-
Notifications
You must be signed in to change notification settings - Fork 4
/
libzbitmap.c
1184 lines (984 loc) · 31.7 KB
/
libzbitmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: MIT
/*
* Copyright (c) 2022 Corellium LLC
*
* Author: Ernesto A. Fernández <[email protected]>
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "libzbitmap.h"
#define MIN(x, y) ((x) > (y) ? (y) : (x))
#define ZBM_MAGIC "ZBM\x09"
#define ZBM_MAGIC_SZ 4
#define ZBM_MAX_DECMP_CHUNK_SIZE 0x8000
#define ZBM_MAX_DECMP_CHUNK_SIZE_BITS 15
struct uint24 {
uint8_t low;
uint8_t mid;
uint8_t hig;
};
/* This header is shared by both compressed and decompressed chunks */
struct zbm_chunk_hdr {
struct uint24 len; /* Length of the chunk */
struct uint24 decmp_len; /* Length of the chunk after decompression */
};
/* The full header for compressed chunks */
struct zbm_cmp_chunk_hdr {
/* Shared with decompressed chunks */
struct zbm_chunk_hdr hdr;
/* Offset for each of the three metadata areas */
struct uint24 meta_off_1;
struct uint24 meta_off_2;
struct uint24 meta_off_3;
};
/* Pointer to a half-byte */
struct nybl_ptr {
uint8_t *addr; /* Address of the byte */
int nibble; /* Which of the two nibbles? */
};
/* 0-2 and 0xf are not real bitmap indexes */
#define ZBM_BITMAP_COUNT (16 - 1 - 3)
#define ZBM_BITMAP_BASE 3
#define ZBM_BITMAP_BYTECNT 17
#define ZBM_MAX_PERIOD_BYTECNT 2
struct zbm_bmap {
uint8_t bitmap; /* The bitmap */
uint8_t period_bytecnt; /* Read this many bytes to get the new period */
};
struct zbm_state {
/* Updated during a chunk read */
uint8_t *dest; /* Write the next byte here */
size_t dest_left; /* Room left in destination buffer */
uint32_t written; /* Bytes written so far for current chunk */
uint16_t period; /* Repetition period for decompression, in bytes */
/* Updated right before a chunk read */
const uint8_t *src_end; /* End of current chunk */
uint32_t len; /* Length of the chunk */
uint32_t decmp_len; /* Expected chunk length after decompression */
/* Updated after a chunk read */
const uint8_t *src; /* Start of buffer, or current chunk if any */
size_t src_left; /* Room left in the source buffer */
size_t prewritten; /* Bytes written for previous chunks */
/* Current position in data and metadata areas for this chunk */
const uint8_t *data;
const uint8_t *meta_1;
const uint8_t *meta_2;
struct nybl_ptr meta_3;
/* Array of bitmaps for the current chunk */
struct zbm_bmap bitmaps[ZBM_BITMAP_COUNT];
};
static int zbm_check_magic(struct zbm_state *state)
{
if(state->src_left < ZBM_MAGIC_SZ)
return ZBM_INVAL;
if(memcmp(state->src, ZBM_MAGIC, ZBM_MAGIC_SZ))
return ZBM_INVAL;
state->src += ZBM_MAGIC_SZ;
state->src_left -= ZBM_MAGIC_SZ;
return 0;
}
static uint32_t zbm_u24_to_u32(struct uint24 n)
{
uint32_t res;
res = n.hig;
res <<= 8;
res += n.mid;
res <<= 8;
res += n.low;
return res;
}
/* Some chunks just have regular uncompressed data, but with a header */
static int zbm_chunk_is_uncompressed(struct zbm_state *state)
{
