forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TensorOptions.h
512 lines (443 loc) · 17.8 KB
/
TensorOptions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#pragma once
#include <ATen/core/Backend.h>
#include <ATen/core/DefaultTensorOptions.h>
#include <c10/Device.h>
#include <ATen/core/Layout.h>
#include <ATen/core/ScalarType.h>
#include <ATen/core/ScalarTypeUtils.h>
#include "c10/util/Optional.h"
#include "c10/util/C++17.h"
#include <cstddef>
#include <iosfwd>
#include <utility>
namespace at {
// Forward declaration from OptionsGuard.h
//
// Hopefully the out-of-line function call is not costing us too much: all this
// function does is return a memory address, so it shouldn't be costing
// us too much optimizer juice.
CAFFE2_API const DefaultTensorOptions& getDefaultTensorOptions();
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
/// designed to support the Python style API for specifying construction options
/// on factory functions, e.g.,
///
/// torch.zeros(2, 3, dtype=torch.int32)
///
/// Because C++ doesn't natively support keyword arguments, there must be
/// another way of specifying keyword-like arguments. TensorOptions is a
/// builder class which can be used to construct this "dictionary" of keyword
/// arguments: functions which support TensorOptions conventionally take this
/// argument optionally as their last argument.
///
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
/// e.g., torch::zeros for at::zeros. These return Variables (while the
/// stock ATen functions return plain Tensors). If you mix these functions
/// up, you WILL BE SAD.
///
/// Rather than use the constructor of this class directly, you should prefer to
/// use the constructor functions, and then chain setter methods on top of them.
///
/// at::device(at::kCUDA).dtype(kInt)
/// at::dtype(at::kInt)
///
/// Additionally, anywhere a TensorOptions is expected, you can directly
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a TensorOptions.
///
/// Here are some recommended ways to create a 2x2 tensor of zeros
/// with certain properties. These all *implicitly* make use of
/// TensorOptions, even if they don't mention the class explicitly:
///
/// at::zeros({2,2}, at::kCUDA);
/// at::zeros({2,2}, at::kLong);
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
/// at::zeros({2,2}, at::requires_grad());
///
/// NOTE [ TensorOptions Constructors ]
///
/// TensorOptions is like a dictionary with entries from the set:
/// {requires_grad, is_variable, device, dtype, layout}, where each entry may be
/// unspecified (i.e., is optional). It is used to specify the properties of
/// tensors in many places both in C++ internal and API, e.g., tensor factory
/// methods like `at::empty({10}, options)`, tensor conversions like
/// `tensor.to(...)`, etc.
///
/// To provide a simple API that is consistent with Python, where one can do
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
/// three implicit constructors from each of these three types.
///
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
/// classes. However, `Device` is an ordinary class with implicit constructors
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
/// consistent with Python API, where strings are treated as equivalent with a
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
/// `torch.device("cuda:1")` is accepted). To support the syntax
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
/// that `TensorOptions` is implicitly constructible with any argments that a
/// `Device` can constructed from. So we have,
///
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
/// this->set_device(device);
/// }
///
/// template <typename... Args,
/// typename = std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
/// /* implicit */ TensorOptions(Args&&... args)
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
///
///
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
/// Compiler will compain about ambiguity between the copy constructor and the
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
/// `TensorOption` and a `Device`.
///
/// To get around this, we templatize the `Device` constructor. Since overload
/// resolution is done before template resolution, our problem is solved.
struct CAFFE2_API TensorOptions {
TensorOptions()
: requires_grad_(false)
, is_variable_(false)
, has_device_(false)
, has_dtype_(false)
, has_layout_(false)
, has_requires_grad_(false)
, has_is_variable_(false)
{}
/// Constructs a `TensorOptions` object with the given layout.
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
this->set_layout(layout);
}
/// Constructs a `TensorOptions` object with the given device.
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
template<typename T,
typename = c10::guts::enable_if_t<std::is_same<c10::guts::decay_t<T>, Device>::value>>
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
this->set_device(std::forward<T>(device));
}
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
/// constructors.
///
/// See NOTE [ TensorOptions Constructors ].
///
/// NB: Ideally we only allow implicit constructors here. But there is no easy
/// way to detect them. So we have this one that allows explicit
/// constructors too.
template <typename... Args,
typename = c10::guts::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
/* implicit */ TensorOptions(Args&&... args)
: TensorOptions(Device(std::forward<Args>(args)...)) {}
/// Constructs a `TensorOptions` object from a backend, forwarded to the
/// `Device` constructor.
/* implicit */ TensorOptions(Backend backend)
: TensorOptions(Device(backendToDeviceType(backend))) {}
/// Constructs a `TensorOptions` object with the given dtype.
