mvy{D%{$8!mAO2O}G#!|r4Ir&%t7?D@SYPaDUz6WgwfUY$@{9zXo zPpodRli%dH4OtJ`p4AmBC<11Ba1;%lk0`p+Ng%RzN)IBM>d(!#*vPM4d~i%#xg~3_ zzX5co7hs~vU2od){?eQ(E`RCxhSa=9xJk#3?ZgOy@Y>FGs$=QK=aIMpcZb;(dqgvEMi{?+TbWpG$Jw=T)f>R%d#&_>Ir9jToi6 zmyRIW5B`e zlq6QbiyMo6B|nVGyUB?#M13djKC^x?LoYEd40Hl}<{92DYGz?L$?Cr4YFR?T>gxbc zMH4bs(qK4KOT!q5D(M1^7CxMDbHAwTD5S=Qr-k||q_v-8<_++j%{Vd}Lh~B4d8SP2 z9t+M;knL82z>kgJ!1@W4xJl&)DG1qqv~aMgL#L7wwE}rKXOh9f$R}`4I2XZ-9-!m0 z3#+V`>e6Gg?b9(CjVj+SYInQ}wyxWZ;tT+CA+QJo%+N95F_Xsdy9v&Qt~~bQH^_5W ztx7)wZ%d(sp#VVBBB-y(Q{rjtLJ2%3F%N-JnUkYkN)7Y5(R_!>opsOaryVa>PN5sW zCZzRl+z+`Ab3ru>z=^Vou5|G_su;Y>b}Jg6%8m8b%K4u5eV*slQCYT)Unl^P`5pj- z*Jll`qCWrYguCp!R~fDSoaeC=V8-pZpaZ4W1>A6ACD`~ecXI!Oor>wZB(z&LanM8n z>YaTslpbeSmT%wZJ=4#`NXaydbt7c}=d}n2G^|la$WGq8fPjQxZ+1y-aN8jFuPQ~+ z19hA_`Px<7-0bs;6WF~=2a&!nrN8^oA_udFMR)lIL~vPGH-N|l5!3I-Z(b7PvT1ei z4>r4wav}0ZrHp1}0+fp-$A3-(Y8YVl^8)~H5f}bTaMwKYObz8QSA7%YanI)xD^)=( zynVa#RA<^rAdt@Btq!agC`>gm6GK!r4}fYadn-Og6S;i6)EUM{E^Y>Pp_sv`p}<28 z$jM>2w&g4tRe@KouhRW-^=WijBkW^;`hBBUs&h(5<8!a9mHn%L6ZkTD$;+M?A%#11J>mD+O0LjUWYeXYu{T4qXXhZi9G;^7+!vQk5HDH9aGTfV8izz3m; z5v^>E<(kzI*o8#FeN9F_HZT5id~XfZ_bTyzVg9A_tHf~LrpNu8gG|v6yeGniRdIEC zvZLe)HVbY$A~Klthcv_N?`RGA$Idkm59q3B;?9rDssN#)k@-$pLo#JA#Q1dp8PD^> zH(vbqzi)%lb3qN}Uv9zAG@fw}-R8`qU->G`hS8tZ4qxVPYoNOY!nONE2FiwOf?9%_ zOWHi-YB;Y zzoy|*@x#5@xV0Yxys41}l!Iyv02=$T?`RyjuQIU!^+|k`cn>7`TGF|148a3!2?4Sn zhh=?Gle3h`#@GfD)4=aupfQl13SU6Ve4ySqmwO$ZD|pa|No@jQcl7~vM-3*{?Gpf& zerP_vVvwG;wTH&s*+P}LbEYT=1F|c<0!qN_Km`bB$$?Jsh=cDwiF1Ki8Dvs~D~JoL zNS~jVUt2>5T2cG1yRZCsxcN2h?qesuJOEKOe#f~ND=4^3L?}xpCOf1jM+HvK`vwH` zo3s8|eMqUOp2LZ{+(c7=1ChE@ff+Mfo2SJ*_DxT&Pgcl-f}`i>u+h&`l5Ev~=a93( zun^2E*c_)H-obFRTqYO%;$T$iEqR>jNjB~i`1_mP^UmwK72lIAetBm&OD)R+VF&Ir z_lf^;)56#(8AcFfCs54y;=U%(*IzS1F_y2PHYab<&YFeMrUn8NWxW5*0)vi#NqWT~ z93-0_YE&T-QhH-LDBIkx>7Q(HFOb}bIoM+S#%awNBi544fJI3ilSa{AEioANcY9(s z%D?+Ay%O9Hlbw8MbQrj^(l((tsNx6w?Fx5OygnKyN!*RQvh1#xsVpCAd7N%Qe9#(0 z&OFxL-M8^i@zIOU_8z}m92iY%@z?Mf2=MIJ}`K;ZSFaJC-=dUBNRQY;aHWx+hQ<@TMYoEobJBX`itczdIKAT>i4WX+)e*8zcX}OwL!$li68;*P zr%YvhqSg1r|4+9vy?-3l3EXrT#j{)YXB#4xe(Bxnco0iME(H^_AVjNa`pbxF4NU|H z^LVwpxXEOI@Rz%DSVD!({i}mLs#65oExzU+3xzL1%-YV3^QDQMS$udM-M~C2k2P5H zrl&s=1V+_eI`gYTAFB+O1fj93o_@!jsOEPE+_bwbP$J}Mq;^dZL(zCZrz<2$Cj2G8isCRSa+osK^-{GF^WrA%CZqKTV>svL7WxUD2U@!AjG9BvOe9!<8;X8)O?hWQL-d$W%&Ajdkche^ z07DpkNrYI&va<73_0aj^Ry5jE-4`H}G4(cdN z-5#M{>)3wSs><;N7Eqge-QEbm!GYQW^HP_C@7KN75^2%y(u#oD3k{1yeIXHcU#_!GWpIK5KF)SM+$lvr5u5M*oK|X$LZXz>jXI)!q@!=}k#kQ4g0g!AJxwcwqCHqjao zYrG-d8ouI#N18EBo?rZ`1uc~~j4S8rz-}+5LOL2AM=WH{xOePmE9z>4m?ImbmNj@p z9b#Age)Rr!5~A*83_BVj?LL4JjMl6{5moNh*U$tArH8T%x=q-S;l{&jJfJ8dElBYl zCjlkfi~Cs~exX>*Y=qbmhP;U%bF<%o??XH(5iA~mD}vjT@x>iePfWw5*fDNXZrFF{$5Z(g z<{Yc@cqd4VN4sQr=rp({=JD9M{ri!ZOaNQxL8m^X^ef|+K!j|C_jwRL<}i%vY^Us! z*39d-@^=iKDK>DS5xqD6US?)Peffs148dGsMJqhLFEb%w70YMGSI#${l8mzL{d15~u8dO!wcG zmL_)$B5r2g0?63lV0RE?*SEnsS+<1fF<|Bk!9tWwbje+C6=E2n?2wX`x6!L=`+O z5>b7zw)i2ky=7-fvCAKKxqVsuLRUnEj=9{Te1hy}d^*ikRN`<{+-NfY9uybHeeDCT z98VG;3)*tuKWCKsux^-y7Q>J#iwQ1l?RpD6u|)aymCyDv%K&FUHdR;%x&mbB3Ow5* z&X?#8_hFiS{D7U>7GYfF*X!sC91$~Y4I7;#Z3`cPT8&dkbUNa7Co_>uCFUv!A8^dN zbgg%A^q;{6GR=4+51|fFj`-9?noR^$2!eNWTQ{iY6YXYQ1W0G{-hUxg9WD(E)gqDb z+9tT#a_3$pgNIhwueQ>l37o5C@>C3gxtdV;Nvp2|j_gp5)?8o7esn>Of^UePzr4@p z$-YY;CjhH!zSTV!&5SosEmQ>=oRO|Ey&ETa=LmH<7VRt6Xu^G=-$-o5@YAL}{Zc3! zzQHEQDE|(pZ1T-#GmnIbUaZ*LJUsLS=$BWjV)N#F)Xv82HDIILqOmIm^qxsbi0FdoKEZeN>dT!+WcsfC zbV_DcxXnF|o^1?78vXe=;ipsuR17%f*)V>x@%HRX6FUoO+fZlGzfN1yYB?BLSAjIf zoZREyUyt_v6K0*6)iD*byWK;#`CI25?)`)Td_iCJxhwUBxS_e-AK-J=bfxffmPkFv zF>ME6sSCJY)w*k3c=GlwX4hx5Bf- ztB2d!4%jFI^`_!*oa&1yT`OY>#Hab*OkmN6efNg1XOiC-#8=$`^T4M0pZ{=Y@Qv=y z687ne@C_|FQNP+h57E1&-VRu=@GVd_17(+(ZNw~QAqZdQJh7z>`RPnlx)R%i&5}Rw{6vQULeq=bI}`tn@ZZHIo4p;l8|*=-pzWszrt6P)jW zt@?dZKyz)yZ~`x`!~ffh#Scc#pU2Z;@Bac=eZXBV;vu&x1;awX1Z$ zdG%KL9I(Gg;glMjCiJT@;l?pW`?jNXop(D3nX&PRRvZhHHt~`g4Xo$cjz6Ro)7rW zG+8ORQTTnR#fDMk_}Oj`!}0zn19)5O!mVVsi|@zxaC#0qz+F$FocGg>y{2s%IOvAm zsis=^C0!}sXmg_H|A9X>()<{ey0nU7QVBdJ`*4O>;@&?%qJ>pB7myXJcY;+77TSxW z>pyEM;hw6~Yoe+o)@+)^u(e=N@clSzR@4U*&ysF*v#+Dg|C&VG6q-->LY2~2ilrdq zx;?-MB74$#X0F4WI`m^YhBwGpUr0GbqMk~@c!Fh~Nu13_;51~ULUY_K2sSY<4p>Nh zs;tPAXWu;rwW4b}pDL2^lkviyT&8vNKJUiIV2@D{p|YyxrBk%<2Ycu8A~gFTai%3`K5CQ3O}VI=o}8t#SL< zp_t%cop}SwqVzGnGmfrL5V5~mS?4@=Rbg$?2Q||fE*spuNS*v`HPj@dynhNo3lFtk zWFa*tVNreQ6ekZpU6Wn<_EMSl!5F`c49nnpB5Vmd%OP=Ed9^f@T`c1h1-d2#^r<`z z5fN4yE{yw1*xf6_udmK!Fz#X5%S^Z0Yl-lC8bsDNS?7uk$trinYZDteC73&z^96zg zpAU3r)E+{*To$p+I_>;b!-NqbATrFMVM{oY;LiGu&7_7qeA@V&AztjU5Yc#2t~|ji z(hn6Ea0#49MPYs@^0~^orNaa*!nI$$8P>R{Oqfb$uJN-};YAkP7T_`FzP)qQ-&T+% zE>iUS2h6$Jk1^jrc{KMz;9m4ishAC zO%*FHiLqo!Re-9l!yY-X2Pp+P73>**`Th47-N(N+_Mkr_Mkr%v`T3@w6l#RTVAXtQ zR~oMD30G4IpY4i_c*A$ugL-=k-3&Vw(-?|mF8J;)=99@*5^6aN%_?! zY=iqGcxAHd8Fw;!x7ylL^u-~2=HH;Oucl;(4I1_!?@{Lo*-{gm8(zo_T>g@T1Yay)ttbEkM!uFjh>AN;uh#(K}M5u&Xp>%z8F4Uu~2lxwh1VU zY>}2aA@rO}r)=cpn}+qCbx5V%Ykl!dxzN{BWh)7$>2p{HGD#spV`wSduNP?)xAYnj1h z2~u~YL<*s)_=6}QRfJb%G+svf@CU-N0U@6L0#f#t3{i(>lekhn^6~J2s;4lVQv_W{ zNBi53hw5;1*vB4}#W!fkAA<{$(-vI0P|$98T6ViHeYEviVeNf8D50U9Fl&pL?yvSG z6R*9|Q&a0B`NXXZ21G-P6Y8<=Wm!IR`mxe32_<-VaY=p2t`kb?xi#Pdw z$$6{P=3Vnd;q_`?Cn4q*_`!D{$!C)1FQHwb^xxQ?BcD zm!hp%^-g9q>58kx_b#xrb0kdLY=n635@>YP|EO)sqX zD=w!wdM!N7Yh&&ph1kjK-SA@sUDCE$DqXybE|(DVhkPbMmMwdq-yOv0VnxE>6eK5LN*i!kJX-DhFV987jKE%=h#;YlZ|I(o{?ZOqNXvJn8o=c9|=)*@)< zm#@WSqb`@^(E6VqY>lkk2aOvN6MjZ)QIbtl7U|u$i*1gAPCsghg4)K8iWUD(O$hh2 z3fK5KAtk3=T9|TQu&cV7Est4|_l$mtGr+=8NhFS=2;L|L=Ab~IUkdobVfg?wBj&A? zXHW=R6L8pe$VJ9x0*yhCLo1TmLy3F(OCQ1kC#tkQ-|0{7i;I8Gn4i%v%@ieTrMz|OInOzD;Lj8yIT zZ>_rp%OO@#LF~7K_ouH%)qaLvKXM83Q8a5W1cOlzTe0ID`V2jj#Hs29`!xevnS?Ya zkQyfNYdn_Sstx58=!OWe`U)_!Qzh$4UT>pxQYm{o9;PeDD)UA}KxK4ZQ*Nn?5N4Ca5Z>eK77jtsk>C7@ zWYR=~6aqpjjgekx;Xrm1Q+P&n&qk=&ZP_xuRF3L<#5)Ps?F(MqYsj$dhVULyiIv)w z(zc_0{f$^A_668>^CZrh&u)PyxteS&JgUh%>cRHQgH5fKqUi0NeC>IN{NIQmXohLv z@^!?IUS$Gk?^+9e4_j=Z?xebJ>AqM3MK4=|mga1EF{%%d8n0NfUcnzP9N*8h_TH~I z-Z@Lm(`kSC8B07XA~}QmLu-E*JG?KsU!qQNwNRzxaB!!b@8izcg!mzm^99^_t{BkZ z__5`zb-5K03)^b?U#)EP2NWlYVJZ2a(QM>Z&Jw<5^w+-R$-gStQvnLMphD$~57@Hs zThE`_@0u!MP*Y~%MCPDM=QR?gMB}|lUTi3;Y0KUGoa#xL@^GowfcnNNGW~b-qMwzRDU%6vBK?5OsWS?^-l78?vE`_ua6wC?;>? zp|j8+H0!cG(#_GWnJzOi01wZ(jp|_V$SY*z7vW#u9%OzQJW7_BQq#-3b}-%Ox|LL}*HpVR-~Q>c zqoZT#D4HnQ?O;IAK;tQeJg%E);atW1uzIO>4XmZb_lShMd3S$){!v%Yq zu`WLn8v-NU!l*Xs-r##GspQSQ>c`K99$p;XVeB0*(`&MsZFJ=zqZjkQ{glk@86H=I zriFGh^^Q9^k|Bgj;F0Iy{`*X;5_WdJRSsWWNj4C7JY4^sk#`%-?XC!i{R0J&Go18y(&_%m<(Lp54-S zS8XwApZNoZl-TEwSSBmwV{_&z3{kL=jePK_h@)uywl45TNU_O|=q4SBxrRt)Yn9i) zL6%qd$H^KnJg81%DElf8cYEeXsHuOu?gdQc{NF}?2aY2nl1Qk zn7hFX<^4AKuz0Y=5$C}jfvV&!I-v}uizwZK}H^b4w^Fu8?JCWe!o*LI#-vGw*#C})6mw80ds@;NWHjn;qlqo9mx55 zZh3-BG0a_d>X~IJj9d=>yh;yYx?c=|KsrXY!*#C-Jdfzs3cI3_T7LFbNap(2PZe&j z7?sH-C2Vc|4aAPa@EySnUutD!Lg)qLhQ)9=M}yK8CB{oBY!*M>{u`(cLENgZYga&qzv z@n$E)XY42FY%TE=C~`YF_cf;mjSp3mtAFP>lscpA)@DBJpJBojSe*ORE*@#Tv>h0C zRR4;VCKrz28jK5AH!RWf=utiVrA%XhyGgqlw`p6!lu3O#Uj7S?wVAcDSWM8`QjC0X0vo)^gM@58ted4RiPM_3pZkXZt^r%N4 z;az8sypor5mlpvO-J0wdkJZ?ZnBV6i{f)QAOZz^sEfa9w{5Yg^d=5F8QFR);^gWsw zvWA+y@6i~5c>6h?_<+W--edW=_NXruW|YbT&QlTp-jX$G#*=Hm+clebV)HF>vtMu# zH{b3(XioR?_LdNyB>k~*+KSZ}%QuKyX0bzWY_Q2samt0gUi9TBb_v|t*my8#UR4Wb z58x+T9IG9zRf2hAUH1f`irh5x!s7g<9>;u+3zZn>1(HvPp7JvZy0Xb*r2h2q!^=BXn&Xll#aU$#6X{o6BB z2p~o8ksL2u`!z^H`)$?+Geu*R|45ewcv__`mAuAAF*?=aIYi%hO=M!*@ksf0q~AkZ z3J=G?&HU#P%!q#dw4%(^OL=I9^F~=27hHOQQ+BXH@O}1GbL04y@N)4Lm_FJvZ4dXg zWr;saaYkh``Fahc3HS?D&^26NEq_Dzf%)8?BCaYZ(3$Cx2(>j0zNeMV;fTc&i*Q6G4$c;HW5m6V zKUIDLow8j)yL^e%5(rqM^bP&LYY_Z*jT@d;7KbCDxor_7DOy{TYlUh>LhnV_W=<#9 zUfq2jaYvL@L_`EkarBZy_L^740Q$CW=7V9ZvCD5NOLgkFBD$B{KO3Fq4h{}7h_2ZU znOCt6*(;X?oLM&hdu8LN|KaOe$JqRzQW8<(NfvDcKX}C4^E-XS{eOR)jAu*ki=WdY z=RZKX!@U#NJjrCe_!8w?+$&!!TkAXEmSTGvEKh{Cv8xv;Y7^drff;u0?bTo6d989XX}e6ELX)bn8UWj3X|*#?_xASAPTBNL_Rc6p zMO@MFE|)kuM&B5vH{l#)RE`Sqn-WTCk09w>+G{_^;?644YtYsA(r=p4?XHQnnXcuW zoSK?qWm~zpQfzYD5rMqd*%!d3ObRk1gzJ_t69`J455~~Nc(FVe=6|JO2`}#JZ<}y3 z#pO!_Y51&vzKg(ZXG$OgVd@0c&UB_>f(UDgB2Vlc1`+*!@AM)ls=k2M!G&+1VtRxp zjLiknQ#D&qB1y2&XP_?nnJi1$NybFObgwxxrw`0IFz=NAS4IfX16g)%RMMrjT<8d7 z85zF^ZybM>y)4ujbzAj?6RH$S5xj6&LtOIPj4u_)#@%~sy3KE&+MsrJS~8RydnPbd zCFci`MP0M(P6VTq@BjPC2!H&C1#icQ3E-VuntW}Gh)9`SD^f=0_mXy!Z2zfv!nJX1 zHC;Z+Qyu)i3eq zFqFGzyh}!yre!+AV-Jb>NlYpz(xmX|2o!b>DJY`TH9&$^H!{z9Qt|H0JJP|lyT!TteXiEEB~!^ z5?r8D;bknx7dP{R|0S39HG}g&vaB2;PxRWrS!V& IZ^MuO2Qg^l_W%F@ literal 83975 zcmeEtNJ|L}B_$0a-AE(d-9y7YeDD4J z2lvH&ac3>oELb1r?6c3_&wlo^&xE~uD}#$gi3Nc`aOGsBR3H#E4+sRs_z^nzi$3yS z1Mr4!q97v$-ofkgb%Q^6!*r0}m0dfD zW~@j?JD_$rpZ-eAR5P_=EMfPyvKmde>O5h2`CTYFyXhrvfsV>^q$d5nB0dO*9#1Bxyc*qKOObrvF}{VUS%>!5u4~rvYI?vWeuzE~%#dihB26joJ64Xi)mW-2g?h*<(X}3_A#+0fxjJvMT3YUHUbydzayfE1$wn<8g_`mS z2za%o2K=fc{*>p$xkS4 z_O4ATrXs-q{99O90H%-YTrU}MO>KD2H-P_Pq+{@4u>UYy!;a*G;?YKag4wbXb5riH z^!w|Er(nKHq3whY%BIC@snzG;vtJ9<*4DcB#VLzlvVG)rjZ+po8#5#f`%@f9htgM4 z-J(EdFjGN`eL?= z+>CJa)U$_4AV&7X;fqH-oI~Q*yQu*?0bd>-rHbwvs?{idEiDxl3w+TxAq71ugEd;v zbk%Vr$fw(uq*wc1BPJo|>pVgPF>+F{66*fQFe#HE%ZDxPJsmnRK$Q=y<-KrFUoE#p zFAH65z`#I9rvxUuznhZ)A%kgL(zIc8a4=hYPyrvZ)`$rW?S3ztr*clW{7e~%9A>WQ z!>1z4_fb>oSO*$&Vc!CKOhCYF8YZ>;)z$T{S*(;4@XYR1#R@mx-0M!Hb!06Yes9gF zP{KwhxZcnSA_@`Az1{>~wWc*h{FD;XKXb6G5QOSpaJI2SZ+jit&C61 zum(scGZnye3s6ccSs%@8H{6XZ;&(CvO)R1xLk$WMgE!^qY z?oe8qf`fxEOLsETS%3VXTNivSeLZ84i8m)B}`|t)ZM8Y zS$)^N=0WwPLjb~Y7_?I_NTdIUM}14KG2#maulXNzbaX<<#Eb$sx4Q+cOt2xt>WNZ$ zdO~a=qn@S>PkR&rq*tYV6}Gx;9k_f?Vc-mfc)Mj5#f7^E}ldLPrKQ*wHK zp0qbpz0-jbeJ*M*@v((#;j1itGv6B@|B8u093O0tHXUzmA?my7 zm1v3Pviy8TO03TusQai0N|?qu0&(XFm%tu6X~u&KcKTEUXCA*7e*gu+iKCD{orWbN zeAhZ$?Zz+ zN2qMuU#;Q_H$EcniKru2aqEan$l;_EbOd=HvH@r1=DMispse4SS4iW0%f#!s|~W>zBOn>W~}7;1wZ@v$L~Xpyw!SLdnUPSegN8=3ni9rB(;;H<8xNKl=hZgn<&%8B!pyG(u z9>ivnM@Et&(@rL8sX%8H0)ePusbiIS%|K}?>Psv{r9~axrTfPFH(8j}47?g8Mt0R( z#_Ra*?hftcBcqMM^c=VJstG%R&IrUG2Pnu}+u7GSO%))qGYc9FH6*TgD|Z4a>Q(5% zmFNlUlC2IpSB{+F)nyoOQ6jk4LqJ;SUY{S__Y9`LaF2G)+VEtBS62hv$r*q2le6W< zN%#Hx5rM2K0K=JqyhuBq^9x8!b){4?1AnEY@RB-b_#&%cGkU>swQT%b7ZoeM)Y>oH zh2)4vhjyECXT#W6=R9;}VeE>rM{dBh7MQ~aSJ9#3pA*gK7vDBKU#J$UT_g5p{oOt- z)G9iDYhztujFA<6w2NFmao7Hw&JkWshb-RUx-;?2AY(~raQFiO042d0iyE*>u@uz! zjV_N!2Ee0Qd<})LHpA@{>_8GCioS|tQF~8O+WX3C#Pv(ocPMJQHiDF}W(pj1!-x(O zLxiZkEqDT5sjm+3k!f4(U8e{<0 zdz*i6ks*kAm0jV68d+^cBs4(@asvyFRH{f%xFFnn5*n&VNhCJ$>Mo-8GvCDTTpD{- zfKQqrE%rdaGsRL3((F{l+Ei@uQvlwUL!=&g_~5?7aG@FKsRgCc zJ4>+1vv$K1-y_4_90r4}K3@@I1hFPvp#`5iX|(swIRCWac`Z7$GjxLiM=hU7q+V9@ zv5^R+Ye3``(BP&#)#fI81*x86ZmEh-e^Tmkk;`@eYO<7qP-38I%8=E~PTwL4* z@hP&cy}es}SpNpn=)Hd{x$`6lAwQvtg$$6UBM)h+M#MEClCd$@VWiZ74bYcH#*>yH zrpNqMmri%tQO(Ovo#e)qy{{m(M9oVE_%s`ACg9p@U0!cfMB+i3s;jBFXs)|HdHjp- zTFhn-BLD+@Mx2c2l^RQe&f9uMLI>z!S)rP>G8^f2v=-Zh7ij#(D+OI3s(*kVU3BIXhy=YL{QI~m@<8iwOhrHyPu(evU2a`?JW@}OTS%G zUHlhiVB*yH-lC+b$92vF9Ku<&=y7*zcJo_$LeCfF>`l{;A`pCfAdDqpC7m-B5i43Y zCKXy_!{!mfO#thz|J$aVRS?)_+)>R}u+8|DJ=R>6Li=39dhhf7CWppB*3ZiP9%g!C zh$+~RcZR#*uzATX*C9!(03Y8N@&<|pP2VNRh-M<8g63ww#1)~PNbX69BdlMy`vi~KpVIM}qf*vtmJni&>V*FP-fPW6zNg4D~0 zYG5;E6x35?5;NpAc60Tdq+jN&BI?9x{<^k$M z04#T>mMa7VDR7XlpTp?v3#PQN;~W}kl!U1F=UV*BgF;q>SOXjI{62L*82|^jAvDPJ zm$RVDq=ID2*B)XZOHa7s6ju&7UKgl0;)$~KlqJ8BYGxxU*Oxw)RYjD7(_gI-c|qg>vn4i7$LBPZzAdiNF|VIEa*v$ znV>e^*~XvG{#9_BgGD}2vNaRZ%e1xGqZ_@?l$f~&B}*xUp!Zz~159y`Jd?Zi zharq*duOMC;t?qsSqq6QLtM|70HiF+i|=J^VWEm|DQ);Cq8#8bTTxmGq>IuOp$$;V zZu|bcVTJNAD|TyPcZq|-bT%{+RXZ^Qalj1eZWoT?RdW|ikhc;|Y|lq6Q+zb(+R|fm z{yu_R5NSbal3YZiZEv8yCmm?2apW(ow5kKHL2QSnhOAZ%IIR5tb zG<&>99yff8?-We(QHM_6BF|?4#x-B>x+5O&P?!gF8lK+9oB?t-)AC4KijgU@n$m_h z$`yVlYM)V!kU#=GOKoLC0o_F==s1Y(X~IHRLolgrmdO9(SL7kyv%Okuh|Y?6I6yhx zP9K)0I$^OK-PQ8vZLCBl4-g(WkYd~AC@x^IQ8VGU0M5?F#wKS=Kfk%TdGMqWAGrWU zVsmF_hjL|#z11xX{3+T(ByM7I64Yq-oNB}dj{9Hgaagn%qLF(Y3W4>fiVZbX6crWW zpeNb^U;o@0|oo}R68xu(uT+ZywM>~s+ce< zpH?)-+|Rat0+=ENk?_Rtk!TPz&i0M_wvpVrqC?lF0Q=Ki-j;$+iV)Cwcm4DGfUnhv zN`Q5AjO#CAUa3Fke@8Dd4!Ra6{d3NjhR~Q$=dXjA4+NRjo*I4h-Y^X$l|<_wlM2ty zWL|Q%M=dx%V28o0+=~m5+=hF5d%l}ShQ&2C0)YC>8<*(g_nSEw-2f1(Hv^^FAGCV! zvxHv+OF;=l4n+Z(8PU1MZ>!2XCqK;<~6Z9~F z0`*%c;=yyU#?IN!&Q4jL6g{*w95{bxzs2D}TVIkGc% z5WPn}WXgmQ^hDN_nvrj)z#}6rDPZ@=Jq;H#vxeQqrcjmSQY3Q}2{gY&XEx~N*6{%Q zt~&<`3;vyCL!{a^ZSzr$)Z1mk6euH4n>Y0E<&`UQx%a=8S36`ykIvjpeqkwGJRdxy zK75UHesp?Aca&4BtVgKxAREvlVF=M(WDiw@D#B~_6UfEU(_E8fM5C8fQK7XC8w*XM zG1+0Vk_~i1Bp0ZM;{LA*dU$P9mD_~q77x431L%XVxz-t*uM!uO)hwZ^J*!HGHSXzX zK4^-*i2biS??`Y}2%Q`vpIR-g1=4dir>%A*ox{4sS1Mceg=#{|42mh<0Uv0CME_jo zt4e_?j;S|*G+CC=A;}Vsf=b=qhr;Z(PrJAlxEg5TK@2NfEVZHQSMP?ZyxW(-G>D0r zu}l3Z=bPAOGfWWv8c&_!DO3`}W-0HEeyEYJwfVLXMZ&t`Ul?w4bXkj)%-dyB=67+t zZL{;f><+A37c?--(nzkd>`ya4hm#k^?&8HO%6T;*65< zufX*d-=M)k&40$>q11nF!6tb&i`XUIm=-=Rp+AYA)+csJnSH0|Z2PHK_K;+n5qsCC zB2(tRCItK>-S!Z?K5{lHTd|q+LF$)WUkmHjVl)h@ZMwE?&F?qYw+dBVS5tXUEwrqP zORp+=bShr6|L^rdC1;D1TiIH{ufp?_@mg`050VdNlLNE4T-`)&>h^ER#s4f02}NSHx#|Z}v^?4IQkI>1M9fHBGaV?bbRVKCBiW_*n%($zpyxOUNIFw+6GHIK;Xm zvGO*&Ds4aB%Il9#cThAHHBaJ8(eMAZI>QUx{E!UQO`X+neot;S%#ou#T{C zPd_QBjn;JLcV_}& zql(8&J*(rczLv9rxu&|@S6B7~wFK1YO|_o*wd|JWR=Vpqdg0=)SUj2&KZbW3*8@q% zOujO>W}lUNUBl={o0Wn-ch>-0!E+B6xfC+P`Js=|VqL035tbpR)QQEvuD@M(ioBIF zusWvqz{n)NrF@Q*Jo)Z7FtGFX#Z;!^k^k)Z;jAs^Pj{m~v4KrS;)-D>6ypA8trvdk zKtag?C6zc4Hwq>dwVN#u}I04DLwZcEW}I-?J|nU5O@6 z|3Z+txD1I+luJuVVU4b(>dGdFN@+ON7Bc>}Nt%pSb|Pzi>1@lL1pm=a<@nZ_LGt7g zO{!+Z5E&u!hqz~L4KFTf+4_*=e{<~U6mby=pC`9bg|GdUulry|Q)%-hWTBj`?eOuQ z7+v1k{P2_oP?HE^+DE6ihUagevMnHghvZ2kapss8N^(OBW;R)Z6hDy57r8t^Jc8rxvWFW{NxHt};qD z9G!QiDLJplkoed=mUxdjeorryCv$1;_5Ss=9=rbY5$=-&PZUK|X zeKuz%P9)hDka~@{F1?mwMM(e1Ggb{3ASM3E(W|OT{JC_a@VK7|^We%|U|z&|xw*c3 z^}!%;PVZ1ZD(ryIH~bx{`Kiv-lO4Nh^YCq-ldRY)nIYY_b&ef2aDFO}MC#wtZ{45^ z30B%T!k8^M;TgjiS9#JLWNf9`qC74qS{OZDOO%aTbC0V&6YF!_vo|U?{cXm& z!;E)%e;@>4&=0X;;b~>)GOCT!T8@bdMh4DY1x*s^8w@ z%#xzc>&HNWw+66R;$}f#w8h=uTobvk=b!HYOc?u>6ywM1_i_BpE=l$&Z+R~DjjYTk zmp$UgmCV{1hZ@W0CI4@@pxVYDn0_6XitDByRleN0LEvcljQ z^Y3#TlU5R3s9c~-7~f*iy=u-a!#^eroZD($Wa?x&)1^&BU7(9o?N6cZ;-rZ+zB=rW z`mIA$+QEJ8hX;D|L_<~&;|aeRk6D)3YdXgCf37s`^@;KmrjzYwa;i$76g0>Fs)>Cs zoYkS;@V7juPeCY|`E@YHDj&O}A9Q9&=kDGke?ksED>nIre5r|MyfY{!T7D*s9xLGO zPR6kB>T|a(=J!z9RfEkBdsl~>3kibgkgmOcmP(TSkr%Qv7e?x8*=d}+Mw~P)?DguT zo83pNEt)p_opCG#5ytp9NdP_Nv-RuA&qC`|FS%dRuR5&XSZ~XpzzZ5bw}>|-VbFO; zHQhclKe@y0!==ANFzg@vlbBe7e&&$K{}aV%wUFXj$3;5O2k-%;Y?;1+jQ(_}q2J`O z%CTUTdkKP-<01VT%a0~fs@&~6QEP&lf`GrOp0|2_DH3*c`&`zeA7Cj2ezOk6DIw(r zxG#}g&FVFb0+NuiGHPFNIoUq$?Y>3=PU(-HhEH}rD{GCT2%r=*q1#Tw`%1r?@8U3lK;&1&2 zWPTm|^t=B~1cn;<6pgX|gLB0BEFQE|f{=|E*MTjO;Eto`efbGj8B=1zyqvg)w+nmU zC4~8SHw~E`ITuef@h>QnLNE6HfO3tciUJD!Hqi?{RTNb^%*Zm~K!dKT+OQ znCtePq}3KP0Vi8wg{F)wb{v^4KPO>jN;=~Gnq0x zQ~a-2{+haKT|6;tSZ}|RriY3*&;bSE)yVuU!Qxf_`YX=fqsm?;K4HEQm5JjG8t;pN zIL>klQ{Q=d2P)=TRoAn;;Wa=>d{4F(Z>U}>@pX6fZ8I{~Q*U}VXJ$%Vv2iwwejhxK zBcJcopY)k5`z0lnn*}Oho%`iFY3#ZV7gb;{%7R-&Tk#{_g3@G)acNIs-Sc;MW9NkU zH*0lEG!q{d_iKIHTSBG&$eibZk{g65#Sgf&G5KO(kS~hXp2>@QcPzt50rUHTsE?`l5@ zxWp?xaeH7N;-49z(9e>X20iJxa|#Y0n35-{FA{gi0Z4zdhW7tpfl?=n_K9{K4;yA~ z_zYo%6Y(VVWfOd7jEHV%N?Y#z9&)f%2{M?I!0)s_m zUvJszUB!q?T*gbr$TgMFW7f9W84?ClH%Lb*%+m1hOH0D>0O4f)28@f235)4!Z>i`g zF|BLK?}7d*CwK$|!t(Nmy?v-#6JBYbH?=jQ@>M$FN~UnXKQs*-J@F%l^8{_jD;n6l>;X+)#Gebu)*aw-t8?~eF`!xI5U_W0%0MAr|UhWL)|Rzg_Ak^j)x((0kReYvEcl%)Q>hU)&BZ* zEp}t{c5C~GUF}tv2Xuv{rSuQ(4lk$0BnV5 zl!@^t0680)YkT8@xi{x-vM2TuH(;f8v{PlGtkl9)RU0v&(uP%!XE9hdC~q|T7jv(E zWHRf)9vR(pw(^BGLiA(<{Xa9)s?X|DZQrO900v}{t;uuKq?`ElXUq4d9VMfJsmxH~ z?>BOXHFnHhP6987`4x+Cu4zU-G2_)WTHBFqu)(vdEG^%JqBN!kHnkZ04mr`a6M;l6 z+;`PAj|;yeJG|;I)$$BgNW^D!!_IErk9i)ADpYMI#aTyXxg#=A=J8gcKhT|$>uzYh4-c3qy5N(%VtbfwIBMZC~wH0$8^-@?h>iV+Ua8oDZMRR)dKX(D} z8HO-kL3oS4I4~L4u00#qqF9e5ab=5=sm#n8=&HsanK*G1lO_aqrOgievIMTS8I50ZggfFf6x)!`Kkl`MbKUeo6Nwuhy6QhxQU z$25TsbDnko`ELh297a*9;(P;&nXA#qW!f4;Y4y7^?dv=$3@ur{syX(7fLL^o4bPuM zYdH&Uk*HVaNpct%DCk>tZ?qnVth8D=7eB%&;j2s!ntw6KKAJd+@7MDbQek%ugkEWy957czj;v@Kj+ z6;2Rp_vh_8O0dCM%0M{wArmD*1{t2BE#BBZHQ@3g z?2-&jabp}N;&k`TJ3m!%ybN+F1(RF zG~wuO{3ecOaX@Qn=gSTF|hP@8TED(6ek#C}PPvNTr-tB^2WS?B*hi!O)12oIf{|6*nt z+#9}SmL^o3#yn$meMlkX`IbS_{fAn6vDHEIpUGq(U|8E6TzbQW@zFIgGR4cR<@w6! zI3*{ScG39xCe6-1{qzY(?Bj1eEmcInWAd1-?Z?PR8IyXggO!{I2oIXV8#a>X&(>~| z0RetMNkDMwCfL_-c5exiCm}|Qf2K*`$p+!|g)|wKQ)|EScT?W4Ym{Dm_-v091_Glx z+Z*$+r+y-+3?5yCctUBFKfYOdSf+Haz1nvl^$!M71;v=0cO_-MhH&9# zJ>PV?TehaG4%$vuBgN4ECsY;x*XV;_$$8OwGH7WUqcU8{=aB*eRX5ZKU2ZeGG@olI za?+%%e%`S<@GLVt3Z;%{xj)7*(7`4~@*pu*yT4wPf5oxER>a76iandw+B!dElM(=G zK*Rv0h}S&UddN$Pm!9;k(h4>|B7^Z9;nY!Uk?+4RWvA`S|5k1p83JHyiuLRGOP-cD z)7JK-!b%=r{7&|shc0(hyxH^`WjS3z$p(8f8a)qsCf!~#FHf0T#?qmh6mnWcmbC}- zlMlH~8wa-$av+wD)pnYmig?+z&*&nNWo5Jd0gI0Nm{FtYg{)YZooQAg7!obsO)Mcvin5%1u zvO;mud`2L1SyL3aG&V%wpMkQ+WDBg0rLs7$`I9r*_+vcF%XJT%B9`8a@^?xO3n4cV zGN6stl9?1XT0mVS*P2ubD`prW>S{gW?XxQ6q?m{O`hq)Ga7B?QD{x=BuUi|B!ip6B znuCO304hv~P5HfQ44+@hk$X_=!>^|KA&`Gk^vYGPWq+pcZP=LF7H0Rt&3 z5OuU-R{o?cr8prKK(HMPJ_k2Qgfx9>kZqd3PU~?uMHIzmWfCaiqQAA~u<$y2N0s{+ zZ^0Zk=_Aoj*mKC)Mm6OxzrN#5lI=21F8l#~Vz4yJ{Fj>n%HUmDVPObBW#Y++O4@eL zRsrNs|JvS^d|7#~Z?9Ayz6`-Od0pwPr-G>5P5_q(D+9JK^TQ;)|x=Sh}(et2)$q?vBhp?Mjz$UdpmHNwJ<!`!=K0#myqrncGoJnCJZfY`4J+A&2~)L-(yJvymO zLeV*?c8P?6<(OTlB=lcdPPzw1rsyjyzaLD~R2m+K(@ON)KBsNo5~zAS;~LpQ02a)x zmGI%!&Z8hL=KEO20!1?5uN7&y8c*HYynAsEjV&C^M719-9q`!;b{b!x!M8C_w2)}B zfi|}EJ*1ZuJ;sb+LJZ3#w}SwVflB(AUXLSh-$=O9y-=sa4V++T#y>M2Uc@wrQS!NjrZF;M+kEv0mUUngMZB8d+cIsq+jR5LTcCf zJY0s|A2>9vf*XJS`NC7l7(31OJAa?5@eNTAdnRGydTxJTuu}p(6{k9bq=ul`xKCw% zNMEhuIVTi&FXeGbt<>hix!9ryxzDgS;VHgkh&^qzPY}vpHGlU;3Q)qZ zez#>yOu63FA=1Tz=>fj1FdLi;FG9)T?e6PA)+X}%>m?+Ab5Q3_8EThI1Y9z=?E#AM zFju)rw^6VRlz-5PFCt7Z@75e2dD6viHo3w-S7mQ~$_Y)eb^_(l+;-ip$?grK6cFNa z*L#;}I{)RqS^&$SWi{#4Cx%O(b= za@a%gMOWL3qxI+auLA~|te%tY%cDikn(gv~Ek(aA$Cb(#R~8_*?(Dj%ti&+?7G+r! zE$+Hl`{IK7bFTQmVyQr3_QjFQ|4MxyUXI=u#`P<={7oM=;}~E)KkXQ`WPixIE<8kD z4sPuvEX^B2X7pB{TVdJyCy(~8D2nMvWa6Db|BX2F1R?WVz^@*)>r&;RpJnEMuN0Na z1~gQr{vz^u<9>_HDZ&%rFczoO#im9Zymz?obP0c}yB=baxX?@tl=O2r-w4duy%+-R zF}RQy3gmqu6n7+C2>-}qn^e}ZE~D5Kb((BDkF#$wJXak5F$d9vi1|-u0x!)Rzpni~ zed+!)MOC-IsyAB&ckSy9lf+6);nP~o`P=nB{e2<{7TsZ2qr*t93o7nT(wZOrLFR{c z6HM!zN4HWyvI8Cv67}?}&oQ^dO+S2{wbP($P0aBg8ANzvW%dqzgzt;or0ZHWOOt=5 zrbf2T!hwo$>I%h-vprIMwn3BJOr{1CNi1!ttU%JiyZ6+!rruT!7?+&r{6GIM_U(7J?D|5n!x67r#V zgbV_OOI2x{u?Z-W)0Gtl%DU(B|J!91FD?m;@Lo#Ow*oF2BJ}cj4!P`8(bBwXCHa(h zdghU=ai4zBIq1%U^ie-5^Mt?t_VSwo&}W$hHO=?9>GE?d(g95Yu6w%swi!bU{V{Gs z8kd5g*XJjcZraq*cn4fQr0|IaFiJL~(PuL8z%Z5PRV(6qjpPtvytf;^tADU|%>MT_ zTn0;b|0f*fwpfmn{|75J?Q%O0f%$}#)?=#rY=`nf`|>-Dq5n#R-ddY7U*Mk`a5ivNJ8`y1J3@hBdxui>qXyS~2^d8FdT)00_esExJg{jek z3Zot8tBO=RJmOpN-}yf(FT3}8fJ@s3j>&NYJJW zck5UW+QlY_X|MujsQe!VTZGWxW@<|BIjl4|!B2<=XdfafyDdeu1OmdSNUo2sAlB^f zcd4MQKBvCIs)hWY+CZFRA>Kk=4+7aPeH0FD3_qoRp}>BPXlh>w&3(7Z($+u>D&})e ztkqS8-X-k%U}sWwRc+CDpR(V{nWOW*jezI@Z{bcrGJ8L;Td^?^y5JvsGV@7J8mp_i z*`s>%ZrF|f6a<$AD;-ZL%MXy%z8Pcb&heRy?l(-8=XI88lU26{{Cace+Z1pjQ>{DwnB4%meFwDCa_zzPY z-8yKbbJJePZWxmm^0mjSQ{j%N#f_VePv08=5dQtO7?l&^$};qI5-J&TLZ*q&xQs#a z@fMF}?m&%Q2p}Zp@bs3E3SHla(ucv{z}8yIDkf|Zs2tNT>>dd116FtcqMY)6#zlv& zzzYX4%WMmjY4~OIx(>%d*fn_+aX{LK%(7@)moA3o#ftR08JAnSF0Q+9&tDnj|YD8xX)HCYPiE|IL7 zCee7~TXltVaOQS;9F?>sFcOQW%RRHp9{TJGVIaAyS^wZ`|E(1d7??Jh7Ps%8>IJH4 zj~zw2_82)13(Wc0as~QahLE_=E3I+^Bx#}rgzguDgDwttk%;}W|FH4mp)5Bo{8kB^bqSos`>4%Y|#?W)IKS(_4@uYSAHsq8i zD7pXeuPCAw?S%V&O;{oJbNOnUlfNX5n+x7Trb2h@@^Y?;ig1~rP$%LES9C5!Xa9OQ zMIQOUd_ol%hGJrb_&piSZrWk{F9veP9A{M)Z&L=q82`saa|EDFeBLT^Zv@;1&UtB5 z8l4cSc>+b~HgW2pSbs^HsIY#cjo{39lz9FaOH@wxd=KsW{GYu85)cNsNVAE+F5@gt9Us@Kk_1=Yxl$Rl@I4OJaL9DQoq5n1Qw1Z zEz?y-?9LTIGf`rFR+HO;ZM4N-*=V}JhrWc$($@JnW8=N%-_Ks zc~5NU<#~H+yVk~2xMy;iVN+kyBFKiDQLi%WhSH%A9GM2;`3JpP=4#TR2_akFeso6L zm@_*8RQRrGp`jN)D*rCM-@txJo>fr zL6f9ND=c?tjj&q^|3sZA@J5?5`nW#>DZ}H+EW-<7=GHtFO>;TIvPiv1t!RB{Uen~w znux)TAk#Yc+i&(_C4bSI1W=P1r>#IYu#QV>#h}`KEei*zf`hg98}?haCmb9H)4w(6 zM|bRvz{%xHOd3X3Fri2V;W72ASfLA7y=yJ!Gw5xPZsGdX&P|8nUF1aX^vfxBu_Q9s z>B#JlvbjTw6}Wt{_E%xLR-z+n<9hn;x42v5)KKXh3cYICMblVBHbwthGI7GSEi17-PnlY*)+dry zm-}RCF)^s~HOU zm8TI#1`4&0j>fHT+!c9xy4R~GAq*Bu6Qpwdgxg|U8@RsqDXKo--VHUU(^IxZR1WJf=cAg0J zgvw?BO%wIkqbEQGPSelU3#G28!)1sk!5wha?agtu1qC`TBm*_n{1cEs30>I zo_>9%r1y~Uf32@JxM}k+v0C}o%Z%9|j!qw!07KW@H@$qW`7fKp*GX3XP<}oXm1cd6 z#Cbi4MP!1{p*IbSviD8@F0RS1wD?ODnmNM_a3#&Jg9TvU1-#7(W^OZG^*jnB2>})w z4r_k&ucZcUGdO6hKD9Hoj-iYteNHA*O_3M&;TbeBtjDFU}+ zS#d4i*4|7o<+Lw>2!P45;Wi697@nCqAoi^vChuu8CII4k?7Y+oDvl2qgY!uLonKPL z0L@E-!~;Ls^Ir*Y|E;Rc&;>(sTlq6FUr zRC57x1MwKu~9H}9quriXot9w>w&1I-*& z;9p31&|r747Ift~wSyM_v*LfvYtDMr(v|3|Bw#oi^ceKj;9Ai?Y5w?6!R9A#T75F2 zG8*cRzpy+=Aa&qQkXQK^V}}koXWKsqp}DP6K^%SgX8QBLKA7kih+G4>s{%tY*nkC3 zDv-SJhsudlK)sd!5r#MLII~TmX9uwS<2XNTIms~1Po8_nUgjDWbF#V}|7YL=K6323Di~yH(rTcn zr#N)BhE-N>AG8CC>X{w=RE}09NE7R=kfo5X0SUlEQ?j~DgEyR_S=lIicUgy7@_ zF119S&=sGI!MAItrlEf1xm*;8Yn$w|{N=N~w&+M91vCd1X+%dOJTDZ4GhIITCK^~O^w!I9owLok5= z6EBbF?dnLq&4a_ffXjfxz*r6gjlQZPhY5odgI5jBpk(~y#s@v3Fy-wMRe*IsXD`=L z_~BE$$HHz*gB(K!)u&$kdPD>%knHpW^!0Wl-`l*%_aLnb8CONprbNGIFLXW7$Cl-o zoA2OeL8C+K68w^%&4zl!Vh{O|XzNu5W9Dx_onARVB!d0Nw()OW{DnC+t8c8{8=1EA zcg=U!rJlM-N|`pgxbVaJaZ?7W2cGpJg|GJaZ_Bz3WfQ6dzECfcdfCM>qlR8CZ0+R?nQJVi!*@%Ev2 zQ{jR?l@?6oYE7#*X><~MO?00&r6>8GD{io|;L!5+g%7UmaS&l6PhNjfm_u8v&YeGE zUsN<|d+_{zLygmVuYs-lli-JswjW4eKM4%LM1n=6t-V3*3x>pT2eP#*CibKonlIP& za0$kJ{)amI@(EWfr0r7&GPsw^((9=;LK~xk-*lkWszc8D%*gdIpSZQCF-ch_TNl zbxvgz`}T{S%&HFqK4r^D0TJ*0RhuG&4drW&3Y2pqLu!Abymbm_F+g~g{MwQlLVhLx zr0ol40UKvlbh_5a`C!r42+x;&lX@FwdXNA<*A851o-2Q`xB?|+wZzQVY!NNJzu9OE zQ~vU9CBf__dsFKYs3B1rb0rK;ySU&nWmc8vtsZlS^HrlC2H=~vCm(-?UAs)XJ2ypO z&M)tx5UJQDDp#NMT}O%7($8hB+1O>>Q$kwH|NLxbEtHRC!3q*7jfL5GY@Aws?j6{c z6Q5EY+a6U%fl!wioi_YrNy;ty%{IU?Bs@ym`s;GI;&U(l*;WQ~%r#6IC8$8w)c7~n zMZ{pH>h~3Vae|h&_6ZBctakXgH8c=NlLox`-J8q=`Yu_zjQ8}xdVxvE;xZOPyC+lm z75DI~YPv%XC`4BEtavD)Up;nJXjGdwT$qyUwG1@;9R=j*0AtP)Nbj zQq%VLujZO(2CaymsRs30k)gh1$di(>+b6o6|3-N|kGauU`Vn+?*sVlsmq_Uof|i}{CWR}*@%1i$ipc0^FKi!IkI$oHKxCCBy5;`m@0U{ao&OlCoD{=vhRvA>>jvIZ%=2SqeEoH&TLBKs?=g{#AUFfcbsD$ z%Od$@<~T>QCjPy)uqu0ZJJZ(~fe9IXb^8r1_Vy=zkF3Se^TgNdsD=Hq8~tqC-p1}l z%Y(N#RU#GTsmND9mRfu_;>gHfZ~Z`u$H8Gdw>$jkbj{ zB&?yi&W!y=;f-jL>$Cs1qAvycy1c!Q-#enra7k}vr(OzzhZX~kTDx^)^JY2^>%!}L zzFeiTJzd|fLh!T4f%V(n! zWv;>XT|i~B(IJB|=`@Na^%;X-X|dgkHVi^8TYh;TH|`_Xi+|~|9sm28EmCg8cj}hG zboEgSu9w~=iDj4Hlempuy!Us@;G*UsM_bO+Mp8+ayYDByViF> zX{ye_!1*Y{lWoNj+Cj0Emcr26w_VrwkGjlqw;(o8nER1U)JZGHvdD!jo`by}Z#^Lyy)aW| zrP|?JbS;T^hi$jw!&TD|#8O5V|wF4DsKALmf%8odo}eZLhp&i3C^&^B!9Kv-_2 z1?f(Fk1wrrd66pDDJ%PR5B&iY1ri}Q-#5qO*jBPh-f7Mfu6cbi{n4rqUxj$1Y{{s7oA;}F!KO>owk?t z#NHRKE{O5qVj38cn`^9E9$~Ka9-nKZ_x#*HP;bc}d`JmcmfzVz-^~4AUeE1#WE%f0 z3En5{!f!+lE=<-!yc)<;m~*bHkJnq5YES|qDy3N}Q{>VMW_|8TIK6DBnY8Yh;q-V|GWBYFLw@}# zqlY(|ecu}e|Er_C6H2|q+mxH;dA`Mvcr)7Z-c)D2TAEP|OoPSeXueS#$*M(h(Ob?k zN#nxDmj)WQN@Sj76p+OqC0gELxtR#XL3sB_NEAD??n?w;9=*$VY3w{=TNo;XzrX1I#gH7Di8toyQWN^rSuoG4sqQqRL1<5Ue*- zYdFvIzu0@Lu&CPiZFmHMM@3NSM!Hivl^j|SkVYx#24N^gK~fkR32BJ|iJ?=Z8_A&s z>7hdy;=6hNzu$Kp|GjtP+xRx#*)V2?weEG@*L7a87UxNE%Fk`qV3_2eG)Q@i-h|7@ zgwy_7b*@Y4S6`*)N&joNhVD0q?LMhOg{LkZtQNbI2VYkIy~LDar@o}+lB5?b&_6y; z{at)xyPn=!E-2ztB|B0-P+2SD-Y2h%I0A@GjuWT)?EGgBNoxFp_fK6I!eOV+uzHnx z2n!p6KVW4q!;opf+QSRgQK>|_=!M}=n^=l7rh7WXa@?!*T_slDv8Z=&{FwCWR_iw- zA9vZ2^~;J>US_<^^Yykc9`k44c@b?teT_@V0rp1*^*Sww} zOU)~Wow{mNi_Imv>+#L&#l-yshZAx*x%%HFyBNh$`df_^aB4U!_Vb_O) z%k+@;J~YSbJ&-VbQuCq>JGd+@%Y1^y5E*`m1F;>XY|`Clq%h%OZWxz2t$mcRh8O*v zCT7|$yt3+zM%V>jG)zM6%&7O^!+SxWhlx->mWk>J8df$*O+m zA4=g9Lg=AMmv2*zG4Z*tp&SGE*53ou5xTv*lgBqxcDNSbz2Q&XW1Ou{GD+vf2vN2w z))O-f_!R}0UJ%^sr%*^Wq&(nbqxbv}@vPp(sSpc~XKyfJ=oI!Z4le)Li(SO&{4{iP z>F=&4d*WW0#E*NAgjMY56q#MdCzeSM6#s>oKWhN{X}q8VFUqxiz4fEc>h3vo=k@Di zj($+r+$HS)ey%iL*3{YX39`sGK1VlZL~_kOZ4a|fmquuH=?f$h59?dKO61AV&)52T z`f8b7MYLrye4Oq;fCrxtY$nj5~>iyG>{r!3=owr`PFumVe<*myuxirdlf)PoG+R2RoONZ z8^7)fm5C3ve+?SbO(oMpUkCtzb0^J%pCu%gT~#HyzFHTJyVV&Sn;&nvrNgSf8T>1P zSez})T!zKMRE@=Vl53Ak5t955s17(N{k2B1*r#{bKeEPi@b(3Mxc@HfPrSulkmz?! zoT4L}^f@PZj`)}$V3p5d9@7ZxKX>qFQ;zkY)%g^~~KSF}|zuP6`ES5?z`GZ<1 zdL&yc505bX4m~J`2G~aVJLWE57+Uq9aO;z>Vk-3JsfQ1Qt{E&cW1lF%|4pljo3&6e zT0Fem(Cr{i)zt)Bw}pTr#997)(OYFt5i){i=0?T$WP7r$HXaB3XZ1%_D(M1Z*NgIH zLS#LuHdTHDWmOlQhfJ!WF%Z7j6YGfZT~)6XCJILXmA{X4iElR%;42$M#|}y~zl=M8 zZ9y|EGsg1lHBSV1Afob@Q8vZg`!>*P4geSmVgdf!Kf|%fiXiw7vDRYTR>{2kMaE#ImMjd0t3l>w%D2f``e_ z3NWp`+Z|TF*4V!{kZe>0pPiSOi}+Ki`3pfD6#xCA>#)iX-7YZb%#=PXhyhsZf028a zuOBN_R=n$V9_n@V+FXA-N18Fn#QJtt$VxM9P(aW72?O(GNm-w_ z#(FT9%uh|^>(^8l<#3J!?yJHtMFwWizUm>|nm!TAs;IE}w0VW)c1cAu3yqgGKkJ;G z7xY2JW2L`UyIQJ-3~SoxKl|KNuL?so_*$crJncP)$O5*kj9W#g={KmM*ZQN^C&I+a z6K^_Dm6pdOP*n^Md-uskzeR+uN&KJZ4zjD$a}#+5*Y!pi@!$S7GR&EED&D5Q)^&|V z$?urb<8+u5N6pL}_fC)^6$zn7%{=y{`j(iXs#m&xU(vVJ*qGiD+H|DmRrqSbHQ}ov zhevI;A1z?FZ(Dwg=Fz{tOtMBhZD|}(Dp;ZKUQVvj?FkE*_d7ngW4b$z7}U|~V{%92 z#+~!rJ&)2T>6yH0@5y$!sijcw*{^8X56Ek?y$&zS?rHQSJ04p@M_l#oq6k zr!FybJeo*~-j!rZ!X!psnTRzvc=nB(U^^0;KcjDxNVc*cjMda+QGz5!a}Q1YSXSvq zV=+EJSNI+rTch8E(Ind*52YfPeKYu;;m*)MYNRb!Oqy$yEj5{*`y61pkoUA@WVT2$ zT`RqSOGZiy%fj(jG{NOnx>R@vVei_Nq4cSH{oy^Trto`AZ{Jld8Wwwdd2Qx#V~{n= zG4i{xidBibAx@Jt`d+>d=^&c1i!{oYD8lY3GnL+?T+m&CjGWM3N5}Vi|3fh_zLL?& zk=Qn$UCgp+p+w8~zJ~4~{>rCJZ@cv8HYKgZ`mE4vW4lf!P*AW4v8EL-v;5&$Tps1- z%Rpt{xpew9AN(0RH#zrOt8{k(7y(WDQ8)`Y{phEJs=7KkUME|zy|*j3W-O28JkOj) z>x)l)9?(LZV;0fQ9qO#T^(~1nxS%9BPfbA9380%cF|Vqf*qru0-Qta%Xs%?eSml^= zABZ#Uz=@2#&(J0zy*a6t)SqOzodCak&f^w2vN8&~#Z@+A;@@G^t*XLjRr_=ca|MH? z!L*A$W_o5LQj?OhHTRbzZu7=OmmJM!tk5(`7!g2^c9KT8!)NF=nunbC86+Xg;kTX5 z`X>65a?GF{3Aymupu~R8<#KiNNC(tN)`BA{r*>wIdT>+YtY6=AQb?jP0-s!$O8&jK z1L!@Wiq}R0nc4@n`T9@0%a%FapHwpFPd`Pu(K0k&b!ldWn3Ci0xREZvZ!V#aF?a-3g&#NQcV`6SxtLK|n zuE5*8ko^HR{H~kSz~9Kk%KOb6b9q}ep7ty*a6*$~k%4%qpOHY)Q98{Y1&w}6ahYUwfs7jG0DFn)2X!$2W2O3(unu{m<8EB!G+KSC%oBPBI`+wK;P8KOYAh zbTLVBOv4hk0@KntV;(B+@t9%m^vpA|GeJAVZkc#IqxkHKMLV?+JDfQ`SA6P4=k{xd z)ZkF+%+UFliJ8=jm>yHGlF~wzx{w_t}In z+c#E^uC zOe(yh99)n)mosS7pSaW?Z#-SV^AwL{_E@3ks*=evb~n-1rU~1)2A7|W zF-mjZXuWeZ&ghSyYI~-hM$NBBj4VBEhe}d^$AEk%e~XUwldQ`3(L|}|O|@3nvSIVd zkvrNynx38pED7=czz%s8th`6dZ2zLgw=nWh3M%NkD&DycvQWBYo$T~2o?fgJhpwyS ztG_$4Wc~w92V!QE>H00ZP;-iq+q``5eiD_=&(MrF44_fcG=#Pw|D0IoFq+3-D}R%*ak~`$MFitdij~W-^E+xO}0mi>4W77L19v&mjhtT>sebrWdJI1!;$jdzx1f!61Fj%1*Kx@J?8p9pcB)?!SqIdeF=z4xJ@hmcGbLlY=_R+Ng1A)qa|V@I431(5Esw zK1fWw5=m2Fx{R~lsg1bu`Al%f6avqkc=K%LL<#91s3u`lU)8{!-@dR2`}84FxX&&w zH%h=d$8tX2Vt(u>AF-YLjz8|~&U`&4`0n;O6~*Znc*>Yy1E|-)EK1M7bhvLFLj5s1 zxp?x6;jypIm+XBxf`{`-j0ID=*w+ST2_p-ty*nv1cmIO14i=3F zyOQJ^Y*{$!^&P1ipB7>Cy2wt$NQ4`x0EX5A(dw2P0BwVAF&h^HJD@;@m!i3YcKmGX z410!1cctm5j6=iEiX$;0mZnKt%`9hT`uaT*hTc6fPBgfD-}=?}cpB=|G%h%L&ay4- zeXXgWtS{DV+v2g#Xao1B_r!pU6o7#}r4 zLYS8fksd5nWjU%C2_n=2#pG3V?TIJT7-fWg^7MiRG%(?a%-~WX`if!lGGgcK0&~=c zhi_ob{I;w%OL>3sb=~SC3hr3q^@du|g4(F@zOZ#Nk0FGB#FH>TGoGbSX@o}^gOHn; zXPG=}-f6I|#9O)ra>%Kc{;XDR>Easm;VE1Nwnk;EXb?@R#;z66y=LME84XUDpB~Rz z6W-PDYa@dpEO+8~%T>GsUghX7<=q48R#abD*=+_(_4?Uxjn=NRe|d%?g_c2Ab$gmQ z^vl?2{dBja8(@*o@J0=MS>J9s@x0&*sJE2n+F*ohBzbgCFXq1gsv*r{CZv#6F6Db` zk(<+ThHktsiW^lSfeN&JHi}(wUb<6vfGg5lWK%frIH(Kwc*N_C(T=;L^Cz_@ zRoiu1p$?m`wIRAJ)v#1Vu(W=%5F4;xHlM($M%y4SC5s&8-ezst3LU$YaC z`K-aZ4<%?hfX4(&%_SP!{qVhIJ1A%KcT9eKh=-c%Cuy%+--IY9i=z;}?y%6`VREG# z&8#V3R@MvZw^C_Le}>+970hDyUc|@s%A&rd9J6B?7! zn=~zwiXu=yQsM2hi+W~ox>*qT>$iemAwaXBF^jy3m)WqG8p{K3Z=<9WFOT~!ctb%a zD!!(p?gGAg`#&q|cOzo?qbT+??3mu_&!^=~{M`^(ZHEuWdxYe^XLL-YJ1Az5`3A*# zs!MuX7f$r`9xens+{@t7)2P_g-cA>`9V73YR5H;w0)TuO>iE*L`;%kqKMuq4s(U;} zf@aauoErjA1%I+Lnw*q4H;-qcnjfb_o1E@J7$-*lY$7}Ln&!vyr?SX=XPBhuyJiaq zM;Fvq3VcC@txR=i(#{!X+<(##A&vG?3!7$ON=ONuH+W@=lij zI6rDk@)yx}8ceBJrKaG1QPJ?ReZD!4=%`SV_iM$4`N2Zt*JrnEjDO(7h#Bkq7Szd= ziQE^Z|H6chL7u95rPp(0q;#{w$c3n$JiKu=4*lW4!rURY>GaX32XfK_rTycsaR>1v zi*{T=`{N1UQMFC#WgpvR zRow~JZ~s+E6t_ZQG@|0fs;7}-3#NPKYgA)ACsh3$JIBuNQR7YQzdQ+DskP}tRWiG$ z68xHbzrfEiMEEV6UX|qRR>B%i0+A(?BP6G|4yo$=1i6V`9eh{s924o)o7!c0wBYtg zb8C=yoAR11_LeZ44pF0LO(NR^6AlY$?hU_Vs`WADB6b2>FWu5;c7mRmNt{J~PWB3s zqMNb>)*!J$AjvSq1O42W+Vw~C;x$9nHPhQ$mei9hyGL`=sJwJ;ezZfFttQNPXZYOv zld4yorEqU@%^$l;YD{y95L+-MUn3Hxq?iv z_XO^<5AKQs2^0H}WwzS5}dY}n^3~`Fg6h^S(5WT+W@A6FBSdrgAp`j&5 zU4UDlT0sxPgpRFJ(raLv;aV2%yZt30$9hLRV>nv6t>Led0Y`5ti`nbM5-HP({)8MK z_-Z%Dmdh7wZ&r`uyTL^q{o1a={%csu_tE7a<{fv&R!wM7)iS=h)d4M$rm@Jfp7r}s zXBAZLn==f^jX{?(=Fd=HJ=FI~8^x5kPvj|JsgbaJ%fZAKV#7rS0ZPAmD}-_wloHOK zqC6qCdEAM^um*7?=)h)9x(K|3^^Hdl1TlwJH|{7>JLwSFM+c66h! znczX&ezwxx`~iAULyKDuE)?NM7!Dh2M=z$1n=^?wxQ36@@_ z-$5!a+eNU9(W-uvS}m&V(|xkTLFyff8roe{JBS}{ul%6_g)uki3t%kK0X^GE+Qp9y9D9$EThW}^X^XxrDT^k1g&5BZC2>o~mz^(EixOYF zeL|N^9O&3x`K9^a_sGTOJv<&P@@*rt5EdZqDDF$at@KjRJ=d%{IK%( znLwCvPZHIs<53oCl$Z^!I9`f5@F<7r&nGJ{->)y+kR1$kl>)!DbL(dZ#HM5 zkz8xJ++$0%EA5Sh#C{z`2rT7vfRLUgc6Kz{!+2B2_ zQIYpVU=#N8)pnMIi^L+%l(Z6;lKI%ThO#E#moof^4ly3lt2}Ux^W@2Ld{wXEf(x$9 zaJLI^3%r<3f?mdC6Dzs9WQ^1uSs<0)gmy)5MHc5(V&ae1WuEY`7i9=bPP?31#v%w7 z<_&vl@8W2TIcCoJS3SfRKRO9Vg+5&Ayzzd03s=eS0L?;!=Ahz%A#v12$z-`@$sK<+iCe?cmclIyycUu5^^&`V z^p0p5OeNzcku#UX7|e8Hkg9#COB5XHaBXOEr6;b504In3!9Q=VF3ySy3-`r|Bj0PW z<(?g`6<4^m-ij4W^*`0zYK(r2L(RCAKZ%xKely?blPc_(I{C^x`QY$SDDcWJAu-XH z=59z~e!e0&YSMxX58>U{!~-dUN`f|nk{)f%`IB8Tsqu&G%=J#E;-Aze-J`WlOwgWe zv2ww&Ack^h2cW?oZ4$zU}1LYz=lwqz>4-|FkncfEIJec~qf&DT{_RrOWt?Z8J} zPP4VH@~j->W&tgM5evJ4W}_*Wq^`v#qe5^|CtA5*1)7;$8v_*;6`76KR~WMcaoWgI zKy}%Ytzt}QFJa#S#axjq^fV1YucqL-uor~&h4s+W+HrCBJiW& ze~mT>$0Kn9HRIB)PMWSIYG!wI+)?yaJ^qh`cO}TEPV%z$|D5{&{4YL+&Mim`Wg?e> zz>I5}5|esV$Lj>39k8-KJ0bW&MdU;Bq4CU;p>q|~hCDy2MvT#A&})OhFc zY>>Y*jdued+NC1UnG9HYHI?fTSy@YSj{~UxY?SMQ`*6ICdq23KYs%u9qlNGyCZvk* zH2I;6p5BDX)&yck2%P@T_R7j0oQ5zlWX4R7~u|cM}Mg-oCGB z|Mn_V;PG=k+fVhW8PsLiK{cd2#_MGW#3fmmt7*~`9c}Y(Go{9L0$N5!m~a0wAQu}M z8ma)2{5*c^Cgh2?Y7$SA)p(KaMO0K)eSQ72mW7sf@=A@-3|V@YrS~}Z?vir7jN#qT zw&AH)l^mW+rD|z9j2J01Gt|NNSXER?O6jO zBN%E)I`lw3p9*nF=gBOjMNk+jp6J6%K?+_5!TcCC=9a5^zDL26{Le|;B?s!{}DTzAk2NQ#>*5SNOMj%X@Cx_yd&LIKtfWqPzG zdG&Xh3YMSgyICj;P#Fh5<@rbdyZ8w4M2gMLO~3T? z^v_TfW8qu287(jJd)qoJ1ic(h&-H&1P9NL>Y8R{){U+Sp+?9{QOD#hyfnS%@id)x zG4WyVDpUf;#*gIQdtNVJ2GO)d|i|MVj zJ}a@@N_B;?RgIWSI)ci1T&O@NmrTDnxkYF4yz~U%q!-Z=$UIQv?E@vt;jkQ`RFy^0 zpLo_`^gkGxO%=PZ)T88{T*utTwZqN`f8$Z2&(i1Xa&ohg6~U}i1(x`|9PQ8bb-?Y-rL)&Nm#}6=MJ???SFh=BT78+9OR}J=E6?Tx$`V1x#>2}Z5;t@tAw*} z#f4!{C-@uyt#4j*T%+)V&t0eYt26kmKO>vGm)D?_9ww0#j2pc>r)CsyaC!wjJqbTO zf-QX{^X2JubfaF|Rsxne4R)0C!D=FCxXvlf#qE8Jc;2NwJDR7u2A1T6K)|-kyH4;u zC3*>HUuD7{vlT}wnW#Spj|e(+CSPQnW@)hrPx(%uqBBkbL$A_{Dc2gy9{4?`ff$cK zK>WRnYZ!W$sd8$d$AWAId3WUltZVn!@8D3 zBTGJ&ABSoBW&dzZ!((o`(YK&-km?oWo&wDAZl^h)rRxnx&n8fWs^|75CMKrWByLIIBf{nly-0E>5M^W0?PZF~Vn{nZ69U=Lqa%o!%mz%{1gp}MU8I%8c4{PSE)GV4^0-p>m ze4bq*03hqw6^}QB`@uikJBQ8Y-;aOqzkQy0Y}hHz!^CacD9R}#6BwKuGqfhLzZ6P0 z534<9A3Cy#JWF9Ru-88^Q}khw`^$`j`<7Wu7Bm<{3YJBUOn2T$V=B1*foS+%7 z(ee_#TQ#$;U|>bNY3I90V2VG}PAJn@R$X1Kpxuo0s>s#HGaOnw9H^S;B|p^mHp?cr z@bvVY9(i*VSc0tUOpc=s_`Afo!v;>jT)(4d5y_;>KHcNLo5LH=D)1CINB@$O;Ou|h zJXk!DwxY696{LjTNPap50ue>xDjVGIIjB~zx1wZPZJ+dx1VaQ4um2p0%qlvul zs?#fYN$h>yU>15(tmO0hhgk1_mSGzto+wT0x7WtP%zH)ft-9JPHP@SooisuhfAk}^ zRVaUlH1qOvJ&O1Bsiy1Mx0E`_58HQYGDjeIu{S*O%IB7+^);U@-VkY@ni~xn+An8m ztw+A|YD6NDFp$J6-h4%~4~=Q*>ywp$3*$669WfExnD;^{D~Md%wQ{fdj@e&J^R+MvslrkC#c#K*vXb8L&pS zfV4BPOg;ah0(@{WI5@b5Kw^IH|1|)CxJ7O`9yGK@wHHm$E0}j1u=dk9EGdwgc))W% z!dL2dYHmXIekyedS^NehoP1jru9J}`BOsJ{r2oY01k}80$7Kcn7lu3$ zhI)T|mgW4G#)buW^FaATGm~vSf9Emgk{cK!7!fe_j(}|_zQO_EHv;g)FSxn8*OVI7 z@I2SoPnrWE9h=+0%*a|K-Xe2bXnN~om6?>Z{TvvvAh`l4R4h9$@6f&5SV=1N%A=voR;nlt@F>%Lfa@)& zCfI2JuZ6swYa;<LMi{{Ns>h$&3JEZgC8;%2~)0BDl4R zFB|b)As7|2_I-U#KI2=^TlR>dE!mLAG!~uR>2=rVF;La*KvHo?WP!4&@4-{+s5V!!Ap-tsUZ-7 z4jLfeq*4|PMkYky5Q5D9zYJlXIy%1+-%U(c+3Gx@CMZidB3!1T(Wd##h271jQ=q{u z&^c>?m|GMbJT~pZhREVBJv4$qIzwVTikTF0Mlb|5ubCd5`7%Aa6Rr9}nd)ZV9}hJ7 zYM25gY0XF@I>;AsZd@g1w5YgvO;y}<6o#J>lJk`8zG(J;w%b$lVbeHcXuE=WjY5ry;G!LYjLj95J(@L&zkuzmW`b+u6utxI6~4bel9{ek zj?>+OwPd122T94cNtrc7%lOXs)ev=B_RD7t>{Wt`TFbvJ#MJ zn(~}O!tI#-Wgdn3sbfnX=mY1QC3mj@)fSnEkdV}fw~x0)4X6|T09$@JcMg2Qe`;{* z%n;kHiDy^;K_HXBaP!joaCKk=3}hP3`Cf8v5I|`< zlYik#?C)Hq!I(|#BI}BQu@7$P@h`cE`qnNyA)Y{4fd$FXZLHx>zDX!&QqPob`d(Qn z$YATv^eBb32l4G&^2#X&M(}BqF}AzO;y?~!P8?-p#2Gc%oLqg<-Dqc@H^ROQ{21Ap zJOuT9I@REKY> zYCuqmj0%8_IFI9B#fE3>WC&@FvI4cX41dsfJc?scPyKy(7QnC}X^&0^s|{ofW7QkE zDdvrxS_1K27#J9UVa64MZ7Tn2A27U9ta7di9Hd!$3*h&)aMpj!K#zDeA)7feHsq0&U7^ zZ7Hld7t0>K3mjEqwAmet(O)cjxu@BjxbG#vr5e@V*dyqO5`EB-u#+R=iQSFY5j)!F zJ$H1@yty`Wu$DvnvL;fU17}BXaK6(hek8nzrppIl7@eS^3=TxGFJ=ZoEM7ySVI+}z z9D?M#hxU=1dEK_7?$g|;slbsn73Uk)o^ zcYatF^=40Th#(;$nVSNyK$1zI$I_X+@Y4QzBiSO_pvkH)QMtv_!N$hMpN$yB!7f7@ zAw|F82Nk9!Fk|1~${fd4XV1TH}a zV)+hq0hrX8_PFeJ&=Ua_M@0NQn%fZ(JvE_{qtywvcv4xLNnkiLW()wq8&T?jr=wWR zyC>qu-7*vqZMwB;itz~*_P0(A=56m~b#!#T*#H5(93T+nK({FIsB|l!$2ILf9Dqm3 z1+C`5S3K{%*JGZiFx0Q4e(X8#x6}+GA~iL!pSqSaDc+>dHF)m=@xl_=K_hVEp^)~a z9=H=2Nd!6q7dm~@DGh`vyW4?Zxpo+d!>mgNWsj-ov}2foRa0OdgM zz&6`t>4&v-b&oTFpiw^<>PoUt%K{i*ZeQBdWNKOz)o3%%lo=J^;pFTCLOlV{ned2+ zYpWLlPawIqBM$a?M-I-m_M!6=D$6>Zoym0GEhc;bLN*vLB_Vq#d6}Al+-g0QIrkZW zzjPjldB~G@ZOx3lyt|*Jc7bN6@3$73l+U+$71NhRnA)6OIbo2x=kpzaqViIP+{^szwq=)q0dk0y{KE9czc_ z!YY|}AQ?-u!WJk)_K!o3a#_PqO|1UiyOn#OiW##kr9I5wS4w90yk2;%hmeG zr)A@xVle1X9CcMObs_&w_;q`Gn-?finvFF%MdfZOvZBhL>*xpq1+>dH@;J^7d$=@J zn7mi<(C)p^_96EBv}RQk0S!O|%xt^>`*bHD=n8dNpH)<}Nel&p1V6)3d}ttY;%avH zv~0S{VU-YqHM87Vn`eIPN3o!N+l(c-2&1Wf<{NJk1Id)Tg; zKxaQCVh9IPrgr2$qXyt|OsZz?e=>Q)X7e4v2me&jEOE}qy_l1d&3JC-g?{G>9%Z-4 zs@bKsM+*X+c1`xgmU8ax>vPB5+O__buRa3YR3egpVf|{h40_%*a`&z1jWk^Ft_;{Q zFj5{;xywGyy6p{GZNn`}!QW0HoxWAiXU4{khLomef#@Z8D&!E}>{`W7tw4ccmZC3| zB8~9hdDB7$86EppgVf%_+Je<3YH)ev@x@KD)Y>e`k+&m8VzK- zV?zD@f4uFBan0%b`9ffdj@STeb@c%?paJ$6o3jT-MC!zh&t!jj}oqHJ?$6^KLh{-kQtL3C7AgnT6Sn$*Y0(3^S zbO1D3sM6POnfpa401Lx_18u!4=d!R+gKB2C8aC|zQ;aR!`(<&hx(cbZ@uqjm5EH|1 zU3yamJ%hps4@q?Dul;qHU?Wktcdv)$)4RGn6TPpmXV>~mr-cOJiWQay5sp5w-Vz#( zOs>C~1{Gz^ZC4gq^YY)t=aq1Ox%Uq1m1hY>v1QhW+b-{{=gEBi82SixP{kZ` zAnO8Wc^u#A+W2O0m(Vu1oXE(ODLrN6^wRfFLfz-pNFJYDu{Gnh<}%g%*`@Z->z*x| zO9vj(h^V!5Uke)MU2G=_m&Mk;%IWRXAY`J|+?N4sBSLD?z5cp@&jL!2GJX~}c$rZv zdmxL2n$5; z*M+Kduih=^Uv(z`BIFRc@wy7X-JQ#@s{8b2CK7r7+L|)pcA++jtG8UyC{)Ie4k+O& zy~98pW|~i4@Qw}-^EsD@VrW=lgN$Gaw_2(0essbLXJlm5$5wjhyLeLgsqUw1T4wZR z;1cwAI*f8*O@Db|IQfYEwa@%6Kb86t%r8wYlpt!s2~54JR&zfoe@rb0TA|Z6<|x4c`#)6D4GP?nYtE)f#-YegqnKA+VZ)N(hh2MvnHzx68=elzl?}R+AKLN zESFC&$>5ONADuL2fRVaTURU(;_LrjCymR(8PMggni)+n9=YH!-LaWN@eY@q3*RFVb zk;|eD71P^kagB-Pj+o^jtC^F-iJBhkN-{_p2Wf;+SG~dk7&%-fEsI`SXijGgSeK=Q zC*R`gJ3pFgw||>~UEnwqDBg4WWA`*LxI7!&9r=>6D>g7NK!z2^Et5`?zb-}ku#mZh z8gm^4s^ZAQKZ4ImywvruE4r4+|}CzMR{IxLaQ> zg-%|Y{ahnHkx}RF_nBr<0RpZFR4;b0jJ2s&B}gQ{b0AQN&hSnw>(>CxAQZ0DHgC3< zR98X44N+57?X&(mM}GKj^pMv7XrwEm<2Qpvzg(*fxL;yCGCKN*8dH%zU`=LOIn8^k zn7hyLdduwkyftirGeJcms0`xlcQm4O?R+-bdAH#Dc*-RZR5m?3Y#Cnt7DF_+v^WC5 z!+0qvDK{ZEe*i1a&~%*lTGkvI^vsfc{MetdrOLY^s`$!s6=S<{KuGHLW#s zqoWnbms~ryc_0F6cv|35eHn=eW#AJK5P-kE2~X?FX+1?k z`Mk0uYESC5qHnEX^L#(VV%E}=pavIoODNJ#!uIs#SHyTW1ZY*>NfAarS|5^yB;oXxCeC5 zVDz4I1>9Yi9FWSuwUJ3YOqxCJr3-Q$6vG89P`v_JFI$Bdi+Q>jw5M?o4_(tl-cvxZ z*8bYHbnZb2WZIJP*u-U4GpMe0*1j+ZZ3LJT?E&qOx%oEGMG!3{^f}|r7ZQFbW-%VONYn4!zEl~X9?AO5lrr1&g7!;$m*U&a6bs3#qle)gYyKbc zf?i!*HPkH=Uah48v6zR2)Ii)#%^HI+;KEqr^I9G4TBSKsY;HCFd{2vIdatil`C*2X z@Q+`i5f`UfIn?3@7pzG`%Qda1u4x$l6a6~OpX>Y&WylCuh|bD`ISu`0mZvd5*h?{V7y3 zZQ)@7`)c5z&gW=R$%_V?vySD^zvFSCY|^L8tMnn7!R~mOejTUB?*NSGY5?`WxQ!X- z<-iLTYIng0JdV}eaxe~A8*zD^{?Cr-=kb5{%10t*Su<%dyNk~Qyw}+VS8QUhLzXlM zFivY_W+yZ5S3dGTxo>o3#=_tIDCQefBJabSPJHEB9j!3U_c-%1t$r^Ft`nv-N!(*FLnkkB7dg_X1y0q;d>3UDN4aJ3-=t};fX6U#_e!prF#M#;ZZ zf)_J6LwgvT&r+v%Ld+KT*vY4d=0q-w;Z1-b{A2tgiH|fkrk;;65NEYqfW;S9-kHlDTfQ48acU;{+-Q@av>*L>Gp+4-fIzr{n>_8U<- zq&fYy9{w)JeJTcN;UUcjchpRyuZBk$7Op#X->!$r5mDU_40YeOqnVMP)nB?}+7-j; zM>B;L6a99&nkmW#Za_NZL$cVqOK`aRnRew`>Wr&nEz@bAK7?0`DVcw_oy(U5l+_sJ{q{z<4FRL3!xq-EZg8OX4+$$I(W`aHA!V%0nJY>1U`zriL$ zux;^S+V7}Y_g`fB-2XgGA-FO5i-xv~%*DO7QI`O@PlpmjY0rH--UY&r=obRlTlx+; zu7ef=3sqi)*A`b0HP&6IzWa>*SBi9!dq`_dre>NnG@A6RBT%Y6__IuVoMz^eP|SjP z^R3yw?((wz4H;<{jfEG0OX(a~MjJju)bTdNb;=Y)d}Lre{ICEaEm~PFx@V?Iw`3N0 z_=Hf(=hN~%a`E;Hua)sxOi{ZaRs5&4yc;o}qG{P?!uG3C7pUq7q~l2C;6InE-a`jb z*BGPd1U-bPUqnH)N!D`eCm4rF8>}7ukU$1QpNtzcFn32>FstW8oUuj1BQlg$<|l8a zj0fD)Ghu-X{$%DcqnI%1A1~=4=1ZJTgwp<_IDopl)`70fowV{Yi zcj5KeYw3P}8Gkp1o_nV*r%}PZNuO$S+=v>3Kh`XX?%sYAel}e#Dufuh8mjF2JMK() zSiB(Jm(wESS8;9&X}MjQne8r;>DwWrc_U50PylGsV%xF;sNJb7m?<3kzL!dM{^+dV zkeZRgj>f*e*t^~f3^>MAtU3&~SQr`o{TbEbDk%IgW$eZ=$G{X%jRE= z%_-$rrGUT>X4fYM0heQy7ekedtgubMLY+V8E)sZlU}McCdqau}>Zom`PfciI$mz0Z z8MkBjZAk}%m|W>?Pr-_~^8w)81A&2V*+g|qWYkpC-{9s9B$z1n>&WhMwp}peDFqC)4olPpIA2EM0&+YC0i$EWf^O>_ zPR*Ta7VJiIpZeF}5CA#!d7wl`QRyKP9_BL(Uw5l>8)CygDXaI8xaF;sI#TeM#-tsr z@I(sR8^t3y@892pmeM(;A2>5H6uj`cGjGyviXUi9c`_JQOL3nZVCm6dmCH-X=j}^r)*li2LN3$U#P0B`1Kv>n zRYz*+3wO7VR8vh22Uq?#ODZxb-NX9cLfDV9hYC?8o2bkd(q{kTrKu{pzEsh{-gxqI zjDXDLXt=AjFrQ8i)Hu-=T_=6HZWM*{MLr=s+65mCvvi5#SEiDi`thT+(XK+iq zt0tS8ltin38aiCZ7a5@Cgoe7#9pIx2&Cikq7iR~9Q+B^wyvb61d?Ob%_Mj_<%J-gV zCf=rbNycIYKH_*>Y#-S?*q8Y6_$ASt6K)S0LnLAW*ugkNk{1Y!?<^v@g*{lTbC=$9 z+f){A)!NB9Te-ZsJPNdV_)bN2&xyAmry6p*QP_PexF8_lqw<7L-P@;d`=mVEa2k=E zQ@`-lTeyeLU!7afdVau57<3W4a!=hbJGk!dwmR;Tt>aC$zuPuVZ=tA9-RB!$PLr-( z9<7Pgk;Z)b^rGyYA6A!N?i1q~+Ppy-_rgzNP??B|rP1LZ{N5uX#M0x^3<5$NoNZgL zlr~=JvwYGu7*XdSIVpE^4ZpX>ddIg*M&4hvk#2z~P(lw6uu#j(YfKJiDf+#04*q3^ zsuHEL-pXbQ&`e0@%J}&sUz}8}#JKYN-zS%J_AY`fpn`Ztx{D*gXL#V&e6KiLe<20ImIEmZ@lPhh$GSaLla0;?s;eVlUrKK0~C^X6f ztjwQYBwSr+N2dnfp1^w9>GISj&GYc}AFKOzKYR{f=l)o}??TD1w4*J92Poeh>n_Bp zz1rTW&)ySXE*;B1eHn7EA&#iaHq>P0AgSR&cz21m7;99pTpzzj`Aq6^vx z^|?FMT%t~1(7XMUots_b6S_Ai?tVcD>ZacfvYbH+_O*VlMSl7A>gC++9rxgG(dCDV z7CcKfw&Tly8?+}X@dHF zal74&=(<9Bkg$dy>?a6Q0CF`Tw@y1{nICHOWE&^x~6urOhp?YTpi47X45Q~L+B?mNdzZzZIU-lwu&VkKE zD&%*pGt&jMZ< zsZnQj^&;v|0K?9h#$@A*n4K^IGgF7PxFi2>)f&+X@|K&R)^thRXUW}K?bv_0!%JQr z`AWwd3nocgklFSl!sNb6Ziuepd+?|`-uj1;1N?H1-H;1EEkK(vg_F?Hd=?+S&&RNH*7`oXPFL@CN|P8SKAX9j>eNbY-* z^iyp9pb5*MYRlF?K`cMzX!VAoG#p&g{8Lw01f)2Y9j2>G*`?Bq%*5yve`PgfMLVjF z-fr}=)e+R#-=&!K4*TMIv#+(*uva|IvAbACxA?y2OLc|}%1=k_Pq*7s3461$q%MmN z+LKQ;j0_}$lVTkcnm`(f747RXMR-@;WQUM!R4i17Ng;O>|8fdFBuVj2*jM`FqPy|R z9%s%mmFNCLy2+#bPobSQ*77dlW>#Onw-40b#E!M`b@Sn#s0@U(?ae7#m6XK*MctWj zvOtpkc+mN#-y;+H)C)<429`XHEvYO1H^gspklV{fpcKhp@MfsKY;7kt?92-b)w5bYck=wb{fAEwDIbj zx8V9z0dpu@-;a6mPm^0IA2GBp6`ZzIFCZuZw+V046cu@Hs825?(=Oa66l=8DNYGb* zLR>e5lR83wM9$8&Aa{JYWV4zegAnR(?R81zX7qXN)ct@>y(ZQ*-bA38rnw!XMpC{$ z>v7&(I}J>bv475nrIi*SG-N`Hc01@#bKl4{b&{u@R77v;d9>tC@vqkht=tIdJ*Bq# zUNBPnz#evMtpvt`o&gjug_i}gIlXmGJZ=BZx~W7^-eRAuo(-Vfm#Y{YiL5&UvYO-0+g1 zk}Gv5724iO%p}P*Wg)muQ&>M^w+wsN%%b;Uus}*teWp=;SNgt)M5sOT6 zkBkQ)SmtI-IC1Ka-ojOa!BKA!K@pX~kuL$e@58GpZ&RjUC(juEE_!#~~l3kQ}WV5&|irz~CeOnyDpGc&j)yVOAE*(h#=u0+bhmO9=y zqMz$W3h5PAV?#hws|3NFy|kpNMuRT(+WPJiXOv%FC7pj+^9N>OxBR=uqf6f%-Y&l4 zMfw8~xSZlcxp*GUC=NrNfUwk{ax{AM2WQ(rsufi*YuMtzRJDdugh1EW}(yxW17<})dC zI}K=kISS%wAOb;#Y^bJ@4vp|IIR`E0JCyiBgSY{w&w2@Jn zh*iJg{o8hp_A>nTn}55yYZf-#>oCQ_Zs`DVIB;~sl)jL#F`BJ)x0)7zSYd^3vV!$9 zR7=><@KfH4DBwbV?4bnmm(}9`X#J$%UlgM3W|NvLTV)N5xBKL9M?ZM@;QXLusKDoS z)a)n2KOfOWb5@h;%97GareB>r#*TW4>(YvhoxBF`;#(s8f128MQ7i8(K#t8gnnF|m z^8C6#B;1h-tlj;)WknuZ7roHjFnhiF7k-HgmOYVs`lzUf?P@I&1;m20^}qCis(YoG zZD^$3`@9B}2ka6T4j_n;NC5yRf;0D4m^U&Y4=w?GEgouAMt^93^Sf|Cp{H{eggW)d4mX$CdKik27bWHc_M0{%Y`^L1nfhPNUS@FFtf?CW(w&o> z!Ve^8Y%WLYW_n`TL?B;kJ#z*EJe;4LEELN3lYCvu&>8y!-23t+JhsL9A4qpw8za8H z6MpNuhs6WMf#Wcz-14DtX!}mH2YlA#(H&0mPs`;m){7G=3qO%Lalik%@SCA~m-NvD zWFvG}QAljRjaqPlnw2fmNx@&LOi`e-ynPFohZr+o_v<5K^Knn6;j$tMBAppWxk;(M)MOCdUNg0C*9xfQbU;z5Mjw+;(HQ9#+w z(KAzXtAh70BDj>}hG8hIvA^EoW>)#!lCZu=`!f6wJVI;n>MNf!Q`T)nH|vlAyvgXo zam$2gi|}V|tHHAFK@_dCkg+o^uuwFMO4$K*tllo?qG)fko*c!5fXin}Wh6)NqEoa- z&0G`NE4HmYf`HaqV+Y`&ulYQ~+W9ZX@L!S*lvd^G*TKd?+QqytUkVH?k@sOHwB&EmsCG9+MF<*)Tk6RZ zJ5jMW+T-maR_v|L102?Wq-7cP5bQO>9fZW4w(!xnmPM9rAXiA>JVxbnM*7mdoJX`C zus``?;%=;@tGr#IHBXj0vyvca*~mbl{1fE1k;e-d)=x_rYqMz}(L|%^&1KDEI-a`& z{l5GRrIO8k7oK~1VR9w`L;Hz;!*zD;HD6@WWH|dwMkmV0u?^ZiKUs?n)BQ~-T;`*| z@baj~b;Ahd^i7s<%R~_`2;Q=TAFq{!rkvHe%Y?Wn^~mcm=gmHU9HApg5af%Ar2#s! zZ7Z@Bq({Tf}4$lC`3H zK%$9OX+~LiGj5n}<6Fqq-^B3`=qw#;G#f8`ds=@xpC4#!>46iOW_4zZnfn)#@iK#n zFe9&QcrznA1rg-6C!st`&NqaEc2188AK!=KV{ZHVR|v?-^{`5+*abnL;S#}smp7n+ zQ?zxwIx=2k&_|PqYsL)}NUdZrIgEzR6D+zzxkW(6F$6MMevS`?>z12*#DKv2H_a`w ztzB-P=w<4D6?g^{yngP+@1yniPnx*F?ULW1>Dm3{r>M;uFX^Xmo{y_mJu+U=qsRb9fl(gos(q;@3=V#pW*w4U?QDoO5Hwpx) zQKY^#TBoHe#%5Vmmcjv2UJlLZpxJq&zoIWjF>Zxoe(a$UPnM(RTjNLwfW|s6hu{K_ z@lCx1L_DLxn%+%ed2s4#K0XQ?6UGqN(mlN>@1R$+jj`9T=+GNqpqlKZIFUCD_GPkI;mjCuyjAyqX$cB*n zGg*!7#n6VW-kLga_!Yz9O;&B8JZkeZq%=f|7afU)gdHIK_;#1$YgggdA$h1c&IK3e zh+lCYbo;`Ct@fqHGGX+Fi$!;-HNTqnvNJT5I`oXoQS^=BbZPN97}YWydi-X#M>D8M zb!Om{kA6ro4AeRCxWjl(PWy{|Ly+v(M9499G+uxjKp!c{RE0|CG^hR)rs6XWq_85-H->+Gw`{hp zm}S)l^5EVH;@%dVKp}((Q(%H(v4r{4yVV5b%Wm?nO!qW)pFyAzrM0>f!xw4uZIto6LVv`-=f!L~A51u3e(zV`}G zdgxeL!etJ4jOk>x-i*<29Dyihg?b36OSU!?&DLA8u+XW&9TC~H#DVMW>nQE> z^D>RE6;Iw`9ha7Kt+|M`f9ivW;8PEnD;o^8HVeCOP)EVpMdha6ucIziVl{G65mnZC zSOjdq>*9%scag9wnXPa^oJRo&Zc)(4Q$ zM7li`%Rwe|oTZax*%0l!9`m zTsNT=$-1kl(x(9OQmrMnjbJst!+^>;RGc6TY>Uy%Lh@tT?0w9w*D4o|El~pE>VPPt zlpMjJU8|8mXdE)gubc!Z_=3&^);hneZ&EiL%W=lz!X-FjL3df83Q>Vx>Z6~s6t}*M z))cF2R3q^E(JHcCj;eXRHkdP>NyHx;a0-Wy9?T}i0aPG{G`-LSD(k=4V17O)B9@(d zeo*5d5f?C^{chsA>PwxnyG_UUGwc|(5jVQJTfY$Uppi3uP^-#Gl z%iI28vi%N9kQ8~xXM>)tbttXX=<$q&8jFis#-=(kk#@ID`aNGQxcYHl^Xc5v6!#eM ziBK9=P!`}m#4>|}<#FgxQHW;EGU!Z466M66g}U@vjKj_RDRO~!7NdYIbxB>K?mbs= z*W(Z)TnWB}FYV|tcwDF|*DUc)<^s;PVhv`Ju10HU4zxiEJZag(k}4;X;sJsaW27JWpyCl(!xks2OZqd0?L7 zmPUSZi$SN8GTZB(w?oVUl#c3VjBUx`zuM*sp@s(w1ZV@qB}M^#7)_m3Aa@pff)Y5j zemw1m0q&&oay7Y0Gpff#0vcw3n?U?$*)=VhJP1I+siI*7+ZZ4es$<&}%9s6ZRZ+&F zU){BD*3+z3{FKrW?{ScPmAgf)zQ@u_YNFyS-WkO4dSDS9sJNR<5iLxIK%0@CAeNsX z5DP@t6Qp(-f52=SGR>(fG}a$b5f_smS8_piMmQV$5Sv@5Ty%km#~HrO^d2W9-DKMS z4?yQsVTm%w5-}^OMd+nv4DvdTUWvia{=WZujd3VW1%hTYjIHf;oR*iJhyV;xSeVG@wgH-%ChXE9__fA5OR$29?vLU z-F?WV+O*ch2sYSheMlSb{6-)Eubwa-fLcQhKDD?VHGXD(Qmq}EGRjXHlj<3;=dcjB zD0_&DyG}g*=TC8MD)q0O5%lMcXH$A91*Euo#k_i2;>EXLI(l+)>Ci8Qrc6!;P8!Nd zfa5fkh7)(Dv+aBH(SVbMHDHB#P|!1mJk~rC)u&|jw2LmY z?F4PWEcmjf_rSv8zjaF*7fxv>yw(93E^yb?lxq4`Y8$+xet|i&Cy6pBgZd!9ocbu1 zt?PR)ZHOF7rh{+3r~6VW7xw79o~T=7W_B>6T;njd=>*?OvYvwmelF^iXotf zE-98>4m?iTpxapyZjsXa>cg*-NhYcBn?-Nop&FpXP5-SJB=@H+h!F(gHE~nAHQ_u1}O&aQ5vV!muXteOANw^+kz`{&Rl zEuvzJ2xCGnl6uINpsSfxiJPQ^9-k?s^X$6y_ZWEa*n}rF4F{{{<;q_ZePyT@WaV7lWW^t@>+^KAH(4QKrxw z7QLj_9?V(aL#G{^n9(-tNYrCJXAP8@amlr|P3K|ju*Ne&hvtrOo%zL3;0Utw(eZ4N z&hkM>uL0X~YaRNL9ZdC6ACD`{U}6p@RdD4~e$tOYc~HwjILjTg2kz<*wu8DRH_gZQ zocde&*ar4BA*(;$vjB37G38#PZXKt%eWNb&8SUJ|n>$bZy8lgsV8InN{A_g0{$hb3 zl~9f~%Bdog>0_(FlKsI)l&g!nN66i(Fss4;xritIuSvFwA0Xm%q3XxF8QvpUXlMtZ zqI@=>M8t^o4#digPh5AiP?l>>EpzZzF8vpI(9enZkjbBLgr?3rn}0m#4g^=HiKEcG zv9pfWxP2gI`Fb4x6$RF7hqgc2S$eG6_n$5nehnb@$qtBlF)|xWu4&d(SZQLs%r<^p zDjK|V`^_=VvLN|oRFX3}l(XsoIRNoFE|T^&JHIEPQ%@Q*IDVRDv76Qt?@38YPnXK0 zb=B9@0w}OI)Db=Ig1q~bMsSvO)XyB|osCyy9fEZk(Q-AwtLc>rqV^b-FBE^5tH2HTRJXGFVDbsP#d;x%65Y={$5vIwKBZGJ>ewouvaQf)L1;9>G zgcIp4ShYBxuCIn^~>!y-n{5{MBPp|x&CuobZ;)hN2?m;W?>v+5_d4gAOnu%b}@$Gp7W!~KRC zL!(-}pZMzl;{@z@JQg+VCCP25W=)xAjSpR?^9@x@@KzNDNFypT$_givJD6`3yqqdS z;9v+wF5ZbChtr(Z-8v;Aiuwn-adR~toEBH$`eWO?ryuvcx3b`>@nzsk0-F~;3(oLC zZBR+;Pwuc=X*+)d{{K1H3$<2ufVe$YI!)ym>Jaw+MD%Wg&jMkn9}F%So(_Y8Kt+;^ z&=8_7H)-PWv=OghzCSLP-|Jg5`Q2KOlnv3$d_aeeOvl+)S7|67bMGg3_!)nHcwoX6 zTWQTum7ka*AhCS+@0w-R!OuCKU2mx#YIP-`ZIqUI0!n=9?l&{@ev=5~>0RB-Tx!vY zY%Szs{JKeWhm|WlNA{2L?2hq%1kwk;@XtST6P7pqvSEV-m}7D1aRElGZ&dU@E~6hIJvmiV zE6D-K$0MGeyI^>)ZD0JDK%-Q{{Kl)+oEB)kK+tIujRVt7lO~e{PHIO2>gaS=ocGsu3 z-Fnt}MNEx6mby-^m!A$kd(4nWLn$2k@~frX+o7pMgW%#k4);RnMKYlf!pkp9O8E#V zXjXTBhc2IY*Q@Xdc46G)MDLnrG>~^z4MZ@^8rr*IU!=V$Z7N+DItDA0s|pH+t+%M5 zar29xZ{_5p2sf+J#|^idbPYbaFo7+AM}jQ5W5BR-_9~#5cej8#&%{vFoTSC|7Ju`j zPn=IxGI`(r<32Qj2!X4~B91ej%fUr6_~6!0_g*h)2uP=@*=+;O)+hl2tDNdus*lvW zAXAFknM^|;i(^c#;#}L9G?Wm_pAr#5oI1!^J)NQrio8kRFp-n`Y4J1jbmD%PJ!H&v8IAg96ob5@Fw+kdZWz|kHGPUYF_#xK% z7@g^RzR&aI0>v;}prhyLLh|(|f;?L26w#5*XqmdafhWC`xksZyB<8-t=+)1RWVXKj zOfX7JZbHOf9MA7@RqkZ`3IymKY29tltWs|+9uQgWoh4x6JC`u@BFvEHkjnXWHeZ;i zqmDMmR3DWcAPRL_@^3yX(eN0B==l^Wf<40m};IB|XIjaX6&&)K4){E=- z2n{%DKVq~~+dytzhh0hm>IO>{lV`@hD9h*4uI^fpcsNFyMuKUH0!ElcwW;P3(dzdB z;!j1GF}@Z;ao3=Za24S~g%8GJ1(iM4#wT!YJ zdd#3&o$y)TNC@|EyY%$TB?hN7pb^M@A+?*_(6Im zRAE4?cw~rV)a-k7tkQ>Gv(?>h69B4#{x=X``W*!cqd1X?fTW>V@X!UkILrY8c($mw z4l~~#f_Ulxy|4GIck|(S3Qt@Bal_igG+Zu3mb9hEc%c2})G=!Mq#~dOq@oktKudF~ zEY#=&l$1p))@X8pR_I@?@Yg;2V9dw?Uw?oW))?b}5Z&6)0RK2`?D$JDfltX)h_v(b z>-|xxVXBu$szBZrPK$gk^wxlg*)9xZRCNTA6ZrrGdYWq5BeuS8R(foFMFG>!eNr;0 z4VYwFGT#oYh`{!>d3t4DS%#iP0FZV-#3v*PARfJ;V7;KhuKzjY$ZC_{n;BxmvO4U& zpkieb6sC5|379C0p%Aere)m5MSQmyga~6wbf5bXvM(u{>*0FtATEBmNz0kr{+VPPc;KV@F`DZ7kHPuzwQV-0}MK`3njp1?O3ZD)-ZH}fX^ajOjpOi(MnKT zDgg0zyX`iAQQ*e%A3=#3&Qx#tiqC(#`i~9j8Ei5PL>jMA-Kd-Y{6;kU@%3E`MZ7P* zKp@d#2;hrab`J|6uhbDAxBYPxiZzS0#K&}>QPlT*b;gYHLPrlxO3aMBCvu>L6ngl? z+K(>?A^wtbAlV>DR-nXYW-gjy|BVjL{%?Qh{eq3lUlKoLQK{U-<=dfz08BYA8U*G{ z2`??V9k>8G=a%e^G$5BHquWWk|)Dw*#7hF1om-6sOLv!Opy&vq>G0nM-b8i$4O z@R4VgNaeDi++(;(wlX48c76d%ZeTm*+HXkEzDdu6|qPN>!J-UlV17~KG;&tUr=;8|WV5L?@j#K{L#l71h7G3Mq0*W5>qI={?)`Hzrzfd?1E7A~_nt|==A^Ih-b_0v4S&aKq%bFceOmsLWB3wmH3&;jV;|`F zmbDT0bUXQRT&g5fSzJBc<4qg&y^}>@v;Oqj;9I+kvXrp#sgWImWwArhBjQdt$ zY0XR);A^0swQ=fdl%jxSP+5%tPwm`GhC71 z=3&glT>N?QbFnWxXD3n$DhsN#KdJYNR^V;He(=Q$l|HMAH{$xa6lZzSJ6kzBTM zW!@L-KlB33Yq#Wew~{d%u@yg`l=R}17LHO=Xk6sh*}4aOmveSISQm=cVH>s$y-43U zT{g7;W$=AMT+FP@|JJH?7S#}4ms8li9b9H}6KOBX^ABoI8$2cU6hnTbd+^rUF+X0Ad4GZV^if5Rd`$ z?~&xBwe8F!6jf1L$v4=43Q%uh=-Y>F0LV^C0H!oyzk`ZME%+wHEe;2DKVzPo$z1|y_ zm9-$lRILSQ*!zS!{1i+CApp*7^;20)4Tc%(@c)v&&=#U`^y<)qE_JW`wgnMDJ_wz9 z(aRYVl3$cp(RBTH48oMRg>BXCPiPXKc$mlki3t5Z z6pUT}GIn;*N=LW)SDI9-%G|_@v=RWMI08rou84fiM8YME$joH3+yAW=m{<2NA~@(e zK1*b(C8GtKW;-%8{F6#Q{Wcm<=R2tYwzFCEy1K-21NI$KezNXS{FHTz+WHL8eaWkr zlbjjkK`l`dWYJ0+^ML<^cV6nObQd(lD{hvPF}-!#b@7BI37xr7>OlCl>rm4kPGHA&(nCLc{JQ=V2zISHhs^wphFuQ5 zP{@Ir<(BU2KcQcgB`KlB%wqIX<--G8hfi4aXTd$qUl=57_bR2v{_pIwK3rSFE8Dw+ z;2)~>Z9fNEy@-DWjwUwDendH3JyTmtkIS29D2W zUraIFWRZDm&J4Fa(GT@j%|ZdW;RW({Vu!(ae|`cveZ4wPXX8cZ*L35ct_e{Poa)5w zSBItDffBKUT-2;tMk#X74fAi5l`0Hy>z3Q<7v6Gw%&sQX93?V!)^VSt*v32oToPNq z{-E zF%=L&KrGKPZ>%pn_78WmAl?yp1Xcf=(s-K?l}F}VbLDh9Z%Mbgk2D}XB!jV^+k5{c zT*hARUhN*s1wqmPUd}NbF|^mhst6PKb+K6_YW?0eXu8RnZBZW{+|=81jD(~PbG@;? z(!$o;&&q?NQ}pI6ezqtN9zL`fRPG}<+_iH3@{xuUDnlPw%q<4;Zg==w7VX(q*p|Kf zyK4270&tZ$+%0)rA>llRFoDd_PIm-N%&b^vaGcBG4E{E7{D9s>P-K~XFU%LU(bbr+ z6$)#lsIv4l;u9Ld^hX0k)^eu)xThCxHl&i`2>cx6%m;9m0u2S0celtO=3W3}e+9Ro zTDKMPRCP~nHIFF0moB9KgT$ahAFlq2I-ufK3~zegqT>mDgC0IrM(~N~G7V8-vp2#cySSwyv+$1tuZR4 z&}(L7(djy(gxbf~g6P%WTmq&`Fqc!7X+;MxwMX2C?j}&B7=@NXdC#$i`RCFZGRbyT zj@%=I7LcP!G?vk#;Gh^#2H*QeX(uDW1%~|qUt(Sm*J@gPWXQ{*EQHBre=(&HD&CQc zjb}zR8r<&PTozyU;qp$%0dG;kjpNwB1nfb6g)v$_+xT+6Ou{F>!Ht4q95CvK4DT@v zA0GA>J-uQ!Qy(6#oJYu`vA>C8InuoS;^vo6dpMV`=8+xzbCSqP{6MSVu>Qbh{$Qsj z`M{#a^HW2Slwg(59$Xsp#a#X**QE9|eP%f=edb4Y)F;m&QtUndZtmEypOd2^QYQ`$ z?p?bLzT>#^UcB-O2=Oeg6TWgbn06}Xhrmp-zdLVgdno5fhy2yUFd1un)QUv8p!9_Y zcz%6n``mD?euJjiBl>~EzHu=t7k96NM#IvPE%n_0D;?%_)&7R`q}*(YN*fRE!pYmz zrWc?^+OSNk^P+V(YW%UPUI$DUS zxDb#R3H?6Pg@9GC6Aevrnh zhDc5IRD$V`Q>DrM=Tuc4Zu=7~z9oJp19!9PwT~{x2dEpU&}`RQ)B2Sd`k{pP$Mk7+ znjanpw42wUFscg#gutv-{q(q!TNrFO1m>>su;#8tReu~~IVo!?uOupxzf4HvR+S50-=$9Z~}0z+CiwKWY|^1M~$yVKH#3T32ih-%-jLuSL!TYoSc zXyr^7_^|AFN^g_r#y>re`mUCr{87?tMT%6gN%M`CW)3{ZGw|0HWJ`d4?j(U(i;W|> z%*YF9d7VZo<@4C(Ys~s|j5Dc>H5Y4$}pJRq>b80^qLU1JzTo9joO58rn=F@!je z!YBDHwH@%jBEOg(9S^>^$Ik7ay^`5lEN|}l+;uTtPJrjPs_W75Z*vx(%DdEe^frlo zGF=sZ`YIL8Up7%Ug(&{&Thf>}TG4RSNMp8)hCZyRmz7NF7{T3IxlCa@RTIv!t&U!+ zCmKyzG_j|quzMPN)NAa9!0Mn^Z~W6EdW3dzoR$_s^+EDYg0S2XpKX5d?d>Ht7u5)vBc58i{kScg(ErKk0Rn7(?aCssA%!Ih0hre4t?7Tfy?D zocLZ8gP}iQmIUF&K%Fr2*lFx?6x&GOZp?jGk9z!WR-XFaFZhDQ3t5~hTyg%Z&K=}H zNMcF0w{-mdXMOHS@p34!#ueT^7?DkW1bMSRA>v6P(!MC8z_tX#aktUT3%YU37n z3TCzUmHP1|UUt=M?K4228t2CtMY@pNEoalwUpPJLq2Rf9`OUMZLlSz`YwNP@C>a?{ zEvuwHJ_NNQ-LqNJy>DBAqZxG95g zM!*~UDyj(kTqGQOcnD_K5{#)iI!HTLwfbro7gF@5NUbAamgG|zZV%xr%L_Z z;^rflKW)1hlet>+G}3uo8kygBMKeu3_OwxWcPu?EezDgN$*He@)}v?_ll`(KHZ7)- z^Ut{ZQ9^M`nxMr>?JPn! zEczXYub!Xp)kPjs&6z|H2w38abPJa@WXdl?q?bSP*UgliDWnv0 zT)t@`X??;CegrdrHcX~Zv0gM~%23j8rYrJ6>SC@*Tc|-_!qe_9O-HK`WT0^ZiD)?@ z)pB&Ge>!N?b~X|>kp(=4;zxwC25kS<k1pn){|#t$xS zL`0p3*E=#LsWscJQ6unC#g%%T$ELn;mAGQ6yzyTfZ^=}{r>VdvbkvQ`cA~sX&Mqd)%87{5O=bOX9hU`2;xKWAkp-i74G zJo$WChMUib_OgZ4FJ;Aj3_F>>(!%qowF{H()m^RazqLc_uJ0*Rlvs`b1g?6-lXf2@ z3BC2yJsbXzaaC!W4<#3_AwUn1u(jS>T(l&+?oHbKtBP%6-+JRbSWP@J^9Q4biJBTb z*X1~|%s0nt9oTGM=_vN!#I zg6|&{j@``?<>63kk+&t97J5!KQ_YK2c8R0JursB_lWY76d;&++XsP2vr=5N(_DdSr z)&@|@>08V{=3Jk!CU;5jvI=Yurs&S!=!SdGt2!h3T#7Z3sI)wEmu>1)hS*A=x_E|;f_=JV3zf+Fe)0^}FtF&HOgBD1C zzDen$KXuB%=@pNv&C6SwDdKTG$IxA%v3h{4UcQ0D+1M7U6L>*?dIBX417((~&pQ_f z-qIe=Ql4G(f2u0Hs|x;zxo4ifGb|A*;tyVMhcT#6(Zg|JclHky>Cn%+g^sD3I@CSC zho1Mkk~TTqt#0b=&e;`yaB6w~pjQ9SX}%nfz!4Jtg0Jo0331+l+j30VwA7rZ+GlBq zi1}b@ArZ9_@@e}PsrStpaRYA9(RA{ac%N>8K#32%j)T$X#|Mj*dJhk?Y4XS^k`x>z z-=+=f+f`uqP-R!3eWhJ6FN8~Y#Osd)WHV_ou5NG^PTYZtF1*qAB(zW5w)Qqj^#|%w05J{2iuZ?Z9|-c?SjO_7iNt8m zWhQJV7}7Nrmcs7Nke)|Ylk0JQ!^WAnTuZH`4EI`l8)&X*FI5tDegpynI+1;=9;FyTWl(FdO~(qa2|q zGSc^c=@Ofx$?;@YhO~vFyx!>Yo6N&{Gn?v<9p9$2KT02SFR-im|6T5%VUf!JV_+Tn z`8HG;obTdS(Z3MgZLB24e0{Q17Lkv9*n<1VUtAAfIscoS2RBM{>;3ZW?i5BF)H zScuD23|B7HGIL13uaVqpIkL=7YK}2$=+w*Z*I;8#a&d5k!;DBXdE0!+Y8?DUcQe(F zWzM}EB}7sVV<)r@m!4_O1jlcJ6!ND}F7?Hc(27Ks=Z5?8)S_<%IkAJ$M=ND=N;j4! zqwvr>fj%z@<(*bFNd<-}iwYWtXXuI|SZR|tTY?^Cbvi+J0xlPjOEap}H@oo~EwMSr ztj~cKA)!%GB~(GTDD}0?Ua*CytFHG6d7vXf5X}w~q(sI;uAJEPBG~%abn$NX;QaP! z08qK>Cq~|d=+o`!z;Z8Hm@#h7i|cTc1jCl!BA}Fw0jNg2{*IHwdm+!@=`z*xW3(hNRuc22bp{MSKkn1LNb2gRCmi zF%PXXSg1Y>(wvdHgmQOZ|0$pY#ZeBC2B=P*5)08=H8W&E|HbonfBImP_&BUz1R@~< zI!jum2fR*auR~Cp67#S3X7hP!R!5VK2fnLFJAdDS$6n~d zQeTYvR!k%)#rT0|>sG^1^D`j4DnbKpj6~6ZS=`0DGd$p9MQFB4> zv(lvmv5cMk>NqHRDoHkOW3V8&#D+%!oH}((w)rHfTz&;h@uDEA^LdWPgUflhWYTY& zQaPCWhpFZS58gfJ+iE6Vaj`V|lqYr_n89i|+ROz&ETp|vO+^~%W-p7z!c6>=weKQA zuT@ZXp4@@=+{{!Ksb@ecUWST#gtUiPn)|ntXJ{Xz9l6>(ulwn>^xlr>GiG%Wu}XNi z~x(9aAqP%&_tbAx=V_c*z76kXjs=8r)4{r-(-;p(n0SBpV&aZ0%xCM zSTunP`J|zsE8w{{S4VSE!^6F6L*Cs;U~F={mhM+D{IQ07nAL6e7*dAiG0_>9q&v(~@T z(6iDM!HB&}ma9;WPy!yg{+uUAxC~aCJ4jmplpy9-KeBBtq7-^m<38y-qq;UB@EUt& zLYnHb6zmTEj8_Y?k#1Bk@R**5W}C-OXj6Hye412CUB|Y#2Z|+c^DerYn);SVJ&nN> zii>;6m$_z{;9ANd+3JKg(Up2r`!Qt=F{*)H!?sk`c`$!wIf%<%Zb87o6mn?At;{hu zH@^q88!k;9-+KNyW)gRl(QG?W=%;oEp3rfS&~3kZz+hzrasS3mb3}3 z-$E*g+7&?d=8wI&$pjNzMmfHapK6?Lc9GpI{(XZCyMSq=>Q;7GjMoO~!P3W65wxNwd?%W{cSO-53c zwCSDxnYT_kW?w=e&V`^nW=_gvc2L}kP3?4E=H)n5h3u4%CVLO28Y9lJ#bsq=c$$7; zQr`#WU?c(q_1$3Vi7DLi>f(fIXYr~A7Kc)@W;zKa2+P3kgGr@+`Cja?{us+cZmiQT zGPs%)2?{6Tr7T_Tlz~5R&ZTji$A;t!fMoe&Y}s#`tkP_t{56oo1gq}l*D=AiV=!8p z%C`cB!`h3+2V1F<$cqU~uJ1BCc3BUoj!~aZ&uply& za>V(X7E1JR0Z;8RGg*4$=kE}(rQh$sy}=o|+;2du;b8C2w(Eb{*GTKm(#yYRGRWVR z+nle4AK`J^?IrdFA0cKpY#d)EpJxlsa!7}zKo2{{3G)o5Dl$e@DEpS@cH{ou0#`=6 zOYlgMD06g9g;v*)yRGi(vc4(;f=+>jGS5!Sbw@rnO zNnBnED<#L=JT3d6KGOdwHB^fwE8h9v_WVvF=PIW~BX(m5@m+qZ%a@G@213t(_f0wy zJufvHGiOS&a`COePSeYLUD!l=n@9P+AUy4x%SCrp0Zp7wnj)ppZi-Dwc0A=-W1+Va zJ4Zs3~PB3TbmCsSl%J=QWSw|G^M4jB2r2Zfgry`EViLY|d$|1WycUljjv&cM!y{3wO z{XMfOX?{GfyW3%JD)b#}_Q}zjL<{{Mbst1t>9>4Td@b)@wdQjL@%CNMcf!SY5&H}86tC%>sS3!1K^gAc7ZX!XjR_wYeCE{>urjn zsw5#U#U|k@mbcd{_6-i9N*CD~W^x#hSv@s}5|Q8g3H+;xQR3<1H1CM;rA{g6DrU7- zw{1)c5Q8RW_mFW+!VUXgWjH;SKzfVkZY3tC^(loP#NeV`8*z)fk~6R4SROBXjIISXEiOrk=k(B1!@% zD;ED+jqKDyxy%5!