diff --git a/graph_cls/Untitled.ipynb b/graph_cls/Untitled.ipynb deleted file mode 100644 index e17332b..0000000 --- a/graph_cls/Untitled.ipynb +++ /dev/null @@ -1,498 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [], - "source": [ - "import networkx as nx\n", - "import numpy as np\n", - "import scipy as sc\n", - "import os\n", - "import re\n", - "import csv\n", - "from scipy import sparse, io" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def read_graphfile(datadir, dataname, max_nodes=None):\n", - " ''' Read data from https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets\n", - " graph index starts with 1 in file\n", - " Returns:\n", - " List of networkx objects with graph and node labels\n", - " '''\n", - " prefix = os.path.join(datadir, dataname, dataname)\n", - " filename_graph_indic = prefix + '_graph_indicator.txt'\n", - " # index of graphs that a given node belongs to\n", - " graph_indic={}\n", - " with open(filename_graph_indic) as f:\n", - " i=1\n", - " for line in f:\n", - " line=line.strip(\"\\n\")\n", - " graph_indic[i]=int(line)\n", - " i+=1\n", - "\n", - " filename_nodes=prefix + '_node_labels.txt'\n", - " node_labels=[]\n", - " min_label_val = None\n", - " try:\n", - " with open(filename_nodes) as f:\n", - " has_zero = False\n", - " for line in f:\n", - " line=line.strip(\"\\n\")\n", - " l = int(line)\n", - " node_labels+=[l]\n", - " if min_label_val is None or min_label_val > l:\n", - " min_label_val = l\n", - " # assume that node labels are consecutive\n", - " num_unique_node_labels = max(node_labels) - min_label_val + 1\n", - " node_labels = [l - min_label_val for l in node_labels]\n", - " except IOError:\n", - " print('No node labels')\n", - " \n", - " filename_node_attrs=prefix + '_node_attributes.txt'\n", - " node_attrs=[]\n", - " try:\n", - " with open(filename_node_attrs) as f:\n", - " for line in f:\n", - " line = line.strip(\"\\s\\n\")\n", - " attrs = [float(attr) for attr in re.split(\"[,\\s]+\", line) if not attr == '']\n", - " node_attrs.append(np.array(attrs))\n", - " except IOError:\n", - " print('No node attributes')\n", - " \n", - " label_has_zero = False\n", - " filename_graphs=prefix + '_graph_labels.txt'\n", - " graph_labels=[]\n", - "\n", - " label_vals = []\n", - " with open(filename_graphs) as f:\n", - " for line in f:\n", - " line=line.strip(\"\\n\")\n", - " val = int(line)\n", - " if val not in label_vals:\n", - " label_vals.append(val)\n", - " graph_labels.append(val)\n", - "\n", - " label_map_to_int = {val:i for i, val in enumerate(label_vals)}\n", - " graph_labels = np.array([label_map_to_int[l] for l in graph_labels])\n", - " \n", - " filename_adj=prefix + '_A.txt'\n", - " adj_list={i:[] for i in range(1,len(graph_labels)+1)} \n", - " index_graph={i:[] for i in range(1,len(graph_labels)+1)}\n", - " num_edges = 0\n", - " with open(filename_adj) as f:\n", - " for line in f:\n", - " line=line.strip(\"\\n\").split(\",\")\n", - " e0,e1=(int(line[0].strip(\" \")),int(line[1].strip(\" \")))\n", - " adj_list[graph_indic[e0]].append((e0,e1))\n", - " index_graph[graph_indic[e0]]+=[e0,e1]\n", - " num_edges += 1\n", - " for k in index_graph.keys():\n", - " index_graph[k]=[u-1 for u in set(index_graph[k])]\n", - "\n", - " graphs=[]\n", - " for i in range(1,1+len(adj_list)):\n", - " # indexed from 1 here\n", - " G=nx.from_edgelist(adj_list[i])\n", - " if max_nodes is not None and G.number_of_nodes() > max_nodes:\n", - " continue\n", - " \n", - " # add features and labels\n", - " G.graph['label'] = graph_labels[i-1]\n", - " for u in G.nodes():\n", - " if len(node_labels) > 0:\n", - " #node_label_one_hot = [0] * num_unique_node_labels\n", - " node_label = node_labels[u-1]\n", - " #node_label_one_hot[node_label] = 1\n", - " G.node[u]['label'] = node_label\n", - " if len(node_attrs) > 0:\n", - " G.node[u]['feat'] = node_attrs[u-1]\n", - " if len(node_attrs) > 0:\n", - " G.graph['feat_dim'] = node_attrs[0].shape[0]\n", - "\n", - " # relabeling\n", - " mapping={}\n", - " it=0\n", - " if float(nx.