-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
120 lines (92 loc) · 3.94 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
# tensorboard --logdir='./logs' --port=6006
# tensorboard --logdir=old:out/2019-07-20___18-13-10/tensorboard,new:out/2019-07-21___14-45-41/tensorboard --port=6006
import os
import sys
import argparse
import tensorflow as tf
import numpy as np
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger(object):
def __init__(self, log_dir):
"""Create a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def scalar_summary(self, tag, value, step):
"""Log a scalar variable."""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def image_summary(self, tag, images, step):
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
def main(ARGS):
out_dir = os.path.expanduser(ARGS.out_dir)
assert os.path.isdir(out_dir), "Path {} does not exist ".format(ARGS.out_dir)
print("\nStarting Tensorboard")
date_folders = []
files = os.listdir(out_dir)
if len(files):
for f in files:
date_folders.append(f)
assert date_folders, "No tensorboard folders"
command_string = "tensorboard --logdir="
date_folders.sort()
for i,folder in enumerate(date_folders):
tensorboard_path = os.path.join(os.path.join(out_dir, folder), 'tensorboard')
# print("Full Tensorboard Path: {}".format(tensorboard_path))
command_string += str(i+1) + ":" + tensorboard_path
if i != len(date_folders)-1:
command_string += ","
# Port
command_string += " --port={}".format(ARGS.tensorboard_port)
print("FINAL Command String: {}".format(command_string))
print("\n")
os.system(command_string)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--out_dir', type=str, help='Directory where models and event logs are stored.', default='./out')
parser.add_argument('--tensorboard_port', type=int, help='Tensorboard port for command', default=6006)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))