#算法部分(二)
在本实验中我们将深入讲解24点游戏的一些核心算法,如实现全排列、穷举可能的表达式以及如何计算24。
为了使用交互式Scala解释器,你可以在打开的终端中输入命令:
cd /usr/local/scala-2.11.7/bin/
scala
当出现scala>
开始的命令行提示符时,就说明你已经成功进入解释器了。如下图所示。
对于穷举法计算二十四的算法,其中一个重要的步骤,是把数字进行全排列。比如,对于一个三个数的列表List(1,2,3)
,其全排列如下:
List(1, 2, 3)
List(1, 3, 2)
List(2, 1, 3)
List(2, 3, 1)
List(3, 1, 2)
List(3, 2, 1)
解决这种问题的一个策略,是采用“分而治之”的方法。首先把问题分解成小的问题。比如N
个数的全排列,可以分解成N-1
的全排列,再加1个数的排列。然后,对每个小的问题给出解决方案。
由此,根据前面的描述,可以写出如下的一个递归算法:
def permutations(l:List[Int]):List[List[Int]] = {
l match {
case Nil => List(List())
case (head::tail) =>
for(p0 <- permutations(tail);i<-0 to (p0 length);(xs,ys)=p0 splitAt i) yield xs:::List(head):::ys
}
}
空列表的全排列为空。N
个数的全排列为N-1
个数的全排列和1个数的全排列。对于每个N-1
的排列,依次插入剩下的一个数,就构成了一个新的全排列。
测试如下:
scala> permutations(List(1,2,3)).mkString("\n")
res3: String =
List(1, 2, 3)
List(2, 1, 3)
List(2, 3, 1)
List(1, 3, 2)
List(3, 1, 2)
List(3, 2, 1)
再看看1,1,2
的情况:
scala> permutations(List(1,1,3)).mkString("\n")
res4: String =
List(1, 1, 3)
List(1, 1, 3)
List(1, 3, 1)
List(1, 3, 1)
List(3, 1, 1)
List(3, 1, 1)
这里出现了重复的排列,我们可以直接借助于List
的distinct
方法过滤掉重复的值。
scala> permutations(List(1,1,3)).distinct.mkString("\n")
res5: String =
List(1, 1, 3)
List(1, 3, 1)
List(3, 1, 1)
这样,全排列的算法就完成了。其实List
自身已经提供了permutations
方法,不需要自行实现。具体用法如下:
scala> List(1,2,3,4).permutations.mkString("\n")
res6: String =
List(1, 2, 3, 4)
List(1, 2, 4, 3)
List(1, 3, 2, 4)
List(1, 3, 4, 2)
List(1, 4, 2, 3)
List(1, 4, 3, 2)
List(2, 1, 3, 4)
List(2, 1, 4, 3)
List(2, 3, 1, 4)
List(2, 3, 4, 1)
List(2, 4, 1, 3)
List(2, 4, 3, 1)
List(3, 1, 2, 4)
List(3, 1, 4, 2)
List(3, 2, 1, 4)
List(3, 2, 4, 1)
List(3, 4, 1, 2)
List(3, 4, 2, 1)
List(4, 1, 2, 3)
List(4, 1, 3, 2)
List(4, 2, 1, 3)
List(4, 2, 3, 1)
List(4, 3, 1, 2)
List(4, 3, 2, 1)
详细的算法说明,可以参考24点算法之我见。简单的穷举可以把+
、-
、×
、/
以及()
,与四个数进行全排列。但是,这样会出现很多无效的表达式。因此,我们这里参考“24点算法之我见”的算法,对表达式做些分析:
换一种思路,介绍我的24点的穷举法。 上面的算法是对数和运算符进行穷举和搜索。
我的算法是对运算式进行穷举 无论给什么样的是4个数,运算式总是不变的,举例来说:
N+N+N+N=24
,这是一种运算式。N*N+N*N=24
,这是另一种运算式。N/(N-N/N)=24
,这又是另一种运算式。
下面这个例子:
N+N-(N-N)=24
N+N-N+N=24