__version__)<2.0:\n", - " for n in G.nodes():\n", - " mapping[n]=it\n", - " it+=1\n", - " else:\n", - " for n in G.nodes:\n", - " mapping[n]=it\n", - " it+=1\n", - " \n", - " # indexed from 0\n", - " graphs.append(nx.relabel_nodes(G, mapping))\n", - " return graphs, num_unique_node_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No node attributes\n" - ] - } - ], - "source": [ - "datadir = \"\"\n", - "dataname = \"Tox21_AHR\"\n", - "Gs, nb_unique_node_labels = read_graphfile(datadir, dataname, max_nodes=None)" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [], - "source": [ - "Gs = [G for G in Gs if len(G.nodes) < 64]\n", - "Gs = [G for G in Gs if len(G.nodes) > 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "7807" - ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(Gs)" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "NodeDataView({0: {'label': 1}, 1: {'label': 0}, 2: {'label': 1}, 3: {'label': 2}, 4: {'label': 4}, 5: {'label': 1}, 6: {'label': 1}, 7: {'label': 1}, 8: {'label': 1}, 9: {'label': 1}, 10: {'label': 1}, 11: {'label': 1}, 12: {'label': 6}})" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Gs[392].nodes(data=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([], dtype=int64),)" - ] - }, - "execution_count": 129, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.where(np.asarray([len(G.nodes) for G in Gs]) == 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "49" - ] - }, - "execution_count": 130, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nb_unique_node_labels" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [], - "source": [ - "count_0, count_1 = 0,0\n", - "for G in Gs:\n", - " if G.graph['label'] == 0:\n", - " count_0 += 1\n", - " else:\n", - " count_1 += 1" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(6865, 942)" - ] - }, - "execution_count": 132, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "count_0,count_1" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [], - "source": [ - "idx = range(len(Gs))\n", - "shuffled = np.random.permutation(idx)\n", - "pivot = int(len(Gs)*0.2)\n", - "test_idx = shuffled[:pivot]\n", - "train_idx = shuffled[pivot:]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [], - "source": [ - "# Labels\n", - "train_labels, test_labels = [],[]\n", - "for idx,G in enumerate(Gs):\n", - " l = G.graph['label']\n", - " if idx in train_idx:\n", - " train_labels.append(l)\n", - " else:\n", - " test_labels.append(l)\n", - " \n", - "with open(os.path.join(datadir, dataname+'_label.txt'), 'w') as f:\n", - " for l in train_labels:\n", - " f.write(str(l)+'\\n')\n", - "\n", - "with open(os.path.join(datadir, dataname+'_label_val.txt'), 'w') as f:\n", - " for l in test_labels:\n", - " f.write(str(l)+'\\n')" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "metadata": {}, - "outputs": [], - "source": [ - "# TK\n", - "train_tk, test_tk = [],[]\n", - "for idx,G in enumerate(Gs):\n", - " l = [n[1]['label'] for n in G.nodes(data=True)]\n", - " if idx in train_idx:\n", - " train_tk.append(l)\n", - " else:\n", - " test_tk.append(l)\n", - "\n", - "with open(os.path.join(datadir, dataname+'_tk.txt'), 'w') as f:\n", - " w = csv.writer(f, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", - " for tk in train_tk:\n", - " w.writerow(tk)\n", - " \n", - "\n", - "with open(os.path.join(datadir, dataname+'_tk_val.txt'), 'w') as f:\n", - " w = csv.writer(f, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", - " for tk in test_tk:\n", - " w.writerow(tk)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 136, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "NodeDataView({0: {'label': 1}, 1: {'label': 0}, 2: {'label': 1}, 3: {'label': 2}, 4: {'label': 4}, 5: {'label': 1}, 6: {'label': 1}, 7: {'label': 1}, 8: {'label': 1}, 9: {'label': 1}, 10: {'label': 1}, 11: {'label': 1}, 12: {'label': 6}})" - ] - }, - "execution_count": 136, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Gs[392].nodes(data=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 137, - "metadata": {}, - "outputs": [], - "source": [ - "# ADJ" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 139, - "metadata": {}, - "outputs": [], - "source": [ - "max_len = 64" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "train_count, test_count = 0,0\n", - "for idx,G in enumerate(Gs):\n", - " if idx in train_idx:\n", - " fname = str(train_count)+'_'+dataname+\"_adj\"+suffix+\".mtx\"\n", - " else:\n", - " fname = str(test_count)+'_'+dataname+\"_adj\"+suffix+\".mtx\"\n", - " \n", - " G_u = G.to_undirected()\n", - " adj = nx.adj_matrix(G_u).todense()\n", - " final = np.zeros((max_len,max_len), dtype=int)\n", - " final[1:adj.shape[0]+1, 1:adj.shape[1]+1] = adj\n", - " final += np.eye(max_len, dtype=int)\n", - " final[:,0] = np.ones(max_len)\n", - " final[0,:] = np.ones(max_len)\n", - "\n", - " m = sparse.csr_matrix(final)\n", - " sparsedir = os.path.join(datadir, 'adj')\n", - " if not os.path.exists(sparsedir):\n", - " os.makedirs(sparsedir)\n", - " io.mmwrite(os.path.join(sparsedir, fname), m)\n", - " \n", - " if idx in train_idx:\n", - " train_count+= 1\n", - " else:\n", - " test_count += 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "train_count,len(train_idx), test_count,len(test_idx) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "# VOCAB" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/large-corpus/Merge Vocab.ipynb b/large-corpus/Merge Vocab.ipynb index bc194a8..17c9866 100644 --- a/large-corpus/Merge Vocab.ipynb +++ b/large-corpus/Merge Vocab.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -33,24 +33,33 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "files = ['pytorch_mlm_vocab-code.txt', 'sklearn_mlm_vocab-code.txt', 'keras_mlm_vocab-code.txt']\n", + "corpus_members = ['pytorch', 'sklearn', 'keras', 'ansible', 'youtube-dl', 'flask', 'httpie', 'requests', 'django', 'bert']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "files = [f+'_mlm_vocab-code.txt' for f in corpus_members]\n", "out_file = 'global_vocab.csv'" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3823\n" + "9769\n" ] } ], diff --git a/mid-corpus/Merge Vocab.ipynb b/mid-corpus/Merge Vocab.ipynb new file mode 100644 index 0000000..bc194a8 --- /dev/null +++ b/mid-corpus/Merge Vocab.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def merge_vocab(files, out):\n", + " global_vocab = []\n", + " for f in files:\n", + " with open(f, 'r') as csvfile:\n", + " reader = csv.reader(csvfile, delimiter=' ', quotechar='|')\n", + " for row in reader:\n", + " if row[0] not in global_vocab:\n", + " global_vocab.append(row[0])\n", + " print(len(set(global_vocab)))\n", + " with open(out, 'w') as csvfile:\n", + " writer = csv.writer(csvfile, delimiter=' ',\n", + " quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", + " for v in global_vocab:\n", + " writer.writerow([v])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "files = ['pytorch_mlm_vocab-code.txt', 'sklearn_mlm_vocab-code.txt', 'keras_mlm_vocab-code.txt']\n", + "out_file = 'global_vocab.