%SSEd3C;@=);b=9jW-O==UtO?gmMw01k-7sy0^k1Qo(r-)G9~S zR}O}h66)%ZKFaL#rv{R*wJzu;(eho7bdjeTa|KH7OJtuWWhGIjW@+UWPimzvzJ(4@ zsnBNu%{`c{)mIo2>_ldYzyK&YfCKNDZ7#0lDtIhCEL0!FDlhDd^GiP2&L0Op{ zqLm!EV;5p0%gzRQttGxW^J7D71I{yvIxx+!chP%vF4ady=o^7^Gzu%NKhm;mK*Tnk8h`-I5tEaduNpbrXCa&^@Pk{t~Wslq6AUW0y=PPTFFxB ziqw?RG1ki6ntdMS-O}6_ZL;+a6)uW8Rm)P25xc`y&0NfH%-5u;+?JifHkzSc%d=95 z=}N!1Y5yqPVf-bF@(k2fd{_yNx7*k`(_P7Mg5!hOLu~q zXU`-@1*v2l7ldCDElvte_&u{7!8vg(-nFWJOg*hO*(rn6M|^|;+#t{0pq#DQS!}s{ znmAR;t+2Kq!B9%P{IPt6nm31A>yB@F((kt&`g%YwS4G2H>5J!rne$hYYcX=EJCN^b zD{`~Vkl+a4ydAe2CDyMxh$8-MZEJHWe0*e9sWxNtRy~_V#ygTdwT;9GZ|5z;g0VfMqu~H#16pkwruKdiw8fcW*Dc zN_T7^PW`C;ouysRjY+BW*dFwjjKCapX#OzmELzfX@1X!BN6hQpH)2%e6DQ{9lie;R zHLl6iB|&S+VBKjZkAtddkNSp&vx9^ttubK}fgh+V?hvO6QnBXz!b0@HB(8$LLp;m- z^Ho+F@8?h6I(Z4DYt`Btxl2k)dVx0ODP>!U>)`^$+1c5hEkH4#*t!R{&P~g8tN-&~ zP&Pw3X{T7XtEEq}u&+P0G`Q|k|Zf^l90ED{oT!lr*YZn5K1r`n+*KK z4|6~hbF@@%Y=g}QGqmDSAxYD!#dpD>hspbL*8Cyiz%3GV>^_f+jTL;iBRCuWG!bab z2ut78K*RaA8bK#y!Kec_R%-bn7liBmUs>Tdl~tEhd`?@sWmeP02BrdJCc{BAX`1A4 zXnzb{0VUIj%lqC!&}+SiDwTOyGLq0Y*~gFo4WBuM(c&tGPQ{06XUw|i>mWTdvwq3M z)lQ*x&zC{);5X8cbm5auZ2UsK1{ay?^|n=`7?=OkYUl+jNr?aZ{;ed46#nxiSYynP(b=&GUUd>KG)hF^?9^ynr2pwdY znhT^{tT!7<;*l(4*mXey?I%A^73+Bx0;sG>VGPL60)5`|Ot!7&%*@PrjUw$y_eedZ z5)q>1_@_bj{cI$8B9{&%c$B;JJ@zSh%rx_ehQ^wWZe=aa&G+dfJ?>g#?;-x9ww{}@ z8Ytj|ys;-SuVOP3cXhq0RHWquf^&1)|MEcd^hMB>y!WBXVFL8Gojtm;ivLB*!!9TpmPSiZ05(9}&D-n1ty^P0(6A{>ED_tEm{VtkK!2 zIozqaH)0e~mp3;zEkw3&CKyUFm*c+&*7pnk-vg8F(qDlG=Ju^d7P(CIy}v#SWy6#{ zC5AQ|7Tt~hv|gT@^GMDH|F~VO-*khCtiGscU?AM3-LQ7OoxV(O(aG}KB#murYqCJY zR}JQKmb`q1OB@>5`#q0O^)4 zfwS>_{}*SiZ>{ggBTcyL~trKtMiLXB)i7+JkEg zwrbs8^xEp{gFv@)h&yh~|%(_S1sI}5kvNz#KoolbX0dv?m#si|ykj26(* zHb{`*&wf+WymH{sE;q9dc-irkF{YdDF7og96#HO+5sUHlYz&|%{#=*#%iv++%)_qT z6UlgAk-W-Em$CVy5jHNqCeAxpu5r^s%I~)ph1dy3)a@6AI20K?9(Ot^8vseF4%}FG z=K}PFJL@@;31+w@hDd95Mbu?92?36zlhk{Y5e*Gr~kGKT+qvLZjB*kCWGTl()=rRd9lDI8)g?a%f;A70ih~3V44S-(yUQEwjxm|p9 z9bt2%IBn{q9#N-V6v8f#Smbheqv;vC$mbU|-)^j6xShlR?MUQki{tHRcm^Gtk_N1% zCMSF%T;n3R=J`7B`kwB|H+z_Zsc9ArAQQ$$#>f3ebuQr0xfE{Gj!v9}EQ9xLZ71fw zUyJvtJ6R&(G=XRD>v|k$a?V1aV~!JE-rhOF${SQK=%dzXic`72w@o#QU-U8%>XI#X z$epX5pGgvcHCYJ&>^(yO0xZ(6uevswW$JVqXaeBRYcVy?4N@U?AHx;A4b~E;RLsdv zr$px5f`$&KO~x>%P`g!g!%_CZeT zX5REnsr6_+f+2&U0)UxV-ansTOkWkRwVf=_DMXSNYgbrww(NuDS_8{PH==&^`#;O& z_eS$9WRb6#TMFxL%BrWgr5=E|;1V>6$4b#VwXla#7?SHbzKB~CYL2P|lBX}BM!6xd zI`PjIVG)UyzC_^`B6s5}%Q7=FZH*p-$?$>6kZ-U`{&zBlxdnfJIwfDPwT1wg+d9>s z@^_z{+b?HN9(Jxj+^pehXb&L|y#M9rVzk?-PgBJ(uMw?(UBAA~Sm9X)P;A0zGN9~! zfM?Jg?j@a>S5o39jhbog1tgLpptIRgRm&GV*I*KXizHnHQwju9`pb0TprHVf0ZrBO zN2N9`2hg@S1%~^iSUs*0u6h(xwX5m6Y6b>q29~9RGv%h;rVBSB&G@>0yN*O}KoIm^ zZdo2-!;dsnF$(Go0*m!}MBR5m2%9JP_`dgB&9l#om5#qYk_T=#UF>WYmXz$qtJxQ& zFo|m60{51ynFXFTqf(aj*UVX_nqDP-6rDZPhgu?JPj(iWumQP zspRJ5!AOJ2{5C5OHw3`4ac;2sIi_MJNqc{J50BvhrhF z=)Tx)@g6?G1(4MQur`vqHdp`yR|$+%#0oyOYs&O@#I+ks+KdvAUE)9Rq?6nNv6lbX z8FW_hKBUuX;W7ADlhCub=j+U|8!R;$Y$XjmkJf*Fg=+V$#=yUk5gE*ljk(n_WFY)>D=hlMo$i)=<S2&kq$E7A@LhV#-Mu(xuC14F*d-b(b_M2uBKJLL7CjF!}P~-)smL?r%miMBkDW< z5$RILH=4B}V3)XYIK#E*qiRNg0en{kHv$lX)tk=cejp5U22_9q9UF%@7w@Me=N46q z>GxT$Jc=$Fq*Eco!*8FZ${`!1YS&PoF%62kcihd9DtVXQ>zAGc(_5}l? zh-dUpWNfSp`XiA6$@U^*V!V8Tin!74Psen)B&J(`4+b+V zLp|*(m&5+!uQD^o-c~>8y^-hjgEKVS`bU7QVd#%nW6jeCm;&Di_@8&Qk=CQ>z>hX! zviKO1F>SC`1Nj0rMk^6)(hn#6|NmIz|9#^Bt-$|{6?pzV$rcwvLN)H1qkvDOXA!Cm zdgkx9vwyw?d2WzdgbgvW9U8-Y5F$B^0r|{Cb9XnAB$i>^l`j79g-sD>{aYnHKsKB! z9lJVsY=8V5;IteSF)<;E9)Q2mp9Fk&eHeEFh3P;%pRS4u$|jl?bc`PWZRL-&!|p-2 z9{(Dnl^A!8h&i-^0yo-#cm`F9-nkvv)~uSpjeYk^%r?Xy)3V}Wi&Vl@)IFh}vbq`{ zupx?4mB=hE%YoGH;>{+2q={J+$_7yq76AN+(cFCvT@8pTff`o&EpVcQ1$RdA8)b6S3BSo<`Fr~VSEOFC<_CUbNVXbq!uQ`KU3Q#V#9C8)1deE zGJ4IAHl)1kdfg6yJp}&akdu z; zgu_Vg6~LK@AMY@w?=9T!#3Sva^2mTNH-4RT1(v zvZ|_yS%1Yc`Wdy_(w?JGgW3ECAfsg2_NtU)Tay)RCS?<=q1=9)EKUq%SS?cSPXX-7 z?y3r@vNAOd(6E|%<8T?&`q&gFAhF8vZUy|$U4TClA$1ru#%Q`yr<*p(HDUkh0I^ZG)1Ukf?t+$%- zoVf%3*ff220bqe0p7|I?ACf|Y+f8EJwkC$eJ-h+QFUqA1(HWQgYf;;@&#$VoatrYA z?s%rVzek8N9_iQ&+S}Rbi|Vlh%CIb8HFU-%f7#zt=Z`^*qk46NPgq(0TiySwIrZ zYJ-mrm5=!X@axgIY+c4Hbyd|0fQ6G434rP9>e5lwNL;>pSHQiZ0I=PX;vY`V0PoB@ z^G&WvEEEsY1(ihsUf2pivzdQybk(nx%A0=48Rt^5>NzL(`pN{%#S;ALX@)e$^=a@M zb*a89LmrJQ#loh=Y;3Y=92_DLMMdD(fs(-`Ii!j1ZeX*>%mtvH1tV66ImbV>EtpgO zrRXwc@NoKRF_``ktX*34hdqymhQ>zt;5-i~99<7mz}jzz&Cf=8ujBA1($T{zHnoVheGAvO@jJu8iIgce>6t%jxjVT$sJ1J9yYR`3Ph*JPgY;3G&yyT&|>&N=a39IE33~?iKXdrVq)6>96!~p(#f=ka=bs`+h_k&?v z_KzS-4PTt?Qvv~u>|%S{xEi?*8w&zS+Ri&Gt6HBL!Mvg(I51IuC{96OnI3e^S3DvD z=|;E~J6Q@Rxb+Bt+ON>XmPL(dun6yt$H&J{E;Hi+MMZ3_&OQV&1vFR{N=K>J;gmYf z7$+C3uBN6phjMP2B}zvg?}l;v0Spy+EZ&NG~us8(cB<(IdmduqbXO#7N;BB(j=k63EYvWy6$?6=roc zz%m2Vr=QWpcqY*4w2_jMq8le-mBze2<{{QJ>N@KH1mgOhxCh2k=6{z>t!1?;MZhi? zSoM6wVjifw;-Hsyk z&M>DRcc0}DP;7K838np|hm-zEEZE-hLL|{s*Jal_gw;BCvhRc2x9V)Ht*nx84 zf7gOKjsIp{XMM4E1p*nqs7PghUGKKN!PDU*bh!@)lAPhH?;elP1*n>LFxWxyliPFL z9X^JrJ75DAiMMbeObrB8fRUxm6*WDLeTVFp_@FNH`mp?L(?#AP#pypkho%64u&7D{ zRCBg>4!9$mbo+)%73e@;jhq^PyuRjgNw7MMmClP6mkGNCLVPgJwbdMhmOJ3%#ctNo zex_>{?L>msC~X!IrI`LixHz}`wB zeNfl94a~DL%4vN&fSR1^@%q%^K?ravHZF7zAhe^2XX(^z8D= z0eD?t%k`I(z3&m$%L{)IcmkKoQ9N z;GzprmToly6z|FpcXGzY&JM1Of<-rZ)^OWSRkG-)s=`vZS5np!o4&!BV*_nFLMaaz z(=0;Iyb0g6U_8n&&jo0^**TBC4RPb?>BFC#!^510A`?ye<6(06l%~p(GZYv`^eK?l zsxts`Or2&G|J24(y!kBda1!L4@tbuqA|fK_$}tJ>)0J)P?R~p}IRa76_jN~8sheaz zbP6c41#~Xvun}y2Rw#Ey^dUd=h0QjR-uUdpyMcZZGsk07-MF41Jy*=29(JP+72OBN z11C;8LNo^MxqFr-bkXPyKfovaPJ^&re|k(VZj2C7`FbRPC|N>TSy|7uaoTSAr#dnKZ?PS@4|sle8yh)TS<5dQor#9zx-lVL zo|7Wg{fku^Ju%0}w+HPSLA)b_N;W>$-|{qg6AeNg-dAxLH@CY?zXL~Z2Mw#R9K3qV zPUfwPVt^XP^4UIly1w*r%Wd}@loRJX_(0L)?D?Zn1CMmUMMsl?pAv;gPO6wXqYbb~ zk%yhc!Gn?$I~`6IyWADPY(4j4Lg@movO3_FYNOV}7yqJNXSIPpj~rkh{)jSUUtj%) z#SKZsc%(@q1C&(so%`9ZG5Nr8wEaZsV*uT~3mp#QW)82sKIA}T9`-hyT|EFX6<_*l zmFLu$yeA56aX#Z#YQ`fhdAWOa@K$jNcPs9Qjjjt0Tmn$-Fb64EFvn3tNhp5+u|FJ{})sG)M?b1vTfk>*gz7mW%*`Z zSzTS-fy`9%qL5+a5@67mSn}8}Ndnc1eXgrJEmy(9c~h6_e-it)t}oJb9N0>qH+dL+ z;^0VvDnE49GeKbkIcBh4x6@~g{sGE+(+t8OVe)r!=c$Z{$jL|t_<48K8__=(m)CrK zO$YK`@!OkXgSye_+3Ghjr+v}(wP4*(*I6REA6N1WaP5D7#B}8ejz1p9lYgvO;zb1?)ktcOvHSp4*}VkpQ%2pa8fc<&xvtV(*5{ zIva*dP)D@{7<+y(nTrXdP+`M7ZLMoPUEK?b>_Dj`P%$R~@JENDG!Con7gyrWQ-|xr zy^P{d*V*js>^O<^5@;#>)X$e2Z}JP8hRZhqV5_jNZPOe-WQ6fZ*6b@VGX1==Q|PMd z>fJrDT@t7+gFaxqR`AR|Q2^OaGB~tri&l;~loF#g{06Tm#CneIKEAQBKVw>9)5Ch> z`fs(hCna41@<22TIA>>dh`>;8%SvGO1QzKao}8tGhflmPUaZG9CeD%c)BPAh1g zhhDV2ynN3^3C>DB&>nXkn~XOb*Zx@}P$QlsMdisVJKc!Qx(Wt6s?sLI86DjW+TnLk zLAF25cn0*J5Bi1sF9n2ah~_QOaW<9+5Va{z=^6sBb^%HTaw4iI+iWJ)X;3lLL+P(i zc49m-RH}sOPEE1*n(1zW;K{TPB!$`0SMqtr58dRwfXg?OmTrer3)lvQjay>*hr+-D zjJtw8+vfat_;(gm1yc1gS?@cKs42ev_mmRyznw?^e;;0&mp_EyYyKxGb-P=Qc1n!~ zg4VPbiU;xcd8vB`(lU|N_}`<>{{uCeuaHFUnG;N?q_U)>p~@UZ)A&ODR=^?yEKbaO z|IcS|BjK;Iv~=|bxHwJQJP&~g!Ai-Q&%f#L44d;ycW87ack{3& zAeWATuWH|HGKDg&0=FEl3jQ;93mCKLS%Z%x<lq-y( z85d^}qStP4rZ%ida&V>O$@&}voTEMyqK%qZduMvYE-a$lLCZF2YSuSYZc$}s2~8H; z;nu#?3BSzWsc{>wX%^&aB{BGL61y@5bE>#&HpX<=*x`D;S(C@zx_RaSnl5w@|Sf#$9G@) zL3-U2==RzdEB9TD=3P|ZgXoh7$jZ5#?;Q*H7*E-iKtcT_%CT1s+ayQcEz?XnmU}mH z3okmD_e?;d^XZa13I3s^4?Z>x=~)-5Ch+R?^q`Qtf8rAZVN_Ut*?Hw*&x*9KEaQs| z`41ALxM?oY0!O#cLop??{O8`bSdttHuXJ(uGI~c9DvN0C(KlzY zFy35*;uBsPMwm4Byvmbp5sc5v&XoQQ1urU|*;(&CtU2`~4N5PVZmRK~!NM$OZ+_4K zURtS{HL(B`-^eeK7!V;T z29LKC@g+5KJd&y#?%51hDU;mt4`V5dDQaHYpj4*U;nd%(iDCU?TU@fBuvC&_HKMpvy zS8N=C3%ky$fer9+%WH6Z;N;)43KOlCn%==%4&aR-cn#W}>=(BLZnEDM@md{<;dl4y zCWh~WOV5Wof#{hbL8H9O?>i00^?}WrVCnDR87v9gRQfDeGr%kSpiV7ANia4(Z!eiZ z%$dOfai_+aI$4LUpr=tZ&T`E~(K|87X7!p&XvZe@z7BZ4LO%|kf)Qw6=9r=RJw_3c zhP*js-9@*pIuP^dvQ3z@jip*dLj!Csl5p(mh51!>-Fp6MmoDbnlfnB9V{0ht!MMF9 z=Jlnbi||!>;|oY<+0ujy{lRH3S~`sDI@xTX!B&8Q1{+*Woz)R zWhwvWkw)a-*OYL#`QL9^h8i|h`U}{{Mxt9LECM@T=vt}~*-hkqN>JXXDjIn>t`{?# z>%SMnjAsB=sNI|KV7pZ_E5G-n*Z2&+5~pYb_oR%k?s`(S2(rn%nSry79|GwBuTYnA zz)Qy5&U%G%@*_@>+G53=hy2=13e1_nB-o*ehjc~HD;vGL9@8-7DWDt}cisA@_k?)8 zusk!N3?5M-&-Bm6d5&qJ6&K{-a#&?)u^xEj*X2$Tld5E<>n3y9)sZ$O3dM8$&f_`R*{1hoPtB*=O`N)Ura;iq~E}z3u!l*=Q-6Y{vkwMs; zyMbqYmh>0Js2@Zg;|>M^puotp?WD#qZ{lPc8^7PObk!{OrppE<>~83Jz;IOpn%kPO z%*Xv69yZ;3vw!EgAOuI*DvYFss)L|7-4hwWcuHHfzSC zP_w!rDWo0KrS^2j-+h)tT?^}4@%V?I)UQ>Oh05F8>gI}*-tmNzX9qQIgaTFTzjxT0 z_@qfe|FU(J7Pj^rQTRiFUCfr2{9~bEwgcvw**SD8fuE;6QH1SW|Ki~8I{9$fy=7e3*Pl#@cfS=nF`4RMdy2*y+*_OIL(Kh| zndd>ijyBQMN~@@-6Ud0*|AXuNW7dECH)4#UL|3i7Z-a%v9fN?~Aq+GfqZT#Y5?$L7 z_r@={2l|h*_~fAlBLeDM@`evYXR!a&a!f^=rwSLOj-Ygu?Zcu7ykUMnu~%GMUPH6} zK%au+!`ZabE{AF5FCxl_Sm~M)Ahy7Gs}aGP`iW6i}cm9RhbNu?T(2Y*s8juQ#t6n%3`h4 z%GUlQPJ;OK@jQms$US4@R}+)T;cYNc+?w6IG_k`&dz?Unq2Log?&H9kgC2*E!bX0$ z#NE`>zwixMZsnm*{A&fgg>nRbmdC%#9DFUx(v!HlvZmVQ-r=!pq6tvouYpSr?w z<@KF|d|}d0m-fteys;C^gcMrRISOi zc5nWwvuD)j8>xk$nUNF&r|U^0@zw#x%(IYT3#MS_AJx4)eT8@T>!j7e>O7h6ZzK^+ zFd>|M%{rTX1sc{l{}ebJHBKtwDaZO=OW*Q^qx~TA(4$75EJraSJgsznAsTHppw7VK zxi2~2h;VqENL>-AkV4;=k0+u%M7-y%SD2#t|@3)L8?GGrKH;I$j&mR6Mo?U7)pX=_5$z6{#?<-(SHL!h= z5rTxV-u95WP8R)B+gxL$?h_-*d-?h3HX-jI&;-HDJNz`nu9^BJCEXNUX+A< z9)4-c%no~!rhAmYD9z}Hg(if%QlJyW^@hkg7g_t*uB3joO~QI$o03s*@9VVQ^WOjL z{!i|-Y9_AZqscb&eqzk@`%U9KTm?)&vG1_LR)tQvZL>u$m6;VD5J!ns>;+IzHnnt_ z4tX9KZ!G!-hV(eVtY1lCJ{hMJIQV1d_pyTXi(=tlLXW^xt~WTpbSS?vZMfEaU5p{{ z7KUk@O}OEu#BEXh)f7M%yBmW!vxqmrGj6d$tU-_3nC#)?g*U&=X$LY4p|9vy?+>l; zx*YkcwT*-B*Z%OP!4LXGZ)o>RYaai0k@g%kr;Ha^cImA=qeyGa{Mh^wQMzQ=G971+ zaiKy%`?3s?Cxk8pUptT(M?sA+?xQ5wx}vfXJiB}L@@B0~%6)rHY|#WpltQ&gK3!g# z&`xtF8Cl_nwI4r+oyn@e>0FChiHW=KYK)zwGGmhz{;b%wff+4m#GlNzS@z{B%iWl_6rgxXieIqL3 zZY-W+Ic|YU3s2Wwah4{VMm$p^CsVWL<|i>jO-tn(he zQ~xAZsSzIj3ZLhl#FCjf{R75pOoNPzet){Jz+@UlDZjT>yrm`nL|I_5-4R1HVCQWY z=#xn=T~HzTsjQ@*_L*Jyyxa2J@;d|W(%i>Cwx*oKgB`L9+>xq`;P+tFd1;z@JRsl< z5C!1Rc;>FR+A|ab`i>_Sb>2Cmx=~$wy(MfL14YklpAFLPxIfl)NoK<=w0|9nOy$-4 zIglx;HJT+(2F6qIX;`77(Dqa#-9zcTbxS0_&DD@y$ta^>{>Zx{jN5Se_mu{7FW`=_ zpgiFaQ~LqhXNhEw4Zb6dJ6X5fc`LjQseXppN&LQ<;p1jZgWY4^_c#=2`!~d_S5=i9 zaTpr?a!UiGwTX30+b;GT1KGVdgC+|c3bsse#Vm7B6}s^efR-}KJUm`-nojXUS0xBJ zF$)H|1=oKaQpR&~bve0A!JbOiDlR}{^>7n)kXk6ajCh4{C`s2qv1iS1%d`Xsgp54-Sj*Fo`GpS}R$~V^5qL_E+tU7YVuN#URz@?}~5J ztYEiib7*(u6_u4e2oU_^=v?t^;)b3xpN(Sv(0DhXyR-?l_2o-fygzbxmCQQ-953l2b>Vx{JJy^K^aOuw%PqlJPp<{Yw`17n;DocpfL7 zoIg5nf2q;7EV4H0!DL(`V_>fgQrP6OOH}_!%I97IBf|{wWKBAzHFf6v#kZ9EZC#8(@A)EqS=u)l&31`+ps8Z>U3Awecs38&r?uqlW5vn1P6U)+poItDov3#dz+ zTMwq;&w2LqTSsb9NXO3OINy30>5X>Ld>q)sqPUpaTKN6_w!NmWo-dggR!(IH-o@-B zZ^eZ0p%t?Nkijn|)HvJydsuDD|8p1M`K_;+Gp}Ku>(4%=DAFbv8_d>>y%oP3NAIk+ zzlcBGlZsmdp?ZM9E*@)Q41%sjW>fTY)=RIP4Pd&6g{^6?`JZC}hu3z9AWKwcD48zx zlA+;s+x8)yZL}2CiUxZBX@`T{qy`dz)fJ;_Qu}Js{6l{}-fvh$hpD9%X$i@;c-$i5|H#g$UDNnLZ zr~^>;ZXG$z{lTNA>o^xwk|(wnhe#0zIiHb87yO?+GwhUti1EX+;^rTAX~ZOw_Sm zE@a~-Tvk3LcuK{7FGCo>F<2S-Omsq@WJH_Lo?4e0PZ96g3>yuid1#4+R`bKlHbZ7PSo~=1p*FVZyH2WeoV3O|80e%=ylS^rfF%(xu7{@4yeMKZ^HQGt}q~=}#ZXCPA+wW_!!pO{-NkSySspR%Qxw{7< z2CgJ;3QwV_H#<35A|8q4-DWAeW6_a|Qy|<$A%x`Un9zY-^t+rCIhQg3 z&5r!EISkMPJS8Ed!=_(Fy*hy{wonVh0S%yWN}S4Rqn<42wQTxYu-v_NVa88|u; zwN;ff__v56<(mh~K7h4DR3cC|t$F~H)y5{vPr)SFS3>lFje2`g=wZq3E3g6d^iS%B zc}usaD*~DMq;kLHJHRFIF7!csAwka3M&(rya}-1q9C(|Qzr>Pw zk$)ntJPQ7wp79&oLtOiQ+Vo%d9viGUl|JeQzL4#EC#>os*?qXtyeWqNOHgdX0Q#PQ zA=VFwEBE!)$w4&p%4pbydu{U3xK&8>5{D%wI;{GFn;jSA$M+x4-li#OCnN@%;5?9M z13mI>`Oj=lDTnWjV5$W)^ijKW(4Re`+~cvaHHx?+3cHi0i^SEE`bk{XYAQk0hY6&$ zFr9dOAVDndwpSt<-KJ-yW5GoeOct?n!_P-v`Os4cm9g|}P0irSuVlz& zODesN5TUuj@c!J`sK2%4%GIFavK%TDzw_n*75!aq=T|-BX?pEcx0jTZyawx~F9CV$ zAIsJChs&qpb^3!K@rKbFP+z1KZaC5X&5=%B{3ZGYNq?d4`g2neuf3~fe}w|pS(5H4 zNW{2nw76~U!VcE(f$1whtPXVajgfv#_Ulr)X}^YD**YvNt+c;$^4HwFo-|nKclx`v zMlyllGG?f9E?5<7*~H zCw|V|N=W56P*$Lq{st=u>H9_g{^@i5zRoQjq(zr|7@njOX;z!b2Li&`TUGITAwi0t zN8+`$R-Vb!eH$z$L>Xke6=S!yG@Q>EG_1^?|BdzGJHpt_rxol-y*2MddH+SxaiSv* znerXj#-WpH;p?Bv=cIXP-iL)ZlwJHZ_Y3b*ZM?P$5{;_PQTu}DsU!E>7pWTmN=6hP z+JLA_3c=ulPHr)~3X96LM!u!%P0qSY&M2G3Lj34Hg_WyWMWos;l_lGK&+I%R51W{S z_m7_QY^j%2LHV*oxF6@{Ct#>fRQz=pjp}Z^uXFc zGxO;|ofay#0>3*k#YO2UJ_tD<3OH{ zS6f6wgoQ8E<8TUp*Puv@Tt7v_+YifC=-u#_y7P_jz(R|~NKTcP;^ZvrT z#|DF$gj6Mv(PO1XPj~bt7OZXPZkQ>70a@a9Fkwo^j-#PMdpv~dY-;wsTm=Hv4&|H4 zAFoP-u)Yg{UY7#QZGY~cAedy7DSKPK1>7cQ&z<4as$Mmj2zI~th(I}5E)te~yt*-2 zD#mE@3_;i^?T|@RJ!zTsUry!Cr;BHEJ z4Y4pGgv$Ut_lf9$p5+!sgtTrsyZ2hFdE+QpTxTV_AJ$1R<%Udcb=;1j@8g3ZCE}UE zqrCUkK6M~_Zu>V9pR&xto4?oZI*%EWi~XUyfmBHs{cqY*7uhD=Ed`>J7@gmy%(fCD zG%F!NU1b%7SXYC*DAZFb$BKN8_ZrHi5w(lOANzD`4h6DLqRGDt%p--lFU-}Yu*Om? z2tWu0YI=;T0|f{qkAK_+wJ|TzH2Njesiw;M>(VC9b*(ZmG|!RG^xT(z`5VS|xp;BP z2t5zSLRPJbORr;OW@gGiwV4MsA*`(fSz*A0KtXa z7|DqoS8s)(6}AH{cN^BO#-Q9UBqG4Pf9P^r@aKC_wx!Dyy<|CB2TH?&k(aV!a`1Yx zO;vX>){{R5Il=Dm0{m<4?*+}E*a!j13)tQULQownS$g%Y86ktFirKvs~;H`+dQ^c?=j}ufNW*L3U>B^ zi3onXs=-;a18IP4tG`HQ<)isd5$CDTZWSB~44{(BaXwKX2>j&if{nJkA%f4n)wS(Q zG+1~>iRt1@i=L%`hhJS_i;Y;Z(5?E+5L$n;u8`xCWntbK%iTWh<%Z)=tU7F1wbvHQ z&*{+HlE&~kn$_SNN+Wb(^2*pq;(6Dqg{Q(27iZ+lv9}NVYTqI^_mU%obs~f0GRtNK zxl!(d8Y?S^_}n(^ZUhfkwS+q<=PoMJ%V~K#|srF+aqv+f%cb9=D1jtd_cT+5u; zyb_|z{Gh-~9v&(>)dLa&aT19>T!Fhm(7UEwJiY$2VQ?h3W6z=1&Ur}nP~+LHRo45& zERXWg<0k(!%mQebgkXq)YHdcTpP6a}cZl|Q^^eJ5#E8;teRw}=D*=p|c>e{Fjb#GN zOIEnGjMm41YkdFBsQbi(?zR~mh>&xt0D7l$BExct%E`?xGCB9;S4q@2P@v)Rw&kgj z?l>%Xm=M%uY`ay2Q^Dw6gW%3@s%QMc6CjLSNPW;S4Z`W~Ze3G65CXMNE?I9%`~Jk_ zhbZTMYh+D4AiUti=_^^AD$LOU1AVr3bSL_Sac{3)8-?Kbo^AH_)u*qVmi*DHlLe_o za#9Q#lK~jRgN}DzS$_ioZr*24mZZ0&EvvL)qXzwT{S|42vhvd-w;I^SG%=MRd;Yi) z3Pn)-v~fGFA+p8FB)kUG>DT$(V?=8k-YMq*SrSB&xUfFgR`8mj@LkA4)uEGtJg5Oe zZ}R4jE1^84BT(3+kM2}~Z~7k?onFGEbzf!$$cIjw550}4_|va7E~FV2TbGCDvA7*l zZm5wj{_3q&@$Em!pX1a%$z1E}Q(ROaP}SvbG07Yt5+M12O!1+(fQ9N&59Hy!eK^|b z!D6j=YL$Q6jOf+;hbff|dGV{1SGQ38b;xRKM|#|A__B>oi(Tn}GY|hjkq% zh5{D6pl7$63q8Q^^`5`0;1=C6Aa0MQy-~ zIpj_78BP9dle6t6-o^_frpG{9Jaq-uYvt!V?<_8?CN^MhS8eEqqsUr;W4E`P!1W+b!mU-f0$x9{!OY9-fOtI8*1DBFdE>DN!|b<`co zGur@s)XYF85oSN+%hy0*WNTZ)bNTkaRtsfVZK7)p5{`c|$dWu%AN&cI3up+ue$0Xo ze#Qa0+Db8IxxW$u1=kxZF`oegDeG2y3JA~*(56q3^{&^mV(#$_o>FUs=(@JC(lgq? z9dQ3VgAkuAeQcSeUZ?%Um^vW4s1h4lTq8OZ*|h6KHeup&T4Io@co%0aPF!k8L~x`OArF~ zM6z!2JqeL&Yy1qwFD&)RB?R6b8jkYNWU>?3)nA6P7P(&zi)||~aNeRSDF_sX#ZkK% zxAz?LNf9MDT2l;R%ZX{z9ie!f+!)Z-XXbd)Ny8y0WtQ*Je*yY{`_7LF6k}(0d4xGh zewpuLHFzc3WNEN!E3Lx%oqfLOjUUxxQ6CN{%+o&I=2`pZ^_kqT*NyFFug8&uuw&l# z(r4GS!4ZDB6Qw~Y%u!uztiQ_=PR2;jGg((vi7^f_nn#Q!jumxhQfeiNejO2@L*&Tn zW}BguX7SOHmFYm?OGG$%@HXS)CS*`D*w4@PqsH4ux@Pq`s^VE-H235`w6 zvjmGcJo*T4l#<6vWgXcf%q6D!&dKzYi}N0(h5u*5+Gfs`R~zkYF?RBpX#Z*HUj=jK zp4nzUdu_;=tnw+wKb*V_D4avZNzCTe-8gi4CKs##HwycN%1WqUp0ll9ys@h{CR_bn z&mSfgc!^WxQxGYR)sEir5%8|b<^C|2rT8jbPeFR}RK4M57+Ww*a1c&mcPprJRF7@V?US(6w8@{X4Qez(E=LBpk5g_A6ZxNn>jL=^iVYNFx9;1Xvz_Y+XcFnf z2lD)`Y5N-Y9ad0+=UVQN5x=lVM++WdRM~^7Gp+)!8C<{5U3*E%{(`y31kMyV78gv zl@ToW7Wmz;{y=avrb}O2VJZc#*qi%%OulR4{y5cR4|eFc03(J&@9FjlJuWF>jj)43 zH1^R#s`}iq9{VOah=ztB0yp;GMY}mLvy~Hr+kYxI!qYW5knuqqh1Mu-=PGSun%3vl zNg~<}etLRra*-A2Q45?XWUKG*gT&>VKI!?CPL&WSlL|O%m-e>Z`cx+Q^Sp`w z#)~?qj@fC48)Ffi&=`&(bYBZgDB=0-JX>b+88lci6IW>%@mJc{aQ)f)nVF%p1X8{J zQ}po8SoW&0W)fJmbcLfdtYh!;z=Ej17QG}(4`^!SG_+^xrnrxd|bOA7q0m-vq^(!_2>Qy?KF0gNfL75r?r0qQAsa}S z84L+_&;-YL5R8Zre%{68zZ|OcORx$H8G1{(XPQH!7c#h@U@h!yu@>_j^Q**87E5NU zHBT9EH9D-a)30&LcJ`#ebm9EvGW!8D#y4$HcqtKEd7!kBFzN71+1u$phG@N^nq6cZW4 zhzo~E27I4@L;++MB;?o)DvkuDx!gZCDEDTX8bTQVTHg;lsZSGw^SOewzcBJ~U`RB8 zjY#XJ21hb`f2TS5CAikWzhI_KPmimnd*)^&K@jM0kdx=os95~@$oOyi(9<24I?9W+)ecQKyt_eKT*_Mv!(L?R< z6mavz<0i~l(TuzuUQB{#V%hXUvu?Qi#(XlRxqB0Jq+-lF5uW6o)VRP{2iOjDQu*0d zPli@V#IEYKN3$9S>7#LNKlY+AK~Y`}Cy`9EgGtrY!ZmWg?C-av_p`e~x1Cl-mX+@bIxH?MC5$xaf%;Xt`vtN^ z#oxcvq(Agl{LlxYZifo%5A0Tbl&l{wG3w4GwzOW{6i49HAls;Mzs$4aCS)S*yd_4a zkOGsS-tJ=(aZnP{j3VIy$`VW9Xrda+s8s6^@4{1h;eB(pqL2%S*WwWJ%x8WZob-UB z+oY;E`S*#E9DP5mgbVt^W?!*hJ_Z^Y73~Z)eBh{h?5GU`u*b&Dc5UALkHQt76iLzV z2ZeMZN!VwJ<@R{EnkD*rjy-mIzQ^p8Kvc*^1N#VT9EJKW)8xO)9s(GJgEYaZ0}6F++a&`Zo=nb`asVp zIa*-Uoth)Z6G6Z2-57jNX)}~ZwI3u!6#^*kAV&c~PXjR9ft)9Qt>hnddE~58*RNW9i_?xKK$ z4shdVsn{p^ecT!NV`bF~;4Tf;w<12k$)AkdR@l7aV{kELmHyH4BY+Fsdoo?MMF*Ws ziq;g)!Tyj32hqG&7q>5b@9nPxvZFxr+Fe0_kp}Q6SS$O z4yI{B`Q~Xw?O@nwIMMLv#WSScJ#aKN|4<$)3<6Fb6jDaqHG>C1NW+Zma2}Z0oZzmE z16eOFJSwPb0km?#*CL#ErB+UPn_e%X!ob;|e|JTqkBG<2F8kozKZYM_3@kJw8|D8h z?z`iuaKHFTsH}!ag_6Bp**nBVWM^EIRc2NfH?9#1nHe`+l$o83YnRMxWy|G~aqZ0| z>-YG6KA+#;zyE&ylh@0*=Q-y&=Q-nj&e_}g7y_Li2`g<)+-?<_mwrVn_kj0UzGwj? zm)f%WVTz0aSV$p?Y2TQNniL28EuVv9wvjtPFV_8#S>;%F&3N&{dEnF22^R5HL;i1eM-51XqA9 z(z&}K3-rAJ=C(C#JBC`^qS<+S;BH*Rr!*R;ZJP;yjx>!x~(7nX6{n#QEq@SyBct;3g$m}d=FwD zh!4c2Pzist-oLSy83xTh4Kw(=>PZ}tG%5rs3a)k0b#m>H>Fc-o#;r5t*!3RVyyoAt zlGpAGb%#_pVgX>~>|Od$?R9+pMnlLW4r)3>voUm^S{{9&l-S+hai3=b&23gnzBW`f zcYI_=@=RTq3J8x0GhDq`lW0(0cn~oDEa{wt6&>L7I(%VCGhYoj#kZ?Kjy>=|eQ#s1 zQj#>ULJ7NaQ$xl9sgJ-Io)b9}YP~3^EF8K}zJc`XtsKj{is&72Zqp zK1O~nAacs-0>G1X+;953))O?5>d7%eCXIZUsJ?p~Su9YZ*9TBNVS@?&a((0= zBX4KN26wDchZbByn8?UT%vR`-9LfM2tAT4BKmJhLKv76uN}W0xn<2gAQ7s(%j&ZYA z3i0Y(v?F_~sGZ1UrfY#hJ%IXNm!eH1fB%lezK53($1wz=@z!-FV)~Gt*8HukeuW$v zzc2s0>@1qjs1T8QfJb|z3(7yTS343SR~WZws~r2@7pdo)B4IIpwI?*=b(fkTp`f&) z6;V(TOJ5QmlT=QKTo$O0Bt0bpUwPUF7RO2tHr&Nz^tSwIoo1i~C%$-qlfsK(%MR|s z7Ll2bnkm+*K)w7IS7?;x`4pL`74E0PuDMrp#~$s3$1o-ePaRfP=7oO%$h%an4VkkN zO9>7pDyn4tK(r)#-!P;;wc@mx!EqrhOMFPiG+9y`+^_Qsh<+OheOQ+&CqD}dhpXQ$QO~c= zg5L~fCFT15vUft%E@8l+IH6Wg`imNiw=e8-tOaE?@__@EpKJN5J>V>gJuwh9q$JH~ zSeC^D83t8+tH!W;#Ck4>V|EGGukh&RH=L5~N#Afe@Gw<-eL9`S=1yXGMaaIJw@vPq za|QK!AAG1-DXSgUUv)X@fJyjP)BnJt=FUu6>>T$jdQiqnO)`H?BxxWDIkm0{!M5*$ zJsIypIsh)%-!D0Wkqc!4ORR+yFj(W2zpNh?uCKlMti9;}r!In;hMGa2gKxA3xG~!nQDt!$8?i ze(lAGI33D(5?z45>;{n4u{?i>)snWpsUuxFagmX=?<^m+9)$uHH`m_)nB6?*QC!qC zHh{_sK#)*|wxHyv=l$h#!{+MENRvo7o^AnWu;^sV26^i1%dfW>ZPjJWv}nu<>Rpp{ z>~nW%*ss4kZ=NdA7-Zvp-+IF;MW`>~L{d(!^GM_ENttTS6QA~Gpt2^vSlZUdN}Pj7 zaA(NaN*Ykq`Qo9^!L*#BNF7RP3u=*ucv!48fT_9frMk)a5N5nilR~@S(g*gKU6VCG zSZ@mZn!7Y3-;{R*7kHFan74~d}+Ln7vbOndn;<6FypoCp>Kn9!2*pBBHxuN z$I&o8r9}SZs2@lz(8>uvXL02WWf5;?Z7!^Us?9zpj15fhPdEwxyB!YB1m1M-ZsWjg z5{sl305rYm?a9Llxx%Y#VIc>{m7*Rx`FGU_VABBPI7*LT#5l1?w6^s>f1d>4h8^wL zpA6q_fn0*C(zcR-tU{qfw6(1QtuwyXS@#lI-5@h+w3&%AOU>;+RnU_ z1jJmW^$5K-DFbyz&6$UQxwJRVXHKz!eNxI$NYAbHPkX~vdC@X2GSrtOrl5JPO?Vh6-R4x~5kDv4F@ zT6z+T!LOjqFL|qOy?MI-zS=`KPW62(&cdCc5~?&$m(_1+5A)6T-2u#a+f!umirSg{ z@HGkchIUG9hVN17qbsO8|3qc;w3b`e7p9-BNrLWvRko~s#G^KWN={QfGE@HqYRE3LFfx`RvJ@L=x0oNu{BWr(! zseL1b>(xtqyv&WR(V4~<`vT&A!rl__`c)2lUiw&Bk)Io6v!b0|rlC4pyt7sNJS9<~%`zPykNB(5UM>EzcWylGi{_*9gfrP(fmF{A{aMpBM)Q;PEVA5eIc|TxY>I2no^=cI5RatbZzPozP(oL zpwst7AcsxAwQ?HC>KBWbFS|$FiH{j;f*B+6`88R0oRvw}f7TS@n|r#%tdKWu&`{mP zlBM?F#IEKFu(fqi_-`&~9?fqidFY&8O_E9%ve{q4L zRURi z@Llks2yK<)UT+~FSkns0W}>C!lSHk{z!4;Gr8wF9!Lo*QV2qZpO6dw5SvjHG@R3C{ z{v_Zxe|%uzX48K}>M9T2O^Yl$B~Q^HiN?Nss221)xj0xQb?48T(#dupVXVR0a&58k zS(i-pwtywscDS=1n^a|H0CE2;JgYjmFP=1uMx&`q3#AfeE^DZ8cIXSO%^`r$(Sg72 zJe3%AohmL^^ZF_%!6a{B|i?Yu8EGmhTcIO@U7lCX;^vv^ z28t~4G@e5CEbnjMEto62Ak{^sYQt*-*(hji_*udVt{O2M+$@`}+Wr3PjqZh#9dOXP zgIEbg^fyv@3km-&0M%^|J;%tJ^f}Rj*LMj}c>y5PRrg|yFWK2gi_iw!B1+^FtJvaGz1hgYr8D47U zYAWtUzcLFYr+GR*9Qx8^sqN06H-VYdrw2{jN4B^Pu@fP5{c;6WwJ(5AFC zrC;kkJ2pXWyJz;z(VL>{(aP@5)|`YKK|PiY5=*}!y$F!WI8>2UdW_tV9uvqU-L7&m zRozN-ZYD$GJA_yeC^@njmPq>mp}<|YHD4?%Gq288uQ>e%OIq>d(2eDE4+U0IP;lmV z4hJjHNb}wfINkE!9E|{%+^t!iH7GNpdbz04% zqxBCJYFuUFTDlf{F*9I0!I`5?BC=S0O&p!UIsXk08JIAxc4rK=5dxWp>0n=%^$bWQHt zS!hhNL*h#DFo_U)ESPxz;fwqW3)8vkEC?3@3BLB!#NxM{i!qj2*jwz(7UnL+-2>rI z)=$}5>i|oI6G*gdEkg2uc^guBKy5cgQ6CsVPfuQ_&jXs6s>zbkasZ@Q_Ej!(5znS- z)!THr5&4V@xj(K=VNv#J-T+y`-%}d@~SWtSh31X#~gla2%AFH^VcwhCU zBQ{^X| zqTBc!mQKK=%@}R3k@ee{vl7tQDj9>1vmighR$|i}FSIs&dhFE}2>y1H(Mp#9&TlCC zzKzOHH^8EPP%?N^(j}{fKKOaMJNOq59Xtjcg)mwt*}dSl&>QR z6o>oKRrP<^G{DQR0Rd1hm|scD#)}Ld#IP+uc!wlgvi?}@573R(iz#zH*`L++KS)X< zvOcIG>$2~7BEh@hl?a?gsjSBO>Lk1@&@lyM6XJsc89aU(i}Pq%r{4>gd_cOcvhW*s zVK_{r4jp^ffn@G39q1p^&9|rp!Ab2N%_bJ8L$J;&&h?NtnuIlLby4Woz;^h2z23`8 zT?f*2;7pc5PP;bzj`INGN;Bmih^E2-&Vg%nGHE&q=@UzN(m;hcqQnb2c~CLA7+~4# zK?ojuZwuE$dgh7%i{%muq3m*FCEtEDg{ThoZ)Ys=f91eO&tr1QJ6dfdQM|p*o_%!J zM(0pARF&q6^cUqD0>7`vHhcSzkeqI}liD%e@Ym$rzPr}2gx|SSm*M=`;N0YHJ+n=h z0x9D>y7+>RR2hecmkOP%>UoP%v38-;t*g;a$d=MQ>QT$K>c7b+gT&n!kEJuRK7WM^ zH#h67&wtN_Z>>ZHDjzTSjUG`q3yJKNl!p2D!dwwAzAVx6+y$f==|s0EC*%fWE=eY( zF5gYEO*XvsOv&#;y4kq4>g_dM<(N!OaiiDYyE$CsJ5g_Y-!L)}sBBKl2;EKs<9 zN|RmMz1*?Laly(&_%m-iz#J&0V^M!qvbaZ^($mMfg;){qlJ=;hPIIPpY`Qop3WYZ2 zu$G=#ic$>Y+`|Fzv$ zV%dIlJqb;4Ldd}ue}957^%yRTMn{dvc@w>3+JI5@;2d|nWB=PC|Medw|N$<)Z! zWQEwW(>Ez$ZV7Tf2>4RM2J(%1hh7unab;#Ll4X?ebe!=V)!ymFl5yd3-ZOZ;Qb`aD zG#@jK&rbs$EH^fIW-Nb#jp8D@8Iw16qQ8ZRtvi2CJ~s)8@-n1m?cI-AH&vyRk7)yFaiu zv4TVNQ4>w35TkqWjwkq$fJ$rd!m8wGagqtGF-^6=g6pd7V;JFdTm9&}7L#)AJ$`LF zeJ&*47g7#|abeCU0nVqfj1;U>3X_%aAS`2taW?4Ltj)gUh|eD_{F!Xnlp1{ed~`i0 z8`8AX33AH4-~F{zY}`jT1~m}}Gx{<gvbel%W`AAE-ne#a>FT)KO7bY?39a^z`*&$MobQSVPyO!v5>HP9{);=KX{5Bh%ljZsG>PH98%8FOvWb{f8?pVpZ5Y)b%OY!>M+-M?yksv|} zF?mwv*v1_vVA5aQvqlsxFSjSw)%yP7S|20S9j+n#@8a!wN2;p%om?Te~X#80!08GpVuA03f-+moJ1I%*xQ(g3_IKV`$cPn7JQQ?i zCL7=h`CBF{S0w!U;mJ>Vxg$*3l4^LkzrZ}{_3_osB*r~}E8fy(dAcg2^5mFy zF)*gt<0MT;g4Ewx3`n&|^nC2^t$up4sI-*q z^Q$C;WolyZ+Q3r5uttp%x+vabdDb&ncH&O%E%u7u`PJ9Gp0=9i1;4M>)YL-(sv_K{ zYmmIOdM-SZ;^C#6H+mec*h{{bS&28!r^R@x^y_v+L8S$AXSQ$`L-uN(Nf+Pa(ivX% zdVK?Ig-Z(0ejGd#7|P4&ee0%>!*kik#gfbKYG&eO*m6HZ)~o4h)nDoLzmRf$Y_V8q zo}7@YdocOtQljy%>j|b;pYvaLSd1Cy)6;k8(qH^mB0ODC%Fg-zP=o#1rJ!V40u)^m zXDQEl$dTLkfQO$a|5NK#a*nXAPFRZdyNgFG|{Z z1;q;OGN7TxmG@uRn#CJca(w$*1nurpJomUQsBdxSxvp#E>~8CG-Q2GsWB%{t3b%Yi z8$V#~L1Z{F)^YF$?pz;;l!LX-ZY~MZm#^t?#z{w+B!z zcINm25mZzs=H47){q2vbWDP!@hnsaNq!uJJwx2FLJg>|64s@fp`-qv3msQ0sBs3_? z4Qd_taL(Mw&ID=#y$7+K4e(VNq&>}okOv`%g&VeF#=j|-Kg9&4k??VDkgePZ>g;aH`vTQT zR>j9&(X*#eD7LuVnaBwnGHnoWeJ6T&L9sc7J5*ZEv=8;`Q;$JIJ9?(WMZ2E|>Z&d+ zu=pW0EjCxw-Q{u5VF=5??4RRvWzv5+CW@XM@zoIdEE8FEc#0W9idEg6<9^$`3Q4WN zVr(H*<~_w9#x8XfefXwPo*IbA%t_7{W0FBSYVIejZppE}C%Fl|T+@kpeQ<7VZkhO@ zWI|LoIcfW^;+)dd2*<5Ftu1Me#mFuijaNorub|#*WQ$y{zt~b&x8-l~XeRKIlCGwH zpiw%vp$AX<7wQd{Bb>ynga|Oio4kps?n-&)Wv{W69CH!c2YPuKgO6v@wB0jpI64wK ziI)r;Uc$I@AKPVbN8@p<78|MY=1^^IyG$+Z9;uGhuGAlozjpfM#dmD86AHIRGFL>+ef8!PYx5J6@G-qg98BFv zaM)t%A`f7?l=guy@xDdgAS6MWlkrWG=>VK!CAncYUu^s8bI)DP8nY^=M3=*QAEZY- zeYB6pPpyvRTos%?+dK~w@xz8+%M-r~BzEkcdUr1va)*Gkg)8Mf=ty9t)DDT$FQf1A zJoxNGRqz_VW`1z=Go`aWp*NT6yYKGFSU&dnUfIFh9lbq2WYw(UoDM0;e5=8Uj}^N% zN8Mh6K<3~AS)FYgI_YZ?jBd~%Z|j4nAQc@+M0ApRy#S=q!}PhmKL_*C_qxU+{R1vj z@&sfYIY}O0JSYDn=dp1Y6Okt;s@=9G?Ybl7Uq|WYf@&*}hv!b143rUw+Mqjqqc?K# zx?o0Q@w2kL&CN~IuplX6Q7}wY?6qLCSk;^Zb2HmU_0c{9voG(};H}*|C@tPt_2-_R z2HASEiG&~gU`TuWw(R@J$U$j(15&SkvydV_NzxeqFDgs0o8GqXC@k{5_+t|^vgspQ z?#s%WFFzL6xxtku)UaNVovnKC+5&Ss*JMci`HaV3HOqF=Niz5EVTL9-q`!uL{c^Jw zPhm!YRb$a3(hTPEqUBLhQM>o<-TNFy%j{b}yg9XnLXG_T^-DxnHq{TTAk!X{Mt_w0 zi>q>A{=pVwlwYmZ?^QvYrOR*G@cQ73VL>9RtoKIy!UFe@Yg+C6N5^6I_>P}oLj}>a z$ol(_Pud?J?hO`H&_2DgU$xmk#<+j#V zPFfaO@513St2OZLcxGm1M@kBcp4$rkM_NTQFC-Q4a=Gc&f;%-Aa}66H;-7i}r;gP7 zhfOJiu<-3}2?=OtRYirLPJewx6lKyn*mdL(`@z{2L>y4od@tENOm_usMr@%uW-B7j zSKMi|uO7ZWnLZ@V!e3~>yPK6|ruxW?m>2)@B2pJK4awHaXI1yDl0*;Fi1KCW<>zwv zm7b9XesLqE2V-wkY<{5A7R`EEVA>WuhFSPa_wRVUfR+egBmepLmK(gc|9pAp6L^OH z`7+?`vw;6rjAZ(9F5m;XK_=zQ9(=>7i)<3SvwQ~qdYa#c>QmsyN|6=^W)g=PG-A!f)vlJKrE5jB2UF5Lzsseax-S7W z>vqz#w8X=OMt4^|rRxW!h)pNQhtV1}v!rAm)^?};fVDnQ-<7hq9=YSQ>Amv8!on{{ zrHCP((#P(c@jfIA0*7(@x%Gsj>UH4&*$-9v&VB zca(4>H60}{yBU5`c*uk)5E_Ik?)KrASf#=l9DcX{;6?;P%I&*Wrk%tO_sddANGOG% zDoO?j>wJUGuK5bHDwlfQel?D?h2`aOQ6D4(brjmEzjx{jHVtCud2F;k8}J@C8}usd zPX((IaCie2f0#ah#{)sev|vWsH4AQr2*1X!V~HBs!`hQNf`JF3Ni$zmkdY8~V`N@@ zz*1)8kc2zE+~BwOA*7QOb3T(rV40BRM+b(f?EQvQROh?|2d3i?fk05jz0%Or*B{`T zr{~TY8XuQQ?XYnou1yG8W{qhk9A*OnJIBN0ur1aj#V|S>2#RK4RVYD&fOPvcICx*$ zM*(ww-bFsD;OenRXFKdTL;Kv9u#@2%?Yf?i2gErkyl)Nmq{&2E%xgaCZ{ry zLm}nSuq+yeWK^1^v5&X6_m-7BCNlAmqob=5+~wo<(8G3)#~ewL#Tq+p-1p!#q0$%g zSpJ&L#(tJoeq@HcG1XFN&@lEQo?TQ10+SJyVTbl$-UCAY6Mi(a_h9f}oaFUQu)DJE znElklaKLs)(>&5u9@5xyTg-*y#KXq-@oxa(xyeU@lEYv^=53TO>y)l?Fot(u8^22Sp4$6Y}zORmz+rK=Mw))=;kG1+Zi^a7y7fk6D%z1`M zt^doheM6I#&) z2}Gb_^cY9#L1@#8zz%`y*m?7w+AgpL02$oU~QjUrV}<% z;2qe?;tz%5iLMi6)@@^pzvHkABIRlv9a2@RKL{Nh!qy_tO&*tlkKO;NFcN%#tyy2M z&foDrYEhq}KUSWceZW`iwy0@O>9mBwrBpM%#gP2p2MvvrQe2{l;;(3Kh9_`1+(SMc z*)Np@DIW*xIoy5)^I;;&Lz}TT+u2kmYXq3x)Cj)D#b7gstjJPv5C( ziN39ROU&8YibBW^iyA{}#Cfbu42Zk02|_P5Z^Sx~54Qtm#l4n4{pKNv?j@`Pqmj}f zVLuD;O*C3lGho6M-AQVat?l~nZ|DAN0tDRYb%6;8Cbj7Li1I7?dT=qp{>sTmFrdDL zW5W2wVK;B+a11Xa?k~ziP@OX#E)Vv6TE~xP4J>B%^z?Mcr-Q4f49=%7ohIn%)!1tT$t}2Tp}e@XaI96g`Ec^Ngw^s&WVitcSy^B52@fzF8~f1Cg$yC5_D((IX}brYU(&xdr~pCH|~o3 z(%6Uxv*TAid*s*`r@>;C5Ysl3Uck?*1e`~li*UIxLxk3j<U)}5XP(DI^F z*LSe-jD=`|Eiav4y;MpqJI@DpQ3M=3PvrykYG>~@@RhVh53@Q&sWjsn_!e13QC-nH z%Z_iJp(lXDx7@ulgsPM%7XXGEk8)te6xN@uYTNKTJ&u#Nv4gAEXzOW!sOpeIE>Vk< z73}k1t{**&(VW`qCj5J&BjlIZGkh0Z--p~5@E`p4|Lm~*|NlX+l~Yp6&wBbX9Zq^@ O)Ie3WRf->21^pijfc%31 diff --git a/articles/probability_direction.html b/articles/probability_direction.html index 92e0fbbd..99611a1f 100644 --- a/articles/probability_direction.html +++ b/articles/probability_direction.html @@ -174,7 +174,7 @@

Probability of Direction (pd)## Number of observations 75 ## ## Statistic MargLogLik PPP -## Value NA 0.019 +## Value NA 0.025 ## ## Parameter Estimates: ## @@ -182,70 +182,70 @@

Probability of Direction (pd)## Latent Variables: ## Estimate Post.SD pi.lower pi.upper Std.lv Std.all ## ind60 =~ -## x1 0.703 0.071 0.577 0.853 0.703 0.922 -## x2 1.531 0.139 1.286 1.824 1.531 0.972 -## x3 1.272 0.139 1.019 1.568 1.272 0.871 +## x1 0.702 0.072 0.572 0.854 0.702 0.921 +## x2 1.532 0.143 1.276 1.845 1.532 0.973 +## x3 1.270 0.143 1.013 1.581 1.270 0.871 ## dem60 =~ -## y1 (a) 1.455 0.167 1.129 1.792 1.783 0.761 -## y2 (b) 1.726 0.226 1.305 2.196 2.116 0.584 -## y3 (c) 1.807 0.200 1.433 2.210 2.215 0.699 -## y4 (d) 1.939 0.195 1.574 2.341 2.378 0.789 +## y1 (a) 1.460 0.172 1.135 1.802 1.788 0.761 +## y2 (b) 1.731 0.223 1.309 2.179 2.119 0.584 +## y3 (c) 1.814 0.202 1.435 2.215 2.220 0.701 +## y4 (d) 1.944 0.196 1.567 2.336 2.379 0.790 ## dem65 =~ -## y5 (a) 1.455 0.167 1.129 1.792 2.298 0.811 -## y6 (b) 1.726 0.226 1.305 2.196 2.728 0.770 -## y7 (c) 1.807 0.200 1.433 2.210 2.855 0.835 -## y8 (d) 1.939 0.195 1.574 2.341 3.065 0.871 +## y5 (a) 1.460 0.172 1.135 1.802 2.301 0.812 +## y6 (b) 1.731 0.223 1.309 2.179 2.727 0.769 +## y7 (c) 1.814 0.202 1.435 2.215 2.857 0.837 +## y8 (d) 1.944 0.196 1.567 2.336 3.062 0.869 ## Rhat Prior ## -## 1.001 normal(0,10) ## 1.000 normal(0,10) -## 1.001 normal(0,10) -## -## 0.999 normal(0,10) ## 1.000 normal(0,10) ## 1.000 normal(0,10) +## +## 1.004 normal(0,10) ## 1.001 normal(0,10) +## 1.002 normal(0,10) +## 1.000 normal(0,10) ## -## 0.999 -## 1.000 -## 1.000 +## 1.004 ## 1.001 +## 1.002 +## 1.000 ## ## Regressions: ## Estimate Post.SD pi.lower pi.upper Std.lv Std.all ## dem60 ~ -## ind60 0.709 0.176 0.380 1.099 0.578 0.578 +## ind60 0.706 0.172 0.379 1.073 0.577 0.577 ## dem65 ~ -## ind60 0.243 0.178 -0.110 0.580 0.154 0.154 -## dem60 0.870 0.131 0.629 1.133 0.675 0.675 +## ind60 0.242 0.174 -0.103 0.589 0.153 0.153 +## dem60 0.867 0.131 0.618 1.132 0.674 0.674 ## Rhat Prior ## ## 1.001 normal(0,10) ## -## 1.001 normal(0,10) ## 1.000 normal(0,10) +## 0.999 normal(0,10) ## ## Covariances: ## Estimate Post.SD pi.lower pi.upper Std.lv Std.all ## .y1 ~~ -## .y5 0.745 0.429 -0.024 1.702 0.745 0.295 +## .y5 0.742 0.450 -0.068 1.734 0.742 0.294 ## .y2 ~~ -## .y4 1.772 0.838 0.282 3.559 1.772 0.326 -## .y6 2.224 0.772 0.833 3.883 2.224 0.335 +## .y4 1.748 0.822 0.260 3.500 1.748 0.321 +## .y6 2.222 0.810 0.807 4.020 2.222 0.333 ## .y3 ~~ -## .y7 1.333 0.679 0.154 2.762 1.333 0.313 +## .y7 1.304 0.664 0.145 2.736 1.304 0.309 ## .y4 ~~ -## .y8 0.380 0.479 -0.520 1.361 0.380 0.119 +## .y8 0.390 0.476 -0.519 1.367 0.390 0.121 ## .y6 ~~ -## .y8 1.073 0.726 -0.257 2.672 1.073 0.274 +## .y8 1.088 0.714 -0.149 2.656 1.088 0.276 ## Rhat Prior ## ## 1.000 beta(1,1) ## ## 1.000 beta(1,1) -## 0.999 beta(1,1) +## 1.000 beta(1,1) ## -## 1.001 beta(1,1) +## 1.000 beta(1,1) ## ## 1.000 beta(1,1) ## @@ -253,63 +253,63 @@

Probability of Direction (pd)## ## Intercepts: ## Estimate Post.SD pi.lower pi.upper Std.lv Std.all -## .x1 5.052 0.086 4.876 5.219 5.052 6.626 -## .x2 4.787 0.179 4.432 5.150 4.787 3.040 -## .x3 3.554 0.166 3.223 3.879 3.554 2.435 -## .y1 5.456 0.268 4.925 5.972 5.456 2.328 -## .y2 4.244 0.422 3.407 5.058 4.244 1.172 -## .y3 6.555 0.366 5.842 7.264 6.555 2.069 -## .y4 4.448 0.344 3.768 5.121 4.448 1.477 -## .y5 5.120 0.329 4.481 5.762 5.120 1.806 -## .y6 2.971 0.402 2.176 3.776 2.971 0.839 -## .y7 6.187 0.399 5.390 6.967 6.187 1.810 -## .y8 4.031 0.408 3.237 4.839 4.031 1.145 +## .x1 5.051 0.090 4.872 5.236 5.051 6.627 +## .x2 4.784 0.185 4.426 5.152 4.784 3.038 +## .x3 3.551 0.171 3.217 3.882 3.551 2.434 +## .y1 5.452 0.279 4.903 6.002 5.452 2.321 +## .y2 4.249 0.432 3.422 5.129 4.249 1.171 +## .y3 6.551 0.377 5.817 7.267 6.551 2.068 +## .y4 4.434 0.354 3.768 5.142 4.434 1.472 +## .y5 5.121 0.332 4.471 5.785 5.121 1.806 +## .y6 2.958 0.427 2.135 3.814 2.958 0.835 +## .y7 6.177 0.414 5.384 7.012 6.177 1.809 +## .y8 4.028 0.422 3.198 4.859 4.028 1.143 ## ind60 0.000 0.000 0.000 ## .dem60 0.000 0.000 0.000 ## .dem65 0.000 0.000 0.000 ## Rhat Prior -## 1.000 normal(0,32) -## 1.000 normal(0,32) -## 1.000 normal(0,32) ## 1.001 normal(0,32) -## 1.000 normal(0,32) -## 1.000 normal(0,32) ## 1.001 normal(0,32) ## 1.000 normal(0,32) +## 1.001 normal(0,32) +## 1.002 normal(0,32) +## 1.002 normal(0,32) +## 1.002 normal(0,32) ## 1.000 normal(0,32) +## 1.001 normal(0,32) ## 1.000 normal(0,32) -## 1.000 normal(0,32) +## 1.003 normal(0,32) ## ## ## ## ## Variances: ## Estimate Post.SD pi.lower pi.upper Std.lv Std.all -## .x1 0.087 0.022 0.048 0.136 0.087 0.149 -## .x2 0.136 0.080 0.003 0.315 0.136 0.055 -## .x3 0.513 0.102 0.338 0.739 0.513 0.241 -## .y1 2.315 0.585 1.330 3.565 2.315 0.421 -## .y2 8.648 1.570 6.011 12.168 8.648 0.659 -## .y3 5.125 1.054 3.380 7.458 5.125 0.511 -## .y4 3.421 0.911 1.862 5.408 3.421 0.377 -## .y5 2.755 0.662 1.674 4.284 2.755 0.343 -## .y6 5.108 1.076 3.236 7.429 5.108 0.407 -## .y7 3.536 0.864 2.070 5.406 3.536 0.302 -## .y8 3.002 0.902 1.330 4.924 3.002 0.242 +## .x1 0.088 0.023 0.048 0.135 0.088 0.151 +## .x2 0.132 0.082 0.002 0.313 0.132 0.053 +## .x3 0.515 0.101 0.348 0.749 0.515 0.242 +## .y1 2.319 0.596 1.313 3.645 2.319 0.421 +## .y2 8.679 1.583 5.956 12.157 8.679 0.659 +## .y3 5.110 1.080 3.313 7.512 5.110 0.509 +## .y4 3.412 0.893 1.813 5.379 3.412 0.376 +## .y5 2.743 0.657 1.658 4.229 2.743 0.341 +## .y6 5.122 1.090 3.228 7.448 5.122 0.408 +## .y7 3.492 0.833 2.137 5.387 3.492 0.300 +## .y8 3.031 0.866 1.439 4.928 3.031 0.244 ## ind60 1.000 1.000 1.000 -## .dem60 1.000 0.665 0.665 -## .dem65 1.000 0.401 0.401 +## .dem60 1.000 0.667 0.667 +## .dem65 1.000 0.403 0.403 ## Rhat Prior ## 1.000 gamma(1,.5)[sd] +## 0.999 gamma(1,.5)[sd] +## 0.999 gamma(1,.5)[sd] +## 1.002 gamma(1,.5)[sd] +## 1.002 gamma(1,.5)[sd] +## 1.000 gamma(1,.5)[sd] ## 1.000 gamma(1,.5)[sd] -## 1.001 gamma(1,.5)[sd] ## 1.000 gamma(1,.5)[sd] ## 1.000 gamma(1,.5)[sd] ## 0.999 gamma(1,.5)[sd] -## 1.001 gamma(1,.5)[sd] -## 1.001 gamma(1,.5)[sd] -## 1.001 gamma(1,.5)[sd] -## 1.000 gamma(1,.5)[sd] ## 1.000 gamma(1,.5)[sd] ## ## @@ -317,19 +317,19 @@

Probability of Direction (pd)## ## R-Square: ## Estimate -## x1 0.851 -## x2 0.945 -## x3 0.759 +## x1 0.849 +## x2 0.947 +## x3 0.758 ## y1 0.579 ## y2 0.341 -## y3 0.489 -## y4 0.623 -## y5 0.657 -## y6 0.593 -## y7 0.698 -## y8 0.758 -## dem60 0.335 -## dem65 0.599 +## y3 0.491 +## y4 0.624 +## y5 0.659 +## y6 0.592 +## y7 0.700 +## y8 0.756 +## dem60 0.333 +## dem65 0.597

To calculate the probability of direction we will use a function from the package brms (Bürkner 2017)

@@ -442,7 +442,7 @@

Probability of Direction (pd)## `ly_sign[7]` -> `ly_sign[7]...11`
## Hypothesis Tests for class :
 ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob
-## 1 (bet_sign[2]) > 0     0.24      0.18    -0.05     0.53      10.32      0.91
+## 1 (bet_sign[2]) > 0     0.24      0.17    -0.05     0.53       11.4      0.92
 ##   Star
 ## 1     
 ## ---
@@ -477,7 +477,7 @@ 

Probability of Direction (pd)## `ly_sign[7]` -> `ly_sign[7]...11`

## Hypothesis Tests for class :
 ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob
-## 1 (bet_sign[1]) > 0     0.71      0.18     0.43     1.02        Inf         1
+## 1 (bet_sign[1]) > 0     0.71      0.17     0.43     1.01        Inf         1
 ##   Star
 ## 1    *
 ## ---
@@ -505,7 +505,7 @@ 

Probability of Direction (pd)## `ly_sign[7]` -> `ly_sign[7]...11`

## Hypothesis Tests for class :
 ##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
-## 1 (bet_sign[1]-bet_... > 0     0.47      0.26     0.06     0.92      31.61
+## 1 (bet_sign[1]-bet_... > 0     0.46      0.26     0.06      0.9      31.61
 ##   Post.Prob Star
 ## 1      0.97    *
 ## ---
@@ -552,9 +552,9 @@ 

Region of Practical Equivalence (R ## `ly_sign[7]` -> `ly_sign[7]...11`

## Hypothesis Tests for class :
 ##               Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
-## 1 (bet_sign[2])-(.1) > 0     0.14      0.18    -0.15     0.43       3.89
+## 1 (bet_sign[2])-(.1) > 0     0.14      0.17    -0.15     0.43       4.14
 ##   Post.Prob Star
-## 1       0.8     
+## 1      0.81     
 ## ---
 ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
 ## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
diff --git a/pkgdown.yml b/pkgdown.yml
index b7dd0d13..6a8db31a 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -19,7 +19,7 @@ articles:
   resources: resources.html
   start: start.html
   summaries: summaries.html
-last_built: 2023-12-20T19:52Z
+last_built: 2023-12-21T03:03Z
 urls:
   reference: http://ecmerkle.github.io/blavaan/reference
   article: http://ecmerkle.github.io/blavaan/articles
diff --git a/search.json b/search.json
index 4a7a18eb..0cdf699e 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Approximate fit indices","text":"SEM, one first steps evaluate model’s global fit. commonly done presenting multiple fit indices, common based model’s \\(\\chi^2\\). developed Bayesian versions indices (Garnier-Villarreal Jorgensen 2020) can computed blavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"noncentrality-based-fit-indices","dir":"Articles","previous_headings":"","what":"Noncentrality-Based Fit Indices","title":"Approximate fit indices","text":"group indices compares hypothesized model perfect saturated model. specifically uses noncentrality parameter \\(\\hat{\\lambda} = \\chi^2 - df\\), df adjusted different model/data characterictics. Specific indices include Root Mean Square Error approximation (RMSEA), McDonald’s centrality index (Mc), gamma-hat (\\(\\hat{\\Gamma}\\)), adjusted gamma-hat (\\(\\hat{\\Gamma}_{adj}\\)). show example Holzinger Swineford (1939) example. first estimate SEM/CFA model usual need pass model blavFitIndices() function Finally, can describe posterior distribution indices summary() function. call, see 3 central tendency measures (mean median, mode), standard deviation, 90% Credible Interval","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE) gl_fits <- blavFitIndices(fit) summary(gl_fits, central.tendency = c(\"mean\",\"median\",\"mode\"), prob = .90) ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices: ##  ##                EAP Median   MAP    SD lower upper ## BRMSEA       0.097  0.097 0.097 0.005 0.089 0.105 ## BGammaHat    0.957  0.957 0.957 0.004 0.950 0.964 ## adjBGammaHat 0.909  0.910 0.910 0.009 0.895 0.924 ## BMc          0.903  0.904 0.904 0.010 0.888 0.919"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"incremental-fit-indices","dir":"Articles","previous_headings":"","what":"Incremental Fit Indices","title":"Approximate fit indices","text":"Another group fit indices compares hypothesized model worst possible model, called incremental indices. indices compare model’s \\(\\chi^2_H\\) null model’s \\(\\chi^2_0\\) different ways. Indices include Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Normed Fit Index (NFI). estimate indices need defined estimate respective null model. standard null model used default frequentist SEM programs (like lavaan) includes indicators variances intercepts, covariances items. can specify null model including respective indicator variances model syntax, hypothesized null models, pass blavFitIndices function, now provide types fit indices summary() method now presents central tendicy measure asked , standard deviation, credible interval noncentrality incremental fit indices.","code":"HS.model_null <- ' x1 ~~ x1  x2 ~~ x2  x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 '  fit_null <- bcfa(HS.model_null, data=HolzingerSwineford1939) gl_fits_all <- blavFitIndices(fit, baseline.model = fit_null)  summary(gl_fits_all, central.tendency = c(\"mean\",\"median\",\"mode\"), prob = .90) ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices: ##  ##                EAP Median   MAP    SD lower upper ## BRMSEA       0.097  0.097 0.097 0.005 0.089 0.105 ## BGammaHat    0.957  0.957 0.957 0.004 0.950 0.964 ## adjBGammaHat 0.909  0.910 0.910 0.009 0.895 0.924 ## BMc          0.903  0.904 0.904 0.010 0.888 0.919 ## BCFI         0.930  0.931 0.931 0.007 0.919 0.942 ## BTLI         0.885  0.887 0.887 0.012 0.867 0.905 ## BNFI         0.910  0.910 0.911 0.007 0.899 0.921"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"access-the-indices-posterior-distributions","dir":"Articles","previous_headings":"","what":"Access the indices posterior distributions","title":"Approximate fit indices","text":"can also extract posterior distributions respective indices, way can explore details. example, diagnostic plots using bayesplot package. saved posterior distributions, can explore histogram scatterplots indices.","code":"dist_fits <- data.frame(gl_fits_all@indices) head(dist_fits) ##       BRMSEA BGammaHat adjBGammaHat       BMc      BCFI      BTLI      BNFI ## 1 0.09364011 0.9598691    0.9158342 0.9102194 0.9353669 0.8936325 0.9143308 ## 2 0.09245393 0.9608398    0.9178700 0.9123775 0.9370113 0.8963387 0.9159170 ## 3 0.09959237 0.9548428    0.9052926 0.8990570 0.9273769 0.8804833 0.9067833 ## 4 0.10686339 0.9483614    0.8916992 0.8846941 0.9163406 0.8623207 0.8961614 ## 5 0.09558574 0.9582545    0.9124478 0.9066314 0.9340923 0.8915350 0.9135371 ## 6 0.10690035 0.9483275    0.8916281 0.8846191 0.9169959 0.8633992 0.8969571 mcmc_pairs(dist_fits, pars = c(\"BRMSEA\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"hist\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Approximate fit indices","text":"can estimate posterior distributions \\(\\chi^2\\) based global fit indices. Notice presented fit indices based recommended method devM recommended number parameters metric loo. can adjusted user desired. general recommendation prefer \\(\\hat{\\Gamma}\\) CFI, shown less sensitive model data characteristics. defaults recommendations made based previous simulation research. details fit indices please see Garnier-Villarreal Jorgensen (2020).","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Convergence and Efficiency Evaluation","text":"Bayesian models estimated Markov-Chain Monte Carlo (MCMC) sampler, model estimation doesn’t stop achieved convergence criteria. run long desired (determined burnin sample arguments), need evaluate convergence efficiency estimated posterior distributions. analyze results convergence achieved, judged metrics described . example use Industrialization Political Democracy example (Bollen 1989).","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"convergence","dir":"Articles","previous_headings":"","what":"Convergence","title":"Convergence and Efficiency Evaluation","text":"primary convergence diagnostic \\(\\hat{R}\\), compares - within-chain samples model parameters univariate quantities interest (Vehtari et al. 2021). chains mixed well (ie, - within-chain estimates don’t agree), \\(\\hat{R}\\) larger 1. recommend running least three chains default using posterior samples \\(\\hat{R} < 1.05\\) parameters. blavaan presents \\(\\hat{R}\\) reported underlying MCMC program, either Stan JAGS (Stan default). can obtain \\(\\hat{R}\\) summary() function, can also extract blavInspect() function large models can cumbersome look entries. can instead find largest \\(\\hat{R}\\) see less \\(1.05\\) \\(\\hat{R} < 1.05\\) can establish MCMC chains converged stable solution. model converged, might increase number burnin iterations /change model priors dpriors() function. address issues model failed converge due needing iterations due model misspecification (bad priors). rule thumb, seldom see model require 1,000 burnin samples Stan. model converging 1,000 burnin samples, likely default prior distributions clash data. can happen, e.g., variables contain values 100s 1000s.","code":"blavInspect(fit, \"rhat\") ##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c  ##   0.9993523   0.9992551   0.9992936   1.0004693   1.0002688   0.9995652  ##           d           a           b           c           d dem60~ind60  ##   1.0003304   1.0004693   1.0002688   0.9995652   1.0003304   1.0001991  ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7  ##   0.9995248   0.9993610   1.0003352   0.9999007   1.0002983   1.0001137  ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1  ##   1.0001140   1.0004980   1.0008832   1.0003361   0.9994288   1.0002750  ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7  ##   0.9998132   0.9999516   0.9999156   1.0014462   0.9998534   0.9996252  ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1  ##   1.0001494   1.0015445   1.0011951   1.0003289   1.0002080   1.0015132  ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1  ##   1.0007028   1.0012236   1.0001419   1.0013441   0.9997055   0.9997758 max(blavInspect(fit, \"psrf\")) ## [1] 1.001544 fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=1000, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"efficiency","dir":"Articles","previous_headings":"","what":"Efficiency","title":"Convergence and Efficiency Evaluation","text":"also evaluate efficiency posterior samples. Effective sample size (ESS) useful measure sampling efficiency, well defined even chains finite mean variance (Vehtari et al. 2021). short, posterior samples produced MCMC autocorrelated. means , draw 500 posterior samples, 500 independent pieces information posterior distribution, samples autocorlated. ESS metric like currency conversion, telling much autocorrelated samples worth convert indepndent samples. blavaan can print summary function neff argument can also extract blavInspect() function ESS sample size, least 100 (optimally, much 100) times number chains order reliable indicate estimates posterior quantiles reliable. example, 3 chains, want see least neff=300 every parameter. can easily find lowest ESS min() function:","code":"summary(fit, neff=T) blavInspect(fit, \"neff\") ##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c  ##    2129.797    2213.042    2522.738    1834.788    1976.567    1971.076  ##           d           a           b           c           d dem60~ind60  ##    1695.770    1834.788    1976.567    1971.076    1695.770    2526.628  ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7  ##    2878.475    3174.016    2110.898    2486.032    2588.707    2548.746  ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1  ##    2448.895    1815.524    1589.221    1758.106    3448.222    2164.839  ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7  ##    3625.976    3118.296    2120.941    2233.933    2335.221    2383.304  ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1  ##    2121.529    1195.621    1151.652    1284.297    1397.158    1455.436  ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1  ##    1555.058    1187.214    1193.662    1166.296    1153.599    1040.533 min(blavInspect(fit, \"neff\")) ## [1] 1040.533"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Convergence loop","text":"many cases need run BSEM models multiple times converged. can take might want R . tutorial shows use loop increase number burnin samples model converges, can let run without adjust every time","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"convergence-loop","dir":"Articles","previous_headings":"","what":"Convergence loop","title":"Convergence loop","text":"start writing model syntax always. instead running blavaan functions usual, run inside loop follows. loop starts need define starting BURN <- 0 number iterations, convergence value higher desired rhat <- 20. loop set sto stop convergence criteria (rhat) lower desired value, like \\(\\hat{R} < 1.05\\), specify (rhat > 1.05), meaning loop continue long rhat higher 1.05. Thn inside loop increase number BURN iterations 1000 example. estimating model, evaluate convergence getting highest estimated \\(\\hat{R}\\), printing screen see far model converging. Note increasing number burnin iterations, keeping number saved samples (1000 case). want can increase decrease number saved iterations according case. can visualize convergence trace plots","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  BURN <- 0 rhat <- 20 while(rhat > 1.05) {      BURN <- BURN + 1000 ### increase burn in by 1000 iterations every time      fit <- bcfa(HS.model, std.lv=T,                data=HolzingerSwineford1939,                n.chains = 3, burnin = BURN,               sample=1000)   rhat <- max(blavInspect(fit, \"psrf\"), na.rm=T)   print(paste0(\"Rhat=\",rhat))   } print(paste0(\"Rhat=\",rhat)) ## [1] \"Rhat=1.00301474648599\" plot(fit, pars = 1:9, plot.type = \"trace\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"convergence-criteria","dir":"Articles","previous_headings":"","what":"Convergence criteria","title":"Convergence loop","text":"example use \\(\\hat{R} < 1.05\\) convergence criteria. recommend use \\(\\hat{R} < 1.01\\) convergence criteria, higher. \\(\\hat{R}\\) approximates 1, can argue model converged estimates achieve stability within chains (Gelman et al. 2014)","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Cross-loadings with strong priors","text":"advantage BSEM can use priors set soft constraints model, estimating parameter strong prior. way parameter estimated, prior restrict possible values. suggested Muthén Asparouhov (2012), way estimate possible cross-loadings CFA. way, posterior distribution restricted parameters includes values outside strong prior, can interpreted model modification. means parameters less restricted, prior distribution relaxed. tutorial present estimate CFA possible cross-loadings restricted strong priors.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"cross-loadings","dir":"Articles","previous_headings":"","what":"Cross-loadings","title":"Cross-loadings with strong priors","text":"show example Holzinger Swineford (1939) data. First estimate regular model cross-loadings default priors. can see overall model results summary() function, looking posterior distribution factor loadings, correlations, intercepts variances. Next, add possible cross-loadings strong prior \\(N(0, \\sigma = 0.08)\\). prior centers loadings around 0 allows little space move. can look summary() model evaluate cross-loadings. can specifically see whether cross-loadings seem large enough suggest kept model, looking posterior mean (Estimate) credible interval. suggest simply look whether CI excludes 0 (similar null hypothesis), evaluate whether minimum value CI (value closer 0) far enough away 0 relavant instead just different 0.