forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
saved_variable.cpp
85 lines (72 loc) · 2.81 KB
/
saved_variable.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include "torch/csrc/autograd/saved_variable.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include <ATen/Tensor.h>
#include <cstdint>
#include <list>
#include <memory>
namespace torch { namespace autograd {
SavedVariable::SavedVariable(const Variable& variable, bool is_output) {
if (variable.defined()) {
was_default_constructed_ = false;
output_nr_ = variable.output_nr();
requires_grad_ = variable.requires_grad();
has_grad_fn_ = !variable.is_leaf();
// These copies are all shared_ptr copies, so slightly more expensive.
// Do them here instead of in the init list in case data is undefined.
data_ = variable.data();
if (variable.is_leaf()) {
grad_accumulator_ = variable.grad_accumulator();
} else if (!is_output) {
grad_fn_ = variable.grad_fn();
}
version_counter_ = variable.version_counter();
saved_version_ = version_counter_.current_version();
}
}
Variable SavedVariable::unpack(std::shared_ptr<Function> saved_for) const {
if (!data_.defined()) {
if (!was_default_constructed_) {
throw std::runtime_error(ERR_BACKWARD_TWICE);
}
return Variable();
}
if (saved_version_ != version_counter_.current_version()) {
throw std::runtime_error(
"one of the variables needed for gradient computation has been "
"modified by an inplace operation");
}
auto grad_fn = grad_fn_;
if (has_grad_fn_ && !grad_fn) {
if (!saved_for) {
// If saving the grad_fn would create a circular reference, then it must
// be passed in to the unpack function.
throw std::runtime_error("No grad_fn for non-leaf saved variable");
}
grad_fn = std::move(saved_for);
}
// NB: saved views are unpacked as normal Variables (not views) even though
// they still share the same storage. This works only because we never call
// in-place functions on unpacked variables.
Variable var;
if (grad_fn) {
var = make_variable(data_, Edge(std::move(grad_fn), output_nr_));
} else {
var = make_variable(data_, requires_grad_);
}
var.set_version_counter(saved_version_);
// If a Variable is a leaf (no grad_fn saved), and it requires_grad, then we
// should have saved the grad accumulator. Even if the Variable no longer
// alive, the accumulator should be kept alive by the references in the
// graph).
if (requires_grad_ && !var.grad_fn() && grad_accumulator_.expired())
throw std::logic_error("No grad accumulator for a saved leaf!");
var.set_grad_accumulator(grad_accumulator_);
return var;
}
const char* ERR_BACKWARD_TWICE =
"Trying to backward through the graph a second time, but the buffers have "
"already been freed. Specify retain_graph=True when calling backward "
"the first time.";
}} // namespace torch::autograd