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3823\n" + ] + } + ], + "source": [ + "merge_vocab(files, out_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "label_files = ['pytorch_cls_vocab-label.txt', 'sklearn_cls_vocab-label.txt', 'keras_cls_vocab-label.txt']\n", + "label_out = 'label_vocab.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2490\n" + ] + } + ], + "source": [ + "merge_vocab(label_files, label_out)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/large-corpus/Untitled.ipynb b/mid-corpus/Untitled.ipynb similarity index 100% rename from large-corpus/Untitled.ipynb rename to mid-corpus/Untitled.ipynb diff --git a/node_cls/Untitled.ipynb b/node_cls/Untitled.ipynb new file mode 100644 index 0000000..b5fdada --- /dev/null +++ b/node_cls/Untitled.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import scipy.sparse as sp\n", + "from scipy import io\n", + "import networkx as nx\n", + "import os\n", + "import csv" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def normalize(mx):\n", + " \"\"\"Row-normalize sparse matrix\"\"\"\n", + " rowsum = np.array(mx.sum(1))\n", + " r_inv = np.power(rowsum, -1).flatten()\n", + " r_inv[np.isinf(r_inv)] = 0.\n", + " r_mat_inv = sp.diags(r_inv)\n", + " mx = r_mat_inv.dot(mx)\n", + " return mx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "label_map = {\n", + " \"Case_Based\":0,\n", + " \"Genetic_Algorithms\":1,\n", + " \"Neural_Networks\":2,\n", + " \"Probabilistic_Methods\":3,\n", + " \"Reinforcement_Learning\":4,\n", + " \"Rule_Learning\": 5,\n", + " \"Theory\":6\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "def load_data(path=\"cora/\", dataset=\"cora\"):\n", + " \"\"\"Load citation network dataset (cora only for now)\"\"\"\n", + " print('Loading {} dataset...'.format(dataset))\n", + "\n", + " idx_features_labels = np.genfromtxt(\"{}{}.content\".format(path, dataset),\n", + " dtype=np.dtype(str))\n", + " \n", + " features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)\n", + " labels = idx_features_labels[:, -1]\n", + "\n", + " # build graph\n", + " idx = np.array(idx_features_labels[:, 0], dtype=np.int32)\n", + " idx_map = {j: i for i, j in enumerate(idx)}\n", + " edges_unordered = np.genfromtxt(\"{}{}.cites\".format(path, dataset),\n", + " dtype=np.int32)\n", + " edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),\n", + " dtype=np.int32).reshape(edges_unordered.shape)\n", + " adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),\n", + " shape=(labels.shape[0], labels.shape[0]),\n", + " dtype=np.float32)\n", + "\n", + " # build symmetric adjacency matrix\n", + " adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)\n", + "\n", + " features = normalize(features)\n", + " #adj = normalize(adj + sp.eye(adj.shape[0]))\n", + " labels_int = [label_map[f] for f in idx_features_labels[:, -1]]\n", + " \n", + " idx_train = range(1000)\n", + " idx_val = None\n", + " idx_test = range(1000, 1500)\n", + "\n", + " return adj, features, labels_int, idx_train, idx_val, idx_test" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading cora dataset...