上面虽然是两种不同的运算式,但本质是同一种运算式(肯定同时成立或同时不成立)。穷举的时候只要穷举其中一个就行了。
再看下面这个例子:
N/(N+N+N)=24
虽然是一个运算式,但是这个运算式是不可能成立的,也就是无解运算式,穷举的时候是不需要穷举该运算式的。
参考该文章提供的表格,我们可以定义如下两个List
对象(去掉无解的表达式)。
所有合法的表达式的模板:
val templates=List(
"(N-(N+N))*N",
"(N-(N-N))*N",
"(N*N+N)*N",
"(N*N+N)/N",
"(N*N-N)*N",
"(N*N-N)/N",
"(N/N+N)*N",
"(N/N-N)*N",
"(N+N)*(N+N)",
"(N+N)*(N-N)",
"(N+N)*N*N",
"(N+N)*N/N",
"(N+N)*N+N",
"(N+N)*N-N",
"(N+N)/(N/N)",
"(N+N)/N*N",
"(N+N)/N+N",
"(N+N*N)*N",
"(N+N*N)/N",
"(N+N/N)*N",
"(N+N+N)*N",
"(N+N+N)/N",
"(N+N-N)*N",
"(N-N)*(N+N)",
"(N-N)*(N-N)",
"(N-N)*N*N",
"(N-N)*N/N",
"(N-N)*N+N",
"(N-N)*N-N",
"(N-N)/(N/N)",
"(N-N)/N*N",
"(N-N*N)*N",
"(N-N/N)*N",
"(N-N+N)*N",
"(N-N-N)*N",
"N-(N-N)*N",
"N-(N-N)+N",
"N-(N-N-N)",
"N*(N-(N+N))",
"N*(N-(N-N))",
"N*(N*N+N)",
"N*(N*N-N)",
"N*(N/N+N)",
"N*(N/N-N)",
"N*(N+N)*N",
"N*(N+N)/N",
"N*(N+N)+N",
"N*(N+N)-N",
"N*(N+N*N)",
"N*(N+N/N)",
"N*(N+N+N)",
"N*(N+N-N)",
"N*(N-N)*N",
"N*(N-N)/N",
"N*(N-N)+N",
"N*(N-N)-N",
"N*(N-N*N)",
"N*(N-N/N)",
"N*(N-N+N)",
"N*(N-N-N)",
"N*N-(N+N)",
"N*N-(N-N)",
"N*N*(N+N)",
"N*N*(N-N)",
"N*N*N*N",
"N*N*N/N",
"N*N*N+N",
"N*N*N-N",
"N*N/(N*N)",
"N*N/(N/N)",
"N*N/(N+N)",
"N*N/(N-N)",
"N*N/N*N",
"N*N/N/N",
"N*N/N+N",
"N*N/N-N",
"N*N+N*N",
"N*N+N/N",
"N*N+N+N",
"N*N+N-N",
"N*N-N*N",
"N*N-N/N",
"N*N-N+N",
"N*N-N-N",
"N/((N+N)/N)",
"N/((N-N)/N)",
"N/(N*N)*N",
"N/(N*N/N)",
"N/(N/(N+N))",
"N/(N/(N-N))",
"N/(N/N)*N",
"N/(N/N)/N",
"N/(N/N*N)",
"N/(N/N/N)",
"N/(N/N-N)",
"N/(N+N)*N",
"N/(N-N)*N",
"N/(N-N/N)",
"N/N*(N+N)",
"N/N*(N-N)",
"N/N*N*N",
"N/N*N/N",
"N/N*N+N",
"N/N*N-N",
"N/N/(N/N)",
"N/N/N*N",
"N/N+N*N",
"N/N+N+N",
"N+(N+N)*N",
"N+(N+N)/N",
"N+(N-N)*N",
"N+N-(N-N)",
"N+N*(N+N)",
"N+N*(N-N)",
"N+N*N*N",
"N+N*N/N",
"N+N*N+N",
"N+N*N-N",
"N+N/(N/N)",
"N+N/N*N",
"N+N/N+N",
"N+N+N*N",
"N+N+N/N",
"N+N+N+N",
"N+N+N-N",
"N+N-N+N",
"N+N-N-N",
"N-N*(N-N)",
"N-N+N*N",
"N-N+N+N"
)
等价表达式的定义:
val equivalence = List(
"N+N-N+N,N+N+N-N",
"N+N-(N-N),N+N-N+N,N+N+N-N",
"N+N*(N+N),(N+N)*N+N",
"N+N*(N-N),N+(N-N)*N",
"N+N/N*N,N+N*N/N",
"(N+N)/N*N,(N+N)*N/N",
