forked from tddschn/easygraph-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_loaders_sampled.py
45 lines (39 loc) · 1.2 KB
/
dataset_loaders_sampled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python3
from functools import partial
import json
from utils import print_with_hr
import networkx as nx
from config import (
dataset_names,
graph_info_json_path,
sampled_graph_dir,
default_target_node_number,
)
from dataset_loaders import * # for er graphs
g = globals()
gi_d = json.loads(graph_info_json_path.read_text())
def sampled_dataset_loader(
dataset: str, directed: bool = False
) -> nx.Graph | nx.DiGraph:
print_with_hr(f'loading {dataset} from {sampled_graph_dir / f"{dataset}.edgelist"}')
g = nx.read_edgelist(
sampled_graph_dir / f'{dataset}.edgelist',
nodetype=int,
create_using=nx.DiGraph() if directed else nx.Graph(),
)
print(
f"""loaded \033[33m{dataset} (sampled)\033[0m with {g.number_of_nodes()} nodes and {g.number_of_edges()} edges"""
)
return g
for dataset_name in dataset_names:
if (
dataset_name in gi_d
and gi_d[dataset_name]['nodes'] > default_target_node_number
):
p = partial(
sampled_dataset_loader,
dataset_name,
directed=gi_d[dataset_name]['is_directed'],
)
p.sampled = True
g[f'load_{dataset_name}'] = p