\n" + ] + } + ], + "source": [ + "adj, features, labels, idx_train, idx_val, idx_test = load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "G = nx.from_scipy_sparse_matrix(adj)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [], + "source": [ + "max_len = 128" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [], + "source": [ + "dataname = \"CORA\"\n", + "datadir = \"cora\"" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [], + "source": [ + "train_count, test_count = 0,0\n", + "train_tk, test_tk = [],[]\n", + "node_vocab = []\n", + "\n", + "for idx in range(1500):\n", + " G_sub = nx.ego_graph(G, idx, radius=3)\n", + " node_ids = [labels[n] for n in G_sub.nodes]\n", + " if len(node_ids) > max_len-1:\n", + " continue\n", + " \n", + " # ADJ\n", + " if idx in idx_train:\n", + " fname = str(train_count)+'_'+dataname+\"_adj.mtx\"\n", + " else:\n", + " fname = str(test_count)+'_'+dataname+\"_adj_val.mtx\"\n", + " \n", + " G_u = G_sub.to_undirected()\n", + " adj = nx.adj_matrix(G_u).todense()\n", + " final = np.zeros((max_len,max_len), dtype=int)\n", + " final[1:adj.shape[0]+1, 1:adj.shape[1]+1] = adj\n", + " final += np.eye(max_len, dtype=int)\n", + " final[:,0] = np.ones(max_len)\n", + " final[0,:] = np.ones(max_len)\n", + "\n", + " m = sp.csr_matrix(final)\n", + " sparsedir = os.path.join(datadir, 'adj')\n", + " if not os.path.exists(sparsedir):\n", + " os.makedirs(sparsedir)\n", + " io.mmwrite(os.path.join(sparsedir, fname), m)\n", + " \n", + " if idx in idx_train:\n", + " train_count+= 1\n", + " else:\n", + " test_count += 1\n", + " \n", + " for w in node_ids:\n", + " if w not in node_vocab:\n", + " node_vocab.append(w)\n", + " node_ids.insert(0,'[CLS]')\n", + " if idx in idx_train:\n", + " train_tk.append(node_ids)\n", + " else:\n", + " test_tk.append(node_ids)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(541, 322)" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_count, test_count" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "with open(os.path.join(datadir, dataname+'-vocab.txt'), 'w') as f: \n", + " for i in range(np.max(node_vocab)+1):\n", + " f.write(str(i)+'\\n')\n", + " f.write(\"[CLS]\"+'\\n')\n", + " f.write(\"[MASK]\"+'\\n')" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [], + "source": [ + "with open(os.path.join(datadir, dataname+'_tk.txt'), 'w') as f:\n", + " w = csv.writer(f, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", + " for tk in train_tk:\n", + " w.writerow(tk)\n", + " w.writerow([])\n", + " \n", + "\n", + "with open(os.path.join(datadir, dataname+'_tk_val.txt'), 'w') as f:\n", + " w = csv.writer(f, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", + " for tk in test_tk:\n", + " w.writerow(tk)\n", + " w.writerow([])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/Inspect Predictions - Graph.ipynb b/notebook/Inspect Predictions - Graph.ipynb index 33b7c33..abe0666 100644 --- a/notebook/Inspect Predictions - Graph.ipynb +++ b/notebook/Inspect Predictions - Graph.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -42,16 +42,16 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ - "prefix='ENZYMES'" + "prefix='MSRC_21'" ] }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -81,278 +81,743 @@ " 3\n", " 4\n", " 5\n", + " 6\n", + " 7\n", + " 8\n", + " 9\n", + " ...\n", + " 12\n", + " 13\n", + " 14\n", + " 15\n", + " 16\n", + " 17\n", + " 18\n", + " 19\n", + " 20\n", + " 21\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.080322\n", - " 0.406207\n", - " 0.377125\n", - " 0.101128\n", - " 0.000117\n", - " 0.035101\n", + " 0.027983\n", + " 0.079788\n", + " 0.036235\n", + " 0.023015\n", + " 0.065610\n", + " 0.043837\n", + " 0.052609\n", + " 0.055141\n", + " 0.029711\n", + " 0.049585\n", + " ...