"N+N/(N/N),N+N/N*N,N+N*N/N",
"(N+N)/(N/N),(N+N)/N*N,(N+N)*N/N",
"N-N+N+N,N+N+N-N",
"N-N+N*N,N+N*N-N",
"(N-N+N)*N,(N+N-N)*N",
"(N-(N+N))*N,(N-N-N)*N",
"N-(N-N)+N,N-N+N+N,N+N+N-N",
"N+N-N-N,N-N+N+N,N+N+N-N",
"N-(N-N-N),N-N+N+N,N+N+N-N",
"N-(N-N)*N,N+(N-N)*N",
"(N-(N-N))*N,(N-N+N)*N,(N+N-N)*N",
"(N-N)*N+N,N+(N-N)*N",
"(N-N)*(N+N),(N+N)*(N-N)",
"N-N*(N-N),N+N*(N-N),N+(N-N)*N",
"(N-N)/N*N,(N-N)*N/N",
"(N-N)/(N/N),(N-N)/N*N,(N-N)*N/N",
"N*N+N+N,N+N+N*N",
"N*(N+N)+N,N+(N+N)*N",
"N*(N+N+N),(N+N+N)*N",
"N*N+N-N,N-N+N*N",
"N*(N+N)-N,(N+N)*N-N",
"N*(N+N-N),(N+N-N)*N",
"N*(N+N)*N,(N+N)*N*N",
"(N*N+N)*N,(N+N*N)*N",
"N*(N+N*N),(N+N*N)*N",
"N*(N+N)/N,(N+N)*N/N",
"(N*N+N)/N,(N+N*N)/N",
"N*(N+N/N),(N+N/N)*N",
"N*N-N+N,N-N+N*N",
"N*(N-N)+N,N+(N-N)*N",
"N*(N-N+N),(N+N-N)*N",
"N*N-(N+N),N*N-N-N",
"N*(N-(N+N)),N*(N-N-N),(N-N-N)*N",
"N*(N-N)-N,(N-N)*N-N",
"N*(N-N-N),(N-N-N)*N",
"N*N-(N-N),N*N-N+N,N-N+N*N",
"N*(N-(N-N)),N*(N-N+N),(N+N-N)*N",
"N*(N-N)*N,(N-N)*N*N",
"N*(N-N*N),(N-N*N)*N",
"N*(N-N)/N,(N-M2)*N/N",
"N*(N-N/N),(N-N/N)*N",
"N*N*N+N,N+N*N*N",
"N*N*(N+N),(N+N)*N*N",
"N*(N*N+N),(N+N*N)*N",
"N*N*(N-N),(N-N)*N*N",
"N*(N*N-N),(N*N-N)*N",
"N*N/N+N,N+N*N/N",
"N*(N/N+N),(N+N/N)*N",
"N*N/N*N,N*N*N/N",
"N*N/(N*N),N*N/N/N",
"N*N/(N/N),N*N/N*N,N*N*N/N",
"N/N+N+N,N+N+N/N",
"N/N+N*N,N*N+N/N",
"N/(N+N)*N,N*N/(N+N)",
"(N/N+N)*N,(N+N/N)*N",
"N/((N+N)/N),N/(N+N)*N,N*N/(N+N)",
"N/(N-N)*N,N*N/(N-N)",
"N/((N-N)/N),N/(N-N)*N,N*N/(N-N)",
"N/N*N+N,N+N*N/N",
"N/N*(N+N),(N+N)*N/N",
"N/N*N-N,N*N/N-N",
"N/N*(N-N),N*(N-N)/N",
"N/N*N*N,N*N*N/N",
"N/(N*N)*N,N/N/N*N,N*N/N/N",
"N/N*N/N,N*N/N/N",
"N/(N*N/N),N/N/N*N,N*N/N/N",
"N/(N/(N+N)),N/N*(N+N),(N+N)*N/N",
"N/(N/(N-N)),N/N*(N-N),(N-N)*N/N",
"N/N/N*N,N*N/N/N",
"N/(N/N)*N,N/N*N*N,N*N*N/N",
"N/(N/N*N),N/N*N/N,N*N/N/N",
"N/N/(N/N),N/N/N*N,N*N/N/N",
"N/(N/N)/N,N/N*N/N,N*N/N/N",
"N/(N/N/N),N/N*N/N,N*N/N/N"
)
通过这两个List
对象,我们去掉等价的表达式,得出最终的合法表达式只有73种,大大缩小了需要穷举的表达式的数目:
val templates=List(
"N*N-N+N",
"(N-N)*N*N",
"N*N+N*N",
"(N+N)*N*N",
"N*N*N*N",
"(N+N*N)*N",
"(N*N-N)*N",
"N*N+N+N",
"(N/N-N)*N",
"(N-(N-N))*N",
