forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EmbeddingBag.cu
400 lines (327 loc) · 14.3 KB
/
EmbeddingBag.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include "ATen/ATen.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/TensorUtils.h"
#include "ATen/NativeFunctions.h"
#include "ATen/AccumulateType.h"
#include <THC/THCDeviceUtils.cuh>
#include <THC/THCTensorMathReduce.cuh>
#include <THC/THCTensorSort.cuh>
#include <THC/THCThrustAllocator.cuh>
#include <THC/THCAtomics.cuh>
#include <thrust/execution_policy.h>
#include <thrust/unique.h>
const int WARP_SIZE = 32;
const int MODE_SUM = 0;
const int MODE_MEAN = 1;
const int MODE_MAX = 2;
namespace at {
namespace native {
namespace {
// This kernel assumes that all input tensors except `weight` are contiguous.
template <typename scalar_t>
__global__ void EmbeddingBag_updateOutputKernel(
int64_t *input, int64_t *offsets, scalar_t *weight, scalar_t *output,
int64_t *offset2bag, int64_t numIndices, int64_t numBags,
int64_t featureSize, int64_t weight_stide0, int64_t weight_stride1,
int mode, int64_t *bag_size, int64_t *max_indices) {
// the strategy here is that each bag x feature is handled by a single thread
using accscalar_t = acc_type<scalar_t, true>;
int64_t chunksPerBag = THCCeilDiv(featureSize, (int64_t)blockDim.x);
int64_t numChunks = numBags * chunksPerBag;
int64_t chunkOffset = blockIdx.x * blockDim.y + threadIdx.y;
int64_t chunkStride = gridDim.x * blockDim.y;
for (int64_t chunk = chunkOffset; chunk < numChunks; chunk += chunkStride) {
int64_t featureDim = (chunk % chunksPerBag) * blockDim.x + threadIdx.x;
if (featureDim < featureSize) {
int64_t bag = chunk / chunksPerBag;
scalar_t *weightFeat = weight + featureDim * weight_stride1;
int64_t begin = offsets[bag];
int64_t end = (bag < numBags - 1) ? (offsets[bag + 1]) : numIndices;
assert(end >= begin);
accscalar_t weightFeatSum = 0;
scalar_t weightFeatMax;
int64_t bag_size_ = 0;
int64_t maxWord = -1;
for (int64_t emb = begin; emb < end; emb++) {
const int64_t weightRow = input[emb] * weight_stide0;
scalar_t weightValue = weightFeat[weightRow];
if (mode == MODE_MAX) {
if (emb == begin || weightValue > weightFeatMax) {
weightFeatMax = weightValue;
maxWord = input[emb];
}
} else {
weightFeatSum += static_cast<accscalar_t>(weightValue);
}
bag_size_++;
if (featureDim == 0) {
offset2bag[emb] = bag;
}
}
if (mode == MODE_MEAN) {
if (end == begin) {
bag_size[bag] = 0;
} else {
weightFeatSum = weightFeatSum / static_cast<accscalar_t>(bag_size_);
bag_size[bag] = bag_size_;
}
}
if (mode == MODE_MEAN || mode == MODE_SUM) {
output[bag * featureSize + featureDim] = static_cast<scalar_t>(weightFeatSum);
}
else if (mode == MODE_MAX) {
if (end == begin) {
// If bag is empty, set output to 0.
weightFeatMax = 0;
}
max_indices[bag * featureSize + featureDim] = maxWord;
output[bag * featureSize + featureDim] = weightFeatMax;
}
}
}
}
// FIXME: removed the accGradParametersKernelByFeature case present in
// LookupTable. That kernel is faster at small sizes (<768 indices), which
// does not need EmbeddingBag (LookupTable + Sum works fine), but would
// still be nice to not be slow in that case.
// This kernel assumes that all input tensors are contiguous.
template <typename scalar_t>
__global__ void EmbeddingBag_accGradParametersKernel_sum_avg(
int64_t *input, int64_t *indices, scalar_t *gradOutput,
scalar_t *gradWeight, int64_t *offset2bag, int64_t *count, ptrdiff_t numel,
int64_t stride, int mode, int64_t *bag_size) {
using accscalar_t = acc_type<scalar_t, true>;
int idx = blockIdx.x * 4 + threadIdx.y;
// Each warp is responsible for an input into the LookupTable.