\n", + " 0.035592\n", + " 0.045377\n", + " 0.052197\n", + " 0.042461\n", + " 0.029877\n", + " 0.049065\n", + " 0.059313\n", + " 0.057875\n", + " 0.023566\n", + " 0.021527\n", " \n", " \n", " 1\n", - " 0.789287\n", - " 0.068335\n", - " 0.047145\n", - " 0.094098\n", - " 0.000980\n", - " 0.000155\n", + " 0.082299\n", + " 0.040789\n", + " 0.077948\n", + " 0.062490\n", + " 0.031518\n", + " 0.034720\n", + " 0.037025\n", + " 0.035525\n", + " 0.095922\n", + " 0.033952\n", + " ...\n", + " 0.041695\n", + " 0.033751\n", + " 0.027364\n", + " 0.068650\n", + " 0.033005\n", + " 0.041409\n", + " 0.051750\n", + " 0.051339\n", + " 0.029467\n", + " 0.026703\n", " \n", " \n", " 2\n", - " 0.762841\n", - " 0.024799\n", - " 0.137096\n", - " 0.073537\n", - " 0.001202\n", - " 0.000525\n", + " 0.032876\n", + " 0.055980\n", + " 0.046175\n", + " 0.029865\n", + " 0.054967\n", + " 0.066957\n", + " 0.064695\n", + " 0.055646\n", + " 0.039173\n", + " 0.055304\n", + " ...\n", + " 0.038458\n", + " 0.044789\n", + " 0.065258\n", + " 0.046748\n", + " 0.023493\n", + " 0.048465\n", + " 0.043368\n", + " 0.054927\n", + " 0.021698\n", + " 0.020615\n", " \n", " \n", " 3\n", - " 0.009087\n", - " 0.000259\n", - " 0.024026\n", - " 0.875603\n", - " 0.011644\n", - " 0.079382\n", + " 0.031383\n", + " 0.054110\n", + " 0.034033\n", + " 0.028100\n", + " 0.069831\n", + " 0.047403\n", + " 0.057749\n", + " 0.082137\n", + " 0.033190\n", + " 0.044436\n", + " ...\n", + " 0.042111\n", + " 0.044177\n", + " 0.047025\n", + " 0.043393\n", + " 0.029789\n", + " 0.048610\n", + " 0.058187\n", + " 0.053505\n", + " 0.024899\n", + " 0.028315\n", " \n", " \n", " 4\n", - " 0.701870\n", - " 0.000069\n", - " 0.026003\n", - " 0.156832\n", - " 0.012586\n", - " 0.102640\n", + " 0.029956\n", + " 0.060813\n", + " 0.046997\n", + " 0.026556\n", + " 0.085200\n", + " 0.047002\n", + " 0.056402\n", + " 0.049594\n", + " 0.028837\n", + " 0.052252\n", + " ...\n", + " 0.036659\n", + " 0.040185\n", + " 0.045348\n", + " 0.045102\n", + " 0.028286\n", + " 0.056712\n", + " 0.056932\n", + " 0.054910\n", + " 0.023694\n", + " 0.021604\n", " \n", " \n", " 5\n", - " 0.016722\n", - " 0.001152\n", - " 0.075507\n", - " 0.088209\n", - " 0.008319\n", - " 0.810092\n", + " 0.032505\n", + " 0.050670\n", + " 0.060178\n", + " 0.029576\n", + " 0.043828\n", + " 0.036130\n", + " 0.045985\n", + " 0.041704\n", + " 0.034196\n", + " 0.041549\n", + " ...\n", + " 0.028658\n", + " 0.035186\n", + " 0.044895\n", + " 0.036150\n", + " 0.035234\n", + " 0.041594\n", + " 0.049718\n", + " 0.059555\n", + " 0.031673\n", + " 0.029378\n", " \n", " \n", " 6\n", - " 0.652011\n", - " 0.014694\n", - " 0.254270\n", - " 0.076600\n", - " 0.001153\n", - " 0.001272\n", + " 0.103993\n", + " 0.040298\n", + " 0.066262\n", + " 0.071247\n", + " 0.028470\n", + " 0.039297\n", + " 0.036226\n", + " 0.035376\n", + " 0.104617\n", + " 0.035680\n", + " ...\n", + " 0.041949\n", + " 0.031776\n", + " 0.035615\n", + " 0.066399\n", + " 0.032411\n", + " 0.034684\n", + " 0.034398\n", + " 0.046455\n", + " 0.032355\n", + " 0.028351\n", " \n", " \n", " 7\n", - " 0.503152\n", - " 0.190103\n", - " 0.146537\n", - " 0.140299\n", - " 0.019612\n", - " 0.000297\n", + " 0.032741\n", + " 0.075311\n", + " 0.043249\n", + " 0.029438\n", + " 0.045879\n", + " 0.047930\n", + " 0.057232\n", + " 0.051124\n", + " 0.038082\n", + " 0.067939\n", + " ...\n", + " 0.040822\n", + " 0.046295\n", + " 0.065309\n", + " 0.059787\n", + " 0.023003\n", + " 0.051813\n", + " 0.047852\n", + " 0.060252\n", + " 0.021338\n", + " 0.018432\n", " \n", " \n", " 8\n", - " 0.902592\n", - " 0.000175\n", - " 0.027184\n", - " 0.066996\n", - " 0.001453\n", - " 0.001600\n", + " 0.054265\n", + " 0.047404\n", + " 0.050633\n", + " 0.048070\n", + " 0.033149\n", + " 0.046264\n", + " 0.051029\n", + " 0.042253\n", + " 0.072159\n", + " 0.044815\n", + " ...