diff --git a/DESCRIPTION b/DESCRIPTION
index 6edffb3f0..2edfe3d3b 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
Type: Package
Package: see
Title: Model Visualisation Toolbox for 'easystats' and 'ggplot2'
-Version: 0.8.3.7
+Version: 0.8.4
Authors@R:
c(person(given = "Daniel",
family = "Lüdecke",
@@ -91,6 +91,7 @@ Suggests:
logspline,
MASS,
mclust,
+ merDeriv,
mgcv,
metafor,
NbClust,
@@ -119,4 +120,3 @@ Config/Needs/website:
r-lib/pkgdown,
easystats/easystatstemplate
Config/rcmdcheck/ignore-inconsequential-notes: true
-Remotes: easystats/performance
diff --git a/NEWS.md b/NEWS.md
index e6b1fa880..0aa08dc6a 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,7 +1,9 @@
-# see 0.8.3.1
+# see 0.8.4
## Minor Changes
+* Fixes warnings generated from the `{ggplot2}` 3.5.0 release.
+
* Small adjustment to size of point geoms for `check_model()` plots.
* More arguments to change base font sizes and geom sizes are now passed to
diff --git a/R/global_vars.R b/R/global_vars.R
index 16dfac4fb..f31ec1439 100644
--- a/R/global_vars.R
+++ b/R/global_vars.R
@@ -10,6 +10,8 @@ utils::globalVariables(
"grp",
"Parameter",
"predictor",
- "ROPE_Equivalence"
+ "ROPE_Equivalence",
+ "x_intercept",
+ "y_max"
)
)
diff --git a/R/plot.check_homogeneity.R b/R/plot.check_homogeneity.R
index d5bfe9df2..209e6f1b8 100644
--- a/R/plot.check_homogeneity.R
+++ b/R/plot.check_homogeneity.R
@@ -66,7 +66,8 @@ plot.see_check_homogeneity <- function(x, data = NULL, ...) {
stringsAsFactors = FALSE
),
direction = "y",
- segment.colour = NA
+ segment.colour = NA,
+ max.overlaps = Inf
)
} else {
geom_label(
@@ -96,7 +97,8 @@ plot.see_check_homogeneity <- function(x, data = NULL, ...) {
stringsAsFactors = FALSE
),
direction = "y",
- segment.colour = NA
+ segment.colour = NA,
+ max.overlaps = Inf
)
} else {
geom_label(
diff --git a/R/plot.n_factors.R b/R/plot.n_factors.R
index 31a265d05..bb2b63843 100644
--- a/R/plot.n_factors.R
+++ b/R/plot.n_factors.R
@@ -25,7 +25,6 @@ data_plot.n_factors <- function(x, data = NULL, type = "bar", ...) {
dataplot <- rbind(s1, s2[!s2[[variable]] %in% s1[[variable]], ])
- # Add Variance explained
if ("Variance_Explained" %in% names(attributes(x))) {
dataplot$Variance_Cumulative <- NULL # Remove column and re add
dataplot <- merge(
@@ -52,6 +51,7 @@ data_plot.n_factors <- function(x, data = NULL, type = "bar", ...) {
rownames(dataplot) <- NULL
# Labels and titles -----------------------------------------------------
+
n_max <- sum(dataplot$n_Methods)
axis_lab <- paste0("% of methods (out of ", n_max, ")")
@@ -67,7 +67,6 @@ data_plot.n_factors <- function(x, data = NULL, type = "bar", ...) {
ylab = axis_lab
)
}
- # Title
attr(dataplot, "info")$title <- paste("How many", lab, "to retain")
attr(dataplot, "info")$subtitle <- paste0("Number of ", lab, " considered optimal by various algorithm")
@@ -137,21 +136,25 @@ plot.see_n_factors <- function(x,
# Base plot
if (type == "area") {
+ segment_data <- data.frame(x_intercept = x$x[which.max(x$y)], y_max = max(x$y, na.rm = TRUE))
p <- ggplot(x, aes(x = .data$x, y = .data$y)) +
geom_area(fill = flat_colors("grey")) +
geom_segment(
+ data = segment_data,
aes(
- x = .data$x[which.max(.data$y)],
- xend = .data$x[which.max(.data$y)],
+ x = x_intercept,
+ xend = x_intercept,
y = 0,
- yend = max(.data$y)
+ yend = y_max
),
color = flat_colors("red")
) +
- geom_point(aes(x = .data$x[which.max(.data$y)], y = max(.data$y)),
+ geom_point(
+ data = segment_data,
+ aes(x = x_intercept, y = y_max),
color = flat_colors("red")
) +
- scale_x_continuous(breaks = 1:max(x$x)) +
+ scale_x_continuous(breaks = 1:max(x$x, na.rm = TRUE)) +
add_plot_attributes(x)
} else if (type == "line") {
p <- ggplot(x, aes(y = .data$x, x = .data$y, colour = .data$group)) +
@@ -172,7 +175,6 @@ plot.see_n_factors <- function(x,
scale_fill_manual(values = unname(flat_colors(c("grey", "red"))))
}
- # Add variance explained
if ("Variance_Cumulative" %in% names(x)) {