"N-(N-N-N)",
"N+N-(N-N)",
"N*(N/N-N)",
"(N-N*N)*N",
"N*(N-N)+N",
"N+N+N/N",
"(N-N)*(N-N)",
"N+N*N/N",
"N*N/(N-N)",
"(N+N)*(N+N)",
"(N-N)*N/N",
"N+(N+N)/N",
"N*N/(N+N)",
"(N+N)*N/N",
"(N*N+N)*N",
"(N*N-N)/N",
"(N/N+N)*N",
"N*N/N/N",
"N+N+N-N",
"N-(N-N)+N",
"N/(N-N/N)",
"N+(N-N)*N",
"(N+N+N)*N",
"N+N*N-N",
"N*N-N/N",
"(N+N)*N-N",
"(N+N)*(N-N)",
"(N-N/N)*N",
"N*(N+N)+N",
"N*N+N/N",
"N*N/N-N",
"(N+N/N)*N",
"N*N*N/N",
"(N+N*N)/N",
"N+N*N+N",
"N-(N-N)*N",
"(N-(N+N))*N",
"N*N-N-N",
"N+N/N+N",
"(N-N)*N-N",
"(N+N)/N+N",
"N*N+N-N",
"N/N+N+N",
"N*N*N-N",
"(N*N+N)/N",
"N+N+N*N",
"N*(N-N)/N",
"N/N*N+N",
"N+N*N*N",
"N+N+N+N",
"N*N/(N*N)",
"N+(N+N)*N",
"(N-N)*N+N",
"(N+N+N)/N",
"(N+N)*N+N",
"N*N*N+N",
"N*N-(N-N)",
"N*N-(N+N)",
"(N-N-N)*N",
"N*N/N+N",
"(N+N-N)*N",
"N/(N/N-N)",
"N*N-N*N"
)
有了前面的准备工作,我们现在可以给出二十四游戏的算法。首先,我们合并表示式模板和输入的四个数字,计算出结果:
def calculate(template:String,numbers:List[Int])={
val values=template.split('N')
var expression=""
for(i <- 0 to 3) expression=expression+values(i) + numbers(i)
if (values.length==5) expression=expression+values(4)
(expression,template,eval(expression))
}
做些简单的测试,如下:
scala> calculate("N/N*N+N",List(6,9,9,10))
res0: (String, String, Rational) = (6/9*9+10,N/N*N+N,16\1)
scala> calculate("N/N*N+N",List(9,6,10,9))
res1: (String, String, Rational) = (9/6*10+9,N/N*N+N,24\1)
scala> calculate("(N-N/N)*N",List(5,1,5,5))
res2: (String, String, Rational) = ((5-1/5)*5,(N-N/N)*N,24\1)
我们让函数 calculate
返回三个值:合成的表达式、使用的模板,以及计算的结果(分数形式)。我们使用一个三元组作为返回结果,这里也可以看到Scala函数返回,无需使用return,函数体的最后一条语句的值作为返回结果。
说到这里,在之前基础教程中的 Rational
的实现和 eval
函数的实现有一个小错误(表达式出现中的歧义)。之前Rational
的字符表现形式为:
override def toString = numer + "/" +denom
使用到的“/
”与我们使用的四则运算的除号一样,这样对于这样的表达式8/1/3
,就有两种解释。
第一种是 (8/1)/3
。 其中,8/1
为计算的中间结果(Rational
对象中,“/
”为 Rational
字符串形式中的/
),计算结果为 8/3
。
另外一种解释为 8/(1/3)
,其中 1/3
为输入时的除号。
为避免这种歧义,我们将Rational
的“/
”改为“\
”,修改之前的相关定义:
class Rational (n:Int, d:Int) {
require(d!=0)
private val g =gcd (n.abs,d.abs)
val numer =n/g
val denom =d/g
override def toString = numer + "\\" +denom
...
