forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_dag.h
103 lines (85 loc) · 2.89 KB
/
net_dag.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#ifndef CAFFE2_CORE_NET_DAG_H_
#define CAFFE2_CORE_NET_DAG_H_
#include <atomic>
#include <climits>
#include <cstddef>
#include <thread> // NOLINT
#include <typeinfo>
#include <unordered_map>
#include <vector>
#include "c10/util/Registry.h"
#include "caffe2/core/blob.h"
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net_async_tracing.h"
#include "caffe2/core/net_dag_utils.h"
#include "caffe2/core/observer.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/stats.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/timer.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/simple_queue.h"
namespace caffe2 {
class CAFFE2_API DAGNetBase : public NetBase {
public:
DAGNetBase(const std::shared_ptr<const NetDef>& net_def, Workspace* ws);
~DAGNetBase() override;
// WorkerFunction() is a function wrapper to allow us to run worker threads.
// It checks out one ready-to-run operator from the job queue, runs it,
// notifies all its children, and for any children that is ready, enqueues
// it to the job queue.
void WorkerFunction();
const dag_utils::ExecutionChains& TEST_execution_chains() const {
return execution_chains_;
}
vector<OperatorBase*> GetOperators() const override {
return operators_;
}
protected:
bool DoRunAsync() override;
virtual bool RunAt(int chain_id, const std::vector<int>& chain) = 0;
void HandleException(int operator_idx, const std::string& exception_str);
vector<dag_utils::OperatorNode> operator_nodes_;
vector<OperatorBase*> operators_;
dag_utils::ExecutionChains execution_chains_;
vector<int> initial_frontier_;
std::unique_ptr<SimpleQueue<int>> job_queue_;
std::vector<std::thread> workers_;
int num_workers_;
int remaining_ops_;
bool success_;
// Use an atomic to guard caught_exception_ so it is written to only once
std::atomic<bool> caught_exception_yet_;
#ifdef CAFFE2_USE_EXCEPTION_PTR
std::exception_ptr caught_exception_;
#endif // CAFFE2_USE_EXCEPTION_PTR
int iter_;
std::mutex remaining_ops_mutex_;
std::condition_variable cv_;
std::mutex run_in_progress_;
// Tracing
std::shared_ptr<tracing::Tracer> tracer_;
struct DAGNetStats {
CAFFE_STAT_CTOR(DAGNetStats);
CAFFE_AVG_EXPORTED_STAT(task_pool_wait_time_us);
CAFFE_AVG_EXPORTED_STAT(task_time_to_scheduled_us);
CAFFE_AVG_EXPORTED_STAT(task_time_to_succeeded_ms);
CAFFE_AVG_EXPORTED_STAT(task_wait_time_us);
};
mutable std::vector<DAGNetStats> stats_;
std::unordered_map<int, std::unique_ptr<Timer>> task_timers_;
C10_DISABLE_COPY_AND_ASSIGN(DAGNetBase);
};
class CAFFE2_API DAGNet : public DAGNetBase {
public:
using DAGNetBase::DAGNetBase;
protected:
bool RunAt(int chain_id, const std::vector<int>& chain) override;
bool SupportsAsync() override {
return false;
}
};
} // namespace caffe2
#endif // CAFFE2_CORE_NET_DAG_H_