-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfid_metrology_json.py
33 lines (30 loc) · 1.14 KB
/
fid_metrology_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 1 13:21:35 2019
@author: Duan Yutong ([email protected])
"""
import os
import numpy as np
import pandas as pd
import simplejson as json
petal_id = 2
traveller_dir = r'Downloads'
traveller_fn = f'FPP Metrology Traveler - Petal{petal_id:02} - ZBF.xlsx'
path = os.path.join(traveller_dir, traveller_fn)
data = pd.read_excel(path, skiprows=17)
fifids = {11: 'P018', 75: 'P125', 150: 'P014', 239: 'P082', 321: 'P124',
439: 'P104', 482: 'P010', 496: 'P066', 517: 'P023', 534: 'P096',
541: 'P053', 542: 'P050'}
dump = {}
n_fifs = len(fifids)
for i in range(n_fifs):
device_loc = data['Fiducial Locations'][1+i*5]
fifid = fifids[device_loc]
dump[fifid] = {'petal_id': int(petal_id),
'device_loc': device_loc}
dump[fifid]['center'] = {
'x': np.mean(data['As Built MeasuredZBF Locations'][2+i*5:6+i*5]),
'y': np.mean(data['Unnamed: 7'][2+i*5:6+i*5]),
'z': np.mean(data['Unnamed: 8'][2+i*5:6+i*5])}
with open(os.path.join(traveller_dir, f'petal{petal_id}.json'), 'w') as h:
json.dump(dump, h, ensure_ascii=False, sort_keys=False, indent=4)