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit_df <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T) summary(fit_df) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        30 ##  ##   Number of observations                           301 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                      -3871.066       0.000 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual =~                                                                     ##     x1                0.909    0.087    0.737    1.081    1.000    normal(0,10) ##     x2                0.504    0.083    0.345    0.672    1.000    normal(0,10) ##     x3                0.663    0.081    0.510    0.819    1.000    normal(0,10) ##   textual =~                                                                    ##     x4                0.998    0.056    0.892    1.109    1.000    normal(0,10) ##     x5                1.114    0.064    0.993    1.244    1.000    normal(0,10) ##     x6                0.927    0.054    0.823    1.033    1.000    normal(0,10) ##   speed =~                                                                      ##     x7                0.615    0.078    0.461    0.765    1.000    normal(0,10) ##     x8                0.732    0.079    0.572    0.884    1.000    normal(0,10) ##     x9                0.684    0.079    0.537    0.840    1.001    normal(0,10) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual ~~                                                                     ##     textual           0.449    0.063    0.314    0.568    1.000     lkj_corr(1) ##     speed             0.465    0.083    0.293    0.623    1.001     lkj_corr(1) ##   textual ~~                                                                    ##     speed             0.278    0.072    0.140    0.414    1.000     lkj_corr(1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                4.937    0.067    4.808    5.065    1.000    normal(0,32) ##    .x2                6.087    0.069    5.953    6.219    0.999    normal(0,32) ##    .x3                2.251    0.066    2.124    2.381    1.000    normal(0,32) ##    .x4                3.061    0.067    2.931    3.195    1.000    normal(0,32) ##    .x5                4.340    0.075    4.193    4.486    1.000    normal(0,32) ##    .x6                2.186    0.063    2.061    2.307    1.000    normal(0,32) ##    .x7                4.186    0.063    4.065    4.315    1.001    normal(0,32) ##    .x8                5.528    0.059    5.408    5.643    1.000    normal(0,32) ##    .x9                5.375    0.059    5.259    5.489    1.000    normal(0,32) ##     visual            0.000                                                     ##     textual           0.000                                                     ##     speed             0.000                                                     ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                0.556    0.126    0.288    0.795    1.001 gamma(1,.5)[sd] ##    .x2                1.150    0.105    0.956    1.374    1.000 gamma(1,.5)[sd] ##    .x3                0.857    0.098    0.665    1.056    1.001 gamma(1,.5)[sd] ##    .x4                0.379    0.050    0.286    0.483    1.000 gamma(1,.5)[sd] ##    .x5                0.455    0.061    0.343    0.579    1.002 gamma(1,.5)[sd] ##    .x6                0.363    0.046    0.279    0.458    1.000 gamma(1,.5)[sd] ##    .x7                0.826    0.090    0.664    1.012    1.000 gamma(1,.5)[sd] ##    .x8                0.504    0.097    0.319    0.704    1.000 gamma(1,.5)[sd] ##    .x9                0.564    0.096    0.365    0.751    1.000 gamma(1,.5)[sd] ##     visual            1.000                                                     ##     textual           1.000                                                     ##     speed             1.000 HS.model.cl<-' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9                     ## Cross-loadings               visual =~  prior(\"normal(0,.08)\")*x4 + prior(\"normal(0,.08)\")*x5 + prior(\"normal(0,.08)\")*x6 + prior(\"normal(0,.08)\")*x7 + prior(\"normal(0,.08)\")*x8 + prior(\"normal(0,.08)\")*x9               textual =~ prior(\"normal(0,.08)\")*x1 + prior(\"normal(0,.08)\")*x2 + prior(\"normal(0,.08)\")*x3 + prior(\"normal(0,.08)\")*x7 + prior(\"normal(0,.08)\")*x8 + prior(\"normal(0,.08)\")*x9                speed =~ prior(\"normal(0,.08)\")*x1 + prior(\"normal(0,.08)\")*x2 + prior(\"normal(0,.08)\")*x3 + prior(\"normal(0,.08)\")*x4 + prior(\"normal(0,.08)\")*x5 + prior(\"normal(0,.08)\")*x6'  fit_cl <- bcfa(HS.model.cl, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T) summary(fit_cl) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        48 ##  ##   Number of observations                           301 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                      -3858.783       0.134 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual =~                                                                     ##     x1                0.761    0.099    0.574    0.959    1.001    normal(0,10) ##     x2                0.567    0.093    0.390    0.751    1.000    normal(0,10) ##     x3                0.769    0.097    0.586    0.964    1.000    normal(0,10) ##   textual =~                                                                    ##     x4                0.983    0.064    0.861    1.110    1.000    normal(0,10) ##     x5                1.155    0.071    1.014    1.298    1.000    normal(0,10) ##     x6                0.894    0.060    0.781    1.018    1.000    normal(0,10) ##   speed =~                                                                      ##     x7                0.728    0.086    0.554    0.892    1.003    normal(0,10) ##     x8                0.792    0.085    0.636    0.973    1.008    normal(0,10) ##     x9                0.542    0.076    0.394    0.695    1.004    normal(0,10) ##   visual =~                                                                     ##     x4                0.032    0.058   -0.080    0.148    0.999   normal(0,.08) ##     x5               -0.073    0.062   -0.193    0.050    0.999   normal(0,.08) ##     x6                0.063    0.055   -0.047    0.171    1.000   normal(0,.08) ##     x7               -0.130    0.065   -0.259   -0.004    1.003   normal(0,.08) ##     x8               -0.005    0.067   -0.138    0.124    0.999   normal(0,.08) ##     x9                0.193    0.060    0.075    0.309    1.000   normal(0,.08) ##   textual =~                                                                    ##     x1                0.111    0.065   -0.019    0.237    1.000   normal(0,.08) ##     x2                0.007    0.059   -0.110    0.130    0.999   normal(0,.08) ##     x3               -0.084    0.063   -0.212    0.037    1.000   normal(0,.08) ##     x7                0.015    0.062   -0.111    0.135    1.000   normal(0,.08) ##     x8               -0.039    0.062   -0.161    0.082    0.999   normal(0,.08) ##     x9                0.032    0.054   -0.077    0.135    1.000   normal(0,.08) ##   speed =~                                                                      ##     x1                0.042    0.065   -0.081    0.172    1.000   normal(0,.08) ##     x2               -0.048    0.063   -0.172    0.076    1.000   normal(0,.08) ##     x3                0.027    0.064   -0.097    0.149    1.000   normal(0,.08) ##     x4               -0.006    0.056   -0.116    0.104    1.001   normal(0,.08) ##     x5                0.005    0.061   -0.114    0.123    1.000   normal(0,.08) ##     x6               -0.001    0.053   -0.103    0.106    1.000   normal(0,.08) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual ~~                                                                     ##     textual           0.374    0.095    0.186    0.549    1.000     lkj_corr(1) ##     speed             0.353    0.111    0.125    0.559    1.000     lkj_corr(1) ##   textual ~~                                                                    ##     speed             0.259    0.103    0.044    0.451    1.000     lkj_corr(1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                4.937    0.068    4.804    5.070    0.999    normal(0,32) ##    .x2                6.087    0.066    5.961    6.213    0.999    normal(0,32) ##    .x3                2.251    0.067    2.119    2.385    1.000    normal(0,32) ##    .x4                3.063    0.066    2.931    3.191    1.000    normal(0,32) ##    .x5                4.342    0.074    4.193    4.481    1.000    normal(0,32) ##    .x6                2.188    0.063    2.061    2.307    0.999    normal(0,32) ##    .x7                4.187    0.064    4.060    4.312    1.000    normal(0,32) ##    .x8                5.529    0.060    5.410    5.649    0.999    normal(0,32) ##    .x9                5.374    0.060    5.257    5.492    1.000    normal(0,32) ##     visual            0.000                                                     ##     textual           0.000                                                     ##     speed             0.000                                                     ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                0.677    0.107    0.457    0.885    1.001 gamma(1,.5)[sd] ##    .x2                1.090    0.107    0.897    1.307    1.000 gamma(1,.5)[sd] ##    .x3                0.718    0.114    0.497    0.938    1.000 gamma(1,.5)[sd] ##    .x4                0.388    0.051    0.289    0.490    0.999 gamma(1,.5)[sd] ##    .x5                0.411    0.065    0.291    0.543    1.000 gamma(1,.5)[sd] ##    .x6                0.372    0.044    0.290    0.461    0.999 gamma(1,.5)[sd] ##    .x7                0.714    0.099    0.524    0.914    1.002 gamma(1,.5)[sd] ##    .x8                0.434    0.100    0.218    0.609    1.015 gamma(1,.5)[sd] ##    .x9                0.589    0.067    0.461    0.726    1.003 gamma(1,.5)[sd] ##     visual            1.000                                                     ##     textual           1.000                                                     ##     speed             1.000"},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"caveats","dir":"Articles","previous_headings":"","what":"Caveats","title":"Cross-loadings with strong priors","text":"model possible cross-loadings kept final analysis model, used step make decisions model changes. two main reasons, (1) model overfitted present good overall fit just due inclusion lot nuisance parameters. example posterior predictive p-value goes ppp = 0 ppp = 0.134, model better theoretically inflating model fit. (2), addition small-variance priors can prevent detection important misspecifications Bayesian confirmatory factor analysis, can obscure underlying problems model diluting large number nuisance parameters (Jorgensen et al. 2019).","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"primary-arguments","dir":"Articles","previous_headings":"","what":"Primary arguments","title":"Model Estimation","text":"Primary arguments model estimation commands include burnin, sample, n.chains, target. burnin sample arguments used specify desired number burn-iterations posterior samples n.chains chains (burnin argument controls warm-iterations Stan). target argument, hand, used specify MCMC strategy used estimation. default, target = \"stan\", tends fastest efficient. options slightly flexible, including target = \"stanclassic\" target = \"jags\". approaches sample latent variables model parameters, whereas target = \"stan\" marginalizes latent variables. detail approaches, see JSS paper.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"secondary-arguments","dir":"Articles","previous_headings":"","what":"Secondary arguments","title":"Model Estimation","text":"Noteworthy secondary arguments include save.lvs, mcmcfile, mcmcextra, inits. save.lvs argument controls whether latent variables sampled model estimation. defaults FALSE latent variable sampling can take large amount memory, can slow post-estimation summaries. setting save.lvs = TRUE allows model summaries latent variables observed variable predictions using blavPredict() functions. setting mcmcfile = TRUE, users can obtain Stan (JAGS) code data specified model. files written lavExport folder within user’s working directory. One file extension .jag .stan, second file R data file (extension .rda). rda file can loaded R (via load()) list including elements data, monitors, inits. elements can supplied stan() model estimation outside blavaan. mcmcextra argument used supply extra information Stan JAGS. Users can supply list element names monitor, data, syntax, llnsamp. elements respectively used specify extra parameters monitor, extra data pass model estimation, extra syntax include model file (JAGS ), number importance samples likelihood approximation (relevant models ordinal variables). inits argument used control starting values MCMC estimation. can sometimes salvage model immediately crashes. default, inits = \"simple\", initializes model parameters 0 1 fashion similar lavaan’s use argument. second option, inits = \"prior\", draws initial values prior distributions. user can also specify list initial values via argument, though required list format somewhat cumbersome. recommend exporting model data using mcmcfile = TRUE, loading resulting rda file, looking format initial values blavaan created .","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"parallelization","dir":"Articles","previous_headings":"","what":"Parallelization","title":"Model Estimation","text":"Speed always issue sample via MCMC, especially using software like Stan JAGS. computers multiple cores, estimation can sped sending MCMC chain separate core. accomplished bcontrol argument, list whose elements correspond stan() run.jags() arguments. parallelizing chains Stan, want use argument bcontrol = list(cores = 3). Many arguments available control aspects estimation; see ?stan ?run.jags possibilities. Parallelization can also helpful speed post-estimation computations. future package controls parallelization, requires extra command prior estimation. common commands ","code":"library(\"future\") plan(\"multicore\") ## mac or linux plan(\"multisession\") ## windows"},{"path":"http://ecmerkle.github.io/blavaan/articles/invariance.html","id":"model-estimation","dir":"Articles","previous_headings":"","what":"Model Estimation","title":"Measurement Invariance","text":"Consider measurement invariance study Holzinger Swineford (1939) data. lavaan, may first estimate two models: examine absolute fit fit1. also compare fit2 fit1 via Likelihood Ratio Test. Instead , wish something similar via Bayesian methods. accomplish via blavaan, can fit Bayesian versions fit1 fit2 using similar syntax. Model fit comparison statistics available via fitMeasures() blavCompare() functions:","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit1 <- cfa(HS.model, data = HolzingerSwineford1939, group = \"school\")  fit2 <- cfa(HS.model, data = HolzingerSwineford1939, group = \"school\",             group.equal = \"loadings\") bfit1 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\")  bfit2 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",                group.equal = \"loadings\") fitMeasures(bfit1)  fitMeasures(bfit2)  blavCompare(bfit1, bfit2)"},{"path":"http://ecmerkle.github.io/blavaan/articles/invariance.html","id":"approximate-invariance","dir":"Articles","previous_headings":"","what":"Approximate Invariance","title":"Measurement Invariance","text":"approximate measurement invariance studies, replace hard equality constraints soft constraints using informative prior distributions. wiggle argument can used invoke types constraints. example: constrains loadings associated x2 x3 approximately equal across groups, informative priors associated constraints normal standard deviations 0.05. Using strategy, syntax can become cumbersome. many cases, group.equal argument can help . example: example, model intercepts loadings across-group constraints. loadings approximately equal across groups, due argument wiggle = \"loadings\". intercepts constrained exactly equal across groups. way, becomes easy use exact approximate equality constraints model, desired.","code":"HS.model <- ' visual  =~ x1 + c(\"a\", \"a\")*x2 + c(\"b\", \"b\")*x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  bfit3 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\", wiggle = c(\"a\", \"b\"),               wiggle.sd = 0.05) HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '       bfit4 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",               group.equal = c(\"intercepts\", \"loadings\"), wiggle = \"loadings\",               wiggle.sd = 0.05)"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Modification indices","text":"SEM, one first steps evaluate model’s global fit. global fit, need evaluate local fit model, meaning model reproduces specific correlations observed variables. couple common methods , () testing high residual correlations, (b) modification indices. tutorial focuses second. Modification indices test likely change model fit single parameter added model originally included. test can carried every possible parameter included (Bentler 1990).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"modification-indices","dir":"Articles","previous_headings":"","what":"Modification Indices","title":"Modification indices","text":"Modification indices present different indices quantify effect parameter, focus two . () modification index (MI) Lagrange multiplier, estimates extent model’s chi-square (\\(\\chi^2\\)) test statistic decrease parameter added model freely estimated, (b) standardized expected parameter change (SEPC), approximated standardized value parameter estimated model (Whittaker 2012). MI presents possible effect overall model, SEPC presents effect size missed parameter. show example Holzinger Swineford (1939) model. first estimate SEM/CFA model usual need write discrepancy function collect modification indices. list contains two functions estimate save MI SEPC. pass function ppmc() function blavaan. function, MI SEPC computed posterior sample, leading posterior distributions . view top 5 parameters arrange posterior mean (EAP) MI, case shows parameter highest impact overall model fit (according EAP) visual=~x9, cross-loading Visual factor item x9. according posterior median, parameter highest impact residual correlation indicators x7 x8 MI still recommended best metric indicate parameter best include next, can use SEPC evaluate likely effect size respective parameters. see 2 highest parameters, likely SEPC x7~~x8 = 0.799229902211115 visual=~x9 = 0.518551878229323. information can decide include one new parameters model (one time). example, factor loadings larger impact model-implied covariance matrix, choose visual=~x9 can check added parameter expected impact overall fit blavFitIndices() summary() functions. important consider also theoretical relevance suggested parameters, ensure make sense, instead just adding parameters good fit.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE) discFUN <- list(   mod.ind_mi = function(object){     temp <- modificationindices(object, free.remove = F)     mods <- temp$mi     names(mods) <- paste0(temp$lhs, temp$op, temp$rhs)     return(mods)   },   mod.ind_sepc.all = function(object){     temp <- modificationindices(object, free.remove = F)     sepc.all <- temp$sepc.all     names(sepc.all) <- paste0(temp$lhs, temp$op, temp$rhs)     return(sepc.all)   } ) out <- ppmc(fit, discFUN = discFUN) summary(out, prob=.9, discFUN = \"mod.ind_mi\", sort.by=\"EAP\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##               EAP Median    MAP     SD  lower  upper PPP_sim_GreaterThan_obs ## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239                   0.015 ## x7~~x8     32.891 35.539 39.626 14.716  4.604 52.733                   0.079 ## x8~~x9     27.117 12.160  2.726 42.978  0.000 70.495                   0.321 ## x4~~x6     19.784  7.015  1.388 36.713  0.000 52.503                   0.454 ## visual=~x7 18.162 16.144 12.432  9.849  4.183 33.098                   0.013 ##            PPP_sim_LessThan_obs ## visual=~x9                0.985 ## x7~~x8                    0.921 ## x8~~x9                    0.679 ## x4~~x6                    0.546 ## visual=~x7                0.987 summary(out, prob=.9, discFUN = \"mod.ind_mi\", sort.by=\"Median\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##                EAP Median    MAP     SD  lower  upper PPP_sim_GreaterThan_obs ## x7~~x8      32.891 35.539 39.626 14.716  4.604 52.733                   0.079 ## visual=~x9  35.353 35.458 35.495 10.624 17.727 52.239                   0.015 ## visual=~x7  18.162 16.144 12.432  9.849  4.183 33.098                   0.013 ## x8~~x9      27.117 12.160  2.726 42.978  0.000 70.495                   0.321 ## textual=~x1 11.011  9.976  5.705  8.318  0.000 22.179                   0.222 ##             PPP_sim_LessThan_obs ## x7~~x8                     0.921 ## visual=~x9                 0.985 ## visual=~x7                 0.987 ## x8~~x9                     0.679 ## textual=~x1                0.778 summary(out, prob=.9, discFUN = \"mod.ind_sepc.all\", sort.by=\"EAP\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##               EAP Median   MAP    SD lower upper PPP_sim_GreaterThan_obs ## x7~~x8      0.799  0.790 0.742 0.383 0.487 1.274                   0.049 ## visual=~x9  0.519  0.494 0.466 0.132 0.334 0.688                   0.008 ## textual=~x1 0.272  0.298 0.314 0.175 0.036 0.513                   0.130 ## x1~~x9      0.247  0.247 0.248 0.037 0.198 0.299                   0.021 ## x2~~x3      0.223  0.223 0.219 0.037 0.171 0.282                   0.026 ##             PPP_sim_LessThan_obs ## x7~~x8                     0.951 ## visual=~x9                 0.992 ## textual=~x1                0.870 ## x1~~x9                     0.979 ## x2~~x3                     0.974 HS.model <- ' visual  =~ x1 + x2 + x3 + x9               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit2 <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE)"},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Modification indices","text":"tutorial show calculate MI SEPC across posterior distributions, evaluate parameters can added. ppmc() function able calculate relevant information model estimation, build posterior distributions . general recommendations use MI identify likely parameter add, SEPC effect size new parameter.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Model Comparison","text":"traditional method model comparison frequentist SEM (fSEM) \\(\\chi^2\\) (Likelihood Ratio Test) variations. BSEM, take Bayesian model comparison methods, apply SEM. Specifically, focus two information criteria, (1) Widely Applicable Information Criterion (WAIC), (2) Leave-One-cross-validation (LOO). methods intend evaluate --sample predictive accuracy models, compare performance. ability predict datapoint hasn’t used training model (McElreath 2020) example use Industrialization Political Democracy example (Bollen 1989).","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit1 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"widely-applicable-information-criterion","dir":"Articles","previous_headings":"","what":"Widely Applicable Information Criterion","title":"Model Comparison","text":"WAIC (Watanabe 2010) can seen fully Bayesian generalization Akaike Information Criteria (AIC), measure uncertainty/information model prediction row data across posterior draws. Log-Pointwise-Predictive-Density (lppd). WAIC defined \\[\\begin{equation} WAIC= -2lppd + 2efp_{WAIC}, \\end{equation}\\] first term involves log-likelihoods observed data (marginal latent variables) second term effective number parameters. first term, \\(lppd\\), estimated : \\[\\begin{equation} \\widehat{lppd} = \\sum^{n}_{= 1} log \\Bigg(\\frac{1}{S}\\sum^{S}_{S=1}f(y_{}|\\theta^{S}) \\Bigg) \\end{equation}\\] \\(S\\) number posterior draws \\(f(y_{}|\\theta^{S})\\) density observation \\(\\) respect parameter sampled iteration \\(s\\). effective number parameter (\\(efp_{WAIC}\\)) calculated : \\[\\begin{equation}\\label{eq:efpWAIC} efp_{WAIC} = \\sum^n_{=1}var_{s}(logf(y_{}|\\theta)) \\end{equation}\\] separate variance estimated observation \\(\\) across \\(S\\) posterior draws.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"leave-one-out-cross-validation","dir":"Articles","previous_headings":"","what":"Leave-One-Out cross-validation","title":"Model Comparison","text":"LOO measures predictive density observation holding one observation time use rest observations update prior. estimation calculated via (Vehtari, Gelman, Gabry 2017): \\[\\begin{equation}     LOO = -2\\sum_{=1}^{n} log \\Bigg(\\frac{\\sum^{S}_{s =1} w^{s}_{}f(y_{}|\\theta^{s})}{\\sum^{s}_{s=1} w^{s}_{}}\\Bigg) \\end{equation}\\] \\(w^s_{}\\) Pareto-smoothed sampling weights based relative magnitude individual \\(\\) density function across \\(S\\) posterior samples. LOO effective number parameters involves \\(lppd\\) term WAIC: \\[\\begin{equation}     efp_{LOO} = lppd + LOO/2 \\end{equation}\\]","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"model-comparison","dir":"Articles","previous_headings":"","what":"Model comparison","title":"Model Comparison","text":"WAIC LOO approximate models’ performance across posterior draws, able calculate standard error model comparisons involving . model differences estimate differences across Expected Log-Pointwise-Predictive-Density (elpd), standard error respective difference. clear cutoff rules interpret present comparisons, researchers need use expert knowledge part decision process. best recommendation present differences elpd \\(\\Delta elpd\\), standard error, ratio . ratio least 2 can consider evidence differences models, ratio 4 considered stronger evidence. first example, compare standard political democracy model, model factor regressions fixed 0. 2 models, can compare blavCompare looking comparison object, can see WAIC, LOO, estimates, respective differences . information criteria, best model one lowest value case can see model 1 lower LOOIC, ratio shows LOO differences 5 SE magnitude. indicates model estimated regressions better Now, lets look example smaller difference models, smallest regression (dem65~ind60) fixed 0. see LOOIC, see difference two models minimal, ratio 0.21. indicates models functionally equivalent. case like , researchers decide model better representation, theoretically stronger. Lets one last model, largest regression (dem65~dem60) fixed 0. case, looking LOOIC, see model one better (lower value), ratio difference shows model 5 SE magnitude. Indicating evidence model predictive differences","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ 0*ind60     dem65 ~ 0*ind60 + 0*dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit2 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc12 <- blavCompare(fit1, fit2) bc12 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1606.39367 19.524548 ## p_loo       37.91537  2.921249 ## looic     3212.78735 39.049097 ##  ## $loo[[2]] ##             Estimate        SE ## elpd_loo -1647.22147 18.812473 ## p_loo       34.87839  2.734948 ## looic     3294.44293 37.624945 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -40.827791   7.917387  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1606.09668 19.490222 ## p_waic       37.61837  2.880782 ## waic       3212.19336 38.980445 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1646.98657 18.792019 ## p_waic       34.64349  2.704638 ## waic       3293.97313 37.584038 ##  ##  ## $diff_waic ##  elpd_diff    se_diff  ## -40.889885   7.921946 abs(bc12$diff_loo[1] / bc12$diff_loo[2]) ## elpd_diff  ##  5.156725 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ 0*ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit3 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc13 <- blavCompare(fit1, fit3) bc13 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1606.39367 19.524548 ## p_loo       37.91537  2.921249 ## looic     3212.78735 39.049097 ##  ## $loo[[2]] ##            Estimate        SE ## elpd_loo -1606.7212 19.392807 ## p_loo       37.4012  2.862995 ## looic     3213.4424 38.785615 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -0.3275254  0.9063163  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1606.09668 19.490222 ## p_waic       37.61837  2.880782 ## waic       3212.19336 38.980445 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1606.47884 19.361093 ## p_waic       37.15884  2.822929 ## waic       3212.95769 38.722187 ##  ##  ## $diff_waic ##  elpd_diff    se_diff  ## -0.3821645  0.9013668 abs(bc13$diff_loo[1] / bc13$diff_loo[2]) ## elpd_diff  ## 0.3613809 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + 0*dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit4 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc14 <- blavCompare(fit1, fit4) bc14 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1606.39367 19.524548 ## p_loo       37.91537  2.921249 ## looic     3212.78735 39.049097 ##  ## $loo[[2]] ##             Estimate        SE ## elpd_loo -1629.61704 19.863831 ## p_loo       37.93639  2.949145 ## looic     3259.23407 39.727662 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -23.223362   4.070988  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1606.09668 19.490222 ## p_waic       37.61837  2.880782 ## waic       3212.19336 38.980445 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1629.32928 19.834244 ## p_waic       37.64863  2.912971 ## waic       3258.65855 39.668489 ##  ##  ## $diff_waic ## elpd_diff   se_diff  ## -23.23260   4.08159 abs(bc14$diff_loo[1] / bc14$diff_loo[2]) ## elpd_diff  ##  5.704601"},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"bayes-factor","dir":"Articles","previous_headings":"","what":"Bayes factor","title":"Model Comparison","text":"Bayesian literature use Bayes factor (BF) compare models. number criticisms related use BF BSEM, including (1) BF unstable large models (like SEMs), (2) highly sensitive model priors, (3) requires strong priors stable estimation , (4) can require large number posterior draws, (5) estimation using marginal likelihood ignores lot information posterior distributions. details discussion please see Tendeiro Kiers (2019) Schad et al. (2022). criticisms lead us recommend use BF everyday BSEM estimation. researchers commit prior distributions commit exploring noise computations, BF can used describe relative odds one model another, intuitive model comparison metrics.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Model Comparison","text":"recommend use LOO WAIC general model comparison metrics BSEM. allow us estimate models’ --sample predictive accuracies, respective differences across posterior draws. also provide us uncertainty estimates comparison. cases LOO WAIC lead similar results, LOO recommended stable metric (Vehtari, Gelman, Gabry 2017). general, \\(\\Delta elpd\\) least 2 standard errors preferably 4 standard errors can interpreted evidence differential predictive accuracy.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"blavaan-coverage","dir":"Articles","previous_headings":"","what":"blavaan Coverage","title":"Two-level SEM","text":"version 0.5-1, blavaan handles two-level, random intercept models complete, continuous data. Handling missing data (assuming missingness random) come future release. meantime, multiple imputation might used combination current blavaan functionality (though currently automatic way ). Alternatively, much missing data occurs lower-level units, listwise deletion work. blavaan approach model estimation mimics lavaan approach, uses matrix results (see Rosseel 2021) enable us efficiently evaluate multilevel SEM likelihood. often lead efficient MCMC estimation, compared sampling level 1 level 2 latent variables working conditional likelihoods (see Merkle et al. 2021 discussion marginal vs conditional likelihoods). Similar single-level models, users can sample latent variables using save.lvs = TRUE argument bcfa/bsem/bgrowth/blavaan commands. Marginal information criteria (marginal latent variables) also automatically computed, information criteria generally preferred condition latent variables (see Merkle, Furr, Rabe-Hesketh 2019 detail context single-level models).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"bayes-specific-options","dir":"Articles","previous_headings":"","what":"Bayes-specific Options","title":"Two-level SEM","text":"Bayesian models require prior distributions. previous blavaan defaults single-level models now used two-level models. can continue use commands like dpriors(lambda = \"normal(1,.5)\") specify Normal(1,.5) prior factor loadings , two-level models, specification apply level 1 level 2 loadings. Depending model, may also useful specify priors individual parameters via prior() argument inside model specification syntax. default prior distributions always work well observed variables whose values far 0. continue encourage users consider prior distributions, possibly using prisamp = TRUE option draw samples prior (used prior predictive checking). Model checking also differs Bayesian frequentist methods. Just like one-level models, blavaan reports posterior predictive p-value general model assessment. computed comparing marginal likelihood observed data (marginal latent variables) marginal likelihood artificial data, iteration MCMC sampling. finer-grained model assessment, encourage users try ppmc(). allows compute posterior predictive p-value using , custom model assessment (defined R function).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"concluding-thoughts","dir":"Articles","previous_headings":"","what":"Concluding Thoughts","title":"Two-level SEM","text":"think new blavaan functionality provides viable option Bayesian two-level SEM, provide solid base future model developments. always, underlying Stan files supporting data available via mcmcfile = TRUE argument, blavaan code available Github. Bug reports appreciated, either blavaan Google group Github issue.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Ordinal Models in blavaan","text":"Structural equation models ordinal observed variables supported starting blavaan 0.4-1 (target=\"stan\" ). document describes overall approach, includes model estimation, threshold parameters, log-likelihood calculation, posterior predictive p-values, Jacobians. assume somewhat familiar layout SEM; , technical detail examples found Merkle Rosseel (2018) , recently, Merkle et al. (2021) (links papers references section). aim provide enough detail elucidate new blavaan features, informal enough get () bored.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"estimation","dir":"Articles","previous_headings":"","what":"Estimation","title":"Ordinal Models in blavaan","text":"Ordinal observed variables handled via data augmentation, style Chib Greenberg (1998). might already know , phrase data augmentation imprecise context SEM. many possible things augmented, can make model estimation easier. augmenting observed data predictions missing data, related multiple imputation methods. augmenting observed data latent variables, can simplify likelihood calculation (leading sometimes called conditional likelihood, though conditional also many meanings). augmenting categorical observed variables underlying, latent continuous variables. last type augmentation . testing, found faster efficient approaches sample latent variables alongside model parameters (latent variables integrated likelihoods ; similar description Merkle et al. (2021)). data augmentation implementation, ordinal observation (e.g., \\(y\\)) used generate continuous, underlying counterpart (e.g., \\(y^\\ast\\)). \\(y^\\ast\\) must obey model’s threshold parameters (commonly denoted \\(\\mathbf{\\tau}\\)), based value observed data. example, ignoring subscripts \\(y^\\ast\\) assuming ordinal variable 4 categories, \\[\\begin{align*} y^* < \\tau_1 &\\text{ }y = 1 \\\\ \\tau_1 <\\ y^* < \\tau_2 &\\text{ }y = 2 \\\\ \\tau_2 <\\ y^* < \\tau_3 &\\text{ }y = 3 \\\\ y^* >\\ \\tau_3 &\\text{ }y = 4 \\end{align*}\\] require \\(\\tau_1 < \\tau_2 < \\tau_3\\). generate \\(y^*\\) separately ordinal observation dataset. become additional, bounded parameters Stan file. Stan User’s Guide helpful example multivariate probit regression using related approach; see https://mc-stan.org/docs/2_27/stan-users-guide/multivariate-outcomes.html. trickiest parts involve enforcing boundaries \\(y^*\\) variables, ensuring threshold parameters ordinal variable ordered correctly (allowing possibility different ordinal variables different numbers thresholds). require Jacobian adjustments took good deal time code correctly (detail appears later section). parameters defined generated, remainder model estimation similar simpler situation observed variables continuous. terms Stan file, ordinal overhead comes transformed parameters block. get model block, things operate continuous data.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"thresholds-priors","dir":"Articles","previous_headings":"","what":"Thresholds & Priors","title":"Ordinal Models in blavaan","text":"prior distributions threshold (\\(\\tau\\)) parameters involved may appear. , described previous section, threshold parameters single variable must ordered. say, example, thresholds normal(0,1) prior distribution, ignoring fact one threshold’s value influences size thresholds’ values. Michael Betancourt describes Stan Discourse, prior “interacts (ordering) constraint enforce sort uniform repulsion interior points, resulting rigid differences.” quote https://discourse.mc-stan.org/t/prior-choice--ordered-inverse-transformed-parameters/16378/3 address issue, first define unconstrained, unordered parameter vector whose length equals number thresholds model. Call vector \\(\\mathbf{\\tau}^*\\). obtain ordered thresholds exponentiating unordered parameter vector specific manner. manner works exactly Stan defines parameter type ordered. See https://mc-stan.org/docs/2_28/reference-manual/ordered-vector.html. Additionally, similar idea independently developed signal detection models Paulewicz Blaut (2020) (see bhsdtr package). idea easily shown via example. Say ordinal variable 4 categories. three thresholds variable obtained via: \\[\\begin{align*} \\tau_1 &= \\tau^*_1 \\\\ \\tau_2 &= \\tau^*_1 + \\exp(\\tau^*_2) \\\\ \\tau_3 &= \\tau^*_1 + \\exp(\\tau^*_2) + \\exp(\\tau^*_3). \\end{align*}\\] place normal prior distributions unordered \\(\\tau^*\\) parameters, opposed placing priors ordered \\(\\tau\\) parameters. normal priors imply lowest threshold (\\(\\tau_1\\) ) normal prior, differences successive \\(\\tau\\)’s log-normal priors. blavaan, priors can specified usual two ways. First, add dp argument model estimation command follows. assign prior unordered \\(\\tau^*\\) parameters model. Second, specify priors specific threshold parameters model specification syntax. example, say 4-category observed variable called x1. unique priors three thresholds specified model syntax via clear time priors \\(\\tau^*\\) parameters best option. 2019 paper, Michael Betancourt describes Dirichlet prior regularizes thresholds ordinal regression model. strategy seem work SEM, especially useful datasets categories ordinal variable sparse. issues warrant study. https://betanalpha.github.io/assets/case_studies/ordinal_regression.html","code":"dp = dpriors(tau = \"normal(0, .5)\") x1 | prior(\"normal(-1, 1)\") * t1 + prior(\"normal(0, .5)\") * t2 + prior(\"normal(0, 1)\") * t3"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"likelihood-computations","dir":"Articles","previous_headings":"","what":"Likelihood Computations","title":"Ordinal Models in blavaan","text":"get continuous data model block, seems reasonable expect simple likelihood computations. depends likelihood want compute. likelihood used sampling Stan simple multivariate normal \\(y^*\\) observations, combined continuous observed variables model. indeed simple compute. likelihood want use model comparison. one thing, \\(y^*\\) parameters associated ordinal data involved likelihood, quantities like effective number parameters become inflated. number parameters involved likelihood also increases sample size, generally bad land model comparison metrics. See Merkle, Furr, Rabe-Hesketh (2019) detail . means , quantities like WAIC PSIS-LOO, must compute second model likelihood involves observed, ordinal \\(y\\) variables integrates latent \\(y^*\\) variables. difficult problem amounts evaluating CDF sometimes-high-dimensional, multivariate normal distribution (see Chib Greenberg 1998, Equation 11). multiple possibilities approximating CDF. currently rely sadmvn() function mnormt package (Azzalini Genz 2020), uses subregion adaptive integration method Genz (1992) fast accurate (15 fewer ordinal variables model). second possibility involves Monte Carlo simulation, implemented tmvnsim package (Bhattacjarjee 2016). case, generate many random samples appropriate truncated multivariate normal average resulting importance sampling weights. procedure computationally intensive also time intensive, balance number random samples drawn amount time takes. users wish use tmvnsim(), must declare number importance samples draw. accomplished setting llnsamp within mcmcextra$data argument. example, draw 100 samples approximation, call bsem() similar functions include argument Beyond two methods, also possible use quadrature latent variables. Many people consider quadrature gold standard , quadrature reduce dimension integration many models (usually fewer latent variables observed variables). quadrature specific SEM, fast, efficient, open implementations method appear currently exist (implementations hidden blavaan, pure R implementations fairly slow). hand, approximation multivariate normal CDF general problem multiple fast, efficient, open implementations, long many ordinal variables model. also exists relatively new method Z. . Botev (2017) evaluating CDF multivariate normal, implementation method appearing package TruncatedNormal (Z. Botev Belzile 2021). method especially useful evaluating high-dimensional normal distributions (case, 15 ordinal variables), may incorporated future versions blavaan.","code":"mcmcextra = list(data = list(llnsamp = 100))"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"comparison-to-lavaan","dir":"Articles","previous_headings":"","what":"Comparison to lavaan","title":"Ordinal Models in blavaan","text":"Ordinal SEM associated two types model parameterizations: delta theta. refer different scale parameterizations \\(y^*\\) variables: delta refers total standard deviation \\(y^*\\) (including variability due latent variables), theta refers residual standard deviation \\(y^*\\). blavaan, theta parameterization implemented. , want compare lavaan results blavaan results, need use argument parameterization = \"theta\" estimate lavaan model. Also, default lavaan estimator ordinal models multiple-step procedure involves weighted least squares discrepancy function. resulting parameter estimates sometimes far posterior means reported blavaan. blavaan estimates usually closer estimator=\"PML\" lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"posterior-predictive-p-values","dir":"Articles","previous_headings":"","what":"Posterior Predictive p-values","title":"Ordinal Models in blavaan","text":"Posterior predictive p-value (ppp) computations receive speed boost 0.4 series. computations now occur Stan, whereas previously occurred R model estimation. discussed Asparouhov Muthén (2021), ppp computations needed models missing data can excessively slow, requiring us run EM algorithm posterior sample order find “H1” (“saturated”) model covariance matrix. solution Asparouhov Muthén (2021) involves realization need use fully-optimized H1 covariance matrix order compute ppp. blavaan, consequently run EM algorithm fixed number iterations order compute H1 covariance matrix “good enough” ppp. default number iterations set 20, users can change default supplying emiter value via mcmcextra argument. example,","code":"mcmcextra = list(data = list(emiter = 50))"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"jacobians","dir":"Articles","previous_headings":"","what":"Jacobians","title":"Ordinal Models in blavaan","text":"(section likely relevant editing/writing Stan models.) Stan model underlying blavaan currently requires Jacobian adjustments two places. section briefly reviews ideas underneath adjustments, future self may wish remember. need Jacobian adjustment place prior something appear Stan parameters block. Jacobian tells us implied priors things parameters block, based priors appear model block. Jacobian comes statistics literature “change variables”: applying function random variables, finding distribution function based original distribution random variables. comes Stan models, means starting priors model block finding implied priors parameters block. confused long time , Stan file, functions naturally go opposite direction: starting parameters block, moving model block. fact functions go model parameters convenient, though, Jacobian adjustments require inverse functions. inverse functions move us parameters model, already exist Stan model. just need find appropriate derivatives functions, lead Jacobian. example, consider fact blavaan allows users choose whether priors go standard deviation, variance, precision parameters. standard deviations appear parameters block regardless user chooses (Stan model precompiled time package installation). Say user wants priors precisions. transform standard deviations precisions model block, put prior precision. addition prior, need Jacobian function starts standard deviation (call \\(\\sigma\\)) transforms precision (\\(\\sigma^{-2}\\)). derivative \\(\\sigma^{-2}\\) respect \\(\\sigma\\) \\(-2 \\sigma^{-3}\\). simple function mapping single parameter different value, Jacobian absolute value derivative, \\(2 \\sigma^{-3}\\). Stan file, add log Jacobian target: examples discussion can found : https://mc-stan.org/users/documentation/case-studies/mle-params.html","code":"target += log(2) - 3*log(sigma)"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Ordinal Models in blavaan","text":"blavaan 0.4 series offers enhanced functionality variety areas. computational decisions made reflect balance estimation precision estimation speed. case software defaults behave poorly situations. example, default prior distributions can problematic certain situations, likelihood approximations ordinal models may precise desired, new ppp computations may behave differently previous computations. encourage users carry sensitivity analyses, also report bugs!","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/plotting.html","id":"basics","dir":"Articles","previous_headings":"","what":"Basics","title":"Plot Functionality","text":"many blavaan models many parameters, users generally need specify parameters wish plot. accomplished supplying numbers pars argument, numbers correspond order parameters coef() command (numbers also appear free column parameter table). Users must also specify type plot desire via plot.type argument. , example, trace plot first four model parameters looks like  Many plot types available, coming bayesplot package. general, bayesplot functions begin mcmc_, corresponding plot.type remainder function name without leading mcmc_. Examples many plots can found bayesplot vignette.","code":"plot(fit, pars = 1:4, plot.type = \"trace\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/plotting.html","id":"customization","dir":"Articles","previous_headings":"","what":"Customization","title":"Plot Functionality","text":"Users may wish customize aspects resulting plots. , plot() function output ggplot object. makes possible modify plot ggplot object, allows many possibilities. One starting point exploring ggplot2 .  Alternatively, users may wish create plot entirely different available via plot(). can facilitated extracting posterior samples Stan model, via blavInspect():","code":"p <- plot(fit, pars = 1:4, plot.type = \"trace\", showplot = FALSE)  p + facet_text(size=15) + legend_none() ## list of draws ## (one list entry per chain): draws <- blavInspect(fit, \"mcmc\")  ## convert the list to a matrix ## (each row is a sample, ##  each column is a parameter) draws <- do.call(\"rbind\", draws)  ## Stan (or JAGS) model modobj <- blavInspect(fit, \"mcobj\")"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"defaults","dir":"Articles","previous_headings":"","what":"Defaults","title":"Specifying Prior Distributions","text":"default priors can seen via important note prior distributions correspond Stan parameterizations. similar R parameterizations necessarily exactly . Greek(ish) names correspond following parameter types (MV manifest/observed variable LV latent variable): information priors thresholds, see ordinal modeling details. target = \"stan\" (default), priors currently restricted one distribution per parameter type. can change prior distribution parameters (example, mean standard deviation normal), change prior distribution type. exceptions “theta” “psi” parameters: , can use modifiers “[sd]”, “[var]”, “[prec]” specify whether want priors apply standard deviation, variance, precision. require flexibility prior specification, change target either \"stanclassic\" (old Stan approach) \"jags\" (JAGS approach). Alternatively, can export Stan model via mcmcfile = TRUE, edit file needed, fit via rstan package. modify prior distributions, simply supply new text string dpriors() like : default prior loadings now normal mean 1 standard deviation 2, rest parameters remain original defaults. next time estimate model (via bsem(), bcfa(), bgrowth(), blavaan()), add argument dp=mydp use new set default priors.","code":"dpriors() ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"    \"normal(0,10)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\" ##                  nu               alpha              lambda                beta  ##      \"MV intercept\"      \"LV intercept\"           \"Loading\"        \"Regression\"  ##               theta                 psi                 rho               ibpsi  ##      \"MV precision\"      \"LV precision\"       \"Correlation\" \"Covariance matrix\"  ##                 tau  ##         \"Threshold\" mydp <- dpriors(lambda=\"normal(1,2)\") mydp ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"     \"normal(1,2)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"individual-parameters","dir":"Articles","previous_headings":"","what":"Individual Parameters","title":"Specifying Prior Distributions","text":"addition setting prior one type model parameter, user may wish set prior specific model parameter. accomplished using prior() modifier within model specification. example, consider following syntax Holzinger Swineford (1939) confirmatory factor model: loading visual x2 now normal prior mean 1 standard deviation 2, loading textual x6 normal prior mean 3 standard deviation 1.5. loadings default prior distribution. syntax, additionally specified gamma(3,3) prior associated residual x1. [sd] text end distribution says prior goes residual standard deviation, opposed residual precision residual variance. exist two options : [var] option residual variance, brackets precision (also use [prec]). bracketed text can used model variance/SD/precision parameter also used default prior specification desired.","code":"HS.model <- ' visual  =~ x1 + prior(\"normal(1,2)\")*x2 + x3               textual =~ x4 + x5 + prior(\"normal(3,1.5)\")*x6               speed   =~ x7 + x8 + x9                x1 ~~ prior(\"gamma(3,3)[sd]\")*x1 '"},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"covariance-parameters","dir":"Articles","previous_headings":"","what":"Covariance Parameters","title":"Specifying Prior Distributions","text":"One additional note covariance parameters defined model syntax: prior() syntax specifies prior correlation associated covariance parameter, opposed covariance . specified distribution support (0,1), blavaan automatically translates prior equivalent distribution support (-1,1). safest stick beta priors . example, syntax places Beta(1,1) (uniform) prior correlation visual textual factors. desired, also specify priors standard deviations (variances precisions) visual textual factors. Together prior correlation, priors imply prior covariance visual textual.