forked from Hyfred/Pytorch_DeepFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
41 lines (32 loc) · 1.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import sampler
from model.DeepFM import DeepFM
from data.dataset import CriteoDataset
# 900000 items for training, 10000 items for valid, of all 1000000 items
Num_train = 800
# load data
train_data = CriteoDataset('./data', train=True)
loader_train = DataLoader(train_data, batch_size=50,
sampler=sampler.SubsetRandomSampler(range(Num_train)))
val_data = CriteoDataset('./data', train=True)
loader_val = DataLoader(val_data, batch_size=50,
sampler=sampler.SubsetRandomSampler(range(Num_train, 899)))
feature_sizes = np.loadtxt('./data/feature_sizes.txt', delimiter=',')
feature_sizes = [int(x) for x in feature_sizes]
print(feature_sizes)
model = DeepFM(feature_sizes, use_cuda=False)
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.0)
model.fit(loader_train, loader_val, optimizer, epochs=100, verbose=True)
# test
#xi[:,36,:]
#d = defaultdict(int)
#from collections import defaultdict
#for ii in range(13, 39):
# for t, (xi, xv, y) in enumerate(loader_train):
# d = defaultdict(int)
# for k in xi[:, ii, :]:
# d[int(k)] += 1
# print(d)