forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crf.py
313 lines (283 loc) · 13 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
## @package crf
# Module caffe2.python.crf
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
from caffe2.python import brew, core, model_helper, recurrent
"""
Due to a limitation in ReccurentNetworkOp, this layer only supports batch_size=1
In order to support batch_size > 1, we will have to implement the CRFUnit
and its gradient in C++ and handle the different batches there.
"""
class CRFWithLoss(object):
def __init__(self, model, num_classes, transitions_blob=None):
self.model = model
self.num_classes = num_classes
self.num_classes_padded = num_classes + 2 # After adding BOS and EOS
if not transitions_blob:
transitions_blob = self.model.param_init_net.UniformFill(
[],
[core.ScopedBlobReference("crf_transitions")],
shape=[self.num_classes_padded, self.num_classes_padded],
min=-1.0,
max=1.0,
)
self.transitions = transitions_blob
self.model.params.append(self.transitions)
def crf_loss(self, predictions, labels, seq_lengths=None):
# Since the transitions matrix is a shared parameter, need to
# take a snapshot of it at the beginning since it can be updated
# in between the operators that uses it when doing parallel updates
transitions_snapshot = self.model.net.Copy(
self.transitions, core.ScopedBlobReference("transitions_snapshot")
)
# Compute best path unary score from the logits
path_unary_score = self._gather_entries_sum(
predictions, labels, self.num_classes
)
# Append BOS and EOS entries to the predictions and labels
predictions = CRFWithLoss.pad_predictions(
predictions, self.model.param_init_net, self.model.net, self.num_classes
)
labels = CRFWithLoss.pad_labels(
labels, self.model.param_init_net, self.model.net, self.num_classes
)
# Compute best path binary scores from the transitions matrix
path_binary_score = self._path_binary_scores(
labels, transitions_snapshot, seq_lengths
)
path_total_score = self.model.net.Add(
[path_binary_score, path_unary_score],
core.ScopedBlobReference("path_total"),
)
# Compute all paths score
zero_index = self.model.param_init_net.ConstantFill([], shape=[1], value=0)
initial_state = self.model.net.Gather(
[predictions, zero_index],
core.ScopedBlobReference("rnn_initial"),
dense_gradient=True,
)
input_data, _ = self.model.net.RemovePadding(
[predictions], padding_width=1, end_padding_width=0, outputs=2
)
input_data = self.model.net.ExpandDims(
[input_data], core.ScopedBlobReference("rnn_input_data"), dims=[1]
)
# Due to a bug in RecurrentNetworkGradientOp, we need to copy the
# transitions blob before sending it to the recurrent network
transitions_copy = self.model.net.Copy(
transitions_snapshot, core.ScopedBlobReference("transitions_copy")
)
all_paths_scores = self._crf_forward(
input_data, initial_state, transitions_copy
)
loss = self.model.net.Sub(
[all_paths_scores, path_total_score], core.ScopedBlobReference("crf_loss")
)
return loss
def _path_binary_scores(self, labels, transitions, seq_lengths=None):
column_ids, _ = self.model.net.RemovePadding(
[labels], outputs=2, padding_width=1, end_padding_width=0
)
row_ids, _ = self.model.net.RemovePadding(
[labels], outputs=2, padding_width=0, end_padding_width=1
)
# Since there is no multi-dimensional gather, I flatten the matrix to
# a 1-d vector and transform the ids to (row_ids * num_columns +
# column_ids) and do gather in 1-d
num_columns_blob = self.model.net.ConstantFill(
[row_ids], value=self.num_classes_padded
)
flattened_ids = self.model.net.Mul([row_ids, num_columns_blob])
