-
Notifications
You must be signed in to change notification settings - Fork 2
/
index.php
96 lines (88 loc) · 4.79 KB
/
index.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<?php
include 'header.php';
?>
<div class="container">
<div class="row">
<div class="col-md-12">
<div class="page-header">
<h1><strong>ReVival</strong>
<small>Recovery of missing values in time series</small>
</h1>
</div>
<p>
ReVival is an online tool to recover missing blocks in time series using the
Centroid Decomposition (CD) technique and to visualize the properties of the algorithm.
</p>
<p>
This tool was created at the <a href="http://exascale.info/">eXascale Infolab</a>, a research group
at the <a href="http://www.unifr.ch/">University of Fribourg</a>, Switzerland.
</p>
</div>
</div>
<div class="row">
<div class="col-md-8">
<hr/>
<h3><strong>Centroid Decomposition</strong></h3>
<p>The <a href="https://ieeexplore.ieee.org/document/6816643/">Centroid Decomposition</a> (CD) is a matrix
decomposition technique that decomposes an input matrix <b>X</b> (consisting of multiple time-series
as columns) into the product of two matrices <b>L</b> (loading matrix) and <b>R</b>
(relevance matrix), such that <b>X</b> = <b>L</b> * <b>R<sup>T</sup></b>. CD allows to efficiently
perform recovery of missing values in large time series, both in batch mode and streaming mode.
</p>
<p>
In addition to the recovery, ReVival can be used as an online calculator to compute the Centroid
Cecomposition and to visualize different sign vector maximization strategies that can be used by CD.
</p>
<hr/>
<h3><strong>Features</strong></h3><br>
<div class="row">
<div class="col-md-3">
<p><b>Display:</b></p>
<ul>
<li><a href="/display/datasets.php">Datasets</a></li>
<li><a href="/display/datastream.php">Data stream</a></li>
<li><a href="/streaming/datastream.php">Recovery stream</a></li>
</ul>
</div>
<div class="col-md-4">
<p><b>Recovery:</b></p>
<ul><li><a href="/recovery/static.php">Toy example</a></li>
<li><a href="/recovery/recovdb.php">RecovDB</a></li>
<li><a href="/recovery/datasets.php">Real-world (batch)</a></li>
<li><a href="/cd/recovery.php">Recovery calculator</a></li>
<li><a href="/prediction/datasets.php">Prediction</a></li>
</ul>
</div>
<div class="col-md-5">
<p><b>Centroid Decomposition:</b></p>
<ul>
<li><a href="/cd/matrixdec.php">Decomposition calculator</a></li>
<li><a href="/cd/streaming.php">Streaming decomposition</a></li>
<li><a href="/cd/signvectors.php">Sign vector strategies</a></li>
</ul>
</div>
</div>
<hr/>
<h3><strong>Publications</strong></h3>
<ul>
<li>Ines Arous, Mourad Khayati, Philippe Cudré-Mauroux, Ying Zhang, Martin Kersten, and Svetlin Stalinlov. <strong>“RecovDB: Accurate and Efficient Missing Blocks Recovery for Large Time Series.”</strong> In <i>35th IEEE International Conference on Data Engineering (ICDE 2019)</i>. Macau, China, 2019.</li>
<li>Mourad Khayati, Michael H. Böhlen, and Johann Gamper. <strong>“Memory-Efficient Centroid Decomposition for Long Time Series.”</strong> In <i>IEEE 30th International Conference on Data Engineering (ICDE 2014)</i>, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, 100–111, 2014.</li>
</ul>
</div>
<div class="col-md-4">
<h3><strong>Research Partners:</strong></h3>
<div>
<a href="https://exascale.info/"><img style="width: 50%;height: auto;"
src="/resources/Xi_logo.svg"/></a>
<br/>
<a href="http://monetdb.org/"><img style="width: 35%;height: auto;"
src="/resources/mdbs_logo.png"/></a>
</div><h3><strong>Research Projects:</strong></h3>
<div>
<a href="https://fashionbrain-project.eu/"><img style="width: 50%;height: auto;"
src="/resources/fashionbrain.jpg"/></a>
</div>
</div>
</div>
</div>
<?php include 'footer.php'; ?>