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9                visual ~~ prior(\"beta(1,1)\")*textual '"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Prior Predictive Checks","text":"Bayesian models need specify priors model parameters. Priors distribution think parameters follow, even data. can represent high low uncertainty, diffuse prior indicates don know lot parameter behave, informative prior means quite certain expected distribution.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"prior-predictive-checks","dir":"Articles","previous_headings":"","what":"Prior Predictive Checks","title":"Prior Predictive Checks","text":"Prior predictive checks (PPC) generate data according prior order asses whether prior appropriate (Gabry et al. 2019). posterior predictive check generates replicated data according posterior predictive distribution. contrast, prior predictive check generates data according prior predictive distribution \\(y^{sim} ∼ p(y)\\). prior predictive distribution just like posterior predictive distribution observed data, prior predictive check nothing limiting case posterior predictive check data. easy carry mechanically simulating parameters \\(θ^{sim}∼p(\\theta)\\) according priors, simulating data \\(y^{sim}∼p(y∣ \\theta^{sim})\\) according sampling distribution given simulated parameters. result simulation joint distribution, \\((y^{sim},θ^{sim})∼p(y,\\theta)\\) thus \\(y^{sim}∼p(y)\\) simulation prior predictive distribution. blavaan can get PPC use argument prisamp=TRUE , tell blavaan ignore data buil distributions priors. start adjusting priors, instead using default priors.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"weakly-informative-priors","dir":"Articles","previous_headings":"Prior Predictive Checks","what":"Weakly informative priors","title":"Prior Predictive Checks","text":"show example Holzinger Swineford (1939) data, first case weakly informative priors. stpecifying observeded variable intercepts prior \\(N(3, 2)\\), factor loadings prior \\(N(0.4, 2)\\), residual standard deviation prior \\(\\Gamma(1,1)\\). estimate BSEM model respective priors dp argument, prisamp=TRUE, getting PPC instead posterior distributions. might get warning messages either divergent /failed convergence. ignore messages likely issues evaluations prior predictions. now blavaan object prior predictive distributions, can use package functions describe , see parameters within expected ranges. example can get PPC density distributions first 9 parameters (factor loadings case). basic plot() method calls functions bayesplot package (Gabry Mahr 2021) plot.type = \"dens\" argument can plot density distributions  can also pick parameters plot, like factor correlations chossing parameters 19:21 case  factor loadings distributions see first loading factor bounded 0, due modeling identification constraint blavaan, maximum values aroun 6. distributions range -6 6 -4 4, priors likely value around 0. described weakly informative priors allows range begative positive values without allowing crazy high/low values Note realistic range dependen parameter, model specification, data. , consider priors function characterictics. factor correlations kept deafult diffuse priors, allowed high low correlation, prior distributions flat across possible correlation values.","code":"priors <- dpriors(nu=\"normal(3,2)\",                   lambda=\"normal(0.4, 2)\",                   theta=\"gamma(1,1)[sd]\") HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit_wi <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T, test = \"none\",             dp=priors, prisamp = T) plot(fit_wi, pars=1:9, plot.type = \"dens\") plot(fit_wi, pars=19:21, plot.type = \"dens\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"default-priors","dir":"Articles","previous_headings":"Prior Predictive Checks","what":"Default priors","title":"Prior Predictive Checks","text":"next example, estimate PPC package default priors, consider diffuse priors. can see blavaan default priors function dpriors() estimate BSEM model ignore dp argument letting run default priors, prisamp=TRUE, getting PPC instead posterior distributions. can plot density distributions compare . see default diffuse priors, model allows high values -30 30  way can see diffuse priors allows higher range values. researcher decide range priors better present expectations. important note PPC allows see expected distributions based priors, might priors used estimation process, priors interact model specification constraints (o bound constraint first factor loading) (Merkle et al. 2023)","code":"dpriors() ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"    \"normal(0,10)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\" fit_df <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T, test = \"none\",              prisamp = T) plot(fit_df, pars=1:9, plot.type = \"dens\")"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Probability of Direction","text":"Probability Direction (pd) index effect existence, ranging 0% 100%, representing certainty effect goes particular direction (.e., positive negative) (Makowski et al. 2019). Beyond simplicity interpretation, understanding computation, index also presents interesting properties: independent model: solely based posterior distributions require additional information data model. robust scale response variable predictors. *strongly correlated frequentist p-value, can thus used draw parallels give reference readers non-familiar Bayesian statistics. Can interpreted probability parameter (described posterior distribution) chosen cutoff, explicit hypothesis. mathematically defined proportion posterior distribution satisfies specified hypothesis. Although differently expressed, index fairly similar (.e., strongly correlated) frequentist p-value.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"probability-of-direction-pd","dir":"Articles","previous_headings":"","what":"Probability of Direction (pd)","title":"Probability of Direction","text":"example use Industrialization Political Democracy example (Bollen 1989). first estimate latent regression model can look overall model results summary function, case also asking standardized estimates, \\(R^2\\) calculate probability direction use function package brms (Bürkner 2017) Ans need extract posterior draws matrix, also important note parameters posterior draws named Stan underlying object names, instead (b)lavaan parameter names. can see parameter name equates partable() function, follows example focus regressions factors Now, can calculate pd, hypothesis() function brms can ask specific question posterior distributions, example want know proportion regression dem65~ind60 higher 0. function requires 2 arguments, posterior draws (mc_out) hypothesis (bet_sign[2] > 0), also adding ``alpha``` argument specifies size credible intervals estimate presents mean posterior distribution, respective measures variability (deviation credible interval). Post.Prob pd stated hypothesis, example can say 91% posterior distribution dem65~ind60 lower 0. equivalent one-tail test. Evid.Ratio evidence ratio hypothesis, hypothesis form \\(> b\\), evidence ratio ratio posterior probability \\(> b\\) posterior probability \\(< b\\) another example, want know proportion regression dem60~ind60 higher 0. can see 100% posterior probability higher 0, case Evid.Ratio = Inf, happens whole distribution fulfills hypothesis. another possible case interest, use test equalities parameters, example can test dem60~ind60 higher dem65~ind60. see 97% posteriors state dem60~ind60 higher dem65~ind60, mean difference (dem60~ind60 - dem65~ind60) Estimate=0.46","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T) summary(fit, standardize=T, rsquare=T) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        42 ##   Number of equality constraints                     4 ##  ##   Number of observations                            75 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                             NA       0.019 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##   ind60 =~                                                               ##     x1                0.703    0.071    0.577    0.853    0.703    0.922 ##     x2                1.531    0.139    1.286    1.824    1.531    0.972 ##     x3                1.272    0.139    1.019    1.568    1.272    0.871 ##   dem60 =~                                                               ##     y1         (a)    1.455    0.167    1.129    1.792    1.783    0.761 ##     y2         (b)    1.726    0.226    1.305    2.196    2.116    0.584 ##     y3         (c)    1.807    0.200    1.433    2.210    2.215    0.699 ##     y4         (d)    1.939    0.195    1.574    2.341    2.378    0.789 ##   dem65 =~                                                               ##     y5         (a)    1.455    0.167    1.129    1.792    2.298    0.811 ##     y6         (b)    1.726    0.226    1.305    2.196    2.728    0.770 ##     y7         (c)    1.807    0.200    1.433    2.210    2.855    0.835 ##     y8         (d)    1.939    0.195    1.574    2.341    3.065    0.871 ##      Rhat    Prior        ##                           ##     1.001    normal(0,10) ##     1.000    normal(0,10) ##     1.001    normal(0,10) ##                           ##     0.999    normal(0,10) ##     1.000    normal(0,10) ##     1.000    normal(0,10) ##     1.001    normal(0,10) ##                           ##     0.999                 ##     1.000                 ##     1.000                 ##     1.001                 ##  ## Regressions: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##   dem60 ~                                                                ##     ind60             0.709    0.176    0.380    1.099    0.578    0.578 ##   dem65 ~                                                                ##     ind60             0.243    0.178   -0.110    0.580    0.154    0.154 ##     dem60             0.870    0.131    0.629    1.133    0.675    0.675 ##      Rhat    Prior        ##                           ##     1.001    normal(0,10) ##                           ##     1.001    normal(0,10) ##     1.000    normal(0,10) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##  .y1 ~~                                                                  ##    .y5                0.745    0.429   -0.024    1.702    0.745    0.295 ##  .y2 ~~                                                                  ##    .y4                1.772    0.838    0.282    3.559    1.772    0.326 ##    .y6                2.224    0.772    0.833    3.883    2.224    0.335 ##  .y3 ~~                                                                  ##    .y7                1.333    0.679    0.154    2.762    1.333    0.313 ##  .y4 ~~                                                                  ##    .y8                0.380    0.479   -0.520    1.361    0.380    0.119 ##  .y6 ~~                                                                  ##    .y8                1.073    0.726   -0.257    2.672    1.073    0.274 ##      Rhat    Prior        ##                           ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##     0.999       beta(1,1) ##                           ##     1.001       beta(1,1) ##                           ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##    .x1                5.052    0.086    4.876    5.219    5.052    6.626 ##    .x2                4.787    0.179    4.432    5.150    4.787    3.040 ##    .x3                3.554    0.166    3.223    3.879    3.554    2.435 ##    .y1                5.456    0.268    4.925    5.972    5.456    2.328 ##    .y2                4.244    0.422    3.407    5.058    4.244    1.172 ##    .y3                6.555    0.366    5.842    7.264    6.555    2.069 ##    .y4                4.448    0.344    3.768    5.121    4.448    1.477 ##    .y5                5.120    0.329    4.481    5.762    5.120    1.806 ##    .y6                2.971    0.402    2.176    3.776    2.971    0.839 ##    .y7                6.187    0.399    5.390    6.967    6.187    1.810 ##    .y8                4.031    0.408    3.237    4.839    4.031    1.145 ##     ind60             0.000                               0.000    0.000 ##    .dem60             0.000                               0.000    0.000 ##    .dem65             0.000                               0.000    0.000 ##      Rhat    Prior        ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##     1.001    normal(0,32) ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##     1.001    normal(0,32) ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##     1.000    normal(0,32) ##                           ##                           ##                           ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##    .x1                0.087    0.022    0.048    0.136    0.087    0.149 ##    .x2                0.136    0.080    0.003    0.315    0.136    0.055 ##    .x3                0.513    0.102    0.338    0.739    0.513    0.241 ##    .y1                2.315    0.585    1.330    3.565    2.315    0.421 ##    .y2                8.648    1.570    6.011   12.168    8.648    0.659 ##    .y3                5.125    1.054    3.380    7.458    5.125    0.511 ##    .y4                3.421    0.911    1.862    5.408    3.421    0.377 ##    .y5                2.755    0.662    1.674    4.284    2.755    0.343 ##    .y6                5.108    1.076    3.236    7.429    5.108    0.407 ##    .y7                3.536    0.864    2.070    5.406    3.536    0.302 ##    .y8                3.002    0.902    1.330    4.924    3.002    0.242 ##     ind60             1.000                               1.000    1.000 ##    .dem60             1.000                               0.665    0.665 ##    .dem65             1.000                               0.401    0.401 ##      Rhat    Prior        ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.001 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     0.999 gamma(1,.5)[sd] ##     1.001 gamma(1,.5)[sd] ##     1.001 gamma(1,.5)[sd] ##     1.001 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##                           ##                           ##                           ##  ## R-Square: ##                    Estimate ##     x1                0.851 ##     x2                0.945 ##     x3                0.759 ##     y1                0.579 ##     y2                0.341 ##     y3                0.489 ##     y4                0.623 ##     y5                0.657 ##     y6                0.593 ##     y7                0.698 ##     y8                0.758 ##     dem60             0.335 ##     dem65             0.599 library(brms) mc_out <- as.matrix(blavInspect(fit, \"mcmc\")) dim(mc_out) ## [1] 3000   42 colnames(mc_out) ##  [1] \"ly_sign[1]\"    \"ly_sign[2]\"    \"ly_sign[3]\"    \"ly_sign[4]\"    ##  [5] \"ly_sign[5]\"    \"ly_sign[6]\"    \"ly_sign[7]\"    \"ly_sign[4]\"    ##  [9] \"ly_sign[5]\"    \"ly_sign[6]\"    \"ly_sign[7]\"    \"bet_sign[1]\"   ## [13] \"bet_sign[2]\"   \"bet_sign[3]\"   \"Theta_cov[1]\"  \"Theta_cov[2]\"  ## [17] \"Theta_cov[3]\"  \"Theta_cov[4]\"  \"Theta_cov[5]\"  \"Theta_cov[6]\"  ## [21] \"Theta_var[1]\"  \"Theta_var[2]\"  \"Theta_var[3]\"  \"Theta_var[4]\"  ## [25] \"Theta_var[5]\"  \"Theta_var[6]\"  \"Theta_var[7]\"  \"Theta_var[8]\"  ## [29] \"Theta_var[9]\"  \"Theta_var[10]\" \"Theta_var[11]\" \"Nu_free[1]\"    ## [33] \"Nu_free[2]\"    \"Nu_free[3]\"    \"Nu_free[4]\"    \"Nu_free[5]\"    ## [37] \"Nu_free[6]\"    \"Nu_free[7]\"    \"Nu_free[8]\"    \"Nu_free[9]\"    ## [41] \"Nu_free[10]\"   \"Nu_free[11]\" pt <- partable(fit)[,c(\"lhs\",\"op\",\"rhs\",\"pxnames\")] pt ##      lhs op   rhs       pxnames ## 1  ind60 =~    x1    ly_sign[1] ## 2  ind60 =~    x2    ly_sign[2] ## 3  ind60 =~    x3    ly_sign[3] ## 4  dem60 =~    y1    ly_sign[4] ## 5  dem60 =~    y2    ly_sign[5] ## 6  dem60 =~    y3    ly_sign[6] ## 7  dem60 =~    y4    ly_sign[7] ## 8  dem65 =~    y5    ly_sign[4] ## 9  dem65 =~    y6    ly_sign[5] ## 10 dem65 =~    y7    ly_sign[6] ## 11 dem65 =~    y8    ly_sign[7] ## 12 dem60  ~ ind60   bet_sign[1] ## 13 dem65  ~ ind60   bet_sign[2] ## 14 dem65  ~ dem60   bet_sign[3] ## 15    y1 ~~    y5  Theta_cov[1] ## 16    y2 ~~    y4  Theta_cov[2] ## 17    y2 ~~    y6  Theta_cov[3] ## 18    y3 ~~    y7  Theta_cov[4] ## 19    y4 ~~    y8  Theta_cov[5] ## 20    y6 ~~    y8  Theta_cov[6] ## 21    x1 ~~    x1  Theta_var[1] ## 22    x2 ~~    x2  Theta_var[2] ## 23    x3 ~~    x3  Theta_var[3] ## 24    y1 ~~    y1  Theta_var[4] ## 25    y2 ~~    y2  Theta_var[5] ## 26    y3 ~~    y3  Theta_var[6] ## 27    y4 ~~    y4  Theta_var[7] ## 28    y5 ~~    y5  Theta_var[8] ## 29    y6 ~~    y6  Theta_var[9] ## 30    y7 ~~    y7 Theta_var[10] ## 31    y8 ~~    y8 Theta_var[11] ## 32 ind60 ~~ ind60           ## 33 dem60 ~~ dem60           ## 34 dem65 ~~ dem65           ## 35    x1 ~1          Nu_free[1] ## 36    x2 ~1          Nu_free[2] ## 37    x3 ~1          Nu_free[3] ## 38    y1 ~1          Nu_free[4] ## 39    y2 ~1          Nu_free[5] ## 40    y3 ~1          Nu_free[6] ## 41    y4 ~1          Nu_free[7] ## 42    y5 ~1          Nu_free[8] ## 43    y6 ~1          Nu_free[9] ## 44    y7 ~1         Nu_free[10] ## 45    y8 ~1         Nu_free[11] ## 46 ind60 ~1                 ## 47 dem60 ~1                 ## 48 dem65 ~1                 ## 49  .p4. ==  .p8.           ## 50  .p5. ==  .p9.           ## 51  .p6. == .p10.           ## 52  .p7. == .p11.           pt[pt$op==\"~\",] ##      lhs op   rhs     pxnames ## 12 dem60  ~ ind60 bet_sign[1] ## 13 dem65  ~ ind60 bet_sign[2] ## 14 dem65  ~ dem60 bet_sign[3] hypothesis(mc_out, \"bet_sign[2] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob ## 1 (bet_sign[2]) > 0     0.24      0.18    -0.05     0.53      10.32      0.91 ##   Star ## 1      ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities. hypothesis(mc_out, \"bet_sign[1] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob ## 1 (bet_sign[1]) > 0     0.71      0.18     0.43     1.02        Inf         1 ##   Star ## 1    * ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities. hypothesis(mc_out, \"bet_sign[1] - bet_sign[2] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio ## 1 (bet_sign[1]-bet_... > 0     0.47      0.26     0.06     0.92      31.61 ##   Post.Prob Star ## 1      0.97    * ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities."},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"region-of-practical-equivalence-rope","dir":"Articles","previous_headings":"","what":"Region of Practical Equivalence (ROPE)","title":"Probability of Direction","text":"Note far tested hypothesis 0, equivalent frequentist null hypothesis tests. can test . Bayesian inference based statistical significance, effects tested “zero”. Indeed, Bayesian framework offers probabilistic view parameters, allowing assessment uncertainty related . Thus, rather concluding effect present simply differs zero, conclude probability outside specific range can considered “practically effect” (.e., negligible magnitude) sufficient. range called region practical equivalence (ROPE). Indeed, statistically, probability posterior distribution different 0 make much sense (probability different single point infinite). Therefore, idea underlining ROPE let user define area around null value enclosing values equivalent null value practical purposes (Kruschke Liddell 2018) examples, change value tested, common recommendations use |0.1| minimally relevant value standardized regressions, case find 0.79 proportion posterior 0.1","code":"hypothesis(mc_out, \"bet_sign[2] > .1\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##               Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio ## 1 (bet_sign[2])-(.1) > 0     0.14      0.18    -0.15     0.43       3.89 ##   Post.Prob Star ## 1       0.8      ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities."},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"vs--95-ci","dir":"Articles","previous_headings":"","what":"89% vs. 95% CI","title":"Probability of Direction","text":"commonly frequentist tradition see use 95% Credible interval. Using 89% another popular choice, used default long time. start? Naturally, came choosing CI level report default, people started using 95%, arbitrary convention used frequentist world. However, authors suggested 95% might appropriate Bayesian posterior distributions, potentially lacking stability enough posterior samples drawn (McElreath 2020). proposition use 90% instead 95%. However, recently, McElreath (2020) suggested use arbitrary thresholds first place, use 89%? Moreover, 89 highest prime number exceed already unstable 95% threshold. anything? Nothing, reminds us total arbitrariness conventions (McElreath 2020). can use argument alpha argument hypothesis function, interpretation values Post.Prob","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"caveats","dir":"Articles","previous_headings":"","what":"Caveats","title":"Probability of Direction","text":"Although allows testing hypotheses similar manner frequentist null-hypothesis testing framework, strongly argue using arbitrary cutoffs (e.g., p < .05) determine ‘existence’ effect. ROPE sensitive scale, aware value interest representative respective scale. , standardize parameters useful commonly used scale","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/start.html","id":"installation","dir":"Articles","previous_headings":"","what":"Installation","title":"Getting Started with blavaan","text":"blavaan can installed CRAN usual way: situations, may wish install blavaan GitHub. GitHub version sometimes contains bug fixes yet CRAN, though can also less stable. install GitHub, use following command. command requires system can compile Stan models, guaranteed usually install blavaan CRAN. trouble, may help look RStan Getting Started page.","code":"install.packages(\"blavaan\") remotes::install_github(\"ecmerkle/blavaan\", INSTALL_opts = \"--no-multiarch\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/start.html","id":"commands-and-syntax","dir":"Articles","previous_headings":"","what":"Commands and Syntax","title":"Getting Started with blavaan","text":"blavaan package depends lavaan package model specification computations. means , already know lavaan, already able many things blavaan. particular, many blavaan commands add letter “b” start lavaan command. example, sem() becomes bsem(), lavInspect() becomes blavInspect(). also sometimes possible use lavaan command blavaan object, though results may always expect. details mind, look lavaan tutorial many examples models. can translate many examples blavaan adding “b” start commands. look pages , learn additional blavaan arguments specific Bayesian methods.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"convergence","dir":"Articles","previous_headings":"","what":"Convergence","title":"Model Summaries","text":"Following model estimation, immediately wish look “goodness” posterior samples, including convergence stationary distribution autocorrelation. Popular convergence metrics available via blavInspect() function: R-hat values near 1.00 indicate convergence, large effective sample sizes (hundreds ) preferred. details metrics, see, e.g., Posterior Analysis section Stan Reference Manual. model definitely converged (judged Rhat), blavaan issue multiple warnings. Lack convergence sometimes caused bad initial values chain strays extreme region posterior space. cases, can helpful re-estimate model second time. also helpful specify mildly-informative priors loading parameters, chains wander extreme loading values. example, expect variables positively correlated loadings fixed 1 identification, Normal(1,.5) often mildly-informative prior. Otherwise, lack convergence may imply prior distributions severely conflict data, ill-defined model. sometimes helpful try fit model lavaan, observe whether errors occur .","code":"blavInspect(fit, 'rhat') blavInspect(fit, 'neff')"},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"model-fit-comparison","dir":"Articles","previous_headings":"","what":"Model Fit & Comparison","title":"Model Summaries","text":"Next, may wish examine model fit metrics. many metrics available summary() output, available fitMeasures() function: judging absolute fit, blavaan supplies posterior predictive p-value based likelihood ratio statistic. Good-fitting models values near 0.5 metric. examining models’ relative fits, blavaan supplies DIC, WAIC, LOOIC. latter two metrics computed help loo package (Vehtari et al. 2020). Comparison multiple models criteria facilitated via blavCompare(), provides standard errors difference two criteria. notable functions include blavFitIndices() alternative measures absolute fit ppmc() general posterior predictive checks.","code":"summary(fit) fitMeasures(fit)"},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"latent-variables-standardization","dir":"Articles","previous_headings":"","what":"Latent Variables & Standardization","title":"Model Summaries","text":"often-discussed advantage Bayesian models abilities describe uncertainty “random” parameters, including random effects latent variables. access functionality blavaan, users must set save.lvs = TRUE model estimation, done top page. model estimation, uses can access information via blavInspect() blavPredict(). Relevant arguments blavInspect() include lvmeans lvs. former returns posterior means latent variables, similar predictions supplied frequentist models. latter returns posterior samples latent variables, users summarize uncertainties functions latent variables. posterior samples returned list length n.chains, list entry row per posterior sample (number columns total number latent variables model): related, different, information can obtained blavPredict(). function also return posterior samples latent variables, matrix instead list: blavPredict() function also return predictions observed variables conditioned sampled latent variables. type = \"yhat\" argument returns expected values observed variables conditioned latent variable samples; type = \"ypred\" argument returns posterior predictions observed variables including residual noise (essentially yhat + error); type = \"ymis\" argument returns posterior predictions missing variables conditioned observed. expected values predictions returned list format; matrix, see last line code . Finally, fully related latent variables: standardizedPosterior() function return standardized posterior draws. calls lavaan function standardizedSolution() background function’s flexibility.","code":"postmns <- blavInspect(fit, what = \"lvmeans\") postsamps <- blavInspect(fit, what = \"lvs\") postsamps <- blavPredict(fit, type = \"lv\") evpreds <- blavPredict(fit, type = \"yhat\") postpreds <- blavPredict(fit, type = \"ypred\") mispreds <- blavPredict(fit, type = \"ymis\")  ## convert to matrix from list: evpreds <- do.call(\"rbind\", evpreds)"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Edgar Merkle. Author, maintainer. Yves Rosseel. Author. Ben Goodrich. Author. Mauricio Garnier-Villarreal. Contributor.            R/blav_compare.RR/ctr_bayes_fit.Rvignettes Terrence D. Jorgensen. Contributor.            R/ctr_bayes_fit.RR/ctr_ppmc.RR/blav_predict.R Huub Hoofs. Contributor.            R/ctr_bayes_fit.R Rens van de Schoot. Contributor.            R/ctr_bayes_fit.R Andrew Johnson. Contributor.            Makevars Matthew Emery. Contributor.            loo moment_match","code":""},{"path":"http://ecmerkle.github.io/blavaan/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Merkle EC, Fitzsimmons E, Uanhoro J, Goodrich B (2021). “Efficient Bayesian Structural Equation Modeling Stan.” Journal Statistical Software, 100(6), 1–22. doi:10.18637/jss.v100.i06. Merkle EC, Rosseel Y (2018). “blavaan: Bayesian Structural Equation Models via Parameter Expansion.” Journal Statistical Software, 85(4), 1–30. doi:10.18637/jss.v085.i04.","code":"@Article{,   title = {Efficient {Bayesian} Structural Equation Modeling in {Stan}},   author = {Edgar C. Merkle and Ellen Fitzsimmons and James Uanhoro and Ben Goodrich},   journal = {Journal of Statistical Software},   year = {2021},   volume = {100},   number = {6},   pages = {1--22},   doi = {10.18637/jss.v100.i06}, } @Article{,   title = {{blavaan: Bayesian} Structural Equation Models via Parameter Expansion},   author = {Edgar C. Merkle and Yves Rosseel},   journal = {Journal of Statistical Software},   year = {2018},   volume = {85},   number = {4},   pages = {1--30},   doi = {10.18637/jss.v085.i04}, }"},{"path":"http://ecmerkle.github.io/blavaan/index.html","id":"blavaan","dir":"","previous_headings":"","what":"Bayesian Latent Variable Analysis","title":"Bayesian Latent Variable Analysis","text":"blavaan free, open source R package Bayesian latent variable analysis. relies JAGS Stan estimate models via MCMC. blavaan functions syntax similar lavaan. example, consider Political Democracy example Bollen (1989): development version blavaan (containing updates yet CRAN) can installed via command . Compilation required; may problem users currently rely binary version blavaan CRAN. information, see: Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021). Efficient Bayesian structural equation modeling Stan. Journal Statistical Software, 100(6), 1–22. Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal Statistical Software, 85(4), 1–30. blavaan supported Institute Education Sciences, U.S. Department Education, Grant R305D210044, well NSF grants SES-1061334 1460719.","code":"library(blavaan)  model <- '    # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + y2 + y3 + y4      dem65 =~ y5 + y6 + y7 + y8    # regressions      dem60 ~ ind60      dem65 ~ ind60 + dem60    # residual covariances      y1 ~~ y5      y2 ~~ y4 + y6      y3 ~~ y7      y4 ~~ y8      y6 ~~ y8 ' fit <- bsem(model, data = PoliticalDemocracy) summary(fit) remotes::install_github(\"ecmerkle/blavaan\", INSTALL_opts = \"--no-multiarch\")"},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Confirmatory Factor Analysis Models — bcfa","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"Fit Confirmatory Factor Analysis (CFA) model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"","code":"bcfa(..., cp = \"srs\",      dp = NULL, n.chains = 3, burnin, sample,      adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",      convergence = \"manual\", target = \"stan\", save.lvs = FALSE,      wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,      seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default)     \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"bcfa function wrapper general     blavaan function, using following default     lavaan arguments:     int.ov.free = TRUE, int.lv.free = FALSE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,     auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"object class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Growth Curve Models — bgrowth","title":"Fit Growth Curve Models — bgrowth","text":"Fit Growth Curve model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Growth Curve Models — bgrowth","text":"","code":"bgrowth(..., cp = \"srs\", dp = NULL, n.chains = 3, burnin, sample, adapt, mcmcfile = FALSE, mcmcextra = list(),  inits = \"simple\", convergence = \"manual\", target = \"stan\", save.lvs = FALSE, wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE, seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Growth Curve Models — bgrowth","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Growth Curve Models — bgrowth","text":"bgrowth function wrapper general       blavaan function, using following default       lavaan arguments:     meanstructure = TRUE,      int.ov.free = FALSE, int.lv.free = TRUE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,      auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Growth Curve Models — bgrowth","text":"object class blavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Growth Curve Models — bgrowth","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Growth Curve Models — bgrowth","text":"","code":"if (FALSE) { ## linear growth model with a time-varying covariate model.syntax <- '   # intercept and slope with fixed coefficients     i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4     s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4    # regressions     i ~ x1 + x2     s ~ x1 + x2    # time-varying covariates     t1 ~ c1     t2 ~ c2     t3 ~ c3     t4 ~ c4 '  fit <- bgrowth(model.syntax, data=Demo.growth) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian model comparisons — blavCompare","title":"Bayesian model comparisons — blavCompare","text":"Bayesian model comparisons, including WAIC, LOO, Bayes factor approximation.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian model comparisons — blavCompare","text":"","code":"blavCompare(object1, object2, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian model comparisons — blavCompare","text":"object1 object class blavaan. object2 second object class blavaan. ... arguments (unused now).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian model comparisons — blavCompare","text":"function approximates log-Bayes factor two candidate models using Laplace approximation model's marginal log-likelihood.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian model comparisons — blavCompare","text":"log-Bayes factor approximation, along model's approximate marginal log-likelihood.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian model comparisons — blavCompare","text":"Raftery, . E. (1993). Bayesian model selection structural equation models. K. . Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 163-180). Beverly Hills, CA: Sage.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian model comparisons — blavCompare","text":"","code":"if (FALSE) { hsm1 <- ' visual  =~ x1 + x2 + x3 + x4           textual =~ x4 + x5 + x6           speed   =~ x7 + x8 + x9 '  fit1 <- bcfa(hsm1, data=HolzingerSwineford1939)  hsm2 <- ' visual  =~ x1 + x2 + x3           textual =~ x4 + x5 + x6 + x7           speed   =~ x7 + x8 + x9 '  fit2 <- bcfa(hsm2, data=HolzingerSwineford1939)  blavCompare(fit1, fit2) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":null,"dir":"Reference","previous_headings":"","what":"SEM Fit Indices for Bayesian SEM — blavFitIndices","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"function provides posterior distribution \\(\\chi^2\\)-based fit indices assess global fit latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"","code":"blavFitIndices(object, thin = 1L, pD = c(\"loo\",\"waic\",\"dic\"),                rescale = c(\"devM\",\"ppmc\",\"mcmc\"),                fit.measures = \"all\", baseline.model = NULL)  ## S4 method for signature 'blavFitIndices' # S4 method for blavFitIndices summary(object, ...)  # S3 method for bfi summary(object, central.tendency = c(\"mean\",\"median\",\"mode\"),         hpd = TRUE, prob = .90)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"object object class blavaan. thin Optional integer indicating much thin chain.     Default 1L, indicating thin chains. pD character indicating information criterion     returned fitMeasures(object) use estimated number     parameters. default leave-one-information criterion     (LOO-IC), highly recommended Vehtari et al. (2017). rescale character indicating method used calculate     fit indices. rescale = \"devM\" (default), Bayesian analog     \\(\\chi^2\\) statistic (deviance evaluated posterior mean     model parameters) approximated rescaling deviance     iteration subtracting estimated number parameters.     rescale = \"PPMC\", deviance iteration rescaled     subtracting deviance data simulated posterior predictive     distribution (posterior predictive model checking; see Hoofs et al.,     2017). rescale = \"MCMC\", fit measures simply calculated     using fitMeasures iteration Markov     chain(s), based model-implied moments iteration (advised     model includes informative priors, case model's     estimated pD deviate number parameters used     calculate df fitMeasures). fit.measures \"\", fit measures available     returned. single fit measures specified name,     computed returned. rescale = \"devM\"     \"PPMC\", currently available indices \"BRMSEA\",     \"BGammaHat\", \"adjBGammaHat\", \"BMc\", \"BCFI\",     \"BTLI\", \"BNFI\". rescale = \"MCMC\", user may     request indices returned fitMeasures     objects class lavaan. baseline.model NULL, object class     blavaan, representing user-specified baseline model.     baseline.model provided, incremental fit indices (BCFI,     BTLI, BNFI) can requested fit.measures. Ignored     rescale = \"MCMC\". ... Additional arguments summary method: central.tendency Takes values \"mean\", \"median\", \"mode\", indicating statistics     used characterize location posterior distribution.     default, 3 statistics returned. posterior mean labeled     EAP expected posteriori estimate, mode     labeled MAP modal posteriori     estimate. hpd logical indicating whether calculate highest     posterior density (HPD) credible interval fit     index (defaults TRUE). prob \"confidence\" level   credible interval(s) (defaults 0.9).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"S4 object class blavFitIndices consisting 2 slots: @details list containing choices made user     (defaults; e.g., values pD rescale set),     well posterior distribution \\(\\chi^2\\) (deviance)     statistic (rescaled, rescale = \"devM\" \"PPMC\"). @indices list containing posterior distribution     requested fit.measure. summary() method returns data.frame containing one row   requested fit.measure, columns containing specified   measure(s) central.tendency, posterior SD,   (requested) HPD credible-interval limits.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"Mauricio Garnier-Villareal (Vrije Universiteit Amsterdam; mgv@pm.) Terrence D. Jorgensen (University Amsterdam; TJorgensen314@gmail.com)","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"rescale = \"PPMC\" based : Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, . (2017).   Evaluating model fit Bayesian confirmatory factor analysis large   samples: Simulation study introducing BRMSEA.   Educational Psychological Measurement. doi:10.1177/0013164417709314 rescale = \"devM\" based : Garnier-Villarreal, M., & Jorgensen, T. D. (2020).  Adapting Fit Indices Bayesian Structural Equation Modeling: Comparison Maximum Likelihood.  Psychological Methods, 25(1), 46--70. https://doi.org/dx.doi.org/10.1037/met0000224   (See also https://osf.io/afkcw/) references: Vehtari, ., Gelman, ., & Gabry, J. (2017). Practical Bayesian model   evaluation using leave-one-cross-validation WAIC.   Statistics Computing, 27(5), 1413--1432.   doi:10.1007/s11222-016-9696-4","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 ' ## fit target model fit1 <- bcfa(HS.model, data = HolzingerSwineford1939,               n.chains = 2, burnin = 1000, sample = 1000)  ## fit null model to calculate CFI, TLI, and NFI null.model <- c(paste0(\"x\", 1:9, \" ~~ x\", 1:9), paste0(\"x\", 1:9, \" ~ 1\")) fit0 <- bcfa(null.model, data = HolzingerSwineford1939,               n.chains = 2, burnin = 1000, sample = 1000)  ## calculate posterior distributions of fit indices  ## The default method mimics fit indices derived from ML estimation ML <- blavFitIndices(fit1, baseline.model = fit0) ML summary(ML)  ## other options:  ## - use Hoofs et al.'s (2017) PPMC-based method ## - use the estimated number of parameters from WAIC instead of LOO-IC PPMC <- blavFitIndices(fit1, baseline.model = fit0,                        pD = \"waic\", rescale = \"PPMC\") ## issues a warning about using rescale=\"PPMC\" with N < 1000 (see Hoofs et al.)  ## - specify only the desired measures of central tendency ## - specify a different \"confidence\" level for the credible intervals summary(PPMC, central.tendency = c(\"mean\",\"mode\"), prob = .95)    ## Access the posterior distributions for further investigation head(distML <- data.frame(ML@indices))  ## For example, diagnostic plots using the bayesplot package:  ## distinguish chains nChains <- blavInspect(fit1, \"n.chains\") distML$Chain <- rep(1:nChains, each = nrow(distML) / nChains)  library(bayesplot) mcmc_pairs(distML, pars = c(\"BRMSEA\",\"BMc\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"hist\") ## Indices are highly correlated across iterations in both chains  ## Compare to PPMC method distPPMC <- data.frame(PPMC@indices) distPPMC$Chain <- rep(1:nChains, each = nrow(distPPMC) / nChains) mcmc_pairs(distPPMC, pars = c(\"BRMSEA\",\"BMc\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"dens\") ## nonlinear relation between BRMSEA, related to the floor effect of BRMSEA ## that Hoofs et al. found for larger (12-indicator) models  }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":null,"dir":"Reference","previous_headings":"","what":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"blavInspect() blavTech() functions can used inspect/extract information stored inside (can computed ) fitted blavaan object. similar lavaan's lavInspect() function.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"","code":"blavInspect(blavobject, what, ...)  blavTech(blavobject, what, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"blavobject object class blavaan. Character. needs inspected/extracted? See Details Bayes-specific options, see lavaan's lavInspect() additional options. Note: argument case-sensitive (everything converted lower case.) ... lavaan arguments supplied lavInspect(); see lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"list Bayesian-specific values argument; additional values can found lavInspect() documentation. \"start\": list starting values chain, unless inits=\"jags\" used model estimation. Aliases: \"starting.values\", \"inits\". \"rhat\": parameter's potential scale reduction     factor convergence assessment. Can also use \"psrf\" instead \"rhat\" \"ac.10\": parameter's estimated lag-10 autocorrelation. \"neff\": parameters effective sample size, taking account autocorrelation. \"mcmc\": object class mcmc containing individual parameter draws MCMC run. Aliases: \"draws\", \"samples\". \"mcobj\": underlying run.jags stan object resulted MCMC run. \"n.chains\": number chains sampled. \"cp\": approach used estimating covariance     parameters (\"srs\" \"fa\"); relevant     using JAGS. \"dp\": Default prior distributions used type model parameter. \"postmode\": Estimated posterior mode free parameter. \"postmean\": Estimated posterior mean free parameter. \"postmedian\": Estimated posterior median free parameter. \"lvs\": object class mcmc containing latent variable (factor score) draws. two-level models, use level = 1 level = 2 specify factor scores want. \"lvmeans\": matrix mean factor scores (rows observations, columns variables). Use additional level argument way. \"hpd\": HPD interval free parameter. case, prob argument can used specify number (0,1) reflecting desired percentage interval.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data = HolzingerSwineford1939,             bcontrol = list(method = \"rjparallel\"))  # extract information blavInspect(fit, \"psrf\") blavInspect(fit, \"hpd\", prob = .9) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"purpose blavPredict() function compute various   types model predictions, conditioned observed data. differs   somewhat lavPredict() lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"","code":"blavPredict(object, newdata = NULL, type = \"lv\", level = 1L)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"object object class blavaan. newdata Currently unused. (optional data.frame, containing variables data.frame used fitting model object.) type character string. \"lv\", estimated values latent variables model computed. \"ov\" \"yhat\", predicted means observed variables model computed. \"ypred\" \"ydist\", predicted values observed variables (including residual noise) computed. \"ymis\" \"ovmis\", model predicted values (\"imputations\") missing data computed. See details information. level type = \"lv\", used specify whether one desires level 1 latent variables level 2 latent variables.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"predict() function calls blavPredict() function default options. , provide information type option. options work target=\"stan\", \"number samples\" defined number posterior samples across chains. type=\"lv\": posterior distribution latent variables conditioned observed variables. Returns list \"number samples\" entries, entry matrix rows  observations columns latent variables. type=\"yhat\": posterior expected value observed variables conditioned sampled latent variables. Returns list \"number samples\" entries, entry matrix rows observations columns observed variables. type=\"ypred\": posterior predictive distribution observed variables conditioned sampled latent variables (including residual variances). Returns list \"number samples\" entries, entry data frame rows observations columns observed variables. type=\"ymis\": posterior predictive distribution missing values conditioned observed variables. Returns matrix \"number samples\" rows \"number missing variables\" columns.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"","code":"if (FALSE) { data(HolzingerSwineford1939)  ## fit model HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data = HolzingerSwineford1939, save.lvs = TRUE) lapply(blavPredict(fit)[1:2], head) # first 6 rows of first 10 posterior samples head(blavPredict(fit, type = \"yhat\")[[1]]) # top of first posterior sample  ## multigroup models return a list of factor scores (one per group) mgfit <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",               group.equal = c(\"loadings\",\"intercepts\"), save.lvs = TRUE)  lapply(blavPredict(fit)[1:2], head) head(blavPredict(fit, type = \"ypred\")[[1]]) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blav_internal.html","id":null,"dir":"Reference","previous_headings":"","what":"blavaan internal functions — blav_internal","title":"blavaan internal functions — blav_internal","text":"Internal functions related Bayesian model estimation.   called user.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"blavaan class contains lavaan   class, representing (fitted) Bayesian latent variable   model. contains description model specified user,   summary data, internal matrix representation, model   fitted, fitting results.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"objects-from-the-class","dir":"Reference","previous_headings":"","what":"Objects from the Class","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"Objects can created via   bcfa, bsem, bgrowth   blavaan functions.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"version: lavaan package version used create objects call: function call returned match.call(). timing: elapsed time (user+system) various parts       program list, including total time. Options: Named list options provided       user, filled-automatically. ParTable: Named list describing model parameters. Can coerced data.frame. documentation, called `parameter table'. pta: Named list containing parameter table attributes. Data: Object internal class \"Data\": information data. SampleStats: Object internal class \"SampleStats\": sample       statistics Model: Object internal class \"Model\":       internal (matrix) representation model Cache: List using objects try compute , reuse many times. Fit: Object internal class \"Fit\":       results fitting model. longer used. boot: List. Unused Bayesian models. optim: List. Information optimization. loglik: List. Information loglikelihood model (maximum likelihood used). implied: List. Model implied statistics. vcov: List. Information variance matrix (vcov) model parameters. test: List. Different test statistics. h1: List. Information unrestricted h1 model (available). baseline: List. Information baseline model (often independence model) (available). external: List. Includes Stan JAGS objects used MCMC.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"coef signature(object = \"blavaan\", type = \"free\"): Returns       estimates parameters model named numeric vector.       type=\"free\", free parameters returned.       type=\"user\", parameters listed parameter table       returned, including constrained fixed parameters. vcov signature(object = \"lavaan\"): returns       covariance matrix estimated parameters. show signature(object = \"blavaan\"): Print short summary       model fit summary signature(object = \"blavaan\", header = TRUE,      fit.measures = FALSE, estimates = TRUE, ci = TRUE,       standardized = FALSE, rsquare = FALSE, std.nox = FALSE,      psrf = TRUE, neff = FALSE, postmedian = FALSE, postmode = FALSE,      priors = TRUE, bf = FALSE, nd = 3L):       Print nice summary model estimates.       header = TRUE, header section (including fit measures)       printed.       fit.measures = TRUE, additional fit measures added       header section.       estimates = TRUE, print parameter estimates section.       ci = TRUE, add confidence intervals parameter estimates       section.       standardized = TRUE,       standardized solution also printed.  Note SEs       tests still based unstandardized estimates. Use       standardizedSolution obtain SEs test       statistics standardized estimates.       