flattened_ids = self.model.net.Add([flattened_ids, column_ids])
flattened_transitions = self.model.net.FlattenToVec([transitions])
entries = self.model.net.Gather(
[flattened_transitions, flattened_ids], dense_gradient=True
)
return self.model.ReduceFrontSum(entries)
def _gather_entries_sum(self, in_data, indices, index_size):
indices = self.model.net.Cast([indices], to="int64")
index_size_blob = self.model.param_init_net.ConstantFill(
[], shape=[1], value=index_size
)
query_one_hot = self.model.net.OneHot([indices, index_size_blob])
flattend_query = self.model.net.FlattenToVec(query_one_hot)
flattend_data = self.model.net.FlattenToVec(in_data)
query_scores = self.model.net.DotProduct([flattend_query, flattend_data])
final_sum = self.model.net.ReduceFrontSum([query_scores])
return final_sum
def _crf_forward(
self, input_blob, initial_state, transitions_copy, seq_lengths=None
):
# Build the RNN net and get the last timestep output
out_last = self.build_crf_net(input_blob, initial_state, transitions_copy)
out_last, _ = self.model.net.Reshape(
[out_last], outputs=2, shape=(self.num_classes_padded,)
)
zero_segment_id = self.model.param_init_net.ConstantFill(
[], value=0, shape=[self.num_classes_padded], dtype=core.DataType.INT32
)
# Compute the accumlated total score of all the paths
accum_score = self.model.net.SortedSegmentRangeLogSumExp(
[out_last, zero_segment_id]
)
accum_score, _ = self.model.net.Reshape(accum_score, outputs=2, shape=())
return accum_score
def build_crf_net(self, input_blob, initial_state, transitions):
"""
Adds the crf_net recurrent operator to the model.
model: model_helper.ModelHelper object new operators would be added
to
input_blob: the input sequence in a format T x N x D
where T is sequence size, N - batch size and D - input dimention
##Only supports batch-size 1##
seq_lengths: blob containing sequence lengths (unused)
"""
scope = "crf_net"
def s(name):
""
# We have to manually scope due to our internal/external blob
# relationships.
return "{}/{}".format(str(scope), str(name))
step_model = model_helper.ModelHelper(name="crf_step", param_model=self.model)
input_t, cell_t_prev, _ = step_model.net.AddExternalInputs(
core.ScopedBlobReference("input_t"),
core.ScopedBlobReference("cell_t_prev"),
transitions,
)
zero_segment_id = step_model.param_init_net.ConstantFill(
[],
[s("zero_segment_id")],
value=0,
shape=[self.num_classes_padded],
dtype=core.DataType.INT32,
)
# A hack to bypass model cloning for test
step_model.param_init_net.AddExternalOutput(zero_segment_id)
""" the CRF step """
# Do tile
prev_transpose = brew.transpose(
step_model, cell_t_prev, [s("prev_transpose")], axes=(0, 2, 1)
)
prev_tiled = step_model.net.Tile(
prev_transpose, [s("prev_tiled")], tiles=self.num_classes_padded, axis=2
)
input_t_tiled = step_model.net.Tile(
input_t, [s("input_t_tiled")], tiles=self.num_classes_padded, axis=1
)
input_with_prev = step_model.net.Add(
[prev_tiled, input_t_tiled], [s("input_with_prev")]
)
all_with_transitions = step_model.net.Add(
[input_with_prev, transitions],
[s("prev_with_transitions")],
broadcast=1,
use_grad_hack=1,
)
all_with_transitions_reshaped, _ = step_model.net.Reshape(
all_with_transitions,
[s("all_with_transitions_reshaped"), s("all_with_transitions_orig")],
shape=(self.num_classes_padded, self.num_classes_padded),
)
cell_t = step_model.net.SortedSegmentRangeLogSumExp(
[all_with_transitions_reshaped, zero_segment_id], [s("cell_t")]
)
step_model.net.AddExternalOutputs(cell_t)
""" recurrent network """
cell_input_blob = initial_state
out_all, out_last = recurrent.recurrent_net(
