forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoops.cuh
208 lines (183 loc) · 5.98 KB
/
Loops.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#pragma once
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
// Marks a lambda as executable on both the host and device. The __host__
// attribute is important so that we can access static type information from
// the host, even if the function is typically only executed on the device.
#ifndef GPU_LAMBDA
#define GPU_LAMBDA __host__ __device__
#endif
#ifdef __NVCC__
#define ASSERT_HOST_DEVICE_LAMBDA(type) \
static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \
#type " must be a __host__ __device__ lambda")
#else
#define ASSERT_HOST_DEVICE_LAMBDA(type)
#endif
namespace at { namespace native {
template<int nt, int vt, typename func_t>
__launch_bounds__(nt, 4)
__global__ void elementwise_kernel(int N, func_t f) {
int tid = threadIdx.x;
int nv = nt * vt;
int idx = nv * blockIdx.x + tid;
#pragma unroll
for (int i = 0; i < vt; i++) {
if (idx < N) {
f(idx);
idx += nt;
}
}
}
template<int N>
static OffsetCalculator<N> make_offset_calculator(const TensorIterator& iter) {
AT_ASSERT(N == iter.ntensors());
std::array<const int64_t*, N> strides;
for (int i = 0; i < N; i++) {
strides[i] = iter.strides(i).data();
}
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data());
}
template<int nt, int vt, typename func_t>
static void launch_kernel(int64_t N, const func_t& f) {
if (N == 0) {
return;
}
dim3 block(nt);
dim3 grid((N + block.x * vt - 1) / (block.x * vt));
auto stream = at::cuda::getCurrentCUDAStream();
elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
}
template<typename func_t>
void gpu_nullary_kernel(TensorIterator& iter, const func_t& f) {
ASSERT_HOST_DEVICE_LAMBDA(func_t);
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_nullary_kernel(sub_iter, f);
}
return;
}
char* out_data = (char*)iter.data_ptr(0);
using traits = function_traits<func_t>;
using arg0_t = typename traits::result_type;
int64_t numel = iter.numel();
if (numel == 0) {
return;
}
if (iter.is_trivial_1d()) {
auto strides = iter.get_inner_strides();
int stride0 = strides[0];
launch_kernel<512, 1>(numel, [=]__device__(int idx) {
arg0_t* out = (arg0_t*)&out_data[stride0 * idx];
*out = f();
});
} else {
auto offset_calc = make_offset_calculator<1>(iter);
launch_kernel<128, 4>(numel, [=]__device__(int idx) {
auto offsets = offset_calc.get(idx);
arg0_t* out = (arg0_t*)&out_data[offsets[0]];
*out = f();
});
}
}
template<typename func_t>
void gpu_unary_kernel(TensorIterator& iter, const func_t& f) {
ASSERT_HOST_DEVICE_LAMBDA(func_t);
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_unary_kernel(sub_iter, f);
}
return;
}
char* out_data = (char*)iter.data_ptr(0);
const char* in1_data = (char*)iter.data_ptr(1);
using traits = unary_function_traits<func_t>;
using arg0_t = typename traits::result_type;
using arg1_t = typename traits::arg1_t;
int64_t numel = iter.numel();
if (numel == 0) {
return;
}
if (iter.is_cpu_scalar(1)) {
auto a = iter.scalar_value<arg1_t>(1);
iter.remove_operand(1);
gpu_nullary_kernel(iter, [=]GPU_LAMBDA(void) {
return f(a);
});
} else if (iter.is_trivial_1d()) {
auto strides = iter.get_inner_strides();
int stride0 = strides[0];
int stride1 = strides[1];
launch_kernel<512, 1>(numel, [out_data, stride0, stride1, in1_data, f]__device__(int idx) {
arg0_t* out = (arg0_t*)&out_data[stride0 * idx];
arg1_t* in1 = (arg1_t*)&in1_data[stride1 * idx];
*out = f(*in1);
});
} else {
auto offset_calc = make_offset_calculator<2>(iter);
launch_kernel<128, 4>(numel, [=]__device__(int idx) {
auto offsets = offset_calc.get(idx);
arg0_t* out = (arg0_t*)&out_data[offsets[0]];
arg1_t* in1 = (arg1_t*)&in1_data[offsets[1]];
*out = f(*in1);
});
}
}
template<typename func_t>
void gpu_binary_kernel(TensorIterator& iter, const func_t& f) {
ASSERT_HOST_DEVICE_LAMBDA(func_t);
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_binary_kernel(sub_iter, f);
}
return;
}
char* out_data = (char*)iter.data_ptr(0);
const char* in1_data = (char*)iter.data_ptr(1);
const char* in2_data = (char*)iter.data_ptr(2);
using traits = binary_function_traits<func_t>;
using arg0_t = typename traits::result_type;
using arg1_t = typename traits::arg1_t;
using arg2_t = typename traits::arg2_t;
int numel = iter.numel();
if (numel == 0) {
return;
}
if (iter.is_cpu_scalar(1)) {
auto a = iter.scalar_value<arg1_t>(1);
iter.remove_operand(1);
gpu_unary_kernel(iter, [=]GPU_LAMBDA(arg2_t b) {
return f(a, b);
});
} else if (iter.is_cpu_scalar(2)) {
auto b = iter.scalar_value<arg2_t>(2);
iter.remove_operand(2);
gpu_unary_kernel(iter, [=]GPU_LAMBDA(arg1_t a) {
return f(a, b);
});
} else if (iter.is_trivial_1d()) {
auto strides = iter.get_inner_strides();
int stride0 = strides[0];
int stride1 = strides[1];
int stride2 = strides[2];
launch_kernel<512, 1>(numel, [stride0, stride1, out_data, in1_data, f, stride2, in2_data]__device__(int idx) {
arg0_t* out = (arg0_t*)&out_data[stride0 * idx];
arg1_t* in1 = (arg1_t*)&in1_data[stride1 * idx];
arg2_t* in2 = (arg2_t*)&in2_data[stride2 * idx];
*out = f(*in1, *in2);
});
} else {
auto offset_calc = make_offset_calculator<3>(iter);
launch_kernel<128, 4>(numel, [=]__device__(int idx) {
auto offsets = offset_calc.get(idx);
arg0_t* out = (arg0_t*)&out_data[offsets[0]];
arg1_t* in1 = (arg1_t*)&in1_data[offsets[1]];
arg2_t* in2 = (arg2_t*)&in2_data[offsets[2]];
*out = f(*in1, *in2);
});
}
}
}} // namespace at::native