}
object Rational extends {val op="\\"} with BinaryOp
def eval(str:String):Rational = {
str match {
case Bracket(part1, expr, part2) => eval(part1 + eval(expr) + part2)
case Add(expr1, expr2) => eval(expr1) + eval(expr2)
case Subtract(expr1, expr2) => eval(expr1) - eval(expr2)
case Multiply(expr1, expr2) => eval(expr1) * eval(expr2)
case Divide(expr1, expr2) => eval(expr1) / eval(expr2)
case "" => new Rational(0, 1)
case Rational(expr1, expr2) => new Rational(expr1.trim toInt, expr2.trim toInt)
case _ => new Rational(str.trim toInt, 1)
}
}
我们有了 calculate
函数之后,就可以根据数字的全排列和可能的表达式模板,设计出24游戏的穷举算法:
def cal24(input:List[Int])={
var found = false
for (template <- templates; list <- input.permutations ) {
try {
val (expression, tp, result) = calculate(template, list)
if (result.numer == 24 && result.denom == 1) {
println(input + ":" + tp + ":" + expression)
found = true
}
} catch {
case e:Throwable=>
}
}
if (!found) {
println(input+":"+"no result")
}
}
这个算法可以列出所有可能的算法,比如:
scala> cal24(List(5,5,5,1))
List(5, 5, 5, 1):(N-N/N)*N:(5-1/5)*5
scala> cal24(List(3,3,8,8))
List(3, 3, 8, 8):N/(N-N/N):8/(3-8/3)
scala> cal24(List(5,6,7,8))
List(5, 6, 7, 8):(N-(N-N))*N:(5-(8-7))*6
List(5, 6, 7, 8):(N-(N-N))*N:(7-(8-5))*6
List(5, 6, 7, 8):N*N/(N-N):6*8/(7-5)
List(5, 6, 7, 8):N*N/(N-N):8*6/(7-5)
List(5, 6, 7, 8):(N+N)*(N-N):(5+7)*(8-6)
List(5, 6, 7, 8):(N+N)*(N-N):(7+5)*(8-6)
List(5, 6, 7, 8):(N-N-N)*N:(5-8-7)*6
List(5, 6, 7, 8):(N-N-N)*N:(7-8-5)*6
List(5, 6, 7, 8):(N+N-N)*N:(5+7-8)*6
List(5, 6, 7, 8):(N+N-N)*N:(7+5-8)*6
对于5
、6
、7
、8
,由于加法和乘法的交互律,某些算法是等价的。我们可以根据使用的模板是否相同,去掉这些等价的算法。
如果只需要计算一种算法,可以为 for
表达式加上条件:
def cal24once(input:List[Int])={
var found = false
for (template <- templates; list <- input.permutations if(!found)) {
try {
val (expression, tp, result) = calculate(template, list)
if (result.numer == 24 && result.denom == 1) {
println(input + ":" + tp + ":" + expression)
found = true
}
} catch {
case e:Throwable=>
}
}
if (!found) {
println(input+":"+"no result")
}
}
测试如下:
scala> cal24once(List(5,6,7,8))
List(5, 6, 7, 8):(N-(N-N))*N:(5-(8-7))*6
scala> cal24once(List(1,2,3,4))
List(1, 2, 3, 4):N*N*N*N:1*2*3*4
scala> cal24once(List(1,1,1,1))
List(1, 1, 1, 1):no result
至此,我们对于24点游戏中需要用到的算法都作了详细介绍。请你现在尝试整理一下之前学过的内容,花一些时间想想整个游戏由哪几个部分组成、各个算法的作用都是什么,再动手把各个部分用Scala语言实现出来。
当整个项目涉及多个组件时,你可以用Sublime Text 2等文本编辑器来编辑各个部分的代码。之后,再用Scala命令行编译和执行它们。
此处我们暂未给出具体的操作步骤,希望你能够自己探索一下(Done is better than perfect)。
我们将在下一节为你揭晓该项目的完整代码和计算结果。不过在看到它们之前,仍然建议你先自己实现一遍。