This repository has been archived by the owner on Feb 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 122
/
sse_visualize.py
76 lines (66 loc) · 2.53 KB
/
sse_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# coding=utf-8
################################################################################
#
# Copyright (c) 2016 eBay Software Foundation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#################################################################################
#
# @Author: Mingkuan Liu
# @Email: [email protected]
# @Date: 2017-11-08
#
##################################################################################
import sys
import codecs
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
plt.rcParams['font.sans-serif']=['SimHei']
TOPN=8000
def visualize(sseEncodingFile, gneratedImageFile):
print("Loading embingfile: %s" % sseEncodingFile)
raw_seq, sse = load_embeddings(sseEncodingFile)
tsne = TSNE(n_components=2, random_state=0)
np.set_printoptions(suppress=True)
print("fitting tsne...")
Y = tsne.fit_transform(sse)
print("plotting...")
ChineseFont = FontProperties('SimHei')
plt.title("SSE Representations", fontdict={'fontsize': 16})
plt.figure(figsize=(100, 100)) # in inches
for label, x, y in zip(raw_seq, Y[:, 0], Y[:, 1]):
plt.scatter(x,y)
plt.annotate(label, xy=(x, y), xytext=(5, 2),
textcoords='offset points',
fontproperties=ChineseFont,
ha='right',
va='bottom')
plt.savefig(gneratedImageFile, format='png')
plt.show()
def load_embeddings(file_name):
raw_seq, sse = [], []
for line in codecs.open(file_name, 'r', 'utf-8').readlines():
info = line.strip().split('\t')
if len(info) !=3:
print("Error line with len:%d in SSE encoding file: %s" % (len(info), line) )
continue
tgtid, seq, embedding = info
raw_seq.append(seq)
sse.append( [ float(x) for x in embedding.split(',') ] )
xSSE = np.asarray(sse).astype('float64')
return raw_seq[-TOPN:], xSSE[-TOPN:]
if __name__ == "__main__":
visualize( sys.argv[1] , sys.argv[2] )