return state->len == state->decmp_len + sizeof(struct zbm_chunk_hdr);
}
static int zbm_handle_uncompressed_chunk(struct zbm_state *state)
{
state->meta_1 = state->meta_2 = NULL;
state->meta_3.addr = NULL;
state->meta_3.nibble = 0;
state->data = state->src + sizeof(struct zbm_chunk_hdr);
memcpy(state->dest, state->data, state->decmp_len);
state->dest += state->decmp_len;
state->dest_left -= state->decmp_len;
state->written = state->decmp_len;
return 0;
}
static int zbm_read_nibble(struct nybl_ptr *nybl, const uint8_t *limit, uint8_t *result)
{
if(nybl->addr >= limit)
return ZBM_INVAL;
if(nybl->nibble == 0) {
*result = *nybl->addr & 0xf;
nybl->nibble = 1;
} else {
*result = (*nybl->addr >> 4) & 0xf;
nybl->nibble = 0;
++nybl->addr;
}
return 0;
}
static void zbm_rewind_nibble(struct nybl_ptr *nybl)
{
if(nybl->nibble == 0) {
nybl->nibble = 1;
--nybl->addr;
} else {
nybl->nibble = 0;
}
}
static int zbm_apply_bitmap(struct zbm_state *state, struct zbm_bmap *bitmap)
{
int i;
/* The periods are stored in the first metadata area */
if(bitmap->period_bytecnt) {
state->period = 0;
for(i = 0; i < bitmap->period_bytecnt; ++i) {
if(state->meta_1 >= state->src_end)
return ZBM_INVAL;
state->period |= *state->meta_1 << i * 8;
++state->meta_1;
}
}
if(state->period == 0)
return ZBM_INVAL;
for(i = 0; i < 8; ++i) {
if(state->written == state->decmp_len)
break;
if(bitmap->bitmap & 1 << i) {
if(state->data >= state->src_end)
return ZBM_INVAL;
*state->dest = *state->data;
++state->data;
} else {
if(state->prewritten + state->written < state->period)
return ZBM_INVAL;
*state->dest = *(state->dest - state->period);
}
++state->dest;
--state->dest_left;
++state->written;
}
return 0;
}
static int zbm_apply_bitmap_number(struct zbm_state *state, uint8_t bmp_num)
{
struct zbm_bmap next = {0};
/* Not a valid bitmap number (it signals a repetition) */
if(bmp_num == 0xf)
return ZBM_INVAL;
/* An actual index in the bitmap array */
if(bmp_num > ZBM_MAX_PERIOD_BYTECNT)
return zbm_apply_bitmap(state, &state->bitmaps[bmp_num - ZBM_BITMAP_BASE]);
/* For < 2, use the next bitmap in the second metadata area */
if(state->meta_2 >= state->src_end)
return ZBM_INVAL;
next.bitmap = *state->meta_2;
next.period_bytecnt = bmp_num;
++state->meta_2;
return zbm_apply_bitmap(state, &next);
}
/* Find out how many times we need to repeat the current bitmap operation */
static int zbm_read_repetition_count(struct zbm_state *state, uint16_t *repeat)
{
uint8_t nibble;
uint16_t total;
int err;
/* Don't confuse the trailing bitmaps with a repetition count */
if(state->decmp_len - state->written <= 8) {
*repeat = 1;
return 0;
}
err = zbm_read_nibble(&state->meta_3, state->src_end, &nibble);
if(err)
return err;
if(nibble != 0xf) {
/* No repetition count: the previous bitmap number gets applied once */
zbm_rewind_nibble(&state->meta_3);
*repeat = 1;
return 0;
}
/*
* Under this scheme, repeating a bitmap number 3 times wouldn't save any
* space, so the repetition count starts from 4.