net=self.model.net,
cell_net=step_model.net,
inputs=[(input_t, input_blob)],
initial_cell_inputs=[(cell_t_prev, cell_input_blob)],
links={cell_t_prev: cell_t},
scope=scope,
outputs_with_grads=(1,),
)
return out_last
def update_predictions(self, classes):
def crf_update_predictions_op(inputs, outputs):
# This operator will compute the best path of classes by performing
# Viterbi decoding and then updates the predictions to make the tag
# On the best path has the highest score among the others
predictions = inputs[0].data
transitions = inputs[1].data
predictions = inputs[0].data
predictions_shape = inputs[0].shape
outputs[0].reshape(predictions_shape)
trellis = np.zeros(predictions_shape)
backpointers = np.zeros(predictions_shape, dtype=np.int32)
trellis[0] = predictions[0]
for t in range(1, predictions_shape[0]):
v = np.expand_dims(trellis[t - 1], 1) + transitions
trellis[t] = predictions[t] + np.max(v, 0)
backpointers[t] = np.argmax(v, 0)
viterbi = [np.argmax(trellis[-1])]
for bp in reversed(backpointers[1:]):
viterbi.append(bp[viterbi[-1]])
viterbi.reverse()
new_predictions = np.zeros(predictions_shape)
old_bests = []
for i, w_predictions in enumerate(predictions):
# Get the current tag with the maximum score
new_predictions[i] = predictions[i]
old_best = np.argmax(w_predictions)
old_bests.append(old_best)
# Swap the scores of the current best tag and the tag on the
# Viterbi path
w_predictions[viterbi[i]], w_predictions[old_best] = (
w_predictions[old_best],
w_predictions[viterbi[i]],
)
new_predictions[i] = w_predictions
# Remove the BOS and EOS entries from the predictions matrix
orig_predictions = new_predictions[1:-1, 0:-2]
outputs[0].reshape(orig_predictions.shape)
outputs[0].data[...] = orig_predictions
padded_classes = CRFWithLoss.pad_predictions(
classes, self.model.param_init_net, self.model.net, self.num_classes
)
new_classes = self.model.net.Python(crf_update_predictions_op)(
[padded_classes, self.transitions],
core.ScopedBlobReference("post_crf_classes"),
)
return new_classes
@staticmethod
def pad_labels(labels, init_net, net, num_classes):
bos_i = num_classes
eos_i = num_classes + 1
bos_i_b = init_net.ConstantFill([], shape=[1], value=bos_i)
eos_i_b = init_net.ConstantFill([], shape=[1], value=eos_i)
labels = net.Cast([labels], to="int64")
padded_labels, _ = net.Concat([bos_i_b, labels, eos_i_b], axis=0, outputs=2)
return padded_labels
@staticmethod
def pad_predictions(predictions, init_net, net, num_classes):
# This function will introduce two labels for beginning of sequence
# And end of sequence, it will make the necessary udpates to the
# the predictions blob
low_score = -1000.0 # An arbitray very low number
b_scores = np.array([[low_score] * num_classes + [0, low_score]]).astype(
np.float32
)
e_scores = np.array([[low_score] * num_classes + [low_score, 0]]).astype(
np.float32
)
b_scores = init_net.GivenTensorFill(
[], "b_scores", shape=[1, num_classes + 2], values=b_scores
)
e_scores = init_net.GivenTensorFill(
[], "e_scores", shape=[1, num_classes + 2], values=e_scores
)
zero_index = net.ConstantFill([], shape=[1], value=0)
length = net.Gather([net.Shape([predictions]), zero_index])
length = net.Cast(length, to="int32")
t_range = net.LengthsRangeFill(length)
padding = net.ConstantFill([t_range], value=low_score)
padding = net.ExpandDims(padding, dims=[1])
padded_predictions, _ = net.Concat(
[predictions, padding, padding], outputs=2, axis=1
)
padded_predictions_concat, _ = net.Concat(
[b_scores, padded_predictions, e_scores], outputs=2, axis=0
)
return padded_predictions_concat