rsquare=TRUE, R-Square values dependent variables       model printed.       std.nox = TRUE, std.column contains       std.nox column parameterEstimates() output.       psrf = TRUE, potential scale reduction factors (Rhats)       printed.       neff = TRUE, effective sample sizes printed.       postmedian postmode TRUE, posterior       medians modes printed instead posterior means.       priors = TRUE, parameter prior distributions       printed.       bf = TRUE, Savage-Dickey approximations Bayes       factor printed certain parameters.       Nothing returned (use       lavInspect another extractor function       extract information fitted model).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939)  summary(fit, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) coef(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a Bayesian Latent Variable Model — blavaan","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"Fit Bayesian latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"","code":"blavaan(..., cp = \"srs\",     dp = NULL, n.chains = 3, burnin, sample,     adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",     convergence = \"manual\", target = \"stan\", save.lvs = FALSE,     wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,     seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\".  Option   \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model data written   files (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"object inherits class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- blavaan(HS.model, data=HolzingerSwineford1939,                auto.var=TRUE, auto.fix.first=TRUE,                auto.cov.lv.x=TRUE) summary(fit) coef(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Structural Equation Models — bsem","title":"Fit Structural Equation Models — bsem","text":"Fit Structural Equation Model (SEM).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Structural Equation Models — bsem","text":"","code":"bsem(..., cp = \"srs\",      dp = NULL, n.chains = 3, burnin, sample,      adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",      convergence = \"manual\", target = \"stan\", save.lvs = FALSE,      wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,      seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Structural Equation Models — bsem","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores) saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Structural Equation Models — bsem","text":"bsem function wrapper general     blavaan function, using following default     lavaan arguments:     int.ov.free = TRUE, int.lv.free = FALSE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,     auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Structural Equation Models — bsem","text":"object class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Structural Equation Models — bsem","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Structural Equation Models — bsem","text":"","code":"if (FALSE) { ## The industrialization and Political Democracy Example ## Bollen (1989), page 332 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + a*y2 + b*y3 + c*y4      dem65 =~ y5 + a*y6 + b*y7 + c*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  ## unique priors for mv intercepts; parallel chains fit <- bsem(model, data=PoliticalDemocracy,             dp=dpriors(nu=\"normal(5,10)\")) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":null,"dir":"Reference","previous_headings":"","what":"Specify Default Prior Distributions — dpriors","title":"Specify Default Prior Distributions — dpriors","text":"Specify \"default\" prior distributions classes model parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Specify Default Prior Distributions — dpriors","text":"","code":"dpriors(..., target = \"stan\")"},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Specify Default Prior Distributions — dpriors","text":"... Parameter names paired desired priors (see example     ). target priors jags, stan (default), stanclassic?","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Specify Default Prior Distributions — dpriors","text":"prior distributions always use JAGS/Stan syntax parameterizations.   example, normal distribution JAGS parameterized via   precision, whereas normal distribution Stan parameterized   via standard deviation. User-specified prior distributions specific parameters   (using prior() operator within model syntax) always   override prior distributions set using dpriors(). parameter names : nu: Observed variable intercept parameters. alpha: Latent variable intercept parameters. lambda: Loading parameters. beta: Regression parameters. itheta: Observed variable precision parameters. ipsi: Latent variable precision parameters. rho: Correlation parameters (associated covariance parameters). ibpsi: Inverse covariance matrix     blocks latent variables (used target=\"jags\"). tau: Threshold parameters (ordinal data ). delta: Delta parameters (ordinal data ).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Specify Default Prior Distributions — dpriors","text":"character vector containing prior distribution type parameter.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Specify Default Prior Distributions — dpriors","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Specify Default Prior Distributions — dpriors","text":"","code":"dpriors(nu = \"normal(0,10)\", lambda = \"normal(0,1)\", rho = \"beta(3,3)\") #>                nu             alpha            lambda              beta  #>    \"normal(0,10)\"    \"normal(0,10)\"     \"normal(0,1)\"    \"normal(0,10)\"  #>             theta               psi               rho             ibpsi  #> \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(3,3)\" \"wishart(3,iden)\"  #>               tau  #>   \"normal(0,1.5)\""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":null,"dir":"Reference","previous_headings":"","what":"blavaan Diagnostic Plots — plot.blavaan","title":"blavaan Diagnostic Plots — plot.blavaan","text":"Convenience functions create plots blavaan objects, via bayesplot package.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"blavaan Diagnostic Plots — plot.blavaan","text":"","code":"# S3 method for blavaan plot(x, pars = NULL, plot.type = \"trace\", showplot = TRUE, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"blavaan Diagnostic Plots — plot.blavaan","text":"x object class blavaan. pars Parameter numbers plot, numbers correspond order parameters reported coef() (also shown 'free' column parTable). numbers provided, free parameters plotted. plot.type type plot desired. name MCMC function, without mcmc_ prefix. showplot plot sent graphic device? Defaults TRUE. ... arguments sent bayesplot function.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"blavaan Diagnostic Plots — plot.blavaan","text":"previous versions blavaan, plotting functionality   handled separately JAGS Stan (using plot functionality   packages runjags rstan, respectively). uniformity,   plotting functionality now handled bayesplot. users desire   additional functionality immediately available, can extract matrix MCMC draws via .matrix(blavInspect(x, 'mcmc')).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"blavaan Diagnostic Plots — plot.blavaan","text":"invisible ggplot object , desired, can customized.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"blavaan Diagnostic Plots — plot.blavaan","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939)  # trace plots of free loadings plot(fit, pars = 1:6) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":null,"dir":"Reference","previous_headings":"","what":"Posterior Predictive Model Checks — ppmc","title":"Posterior Predictive Model Checks — ppmc","text":"function allows users conduct posterior predictive model check assess global local fit latent variable model using discrepancy function can applied lavaan model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Posterior Predictive Model Checks — ppmc","text":"","code":"ppmc(object, thin = 1, fit.measures = c(\"srmr\",\"chisq\"), discFUN = NULL,      conditional = FALSE)  # S4 method for blavPPMC summary(object, ...)  # S3 method for ppmc summary(object, discFUN, dist = c(\"obs\",\"sim\"),         central.tendency = c(\"mean\",\"median\",\"mode\"),         hpd = TRUE, prob = .95, to.data.frame = FALSE, diag = TRUE,         sort.by = NULL, decreasing = FALSE)  # S3 method for blavPPMC plot(x, ..., discFUN, element, central.tendency = \"\",      hpd = TRUE, prob = .95, nd = 3)  # S3 method for blavPPMC hist(x, ..., discFUN, element, hpd = TRUE, prob = .95,      printLegend = TRUE, legendArgs = list(x = \"topleft\"),      densityArgs = list(), nd = 3)  # S3 method for blavPPMC pairs(x, discFUN, horInd = 1:DIM, verInd = 1:DIM,       printLegend = FALSE, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Posterior Predictive Model Checks — ppmc","text":"object,x object class blavaan. thin Optional integer indicating much thin chain.     Default 1L, indicating thin chains object. fit.measures character vector indicating names global     discrepancy measures returned fitMeasures. Ignored     unless discFUN NULL, users may include     fitMeasures list discrepancy functions     discFUN. ordinal models, \"logl\" \"chisq\"     computations done via lavaan. discFUN function, list functions, can     called object class lavaan. function     must return object whose mode numeric, may     vector, matrix, multidimensional array.     summary plot methods, discFUN     character indicating discrepancy function     summarize. conditional logical indicating whether , artificial data     generation, condition estimated latent   variables. Requires model estimated save.lvs = TRUE. element numeric character indicating index (    dimension discFUN output, multiple) plot. horInd,verInd Similar element, numeric     character vector indicating indices matrix plot     scatterplot matrix. horInd==verInd, histograms     plotted upper triangle. dist character indicating whether summarize distribution     discFUN either observed simulated data. central.tendency character indicating statistics     used characterize location posterior (predictive)     distribution. default, 3 statistics returned     summary method, none plot method. posterior     mean labeled EAP expected posteriori estimate,     mode labeled MAP modal posteriori estimate. hpd logical indicating whether calculate highest     posterior density (HPD) credible interval discFUN. prob \"confidence\" level credible interval(s). nd number digits print scatterplot. .data.frame logical indicating whether summary     symmetric 2-dimensional matrix returned discFUN     unique elements stored rows data.frame can sorted     convenience identifying large discrepancies. discFUN     returns asymmetric 2-dimensional matrix, list matrices     returned summary can also converted data.frame. diag Passed lower.tri .data.frame=TRUE. sort.character. summary returns data.frame,     can sorted column name using order. Note     discFUN returns asymmetric 2-dimensional matrix,     data.frame returned list sorted     independently, rows unlikely consistent across     summary statistics. decreasing Passed order     !.null(sort.). ... Additional graphical parameters     passed plot.default. printLegend logical. TRUE (default), legend     printed histogram legendArgs list arguments passed     legend function.  default argument list     placing legend top-left figure. densityArgs list arguments passed     density function, used obtain densities     hist method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Posterior Predictive Model Checks — ppmc","text":"S4 object class blavPPMC consisting 5 list slots: @discFUN user-supplied discFUN, call     fitMeasures returns fit.measures. @dims dimensions object returned     discFUN. @PPP posterior predictive p value     discFUN element. @obsDist posterior distribution realize values     discFUN applied observed data. @simDist posterior predictive distribution values     discFUN applied data simulated posterior samples. summary() method returns numeric vector discFUN returns scalar, data.frame one discrepancy function per row     discFUN returns numeric vector, list     one summary statistic per element discFUN returns matrix multidimensional array. plot pairs methods invisibly return NULL,   printing plot (scatterplot matrix) current device. hist method invisibly returns list arguments can   passed function list element named.  Users   can edit arguments list customize histograms.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Posterior Predictive Model Checks — ppmc","text":"Terrence D. Jorgensen (University Amsterdam; TJorgensen314@gmail.com)","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Posterior Predictive Model Checks — ppmc","text":"Levy, R. (2011). Bayesian data--model fit assessment structural equation   modeling. Structural Equation Modeling, 18(4), 663--685.   doi:10.1080/10705511.2011.607723","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Posterior Predictive Model Checks — ppmc","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 ' ## fit single-group model fit <- bcfa(HS.model, data = HolzingerSwineford1939,              n.chains = 2, burnin = 1000, sample = 500) ## fit multigroup model fitg <- bcfa(HS.model, data = HolzingerSwineford1939,              n.chains = 2, burnin = 1000, sample = 500, group = \"school\")   ## Use fit.measures as a shortcut for global fitMeasures only ## - Note that indices calculated from the \"df\" are only appropriate under ##   noninformative priors, such that pD approximates the number of estimated ##   parameters counted under ML estimation; incremental fit indices ##   introduce further complications)  AFIs <- ppmc(fit, thin = 10, fit.measures = c(\"srmr\",\"chisq\",\"rmsea\",\"cfi\")) summary(AFIs)                 # summarize the whole vector in a data.frame hist(AFIs, element = \"rmsea\") # only plot one discrepancy function at a time plot(AFIs, element = \"srmr\")   ## define a list of custom discrepancy functions ## - (global) fit measures ## - (local) standardized residuals  discFUN <- list(global = function(fit) {                   fitMeasures(fit, fit.measures = c(\"cfi\",\"rmsea\",\"srmr\",\"chisq\"))                 },                 std.cov.resid = function(fit) lavResiduals(fit, zstat = FALSE,                                                            summary = FALSE)$cov,                 std.mean.resid = function(fit) lavResiduals(fit, zstat = FALSE,                                                             summary = FALSE)$mean) out1g <- ppmc(fit, discFUN = discFUN)  ## summarize first discrepancy by default (fit indices) summary(out1g) ## some model-implied correlations look systematically over/underestimated summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\") hist(out1g, discFUN = \"std.cov.resid\", element = c(1, 7)) plot(out1g, discFUN = \"std.cov.resid\", element = c(\"x1\",\"x7\")) ## For ease of investigation, optionally export summary as a data.frame, ## sorted by size of average residual summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\",         to.data.frame = TRUE, sort.by = \"EAP\") ## or sorted by size of PPP summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\",         to.data.frame = TRUE, sort.by = \"PPP_sim_LessThan_obs\")  ## define a list of custom discrepancy functions for multiple groups ## (return each group's numeric output using a different function)  disc2g <- list(global = function(fit) {                  fitMeasures(fit, fit.measures = c(\"cfi\",\"rmsea\",\"mfi\",\"srmr\",\"chisq\"))                },                cor.resid1 = function(fit) lavResiduals(fit, zstat = FALSE,                                                        type = \"cor.bollen\",                                                        summary = FALSE)[[1]]$cov,                cor.resid2 = function(fit) lavResiduals(fit, zstat = FALSE,                                                        type = \"cor.bollen\",                                                        summary = FALSE)[[2]]$cov) out2g <- ppmc(fitg, discFUN = disc2g, thin = 2) ## some residuals look like a bigger problem in one group than another pairs(out2g, discFUN = \"cor.resid1\", horInd = 1:3, verInd = 7:9) # group 1 pairs(out2g, discFUN = \"cor.resid2\", horInd = 1:3, verInd = 7:9) # group 2  ## print all to file: must be a LARGE picture. First group 1 ... png(\"cor.resid1.png\", width = 1600, height = 1200) pairs(out2g, discFUN = \"cor.resid1\") dev.off() ## ... then group 2 png(\"cor.resid2.png\", width = 1600, height = 1200) pairs(out2g, discFUN = \"cor.resid2\") dev.off() }"},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":null,"dir":"Reference","previous_headings":"","what":"Standardized Posterior — standardizedPosterior","title":"Standardized Posterior — standardizedPosterior","text":"Standardized posterior distribution latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standardized Posterior — standardizedPosterior","text":"","code":"standardizedPosterior(object, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standardized Posterior — standardizedPosterior","text":"object object class blavaan. ... Additional arguments passed lavaan's   standardizedSolution()","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Standardized Posterior — standardizedPosterior","text":"allowed standardizedSolution() arguments type, cov.std, remove.eq, remove.ineq, remove.def. arguments immediately suited posterior distributions.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standardized Posterior — standardizedPosterior","text":"matrix containing standardized posterior draws, rows draws   columns parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Standardized Posterior — standardizedPosterior","text":"","code":"if (FALSE) { model <- '    # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + a*y2 + b*y3 + c*y4      dem65 =~ y5 + a*y6 + b*y7 + c*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             dp=dpriors(nu=\"dnorm(5,1e-2)\"),             bcontrol=list(method=\"rjparallel\"))  standardizedPosterior(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-05-2","dir":"Changelog","previous_headings":"","what":"Version 0.5-2","title":"Version 0.5-2","text":"CRAN release: 2023-09-25","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-5-2","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.5-2","text":"maintenance release, primarily adding new array declaration syntax Stan models (syntax became available new version rstan).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-5-2","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.5-2","text":"blavCompare() work models meanstructure = FALSE (reported Pedro Ribeiro). target=“jags”, posterior modes obtained via postmode = TRUE (reported Giada Venaruzzo). models continuous ordinal variables fail cases ordinal variables missing (reported Sonja Winter). certain equality constraints involving named parameters fail target=“stan” (reported Niels Skovgaard-Olsen)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-05-1","dir":"Changelog","previous_headings":"","what":"Version 0.5-1","title":"Version 0.5-1","text":"CRAN release: 2023-08-29","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-5-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.5-1","text":"Two-level models now supported (complete, continuous data) via cluster argument.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-5-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.5-1","text":"two-level model specification, levels labeled “within” “”. restrictive lavaan specification. target=“jags”, latent variable extraction via blavInspect(, “lvs”) fails (reported Joseph Saraceno).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-8","dir":"Changelog","previous_headings":"","what":"Version 0.4-8","title":"Version 0.4-8","text":"CRAN release: 2023-06-12","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-8","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-8","text":"maintenance release bug fixes changes compiler settings","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-8","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-8","text":"certain models residual correlations /correlated factors, initial values target=‘stan’ lead non-positive definite matrices (reported Yuanyuan Hu). models latent variable regressed observed variable (lv ~ ov), latent variable samples account mean observed variable (centered around 0 constant).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-7","dir":"Changelog","previous_headings":"","what":"Version 0.4-7","title":"Version 0.4-7","text":"CRAN release: 2023-03-01","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-7","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-7","text":"primarily update address C++14 vs C++17 compilation issue identified CRAN bugs 0.4-6 also fixed","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-7","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-7","text":"Sampling priors (prisamp = TRUE) fails models meanstructure = FALSE; posterior still estimated (reported Armel Brizuela Rodríguez). target = “jags”, models single-indicator latent variable, latent variable regressed variables, return incorrect parameter estimates (reported Brad Cosentino).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-6","dir":"Changelog","previous_headings":"","what":"Version 0.4-6","title":"Version 0.4-6","text":"CRAN release: 2023-02-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-6","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-6","text":"target = “stan”, meanstructure=FALSE allowed, along use sample.cov sample.nobs instead raw data Users warned priors covariance matrices neither diagonal unrestricted models observed variable intercepts appear latent intercept vector (alpha), default priors come observed intercept vector nu (user expect) inits = “simple” now default (instead “prior”), address convergence problems stan targets, “:=” can now used identity function target = “stan”, fix missing data issue 0.4-3 (complete data one group ) Column names added blavPredict(, type=“lv”)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-6","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-6","text":"blavFitIndices() save.lvs = TRUE work correctly models without meanstructure. Workaround use meanstructure = TRUE model estimation command (reported Charles Hofacker). lavaan summary() method sometimes called instead blavaan summary() method (reported multiple users, Shu Fai Cheung providing helpful examples).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-3","dir":"Changelog","previous_headings":"","what":"Version 0.4-3","title":"Version 0.4-3","text":"CRAN release: 2022-05-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-3","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-3","text":"target = “stan”, models run faster earlier versions (use sufficient statistics) Posterior summaries faster ordinal models (using mnormt::sadmvn() default) Variational Bayes option added: target=“vb”, uses rstan::vb() cmdstanr functionality added: target=“cmdstanr”, uses model target=“stan” Fix blavInspect(., “lvs”/“lvmeans”) multiple groups + missing data Fixes ppmc() ordinal models; blavFitIndices() turned ordinal models (research needed) loo() moment matching available passing mcmcextra = list(data = list(moment_match_k_threshold))","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-3","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-3","text":"target = “stan” fails complete data one group missing data another group (reported Ronja Runge). blavPredict(, type=“ymis”) still available models ordinal variables","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-1","dir":"Changelog","previous_headings":"","what":"Version 0.4-1","title":"Version 0.4-1","text":"CRAN release: 2022-01-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-1","text":"Functionality ordinal observed variables now available. models missing data, posterior summaries sped (log-likelihood computations now done Stan).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-1","text":"blavPredict(, type=“ymis”) working models ordinal variables blavInspect(, ‘lvs’) (, ‘lvmeans’) can fail models combination multiple groups, missing values, excluded cases blavFitIndices() ppmc() working models ordinal variables, may indicate excessively bad fit blavFitIndices(, rescale=“mcmc”) fails","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-18","dir":"Changelog","previous_headings":"","what":"Version 0.3-18","title":"Version 0.3-18","text":"CRAN release: 2021-11-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-18","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-18","text":"version adds reference new JSS paper, including DOI, corrects inconsistent version dependency. changes compared 0.3-17.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-17","dir":"Changelog","previous_headings":"","what":"Version 0.3-17","title":"Version 0.3-17","text":"CRAN release: 2021-07-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-17","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-17","text":"maintenance release correct major bugs previous version.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-16","dir":"Changelog","previous_headings":"","what":"Version 0.3-16","title":"Version 0.3-16","text":"CRAN release: 2021-07-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-16","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-16","text":"blavPredict() function added predicting latent variables missing data. posterior summaries sped . (fitMeasures available test=“none”) bug fixes previous version.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-16","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-16","text":"certain models missing data, ppp-values incorrect (sometimes equaling 1.0). target=“stan”, multiple group models fail cases missing observed variables (reported DeAnne Hunter).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-15","dir":"Changelog","previous_headings":"","what":"Version 0.3-15","title":"Version 0.3-15","text":"CRAN release: 2021-02-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-15","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-15","text":"Added S3 summary() method ppmc Posterior intervals summary() bug fixed","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-15","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-15","text":"summary() method ppmc() fitIndices() always work correctly. Jacobian incorrect target=“stan”, (non-default) priors placed precisions variances instead standard deviations. impact estimates posterior variability (reported Roy Levy).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-14","dir":"Changelog","previous_headings":"","what":"Version 0.3-14","title":"Version 0.3-14","text":"CRAN release: 2021-01-20 (version 0.3-13 violated CRAN policy)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-14","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-14","text":"maintenance release response change package Matrix.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-14","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-14","text":"Posterior intervals NA summary(). Workarounds use parameterEstimates() (intervals assuming posterior normality) compute using posterior samples (`blavInspect(fit, “mcmc”)’)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-12","dir":"Changelog","previous_headings":"","what":"Version 0.3-12","title":"Version 0.3-12","text":"CRAN release: 2020-11-12 (version 0.3-11 failed Windows CRAN checks)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-12","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-12","text":"vector values wiggle.sd allowed different priors approximate equality constraints logical argument “prisamp” added, sampling model’s prior target=“stan”, lkj prior used unrestricted lv correlation matrices default priors conditional approaches (targets jags stanclassic) revert placed precisions (opposed SDs), improvement sampling efficiency","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-10","dir":"Changelog","previous_headings":"","what":"Version 0.3-10","title":"Version 0.3-10","text":"CRAN release: 2020-08-03","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-10","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-10","text":"save.lvs=TRUE works missing data target=“stan” new arguments “wiggle” “wiggle.sd” approximate equality constraints target=“stan”","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-10","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-10","text":"plot labels target=“stan” sometimes incorrect (displaying parameter different panel label). complex equality constraints sometimes ignored (target=“jags” “stanclassic”) equality constraints std.lv=TRUE sometimes fail (target=“stan”) placing priors variances precisions yields incorrect results (target=“stan”; reported Roy Levy)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-9","dir":"Changelog","previous_headings":"","what":"Version 0.3-9","title":"Version 0.3-9","text":"CRAN release: 2020-03-09","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-9","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-9","text":"improvements save.lvs=TRUE target=“stan”. target=“stancond” added, experimental, noncentered Stan approach. bug fixes prior settings std.lv target=“stan”, defined parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-9","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-9","text":"target=“stan”, problems sampling lvs multiple groups missing data. Errors blavCompare() blavFitIndices() due version updates packages. target=“stan”, models std.lv=TRUE converge.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-8","dir":"Changelog","previous_headings":"","what":"Version 0.3-8","title":"Version 0.3-8","text":"CRAN release: 2019-11-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-8","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-8","text":"post-estimation, posterior predictive computations sped considerably. 0.3-7 bugs fixed.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-8","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-8","text":"target=“stan” std.lv=TRUE, estimation fails certain (growth) models (reported Mauricio Garnier-Villareal). defined variables fail target=“jags” “stanclassic” (reported Mariëlle Zondervan-Zwijnenburg). User-specified priors sometimes placed wrong parameter, related 0.3-7 bug (reported Mauricio Garnier-Villareal). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-7","dir":"Changelog","previous_headings":"","what":"Version 0.3-7","title":"Version 0.3-7","text":"CRAN release: 2019-09-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-7","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-7","text":"target=“stan”, gamma priors can now placed user’s choice variances, standard deviations, precisions. plot() now works uniformly across Stan JAGS, relying bayesplot. post-MCMC parallelization now handled via future.apply package (requires extra “plan” command user, works windows). 0.3-6 bugs fixed.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-7","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-7","text":"blavInspect(, ‘lvmeans’) returns rows wrong order target=“stan” (reported Mehdi Momen). User-specified priors sometimes placed wrong parameter, target=“stan” (reported Enrico Toffalini). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-6","dir":"Changelog","previous_headings":"","what":"Version 0.3-6","title":"Version 0.3-6","text":"CRAN release: 2019-08-08","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-6","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-6","text":"fixes stan plot bug 0.3-5.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-6","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-6","text":"user-specified priors correlation parameters silently ignored target=“stan” (reported James Uanhoro). save.lvs=TRUE work target=“stan” (reported Mauricio Garnier-Villareal). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-5","dir":"Changelog","previous_headings":"","what":"Version 0.3-5","title":"Version 0.3-5","text":"CRAN release: 2019-08-03","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-5","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-5","text":"target=“stan” now default, using pre-compiled Stan model instead “fly” code. ppmc() function added Terrence Jorgensen, facilitating posterior predictive checks. default priors changed gamma precisions gamma standard deviations.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-5","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-5","text":"Stan plot method silently fails (reported Matt Yalch). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-4","dir":"Changelog","previous_headings":"","what":"Version 0.3-4","title":"Version 0.3-4","text":"CRAN release: 2019-01-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-4","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-4","text":"Add function standardizedPosterior() standardizing posterior draws. Turn posterior modes target=“jags”, due conflict current versions runjags modeest. Rearrange posterior predictive internals.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-4","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-4","text":"dpriors() issue 0.3-3 remains. target=“jags”, lv means obtained blavInspect() (via argument ‘lvmeans’) incorrect. (reported Mauricio Garnier-Villareal) Use plot() target=“stan” causes problems future blavInspect() calls.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-3","dir":"Changelog","previous_headings":"","what":"Version 0.3-3","title":"Version 0.3-3","text":"CRAN release: 2018-10-31","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-3","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-3","text":"convergence=“auto”, max time previously 5 min (undocumented). now Inf. Axis labels (parameter names) now sensible convergence plots. Relative effective sample size now used compute loo/waic SEs, SEs now returned via fitMeasures(). Added unit testing via package testthat. Fixed bugs 0.3-2 (exception identity assignments using ‘:=’)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-3","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-3","text":"Use ‘dpriors()’: observed variable precisions assigned latent precision (ipsi) prior; latent means assigned observed mean (nu) prior.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-2","dir":"Changelog","previous_headings":"","what":"Version 0.3-2","title":"Version 0.3-2","text":"CRAN release: 2018-06-10","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-2","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-2","text":"Conditional (latent variables) information criteria available save.lvs = TRUE. Experimental function ‘blavFitIndices()’ added Bayesian versions SEM metrics, contributed Terrence Jorgensen. blavaan “intelligently” chooses target, either runjags rstan () installed. Fixed bugs 0.3-1, especially related missing data Stan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-2","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-2","text":"Errors Stan models std.lv=TRUE, observed variable regressed latent variable (reported Bo Zhang). Error identity assignments using ‘:=’ (reported Marco Tullio Liuzza). Explicitly adding argument ‘.fit=TRUE’ fails (reported Esteban Montenegro).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-1","dir":"Changelog","previous_headings":"","what":"Version 0.3-1","title":"Version 0.3-1","text":"CRAN release: 2018-01-12","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-1","text":"Stan export now supported; use target=“stan”. Improved handling complex models, including growth/change models. Sampling factor scores (lvs) available via ‘save.lvs=TRUE’. Samples/means can obtained supplying arguments ‘lvs’ ‘lvmeans’ ‘blavInspect()’. Fixed bugs 0.2-4.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-1","text":"Errors Stan models missing data, exogenous (“x”) variables. Errors multi-group Stan models std.lv=TRUE.","code":""}]
+[{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Approximate fit indices","text":"SEM, one first steps evaluate model’s global fit. commonly done presenting multiple fit indices, common based model’s \\(\\chi^2\\). developed Bayesian versions indices (Garnier-Villarreal Jorgensen 2020) can computed blavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"noncentrality-based-fit-indices","dir":"Articles","previous_headings":"","what":"Noncentrality-Based Fit Indices","title":"Approximate fit indices","text":"group indices compares hypothesized model perfect saturated model. specifically uses noncentrality parameter \\(\\hat{\\lambda} = \\chi^2 - df\\), df adjusted different model/data characterictics. Specific indices include Root Mean Square Error approximation (RMSEA), McDonald’s centrality index (Mc), gamma-hat (\\(\\hat{\\Gamma}\\)), adjusted gamma-hat (\\(\\hat{\\Gamma}_{adj}\\)). show example Holzinger Swineford (1939) example. first estimate SEM/CFA model usual need pass model blavFitIndices() function Finally, can describe posterior distribution indices summary() function. call, see 3 central tendency measures (mean median, mode), standard deviation, 90% Credible Interval","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE) gl_fits <- blavFitIndices(fit) summary(gl_fits, central.tendency = c(\"mean\",\"median\",\"mode\"), prob = .90) ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices: ##  ##                EAP Median   MAP    SD lower upper ## BRMSEA       0.098  0.098 0.098 0.005 0.090 0.107 ## BGammaHat    0.956  0.957 0.957 0.005 0.949 0.964 ## adjBGammaHat 0.907  0.908 0.908 0.010 0.892 0.922 ## BMc          0.903  0.903 0.904 0.010 0.887 0.918"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"incremental-fit-indices","dir":"Articles","previous_headings":"","what":"Incremental Fit Indices","title":"Approximate fit indices","text":"Another group fit indices compares hypothesized model worst possible model, called incremental indices. indices compare model’s \\(\\chi^2_H\\) null model’s \\(\\chi^2_0\\) different ways. Indices include Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Normed Fit Index (NFI). estimate indices need defined estimate respective null model. standard null model used default frequentist SEM programs (like lavaan) includes indicators variances intercepts, covariances items. can specify null model including respective indicator variances model syntax, hypothesized null models, pass blavFitIndices function, now provide types fit indices summary() method now presents central tendicy measure asked , standard deviation, credible interval noncentrality incremental fit indices.","code":"HS.model_null <- ' x1 ~~ x1  x2 ~~ x2  x3 ~~ x3 x4 ~~ x4 x5 ~~ x5 x6 ~~ x6 x7 ~~ x7 x8 ~~ x8 x9 ~~ x9 '  fit_null <- bcfa(HS.model_null, data=HolzingerSwineford1939) gl_fits_all <- blavFitIndices(fit, baseline.model = fit_null)  summary(gl_fits_all, central.tendency = c(\"mean\",\"median\",\"mode\"), prob = .90) ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices: ##  ##                EAP Median   MAP    SD lower upper ## BRMSEA       0.098  0.098 0.098 0.005 0.090 0.107 ## BGammaHat    0.956  0.957 0.957 0.005 0.949 0.964 ## adjBGammaHat 0.907  0.908 0.908 0.010 0.892 0.922 ## BMc          0.903  0.903 0.904 0.010 0.887 0.918 ## BCFI         0.930  0.931 0.931 0.008 0.918 0.942 ## BTLI         0.884  0.885 0.886 0.013 0.864 0.903 ## BNFI         0.910  0.910 0.911 0.007 0.898 0.921"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"access-the-indices-posterior-distributions","dir":"Articles","previous_headings":"","what":"Access the indices posterior distributions","title":"Approximate fit indices","text":"can also extract posterior distributions respective indices, way can explore details. example, diagnostic plots using bayesplot package. saved posterior distributions, can explore histogram scatterplots indices.","code":"dist_fits <- data.frame(gl_fits_all@indices) head(dist_fits) ##       BRMSEA BGammaHat adjBGammaHat       BMc      BCFI      BTLI      BNFI ## 1 0.09860905 0.9563606    0.9070059 0.9024256 0.9299327 0.8834168 0.9095942 ## 2 0.09803424 0.9568460    0.9080403 0.9035032 0.9307577 0.8847896 0.9103906 ## 3 0.08908232 0.9640973    0.9234925 0.9196249 0.9428911 0.9049781 0.9220822 ## 4 0.09114743 0.9624766    0.9200389 0.9160180 0.9401730 0.9004554 0.9194548 ## 5 0.10016009 0.9550392    0.9041901 0.8994928 0.9277791 0.8798335 0.9075414 ## 6 0.10249460 0.9530185    0.8998840 0.8950108 0.9247248 0.8747516 0.9046940 mcmc_pairs(dist_fits, pars = c(\"BRMSEA\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"hist\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/approx_fi.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Approximate fit indices","text":"can estimate posterior distributions \\(\\chi^2\\) based global fit indices. Notice presented fit indices based recommended method devM recommended number parameters metric loo. can adjusted user desired. general recommendation prefer \\(\\hat{\\Gamma}\\) CFI, shown less sensitive model data characteristics. defaults recommendations made based previous simulation research. details fit indices please see Garnier-Villarreal Jorgensen (2020).","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Convergence and Efficiency Evaluation","text":"Bayesian models estimated Markov-Chain Monte Carlo (MCMC) sampler, model estimation doesn’t stop achieved convergence criteria. run long desired (determined burnin sample arguments), need evaluate convergence efficiency estimated posterior distributions. analyze results convergence achieved, judged metrics described . example use Industrialization Political Democracy example (Bollen 1989).","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"convergence","dir":"Articles","previous_headings":"","what":"Convergence","title":"Convergence and Efficiency Evaluation","text":"primary convergence diagnostic \\(\\hat{R}\\), compares - within-chain samples model parameters univariate quantities interest (Vehtari et al. 2021). chains mixed well (ie, - within-chain estimates don’t agree), \\(\\hat{R}\\) larger 1. recommend running least three chains default using posterior samples \\(\\hat{R} < 1.05\\) parameters. blavaan presents \\(\\hat{R}\\) reported underlying MCMC program, either Stan JAGS (Stan default). can obtain \\(\\hat{R}\\) summary() function, can also extract blavInspect() function large models can cumbersome look entries. can instead find largest \\(\\hat{R}\\) see less \\(1.05\\) \\(\\hat{R} < 1.05\\) can establish MCMC chains converged stable solution. model converged, might increase number burnin iterations /change model priors dpriors() function. address issues model failed converge due needing iterations due model misspecification (bad priors). rule thumb, seldom see model require 1,000 burnin samples Stan. model converging 1,000 burnin samples, likely default prior distributions clash data. can happen, e.g., variables contain values 100s 1000s.","code":"blavInspect(fit, \"rhat\") ##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c  ##   1.0038580   1.0050116   1.0029365   1.0007207   0.9999798   0.9996668  ##           d           a           b           c           d dem60~ind60  ##   0.9998789   1.0007207   0.9999798   0.9996668   0.9998789   0.9999574  ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7  ##   0.9999265   0.9997547   0.9996561   0.9996701   1.0003716   1.0007611  ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1  ##   1.0008513   1.0006355   0.9995685   1.0003373   0.9991198   1.0006442  ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7  ##   0.9994047   1.0008251   1.0000629   1.0005872   1.0001243   0.9999353  ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1  ##   1.0015554   1.0057950   1.0064286   1.0070192   1.0019918   0.9998743  ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1  ##   1.0014471   1.0020098   1.0023198   1.0028363   1.0027588   1.0034479 max(blavInspect(fit, \"psrf\")) ## [1] 1.007019 fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=1000, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_efficiency.html","id":"efficiency","dir":"Articles","previous_headings":"","what":"Efficiency","title":"Convergence and Efficiency Evaluation","text":"also evaluate efficiency posterior samples. Effective sample size (ESS) useful measure sampling efficiency, well defined even chains finite mean variance (Vehtari et al. 2021). short, posterior samples produced MCMC autocorrelated. means , draw 500 posterior samples, 500 independent pieces information posterior distribution, samples autocorlated. ESS metric like currency conversion, telling much autocorrelated samples worth convert indepndent samples. blavaan can print summary function neff argument can also extract blavInspect() function ESS sample size, least 100 (optimally, much 100) times number chains order reliable indicate estimates posterior quantiles reliable. example, 3 chains, want see least neff=300 every parameter. can easily find lowest ESS min() function:","code":"summary(fit, neff=T) blavInspect(fit, \"neff\") ##   ind60=~x1   ind60=~x2   ind60=~x3           a           b           c  ##    1732.846    1684.525    2029.599    2022.013    2088.001    2343.846  ##           d           a           b           c           d dem60~ind60  ##    1824.235    2022.013    2088.001    2343.846    1824.235    2430.655  ## dem65~ind60 dem65~dem60      y1~~y5      y2~~y4      y2~~y6      y3~~y7  ##    3129.315    3172.419    2499.230    2132.873    2826.225    2024.139  ##      y4~~y8      y6~~y8      x1~~x1      x2~~x2      x3~~x3      y1~~y1  ##    2131.339    1711.606    2514.839    2028.523    2837.712    2401.707  ##      y2~~y2      y3~~y3      y4~~y4      y5~~y5      y6~~y6      y7~~y7  ##    3504.485    2408.789    2074.405    2017.526    2480.885    2066.115  ##      y8~~y8        x1~1        x2~1        x3~1        y1~1        y2~1  ##    1772.881    1084.681    1008.963    1037.107    1307.964    1543.916  ##        y3~1        y4~1        y5~1        y6~1        y7~1        y8~1  ##    1440.280    1266.660    1126.238    1159.955    1096.600    1012.904 min(blavInspect(fit, \"neff\")) ## [1] 1008.963"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Convergence loop","text":"many cases need run BSEM models multiple times converged. can take might want R . tutorial shows use loop increase number burnin samples model converges, can let run without adjust every time","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"convergence-loop","dir":"Articles","previous_headings":"","what":"Convergence loop","title":"Convergence loop","text":"start writing model syntax always. instead running blavaan functions usual, run inside loop follows. loop starts need define starting BURN <- 0 number iterations, convergence value higher desired rhat <- 20. loop set sto stop convergence criteria (rhat) lower desired value, like \\(\\hat{R} < 1.05\\), specify (rhat > 1.05), meaning loop continue long rhat higher 1.05. Thn inside loop increase number BURN iterations 1000 example. estimating model, evaluate convergence getting highest estimated \\(\\hat{R}\\), printing screen see far model converging. Note increasing number burnin iterations, keeping number saved samples (1000 case). want can increase decrease number saved iterations according case. can visualize convergence trace plots","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  BURN <- 0 rhat <- 20 while(rhat > 1.05) {      BURN <- BURN + 1000 ### increase burn in by 1000 iterations every time      fit <- bcfa(HS.model, std.lv=T,                data=HolzingerSwineford1939,                n.chains = 3, burnin = BURN,               sample=1000)   rhat <- max(blavInspect(fit, \"psrf\"), na.rm=T)   print(paste0(\"Rhat=\",rhat))   } print(paste0(\"Rhat=\",rhat)) ## [1] \"Rhat=1.00278759516961\" plot(fit, pars = 1:9, plot.type = \"trace\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/convergence_loop.html","id":"convergence-criteria","dir":"Articles","previous_headings":"","what":"Convergence criteria","title":"Convergence loop","text":"example use \\(\\hat{R} < 1.05\\) convergence criteria. recommend use \\(\\hat{R} < 1.01\\) convergence criteria, higher. \\(\\hat{R}\\) approximates 1, can argue model converged estimates achieve stability within chains (Gelman et al. 2014)","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Cross-loadings with strong priors","text":"advantage BSEM can use priors set soft constraints model, estimating parameter strong prior. way parameter estimated, prior restrict possible values. suggested Muthén Asparouhov (2012), way estimate possible cross-loadings CFA. way, posterior distribution restricted parameters includes values outside strong prior, can interpreted model modification. means parameters less restricted, prior distribution relaxed. tutorial present estimate CFA possible cross-loadings restricted strong priors.