*/
total = 4;
while(nibble == 0xf) {
err = zbm_read_nibble(&state->meta_3, state->src_end, &nibble);
if(err)
return err;
total += nibble;
if(total < nibble)
return ZBM_INVAL;
}
*repeat = total;
return 0;
}
static int zbm_decompress_single_bitmap(struct zbm_state *state)
{
uint8_t bmp_num;
uint16_t repeat;
int i;
int err;
/* The current nibble is the offset of the next bitmap to apply */
err = zbm_read_nibble(&state->meta_3, state->src_end, &bmp_num);
if(err)
return err;
err = zbm_read_repetition_count(state, &repeat);
if(err)
return err;
for(i = 0; i < repeat; ++i) {
err = zbm_apply_bitmap_number(state, bmp_num);
if(err)
return err;
}
return 0;
}
/* Pointer to a bit */
struct bit_ptr {
uint8_t *addr; /* Address of the byte */
int offset; /* Bit number */
};
/* This function does not perform boundary checks, the caller must do it */
static int zbm_read_single_bit(struct bit_ptr *bit)
{
int res = *bit->addr >> bit->offset & 1;
++bit->offset;
if(bit->offset != 8)
return res;
bit->offset = 0;
++bit->addr;
return res;
}
static int zbm_read_single_bitmap(struct bit_ptr *bit, const uint8_t *limit, struct zbm_bmap *result)
{
int i;
result->bitmap = 0;
result->period_bytecnt = 0;
/* The bitmap itself */
for(i = 0; i < 8; ++i) {
if(bit->addr >= limit)
return ZBM_INVAL;
result->bitmap |= zbm_read_single_bit(bit) << i;
}
/*
* The two trailing bits tell us how many bytes to read for the next
* repetition period
*/
for(i = 0; i < 2; ++i) {
if(bit->addr >= limit)
return ZBM_INVAL;
result->period_bytecnt |= zbm_read_single_bit(bit) << i;
}
return 0;
}
static int zbm_read_bitmaps(struct zbm_state *state)
{
struct bit_ptr bmap = {0};
int err, i;
if(state->len < ZBM_BITMAP_BYTECNT)
return ZBM_INVAL;
bmap.addr = (uint8_t *)state->src_end - ZBM_BITMAP_BYTECNT;
bmap.offset = 0;
for(i = 0; i < ZBM_BITMAP_COUNT; ++i) {
err = zbm_read_single_bitmap(&bmap, state->src_end, &state->bitmaps[i]);
if(err)
return err;
if(state->bitmaps[i].period_bytecnt > ZBM_MAX_PERIOD_BYTECNT)
return ZBM_INVAL;
}
return 0;
}
static int zbm_handle_compressed_chunk(struct zbm_state *state)
{
const struct zbm_cmp_chunk_hdr *hdr = NULL;
uint32_t meta_off_1, meta_off_2, meta_off_3;
int err;
state->written = 0;
state->period = 8;
if(state->len < sizeof(*hdr))
return ZBM_INVAL;
hdr = (struct zbm_cmp_chunk_hdr *)state->src;
state->data = state->src + sizeof(*hdr);
meta_off_1 = zbm_u24_to_u32(hdr->meta_off_1);
meta_off_2 = zbm_u24_to_u32(hdr->meta_off_2);
meta_off_3 = zbm_u24_to_u32(hdr->meta_off_3);
if(meta_off_1 >= state->len || meta_off_2 >= state->len || meta_off_3 >= state->len)
return ZBM_INVAL;
state->meta_1 = state->src + meta_off_1;
state->meta_2 = state->src + meta_off_2;
state->meta_3.addr = (uint8_t *)state->src + meta_off_3;
state->meta_3.nibble = 0;
err = zbm_read_bitmaps(state);
if(err)
return err;
while(state->written < state->decmp_len) {
err = zbm_decompress_single_bitmap(state);
if(err)
return err;
}
return 0;
}
static int zbm_handle_chunk(struct zbm_state *state)
{
const struct zbm_chunk_hdr *decmp_hdr = NULL;
if(state->src_left < sizeof(*decmp_hdr))
return ZBM_INVAL;
decmp_hdr = (struct zbm_chunk_hdr *)state->src;
state->len = zbm_u24_to_u32(decmp_hdr->len);
if(state->len > state->src_left)
return ZBM_INVAL;
state->src_end = state->src + state->len;
state->decmp_len = zbm_u24_to_u32(decmp_hdr->decmp_len);
if(state->decmp_len > ZBM_MAX_DECMP_CHUNK_SIZE)
return ZBM_INVAL;
if(!state->dest) /* We just wanted the length, so we are done */
return 0;
if(state->decmp_len > state->dest_left)
return ZBM_RANGE;
if(zbm_chunk_is_uncompressed(state))
return zbm_handle_uncompressed_chunk(state);
return zbm_handle_compressed_chunk(state);
}
int zbm_decompress(void *dest, size_t dest_size, const void *src, size_t src_size, size_t *out_len)
{
struct zbm_state state = {0};
int err;
state.src = src;
state.src_left = src_size;
state.dest = dest;
state.dest_left = dest_size;
state.prewritten = 0;
err = zbm_check_magic(&state);
if(err)
return err;
/* The final chunk has zero decompressed length */
do {
err = zbm_handle_chunk(&state);
if(err)
return err;
state.src += state.len;
state.src_left -= state.len;
state.prewritten += state.decmp_len;
} while(state.decmp_len != 0);
*out_len = state.prewritten;
return 0;
}
