diff --git a/.github/workflows/html-5-check.yaml b/.github/workflows/html-5-check.yaml index 1439a3228..f25b4eeaf 100644 --- a/.github/workflows/html-5-check.yaml +++ b/.github/workflows/html-5-check.yaml @@ -6,8 +6,8 @@ on: pull_request: branches: [main, master] -name: HTML5 check +name: html-5-check jobs: - HTML5-check: + html-5-check: uses: easystats/workflows/.github/workflows/html-5-check.yaml@main diff --git a/DESCRIPTION b/DESCRIPTION index 3b95351d9..933df479a 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: performance Title: Assessment of Regression Models Performance -Version: 0.10.5.4 +Version: 0.10.5.6 Authors@R: c(person(given = "Daniel", family = "Lüdecke", @@ -117,6 +117,7 @@ Suggests: mgcv, mlogit, multimode, + nestedLogit, nlme, nonnest2, ordinal, @@ -149,4 +150,4 @@ Config/Needs/website: r-lib/pkgdown, easystats/easystatstemplate Config/rcmdcheck/ignore-inconsequential-notes: true -Remotes: easystats/see, easystats/parameters +Remotes: easystats/see, easystats/parameters, easystats/insight diff --git a/NAMESPACE b/NAMESPACE index b5c3ee92b..e573d5ce0 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -180,6 +180,7 @@ S3method(model_performance,model_fit) S3method(model_performance,multinom) S3method(model_performance,negbinirr) S3method(model_performance,negbinmfx) +S3method(model_performance,nestedLogit) S3method(model_performance,plm) S3method(model_performance,poissonirr) S3method(model_performance,poissonmfx) @@ -371,6 +372,7 @@ S3method(r2,model_fit) S3method(r2,multinom) S3method(r2,negbinirr) S3method(r2,negbinmfx) +S3method(r2,nestedLogit) S3method(r2,ols) S3method(r2,phylolm) S3method(r2,plm) @@ -413,6 +415,7 @@ S3method(r2_coxsnell,mclogit) S3method(r2_coxsnell,multinom) S3method(r2_coxsnell,negbinirr) S3method(r2_coxsnell,negbinmfx) +S3method(r2_coxsnell,nestedLogit) S3method(r2_coxsnell,poissonirr) S3method(r2_coxsnell,poissonmfx) S3method(r2_coxsnell,polr) @@ -468,6 +471,7 @@ S3method(r2_nagelkerke,mclogit) S3method(r2_nagelkerke,multinom) S3method(r2_nagelkerke,negbinirr) S3method(r2_nagelkerke,negbinmfx) +S3method(r2_nagelkerke,nestedLogit) S3method(r2_nagelkerke,poissonirr) S3method(r2_nagelkerke,poissonmfx) S3method(r2_nagelkerke,polr) @@ -479,6 +483,8 @@ S3method(r2_posterior,BFBayesFactor) S3method(r2_posterior,brmsfit) S3method(r2_posterior,stanmvreg) S3method(r2_posterior,stanreg) +S3method(r2_tjur,default) +S3method(r2_tjur,nestedLogit) S3method(residuals,BFBayesFactor) S3method(residuals,check_normality_numeric) S3method(residuals,iv_robust) diff --git a/NEWS.md b/NEWS.md index 40e57d346..06eee8f47 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,5 +1,9 @@ # performance (development version) +## General + +* Support for `nestedLogit` models. + ## Changes to functions * `check_outliers()` for method `"ics"` now detects number of available cores @@ -7,6 +11,11 @@ the previous method, which used `parallel::detectCores()`. Now you should set the number of cores via `options(mc.cores = 4)`. +## Bug fixes + +* Fixed issues is `check_model()` for models that used data sets with + variables of class `"haven_labelled"`. + # performance 0.10.5 ## Changes to functions diff --git a/R/check_itemscale.R b/R/check_itemscale.R index 8d8b71082..5aa704618 100644 --- a/R/check_itemscale.R +++ b/R/check_itemscale.R @@ -40,8 +40,6 @@ #' - Briggs SR, Cheek JM (1986) The role of factor analysis in the development #' and evaluation of personality scales. Journal of Personality, 54(1), #' 106-148. doi: 10.1111/j.1467-6494.1986.tb00391.x -#' - Trochim WMK (2008) Types of Reliability. -#' ([web](https://conjointly.com/kb/types-of-reliability/)) #' #' @examplesIf require("parameters") && require("psych") #' # data generation from '?prcomp', slightly modified @@ -82,9 +80,9 @@ check_itemscale <- function(x) { Mean = vapply(items, mean, numeric(1), na.rm = TRUE), SD = vapply(items, stats::sd, numeric(1), na.rm = TRUE), Skewness = vapply(items, function(i) as.numeric(datawizard::skewness(i)), numeric(1)), - "Difficulty" = item_difficulty(items)$Difficulty, - "Discrimination" = .item_discr, - "alpha if deleted" = .item_alpha, + Difficulty = item_difficulty(items)$Difficulty, + Discrimination = .item_discr, + `alpha if deleted` = .item_alpha, stringsAsFactors = FALSE, check.names = FALSE ) diff --git a/R/check_model_diagnostics.R b/R/check_model_diagnostics.R index 3b86799cc..46a64f9c2 100644 --- a/R/check_model_diagnostics.R +++ b/R/check_model_diagnostics.R @@ -153,7 +153,7 @@ # prepare data for normality of residuals plot ---------------------------------- .diag_norm <- function(model, verbose = TRUE) { - r <- try(stats::residuals(model), silent = TRUE) + r <- try(as.numeric(stats::residuals(model)), silent = TRUE) if (inherits(r, "try-error")) { insight::format_alert(sprintf("Non-normality of residuals could not be computed. Cannot extract residuals from objects of class '%s'.", class(model)[1])) @@ -174,16 +174,16 @@ if (inherits(model, "lm", which = TRUE) == 1) { cook_levels <- round(stats::qf(0.5, s$fstatistic[2], s$fstatistic[3]), 2) - } else if (!is.null(threshold)) { - cook_levels <- threshold - } else { + } else if (is.null(threshold)) { cook_levels <- c(0.5, 1) + } else { + cook_levels <- threshold } n_params <- tryCatch(model$rank, error = function(e) insight::n_parameters(model)) infl <- stats::influence(model, do.coef = FALSE) - resid <- insight::get_residuals(model) + resid <- as.numeric(insight::get_residuals(model)) std_resid <- tryCatch(stats::rstandard(model, infl), error = function(e) resid) @@ -212,8 +212,8 @@ ncv <- tryCatch( { data.frame( - x = stats::fitted(model), - y = stats::residuals(model) + x = as.numeric(stats::fitted(model)), + y = as.numeric(stats::residuals(model)) ) }, error = function(e) { diff --git a/R/model_performance.lm.R b/R/model_performance.lm.R index e55253125..e8e5b07cf 100644 --- a/R/model_performance.lm.R +++ b/R/model_performance.lm.R @@ -125,10 +125,10 @@ model_performance.lm <- function(model, metrics = "all", verbose = TRUE, ...) { if (("LOGLOSS" %in% toupper(metrics)) && isTRUE(info$is_binomial)) { out$Log_loss <- .safe({ .logloss <- performance_logloss(model, verbose = verbose) - if (!is.na(.logloss)) { - .logloss - } else { + if (is.na(.logloss)) { NULL + } else { + .logloss } }) } @@ -253,6 +253,22 @@ model_performance.zeroinfl <- model_performance.lm #' @export model_performance.zerotrunc <- model_performance.lm +#' @export +model_performance.nestedLogit <- function(model, metrics = "all", verbose = TRUE, ...) { + mp <- lapply(model$models, model_performance.lm, metrics = metrics, verbose = verbose, ...) + out <- cbind( + data.frame(Response = names(mp), stringsAsFactors = FALSE), + do.call(rbind, mp) + ) + # need to handle R2 separately + if (any(c("ALL", "R2") %in% toupper(metrics))) { + out$R2 <- unlist(r2_tjur(model)) + } + + row.names(out) <- NULL + class(out) <- unique(c("performance_model", class(out))) + out +} diff --git a/R/r2.R b/R/r2.R index 26a16f9e6..c844f22cd 100644 --- a/R/r2.R +++ b/R/r2.R @@ -49,11 +49,8 @@ r2 <- function(model, ...) { } - - # Default models ----------------------------------------------- - #' @rdname r2 #' @export r2.default <- function(model, ci = NULL, verbose = TRUE, ...) { @@ -115,6 +112,8 @@ r2.lm <- function(model, ci = NULL, ...) { #' @export r2.phylolm <- r2.lm +# helper ------------- + .r2_lm <- function(model_summary, ci = NULL) { out <- list( R2 = model_summary$r.squared, @@ -140,7 +139,6 @@ r2.phylolm <- r2.lm } - #' @export r2.summary.lm <- function(model, ci = NULL, ...) { if (!is.null(ci) && !is.na(ci)) { @@ -150,7 +148,6 @@ r2.summary.lm <- function(model, ci = NULL, ...) { } - #' @export r2.systemfit <- function(model, ...) { out <- lapply(summary(model)$eq, function(model_summary) { @@ -173,11 +170,11 @@ r2.systemfit <- function(model, ...) { #' @export r2.lm_robust <- function(model, ...) { out <- list( - "R2" = tryCatch( + R2 = tryCatch( model[["r.squared"]], error = function(e) NULL ), - "R2_adjusted" = tryCatch( + R2_adjusted = tryCatch( model[["adj.r.squared"]], error = function(e) NULL ) @@ -198,8 +195,6 @@ r2.ols <- function(model, ...) { structure(class = "r2_generic", out) } - - #' @export r2.lrm <- r2.ols @@ -207,7 +202,6 @@ r2.lrm <- r2.ols r2.cph <- r2.ols - #' @export r2.mhurdle <- function(model, ...) { resp <- insight::get_response(model, verbose = FALSE) @@ -230,7 +224,6 @@ r2.mhurdle <- function(model, ...) { } - #' @export r2.aov <- function(model, ci = NULL, ...) { if (!is.null(ci) && !is.na(ci)) { @@ -252,7 +245,6 @@ r2.aov <- function(model, ci = NULL, ...) { } - #' @export r2.mlm <- function(model, ...) { model_summary <- summary(model) @@ -276,7 +268,6 @@ r2.mlm <- function(model, ...) { } - #' @export r2.glm <- function(model, ci = NULL, verbose = TRUE, ...) { if (!is.null(ci) && !is.na(ci)) { @@ -291,7 +282,7 @@ r2.glm <- function(model, ci = NULL, verbose = TRUE, ...) { if (info$family %in% c("gaussian", "inverse.gaussian")) { out <- r2.default(model, ...) } else if (info$is_logit && info$is_bernoulli) { - out <- list("R2_Tjur" = r2_tjur(model, ...)) + out <- list(R2_Tjur = r2_tjur(model, model_info = info, ...)) attr(out, "model_type") <- "Logistic" names(out$R2_Tjur) <- "Tjur's R2" class(out) <- c("r2_pseudo", class(out)) @@ -301,7 +292,7 @@ r2.glm <- function(model, ci = NULL, verbose = TRUE, ...) { } out <- NULL } else { - out <- list("R2_Nagelkerke" = r2_nagelkerke(model, ...)) + out <- list(R2_Nagelkerke = r2_nagelkerke(model, ...)) names(out$R2_Nagelkerke) <- "Nagelkerke's R2" attr(out, "model_type") <- "Generalized Linear" class(out) <- c("r2_pseudo", class(out)) @@ -313,6 +304,14 @@ r2.glm <- function(model, ci = NULL, verbose = TRUE, ...) { r2.glmx <- r2.glm +#' @export +r2.nestedLogit <- function(model, ci = NULL, verbose = TRUE, ...) { + out <- list(R2_Tjur = r2_tjur(model, ...)) + attr(out, "model_type") <- "Logistic" + class(out) <- c("r2_pseudo", class(out)) + out +} + # mfx models --------------------- @@ -358,7 +357,7 @@ r2.model_fit <- r2.logitmfx #' @export r2.BBreg <- function(model, ...) { - out <- list("R2_CoxSnell" = r2_coxsnell(model)) + out <- list(R2_CoxSnell = r2_coxsnell(model)) names(out$R2_CoxSnell) <- "Cox & Snell's R2" class(out) <- c("r2_pseudo", class(out)) out @@ -378,7 +377,7 @@ r2.bayesx <- r2.BBreg #' @export r2.censReg <- function(model, ...) { - out <- list("R2_Nagelkerke" = r2_nagelkerke(model)) + out <- list(R2_Nagelkerke = r2_nagelkerke(model)) names(out$R2_Nagelkerke) <- "Nagelkerke's R2" class(out) <- c("r2_pseudo", class(out)) out @@ -507,8 +506,8 @@ r2.wbm <- function(model, tolerance = 1e-5, ...) { names(r2_marginal) <- "Marginal R2" out <- list( - "R2_conditional" = r2_conditional, - "R2_marginal" = r2_marginal + R2_conditional = r2_conditional, + R2_marginal = r2_marginal ) attr(out, "model_type") <- "Fixed Effects" @@ -531,8 +530,8 @@ r2.sem <- function(model, ...) { structure( class = "r2_nakagawa", list( - "R2_conditional" = r2_conditional, - "R2_marginal" = r2_marginal + R2_conditional = r2_conditional, + R2_marginal = r2_marginal ) ) } @@ -563,12 +562,10 @@ r2.gam <- function(model, ...) { # gamlss inherits from gam, and summary.gamlss prints results automatically printout <- utils::capture.output(s <- summary(model)) # nolint - if (!is.null(s$r.sq)) { - list( - R2 = c(`Adjusted R2` = s$r.sq) - ) - } else { + if (is.null(s$r.sq)) { NextMethod() + } else { + list(R2 = c(`Adjusted R2` = s$r.sq)) } } @@ -603,7 +600,7 @@ r2.rma <- function(model, ...) { #' @export r2.feis <- function(model, ...) { out <- list( - R2 = c(`R2` = model$r2), + R2 = c(R2 = model$r2), R2_adjusted = c(`adjusted R2` = model$adj.r2) ) @@ -654,7 +651,7 @@ r2.fixest_multi <- function(model, ...) { r2.felm <- function(model, ...) { model_summary <- summary(model) out <- list( - R2 = c(`R2` = model_summary$r2), + R2 = c(R2 = model_summary$r2), R2_adjusted = c(`adjusted R2` = model_summary$r2adj) ) @@ -668,7 +665,7 @@ r2.felm <- function(model, ...) { #' @export r2.iv_robust <- function(model, ...) { out <- list( - R2 = c(`R2` = model$r.squared), + R2 = c(R2 = model$r.squared), R2_adjusted = c(`adjusted R2` = model$adj.r.squared) ) @@ -682,7 +679,7 @@ r2.iv_robust <- function(model, ...) { r2.ivreg <- function(model, ...) { model_summary <- summary(model) out <- list( - R2 = c(`R2` = model_summary$r.squared), + R2 = c(R2 = model_summary$r.squared), R2_adjusted = c(`adjusted R2` = model_summary$adj.r.squared) ) @@ -694,7 +691,7 @@ r2.ivreg <- function(model, ...) { #' @export r2.bigglm <- function(model, ...) { - out <- list("R2_CoxSnell" = summary(model)$rsq) + out <- list(R2_CoxSnell = summary(model)$rsq) names(out$R2_CoxSnell) <- "Cox & Snell's R2" class(out) <- c("r2_pseudo", class(out)) out @@ -728,7 +725,7 @@ r2.biglm <- function(model, ...) { r2.lmrob <- function(model, ...) { model_summary <- summary(model) out <- list( - R2 = c(`R2` = model_summary$r.squared), + R2 = c(R2 = model_summary$r.squared), R2_adjusted = c(`adjusted R2` = model_summary$adj.r.squared) ) @@ -749,10 +746,10 @@ r2.mmclogit <- function(model, ...) { #' @export r2.Arima <- function(model, ...) { - if (!requireNamespace("forecast", quietly = TRUE)) { - list(R2 = NA) - } else { + if (requireNamespace("forecast", quietly = TRUE)) { list(R2 = stats::cor(stats::fitted(model), insight::get_data(model, verbose = FALSE))^2) + } else { + list(R2 = NA) } } @@ -762,8 +759,8 @@ r2.Arima <- function(model, ...) { r2.plm <- function(model, ...) { model_summary <- summary(model) out <- list( - "R2" = c(`R2` = model_summary$r.squared[1]), - "R2_adjusted" = c(`adjusted R2` = model_summary$r.squared[2]) + R2 = c(R2 = model_summary$r.squared[1]), + R2_adjusted = c(`adjusted R2` = model_summary$r.squared[2]) ) attr(out, "model_type") <- "Panel Data" @@ -779,8 +776,8 @@ r2.selection <- function(model, ...) { return(NULL) } out <- list( - "R2" = c(`R2` = model_summary$rSquared$R2), - "R2_adjusted" = c(`adjusted R2` = model_summary$rSquared$R2adj) + R2 = c(R2 = model_summary$rSquared$R2), + R2_adjusted = c(`adjusted R2` = model_summary$rSquared$R2adj) ) attr(out, "model_type") <- "Tobit 2" @@ -795,7 +792,7 @@ r2.svyglm <- function(model, ...) { rsq.adjust <- 1 - ((1 - rsq) * (model$df.null / model$df.residual)) out <- list( - R2 = c(`R2` = rsq), + R2 = c(R2 = rsq), R2_adjusted = c(`adjusted R2` = rsq.adjust) ) @@ -807,7 +804,7 @@ r2.svyglm <- function(model, ...) { #' @export r2.vglm <- function(model, ...) { - out <- list("R2_McKelvey" = r2_mckelvey(model)) + out <- list(R2_McKelvey = r2_mckelvey(model)) names(out$R2_McKelvey) <- "McKelvey's R2" class(out) <- c("r2_pseudo", class(out)) out @@ -820,7 +817,7 @@ r2.vgam <- r2.vglm #' @export r2.DirichletRegModel <- function(model, ...) { - out <- list("R2_Nagelkerke" = r2_nagelkerke(model)) + out <- list(R2_Nagelkerke = r2_nagelkerke(model)) names(out$R2_Nagelkerke) <- "Nagelkerke's R2" class(out) <- c("r2_pseudo", class(out)) out diff --git a/R/r2_coxsnell.R b/R/r2_coxsnell.R index c151136d4..cdb73dea7 100644 --- a/R/r2_coxsnell.R +++ b/R/r2_coxsnell.R @@ -88,6 +88,26 @@ r2_coxsnell.glm <- function(model, verbose = TRUE, ...) { #' @export r2_coxsnell.BBreg <- r2_coxsnell.glm + +#' @export +r2_coxsnell.nestedLogit <- function(model, ...) { + n <- insight::n_obs(model, disaggregate = TRUE) + stats::setNames( + lapply(names(model$models), function(i) { + m <- model$models[[i]] + # if no deviance, return NA + if (is.null(m$deviance)) { + return(NA) + } + r2_coxsnell <- (1 - exp((m$deviance - m$null.deviance) / n[[i]])) + names(r2_coxsnell) <- "Cox & Snell's R2" + r2_coxsnell + }), + names(model$models) + ) +} + + #' @export r2_coxsnell.mclogit <- function(model, ...) { insight::check_if_installed("mclogit", reason = "to calculate R2") diff --git a/R/r2_nagelkerke.R b/R/r2_nagelkerke.R index bb6230f22..85bcc6e8f 100644 --- a/R/r2_nagelkerke.R +++ b/R/r2_nagelkerke.R @@ -77,6 +77,26 @@ r2_nagelkerke.glm <- function(model, verbose = TRUE, ...) { #' @export r2_nagelkerke.BBreg <- r2_nagelkerke.glm + +#' @export +r2_nagelkerke.nestedLogit <- function(model, ...) { + n <- insight::n_obs(model, disaggregate = TRUE) + stats::setNames( + lapply(names(model$models), function(i) { + m <- model$models[[i]] + # if no deviance, return NA + if (is.null(m$deviance)) { + return(NA) + } + r2_nagelkerke <- (1 - exp((m$deviance - m$null.deviance) / n[[i]])) / (1 - exp(-m$null.deviance / n[[i]])) + names(r2_nagelkerke) <- "Nagelkerke's R2" + r2_nagelkerke + }), + names(model$models) + ) +} + + #' @export r2_nagelkerke.bife <- function(model, ...) { r2_nagelkerke <- r2_coxsnell(model) / (1 - exp(-model$null_deviance / insight::n_obs(model))) diff --git a/R/r2_tjur.R b/R/r2_tjur.R index e0aa6117c..6a044e299 100644 --- a/R/r2_tjur.R +++ b/R/r2_tjur.R @@ -23,6 +23,11 @@ #' #' @export r2_tjur <- function(model, ...) { + UseMethod("r2_tjur") +} + +#' @export +r2_tjur.default <- function(model, ...) { info <- list(...)