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"cross-loadings","dir":"Articles","previous_headings":"","what":"Cross-loadings","title":"Cross-loadings with strong priors","text":"show example Holzinger Swineford (1939) data. First estimate regular model cross-loadings default priors. can see overall model results summary() function, looking posterior distribution factor loadings, correlations, intercepts variances. Next, add possible cross-loadings strong prior \\(N(0, \\sigma = 0.08)\\). prior centers loadings around 0 allows little space move. can look summary() model evaluate cross-loadings. can specifically see whether cross-loadings seem large enough suggest kept model, looking posterior mean (Estimate) credible interval. suggest simply look whether CI excludes 0 (similar null hypothesis), evaluate whether minimum value CI (value closer 0) far enough away 0 relavant instead just different 0.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit_df <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T) summary(fit_df) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        30 ##  ##   Number of observations                           301 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                      -3870.984       0.000 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual =~                                                                     ##     x1                0.911    0.089    0.741    1.084    1.000    normal(0,10) ##     x2                0.500    0.082    0.344    0.665    1.000    normal(0,10) ##     x3                0.662    0.079    0.509    0.816    1.001    normal(0,10) ##   textual =~                                                                    ##     x4                1.000    0.058    0.887    1.119    1.000    normal(0,10) ##     x5                1.113    0.065    0.989    1.241    0.999    normal(0,10) ##     x6                0.927    0.056    0.821    1.041    1.000    normal(0,10) ##   speed =~                                                                      ##     x7                0.619    0.077    0.465    0.771    0.999    normal(0,10) ##     x8                0.736    0.079    0.581    0.890    1.001    normal(0,10) ##     x9                0.680    0.080    0.528    0.837    1.001    normal(0,10) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual ~~                                                                     ##     textual           0.448    0.065    0.313    0.570    0.999     lkj_corr(1) ##     speed             0.460    0.084    0.290    0.621    1.000     lkj_corr(1) ##   textual ~~                                                                    ##     speed             0.277    0.070    0.131    0.408    0.999     lkj_corr(1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                4.935    0.068    4.801    5.070    1.000    normal(0,32) ##    .x2                6.086    0.067    5.957    6.221    1.000    normal(0,32) ##    .x3                2.250    0.067    2.119    2.382    1.000    normal(0,32) ##    .x4                3.059    0.069    2.925    3.190    0.999    normal(0,32) ##    .x5                4.340    0.076    4.193    4.490    0.999    normal(0,32) ##    .x6                2.184    0.064    2.055    2.307    1.000    normal(0,32) ##    .x7                4.184    0.063    4.061    4.306    1.000    normal(0,32) ##    .x8                5.527    0.058    5.413    5.636    1.000    normal(0,32) ##    .x9                5.373    0.057    5.258    5.487    1.000    normal(0,32) ##     visual            0.000                                                     ##     textual           0.000                                                     ##     speed             0.000                                                     ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                0.555    0.127    0.284    0.799    1.001 gamma(1,.5)[sd] ##    .x2                1.153    0.104    0.964    1.366    0.999 gamma(1,.5)[sd] ##    .x3                0.859    0.099    0.674    1.054    1.000 gamma(1,.5)[sd] ##    .x4                0.380    0.050    0.286    0.482    1.000 gamma(1,.5)[sd] ##    .x5                0.454    0.060    0.341    0.577    0.999 gamma(1,.5)[sd] ##    .x6                0.364    0.045    0.283    0.460    1.001 gamma(1,.5)[sd] ##    .x7                0.820    0.092    0.650    1.019    0.999 gamma(1,.5)[sd] ##    .x8                0.497    0.095    0.314    0.687    1.000 gamma(1,.5)[sd] ##    .x9                0.570    0.094    0.375    0.745    1.000 gamma(1,.5)[sd] ##     visual            1.000                                                     ##     textual           1.000                                                     ##     speed             1.000 HS.model.cl<-' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9                     ## Cross-loadings               visual =~  prior(\"normal(0,.08)\")*x4 + prior(\"normal(0,.08)\")*x5 + prior(\"normal(0,.08)\")*x6 + prior(\"normal(0,.08)\")*x7 + prior(\"normal(0,.08)\")*x8 + prior(\"normal(0,.08)\")*x9               textual =~ prior(\"normal(0,.08)\")*x1 + prior(\"normal(0,.08)\")*x2 + prior(\"normal(0,.08)\")*x3 + prior(\"normal(0,.08)\")*x7 + prior(\"normal(0,.08)\")*x8 + prior(\"normal(0,.08)\")*x9                speed =~ prior(\"normal(0,.08)\")*x1 + prior(\"normal(0,.08)\")*x2 + prior(\"normal(0,.08)\")*x3 + prior(\"normal(0,.08)\")*x4 + prior(\"normal(0,.08)\")*x5 + prior(\"normal(0,.08)\")*x6'  fit_cl <- bcfa(HS.model.cl, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T) summary(fit_cl) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        48 ##  ##   Number of observations                           301 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                      -3858.783       0.134 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual =~                                                                     ##     x1                0.761    0.099    0.574    0.959    1.001    normal(0,10) ##     x2                0.567    0.093    0.390    0.751    1.000    normal(0,10) ##     x3                0.769    0.097    0.586    0.964    1.000    normal(0,10) ##   textual =~                                                                    ##     x4                0.983    0.064    0.861    1.110    1.000    normal(0,10) ##     x5                1.155    0.071    1.014    1.298    1.000    normal(0,10) ##     x6                0.894    0.060    0.781    1.018    1.000    normal(0,10) ##   speed =~                                                                      ##     x7                0.728    0.086    0.554    0.892    1.003    normal(0,10) ##     x8                0.792    0.085    0.636    0.973    1.008    normal(0,10) ##     x9                0.542    0.076    0.394    0.695    1.004    normal(0,10) ##   visual =~                                                                     ##     x4                0.032    0.058   -0.080    0.148    0.999   normal(0,.08) ##     x5               -0.073    0.062   -0.193    0.050    0.999   normal(0,.08) ##     x6                0.063    0.055   -0.047    0.171    1.000   normal(0,.08) ##     x7               -0.130    0.065   -0.259   -0.004    1.003   normal(0,.08) ##     x8               -0.005    0.067   -0.138    0.124    0.999   normal(0,.08) ##     x9                0.193    0.060    0.075    0.309    1.000   normal(0,.08) ##   textual =~                                                                    ##     x1                0.111    0.065   -0.019    0.237    1.000   normal(0,.08) ##     x2                0.007    0.059   -0.110    0.130    0.999   normal(0,.08) ##     x3               -0.084    0.063   -0.212    0.037    1.000   normal(0,.08) ##     x7                0.015    0.062   -0.111    0.135    1.000   normal(0,.08) ##     x8               -0.039    0.062   -0.161    0.082    0.999   normal(0,.08) ##     x9                0.032    0.054   -0.077    0.135    1.000   normal(0,.08) ##   speed =~                                                                      ##     x1                0.042    0.065   -0.081    0.172    1.000   normal(0,.08) ##     x2               -0.048    0.063   -0.172    0.076    1.000   normal(0,.08) ##     x3                0.027    0.064   -0.097    0.149    1.000   normal(0,.08) ##     x4               -0.006    0.056   -0.116    0.104    1.001   normal(0,.08) ##     x5                0.005    0.061   -0.114    0.123    1.000   normal(0,.08) ##     x6               -0.001    0.053   -0.103    0.106    1.000   normal(0,.08) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##   visual ~~                                                                     ##     textual           0.374    0.095    0.186    0.549    1.000     lkj_corr(1) ##     speed             0.353    0.111    0.125    0.559    1.000     lkj_corr(1) ##   textual ~~                                                                    ##     speed             0.259    0.103    0.044    0.451    1.000     lkj_corr(1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                4.937    0.068    4.804    5.070    0.999    normal(0,32) ##    .x2                6.087    0.066    5.961    6.213    0.999    normal(0,32) ##    .x3                2.251    0.067    2.119    2.385    1.000    normal(0,32) ##    .x4                3.063    0.066    2.931    3.191    1.000    normal(0,32) ##    .x5                4.342    0.074    4.193    4.481    1.000    normal(0,32) ##    .x6                2.188    0.063    2.061    2.307    0.999    normal(0,32) ##    .x7                4.187    0.064    4.060    4.312    1.000    normal(0,32) ##    .x8                5.529    0.060    5.410    5.649    0.999    normal(0,32) ##    .x9                5.374    0.060    5.257    5.492    1.000    normal(0,32) ##     visual            0.000                                                     ##     textual           0.000                                                     ##     speed             0.000                                                     ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior        ##    .x1                0.677    0.107    0.457    0.885    1.001 gamma(1,.5)[sd] ##    .x2                1.090    0.107    0.897    1.307    1.000 gamma(1,.5)[sd] ##    .x3                0.718    0.114    0.497    0.938    1.000 gamma(1,.5)[sd] ##    .x4                0.388    0.051    0.289    0.490    0.999 gamma(1,.5)[sd] ##    .x5                0.411    0.065    0.291    0.543    1.000 gamma(1,.5)[sd] ##    .x6                0.372    0.044    0.290    0.461    0.999 gamma(1,.5)[sd] ##    .x7                0.714    0.099    0.524    0.914    1.002 gamma(1,.5)[sd] ##    .x8                0.434    0.100    0.218    0.609    1.015 gamma(1,.5)[sd] ##    .x9                0.589    0.067    0.461    0.726    1.003 gamma(1,.5)[sd] ##     visual            1.000                                                     ##     textual           1.000                                                     ##     speed             1.000"},{"path":"http://ecmerkle.github.io/blavaan/articles/cross_loadings_strong_priors.html","id":"caveats","dir":"Articles","previous_headings":"","what":"Caveats","title":"Cross-loadings with strong priors","text":"model possible cross-loadings kept final analysis model, used step make decisions model changes. two main reasons, (1) model overfitted present good overall fit just due inclusion lot nuisance parameters. example posterior predictive p-value goes ppp = 0 ppp = 0.134, model better theoretically inflating model fit. (2), addition small-variance priors can prevent detection important misspecifications Bayesian confirmatory factor analysis, can obscure underlying problems model diluting large number nuisance parameters (Jorgensen et al. 2019).","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"primary-arguments","dir":"Articles","previous_headings":"","what":"Primary arguments","title":"Model Estimation","text":"Primary arguments model estimation commands include burnin, sample, n.chains, target. burnin sample arguments used specify desired number burn-iterations posterior samples n.chains chains (burnin argument controls warm-iterations Stan). target argument, hand, used specify MCMC strategy used estimation. default, target = \"stan\", tends fastest efficient. options slightly flexible, including target = \"stanclassic\" target = \"jags\". approaches sample latent variables model parameters, whereas target = \"stan\" marginalizes latent variables. detail approaches, see JSS paper.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"secondary-arguments","dir":"Articles","previous_headings":"","what":"Secondary arguments","title":"Model Estimation","text":"Noteworthy secondary arguments include save.lvs, mcmcfile, mcmcextra, inits. save.lvs argument controls whether latent variables sampled model estimation. defaults FALSE latent variable sampling can take large amount memory, can slow post-estimation summaries. setting save.lvs = TRUE allows model summaries latent variables observed variable predictions using blavPredict() functions. setting mcmcfile = TRUE, users can obtain Stan (JAGS) code data specified model. files written lavExport folder within user’s working directory. One file extension .jag .stan, second file R data file (extension .rda). rda file can loaded R (via load()) list including elements data, monitors, inits. elements can supplied stan() model estimation outside blavaan. mcmcextra argument used supply extra information Stan JAGS. Users can supply list element names monitor, data, syntax, llnsamp. elements respectively used specify extra parameters monitor, extra data pass model estimation, extra syntax include model file (JAGS ), number importance samples likelihood approximation (relevant models ordinal variables). inits argument used control starting values MCMC estimation. can sometimes salvage model immediately crashes. default, inits = \"simple\", initializes model parameters 0 1 fashion similar lavaan’s use argument. second option, inits = \"prior\", draws initial values prior distributions. user can also specify list initial values via argument, though required list format somewhat cumbersome. recommend exporting model data using mcmcfile = TRUE, loading resulting rda file, looking format initial values blavaan created .","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/estimate.html","id":"parallelization","dir":"Articles","previous_headings":"","what":"Parallelization","title":"Model Estimation","text":"Speed always issue sample via MCMC, especially using software like Stan JAGS. computers multiple cores, estimation can sped sending MCMC chain separate core. accomplished bcontrol argument, list whose elements correspond stan() run.jags() arguments. parallelizing chains Stan, want use argument bcontrol = list(cores = 3). Many arguments available control aspects estimation; see ?stan ?run.jags possibilities. Parallelization can also helpful speed post-estimation computations. future package controls parallelization, requires extra command prior estimation. common commands ","code":"library(\"future\") plan(\"multicore\") ## mac or linux plan(\"multisession\") ## windows"},{"path":"http://ecmerkle.github.io/blavaan/articles/invariance.html","id":"model-estimation","dir":"Articles","previous_headings":"","what":"Model Estimation","title":"Measurement Invariance","text":"Consider measurement invariance study Holzinger Swineford (1939) data. lavaan, may first estimate two models: examine absolute fit fit1. also compare fit2 fit1 via Likelihood Ratio Test. Instead , wish something similar via Bayesian methods. accomplish via blavaan, can fit Bayesian versions fit1 fit2 using similar syntax. Model fit comparison statistics available via fitMeasures() blavCompare() functions:","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit1 <- cfa(HS.model, data = HolzingerSwineford1939, group = \"school\")  fit2 <- cfa(HS.model, data = HolzingerSwineford1939, group = \"school\",             group.equal = \"loadings\") bfit1 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\")  bfit2 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",                group.equal = \"loadings\") fitMeasures(bfit1)  fitMeasures(bfit2)  blavCompare(bfit1, bfit2)"},{"path":"http://ecmerkle.github.io/blavaan/articles/invariance.html","id":"approximate-invariance","dir":"Articles","previous_headings":"","what":"Approximate Invariance","title":"Measurement Invariance","text":"approximate measurement invariance studies, replace hard equality constraints soft constraints using informative prior distributions. wiggle argument can used invoke types constraints. example: constrains loadings associated x2 x3 approximately equal across groups, informative priors associated constraints normal standard deviations 0.05. Using strategy, syntax can become cumbersome. many cases, group.equal argument can help . example: example, model intercepts loadings across-group constraints. loadings approximately equal across groups, due argument wiggle = \"loadings\". intercepts constrained exactly equal across groups. way, becomes easy use exact approximate equality constraints model, desired.","code":"HS.model <- ' visual  =~ x1 + c(\"a\", \"a\")*x2 + c(\"b\", \"b\")*x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  bfit3 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\", wiggle = c(\"a\", \"b\"),               wiggle.sd = 0.05) HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '       bfit4 <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",               group.equal = c(\"intercepts\", \"loadings\"), wiggle = \"loadings\",               wiggle.sd = 0.05)"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Modification indices","text":"SEM, one first steps evaluate model’s global fit. global fit, need evaluate local fit model, meaning model reproduces specific correlations observed variables. couple common methods , () testing high residual correlations, (b) modification indices. tutorial focuses second. Modification indices test likely change model fit single parameter added model originally included. test can carried every possible parameter included (Bentler 1990).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"modification-indices","dir":"Articles","previous_headings":"","what":"Modification Indices","title":"Modification indices","text":"Modification indices present different indices quantify effect parameter, focus two . () modification index (MI) Lagrange multiplier, estimates extent model’s chi-square (\\(\\chi^2\\)) test statistic decrease parameter added model freely estimated, (b) standardized expected parameter change (SEPC), approximated standardized value parameter estimated model (Whittaker 2012). MI presents possible effect overall model, SEPC presents effect size missed parameter. show example Holzinger Swineford (1939) model. first estimate SEM/CFA model usual need write discrepancy function collect modification indices. list contains two functions estimate save MI SEPC. pass function ppmc() function blavaan. function, MI SEPC computed posterior sample, leading posterior distributions . view top 5 parameters arrange posterior mean (EAP) MI, case shows parameter highest impact overall model fit (according EAP) visual=~x9, cross-loading Visual factor item x9. according posterior median, parameter highest impact residual correlation indicators x7 x8 MI still recommended best metric indicate parameter best include next, can use SEPC evaluate likely effect size respective parameters. see 2 highest parameters, likely SEPC x7~~x8 = 0.799229902211115 visual=~x9 = 0.518551878229323. information can decide include one new parameters model (one time). example, factor loadings larger impact model-implied covariance matrix, choose visual=~x9 can check added parameter expected impact overall fit blavFitIndices() summary() functions. important consider also theoretical relevance suggested parameters, ensure make sense, instead just adding parameters good fit.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE) discFUN <- list(   mod.ind_mi = function(object){     temp <- modificationindices(object, free.remove = F)     mods <- temp$mi     names(mods) <- paste0(temp$lhs, temp$op, temp$rhs)     return(mods)   },   mod.ind_sepc.all = function(object){     temp <- modificationindices(object, free.remove = F)     sepc.all <- temp$sepc.all     names(sepc.all) <- paste0(temp$lhs, temp$op, temp$rhs)     return(sepc.all)   } ) out <- ppmc(fit, discFUN = discFUN) summary(out, prob=.9, discFUN = \"mod.ind_mi\", sort.by=\"EAP\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##               EAP Median    MAP     SD  lower  upper PPP_sim_GreaterThan_obs ## visual=~x9 35.353 35.458 35.495 10.624 17.727 52.239                   0.014 ## x7~~x8     32.891 35.539 39.626 14.716  4.604 52.733                   0.079 ## x8~~x9     27.117 12.160  2.726 42.978  0.000 70.495                   0.316 ## x4~~x6     19.784  7.015  1.388 36.713  0.000 52.503                   0.447 ## visual=~x7 18.162 16.144 12.432  9.849  4.183 33.098                   0.015 ##            PPP_sim_LessThan_obs ## visual=~x9                0.986 ## x7~~x8                    0.921 ## x8~~x9                    0.684 ## x4~~x6                    0.553 ## visual=~x7                0.985 summary(out, prob=.9, discFUN = \"mod.ind_mi\", sort.by=\"Median\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##                EAP Median    MAP     SD  lower  upper PPP_sim_GreaterThan_obs ## x7~~x8      32.891 35.539 39.626 14.716  4.604 52.733                   0.079 ## visual=~x9  35.353 35.458 35.495 10.624 17.727 52.239                   0.014 ## visual=~x7  18.162 16.144 12.432  9.849  4.183 33.098                   0.015 ## x8~~x9      27.117 12.160  2.726 42.978  0.000 70.495                   0.316 ## textual=~x1 11.011  9.976  5.705  8.318  0.000 22.179                   0.215 ##             PPP_sim_LessThan_obs ## x7~~x8                     0.921 ## visual=~x9                 0.986 ## visual=~x7                 0.985 ## x8~~x9                     0.684 ## textual=~x1                0.785 summary(out, prob=.9, discFUN = \"mod.ind_sepc.all\", sort.by=\"EAP\", decreasing=T)[1:5,] ##  ## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for the posterior distribution of realized discrepancy-function values based on observed data, along with posterior predictive p values to test hypotheses in either direction: ##  ##  ##               EAP Median   MAP    SD lower upper PPP_sim_GreaterThan_obs ## x7~~x8      0.799  0.790 0.742 0.383 0.487 1.274                   0.045 ## visual=~x9  0.519  0.494 0.466 0.132 0.334 0.688                   0.008 ## textual=~x1 0.272  0.298 0.314 0.175 0.036 0.513                   0.124 ## x1~~x9      0.247  0.247 0.248 0.037 0.198 0.299                   0.018 ## x2~~x3      0.223  0.223 0.219 0.037 0.171 0.282                   0.015 ##             PPP_sim_LessThan_obs ## x7~~x8                     0.955 ## visual=~x9                 0.992 ## textual=~x1                0.876 ## x1~~x9                     0.982 ## x2~~x3                     0.985 HS.model <- ' visual  =~ x1 + x2 + x3 + x9               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit2 <- bcfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE)"},{"path":"http://ecmerkle.github.io/blavaan/articles/mod_indices.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Modification indices","text":"tutorial show calculate MI SEPC across posterior distributions, evaluate parameters can added. ppmc() function able calculate relevant information model estimation, build posterior distributions . general recommendations use MI identify likely parameter add, SEPC effect size new parameter.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Model Comparison","text":"traditional method model comparison frequentist SEM (fSEM) \\(\\chi^2\\) (Likelihood Ratio Test) variations. BSEM, take Bayesian model comparison methods, apply SEM. Specifically, focus two information criteria, (1) Widely Applicable Information Criterion (WAIC), (2) Leave-One-cross-validation (LOO). methods intend evaluate --sample predictive accuracy models, compare performance. ability predict datapoint hasn’t used training model (McElreath 2020) example use Industrialization Political Democracy example (Bollen 1989).","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit1 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000)"},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"widely-applicable-information-criterion","dir":"Articles","previous_headings":"","what":"Widely Applicable Information Criterion","title":"Model Comparison","text":"WAIC (Watanabe 2010) can seen fully Bayesian generalization Akaike Information Criteria (AIC), measure uncertainty/information model prediction row data across posterior draws. Log-Pointwise-Predictive-Density (lppd). WAIC defined \\[\\begin{equation} WAIC= -2lppd + 2efp_{WAIC}, \\end{equation}\\] first term involves log-likelihoods observed data (marginal latent variables) second term effective number parameters. first term, \\(lppd\\), estimated : \\[\\begin{equation} \\widehat{lppd} = \\sum^{n}_{= 1} log \\Bigg(\\frac{1}{S}\\sum^{S}_{S=1}f(y_{}|\\theta^{S}) \\Bigg) \\end{equation}\\] \\(S\\) number posterior draws \\(f(y_{}|\\theta^{S})\\) density observation \\(\\) respect parameter sampled iteration \\(s\\). effective number parameter (\\(efp_{WAIC}\\)) calculated : \\[\\begin{equation}\\label{eq:efpWAIC} efp_{WAIC} = \\sum^n_{=1}var_{s}(logf(y_{}|\\theta)) \\end{equation}\\] separate variance estimated observation \\(\\) across \\(S\\) posterior draws.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"leave-one-out-cross-validation","dir":"Articles","previous_headings":"","what":"Leave-One-Out cross-validation","title":"Model Comparison","text":"LOO measures predictive density observation holding one observation time use rest observations update prior. estimation calculated via (Vehtari, Gelman, Gabry 2017): \\[\\begin{equation}     LOO = -2\\sum_{=1}^{n} log \\Bigg(\\frac{\\sum^{S}_{s =1} w^{s}_{}f(y_{}|\\theta^{s})}{\\sum^{s}_{s=1} w^{s}_{}}\\Bigg) \\end{equation}\\] \\(w^s_{}\\) Pareto-smoothed sampling weights based relative magnitude individual \\(\\) density function across \\(S\\) posterior samples. LOO effective number parameters involves \\(lppd\\) term WAIC: \\[\\begin{equation}     efp_{LOO} = lppd + LOO/2 \\end{equation}\\]","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"model-comparison","dir":"Articles","previous_headings":"","what":"Model comparison","title":"Model Comparison","text":"WAIC LOO approximate models’ performance across posterior draws, able calculate standard error model comparisons involving . model differences estimate differences across Expected Log-Pointwise-Predictive-Density (elpd), standard error respective difference. clear cutoff rules interpret present comparisons, researchers need use expert knowledge part decision process. best recommendation present differences elpd \\(\\Delta elpd\\), standard error, ratio . ratio least 2 can consider evidence differences models, ratio 4 considered stronger evidence. first example, compare standard political democracy model, model factor regressions fixed 0. 2 models, can compare blavCompare looking comparison object, can see WAIC, LOO, estimates, respective differences . information criteria, best model one lowest value case can see model 1 lower LOOIC, ratio shows LOO differences 5 SE magnitude. indicates model estimated regressions better Now, lets look example smaller difference models, smallest regression (dem65~ind60) fixed 0. see LOOIC, see difference two models minimal, ratio 0.21. indicates models functionally equivalent. case like , researchers decide model better representation, theoretically stronger. Lets one last model, largest regression (dem65~dem60) fixed 0. case, looking LOOIC, see model one better (lower value), ratio difference shows model 5 SE magnitude. Indicating evidence model predictive differences","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ 0*ind60     dem65 ~ 0*ind60 + 0*dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit2 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc12 <- blavCompare(fit1, fit2) bc12 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1605.98527 19.536493 ## p_loo       37.44917  2.909146 ## looic     3211.97053 39.072986 ##  ## $loo[[2]] ##             Estimate        SE ## elpd_loo -1647.26511 18.903569 ## p_loo       34.95449  2.762597 ## looic     3294.53022 37.807138 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -41.279842   7.929763  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1605.71645 19.495760 ## p_waic       37.18036  2.859764 ## waic       3211.43290 38.991519 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1646.93028 18.855412 ## p_waic       34.61966  2.701547 ## waic       3293.86057 37.710823 ##  ##  ## $diff_waic ##  elpd_diff    se_diff  ## -41.213833   7.934142 abs(bc12$diff_loo[1] / bc12$diff_loo[2]) ## elpd_diff  ##  5.205684 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ 0*ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit3 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc13 <- blavCompare(fit1, fit3) bc13 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1605.98527 19.536493 ## p_loo       37.44917  2.909146 ## looic     3211.97053 39.072986 ##  ## $loo[[2]] ##             Estimate        SE ## elpd_loo -1606.11048 19.433361 ## p_loo       37.06705  2.878051 ## looic     3212.22095 38.866721 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -0.1252094  0.9510588  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1605.71645 19.495760 ## p_waic       37.18036  2.859764 ## waic       3211.43290 38.991519 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1605.79055 19.391122 ## p_waic       36.74713  2.818093 ## waic       3211.58111 38.782244 ##  ##  ## $diff_waic ##   elpd_diff     se_diff  ## -0.07410337  0.93308009 abs(bc13$diff_loo[1] / bc13$diff_loo[2]) ## elpd_diff  ## 0.1316526 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + 0*dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit4 <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T, n.chains=3,             burnin=500, sample=1000) bc14 <- blavCompare(fit1, fit4) bc14 ## $bf ##   bf mll1 mll2  ##   NA   NA   NA  ##  ## $loo ## $loo[[1]] ##             Estimate        SE ## elpd_loo -1605.98527 19.536493 ## p_loo       37.44917  2.909146 ## looic     3211.97053 39.072986 ##  ## $loo[[2]] ##             Estimate        SE ## elpd_loo -1629.69158 19.878811 ## p_loo       38.00518  3.008267 ## looic     3259.38316 39.757622 ##  ##  ## $diff_loo ##  elpd_diff    se_diff  ## -23.706316   4.030688  ##  ## $waic ## $waic[[1]] ##              Estimate        SE ## elpd_waic -1605.71645 19.495760 ## p_waic       37.18036  2.859764 ## waic       3211.43290 38.991519 ##  ## $waic[[2]] ##              Estimate        SE ## elpd_waic -1629.33574 19.837380 ## p_waic       37.64934  2.955757 ## waic       3258.67148 39.674760 ##  ##  ## $diff_waic ##  elpd_diff    se_diff  ## -23.619290   4.019731 abs(bc14$diff_loo[1] / bc14$diff_loo[2]) ## elpd_diff  ##  5.881457"},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"bayes-factor","dir":"Articles","previous_headings":"","what":"Bayes factor","title":"Model Comparison","text":"Bayesian literature use Bayes factor (BF) compare models. number criticisms related use BF BSEM, including (1) BF unstable large models (like SEMs), (2) highly sensitive model priors, (3) requires strong priors stable estimation , (4) can require large number posterior draws, (5) estimation using marginal likelihood ignores lot information posterior distributions. details discussion please see Tendeiro Kiers (2019) Schad et al. (2022). criticisms lead us recommend use BF everyday BSEM estimation. researchers commit prior distributions commit exploring noise computations, BF can used describe relative odds one model another, intuitive model comparison metrics.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/model_comparison.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Model Comparison","text":"recommend use LOO WAIC general model comparison metrics BSEM. allow us estimate models’ --sample predictive accuracies, respective differences across posterior draws. also provide us uncertainty estimates comparison. cases LOO WAIC lead similar results, LOO recommended stable metric (Vehtari, Gelman, Gabry 2017). general, \\(\\Delta elpd\\) least 2 standard errors preferably 4 standard errors can interpreted evidence differential predictive accuracy.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"blavaan-coverage","dir":"Articles","previous_headings":"","what":"blavaan Coverage","title":"Two-level SEM","text":"version 0.5-1, blavaan handles two-level, random intercept models complete, continuous data. Handling missing data (assuming missingness random) come future release. meantime, multiple imputation might used combination current blavaan functionality (though currently automatic way ). Alternatively, much missing data occurs lower-level units, listwise deletion work. blavaan approach model estimation mimics lavaan approach, uses matrix results (see Rosseel 2021) enable us efficiently evaluate multilevel SEM likelihood. often lead efficient MCMC estimation, compared sampling level 1 level 2 latent variables working conditional likelihoods (see Merkle et al. 2021 discussion marginal vs conditional likelihoods). Similar single-level models, users can sample latent variables using save.lvs = TRUE argument bcfa/bsem/bgrowth/blavaan commands. Marginal information criteria (marginal latent variables) also automatically computed, information criteria generally preferred condition latent variables (see Merkle, Furr, Rabe-Hesketh 2019 detail context single-level models).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"bayes-specific-options","dir":"Articles","previous_headings":"","what":"Bayes-specific Options","title":"Two-level SEM","text":"Bayesian models require prior distributions. previous blavaan defaults single-level models now used two-level models. can continue use commands like dpriors(lambda = \"normal(1,.5)\") specify Normal(1,.5) prior factor loadings , two-level models, specification apply level 1 level 2 loadings. Depending model, may also useful specify priors individual parameters via prior() argument inside model specification syntax. default prior distributions always work well observed variables whose values far 0. continue encourage users consider prior distributions, possibly using prisamp = TRUE option draw samples prior (used prior predictive checking). Model checking also differs Bayesian frequentist methods. Just like one-level models, blavaan reports posterior predictive p-value general model assessment. computed comparing marginal likelihood observed data (marginal latent variables) marginal likelihood artificial data, iteration MCMC sampling. finer-grained model assessment, encourage users try ppmc(). allows compute posterior predictive p-value using , custom model assessment (defined R function).","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/multilevel.html","id":"concluding-thoughts","dir":"Articles","previous_headings":"","what":"Concluding Thoughts","title":"Two-level SEM","text":"think new blavaan functionality provides viable option Bayesian two-level SEM, provide solid base future model developments. always, underlying Stan files supporting data available via mcmcfile = TRUE argument, blavaan code available Github. Bug reports appreciated, either blavaan Google group Github issue.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Ordinal Models in blavaan","text":"Structural equation models ordinal observed variables supported starting blavaan 0.4-1 (target=\"stan\" ). document describes overall approach, includes model estimation, threshold parameters, log-likelihood calculation, posterior predictive p-values, Jacobians. assume somewhat familiar layout SEM; , technical detail examples found Merkle Rosseel (2018) , recently, Merkle et al. (2021) (links papers references section). aim provide enough detail elucidate new blavaan features, informal enough get () bored.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"estimation","dir":"Articles","previous_headings":"","what":"Estimation","title":"Ordinal Models in blavaan","text":"Ordinal observed variables handled via data augmentation, style Chib Greenberg (1998). might already know , phrase data augmentation imprecise context SEM. many possible things augmented, can make model estimation easier. augmenting observed data predictions missing data, related multiple imputation methods. augmenting observed data latent variables, can simplify likelihood calculation (leading sometimes called conditional likelihood, though conditional also many meanings). augmenting categorical observed variables underlying, latent continuous variables. last type augmentation . testing, found faster efficient approaches sample latent variables alongside model parameters (latent variables integrated likelihoods ; similar description Merkle et al. (2021)). data augmentation implementation, ordinal observation (e.g., \\(y\\)) used generate continuous, underlying counterpart (e.g., \\(y^\\ast\\)). \\(y^\\ast\\) must obey model’s threshold parameters (commonly denoted \\(\\mathbf{\\tau}\\)), based value observed data. example, ignoring subscripts \\(y^\\ast\\) assuming ordinal variable 4 categories, \\[\\begin{align*} y^* < \\tau_1 &\\text{ }y = 1 \\\\ \\tau_1 <\\ y^* < \\tau_2 &\\text{ }y = 2 \\\\ \\tau_2 <\\ y^* < \\tau_3 &\\text{ }y = 3 \\\\ y^* >\\ \\tau_3 &\\text{ }y = 4 \\end{align*}\\] require \\(\\tau_1 < \\tau_2 < \\tau_3\\). generate \\(y^*\\) separately ordinal observation dataset. become additional, bounded parameters Stan file. Stan User’s Guide helpful example multivariate probit regression using related approach; see https://mc-stan.org/docs/2_27/stan-users-guide/multivariate-outcomes.html. trickiest parts involve enforcing boundaries \\(y^*\\) variables, ensuring threshold parameters ordinal variable ordered correctly (allowing possibility different ordinal variables different numbers thresholds). require Jacobian adjustments took good deal time code correctly (detail appears later section). parameters defined generated, remainder model estimation similar simpler situation observed variables continuous. terms Stan file, ordinal overhead comes transformed parameters block. get model block, things operate continuous data.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"thresholds-priors","dir":"Articles","previous_headings":"","what":"Thresholds & Priors","title":"Ordinal Models in blavaan","text":"prior distributions threshold (\\(\\tau\\)) parameters involved may appear. , described previous section, threshold parameters single variable must ordered. say, example, thresholds normal(0,1) prior distribution, ignoring fact one threshold’s value influences size thresholds’ values. Michael Betancourt describes Stan Discourse, prior “interacts (ordering) constraint enforce sort uniform repulsion interior points, resulting rigid differences.” quote https://discourse.mc-stan.org/t/prior-choice--ordered-inverse-transformed-parameters/16378/3 address issue, first define unconstrained, unordered parameter vector whose length equals number thresholds model. Call vector \\(\\mathbf{\\tau}^*\\). obtain ordered thresholds exponentiating unordered parameter vector specific manner. manner works exactly Stan defines parameter type ordered. See https://mc-stan.org/docs/2_28/reference-manual/ordered-vector.html. Additionally, similar idea independently developed signal detection models Paulewicz Blaut (2020) (see bhsdtr package). idea easily shown via example. Say ordinal variable 4 categories. three thresholds variable obtained via: \\[\\begin{align*} \\tau_1 &= \\tau^*_1 \\\\ \\tau_2 &= \\tau^*_1 + \\exp(\\tau^*_2) \\\\ \\tau_3 &= \\tau^*_1 + \\exp(\\tau^*_2) + \\exp(\\tau^*_3). \\end{align*}\\] place normal prior distributions unordered \\(\\tau^*\\) parameters, opposed placing priors ordered \\(\\tau\\) parameters. normal priors imply lowest threshold (\\(\\tau_1\\) ) normal prior, differences successive \\(\\tau\\)’s log-normal priors. blavaan, priors can specified usual two ways. First, add dp argument model estimation command follows. assign prior unordered \\(\\tau^*\\) parameters model. Second, specify priors specific threshold parameters model specification syntax. example, say 4-category observed variable called x1. unique priors three thresholds specified model syntax via clear time priors \\(\\tau^*\\) parameters best option. 2019 paper, Michael Betancourt describes Dirichlet prior regularizes thresholds ordinal regression model. strategy seem work SEM, especially useful datasets categories ordinal variable sparse. issues warrant study. https://betanalpha.github.io/assets/case_studies/ordinal_regression.html","code":"dp = dpriors(tau = \"normal(0, .5)\") x1 | prior(\"normal(-1, 1)\") * t1 + prior(\"normal(0, .5)\") * t2 + prior(\"normal(0, 1)\") * t3"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"likelihood-computations","dir":"Articles","previous_headings":"","what":"Likelihood Computations","title":"Ordinal Models in blavaan","text":"get continuous data model block, seems reasonable expect simple likelihood computations. depends likelihood want compute. likelihood used sampling Stan simple multivariate normal \\(y^*\\) observations, combined continuous observed variables model. indeed simple compute. likelihood want use model comparison. one thing, \\(y^*\\) parameters associated ordinal data involved likelihood, quantities like effective number parameters become inflated. number parameters involved likelihood also increases sample size, generally bad land model comparison metrics. See Merkle, Furr, Rabe-Hesketh (2019) detail . means , quantities like WAIC PSIS-LOO, must compute second model likelihood involves observed, ordinal \\(y\\) variables integrates latent \\(y^*\\) variables. difficult problem amounts evaluating CDF sometimes-high-dimensional, multivariate normal distribution (see Chib Greenberg 1998, Equation 11). multiple possibilities approximating CDF. currently rely sadmvn() function mnormt package (Azzalini Genz 2020), uses subregion adaptive integration method Genz (1992) fast accurate (15 fewer ordinal variables model). second possibility involves Monte Carlo simulation, implemented tmvnsim package (Bhattacjarjee 2016). case, generate many random samples appropriate truncated multivariate normal average resulting importance sampling weights. procedure computationally intensive also time intensive, balance number random samples drawn amount time takes. users wish use tmvnsim(), must declare number importance samples draw. accomplished setting llnsamp within mcmcextra$data argument. example, draw 100 samples approximation, call bsem() similar functions include argument Beyond two methods, also possible use quadrature latent variables. Many people consider quadrature gold standard , quadrature reduce dimension integration many models (usually fewer latent variables observed variables). quadrature specific SEM, fast, efficient, open implementations method appear currently exist (implementations hidden blavaan, pure R implementations fairly slow). hand, approximation multivariate normal CDF general problem multiple fast, efficient, open implementations, long many ordinal variables model. also exists relatively new method Z. . Botev (2017) evaluating CDF multivariate normal, implementation method appearing package TruncatedNormal (Z. Botev Belzile 2021). method especially useful evaluating high-dimensional normal distributions (case, 15 ordinal variables), may incorporated future versions blavaan.","code":"mcmcextra = list(data = list(llnsamp = 100))"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"comparison-to-lavaan","dir":"Articles","previous_headings":"","what":"Comparison to lavaan","title":"Ordinal Models in blavaan","text":"Ordinal SEM associated two types model parameterizations: delta theta. refer different scale parameterizations \\(y^*\\) variables: delta refers total standard deviation \\(y^*\\) (including variability due latent variables), theta refers residual standard deviation \\(y^*\\). blavaan, theta parameterization implemented. , want compare lavaan results blavaan results, need use argument parameterization = \"theta\" estimate lavaan model. Also, default lavaan estimator ordinal models multiple-step procedure involves weighted least squares discrepancy function. resulting parameter estimates sometimes far posterior means reported blavaan. blavaan estimates usually closer estimator=\"PML\" lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"posterior-predictive-p-values","dir":"Articles","previous_headings":"","what":"Posterior Predictive p-values","title":"Ordinal Models in blavaan","text":"Posterior predictive p-value (ppp) computations receive speed boost 0.4 series. computations now occur Stan, whereas previously occurred R model estimation. discussed Asparouhov Muthén (2021), ppp computations needed models missing data can excessively slow, requiring us run EM algorithm posterior sample order find “H1” (“saturated”) model covariance matrix. solution Asparouhov Muthén (2021) involves realization need use fully-optimized H1 covariance matrix order compute ppp. blavaan, consequently run EM algorithm fixed number iterations order compute H1 covariance matrix “good enough” ppp. default number iterations set 20, users can change default supplying emiter value via mcmcextra argument. example,","code":"mcmcextra = list(data = list(emiter = 50))"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"jacobians","dir":"Articles","previous_headings":"","what":"Jacobians","title":"Ordinal Models in blavaan","text":"(section likely relevant editing/writing Stan models.) Stan model underlying blavaan currently requires Jacobian adjustments two places. section briefly reviews ideas underneath adjustments, future self may wish remember. need Jacobian adjustment place prior something appear Stan parameters block. Jacobian tells us implied priors things parameters block, based priors appear model block. Jacobian comes statistics literature “change variables”: applying function random variables, finding distribution function based original distribution random variables. comes Stan models, means starting priors model block finding implied priors parameters block. confused long time , Stan file, functions naturally go opposite direction: starting parameters block, moving model block. fact functions go model parameters convenient, though, Jacobian adjustments require inverse functions. inverse functions move us parameters model, already exist Stan model. just need find appropriate derivatives functions, lead Jacobian. example, consider fact blavaan allows users choose whether priors go standard deviation, variance, precision parameters. standard deviations appear parameters block regardless user chooses (Stan model precompiled time package installation). Say user wants priors precisions. transform standard deviations precisions model block, put prior precision. addition prior, need Jacobian function starts standard deviation (call \\(\\sigma\\)) transforms precision (\\(\\sigma^{-2}\\)). derivative \\(\\sigma^{-2}\\) respect \\(\\sigma\\) \\(-2 \\sigma^{-3}\\). simple function mapping single parameter different value, Jacobian absolute value derivative, \\(2 \\sigma^{-3}\\). Stan file, add log Jacobian target: examples discussion can found : https://mc-stan.org/users/documentation/case-studies/mle-params.html","code":"target += log(2) - 3*log(sigma)"},{"path":"http://ecmerkle.github.io/blavaan/articles/ordinal.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Ordinal Models in blavaan","text":"blavaan 0.4 series offers enhanced functionality variety areas. computational decisions made reflect balance estimation precision estimation speed. case software defaults behave poorly situations. example, default prior distributions can problematic certain situations, likelihood approximations ordinal models may precise desired, new ppp computations may behave differently previous computations. encourage users carry sensitivity analyses, also report bugs!","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/plotting.html","id":"basics","dir":"Articles","previous_headings":"","what":"Basics","title":"Plot Functionality","text":"many blavaan models many parameters, users generally need specify parameters wish plot. accomplished supplying numbers pars argument, numbers correspond order parameters coef() command (numbers also appear free column parameter table). Users must also specify type plot desire via plot.type argument. , example, trace plot first four model parameters looks like  Many plot types available, coming bayesplot package. general, bayesplot functions begin mcmc_, corresponding plot.type remainder function name without leading mcmc_. Examples many plots can found bayesplot vignette.","code":"plot(fit, pars = 1:4, plot.type = \"trace\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/plotting.html","id":"customization","dir":"Articles","previous_headings":"","what":"Customization","title":"Plot Functionality","text":"Users may wish customize aspects resulting plots. , plot() function output ggplot object. makes possible modify plot ggplot object, allows many possibilities. One starting point exploring ggplot2 .  