#define ZBM_MAX_BITMAP_COUNT (ZBM_MAX_DECMP_CHUNK_SIZE >> 3)
#define ZBM_POSSIBLE_BMPROTS (1 << 10)
struct zbm_compress_state {
/* Updated during a chunk write */
const uint8_t *src; /* Next byte to read */
uint32_t read; /* Bytes processed so far for current chunk */
uint32_t written; /* Bytes written so far for current chunk */
uint8_t *dest; /* Write the next byte here */
uint16_t period; /* Repetition period for compression, in bytes */
/* Updated right before a chunk write */
const uint8_t *dest_end; /* Maximum limit for the current chunk */
const uint8_t *src_end; /* End of current decompressed chunk */
uint32_t decmp_len; /* Decompressed length of the chunk */
/* Updated after a chunk write */
size_t dest_left; /* Room left in destination buffer */
size_t preread; /* Bytes processed for previous chunks */
size_t prewritten; /* Bytes written for previous chunks */
size_t src_left; /* Room left in the source buffer */
/* Array of all bitmaps applied for the current chunk */
struct zbm_bmap bitmaps[ZBM_MAX_BITMAP_COUNT];
uint16_t periods[ZBM_MAX_BITMAP_COUNT];
int bmp_cnt;
/* How many times was each bitmap-rotation combination applied? */
uint64_t usecnts[ZBM_POSSIBLE_BMPROTS];
/* Array of bitmaps applied most often */
struct zbm_bmap top_bitmaps[ZBM_BITMAP_COUNT];
};
/* Internal error used when a compression attempt was ineffective */
#define ZBM_CANT_COMPRESS (-1024)
static int zbm_bmprot(struct zbm_bmap *bmap)
{
return (int)bmap->bitmap << 2 | (int)bmap->period_bytecnt;
}
static int zbm_write_magic(struct zbm_compress_state *state)
{
if(state->dest_left < ZBM_MAGIC_SZ)
return ZBM_INVAL;
memcpy(state->dest, ZBM_MAGIC, ZBM_MAGIC_SZ);
state->dest += ZBM_MAGIC_SZ;
state->dest_left -= ZBM_MAGIC_SZ;
state->prewritten += ZBM_MAGIC_SZ;
return 0;
}
static int zbm_build_uncompressed_chunk(struct zbm_compress_state *state)
{
/* Undo the previous compression attempt */
state->src -= state->read;
state->read = 0;
state->dest -= state->written - sizeof(struct zbm_chunk_hdr);
state->written = sizeof(struct zbm_chunk_hdr);
memcpy(state->dest, state->src, state->decmp_len);
state->src += state->decmp_len;
state->read += state->decmp_len;
state->written += state->decmp_len;
state->dest += state->decmp_len;
return 0;
}
static uint8_t zbm_compare_bytes(uint64_t bytes1, uint64_t bytes2)
{
static const uint64_t mask0 = 0xff;
static const uint64_t mask1 = 0xff00;
static const uint64_t mask2 = 0xff0000;
static const uint64_t mask3 = 0xff000000;
static const uint64_t mask4 = 0xff00000000;
static const uint64_t mask5 = 0xff0000000000;
static const uint64_t mask6 = 0xff000000000000;
static const uint64_t mask7 = 0xff00000000000000;
uint8_t diff = 0;
uint64_t xor;
xor = bytes1 ^ bytes2;
diff += (xor & mask0) != 0;
diff += (xor & mask1) != 0;
diff += (xor & mask2) != 0;
diff += (xor & mask3) != 0;
diff += (xor & mask4) != 0;
diff += (xor & mask5) != 0;
diff += (xor & mask6) != 0;
diff += (xor & mask7) != 0;
return diff;
}
static void zbm_append_new_bitmap(struct zbm_compress_state *state, uint8_t bitmap, uint16_t period)
{
struct zbm_bmap *new_bmp = NULL;
new_bmp = &state->bitmaps[state->bmp_cnt];
new_bmp->bitmap = bitmap;
state->periods[state->bmp_cnt] = period;
if(period == state->period)
new_bmp->period_bytecnt = 0;
else if(period <= 0xff)
new_bmp->period_bytecnt = 1;
else
new_bmp->period_bytecnt = 2;
++state->bmp_cnt;
++state->usecnts[zbm_bmprot(new_bmp)];
state->period = period;
}
static uint8_t zbm_calculate_bitmap(const uint8_t *bytes1, const uint8_t *bytes2, uint8_t size)
{
uint8_t bitmap;
uint8_t i;
bitmap = 0;
for(i = 0; i < size; ++i) {
if(bytes1[i] != bytes2[i])
bitmap |= 1 << i;
}
return bitmap;
}
static void zbm_find_good_pattern(struct zbm_compress_state *state)
{
uint64_t needle;
const uint8_t *to_compare = NULL;
const uint8_t *next = NULL;
const uint8_t *best = NULL;
const uint8_t *split = NULL;
int bytecnt, diff, best_cost;
uint8_t bitmap;
int i;
bytecnt = MIN(8, state->decmp_len - state->read);
needle = 0;
for(i = 0; i < bytecnt; ++i)
needle |= (uint64_t)state->src[i] << i * 8;
/*
* We'll estimate the cost of a period as the number of digits needed to
* store it plus the number of characters that get changed. This isn't
* perfect of course, because bitmap reuse is also a good idea.