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// legacy constructor to support ScalarType
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// True if all elements of the `TensorOptions` match that of the other.
bool operator==(const TensorOptions& other) const noexcept {
return
has_dtype_ == other.has_dtype_ &&
has_layout_ == other.has_layout_ &&
has_device_ == other.has_device_ &&
has_requires_grad_ == other.has_requires_grad_ &&
has_is_variable_ == other.has_is_variable_ &&
(!has_dtype_ || dtype_ == other.dtype_) &&
(!has_layout_ || layout_ == other.layout_) &&
(!has_device_ || device_ == other.device_) &&
(!requires_grad_ || requires_grad_ == other.requires_grad_) &&
(!is_variable_ || is_variable_ == other.is_variable_);
}
/// True if any of the elements of this `TensorOptions` do not match that of
/// the other.
bool operator!=(const TensorOptions& other) const noexcept {
return !(*this == other);
}
/// Return a copy of `TensorOptions` with `device` set to the given one, or
/// cleared if `device` is `nullopt`.
C10_NODISCARD TensorOptions device(optional<Device> device) const noexcept {
TensorOptions r = *this;
r.set_device(device);
return r;
}
/// Return a copy of `TensorOptions` with `device` set to the given one.
/// (This overload ensures that variadic template c10::optional constructor
/// for Device work correctly.)
template<typename ... Args>
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
return device(optional<Device>(c10::in_place, std::forward<Args>(args)...));
}
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
/// device index set to the given one.
///
/// TODO: This function encourages bad behavior (assuming CUDA is
/// the only device that matters). Get rid of it / rename it.
C10_NODISCARD TensorOptions device_index(int16_t device_index) const noexcept {
return device(Device::Type::CUDA, device_index);
}
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
C10_NODISCARD TensorOptions dtype(optional<caffe2::TypeMeta> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// legacy function to support ScalarType
C10_NODISCARD TensorOptions dtype(optional<ScalarType> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// Since dtype is taken...
template <typename T>
TensorOptions& dtype() {
dtype_ = caffe2::TypeMeta::Make<T>();
has_dtype_ = true;
return *this;
}
/// Sets the layout of the `TensorOptions`.
C10_NODISCARD TensorOptions layout(optional<Layout> layout) const noexcept {
TensorOptions r = *this;
r.set_layout(layout);
return r;
}
/// Sets the `requires_grad` property of the `TensorOptions`.
C10_NODISCARD TensorOptions requires_grad(optional<bool> requires_grad) const noexcept {
TensorOptions r = *this;
r.set_requires_grad(requires_grad);
return r;
}
/// Sets the `is_variable` property on the `TensorOptions`.
C10_NODISCARD TensorOptions is_variable(optional<bool> is_variable) const noexcept {
TensorOptions r = *this;
r.set_is_variable(is_variable);
return r;
}
/// Returns the device of the `TensorOptions`.
Device device() const noexcept {
return has_device_ ? device_ : getDefaultTensorOptions().device();
}
/// Returns whether the device is specified.
bool has_device() const noexcept {
return has_device_;
}
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
optional<Device> device_opt() const noexcept {
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
}
/// Returns the device index of the `TensorOptions`.
int32_t device_index() const noexcept {
return device().index();
}
/// Returns the dtype of the `TensorOptions`.
caffe2::TypeMeta dtype() const noexcept {
return has_dtype_ ? dtype_ : getDefaultTensorOptions().dtype();
}
/// Returns whether the dtype is specified.
bool has_dtype() const noexcept {
return has_dtype_;
}
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
optional<caffe2::TypeMeta> dtype_opt() const noexcept {
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
}
/// Returns the layout of the `TensorOptions`.
Layout layout() const noexcept {
return has_layout_ ? layout_ : getDefaultTensorOptions().layout();
}
/// Returns whether the layout is specified.
bool has_layout() const noexcept {
return has_layout_;
}
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
/// layout is not specified.
optional<Layout> layout_opt() const noexcept {
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
}
/// Returns the `requires_grad` property of the `TensorOptions`.
bool requires_grad() const noexcept {
return has_requires_grad_ ? requires_grad_ : getDefaultTensorOptions().requires_grad();
}
/// Returns whether the `requires_grad` is specified.
bool has_requires_grad() const noexcept {
return has_requires_grad_;
}
/// Returns the `requires_grad` property of the `TensorOptions`, or
/// `c10::nullopt` if `requires_grad` is not specified.
optional<bool> requires_grad_opt() const noexcept {
return has_requires_grad_ ? c10::make_optional(requires_grad_)
: c10::nullopt;
}
/// Returns the `is_variable` property of the `TensorOptions`.
bool is_variable() const noexcept {
return has_is_variable_ ? is_variable_ : getDefaultTensorOptions().is_variable();
}
/// Returns whether the `is_variable` is specified.
bool has_is_variable() const noexcept {
return has_is_variable_;
}
/// Returns the `is_variable` property of the `TensorOptions`, or
/// `c10::nullopt` if `is_variable` is not specified.
optional<bool> is_variable_opt() const noexcept {
return has_is_variable_ ? c10::make_optional(is_variable_) : c10::nullopt;
}
// Resolves the ATen backend specified by the current construction axes.