Alternatively, users may wish create plot entirely different available via plot(). can facilitated extracting posterior samples Stan model, via blavInspect():","code":"p <- plot(fit, pars = 1:4, plot.type = \"trace\", showplot = FALSE)  p + facet_text(size=15) + legend_none() ## list of draws ## (one list entry per chain): draws <- blavInspect(fit, \"mcmc\")  ## convert the list to a matrix ## (each row is a sample, ##  each column is a parameter) draws <- do.call(\"rbind\", draws)  ## Stan (or JAGS) model modobj <- blavInspect(fit, \"mcobj\")"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"defaults","dir":"Articles","previous_headings":"","what":"Defaults","title":"Specifying Prior Distributions","text":"default priors can seen via important note prior distributions correspond Stan parameterizations. similar R parameterizations necessarily exactly . Greek(ish) names correspond following parameter types (MV manifest/observed variable LV latent variable): information priors thresholds, see ordinal modeling details. target = \"stan\" (default), priors currently restricted one distribution per parameter type. can change prior distribution parameters (example, mean standard deviation normal), change prior distribution type. exceptions “theta” “psi” parameters: , can use modifiers “[sd]”, “[var]”, “[prec]” specify whether want priors apply standard deviation, variance, precision. require flexibility prior specification, change target either \"stanclassic\" (old Stan approach) \"jags\" (JAGS approach). Alternatively, can export Stan model via mcmcfile = TRUE, edit file needed, fit via rstan package. modify prior distributions, simply supply new text string dpriors() like : default prior loadings now normal mean 1 standard deviation 2, rest parameters remain original defaults. next time estimate model (via bsem(), bcfa(), bgrowth(), blavaan()), add argument dp=mydp use new set default priors.","code":"dpriors() ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"    \"normal(0,10)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\" ##                  nu               alpha              lambda                beta  ##      \"MV intercept\"      \"LV intercept\"           \"Loading\"        \"Regression\"  ##               theta                 psi                 rho               ibpsi  ##      \"MV precision\"      \"LV precision\"       \"Correlation\" \"Covariance matrix\"  ##                 tau  ##         \"Threshold\" mydp <- dpriors(lambda=\"normal(1,2)\") mydp ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"     \"normal(1,2)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"individual-parameters","dir":"Articles","previous_headings":"","what":"Individual Parameters","title":"Specifying Prior Distributions","text":"addition setting prior one type model parameter, user may wish set prior specific model parameter. accomplished using prior() modifier within model specification. example, consider following syntax Holzinger Swineford (1939) confirmatory factor model: loading visual x2 now normal prior mean 1 standard deviation 2, loading textual x6 normal prior mean 3 standard deviation 1.5. loadings default prior distribution. syntax, additionally specified gamma(3,3) prior associated residual x1. [sd] text end distribution says prior goes residual standard deviation, opposed residual precision residual variance. exist two options : [var] option residual variance, brackets precision (also use [prec]). bracketed text can used model variance/SD/precision parameter also used default prior specification desired.","code":"HS.model <- ' visual  =~ x1 + prior(\"normal(1,2)\")*x2 + x3               textual =~ x4 + x5 + prior(\"normal(3,1.5)\")*x6               speed   =~ x7 + x8 + x9                x1 ~~ prior(\"gamma(3,3)[sd]\")*x1 '"},{"path":"http://ecmerkle.github.io/blavaan/articles/prior.html","id":"covariance-parameters","dir":"Articles","previous_headings":"","what":"Covariance Parameters","title":"Specifying Prior Distributions","text":"One additional note covariance parameters defined model syntax: prior() syntax specifies prior correlation associated covariance parameter, opposed covariance . specified distribution support (0,1), blavaan automatically translates prior equivalent distribution support (-1,1). safest stick beta priors . example, syntax places Beta(1,1) (uniform) prior correlation visual textual factors. desired, also specify priors standard deviations (variances precisions) visual textual factors. Together prior correlation, priors imply prior covariance visual textual.","code":"HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9                visual ~~ prior(\"beta(1,1)\")*textual '"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Prior Predictive Checks","text":"Bayesian models need specify priors model parameters. Priors distribution think parameters follow, even data. can represent high low uncertainty, diffuse prior indicates don know lot parameter behave, informative prior means quite certain expected distribution.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"prior-predictive-checks","dir":"Articles","previous_headings":"","what":"Prior Predictive Checks","title":"Prior Predictive Checks","text":"Prior predictive checks (PPC) generate data according prior order asses whether prior appropriate (Gabry et al. 2019). posterior predictive check generates replicated data according posterior predictive distribution. contrast, prior predictive check generates data according prior predictive distribution \\(y^{sim} ∼ p(y)\\). prior predictive distribution just like posterior predictive distribution observed data, prior predictive check nothing limiting case posterior predictive check data. easy carry mechanically simulating parameters \\(θ^{sim}∼p(\\theta)\\) according priors, simulating data \\(y^{sim}∼p(y∣ \\theta^{sim})\\) according sampling distribution given simulated parameters. result simulation joint distribution, \\((y^{sim},θ^{sim})∼p(y,\\theta)\\) thus \\(y^{sim}∼p(y)\\) simulation prior predictive distribution. blavaan can get PPC use argument prisamp=TRUE , tell blavaan ignore data buil distributions priors. start adjusting priors, instead using default priors.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"weakly-informative-priors","dir":"Articles","previous_headings":"Prior Predictive Checks","what":"Weakly informative priors","title":"Prior Predictive Checks","text":"show example Holzinger Swineford (1939) data, first case weakly informative priors. stpecifying observeded variable intercepts prior \\(N(3, 2)\\), factor loadings prior \\(N(0.4, 2)\\), residual standard deviation prior \\(\\Gamma(1,1)\\). estimate BSEM model respective priors dp argument, prisamp=TRUE, getting PPC instead posterior distributions. might get warning messages either divergent /failed convergence. ignore messages likely issues evaluations prior predictions. now blavaan object prior predictive distributions, can use package functions describe , see parameters within expected ranges. example can get PPC density distributions first 9 parameters (factor loadings case). basic plot() method calls functions bayesplot package (Gabry Mahr 2021) plot.type = \"dens\" argument can plot density distributions  can also pick parameters plot, like factor correlations chossing parameters 19:21 case  factor loadings distributions see first loading factor bounded 0, due modeling identification constraint blavaan, maximum values aroun 6. distributions range -6 6 -4 4, priors likely value around 0. described weakly informative priors allows range begative positive values without allowing crazy high/low values Note realistic range dependen parameter, model specification, data. , consider priors function characterictics. factor correlations kept deafult diffuse priors, allowed high low correlation, prior distributions flat across possible correlation values.","code":"priors <- dpriors(nu=\"normal(3,2)\",                   lambda=\"normal(0.4, 2)\",                   theta=\"gamma(1,1)[sd]\") HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit_wi <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T, test = \"none\",             dp=priors, prisamp = T) plot(fit_wi, pars=1:9, plot.type = \"dens\") plot(fit_wi, pars=19:21, plot.type = \"dens\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/prior_pred_checks.html","id":"default-priors","dir":"Articles","previous_headings":"Prior Predictive Checks","what":"Default priors","title":"Prior Predictive Checks","text":"next example, estimate PPC package default priors, consider diffuse priors. can see blavaan default priors function dpriors() estimate BSEM model ignore dp argument letting run default priors, prisamp=TRUE, getting PPC instead posterior distributions. can plot density distributions compare . see default diffuse priors, model allows high values -30 30  way can see diffuse priors allows higher range values. researcher decide range priors better present expectations. important note PPC allows see expected distributions based priors, might priors used estimation process, priors interact model specification constraints (o bound constraint first factor loading) (Merkle et al. 2023)","code":"dpriors() ##                nu             alpha            lambda              beta  ##    \"normal(0,32)\"    \"normal(0,10)\"    \"normal(0,10)\"    \"normal(0,10)\"  ##             theta               psi               rho             ibpsi  ## \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(1,1)\" \"wishart(3,iden)\"  ##               tau  ##   \"normal(0,1.5)\" fit_df <- bcfa(HS.model, data=HolzingerSwineford1939,              std.lv=TRUE, meanstructure=T, test = \"none\",              prisamp = T) plot(fit_df, pars=1:9, plot.type = \"dens\")"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Probability of Direction","text":"Probability Direction (pd) index effect existence, ranging 0% 100%, representing certainty effect goes particular direction (.e., positive negative) (Makowski et al. 2019). Beyond simplicity interpretation, understanding computation, index also presents interesting properties: independent model: solely based posterior distributions require additional information data model. robust scale response variable predictors. *strongly correlated frequentist p-value, can thus used draw parallels give reference readers non-familiar Bayesian statistics. Can interpreted probability parameter (described posterior distribution) chosen cutoff, explicit hypothesis. mathematically defined proportion posterior distribution satisfies specified hypothesis. Although differently expressed, index fairly similar (.e., strongly correlated) frequentist p-value.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"probability-of-direction-pd","dir":"Articles","previous_headings":"","what":"Probability of Direction (pd)","title":"Probability of Direction","text":"example use Industrialization Political Democracy example (Bollen 1989). first estimate latent regression model can look overall model results summary function, case also asking standardized estimates, \\(R^2\\) calculate probability direction use function package brms (Bürkner 2017) Ans need extract posterior draws matrix, also important note parameters posterior draws named Stan underlying object names, instead (b)lavaan parameter names. can see parameter name equates partable() function, follows example focus regressions factors Now, can calculate pd, hypothesis() function brms can ask specific question posterior distributions, example want know proportion regression dem65~ind60 higher 0. function requires 2 arguments, posterior draws (mc_out) hypothesis (bet_sign[2] > 0), also adding ``alpha``` argument specifies size credible intervals estimate presents mean posterior distribution, respective measures variability (deviation credible interval). Post.Prob pd stated hypothesis, example can say 91% posterior distribution dem65~ind60 lower 0. equivalent one-tail test. Evid.Ratio evidence ratio hypothesis, hypothesis form \\(> b\\), evidence ratio ratio posterior probability \\(> b\\) posterior probability \\(< b\\) another example, want know proportion regression dem60~ind60 higher 0. can see 100% posterior probability higher 0, case Evid.Ratio = Inf, happens whole distribution fulfills hypothesis. another possible case interest, use test equalities parameters, example can test dem60~ind60 higher dem65~ind60. see 97% posteriors state dem60~ind60 higher dem65~ind60, mean difference (dem60~ind60 - dem65~ind60) Estimate=0.46","code":"model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ a*y1 + b*y2 + c*y3 + d*y4      dem65 =~ a*y5 + b*y6 + c*y7 + d*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             std.lv=T, meanstructure=T) summary(fit, standardize=T, rsquare=T) ## blavaan 0.5.2.1205 ended normally after 1000 iterations ##  ##   Estimator                                      BAYES ##   Optimization method                             MCMC ##   Number of model parameters                        42 ##   Number of equality constraints                     4 ##  ##   Number of observations                            75 ##  ##   Statistic                                 MargLogLik         PPP ##   Value                                             NA       0.025 ##  ## Parameter Estimates: ##  ##  ## Latent Variables: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##   ind60 =~                                                               ##     x1                0.702    0.072    0.572    0.854    0.702    0.921 ##     x2                1.532    0.143    1.276    1.845    1.532    0.973 ##     x3                1.270    0.143    1.013    1.581    1.270    0.871 ##   dem60 =~                                                               ##     y1         (a)    1.460    0.172    1.135    1.802    1.788    0.761 ##     y2         (b)    1.731    0.223    1.309    2.179    2.119    0.584 ##     y3         (c)    1.814    0.202    1.435    2.215    2.220    0.701 ##     y4         (d)    1.944    0.196    1.567    2.336    2.379    0.790 ##   dem65 =~                                                               ##     y5         (a)    1.460    0.172    1.135    1.802    2.301    0.812 ##     y6         (b)    1.731    0.223    1.309    2.179    2.727    0.769 ##     y7         (c)    1.814    0.202    1.435    2.215    2.857    0.837 ##     y8         (d)    1.944    0.196    1.567    2.336    3.062    0.869 ##      Rhat    Prior        ##                           ##     1.000    normal(0,10) ##     1.000    normal(0,10) ##     1.000    normal(0,10) ##                           ##     1.004    normal(0,10) ##     1.001    normal(0,10) ##     1.002    normal(0,10) ##     1.000    normal(0,10) ##                           ##     1.004                 ##     1.001                 ##     1.002                 ##     1.000                 ##  ## Regressions: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##   dem60 ~                                                                ##     ind60             0.706    0.172    0.379    1.073    0.577    0.577 ##   dem65 ~                                                                ##     ind60             0.242    0.174   -0.103    0.589    0.153    0.153 ##     dem60             0.867    0.131    0.618    1.132    0.674    0.674 ##      Rhat    Prior        ##                           ##     1.001    normal(0,10) ##                           ##     1.000    normal(0,10) ##     0.999    normal(0,10) ##  ## Covariances: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##  .y1 ~~                                                                  ##    .y5                0.742    0.450   -0.068    1.734    0.742    0.294 ##  .y2 ~~                                                                  ##    .y4                1.748    0.822    0.260    3.500    1.748    0.321 ##    .y6                2.222    0.810    0.807    4.020    2.222    0.333 ##  .y3 ~~                                                                  ##    .y7                1.304    0.664    0.145    2.736    1.304    0.309 ##  .y4 ~~                                                                  ##    .y8                0.390    0.476   -0.519    1.367    0.390    0.121 ##  .y6 ~~                                                                  ##    .y8                1.088    0.714   -0.149    2.656    1.088    0.276 ##      Rhat    Prior        ##                           ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##                           ##     1.000       beta(1,1) ##  ## Intercepts: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##    .x1                5.051    0.090    4.872    5.236    5.051    6.627 ##    .x2                4.784    0.185    4.426    5.152    4.784    3.038 ##    .x3                3.551    0.171    3.217    3.882    3.551    2.434 ##    .y1                5.452    0.279    4.903    6.002    5.452    2.321 ##    .y2                4.249    0.432    3.422    5.129    4.249    1.171 ##    .y3                6.551    0.377    5.817    7.267    6.551    2.068 ##    .y4                4.434    0.354    3.768    5.142    4.434    1.472 ##    .y5                5.121    0.332    4.471    5.785    5.121    1.806 ##    .y6                2.958    0.427    2.135    3.814    2.958    0.835 ##    .y7                6.177    0.414    5.384    7.012    6.177    1.809 ##    .y8                4.028    0.422    3.198    4.859    4.028    1.143 ##     ind60             0.000                               0.000    0.000 ##    .dem60             0.000                               0.000    0.000 ##    .dem65             0.000                               0.000    0.000 ##      Rhat    Prior        ##     1.001    normal(0,32) ##     1.001    normal(0,32) ##     1.000    normal(0,32) ##     1.001    normal(0,32) ##     1.002    normal(0,32) ##     1.002    normal(0,32) ##     1.002    normal(0,32) ##     1.000    normal(0,32) ##     1.001    normal(0,32) ##     1.000    normal(0,32) ##     1.003    normal(0,32) ##                           ##                           ##                           ##  ## Variances: ##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all ##    .x1                0.088    0.023    0.048    0.135    0.088    0.151 ##    .x2                0.132    0.082    0.002    0.313    0.132    0.053 ##    .x3                0.515    0.101    0.348    0.749    0.515    0.242 ##    .y1                2.319    0.596    1.313    3.645    2.319    0.421 ##    .y2                8.679    1.583    5.956   12.157    8.679    0.659 ##    .y3                5.110    1.080    3.313    7.512    5.110    0.509 ##    .y4                3.412    0.893    1.813    5.379    3.412    0.376 ##    .y5                2.743    0.657    1.658    4.229    2.743    0.341 ##    .y6                5.122    1.090    3.228    7.448    5.122    0.408 ##    .y7                3.492    0.833    2.137    5.387    3.492    0.300 ##    .y8                3.031    0.866    1.439    4.928    3.031    0.244 ##     ind60             1.000                               1.000    1.000 ##    .dem60             1.000                               0.667    0.667 ##    .dem65             1.000                               0.403    0.403 ##      Rhat    Prior        ##     1.000 gamma(1,.5)[sd] ##     0.999 gamma(1,.5)[sd] ##     0.999 gamma(1,.5)[sd] ##     1.002 gamma(1,.5)[sd] ##     1.002 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##     0.999 gamma(1,.5)[sd] ##     1.000 gamma(1,.5)[sd] ##                           ##                           ##                           ##  ## R-Square: ##                    Estimate ##     x1                0.849 ##     x2                0.947 ##     x3                0.758 ##     y1                0.579 ##     y2                0.341 ##     y3                0.491 ##     y4                0.624 ##     y5                0.659 ##     y6                0.592 ##     y7                0.700 ##     y8                0.756 ##     dem60             0.333 ##     dem65             0.597 library(brms) mc_out <- as.matrix(blavInspect(fit, \"mcmc\")) dim(mc_out) ## [1] 3000   42 colnames(mc_out) ##  [1] \"ly_sign[1]\"    \"ly_sign[2]\"    \"ly_sign[3]\"    \"ly_sign[4]\"    ##  [5] \"ly_sign[5]\"    \"ly_sign[6]\"    \"ly_sign[7]\"    \"ly_sign[4]\"    ##  [9] \"ly_sign[5]\"    \"ly_sign[6]\"    \"ly_sign[7]\"    \"bet_sign[1]\"   ## [13] \"bet_sign[2]\"   \"bet_sign[3]\"   \"Theta_cov[1]\"  \"Theta_cov[2]\"  ## [17] \"Theta_cov[3]\"  \"Theta_cov[4]\"  \"Theta_cov[5]\"  \"Theta_cov[6]\"  ## [21] \"Theta_var[1]\"  \"Theta_var[2]\"  \"Theta_var[3]\"  \"Theta_var[4]\"  ## [25] \"Theta_var[5]\"  \"Theta_var[6]\"  \"Theta_var[7]\"  \"Theta_var[8]\"  ## [29] \"Theta_var[9]\"  \"Theta_var[10]\" \"Theta_var[11]\" \"Nu_free[1]\"    ## [33] \"Nu_free[2]\"    \"Nu_free[3]\"    \"Nu_free[4]\"    \"Nu_free[5]\"    ## [37] \"Nu_free[6]\"    \"Nu_free[7]\"    \"Nu_free[8]\"    \"Nu_free[9]\"    ## [41] \"Nu_free[10]\"   \"Nu_free[11]\" pt <- partable(fit)[,c(\"lhs\",\"op\",\"rhs\",\"pxnames\")] pt ##      lhs op   rhs       pxnames ## 1  ind60 =~    x1    ly_sign[1] ## 2  ind60 =~    x2    ly_sign[2] ## 3  ind60 =~    x3    ly_sign[3] ## 4  dem60 =~    y1    ly_sign[4] ## 5  dem60 =~    y2    ly_sign[5] ## 6  dem60 =~    y3    ly_sign[6] ## 7  dem60 =~    y4    ly_sign[7] ## 8  dem65 =~    y5    ly_sign[4] ## 9  dem65 =~    y6    ly_sign[5] ## 10 dem65 =~    y7    ly_sign[6] ## 11 dem65 =~    y8    ly_sign[7] ## 12 dem60  ~ ind60   bet_sign[1] ## 13 dem65  ~ ind60   bet_sign[2] ## 14 dem65  ~ dem60   bet_sign[3] ## 15    y1 ~~    y5  Theta_cov[1] ## 16    y2 ~~    y4  Theta_cov[2] ## 17    y2 ~~    y6  Theta_cov[3] ## 18    y3 ~~    y7  Theta_cov[4] ## 19    y4 ~~    y8  Theta_cov[5] ## 20    y6 ~~    y8  Theta_cov[6] ## 21    x1 ~~    x1  Theta_var[1] ## 22    x2 ~~    x2  Theta_var[2] ## 23    x3 ~~    x3  Theta_var[3] ## 24    y1 ~~    y1  Theta_var[4] ## 25    y2 ~~    y2  Theta_var[5] ## 26    y3 ~~    y3  Theta_var[6] ## 27    y4 ~~    y4  Theta_var[7] ## 28    y5 ~~    y5  Theta_var[8] ## 29    y6 ~~    y6  Theta_var[9] ## 30    y7 ~~    y7 Theta_var[10] ## 31    y8 ~~    y8 Theta_var[11] ## 32 ind60 ~~ ind60           ## 33 dem60 ~~ dem60           ## 34 dem65 ~~ dem65           ## 35    x1 ~1          Nu_free[1] ## 36    x2 ~1          Nu_free[2] ## 37    x3 ~1          Nu_free[3] ## 38    y1 ~1          Nu_free[4] ## 39    y2 ~1          Nu_free[5] ## 40    y3 ~1          Nu_free[6] ## 41    y4 ~1          Nu_free[7] ## 42    y5 ~1          Nu_free[8] ## 43    y6 ~1          Nu_free[9] ## 44    y7 ~1         Nu_free[10] ## 45    y8 ~1         Nu_free[11] ## 46 ind60 ~1                 ## 47 dem60 ~1                 ## 48 dem65 ~1                 ## 49  .p4. ==  .p8.           ## 50  .p5. ==  .p9.           ## 51  .p6. == .p10.           ## 52  .p7. == .p11.           pt[pt$op==\"~\",] ##      lhs op   rhs     pxnames ## 12 dem60  ~ ind60 bet_sign[1] ## 13 dem65  ~ ind60 bet_sign[2] ## 14 dem65  ~ dem60 bet_sign[3] hypothesis(mc_out, \"bet_sign[2] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob ## 1 (bet_sign[2]) > 0     0.24      0.17    -0.05     0.53       11.4      0.92 ##   Star ## 1      ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities. hypothesis(mc_out, \"bet_sign[1] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##          Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob ## 1 (bet_sign[1]) > 0     0.71      0.17     0.43     1.01        Inf         1 ##   Star ## 1    * ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities. hypothesis(mc_out, \"bet_sign[1] - bet_sign[2] > 0\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio ## 1 (bet_sign[1]-bet_... > 0     0.46      0.26     0.06      0.9      31.61 ##   Post.Prob Star ## 1      0.97    * ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities."},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"region-of-practical-equivalence-rope","dir":"Articles","previous_headings":"","what":"Region of Practical Equivalence (ROPE)","title":"Probability of Direction","text":"Note far tested hypothesis 0, equivalent frequentist null hypothesis tests. can test . Bayesian inference based statistical significance, effects tested “zero”. Indeed, Bayesian framework offers probabilistic view parameters, allowing assessment uncertainty related . Thus, rather concluding effect present simply differs zero, conclude probability outside specific range can considered “practically effect” (.e., negligible magnitude) sufficient. range called region practical equivalence (ROPE). Indeed, statistically, probability posterior distribution different 0 make much sense (probability different single point infinite). Therefore, idea underlining ROPE let user define area around null value enclosing values equivalent null value practical purposes (Kruschke Liddell 2018) examples, change value tested, common recommendations use |0.1| minimally relevant value standardized regressions, case find 0.79 proportion posterior 0.1","code":"hypothesis(mc_out, \"bet_sign[2] > .1\", alpha = 0.05) ## New names: ## • `ly_sign[4]` -> `ly_sign[4]...4` ## • `ly_sign[5]` -> `ly_sign[5]...5` ## • `ly_sign[6]` -> `ly_sign[6]...6` ## • `ly_sign[7]` -> `ly_sign[7]...7` ## • `ly_sign[4]` -> `ly_sign[4]...8` ## • `ly_sign[5]` -> `ly_sign[5]...9` ## • `ly_sign[6]` -> `ly_sign[6]...10` ## • `ly_sign[7]` -> `ly_sign[7]...11` ## Hypothesis Tests for class : ##               Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio ## 1 (bet_sign[2])-(.1) > 0     0.14      0.17    -0.15     0.43       4.14 ##   Post.Prob Star ## 1      0.81      ## --- ## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses. ## '*': For one-sided hypotheses, the posterior probability exceeds 95%; ## for two-sided hypotheses, the value tested against lies outside the 95%-CI. ## Posterior probabilities of point hypotheses assume equal prior probabilities."},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"vs--95-ci","dir":"Articles","previous_headings":"","what":"89% vs. 95% CI","title":"Probability of Direction","text":"commonly frequentist tradition see use 95% Credible interval. Using 89% another popular choice, used default long time. start? Naturally, came choosing CI level report default, people started using 95%, arbitrary convention used frequentist world. However, authors suggested 95% might appropriate Bayesian posterior distributions, potentially lacking stability enough posterior samples drawn (McElreath 2020). proposition use 90% instead 95%. However, recently, McElreath (2020) suggested use arbitrary thresholds first place, use 89%? Moreover, 89 highest prime number exceed already unstable 95% threshold. anything? Nothing, reminds us total arbitrariness conventions (McElreath 2020). can use argument alpha argument hypothesis function, interpretation values Post.Prob","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/probability_direction.html","id":"caveats","dir":"Articles","previous_headings":"","what":"Caveats","title":"Probability of Direction","text":"Although allows testing hypotheses similar manner frequentist null-hypothesis testing framework, strongly argue using arbitrary cutoffs (e.g., p < .05) determine ‘existence’ effect. ROPE sensitive scale, aware value interest representative respective scale. , standardize parameters useful commonly used scale","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/articles/start.html","id":"installation","dir":"Articles","previous_headings":"","what":"Installation","title":"Getting Started with blavaan","text":"blavaan can installed CRAN usual way: situations, may wish install blavaan GitHub. GitHub version sometimes contains bug fixes yet CRAN, though can also less stable. install GitHub, use following command. command requires system can compile Stan models, guaranteed usually install blavaan CRAN. trouble, may help look RStan Getting Started page.","code":"install.packages(\"blavaan\") remotes::install_github(\"ecmerkle/blavaan\", INSTALL_opts = \"--no-multiarch\")"},{"path":"http://ecmerkle.github.io/blavaan/articles/start.html","id":"commands-and-syntax","dir":"Articles","previous_headings":"","what":"Commands and Syntax","title":"Getting Started with blavaan","text":"blavaan package depends lavaan package model specification computations. means , already know lavaan, already able many things blavaan. particular, many blavaan commands add letter “b” start lavaan command. example, sem() becomes bsem(), lavInspect() becomes blavInspect(). also sometimes possible use lavaan command blavaan object, though results may always expect. details mind, look lavaan tutorial many examples models. can translate many examples blavaan adding “b” start commands. look pages , learn additional blavaan arguments specific Bayesian methods.","code":""},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"convergence","dir":"Articles","previous_headings":"","what":"Convergence","title":"Model Summaries","text":"Following model estimation, immediately wish look “goodness” posterior samples, including convergence stationary distribution autocorrelation. Popular convergence metrics available via blavInspect() function: R-hat values near 1.00 indicate convergence, large effective sample sizes (hundreds ) preferred. details metrics, see, e.g., Posterior Analysis section Stan Reference Manual. model definitely converged (judged Rhat), blavaan issue multiple warnings. Lack convergence sometimes caused bad initial values chain strays extreme region posterior space. cases, can helpful re-estimate model second time. also helpful specify mildly-informative priors loading parameters, chains wander extreme loading values. example, expect variables positively correlated loadings fixed 1 identification, Normal(1,.5) often mildly-informative prior. Otherwise, lack convergence may imply prior distributions severely conflict data, ill-defined model. sometimes helpful try fit model lavaan, observe whether errors occur .","code":"blavInspect(fit, 'rhat') blavInspect(fit, 'neff')"},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"model-fit-comparison","dir":"Articles","previous_headings":"","what":"Model Fit & Comparison","title":"Model Summaries","text":"Next, may wish examine model fit metrics. many metrics available summary() output, available fitMeasures() function: judging absolute fit, blavaan supplies posterior predictive p-value based likelihood ratio statistic. Good-fitting models values near 0.5 metric. examining models’ relative fits, blavaan supplies DIC, WAIC, LOOIC. latter two metrics computed help loo package (Vehtari et al. 2020). Comparison multiple models criteria facilitated via blavCompare(), provides standard errors difference two criteria. notable functions include blavFitIndices() alternative measures absolute fit ppmc() general posterior predictive checks.","code":"summary(fit) fitMeasures(fit)"},{"path":"http://ecmerkle.github.io/blavaan/articles/summaries.html","id":"latent-variables-standardization","dir":"Articles","previous_headings":"","what":"Latent Variables & Standardization","title":"Model Summaries","text":"often-discussed advantage Bayesian models abilities describe uncertainty “random” parameters, including random effects latent variables. access functionality blavaan, users must set save.lvs = TRUE model estimation, done top page. model estimation, uses can access information via blavInspect() blavPredict(). Relevant arguments blavInspect() include lvmeans lvs. former returns posterior means latent variables, similar predictions supplied frequentist models. latter returns posterior samples latent variables, users summarize uncertainties functions latent variables. posterior samples returned list length n.chains, list entry row per posterior sample (number columns total number latent variables model): related, different, information can obtained blavPredict(). function also return posterior samples latent variables, matrix instead list: blavPredict() function also return predictions observed variables conditioned sampled latent variables. type = \"yhat\" argument returns expected values observed variables conditioned latent variable samples; type = \"ypred\" argument returns posterior predictions observed variables including residual noise (essentially yhat + error); type = \"ymis\" argument returns posterior predictions missing variables conditioned observed. expected values predictions returned list format; matrix, see last line code . Finally, fully related latent variables: standardizedPosterior() function return standardized posterior draws. calls lavaan function standardizedSolution() background function’s flexibility.","code":"postmns <- blavInspect(fit, what = \"lvmeans\") postsamps <- blavInspect(fit, what = \"lvs\") postsamps <- blavPredict(fit, type = \"lv\") evpreds <- blavPredict(fit, type = \"yhat\") postpreds <- blavPredict(fit, type = \"ypred\") mispreds <- blavPredict(fit, type = \"ymis\")  ## convert to matrix from list: evpreds <- do.call(\"rbind\", evpreds)"},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Edgar Merkle. Author, maintainer. Yves Rosseel. Author. Ben Goodrich. Author. Mauricio Garnier-Villarreal. Contributor.            R/blav_compare.RR/ctr_bayes_fit.Rvignettes Terrence D. Jorgensen. Contributor.            R/ctr_bayes_fit.RR/ctr_ppmc.RR/blav_predict.R Huub Hoofs. Contributor.            R/ctr_bayes_fit.R Rens van de Schoot. Contributor.            R/ctr_bayes_fit.R Andrew Johnson. Contributor.            Makevars Matthew Emery. Contributor.            loo moment_match","code":""},{"path":"http://ecmerkle.github.io/blavaan/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Merkle EC, Fitzsimmons E, Uanhoro J, Goodrich B (2021). “Efficient Bayesian Structural Equation Modeling Stan.” Journal Statistical Software, 100(6), 1–22. doi:10.18637/jss.v100.i06. Merkle EC, Rosseel Y (2018). “blavaan: Bayesian Structural Equation Models via Parameter Expansion.” Journal Statistical Software, 85(4), 1–30. doi:10.18637/jss.v085.i04.","code":"@Article{,   title = {Efficient {Bayesian} Structural Equation Modeling in {Stan}},   author = {Edgar C. Merkle and Ellen Fitzsimmons and James Uanhoro and Ben Goodrich},   journal = {Journal of Statistical Software},   year = {2021},   volume = {100},   number = {6},   pages = {1--22},   doi = {10.18637/jss.v100.i06}, } @Article{,   title = {{blavaan: Bayesian} Structural Equation Models via Parameter Expansion},   author = {Edgar C. Merkle and Yves Rosseel},   journal = {Journal of Statistical Software},   year = {2018},   volume = {85},   number = {4},   pages = {1--30},   doi = {10.18637/jss.v085.i04}, }"},{"path":"http://ecmerkle.github.io/blavaan/index.html","id":"blavaan","dir":"","previous_headings":"","what":"Bayesian Latent Variable Analysis","title":"Bayesian Latent Variable Analysis","text":"blavaan free, open source R package Bayesian latent variable analysis. relies JAGS Stan estimate models via MCMC. blavaan functions syntax similar lavaan. example, consider Political Democracy example Bollen (1989): development version blavaan (containing updates yet CRAN) can installed via command . Compilation required; may problem users currently rely binary version blavaan CRAN. information, see: Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021). Efficient Bayesian structural equation modeling Stan. Journal Statistical Software, 100(6), 1–22. Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal Statistical Software, 85(4), 1–30. blavaan supported Institute Education Sciences, U.S. Department Education, Grant R305D210044, well NSF grants SES-1061334 1460719.","code":"library(blavaan)  model <- '    # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + y2 + y3 + y4      dem65 =~ y5 + y6 + y7 + y8    # regressions      dem60 ~ ind60      dem65 ~ ind60 + dem60    # residual covariances      y1 ~~ y5      y2 ~~ y4 + y6      y3 ~~ y7      y4 ~~ y8      y6 ~~ y8 ' fit <- bsem(model, data = PoliticalDemocracy) summary(fit) remotes::install_github(\"ecmerkle/blavaan\", INSTALL_opts = \"--no-multiarch\")"},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Confirmatory Factor Analysis Models — bcfa","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"Fit Confirmatory Factor Analysis (CFA) model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"","code":"bcfa(..., cp = \"srs\",      dp = NULL, n.chains = 3, burnin, sample,      adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",      convergence = \"manual\", target = \"stan\", save.lvs = FALSE,      wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,      seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default)     \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"bcfa function wrapper general     blavaan function, using following default     lavaan arguments:     int.ov.free = TRUE, int.lv.free = FALSE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,     auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"object class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bcfa.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Confirmatory Factor Analysis Models — bcfa","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Growth Curve Models — bgrowth","title":"Fit Growth Curve Models — bgrowth","text":"Fit Growth Curve model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Growth Curve Models — bgrowth","text":"","code":"bgrowth(..., cp = \"srs\", dp = NULL, n.chains = 3, burnin, sample, adapt, mcmcfile = FALSE, mcmcextra = list(),  inits = \"simple\", convergence = \"manual\", target = \"stan\", save.lvs = FALSE, wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE, seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Growth Curve Models — bgrowth","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Growth Curve Models — bgrowth","text":"bgrowth function wrapper general       blavaan function, using following default       lavaan arguments:     meanstructure = TRUE,      int.ov.free = FALSE, int.lv.free = TRUE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,      auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Growth Curve Models — bgrowth","text":"object class blavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Growth Curve Models — bgrowth","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bgrowth.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Growth Curve Models — bgrowth","text":"","code":"if (FALSE) { ## linear growth model with a time-varying covariate model.syntax <- '   # intercept and slope with fixed coefficients     i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4     s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4    # regressions     i ~ x1 + x2     s ~ x1 + x2    # time-varying covariates     t1 ~ c1     t2 ~ c2     t3 ~ c3     t4 ~ c4 '  fit <- bgrowth(model.syntax, data=Demo.growth) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":null,"dir":"Reference","previous_headings":"","what":"Bayesian model comparisons — blavCompare","title":"Bayesian model comparisons — blavCompare","text":"Bayesian model comparisons, including WAIC, LOO, Bayes factor approximation.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bayesian model comparisons — blavCompare","text":"","code":"blavCompare(object1, object2, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bayesian model comparisons — blavCompare","text":"object1 object class blavaan. object2 second object class blavaan. ... arguments (unused now).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Bayesian model comparisons — blavCompare","text":"function approximates log-Bayes factor two candidate models using Laplace approximation model's marginal log-likelihood.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bayesian model comparisons — blavCompare","text":"log-Bayes factor approximation, along model's approximate marginal log-likelihood.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Bayesian model comparisons — blavCompare","text":"Raftery, . E. (1993). Bayesian model selection structural equation models. K. . Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 163-180). Beverly Hills, CA: Sage.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavCompare.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Bayesian model comparisons — blavCompare","text":"","code":"if (FALSE) { hsm1 <- ' visual  =~ x1 + x2 + x3 + x4           textual =~ x4 + x5 + x6           speed   =~ x7 + x8 + x9 '  fit1 <- bcfa(hsm1, data=HolzingerSwineford1939)  hsm2 <- ' visual  =~ x1 + x2 + x3           textual =~ x4 + x5 + x6 + x7           speed   =~ x7 + x8 + x9 '  fit2 <- bcfa(hsm2, data=HolzingerSwineford1939)  blavCompare(fit1, fit2) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":null,"dir":"Reference","previous_headings":"","what":"SEM Fit Indices for Bayesian SEM — blavFitIndices","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"function provides posterior distribution \\(\\chi^2\\)-based fit indices assess global fit latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"","code":"blavFitIndices(object, thin = 1L, pD = c(\"loo\",\"waic\",\"dic\"),                rescale = c(\"devM\",\"ppmc\",\"mcmc\"),                fit.measures = \"all\", baseline.model = NULL)  ## S4 method for signature 'blavFitIndices' # S4 method for blavFitIndices summary(object, ...)  # S3 method for bfi summary(object, central.tendency = c(\"mean\",\"median\",\"mode\"),         hpd = TRUE, prob = .90)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"object object class blavaan. thin Optional integer indicating much thin chain.     Default 1L, indicating thin chains. pD character indicating information criterion     returned fitMeasures(object) use estimated number     parameters. default leave-one-information criterion     (LOO-IC), highly recommended Vehtari et al. (2017). rescale character indicating method used calculate     fit indices. rescale = \"devM\" (default), Bayesian analog     \\(\\chi^2\\) statistic (deviance evaluated posterior mean     model parameters) approximated rescaling deviance     iteration subtracting estimated number parameters.     rescale = \"PPMC\", deviance iteration rescaled     subtracting deviance data simulated posterior predictive     distribution (posterior predictive model checking; see Hoofs et al.,     2017). rescale = \"MCMC\", fit measures simply calculated     using fitMeasures iteration Markov     chain(s), based model-implied moments iteration (advised     model includes informative priors, case model's     estimated pD deviate number parameters used     calculate df fitMeasures). fit.measures \"\", fit measures available     returned. single fit measures specified name,     computed returned. rescale = \"devM\"     \"PPMC\", currently available indices \"BRMSEA\",     \"BGammaHat\", \"adjBGammaHat\", \"BMc\", \"BCFI\",     \"BTLI\", \"BNFI\". rescale = \"MCMC\", user may     request indices returned fitMeasures     objects class lavaan. baseline.model NULL, object class     blavaan, representing user-specified baseline model.     baseline.model provided, incremental fit indices (BCFI,     BTLI, BNFI) can requested fit.measures. Ignored     rescale = \"MCMC\". ... Additional arguments summary method: central.tendency Takes values \"mean\", \"median\", \"mode\", indicating statistics     used characterize location posterior distribution.     default, 3 statistics returned. posterior mean labeled     EAP expected posteriori estimate, mode     labeled MAP modal posteriori     estimate. hpd logical indicating whether calculate highest     posterior density (HPD) credible interval fit     index (defaults TRUE). prob \"confidence\" level   credible interval(s) (defaults 0.9).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"S4 object class blavFitIndices consisting 2 slots: @details list containing choices made user     (defaults; e.g., values pD rescale set),     well posterior distribution \\(\\chi^2\\) (deviance)     statistic (rescaled, rescale = \"devM\" \"PPMC\"). @indices list containing posterior distribution     requested fit.measure. summary() method returns data.frame containing one row   requested fit.measure, columns containing specified   measure(s) central.tendency, posterior SD,   (requested) HPD credible-interval limits.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"Mauricio Garnier-Villareal (Vrije Universiteit Amsterdam; mgv@pm.) Terrence D. Jorgensen (University Amsterdam; TJorgensen314@gmail.com)","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"rescale = \"PPMC\" based : Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, . (2017).   Evaluating model fit Bayesian confirmatory factor analysis large   samples: Simulation study introducing BRMSEA.   Educational Psychological Measurement. doi:10.1177/0013164417709314 rescale = \"devM\" based : Garnier-Villarreal, M., & Jorgensen, T. D. (2020).  Adapting Fit Indices Bayesian Structural Equation Modeling: Comparison Maximum Likelihood.  Psychological Methods, 25(1), 46--70. https://doi.org/dx.doi.org/10.1037/met0000224   (See also https://osf.io/afkcw/) references: Vehtari, ., Gelman, ., & Gabry, J. (2017). Practical Bayesian model   evaluation using leave-one-cross-validation WAIC.   Statistics Computing, 27(5), 1413--1432.   doi:10.1007/s11222-016-9696-4","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavFitIndices.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"SEM Fit Indices for Bayesian SEM — blavFitIndices","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 ' ## fit target model fit1 <- bcfa(HS.model, data = HolzingerSwineford1939,               n.chains = 2, burnin = 1000, sample = 1000)  ## fit null model to calculate CFI, TLI, and NFI null.model <- c(paste0(\"x\", 1:9, \" ~~ x\", 1:9), paste0(\"x\", 1:9, \" ~ 1\")) fit0 <- bcfa(null.model, data = HolzingerSwineford1939,               n.chains = 2, burnin = 1000, sample = 1000)  ## calculate posterior distributions of fit indices  ## The default method mimics fit indices derived from ML estimation ML <- blavFitIndices(fit1, baseline.model = fit0) ML summary(ML)  ## other options:  ## - use Hoofs et al.'s (2017) PPMC-based method ## - use the estimated number of parameters from WAIC instead of LOO-IC PPMC <- blavFitIndices(fit1, baseline.model = fit0,                        pD = \"waic\", rescale = \"PPMC\") ## issues a warning about using rescale=\"PPMC\" with N < 1000 (see Hoofs et al.)  ## - specify only the desired measures of central tendency ## - specify a different \"confidence\" level for the credible intervals summary(PPMC, central.tendency = c(\"mean\",\"mode\"), prob = .95)    ## Access the posterior distributions for further investigation head(distML <- data.frame(ML@indices))  ## For example, diagnostic plots using the bayesplot package:  ## distinguish chains nChains <- blavInspect(fit1, \"n.chains\") distML$Chain <- rep(1:nChains, each = nrow(distML) / nChains)  library(bayesplot) mcmc_pairs(distML, pars = c(\"BRMSEA\",\"BMc\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"hist\") ## Indices are highly correlated across iterations in both chains  ## Compare to PPMC method distPPMC <- data.frame(PPMC@indices) distPPMC$Chain <- rep(1:nChains, each = nrow(distPPMC) / nChains) mcmc_pairs(distPPMC, pars = c(\"BRMSEA\",\"BMc\",\"BGammaHat\",\"BCFI\",\"BTLI\"),            diag_fun = \"dens\") ## nonlinear relation between BRMSEA, related to the floor effect of BRMSEA ## that Hoofs et al. found for larger (12-indicator) models  }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":null,"dir":"Reference","previous_headings":"","what":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"blavInspect() blavTech() functions can used inspect/extract information stored inside (can computed ) fitted blavaan object. similar lavaan's lavInspect() function.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"","code":"blavInspect(blavobject, what, ...)  blavTech(blavobject, what, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"blavobject object class blavaan. Character. needs inspected/extracted? See Details Bayes-specific options, see lavaan's lavInspect() additional options. Note: argument case-sensitive (everything converted lower case.) ... lavaan arguments supplied lavInspect(); see lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"list Bayesian-specific values argument; additional values can found lavInspect() documentation. \"start\": list starting values chain, unless inits=\"jags\" used model estimation. Aliases: \"starting.values\", \"inits\". \"rhat\": parameter's potential scale reduction     factor convergence assessment. Can also use \"psrf\" instead \"rhat\" \"ac.10\": parameter's estimated lag-10 autocorrelation. \"neff\": parameters effective sample size, taking account autocorrelation. \"mcmc\": object class mcmc containing individual parameter draws MCMC run. Aliases: \"draws\", \"samples\". \"mcobj\": underlying run.jags stan object resulted MCMC run. \"n.chains\": number chains sampled. \"cp\": approach used estimating covariance     parameters (\"srs\" \"fa\"); relevant     using JAGS. \"dp\": Default prior distributions used type model parameter. \"postmode\": Estimated posterior mode free parameter. \"postmean\": Estimated posterior mean free parameter. \"postmedian\": Estimated posterior median free parameter. \"lvs\": object class mcmc containing latent variable (factor score) draws. two-level models, use level = 1 level = 2 specify factor scores want. \"lvmeans\": matrix mean factor scores (rows observations, columns variables). Use additional level argument way. \"hpd\": HPD interval free parameter. case, prob argument can used specify number (0,1) reflecting desired percentage interval.