*/
diff = zbm_compare_bytes(*(uint64_t *)(state->src - state->period), needle);
best = state->src - state->period;
best_cost = diff;
if(best_cost <= 1)
goto done;
/* We first look for patterns that can be reached with a 1-byte period */
to_compare = state->src - MIN(0xff, state->preread + state->read);
split = to_compare;
while(to_compare <= state->src - 8) {
diff = zbm_compare_bytes(*(uint64_t *)to_compare, needle);
if(diff + 1 < best_cost) {
best = to_compare;
best_cost = diff + 1;
if(best_cost == 1)
goto done;
}
++to_compare;
}
if(best_cost == 2)
goto done;
/*
* We now look for patterns that can be reached with a 2-byte period, but
* we focus only on the ones that start with the same byte. Checking
* everything would take too long.
*/
to_compare = state->src - MIN(0xffff, state->preread + state->read);
while(to_compare < split) {
next = memchr(to_compare, state->src[0], split - to_compare);
if(!next)
break;
diff = zbm_compare_bytes(*(uint64_t *)next, needle);
if(diff + 2 < best_cost) {
best = next;
best_cost = diff + 2;
if(best_cost == 2)
goto done;
}
to_compare = next + 1;
}
done:
bitmap = zbm_calculate_bitmap(best, state->src, bytecnt);
zbm_append_new_bitmap(state, bitmap, state->src - best);
}
static int zbm_write_new_data(struct zbm_compress_state *state)
{
struct zbm_bmap *bmap = &state->bitmaps[state->bmp_cnt - 1];
int i;
for(i = 0; i < 8; ++i) {
if(state->src == state->src_end)
break;
if(state->dest == state->dest_end)
return ZBM_CANT_COMPRESS;
if(bmap->bitmap & 1 << i) {
*state->dest = *state->src;
++state->dest;
++state->written;
}
++state->src;
++state->read;
}
return 0;
}
static int zbm_compress_eight_bytes(struct zbm_compress_state *state)
{
zbm_find_good_pattern(state);
return zbm_write_new_data(state);
}
static int zbm_build_initial_bitmap(struct zbm_compress_state *state)
{
struct zbm_bmap *init = &state->bitmaps[0];
init->bitmap = 0xff;
init->period_bytecnt = 0;
state->bmp_cnt = 1;
state->usecnts[zbm_bmprot(init)] = 1;
if(state->decmp_len - state->read < 8)
return ZBM_CANT_COMPRESS;
memcpy(state->dest, state->src, 8);
state->dest += 8;
state->src += 8;
state->read += 8;
state->written += 8;
return 0;
}
static int zbm_write_metadata_1(struct zbm_compress_state *state)
{
struct zbm_bmap *bmap = NULL;
uint16_t period;
int i;
/* The first metadata area stores the periods, when they change */
for(i = 0; i < state->bmp_cnt; ++i) {
bmap = &state->bitmaps[i];
period = state->periods[i];
if(bmap->period_bytecnt == 0)
continue;
if(state->dest == state->dest_end)
return ZBM_CANT_COMPRESS;
*state->dest = period;
++state->dest;
++state->written;
if(bmap->period_bytecnt == 1)
continue;
if(state->dest == state->dest_end)
return ZBM_CANT_COMPRESS;
*state->dest = period >> 8;
++state->dest;
++state->written;
}
return 0;
}
static int zbm_write_metadata_2(struct zbm_compress_state *state)
{
struct zbm_bmap *bmap = NULL;
int i;
/* The second metadata area stores most of the bitmaps */