$model_info if (is.null(info)) { info <- suppressWarnings(insight::model_info(model, verbose = FALSE)) @@ -50,3 +55,29 @@ r2_tjur <- function(model, ...) { names(tjur_d) <- "Tjur's R2" tjur_d } + +#' @export +r2_tjur.nestedLogit <- function(model, ...) { + resp <- insight::get_response(model, dichotomies = TRUE, verbose = FALSE) + + stats::setNames( + lapply(names(model$models), function(i) { + y <- resp[[i]] + m <- model$models[[i]] + pred <- stats::predict(m, type = "response") + # delete pred for cases with missing residuals + if (anyNA(stats::residuals(m))) { + pred <- pred[!is.na(stats::residuals(m))] + } + categories <- unique(y) + m1 <- mean(pred[which(y == categories[1])], na.rm = TRUE) + m2 <- mean(pred[which(y == categories[2])], na.rm = TRUE) + + tjur_d <- abs(m2 - m1) + + names(tjur_d) <- "Tjur's R2" + tjur_d + }), + names(model$models) + ) +} diff --git a/man/check_itemscale.Rd b/man/check_itemscale.Rd index 7fa487ab5..7f790b1d2 100644 --- a/man/check_itemscale.Rd +++ b/man/check_itemscale.Rd @@ -61,7 +61,5 @@ check_itemscale(pca) \item Briggs SR, Cheek JM (1986) The role of factor analysis in the development and evaluation of personality scales. Journal of Personality, 54(1), 106-148. doi: 10.1111/j.1467-6494.1986.tb00391.x -\item Trochim WMK (2008) Types of Reliability. -(\href{https://conjointly.com/kb/types-of-reliability/}{web}) } } diff --git a/tests/testthat/_snaps/check_distribution.md b/tests/testthat/_snaps/check_distribution.md new file mode 100644 index 000000000..11187a23b --- /dev/null +++ b/tests/testthat/_snaps/check_distribution.md @@ -0,0 +1,21 @@ +# check_distribution + + Code + print(out) + Output + # Distribution of Model Family + + Predicted Distribution of Residuals + + Distribution Probability + cauchy 94% + lognormal 3% + weibull 3% + + Predicted Distribution of Response + + Distribution Probability + lognormal 47% + gamma 44% + beta-binomial 3% + diff --git a/tests/testthat/_snaps/nestedLogit.md b/tests/testthat/_snaps/nestedLogit.md new file mode 100644 index 000000000..f5c9a0bdd --- /dev/null +++ b/tests/testthat/_snaps/nestedLogit.md @@ -0,0 +1,12 @@ +# model_performance + + Code + model_performance(mnl) + Output + # Indices of model performance + + Response | AIC | BIC | RMSE | Sigma | R2 + ---------------------------------------------------- + work | 325.733 | 336.449 | 0.456 | 1.000 | 0.138 + full | 110.495 | 118.541 | 0.398 | 1.000 | 0.333 + diff --git a/tests/testthat/test-binned_residuals.R b/tests/testthat/test-binned_residuals.R new file mode 100644 index 000000000..4aa69e0ec --- /dev/null +++ b/tests/testthat/test-binned_residuals.R @@ -0,0 +1,67 @@ +test_that("binned_residuals", { + data(mtcars) + model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial") + result <- binned_residuals(model) + expect_named( + result, + c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "ci_range", "CI_low", "CI_high", "group") + ) + expect_equal( + result$xbar, + c(0.03786, 