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavInspect.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Inspect or Extract Information from a Fitted blavaan Object — blavInspect","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data = HolzingerSwineford1939,             bcontrol = list(method = \"rjparallel\"))  # extract information blavInspect(fit, \"psrf\") blavInspect(fit, \"hpd\", prob = .9) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"purpose blavPredict() function compute various   types model predictions, conditioned observed data. differs   somewhat lavPredict() lavaan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"","code":"blavPredict(object, newdata = NULL, type = \"lv\", level = 1L)"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"object object class blavaan. newdata Currently unused. (optional data.frame, containing variables data.frame used fitting model object.) type character string. \"lv\", estimated values latent variables model computed. \"ov\" \"yhat\", predicted means observed variables model computed. \"ypred\" \"ydist\", predicted values observed variables (including residual noise) computed. \"ymis\" \"ovmis\", model predicted values (\"imputations\") missing data computed. See details information. level type = \"lv\", used specify whether one desires level 1 latent variables level 2 latent variables.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"predict() function calls blavPredict() function default options. , provide information type option. options work target=\"stan\", \"number samples\" defined number posterior samples across chains. type=\"lv\": posterior distribution latent variables conditioned observed variables. Returns list \"number samples\" entries, entry matrix rows  observations columns latent variables. type=\"yhat\": posterior expected value observed variables conditioned sampled latent variables. Returns list \"number samples\" entries, entry matrix rows observations columns observed variables. type=\"ypred\": posterior predictive distribution observed variables conditioned sampled latent variables (including residual variances). Returns list \"number samples\" entries, entry data frame rows observations columns observed variables. type=\"ymis\": posterior predictive distribution missing values conditioned observed variables. Returns matrix \"number samples\" rows \"number missing variables\" columns.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavPredict.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Predict the values of latent variables, observed variables, and missing variables. — blavPredict","text":"","code":"if (FALSE) { data(HolzingerSwineford1939)  ## fit model HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data = HolzingerSwineford1939, save.lvs = TRUE) lapply(blavPredict(fit)[1:2], head) # first 6 rows of first 10 posterior samples head(blavPredict(fit, type = \"yhat\")[[1]]) # top of first posterior sample  ## multigroup models return a list of factor scores (one per group) mgfit <- bcfa(HS.model, data = HolzingerSwineford1939, group = \"school\",               group.equal = c(\"loadings\",\"intercepts\"), save.lvs = TRUE)  lapply(blavPredict(fit)[1:2], head) head(blavPredict(fit, type = \"ypred\")[[1]]) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blav_internal.html","id":null,"dir":"Reference","previous_headings":"","what":"blavaan internal functions — blav_internal","title":"blavaan internal functions — blav_internal","text":"Internal functions related Bayesian model estimation.   called user.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"blavaan class contains lavaan   class, representing (fitted) Bayesian latent variable   model. contains description model specified user,   summary data, internal matrix representation, model   fitted, fitting results.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"objects-from-the-class","dir":"Reference","previous_headings":"","what":"Objects from the Class","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"Objects can created via   bcfa, bsem, bgrowth   blavaan functions.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"version: lavaan package version used create objects call: function call returned match.call(). timing: elapsed time (user+system) various parts       program list, including total time. Options: Named list options provided       user, filled-automatically. ParTable: Named list describing model parameters. Can coerced data.frame. documentation, called `parameter table'. pta: Named list containing parameter table attributes. Data: Object internal class \"Data\": information data. SampleStats: Object internal class \"SampleStats\": sample       statistics Model: Object internal class \"Model\":       internal (matrix) representation model Cache: List using objects try compute , reuse many times. Fit: Object internal class \"Fit\":       results fitting model. longer used. boot: List. Unused Bayesian models. optim: List. Information optimization. loglik: List. Information loglikelihood model (maximum likelihood used). implied: List. Model implied statistics. vcov: List. Information variance matrix (vcov) model parameters. test: List. Different test statistics. h1: List. Information unrestricted h1 model (available). baseline: List. Information baseline model (often independence model) (available). external: List. Includes Stan JAGS objects used MCMC.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"coef signature(object = \"blavaan\", type = \"free\"): Returns       estimates parameters model named numeric vector.       type=\"free\", free parameters returned.       type=\"user\", parameters listed parameter table       returned, including constrained fixed parameters. vcov signature(object = \"lavaan\"): returns       covariance matrix estimated parameters. show signature(object = \"blavaan\"): Print short summary       model fit summary signature(object = \"blavaan\", header = TRUE,      fit.measures = FALSE, estimates = TRUE, ci = TRUE,       standardized = FALSE, rsquare = FALSE, std.nox = FALSE,      psrf = TRUE, neff = FALSE, postmedian = FALSE, postmode = FALSE,      priors = TRUE, bf = FALSE, nd = 3L):       Print nice summary model estimates.       header = TRUE, header section (including fit measures)       printed.       fit.measures = TRUE, additional fit measures added       header section.       estimates = TRUE, print parameter estimates section.       ci = TRUE, add confidence intervals parameter estimates       section.       standardized = TRUE,       standardized solution also printed.  Note SEs       tests still based unstandardized estimates. Use       standardizedSolution obtain SEs test       statistics standardized estimates.       rsquare=TRUE, R-Square values dependent variables       model printed.       std.nox = TRUE, std.column contains       std.nox column parameterEstimates() output.       psrf = TRUE, potential scale reduction factors (Rhats)       printed.       neff = TRUE, effective sample sizes printed.       postmedian postmode TRUE, posterior       medians modes printed instead posterior means.       priors = TRUE, parameter prior distributions       printed.       bf = TRUE, Savage-Dickey approximations Bayes       factor printed certain parameters.       Nothing returned (use       lavInspect another extractor function       extract information fitted model).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan-class.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Class For Representing A (Fitted) Bayesian Latent Variable Model — blavaan-class","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939)  summary(fit, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) coef(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a Bayesian Latent Variable Model — blavaan","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"Fit Bayesian latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"","code":"blavaan(..., cp = \"srs\",     dp = NULL, n.chains = 3, burnin, sample,     adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",     convergence = \"manual\", target = \"stan\", save.lvs = FALSE,     wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,     seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\".  Option   \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model data written   files (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores)   saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"object inherits class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/blavaan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit a Bayesian Latent Variable Model — blavaan","text":"","code":"if (FALSE) { # The Holzinger and Swineford (1939) example HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- blavaan(HS.model, data=HolzingerSwineford1939,                auto.var=TRUE, auto.fix.first=TRUE,                auto.cov.lv.x=TRUE) summary(fit) coef(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit Structural Equation Models — bsem","title":"Fit Structural Equation Models — bsem","text":"Fit Structural Equation Model (SEM).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit Structural Equation Models — bsem","text":"","code":"bsem(..., cp = \"srs\",      dp = NULL, n.chains = 3, burnin, sample,      adapt, mcmcfile = FALSE, mcmcextra = list(), inits = \"simple\",      convergence = \"manual\", target = \"stan\", save.lvs = FALSE,      wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE, jags.ic = FALSE,      seed = NULL, bcontrol = list())"},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit Structural Equation Models — bsem","text":"... Default lavaan arguments.  See lavaan. cp Handling prior distributions covariance parameters:   possible values \"srs\" (default) \"fa\". Option \"fa\" available target=\"jags\". dp Default prior distributions different types     parameters, typically result call dpriors().     See dpriors() help file information. n.chains Number desired MCMC chains. burnin Number burnin/warmup iterations (including adaptive   iterations, target=\"jags\"). Defaults 4000 target=\"jags\"   500 Stan targets. sample total number samples take burnin. Defaults 10000 target=\"jags\" 1000 Stan targets. adapt target=\"jags\", number adaptive iterations use start   sampling. Defaults 1000. mcmcfile TRUE, JAGS/Stan model written file   (lavExport directory). Can also supply character   string, serves name directory files written. mcmcextra list potential names syntax (unavailable   target=\"stan\"),   monitor, data, llnsamp. syntax object text string containing extra   code insert JAGS/Stan model syntax. data object   list extra data send JAGS/Stan model.    moment_match_k_threshold specified within data looic    model calculated using moment matching. monitor object   character vector containing extra JAGS/Stan parameters   monitor. llnsamp object relevant models ordinal   variables, specifies number samples drawn approximate   model log-likelihood (larger numbers imply higher accuracy   longer time). log-likelihood specifically used compute   information criteria. inits character string, options currently     \"simple\" (default), \"Mplus\", \"prior\", \"jags\".  first two     cases, parameter values set though estimated via     ML (see lavaan).  starting parameter value     chain perturbed original values     addition random uniform noise.  \"prior\" used, starting     parameter values obtained based prior distributions     (also trying ensure starting values crash     model estimation).  \"jags\", starting values     specified JAGS choose values (probably     crash Stan targets). can also supply     list starting values chain, list format can     obtained , e.g., blavInspect(fit, \"inits\"). Finally,     can specify starting values similar way lavaan,     using lavaan start argument (see lavaan     documentation options ). case, also set     inits=\"simple\", aware starting values     used chain. convergence Useful target=\"jags\". \"auto\", parameters   sampled convergence achieved (via autorun.jags()).   case, arguments burnin sample passed   autorun.jags() startburnin startsample,   respectively. Otherwise, parameters   sampled specified user (run.jags   defaults). target Desired MCMC sampling, \"stan\" (pre-compiled   marginal approach)   default. Also available \"vb\", calls rstan function   vb(). options include \"jags\", \"stancond\",   \"stanclassic\", sample latent variables provide   greater functionality (syntax written \"fly\").   slower less efficient. save.lvs sampled latent variables (factor scores) saved? Logical; defaults FALSE wiggle Labels equality-constrained parameters   \"approximately\" equal. Can also \"intercepts\", \"loadings\",   \"regressions\", \"means\". wiggle.sd prior sd (normal distribution) used approximate equality   constraints. Can one value, (target=\"stan\") numeric vector   values length wiggle. prisamp samples drawn prior, instead   posterior (target=\"stan\" )? Logical; defaults FALSE jags.ic DIC computed JAGS way, addition BUGS way? Logical; defaults FALSE seed vector length n.chains (target   \"jags\") integer (target \"stan\") containing random   seeds MCMC run. NULL, seeds chosen randomly. bcontrol list containing additional parameters passed     run.jags (autorun.jags) stan.  See manpage functions     overview additional parameters can set.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit Structural Equation Models — bsem","text":"bsem function wrapper general     blavaan function, using following default     lavaan arguments:     int.ov.free = TRUE, int.lv.free = FALSE,     auto.fix.first = TRUE (unless std.lv = TRUE),     auto.fix.single = TRUE, auto.var = TRUE,     auto.cov.lv.x = TRUE,     auto.th = TRUE, auto.delta = TRUE,     auto.cov.y = TRUE.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit Structural Equation Models — bsem","text":"object class lavaan, several methods   available, including summary method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit Structural Equation Models — bsem","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/. Yves Rosseel (2012). lavaan: R Package Structural Equation Modeling. Journal Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/bsem.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit Structural Equation Models — bsem","text":"","code":"if (FALSE) { ## The industrialization and Political Democracy Example ## Bollen (1989), page 332 model <- '   # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + a*y2 + b*y3 + c*y4      dem65 =~ y5 + a*y6 + b*y7 + c*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  ## unique priors for mv intercepts; parallel chains fit <- bsem(model, data=PoliticalDemocracy,             dp=dpriors(nu=\"normal(5,10)\")) summary(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":null,"dir":"Reference","previous_headings":"","what":"Specify Default Prior Distributions — dpriors","title":"Specify Default Prior Distributions — dpriors","text":"Specify \"default\" prior distributions classes model parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Specify Default Prior Distributions — dpriors","text":"","code":"dpriors(..., target = \"stan\")"},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Specify Default Prior Distributions — dpriors","text":"... Parameter names paired desired priors (see example     ). target priors jags, stan (default), stanclassic?","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Specify Default Prior Distributions — dpriors","text":"prior distributions always use JAGS/Stan syntax parameterizations.   example, normal distribution JAGS parameterized via   precision, whereas normal distribution Stan parameterized   via standard deviation. User-specified prior distributions specific parameters   (using prior() operator within model syntax) always   override prior distributions set using dpriors(). parameter names : nu: Observed variable intercept parameters. alpha: Latent variable intercept parameters. lambda: Loading parameters. beta: Regression parameters. itheta: Observed variable precision parameters. ipsi: Latent variable precision parameters. rho: Correlation parameters (associated covariance parameters). ibpsi: Inverse covariance matrix     blocks latent variables (used target=\"jags\"). tau: Threshold parameters (ordinal data ). delta: Delta parameters (ordinal data ).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Specify Default Prior Distributions — dpriors","text":"character vector containing prior distribution type parameter.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Specify Default Prior Distributions — dpriors","text":"Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling Stan. Journal Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/. Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.","code":""},{"path":[]},{"path":"http://ecmerkle.github.io/blavaan/reference/dpriors.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Specify Default Prior Distributions — dpriors","text":"","code":"dpriors(nu = \"normal(0,10)\", lambda = \"normal(0,1)\", rho = \"beta(3,3)\") #>                nu             alpha            lambda              beta  #>    \"normal(0,10)\"    \"normal(0,10)\"     \"normal(0,1)\"    \"normal(0,10)\"  #>             theta               psi               rho             ibpsi  #> \"gamma(1,.5)[sd]\" \"gamma(1,.5)[sd]\"       \"beta(3,3)\" \"wishart(3,iden)\"  #>               tau  #>   \"normal(0,1.5)\""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":null,"dir":"Reference","previous_headings":"","what":"blavaan Diagnostic Plots — plot.blavaan","title":"blavaan Diagnostic Plots — plot.blavaan","text":"Convenience functions create plots blavaan objects, via bayesplot package.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"blavaan Diagnostic Plots — plot.blavaan","text":"","code":"# S3 method for blavaan plot(x, pars = NULL, plot.type = \"trace\", showplot = TRUE, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"blavaan Diagnostic Plots — plot.blavaan","text":"x object class blavaan. pars Parameter numbers plot, numbers correspond order parameters reported coef() (also shown 'free' column parTable). numbers provided, free parameters plotted. plot.type type plot desired. name MCMC function, without mcmc_ prefix. showplot plot sent graphic device? Defaults TRUE. ... arguments sent bayesplot function.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"blavaan Diagnostic Plots — plot.blavaan","text":"previous versions blavaan, plotting functionality   handled separately JAGS Stan (using plot functionality   packages runjags rstan, respectively). uniformity,   plotting functionality now handled bayesplot. users desire   additional functionality immediately available, can extract matrix MCMC draws via .matrix(blavInspect(x, 'mcmc')).","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"blavaan Diagnostic Plots — plot.blavaan","text":"invisible ggplot object , desired, can customized.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/plot.blavaan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"blavaan Diagnostic Plots — plot.blavaan","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 '  fit <- bcfa(HS.model, data=HolzingerSwineford1939)  # trace plots of free loadings plot(fit, pars = 1:6) }"},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":null,"dir":"Reference","previous_headings":"","what":"Posterior Predictive Model Checks — ppmc","title":"Posterior Predictive Model Checks — ppmc","text":"function allows users conduct posterior predictive model check assess global local fit latent variable model using discrepancy function can applied lavaan model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Posterior Predictive Model Checks — ppmc","text":"","code":"ppmc(object, thin = 1, fit.measures = c(\"srmr\",\"chisq\"), discFUN = NULL,      conditional = FALSE)  # S4 method for blavPPMC summary(object, ...)  # S3 method for ppmc summary(object, discFUN, dist = c(\"obs\",\"sim\"),         central.tendency = c(\"mean\",\"median\",\"mode\"),         hpd = TRUE, prob = .95, to.data.frame = FALSE, diag = TRUE,         sort.by = NULL, decreasing = FALSE)  # S3 method for blavPPMC plot(x, ..., discFUN, element, central.tendency = \"\",      hpd = TRUE, prob = .95, nd = 3)  # S3 method for blavPPMC hist(x, ..., discFUN, element, hpd = TRUE, prob = .95,      printLegend = TRUE, legendArgs = list(x = \"topleft\"),      densityArgs = list(), nd = 3)  # S3 method for blavPPMC pairs(x, discFUN, horInd = 1:DIM, verInd = 1:DIM,       printLegend = FALSE, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Posterior Predictive Model Checks — ppmc","text":"object,x object class blavaan. thin Optional integer indicating much thin chain.     Default 1L, indicating thin chains object. fit.measures character vector indicating names global     discrepancy measures returned fitMeasures. Ignored     unless discFUN NULL, users may include     fitMeasures list discrepancy functions     discFUN. ordinal models, \"logl\" \"chisq\"     computations done via lavaan. discFUN function, list functions, can     called object class lavaan. function     must return object whose mode numeric, may     vector, matrix, multidimensional array.     summary plot methods, discFUN     character indicating discrepancy function     summarize. conditional logical indicating whether , artificial data     generation, condition estimated latent   variables. Requires model estimated save.lvs = TRUE. element numeric character indicating index (    dimension discFUN output, multiple) plot. horInd,verInd Similar element, numeric     character vector indicating indices matrix plot     scatterplot matrix. horInd==verInd, histograms     plotted upper triangle. dist character indicating whether summarize distribution     discFUN either observed simulated data. central.tendency character indicating statistics     used characterize location posterior (predictive)     distribution. default, 3 statistics returned     summary method, none plot method. posterior     mean labeled EAP expected posteriori estimate,     mode labeled MAP modal posteriori estimate. hpd logical indicating whether calculate highest     posterior density (HPD) credible interval discFUN. prob \"confidence\" level credible interval(s). nd number digits print scatterplot. .data.frame logical indicating whether summary     symmetric 2-dimensional matrix returned discFUN     unique elements stored rows data.frame can sorted     convenience identifying large discrepancies. discFUN     returns asymmetric 2-dimensional matrix, list matrices     returned summary can also converted data.frame. diag Passed lower.tri .data.frame=TRUE. sort.character. summary returns data.frame,     can sorted column name using order. Note     discFUN returns asymmetric 2-dimensional matrix,     data.frame returned list sorted     independently, rows unlikely consistent across     summary statistics. decreasing Passed order     !.null(sort.). ... Additional graphical parameters     passed plot.default. printLegend logical. TRUE (default), legend     printed histogram legendArgs list arguments passed     legend function.  default argument list     placing legend top-left figure. densityArgs list arguments passed     density function, used obtain densities     hist method.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Posterior Predictive Model Checks — ppmc","text":"S4 object class blavPPMC consisting 5 list slots: @discFUN user-supplied discFUN, call     fitMeasures returns fit.measures. @dims dimensions object returned     discFUN. @PPP posterior predictive p value     discFUN element. @obsDist posterior distribution realize values     discFUN applied observed data. @simDist posterior predictive distribution values     discFUN applied data simulated posterior samples. summary() method returns numeric vector discFUN returns scalar, data.frame one discrepancy function per row     discFUN returns numeric vector, list     one summary statistic per element discFUN returns matrix multidimensional array. plot pairs methods invisibly return NULL,   printing plot (scatterplot matrix) current device. hist method invisibly returns list arguments can   passed function list element named.  Users   can edit arguments list customize histograms.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Posterior Predictive Model Checks — ppmc","text":"Terrence D. Jorgensen (University Amsterdam; TJorgensen314@gmail.com)","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Posterior Predictive Model Checks — ppmc","text":"Levy, R. (2011). Bayesian data--model fit assessment structural equation   modeling. Structural Equation Modeling, 18(4), 663--685.   doi:10.1080/10705511.2011.607723","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/ppmc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Posterior Predictive Model Checks — ppmc","text":"","code":"if (FALSE) { HS.model <- ' visual  =~ x1 + x2 + x3               textual =~ x4 + x5 + x6               speed   =~ x7 + x8 + x9 ' ## fit single-group model fit <- bcfa(HS.model, data = HolzingerSwineford1939,              n.chains = 2, burnin = 1000, sample = 500) ## fit multigroup model fitg <- bcfa(HS.model, data = HolzingerSwineford1939,              n.chains = 2, burnin = 1000, sample = 500, group = \"school\")   ## Use fit.measures as a shortcut for global fitMeasures only ## - Note that indices calculated from the \"df\" are only appropriate under ##   noninformative priors, such that pD approximates the number of estimated ##   parameters counted under ML estimation; incremental fit indices ##   introduce further complications)  AFIs <- ppmc(fit, thin = 10, fit.measures = c(\"srmr\",\"chisq\",\"rmsea\",\"cfi\")) summary(AFIs)                 # summarize the whole vector in a data.frame hist(AFIs, element = \"rmsea\") # only plot one discrepancy function at a time plot(AFIs, element = \"srmr\")   ## define a list of custom discrepancy functions ## - (global) fit measures ## - (local) standardized residuals  discFUN <- list(global = function(fit) {                   fitMeasures(fit, fit.measures = c(\"cfi\",\"rmsea\",\"srmr\",\"chisq\"))                 },                 std.cov.resid = function(fit) lavResiduals(fit, zstat = FALSE,                                                            summary = FALSE)$cov,                 std.mean.resid = function(fit) lavResiduals(fit, zstat = FALSE,                                                             summary = FALSE)$mean) out1g <- ppmc(fit, discFUN = discFUN)  ## summarize first discrepancy by default (fit indices) summary(out1g) ## some model-implied correlations look systematically over/underestimated summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\") hist(out1g, discFUN = \"std.cov.resid\", element = c(1, 7)) plot(out1g, discFUN = \"std.cov.resid\", element = c(\"x1\",\"x7\")) ## For ease of investigation, optionally export summary as a data.frame, ## sorted by size of average residual summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\",         to.data.frame = TRUE, sort.by = \"EAP\") ## or sorted by size of PPP summary(out1g, discFUN = \"std.cov.resid\", central.tendency = \"EAP\",         to.data.frame = TRUE, sort.by = \"PPP_sim_LessThan_obs\")  ## define a list of custom discrepancy functions for multiple groups ## (return each group's numeric output using a different function)  disc2g <- list(global = function(fit) {                  fitMeasures(fit, fit.measures = c(\"cfi\",\"rmsea\",\"mfi\",\"srmr\",\"chisq\"))                },                cor.resid1 = function(fit) lavResiduals(fit, zstat = FALSE,                                                        type = \"cor.bollen\",                                                        summary = FALSE)[[1]]$cov,                cor.resid2 = function(fit) lavResiduals(fit, zstat = FALSE,                                                        type = \"cor.bollen\",                                                        summary = FALSE)[[2]]$cov) out2g <- ppmc(fitg, discFUN = disc2g, thin = 2) ## some residuals look like a bigger problem in one group than another pairs(out2g, discFUN = \"cor.resid1\", horInd = 1:3, verInd = 7:9) # group 1 pairs(out2g, discFUN = \"cor.resid2\", horInd = 1:3, verInd = 7:9) # group 2  ## print all to file: must be a LARGE picture. First group 1 ... png(\"cor.resid1.png\", width = 1600, height = 1200) pairs(out2g, discFUN = \"cor.resid1\") dev.off() ## ... then group 2 png(\"cor.resid2.png\", width = 1600, height = 1200) pairs(out2g, discFUN = \"cor.resid2\") dev.off() }"},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":null,"dir":"Reference","previous_headings":"","what":"Standardized Posterior — standardizedPosterior","title":"Standardized Posterior — standardizedPosterior","text":"Standardized posterior distribution latent variable model.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Standardized Posterior — standardizedPosterior","text":"","code":"standardizedPosterior(object, ...)"},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Standardized Posterior — standardizedPosterior","text":"object object class blavaan. ... Additional arguments passed lavaan's   standardizedSolution()","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Standardized Posterior — standardizedPosterior","text":"allowed standardizedSolution() arguments type, cov.std, remove.eq, remove.ineq, remove.def. arguments immediately suited posterior distributions.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Standardized Posterior — standardizedPosterior","text":"matrix containing standardized posterior draws, rows draws   columns parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/reference/standardizedPosterior.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Standardized Posterior — standardizedPosterior","text":"","code":"if (FALSE) { model <- '    # latent variable definitions      ind60 =~ x1 + x2 + x3      dem60 =~ y1 + a*y2 + b*y3 + c*y4      dem65 =~ y5 + a*y6 + b*y7 + c*y8    # regressions     dem60 ~ ind60     dem65 ~ ind60 + dem60    # residual correlations     y1 ~~ y5     y2 ~~ y4 + y6     y3 ~~ y7     y4 ~~ y8     y6 ~~ y8 '  fit <- bsem(model, data=PoliticalDemocracy,             dp=dpriors(nu=\"dnorm(5,1e-2)\"),             bcontrol=list(method=\"rjparallel\"))  standardizedPosterior(fit) }"},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-05-2","dir":"Changelog","previous_headings":"","what":"Version 0.5-2","title":"Version 0.5-2","text":"CRAN release: 2023-09-25","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-5-2","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.5-2","text":"maintenance release, primarily adding new array declaration syntax Stan models (syntax became available new version rstan).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-5-2","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.5-2","text":"blavCompare() work models meanstructure = FALSE (reported Pedro Ribeiro). target=“jags”, posterior modes obtained via postmode = TRUE (reported Giada Venaruzzo). models continuous ordinal variables fail cases ordinal variables missing (reported Sonja Winter). certain equality constraints involving named parameters fail target=“stan” (reported Niels Skovgaard-Olsen)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-05-1","dir":"Changelog","previous_headings":"","what":"Version 0.5-1","title":"Version 0.5-1","text":"CRAN release: 2023-08-29","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-5-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.5-1","text":"Two-level models now supported (complete, continuous data) via cluster argument.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-5-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.5-1","text":"two-level model specification, levels labeled “within” “”. restrictive lavaan specification. target=“jags”, latent variable extraction via blavInspect(, “lvs”) fails (reported Joseph Saraceno).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-8","dir":"Changelog","previous_headings":"","what":"Version 0.4-8","title":"Version 0.4-8","text":"CRAN release: 2023-06-12","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-8","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-8","text":"maintenance release bug fixes changes compiler settings","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-8","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-8","text":"certain models residual correlations /correlated factors, initial values target=‘stan’ lead non-positive definite matrices (reported Yuanyuan Hu). models latent variable regressed observed variable (lv ~ ov), latent variable samples account mean observed variable (centered around 0 constant).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-7","dir":"Changelog","previous_headings":"","what":"Version 0.4-7","title":"Version 0.4-7","text":"CRAN release: 2023-03-01","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-7","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-7","text":"primarily update address C++14 vs C++17 compilation issue identified CRAN bugs 0.4-6 also fixed","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-7","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-7","text":"Sampling priors (prisamp = TRUE) fails models meanstructure = FALSE; posterior still estimated (reported Armel Brizuela Rodríguez). target = “jags”, models single-indicator latent variable, latent variable regressed variables, return incorrect parameter estimates (reported Brad Cosentino).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-6","dir":"Changelog","previous_headings":"","what":"Version 0.4-6","title":"Version 0.4-6","text":"CRAN release: 2023-02-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-6","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-6","text":"target = “stan”, meanstructure=FALSE allowed, along use sample.cov sample.nobs instead raw data Users warned priors covariance matrices neither diagonal unrestricted models observed variable intercepts appear latent intercept vector (alpha), default priors come observed intercept vector nu (user expect) inits = “simple” now default (instead “prior”), address convergence problems stan targets, “:=” can now used identity function target = “stan”, fix missing data issue 0.4-3 (complete data one group ) Column names added blavPredict(, type=“lv”)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-6","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-6","text":"blavFitIndices() save.lvs = TRUE work correctly models without meanstructure. Workaround use meanstructure = TRUE model estimation command (reported Charles Hofacker). lavaan summary() method sometimes called instead blavaan summary() method (reported multiple users, Shu Fai Cheung providing helpful examples).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-3","dir":"Changelog","previous_headings":"","what":"Version 0.4-3","title":"Version 0.4-3","text":"CRAN release: 2022-05-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-3","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-3","text":"target = “stan”, models run faster earlier versions (use sufficient statistics) Posterior summaries faster ordinal models (using mnormt::sadmvn() default) Variational Bayes option added: target=“vb”, uses rstan::vb() cmdstanr functionality added: target=“cmdstanr”, uses model target=“stan” Fix blavInspect(., “lvs”/“lvmeans”) multiple groups + missing data Fixes ppmc() ordinal models; blavFitIndices() turned ordinal models (research needed) loo() moment matching available passing mcmcextra = list(data = list(moment_match_k_threshold))","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-3","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-3","text":"target = “stan” fails complete data one group missing data another group (reported Ronja Runge). blavPredict(, type=“ymis”) still available models ordinal variables","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-04-1","dir":"Changelog","previous_headings":"","what":"Version 0.4-1","title":"Version 0.4-1","text":"CRAN release: 2022-01-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-4-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.4-1","text":"Functionality ordinal observed variables now available. models missing data, posterior summaries sped (log-likelihood computations now done Stan).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-4-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.4-1","text":"blavPredict(, type=“ymis”) working models ordinal variables blavInspect(, ‘lvs’) (, ‘lvmeans’) can fail models combination multiple groups, missing values, excluded cases blavFitIndices() ppmc() working models ordinal variables, may indicate excessively bad fit blavFitIndices(, rescale=“mcmc”) fails","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-18","dir":"Changelog","previous_headings":"","what":"Version 0.3-18","title":"Version 0.3-18","text":"CRAN release: 2021-11-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-18","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-18","text":"version adds reference new JSS paper, including DOI, corrects inconsistent version dependency. changes compared 0.3-17.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-17","dir":"Changelog","previous_headings":"","what":"Version 0.3-17","title":"Version 0.3-17","text":"CRAN release: 2021-07-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-17","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-17","text":"maintenance release correct major bugs previous version.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-16","dir":"Changelog","previous_headings":"","what":"Version 0.3-16","title":"Version 0.3-16","text":"CRAN release: 2021-07-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-16","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-16","text":"blavPredict() function added predicting latent variables missing data. posterior summaries sped . (fitMeasures available test=“none”) bug fixes previous version.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-16","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-16","text":"certain models missing data, ppp-values incorrect (sometimes equaling 1.0). target=“stan”, multiple group models fail cases missing observed variables (reported DeAnne Hunter).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-15","dir":"Changelog","previous_headings":"","what":"Version 0.3-15","title":"Version 0.3-15","text":"CRAN release: 2021-02-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-15","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-15","text":"Added S3 summary() method ppmc Posterior intervals summary() bug fixed","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-15","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-15","text":"summary() method ppmc() fitIndices() always work correctly. Jacobian incorrect target=“stan”, (non-default) priors placed precisions variances instead standard deviations. impact estimates posterior variability (reported Roy Levy).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-14","dir":"Changelog","previous_headings":"","what":"Version 0.3-14","title":"Version 0.3-14","text":"CRAN release: 2021-01-20 (version 0.3-13 violated CRAN policy)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-14","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-14","text":"maintenance release response change package Matrix.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-14","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-14","text":"Posterior intervals NA summary(). Workarounds use parameterEstimates() (intervals assuming posterior normality) compute using posterior samples (`blavInspect(fit, “mcmc”)’)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-12","dir":"Changelog","previous_headings":"","what":"Version 0.3-12","title":"Version 0.3-12","text":"CRAN release: 2020-11-12 (version 0.3-11 failed Windows CRAN checks)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-12","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-12","text":"vector values wiggle.sd allowed different priors approximate equality constraints logical argument “prisamp” added, sampling model’s prior target=“stan”, lkj prior used unrestricted lv correlation matrices default priors conditional approaches (targets jags stanclassic) revert placed precisions (opposed SDs), improvement sampling efficiency","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-10","dir":"Changelog","previous_headings":"","what":"Version 0.3-10","title":"Version 0.3-10","text":"CRAN release: 2020-08-03","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-10","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-10","text":"save.lvs=TRUE works missing data target=“stan” new arguments “wiggle” “wiggle.sd” approximate equality constraints target=“stan”","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-10","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-10","text":"plot labels target=“stan” sometimes incorrect (displaying parameter different panel label). complex equality constraints sometimes ignored (target=“jags” “stanclassic”) equality constraints std.lv=TRUE sometimes fail (target=“stan”) placing priors variances precisions yields incorrect results (target=“stan”; reported Roy Levy)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-9","dir":"Changelog","previous_headings":"","what":"Version 0.3-9","title":"Version 0.3-9","text":"CRAN release: 2020-03-09","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-9","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-9","text":"improvements save.lvs=TRUE target=“stan”. target=“stancond” added, experimental, noncentered Stan approach. bug fixes prior settings std.lv target=“stan”, defined parameters.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-9","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-9","text":"target=“stan”, problems sampling lvs multiple groups missing data. Errors blavCompare() blavFitIndices() due version updates packages. target=“stan”, models std.lv=TRUE converge.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-8","dir":"Changelog","previous_headings":"","what":"Version 0.3-8","title":"Version 0.3-8","text":"CRAN release: 2019-11-19","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-8","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-8","text":"post-estimation, posterior predictive computations sped considerably. 0.3-7 bugs fixed.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-8","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-8","text":"target=“stan” std.lv=TRUE, estimation fails certain (growth) models (reported Mauricio Garnier-Villareal). defined variables fail target=“jags” “stanclassic” (reported Mariëlle Zondervan-Zwijnenburg). User-specified priors sometimes placed wrong parameter, related 0.3-7 bug (reported Mauricio Garnier-Villareal). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-7","dir":"Changelog","previous_headings":"","what":"Version 0.3-7","title":"Version 0.3-7","text":"CRAN release: 2019-09-27","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-7","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-7","text":"target=“stan”, gamma priors can now placed user’s choice variances, standard deviations, precisions. plot() now works uniformly across Stan JAGS, relying bayesplot. post-MCMC parallelization now handled via future.apply package (requires extra “plan” command user, works windows). 0.3-6 bugs fixed.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-7","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-7","text":"blavInspect(, ‘lvmeans’) returns rows wrong order target=“stan” (reported Mehdi Momen). User-specified priors sometimes placed wrong parameter, target=“stan” (reported Enrico Toffalini). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-6","dir":"Changelog","previous_headings":"","what":"Version 0.3-6","title":"Version 0.3-6","text":"CRAN release: 2019-08-08","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-6","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-6","text":"fixes stan plot bug 0.3-5.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-6","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-6","text":"user-specified priors correlation parameters silently ignored target=“stan” (reported James Uanhoro). save.lvs=TRUE work target=“stan” (reported Mauricio Garnier-Villareal). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-5","dir":"Changelog","previous_headings":"","what":"Version 0.3-5","title":"Version 0.3-5","text":"CRAN release: 2019-08-03","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-5","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-5","text":"target=“stan” now default, using pre-compiled Stan model instead “fly” code. ppmc() function added Terrence Jorgensen, facilitating posterior predictive checks. default priors changed gamma precisions gamma standard deviations.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-5","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-5","text":"Stan plot method silently fails (reported Matt Yalch). dpriors() issue 0.3-3 remains.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-4","dir":"Changelog","previous_headings":"","what":"Version 0.3-4","title":"Version 0.3-4","text":"CRAN release: 2019-01-11","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-4","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-4","text":"Add function standardizedPosterior() standardizing posterior draws. Turn posterior modes target=“jags”, due conflict current versions runjags modeest. Rearrange posterior predictive internals.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-4","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-4","text":"dpriors() issue 0.3-3 remains. target=“jags”, lv means obtained blavInspect() (via argument ‘lvmeans’) incorrect. (reported Mauricio Garnier-Villareal) Use plot() target=“stan” causes problems future blavInspect() calls.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-3","dir":"Changelog","previous_headings":"","what":"Version 0.3-3","title":"Version 0.3-3","text":"CRAN release: 2018-10-31","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-3","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-3","text":"convergence=“auto”, max time previously 5 min (undocumented). now Inf. Axis labels (parameter names) now sensible convergence plots. Relative effective sample size now used compute loo/waic SEs, SEs now returned via fitMeasures(). Added unit testing via package testthat. Fixed bugs 0.3-2 (exception identity assignments using ‘:=’)","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-3","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-3","text":"Use ‘dpriors()’: observed variable precisions assigned latent precision (ipsi) prior; latent means assigned observed mean (nu) prior.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-2","dir":"Changelog","previous_headings":"","what":"Version 0.3-2","title":"Version 0.3-2","text":"CRAN release: 2018-06-10","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-2","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-2","text":"Conditional (latent variables) information criteria available save.lvs = TRUE. Experimental function ‘blavFitIndices()’ added Bayesian versions SEM metrics, contributed Terrence Jorgensen. blavaan “intelligently” chooses target, either runjags rstan () installed. Fixed bugs 0.3-1, especially related missing data Stan.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-2","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-2","text":"Errors Stan models std.lv=TRUE, observed variable regressed latent variable (reported Bo Zhang). Error identity assignments using ‘:=’ (reported Marco Tullio Liuzza). Explicitly adding argument ‘.fit=TRUE’ fails (reported Esteban Montenegro).","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"version-03-1","dir":"Changelog","previous_headings":"","what":"Version 0.3-1","title":"Version 0.3-1","text":"CRAN release: 2018-01-12","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"new-features-0-3-1","dir":"Changelog","previous_headings":"","what":"New features","title":"Version 0.3-1","text":"Stan export now supported; use target=“stan”. Improved handling complex models, including growth/change models. Sampling factor scores (lvs) available via ‘save.lvs=TRUE’. Samples/means can obtained supplying arguments ‘lvs’ ‘lvmeans’ ‘blavInspect()’. Fixed bugs 0.2-4.","code":""},{"path":"http://ecmerkle.github.io/blavaan/news/index.html","id":"bugsglitches-discovered-after-the-release-0-3-1","dir":"Changelog","previous_headings":"","what":"Bugs/glitches discovered after the release:","title":"Version 0.3-1","text":"Errors Stan models missing data, exogenous (“x”) variables. Errors multi-group Stan models std.lv=TRUE.","code":""}]