x$Varex_scaled <- x$Variance_Cumulative * max(x$y)
p <- p +
diff --git a/tests/testthat/_snaps/plot.effectsize_table/aov-eta-squared-dot-plot.svg b/tests/testthat/_snaps/plot.effectsize_table/aov-eta-squared-dot-plot.svg
new file mode 100644
index 000000000..ac4676a79
--- /dev/null
+++ b/tests/testthat/_snaps/plot.effectsize_table/aov-eta-squared-dot-plot.svg
@@ -0,0 +1,59 @@
+
+
diff --git a/tests/testthat/_snaps/plot.n_factors/area-graph.svg b/tests/testthat/_snaps/plot.n_factors/area-graph.svg
new file mode 100644
index 000000000..a4b69402d
--- /dev/null
+++ b/tests/testthat/_snaps/plot.n_factors/area-graph.svg
@@ -0,0 +1,80 @@
+
+
diff --git a/tests/testthat/test-check_model.R b/tests/testthat/test-check_model.R
index 88729b64d..667ddff68 100644
--- a/tests/testthat/test-check_model.R
+++ b/tests/testthat/test-check_model.R
@@ -117,6 +117,7 @@ test_that("`check_model()` works if convergence issues", {
test_that("`check_model()` works if convergence issues", {
skip_on_cran()
skip_if_not_installed("performance")
+ skip_if_not_installed("merDeriv")
data(mtcars)
m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
set.seed(123)
diff --git a/tests/testthat/test-plot.effectsize_table.R b/tests/testthat/test-plot.effectsize_table.R
index b7fea2f1d..bbb6b490c 100644
--- a/tests/testthat/test-plot.effectsize_table.R
+++ b/tests/testthat/test-plot.effectsize_table.R
@@ -1,13 +1,9 @@
test_that("`plot.see_effectsize_table()` works", {
- library(effectsize)
m <- aov(mpg ~ factor(am) * factor(cyl), data = mtcars)
- result <- eta_squared(m)
- expect_s3_class(plot(result), "gg")
-})
-
-test_that("`plot.see_equivalence_test()` works", {
- library(effectsize)
- m <- aov(mpg ~ factor(am) * factor(cyl), data = mtcars)
- result <- eta_squared(m)
- expect_s3_class(plot(result), "gg")
+ result <- effectsize::eta_squared(m)
+ set.seed(123)
+ vdiffr::expect_doppelganger(
+ title = "aov - eta_squared - dot plot",
+ fig = plot(result)
+ )
})
diff --git a/tests/testthat/test-plot.n_factors.R b/tests/testthat/test-plot.n_factors.R
index a3a275e6d..529ed0c11 100644
--- a/tests/testthat/test-plot.n_factors.R
+++ b/tests/testthat/test-plot.n_factors.R
@@ -14,4 +14,10 @@ test_that("`plot.see_n_factors()` works", {
title = "line graph",
fig = plot(result, type = "line")
)
+
+ set.seed(123)
+ vdiffr::expect_doppelganger(
+ title = "area graph",
+ fig = plot(result, type = "area")
+ )
})
diff --git a/tests/vdiffr.Rout.fail b/tests/vdiffr.Rout.fail
deleted file mode 100644
index 406c78ae1..000000000
--- a/tests/vdiffr.Rout.fail
+++ /dev/null
@@ -1,370 +0,0 @@
-Environment:
-- vdiffr-svg-engine: 2.0
-- vdiffr: 1.0.7
-
-
-Failed doppelganger: check-model-works-for-lm (C:\Users\mail\Documents\R\easystats\see\tests\testthat\_snaps/check_model/check-model-works-for-lm.svg)
-
-< before
-> after
-@@ 22,80 / 22,80 @@
-
-
-<
->
-<
->
-
-
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-<
->
-
-
-<
->
-< -2
-> -2
-< -1
-> -1
-< 0
-> 0
-< 1
-> 1
-< 2
-> 2
-<
->
-< -2
-> -2
-< -1
-> -1
-< 0
-> 0
-< 1
-> 1
-< 2
-> 2
-< Standard Normal Distribution Quantiles
-> Standard Normal Distribution Quantiles
-< Sample Quantile Deviations
-> Sample Quantile Deviations
- Dots should fall along the lin
- e
- Normality of Residuals
-
diff --git a/vignettes/performance.Rmd b/vignettes/performance.Rmd
index 0a3ae1fe9..36b8ac2bb 100644
--- a/vignettes/performance.Rmd
+++ b/vignettes/performance.Rmd
@@ -208,7 +208,7 @@ _([related function documentation](https://easystats.github.io/performance/refer
```{r}
model <- lm(len ~ supp + dose, data = ToothGrowth)
result <- check_homogeneity(model)
-suppressWarnings(plot(result))
+plot(result)
```
## Posterior Predictive Checks
diff --git a/vignettes/seecolorscales.Rmd b/vignettes/seecolorscales.Rmd
index 7c54103c5..816b713fa 100644
--- a/vignettes/seecolorscales.Rmd
+++ b/vignettes/seecolorscales.Rmd
@@ -90,7 +90,7 @@ to give an impression how these scales work with different type of data.
