-
Notifications
You must be signed in to change notification settings - Fork 3k
/
segnet.py
executable file
·116 lines (92 loc) · 4.6 KB
/
segnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import sys
import argparse
from jetson_inference import segNet
from jetson_utils import videoSource, videoOutput, cudaOverlay, cudaDeviceSynchronize, Log
from segnet_utils import *
# parse the command line
parser = argparse.ArgumentParser(description="Segment a live camera stream using an semantic segmentation DNN.",
formatter_class=argparse.RawTextHelpFormatter,
epilog=segNet.Usage() + videoSource.Usage() + videoOutput.Usage() + Log.Usage())
parser.add_argument("input", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="fcn-resnet18-voc", help="pre-trained model to load, see below for options")
parser.add_argument("--filter-mode", type=str, default="linear", choices=["point", "linear"], help="filtering mode used during visualization, options are:\n 'point' or 'linear' (default: 'linear')")
parser.add_argument("--visualize", type=str, default="overlay,mask", help="Visualization options (can be 'overlay' 'mask' 'overlay,mask'")
parser.add_argument("--ignore-class", type=str, default="void", help="optional name of class to ignore in the visualization results (default: 'void')")
parser.add_argument("--alpha", type=float, default=150.0, help="alpha blending value to use during overlay, between 0.0 and 255.0 (default: 150.0)")
parser.add_argument("--stats", action="store_true", help="compute statistics about segmentation mask class output")
try:
args = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the segmentation network
net = segNet(args.network, sys.argv)
# note: to hard-code the paths to load a model, the following API can be used:
#
# net = segNet(model="model/fcn_resnet18.onnx", labels="model/labels.txt", colors="model/colors.txt",
# input_blob="input_0", output_blob="output_0")
# set the alpha blending value
net.SetOverlayAlpha(args.alpha)
# create video output
output = videoOutput(args.output, argv=sys.argv)
# create buffer manager
buffers = segmentationBuffers(net, args)
# create video source
input = videoSource(args.input, argv=sys.argv)
# process frames until EOS or the user exits
while True:
# capture the next image
img_input = input.Capture()
if img_input is None: # timeout
continue
# allocate buffers for this size image
buffers.Alloc(img_input.shape, img_input.format)
# process the segmentation network
net.Process(img_input, ignore_class=args.ignore_class)
# generate the overlay
if buffers.overlay:
net.Overlay(buffers.overlay, filter_mode=args.filter_mode)
# generate the mask
if buffers.mask:
net.Mask(buffers.mask, filter_mode=args.filter_mode)
# composite the images
if buffers.composite:
cudaOverlay(buffers.overlay, buffers.composite, 0, 0)
cudaOverlay(buffers.mask, buffers.composite, buffers.overlay.width, 0)
# render the output image
output.Render(buffers.output)
# update the title bar
output.SetStatus("{:s} | Network {:.0f} FPS".format(args.network, net.GetNetworkFPS()))
# print out performance info
cudaDeviceSynchronize()
net.PrintProfilerTimes()
# compute segmentation class stats
if args.stats:
buffers.ComputeStats()
# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming():
break