Backend backend() const noexcept {
Backend backend;
if (device().type() == Device::Type::CPU) {
backend = (layout() == kStrided) ? Backend::CPU : Backend::SparseCPU;
} else {
backend = (layout() == kStrided) ? Backend::CUDA : Backend::SparseCUDA;
}
return backend;
}
private:
// These methods are currently private because I'm not sure if it's wise
// to actually publish them. They are methods because I need them in
// the constructor and the functional API implementation.
//
// If you really, really need it, you can make these public, but check if you
// couldn't just do what you need with the functional API. Similarly, these
// methods are not chainable, because if you wanted chaining, you probably
// want to use the functional API instead. (It's probably OK to make
// these chainable, because these functions are all explicitly annotated
// with a ref-qualifier, the trailing &, that makes them illegal to call
// on temporaries.)
/// Mutably set the device of `TensorOptions`.
void set_device(optional<Device> device) & noexcept {
if (device) {
device_ = *device;
has_device_ = true;
} else {
has_device_ = false;
}
}
/// Mutably set the dtype of `TensorOptions`.
void set_dtype(optional<caffe2::TypeMeta> dtype) & noexcept {
if (dtype) {
dtype_ = *dtype;
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
// legacy function to support ScalarType
void set_dtype(optional<ScalarType> dtype) & noexcept {
if (dtype) {
dtype_ = scalarTypeToTypeMeta(*dtype);
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
/// Mutably set the layout of `TensorOptions`.
void set_layout(optional<Layout> layout) & noexcept {
if (layout) {
layout_ = *layout;
has_layout_ = true;
} else {
has_layout_ = false;
}
}
/// Mutably set the `requires_grad` property of `TensorOptions`.
void set_requires_grad(optional<bool> requires_grad) & noexcept {
if (requires_grad) {
requires_grad_ = *requires_grad;
has_requires_grad_ = true;
} else {
has_requires_grad_ = false;
}
}
/// Mutably set the `is_variable` property of `TensorOptions`.
void set_is_variable(optional<bool> is_variable) & noexcept {
if (is_variable) {
is_variable_ = *is_variable;
has_is_variable_ = true;
} else {
has_is_variable_ = false;
}
}
// WARNING: If you edit TensorOptions to add more options, you
// must adjust the implementation of Tensor::options
// NB: We didn't use c10::optional here, because then we can't pack
// the has_***_ boolean fields.
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 64-bit
Device device_ = at::kCPU; // 32-bit
Layout layout_ = at::kStrided; // 8-bit
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
// for that matter)
bool requires_grad_ : 1;
bool is_variable_ : 1;
bool has_device_ : 1;
bool has_dtype_ : 1;
bool has_layout_ : 1;
bool has_requires_grad_ : 1;
bool has_is_variable_ : 1;
};
// We should aspire to fit in one machine-size word; but a size greater than two
// words is too much. (We are doing terribly on 32-bit archs, where we require
// three machine size words to store tensor options. Eek!)
static_assert( sizeof(TensorOptions) <= sizeof(int64_t) * 2,
"TensorOptions must fit in 128-bits" );
/// Convenience function that returns a `TensorOptions` object with the `dtype`
/// set to the given one.
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
return TensorOptions().dtype(dtype);
}
// legacy function to support ScalarType
inline TensorOptions dtype(ScalarType dtype) {
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
}
/// Convenience function that returns a `TensorOptions` object with the `layout`
/// set to the given one.
inline TensorOptions layout(Layout layout) {
return TensorOptions().layout(layout);
}
/// Convenience function that returns a `TensorOptions` object with the `device`
/// set to the given one.
inline TensorOptions device(Device device) {
return TensorOptions().device(std::move(device));
}
/// Convenience function that returns a `TensorOptions` object with the
/// `device` set to CUDA and the `device_index` set to the given one.
inline TensorOptions device_index(int16_t device_index) {
return TensorOptions().device_index(device_index);
}
/// Convenience function that returns a `TensorOptions` object with the
/// `requires_grad` set to the given one.
inline TensorOptions requires_grad(bool requires_grad = true) {
return TensorOptions().requires_grad(requires_grad);
}
std::ostream& operator<<(
std::ostream& stream,
const TensorOptions& options);
DefaultTensorOptions& DefaultTensorOptions::merge(const TensorOptions& options) {
if (options.dtype_opt().has_value()) {
dtype_ = options.dtype();
}
if (options.device_opt().has_value()) {
device_ = options.device();
}
if (options.layout_opt().has_value()) {
layout_ = options.layout();
}
if (options.requires_grad_opt().has_value()) {
requires_grad_ = options.requires_grad();
}
if (options.is_variable_opt().has_value()) {
is_variable_ = options.is_variable();
}
return *this;
}
template <typename T>
inline TensorOptions dtype() {
return dtype(caffe2::TypeMeta::Make<T>());
}
} // namespace at