for(i = 0; i < state->bmp_cnt; ++i) {
bmap = &state->bitmaps[i];
/* This is one of the top bitmaps that go in the end of the chunk */
if(state->usecnts[zbm_bmprot(bmap)] == 0)
continue;
if(state->dest == state->dest_end)
return ZBM_CANT_COMPRESS;
*state->dest = bmap->bitmap;
++state->dest;
++state->written;
}
return 0;
}
static int zbm_equal_bmaps(struct zbm_bmap *bmap1, struct zbm_bmap *bmap2)
{
if(!bmap1 || !bmap2)
return 0;
if(bmap1->bitmap != bmap2->bitmap)
return 0;
if(bmap1->period_bytecnt != bmap2->period_bytecnt)
return 0;
return 1;
}
static int zbm_bmap_num_for_index(struct zbm_compress_state *state, int idx)
{
struct zbm_bmap *bmap = NULL;
struct zbm_bmap *top_bmap = NULL;
int i;
bmap = &state->bitmaps[idx];
/* This is one of the top bitmaps that go in the end of the chunk */
if(state->usecnts[zbm_bmprot(bmap)] == 0) {
for(i = 0; i < ZBM_BITMAP_COUNT; ++i) {
top_bmap = &state->top_bitmaps[i];
if(zbm_equal_bmaps(top_bmap, bmap))
return i + 3;
}
}
/* This is a regular bitmap from the second metadata area */
return bmap->period_bytecnt;
}
static int zbm_bmap_num_and_repcount(struct zbm_compress_state *state, int idx, int *repeat)
{
int bmap_num, next_num;
int i;
bmap_num = zbm_bmap_num_for_index(state, idx);
*repeat = 1;
for(i = idx + 1; i < state->bmp_cnt; ++i) {
next_num = zbm_bmap_num_for_index(state, i);
if(next_num != bmap_num)
break;
*repeat += 1;
}
return bmap_num;
}
static int zbm_write_nibble(struct nybl_ptr *nybl, const uint8_t *limit, uint8_t val)
{
if(nybl->addr >= limit)
return ZBM_CANT_COMPRESS;
if(nybl->nibble == 0) {
*nybl->addr = val;
nybl->nibble = 1;
} else {
*nybl->addr |= val << 4;
nybl->nibble = 0;
++nybl->addr;
}
return 0;
}
static int zbm_write_repetition_count(struct nybl_ptr *nybl, const uint8_t *limit, int repeat)
{
int nibble = 0xf;
int err;
/* 0xf marks that this is a repetition */
err = zbm_write_nibble(nybl, limit, nibble);
if(err)
return err;
/* We count from the minimum possible repetition count */
repeat -= 4;
while(repeat > 0) {
nibble = MIN(repeat, 0xf);
err = zbm_write_nibble(nybl, limit, nibble);
if(err)
return err;
repeat -= nibble;
}
/* The repetition must always end in a non-0xf nibble */
if(nibble == 0xf) {
err = zbm_write_nibble(nybl, limit, 0);
if(err)
return err;
}
return 0;
}
static int zbm_write_metadata_3(struct zbm_compress_state *state)
{
struct nybl_ptr nybl = {0};
int to_write, repeat;
int i, j;
int err;
nybl.addr = state->dest;
nybl.nibble = 0;
for(i = 0; i < state->bmp_cnt; i += repeat) {
to_write = zbm_bmap_num_and_repcount(state, i, &repeat);
err = zbm_write_nibble(&nybl, state->dest_end, to_write);
if(err)
return err;
/* Fewer than 3 repetitions are done trivially */
if(repeat <= 3) {
for(j = 1; j < repeat; ++j) {
err = zbm_write_nibble(&nybl, state->dest_end, to_write);
if(err)
return err;
}
} else {
err = zbm_write_repetition_count(&nybl, state->dest_end, repeat);
if(err)
return err;
}
}
/* Leave the trailing nibble alone and move on to the next byte */