// If the preceding input has the same as this input, then the warp
// exits immediately. The warp also processes subsequent inputs with the
// same value. //
// Input Warp
// 1 <warp 1>
// 1 <warp 1> (<warp 2> exits without doing any work)
// 5 <warp 3>
// 8 <warp 4>
// Number of values proceessed by each thread (grain size)
const int SZ = 4;
if (idx < numel && (idx == 0 || input[idx] != input[idx - 1])) {
do {
const int startFeature = threadIdx.x + blockIdx.y * blockDim.x * SZ;
const int weightRow = ((int)input[idx]) * stride;
// Note: only this line changes from LookupTable_accgradParametersKernel
const int origRow = ((int)indices[idx]);
const int seq_number = offset2bag[origRow];
const int gradOutputRow = ((int)seq_number) * stride;
const accscalar_t scale = count ? (accscalar_t)1.0 / count[idx] : 1.0;
accscalar_t gradient[SZ];
accscalar_t weight[SZ];
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride) {
gradient[ii] =
static_cast<accscalar_t>(gradOutput[gradOutputRow + featureDim]);
if (mode == MODE_MEAN) {
gradient[ii] /= bag_size[seq_number];
}
weight[ii] =
static_cast<accscalar_t>(gradWeight[weightRow + featureDim]);
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
weight[ii] += gradient[ii] * scale;
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int featureDim = startFeature + ii * WARP_SIZE;
if (featureDim < stride) {
gradWeight[weightRow + featureDim] =
static_cast<scalar_t>(weight[ii]);
}
}
idx++;
} while (idx < numel && input[idx] == input[idx - 1]);
}
}
Tensor embedding_bag_backward_cuda_sum_avg(
const Tensor &grad,
const Tensor &indices,
const Tensor &offset2bag,
const Tensor &bag_size_,
int64_t num_weights,
bool scale_grad_by_freq, int64_t mode) {
Tensor &bag_size = const_cast<Tensor &>(bag_size_);
auto grad_weight = at::zeros({num_weights, grad.size(1)}, grad.options());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
ptrdiff_t numel = indices.numel();
int64_t stride = grad_weight.stride(0);
auto sorted_indices = at::empty_like(indices);
auto orig_indices = at::empty_like(indices);
using device_ptr = thrust::device_ptr<int64_t>;
// Sort the inputs into sorted with the corresponding indices; we
// don't need a stable or multidimensional sort, so just use Thrust
// directly
{
sorted_indices.copy_(indices);
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
// Fill sortedOrigIndices with sequential indices
auto count_iter = thrust::counting_iterator<int64_t>(0);
auto orig_data = device_ptr(orig_indices.data<int64_t>());
thrust::copy(policy, count_iter, count_iter + numel, orig_data);
// Sort; a stable sort is not required
auto sorted_data = device_ptr(sorted_indices.data<int64_t>());
thrust::sort_by_key(policy, sorted_data, sorted_data + numel, orig_data,
ThrustLTOp<int64_t>());
}
Tensor count;
if (scale_grad_by_freq) {
count = at::empty_like(indices);
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
// Compute an increasing sequence per unique item in sortedIndices:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 1 2 3 1 2 1 1 2
auto sorted_data = device_ptr(sorted_indices.data<int64_t>());
auto count_data = device_ptr(count.data<int64_t>());
thrust::inclusive_scan_by_key(policy, sorted_data, sorted_data + numel,
thrust::make_constant_iterator(1),
count_data);
// Take the maximum of each count per unique key in reverse:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 3 3 3 2 2 1 2 2
thrust::inclusive_scan_by_key(
policy, thrust::make_reverse_iterator(sorted_data + numel),
thrust::make_reverse_iterator(sorted_data),
thrust::make_reverse_iterator(count_data + numel),
thrust::make_reverse_iterator(count_data + numel),
thrust::equal_to<int64_t>(), thrust::maximum<int64_t>());
}
dim3 grid(THCCeilDiv(numel, (ptrdiff_t)4), THCCeilDiv(stride, (int64_t)128));
dim3 block(32, 4);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad.type(), "embedding_bag_backward_cuda_sum_avg_kernel", [&] {
EmbeddingBag_accGradParametersKernel_sum_avg<
scalar_t><<<grid, block, 0, stream>>>(
sorted_indices.data<int64_t>(), orig_indices.data<int64_t>(),
grad.data<scalar_t>(), grad_weight.data<scalar_t>(),
offset2bag.data<int64_t>(),
count.defined() ? count.data<int64_t>() : nullptr, numel, stride,
mode, bag_size.data<int64_t>());
});
THCudaCheck(cudaGetLastError());
return grad_weight;
}
template <typename scalar_t>
__global__ void EmbeddingBag_accGradParametersKernel_max(
int64_t *max_indices, scalar_t *gradOutput,
scalar_t *gradWeight, int64_t stride, int64_t numBags) {
using accscalar_t = acc_type<scalar_t, true>;
int64_t chunksPerBag = THCCeilDiv(stride, (int64_t)blockDim.x);
int64_t numChunks = numBags * chunksPerBag;
int64_t chunkOffset = blockIdx.x * blockDim.y + threadIdx.y;
int64_t chunkStride = gridDim.x * blockDim.y;
for (int64_t chunk = chunkOffset; chunk < numChunks; chunk += chunkStride) {
int64_t featureDim = (chunk % chunksPerBag) * blockDim.x + threadIdx.x;
if (featureDim < stride) {
int64_t bag = chunk / chunksPerBag;
int64_t word_idx = max_indices[bag * stride + featureDim];
if (word_idx >= 0) {
// If bag is empty, we have max_indices[idx] set to -1 in forward.