0.09514, 0.25911, 0.47955, 0.71109, 0.97119), + tolerance = 1e-4 + ) + expect_equal( + result$ybar, + c(-0.03786, -0.09514, 0.07423, -0.07955, 0.28891, -0.13786), + tolerance = 1e-4 + ) +}) + + +test_that("binned_residuals, n_bins", { + data(mtcars) + model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial") + result <- binned_residuals(model, n_bins = 10) + expect_named( + result, + c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "ci_range", "CI_low", "CI_high", "group") + ) + expect_equal( + result$xbar, + c( + 0.02373, 0.06301, 0.08441, 0.17907, 0.29225, 0.44073, 0.54951, + 0.69701, 0.9168, 0.99204 + ), + tolerance = 1e-4 + ) + expect_equal( + result$ybar, + c( + -0.02373, -0.06301, -0.08441, -0.17907, 0.20775, -0.1074, 0.11715, + 0.30299, -0.25014, 0.00796 + ), + tolerance = 1e-4 + ) +}) + + +test_that("binned_residuals, terms", { + data(mtcars) + model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial") + result <- binned_residuals(model, term = "mpg") + expect_named( + result, + c("xbar", "ybar", "n", "x.lo", "x.hi", "se", "ci_range", "CI_low", "CI_high", "group") + ) + expect_equal( + result$xbar, + c(12.62, 15.34, 18.1, 20.9, 22.875, 30.06667), + tolerance = 1e-4 + ) + expect_equal( + result$ybar, + c(-0.05435, -0.07866, 0.13925, -0.11861, 0.27763, -0.13786), + tolerance = 1e-4 + ) +}) diff --git a/tests/testthat/test-check_autocorrelation.R b/tests/testthat/test-check_autocorrelation.R new file mode 100644 index 000000000..b389f3985 --- /dev/null +++ b/tests/testthat/test-check_autocorrelation.R @@ -0,0 +1,7 @@ +test_that("check_autocorrelation", { + data(mtcars) + m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars) + set.seed(123) + out <- check_autocorrelation(m) + expect_equal(as.vector(out), 0.316, ignor_attr = TRUE, tolerance = 1e-2) +}) diff --git a/tests/testthat/test-check_distribution.R b/tests/testthat/test-check_distribution.R new file mode 100644 index 000000000..e8ab2835f --- /dev/null +++ b/tests/testthat/test-check_distribution.R @@ -0,0 +1,36 @@ +test_that("check_distribution", { + skip_if_not_installed("lme4") + skip_if_not_installed("randomForest") + data(sleepstudy, package = "lme4") + model <<- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy) + out <- check_distribution(model) + + expect_identical( + out$Distribution, + c( + "bernoulli", "beta", "beta-binomial", "binomial", "cauchy", + "chi", "exponential", "F", "gamma", "half-cauchy", "inverse-gamma", + "lognormal", "neg. binomial (zero-infl.)", "negative binomial", + "normal", "pareto", "poisson", "poisson (zero-infl.)", "tweedie", + "uniform", "weibull" + ) + ) + expect_equal( + out$p_Residuals, + c( + 0, 0, 0, 0, 0.9375, 0, 0, 0, 0, 0, 0, 0.03125, 0, 0, 0, 0, + 0, 0, 0, 0, 0.03125 + ), + tolerance = 1e-4 + ) + expect_equal( + out$p_Response, + c( + 0, 0, 0.03125, 0, 0, 0, 0, 0, 0.4375, 0.03125, 0, 0.46875, + 0.03125, 0, 0, 0, 0, 0, 0, 0, 0 + ), + tolerance = 1e-4 + ) + + expect_snapshot(print(out)) +}) diff --git a/tests/testthat/test-check_heterogeneity_bias.R b/tests/testthat/test-check_heterogeneity_bias.R new file mode 100644 index 000000000..7abc6af30 --- /dev/null +++ b/tests/testthat/test-check_heterogeneity_bias.R @@ -0,0 +1,33 @@ +test_that("check_heterogeneity_bias", { + data(iris) + set.seed(123) + iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID + out <- check_heterogeneity_bias(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID") + expect_equal(out, c("Sepal.Length", "Petal.Length"), ignore_attr = TRUE) + expect_output(print(out), "Possible heterogeneity bias due to following predictors: Sepal\\.Length, Petal\\.Length") + + out <- check_heterogeneity_bias(iris, select = ~ Sepal.Length + Petal.Length, group = ~ID) + expect_equal(out, c("Sepal.Length", "Petal.Length"), ignore_attr = TRUE) + expect_output(print(out), "Possible heterogeneity bias due to following predictors: Sepal\\.Length, Petal\\.Length") + + m <- lm(Sepal.Length ~ Petal.Length + Petal.Width + Species + ID, data = iris) + expect_error( + check_heterogeneity_bias(m, select = c("Sepal.Length", "Petal.Length"), group = "ID"), + regex = "no mixed model" + ) + + skip_if_not_installed("lme4") + m <- lme4::lmer(Sepal.Length ~ Petal.Length + Petal.Width + Species + (1 | ID), data = iris) + out <- check_heterogeneity_bias(m, select = c("Sepal.Length", "Petal.Length"), group = "ID") + expect_equal(out, c("Petal.Length", "Petal.Width", "Species"), ignore_attr = TRUE) + expect_output( + print(out), + "Possible heterogeneity bias due to following predictors: Petal\\.Length, Petal\\.Width, Species" + ) + out <- check_heterogeneity_bias(m, select = ~ Sepal.Length + Petal.Length, group = ~ID) + expect_equal(out, c("Petal.Length", "Petal.Width", "Species"), ignore_attr = TRUE) + expect_output( + print(out), + "Possible heterogeneity bias due to following predictors: Petal\\.Length, Petal\\.Width, Species" + ) +}) diff --git a/tests/testthat/test-nestedLogit.R b/tests/testthat/test-nestedLogit.R new file mode 100644 index 000000000..47a852b04 --- /dev/null +++ b/tests/testthat/test-nestedLogit.R @@ -0,0 +1,66 @@ +skip_on_os(c("mac", "linux")) +skip_if(packageVersion("insight") <= "0.19.5.10") +skip_if_not_installed("nestedLogit") +skip_if_not_installed("carData") + +data("Womenlf", package = "carData") +comparisons <- nestedLogit::logits( + work = nestedLogit::dichotomy("not.work", working = c("parttime", "fulltime")), + full = nestedLogit::dichotomy("parttime", "fulltime") +) +mnl <- nestedLogit::nestedLogit( + partic ~ hincome + children, + dichotomies = comparisons, + data = Womenlf +) + +test_that("r2", { + out <- r2(mnl) + expect_equal( + out, + list(R2_Tjur = list( + work = c(`Tjur's R2` = 0.137759452521642), + full = c(`Tjur's R2` = 0.332536937208286) + )), + ignore_attr = TRUE, + tolerance = 1e-4 + ) + + out <- r2_tjur(mnl) + expect_equal( + out, + list( + work = c(`Tjur's R2` = 0.137759452521642), + full = c(`Tjur's R2` = 0.332536937208286) + ), + ignore_attr = TRUE, + tolerance = 1e-4 + ) + + out <- r2_coxsnell(mnl) + expect_equal( + out, + list( + work = c(`Cox & Snell's R2` = 0.129313084315599), + full = c(`Cox & Snell's R2` = 0.308541455410686) + ), + ignore_attr = TRUE, + tolerance = 1e-4 + ) + + out <- r2_nagelkerke(mnl) + expect_equal( + out, + list( + work = c(`Nagelkerke's R2` = 0.174313365512442), + full = c(`Nagelkerke's R2` = 0.418511411473948) + ), + ignore_attr = TRUE, + tolerance = 1e-4 + ) +}) + + +test_that("model_performance", { + expect_snapshot(model_performance(mnl)) +})