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -104,7 +104,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -118,7 +118,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -134,7 +134,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -148,7 +148,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -162,7 +162,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -178,7 +178,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -192,7 +192,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -206,7 +206,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -222,7 +222,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -236,7 +236,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -250,7 +250,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -266,7 +266,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -280,7 +280,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -294,7 +294,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -310,7 +310,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -324,7 +324,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -338,7 +338,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -354,7 +354,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_bluebrown()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -368,7 +368,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_bluebrown()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -382,7 +382,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_bluebrown()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -398,7 +398,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_okabeito()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -412,7 +412,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_okabeito()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -426,7 +426,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_okabeito()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
diff --git a/vignettes/seecolorscales_dark.Rmd b/vignettes/seecolorscales_dark.Rmd
index 722f3caf5..6f219b799 100644
--- a/vignettes/seecolorscales_dark.Rmd
+++ b/vignettes/seecolorscales_dark.Rmd
@@ -91,7 +91,7 @@ especially for *dark themes*.
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -105,7 +105,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -119,7 +119,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_social(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -135,7 +135,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -149,7 +149,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -163,7 +163,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_material(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -179,7 +179,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -193,7 +193,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -207,7 +207,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_flat(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -223,7 +223,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -237,7 +237,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -251,7 +251,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_metro(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -267,7 +267,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -281,7 +281,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -295,7 +295,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_see(palette = "light")
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +
@@ -311,7 +311,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d1, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
@@ -325,7 +325,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d2, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group4)) +
@@ -339,7 +339,7 @@ plots(p1, p2, n_rows = 1)
```{r}
p1 <- ggplot(d3, aes(x, y, colour = group)) +
- geom_line(size = 1) +
+ geom_line(linewidth = 1) +
scale_color_pizza()
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = group5)) +