atomicAdd(&(gradWeight[word_idx * stride + featureDim]), gradOutput[bag * stride + featureDim]);
}
}
}
}
Tensor embedding_bag_backward_cuda_max(const Tensor &grad,
const Tensor &max_indices,
int64_t num_weights) {
auto grad_weight = at::zeros({num_weights, grad.size(1)}, grad.options());
int64_t stride = grad_weight.stride(0);
int64_t numBags = grad.size(0);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 block = dim3(32, 8);
int grid = 1024;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad.type(), "embedding_bag_backward_cuda_max", [&] {
EmbeddingBag_accGradParametersKernel_max<
scalar_t><<<grid, block, 0, stream>>>(
max_indices.data<int64_t>(), grad.data<scalar_t>(),
grad_weight.data<scalar_t>(), stride, numBags);
});
THCudaCheck(cudaGetLastError());
return grad_weight;
}
}
// Assumes all input tensors are contiguous.
// See NOTE [ embedding_bag Native Functions ] in native_functions.yaml for details
std::tuple<Tensor, Tensor, Tensor, Tensor>
_embedding_bag_cuda(const Tensor &weight, const Tensor &indices,
const Tensor &offsets, const bool scale_grad_by_freq,
const int64_t mode, bool sparse) {
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarType("embedding_bag_cuda", indices_arg, kLong);
auto offsets_arg = TensorArg(offsets, "offsets", 1);
checkScalarType("embedding_bag_cuda", offsets_arg, kLong);
auto weight_arg = TensorArg(weight, "weight", 1);
checkSameGPU("embedding_bag_cuda", weight_arg, indices_arg);
checkSameGPU("embedding_bag_cuda", weight_arg, offsets_arg);
int64_t numIndices = indices.size(0);
int64_t numBags = offsets.size(0);
int64_t featureSize = weight.size(1);
auto bag_size = at::zeros(offsets.sizes(), indices.options());
auto offset2bag =
at::zeros({indices.size(0)}, indices.options()); // offset2bag = [0 0 0 0 0]
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto output = at::zeros({offsets.size(0), weight.size(1)}, weight.options());
Tensor max_indices;
if (mode == MODE_MAX) {
max_indices = at::zeros({offsets.size(0), weight.size(1)}, indices.options());
} else {
// No need to allocate if we aren't doing a backwards pass
max_indices = at::zeros({0}, indices.options());
}
dim3 block = dim3(32, 8);
int grid = 1024;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(weight.type(), "embedding_bag_cuda", [&] {
EmbeddingBag_updateOutputKernel<scalar_t><<<grid, block, 0, stream>>>(
indices.data<int64_t>(), offsets.data<int64_t>(),
weight.data<scalar_t>(), output.data<scalar_t>(),
offset2bag.data<int64_t>(), numIndices, numBags, featureSize,
weight.stride(0), weight.stride(1), mode, bag_size.data<int64_t>(),
mode == MODE_MAX ? max_indices.data<int64_t>() : NULL);
});
THCudaCheck(cudaGetLastError());
return std::tuple<Tensor, Tensor, Tensor, Tensor>(output, offset2bag, bag_size, max_indices);
}
Tensor _embedding_bag_dense_backward_cuda(const Tensor &grad_, const Tensor &indices,
const Tensor &offsets,
const Tensor &offset2bag,
const Tensor &bag_size_,
const Tensor &max_indices,
int64_t num_weights,
bool scale_grad_by_freq, int64_t mode) {
// indices, offsets and offset2bag are assumed having correct dtypes and
// contiguous here due to the checks in _embedding_bag_backward in
// EmbeddingBag.cpp.
// Also see NOTE [ embedding_bag Native Functions ] in native_functions.yaml
// for more details.
Tensor grad = grad_.contiguous();
auto indices_arg = TensorArg(indices, "indices", 1);
auto offsets_arg = TensorArg(offsets, "offsets", 1);
auto grad_arg = TensorArg(grad, "grad", 1);
checkSameGPU("embedding_bag_cuda", grad_arg, offsets_arg);
checkSameGPU("embedding_bag_cuda", grad_arg, indices_arg);
switch (mode) {
case MODE_SUM:
case MODE_MEAN:
return embedding_bag_backward_cuda_sum_avg(grad, indices, offset2bag, bag_size_, num_weights, scale_grad_by_freq, mode);
case MODE_MAX:
return embedding_bag_backward_cuda_max(grad, max_indices, num_weights);
default:
AT_ERROR(
"Unknown mode for embedding_bag_backward_cuda %d", mode);
}
}
}
}