forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip_op.h
62 lines (51 loc) · 1.57 KB
/
clip_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#ifndef CAFFE2_OPERATORS_CLIP_OP_H_
#define CAFFE2_OPERATORS_CLIP_OP_H_
#include <limits>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class ClipOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
ClipOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
min_(std::numeric_limits<T>::lowest()),
max_(std::numeric_limits<T>::max()) {
if (HasArgument("min")) {
min_ = static_cast<T>(this->template GetSingleArgument<float>("min", 0));
}
if (HasArgument("max")) {
max_ = static_cast<T>(this->template GetSingleArgument<float>("max", 0));
}
}
bool RunOnDevice() override;
protected:
T min_;
T max_;
};
template <typename T, class Context>
class ClipGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
ClipGradientOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
min_(std::numeric_limits<T>::lowest()),
max_(std::numeric_limits<T>::max()) {
if (HasArgument("min")) {
min_ = static_cast<T>(this->template GetSingleArgument<float>("min", 0));
}
if (HasArgument("max")) {
max_ = static_cast<T>(this->template GetSingleArgument<float>("max", 0));
}
}
bool RunOnDevice() override;
protected:
T min_;
T max_;
// Input: Y, dY; Output: dX
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CLIP_OP_H_