if(nybl.nibble == 1) {
++nybl.addr;
nybl.nibble = 0;
}
state->written += nybl.addr - state->dest;
state->dest = nybl.addr;
return 0;
}
/* This function does not perform boundary checks, the caller must do it */
static void zbm_write_single_bit(struct bit_ptr *bit, int val)
{
*bit->addr |= val << bit->offset;
++bit->offset;
if(bit->offset != 8)
return;
bit->offset = 0;
++bit->addr;
return;
}
/* This function does not perform boundary checks, the caller must do it */
static void zbm_write_single_bitmap(struct bit_ptr *bit, struct zbm_bmap bmap)
{
int i;
/* The bitmap itself */
for(i = 0; i < 8; ++i)
zbm_write_single_bit(bit, bmap.bitmap >> i & 1);
/* The trailing bits for the period bytecount */
for(i = 0; i < 2; ++i)
zbm_write_single_bit(bit, bmap.period_bytecnt >> i & 1);
}
static int zbm_write_trailing_bitmaps(struct zbm_compress_state *state)
{
struct bit_ptr bmap = {0};
int i;
if(state->dest_end - state->dest < ZBM_BITMAP_BYTECNT)
return ZBM_CANT_COMPRESS;
memset(state->dest, 0, ZBM_BITMAP_BYTECNT);
bmap.addr = state->dest;
bmap.offset = 0;
for(i = 0; i < ZBM_BITMAP_COUNT; ++i)
zbm_write_single_bitmap(&bmap, state->top_bitmaps[i]);
state->dest += ZBM_BITMAP_BYTECNT;
state->written += ZBM_BITMAP_BYTECNT;
return 0;
}
static struct uint24 zbm_u32_to_u24(uint32_t n)
{
struct uint24 res;
res.low = n;
res.mid = n >> 8;
res.hig = n >> 16;
return res;
}
struct top_bmap {
struct zbm_bmap *bmap;
uint64_t usecnt;
};
/* The array is sorted by use count, in descending order */
static void zbm_insert_in_top_bmaps(struct zbm_bmap *bmap, uint64_t usecnt, struct top_bmap tops[ZBM_BITMAP_COUNT])
{
int i;
for(i = 0; i < ZBM_BITMAP_COUNT; ++i) {
if(zbm_equal_bmaps(tops[i].bmap, bmap)) /* Already in the array */
return;
if(tops[i].usecnt < usecnt)
break;
}
if(i == ZBM_BITMAP_COUNT)
return;
memmove(&tops[i + 1], &tops[i], (ZBM_BITMAP_COUNT - i - 1) * sizeof(tops[i]));
tops[i].bmap = bmap;
tops[i].usecnt = usecnt;
}
static void zbm_find_most_common_bitmaps(struct zbm_compress_state *state)
{
struct top_bmap tops[ZBM_BITMAP_COUNT] = {0};
struct zbm_bmap *bmap = NULL;
int i;
for(i = 0; i < state->bmp_cnt; ++i) {
bmap = &state->bitmaps[i];
zbm_insert_in_top_bmaps(bmap, state->usecnts[zbm_bmprot(bmap)], tops);
bmap = NULL;
}
for(i = 0; i < ZBM_BITMAP_COUNT; ++i) {
if(tops[i].usecnt == 0) {
/* Very few bitmaps, all are top */
state->top_bitmaps[i].bitmap = 0;
state->top_bitmaps[i].period_bytecnt = 0;
continue;
}
bmap = tops[i].bmap;
state->top_bitmaps[i] = *bmap;
/* Mark this as unused for the second metadata area */
state->usecnts[zbm_bmprot(bmap)] = 0;
}
}
static int zbm_build_metadata(struct zbm_compress_state *state, struct zbm_cmp_chunk_hdr *hdr)
{
int err;
zbm_find_most_common_bitmaps(state);
hdr->meta_off_1 = zbm_u32_to_u24(state->written);
err = zbm_write_metadata_1(state);
if(err)
return err;
hdr->meta_off_2 = zbm_u32_to_u24(state->written);
err = zbm_write_metadata_2(state);