-
Notifications
You must be signed in to change notification settings - Fork 3
/
crt-lottes.frag
201 lines (176 loc) · 4.46 KB
/
crt-lottes.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#version 330 core
//
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
//
// by Timothy Lottes
//
// This is more along the style of a really good CGA arcade monitor.
// With RGB inputs instead of NTSC.
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
//
// Left it unoptimized to show the theory behind the algorithm.
//
// It is an example what I personally would want as a display option for pixel art games.
// Please take and use, change, or whatever.
//
const float hardScan = -8.0;
const float hardPix = -3.0;
const float warpX = 0.031;
const float warpY = 0.041;
const float maskDark = 0.5;
const float maskLight = 1.5;
const float scaleInLinearGamma = 1;
const float shadowMask = 1;
const float brightboost = 1;
layout (std140) uniform program
{
vec2 video_size;
vec2 texture_size;
vec2 output_size;
} IN;
in vec2 tex;
uniform sampler2D s0;
out vec4 color;
//------------------------------------------------------------------------
// sRGB to Linear.
// Assuing using sRGB typed textures this should not be needed.
float ToLinear1(float c)
{
if (scaleInLinearGamma == 0)
{
return c;
}
return (c <= 0.04045) ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4);
}
vec3 ToLinear(vec3 c)
{
if (scaleInLinearGamma == 0)
{
return c;
}
return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b));
}
// Linear to sRGB.
// Assuing using sRGB typed textures this should not be needed.
float ToSrgb1(float c)
{
if (scaleInLinearGamma == 0)
{
return c;
}
return(c < 0.0031308 ? c *12.92 : 1.055 * pow(c, 0.41666) - 0.055);
}
vec3 ToSrgb(vec3 c)
{
if (scaleInLinearGamma == 0)
{
return c;
}
return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b));
}
// Nearest emulated sample given floating point position and texel offset.
// Also zero's off screen.
vec3 Fetch(vec2 pos,vec2 off)
{
pos = (floor(pos * IN.texture_size.xy + off) + vec2(0.5, 0.5)) / IN.texture_size.xy;
return ToLinear(brightboost * texture(s0, pos.xy).rgb);
}
// Distance in emulated pixels to nearest texel.
vec2 Dist(vec2 pos)
{
pos = pos * IN.texture_size.xy;
return -((pos - floor(pos)) - vec2(0.5));
}
// 1D Gaussian.
float Gaus(float pos, float scale)
{
return exp2(scale * pos * pos);
}
// 3-tap Gaussian filter along horz line.
vec3 Horz3(vec2 pos, float off)
{
vec3 b = Fetch(pos, vec2(-1.0, off));
vec3 c = Fetch(pos, vec2(0.0, off));
vec3 d = Fetch(pos, vec2(1.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = hardPix;
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
// Return filtered sample.
return (b * wb + c * wc + d * wd) / (wb + wc + wd);
}
// 5-tap Gaussian filter along horz line.
vec3 Horz5(vec2 pos, float off)
{
vec3 a = Fetch(pos, vec2(-2.0, off));
vec3 b = Fetch(pos, vec2(-1.0, off));
vec3 c = Fetch(pos, vec2(0.0, off));
vec3 d = Fetch(pos, vec2(1.0, off));
vec3 e = Fetch(pos, vec2(2.0, off));
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = hardPix;
float wa = Gaus(dst - 2.0, scale);
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
float we = Gaus(dst + 2.0, scale);
// Return filtered sample.
return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we);
}
// Return scanline weight.
float Scan(vec2 pos, float off)
{
float dst = Dist(pos).y;
return Gaus(dst + off, hardScan);
}
// Allow nearest three lines to effect pixel.
vec3 Tri(vec2 pos)
{
vec3 a = Horz3(pos, -1.0);
vec3 b = Horz5(pos, 0.0);
vec3 c = Horz3(pos, 1.0);
float wa = Scan(pos, -1.0);
float wb = Scan(pos, 0.0);
float wc = Scan(pos, 1.0);
return a * wa + b * wb + c * wc;
}
// Distortion of scanlines, and end of screen alpha.
vec2 Warp(vec2 pos)
{
pos = pos * 2.0 -1.0;
pos *= vec2(1.0 + (pos.y * pos.y) * warpX, 1.0 + (pos.x * pos.x) * warpY);
return pos * 0.5 + 0.5;
}
// Shadow mask.
vec3 Mask(vec2 pos)
{
pos.x += pos.y * 3.0;
vec3 mask = vec3(maskDark, maskDark, maskDark);
pos.x = fract(pos.x / 6.0);
if (pos.x < 0.333)
{
mask.r = maskLight;
}
else if (pos.x < 0.666)
{
mask.g = maskLight;
}
else
{
mask.b = maskLight;
}
return mask;
}
void main()
{
vec2 pos = Warp(tex.xy * (IN.texture_size.xy / IN.video_size.xy)) * (IN.video_size.xy / IN.texture_size.xy);
vec3 outColor = Tri(pos);
if (shadowMask != 0)
{
outColor.rgb *= Mask(floor(tex.xy * (IN.texture_size.xy / IN.video_size.xy) * IN.output_size.xy) + vec2(0.5, 0.5));
}
color = vec4(ToSrgb(outColor.rgb), 1.0);
}