\n", + " 0.035738\n", + " 0.084483\n", + " 0.038417\n", + " 0.061949\n", + " 0.041061\n", + " 0.040599\n", + " 0.048070\n", + " 0.044206\n", + " 0.024852\n", + " 0.027938\n", " \n", " \n", " 9\n", - " 0.107776\n", - " 0.036636\n", - " 0.003279\n", - " 0.797520\n", - " 0.000214\n", - " 0.054574\n", + " 0.026146\n", + " 0.054937\n", + " 0.048305\n", + " 0.025034\n", + " 0.053544\n", + " 0.036021\n", + " 0.047155\n", + " 0.045463\n", + " 0.026715\n", + " 0.041865\n", + " ...\n", + " 0.029586\n", + " 0.038165\n", + " 0.045176\n", + " 0.034079\n", + " 0.036344\n", + " 0.044400\n", + " 0.056563\n", + " 0.058041\n", + " 0.030263\n", + " 0.028583\n", " \n", " \n", " 10\n", - " 0.946610\n", - " 0.000071\n", - " 0.014849\n", - " 0.027311\n", - " 0.007029\n", - " 0.004130\n", + " 0.044803\n", + " 0.043459\n", + " 0.058550\n", + " 0.037652\n", + " 0.048391\n", + " 0.053492\n", + " 0.055440\n", + " 0.044599\n", + " 0.060610\n", + " 0.041145\n", + " ...\n", + " 0.030184\n", + " 0.036030\n", + " 0.048406\n", + " 0.039524\n", + " 0.027613\n", + " 0.036440\n", + " 0.040421\n", + " 0.063431\n", + " 0.025538\n", + " 0.026594\n", " \n", " \n", " 11\n", - " 0.493794\n", - " 0.010965\n", - " 0.027937\n", - " 0.185381\n", - " 0.000163\n", - " 0.281761\n", + " 0.039564\n", + " 0.051063\n", + " 0.054792\n", + " 0.036674\n", + " 0.033903\n", + " 0.045849\n", + " 0.049141\n", + " 0.040761\n", + " 0.034873\n", + " 0.051248\n", + " ...\n", + " 0.034034\n", + " 0.097834\n", + " 0.042714\n", + " 0.052912\n", + " 0.044169\n", + " 0.042934\n", + " 0.052739\n", + " 0.045535\n", + " 0.027757\n", + " 0.029915\n", " \n", " \n", " 12\n", - " 0.863658\n", - " 0.107837\n", - " 0.022543\n", - " 0.002440\n", - " 0.003282\n", - " 0.000239\n", + " 0.025149\n", + " 0.068353\n", + " 0.036118\n", + " 0.022852\n", + " 0.066839\n", + " 0.042206\n", + " 0.055307\n", + " 0.051360\n", + " 0.029594\n", + " 0.047536\n", + " ...\n", + " 0.032840\n", + " 0.045380\n", + " 0.052624\n", + " 0.039152\n", + " 0.029014\n", + " 0.047138\n", + " 0.058443\n", + " 0.063205\n", + " 0.022645\n", + " 0.022546\n", " \n", " \n", " 13\n", - " 0.029164\n", - " 0.388486\n", - " 0.003546\n", - " 0.142325\n", - " 0.436363\n", - " 0.000116\n", + " 0.034673\n", + " 0.085115\n", + " 0.041795\n", + " 0.028061\n", + " 0.050224\n", + " 0.049211\n", + " 0.054105\n", + " 0.054421\n", + " 0.036506\n", + " 0.058971\n", + " ...\n", + " 0.042580\n", + " 0.047073\n", + " 0.060709\n", + " 0.058086\n", + " 0.024581\n", + " 0.053250\n", + " 0.049764\n", + " 0.057859\n", + " 0.021567\n", + " 0.017666\n", " \n", " \n", " 14\n", - " 0.862394\n", - " 0.027993\n", - " 0.011049\n", - " 0.077691\n", - " 0.020628\n", - " 0.000244\n", + " 0.042686\n", + " 0.046866\n", + " 0.064636\n", + " 0.038779\n", + " 0.044685\n", + " 0.033205\n", + " 0.039628\n", + " 0.042859\n", + " 0.039978\n", + " 0.036608\n", + " ...\n", + " 0.037727\n", + " 0.037264\n", + " 0.031588\n", + " 0.048745\n", + " 0.043206\n", + " 0.051650\n", + " 0.075562\n", + " 0.053607\n", + " 0.034320\n", + " 0.029350\n", " \n", " \n", " 15\n", - " 0.862394\n", - " 0.027993\n", - " 0.011049\n", - " 0.077691\n", - " 0.020628\n", - " 0.000244\n", + " 0.078728\n", + " 0.037026\n", + " 0.098867\n", + " 0.061680\n", + " 0.027539\n", + " 0.034491\n", + " 0.037569\n", + " 0.033485\n", + " 0.084809\n", + " 0.034476\n", + " ...\n", + " 0.038219\n", + " 0.031806\n", + " 0.028372\n", + " 0.060416\n", + " 0.035160\n", + " 0.040257\n", + " 0.046530\n", + " 0.050388\n", + " 0.034917\n", + " 0.029220\n", " \n", " \n", " 16\n", - " 0.843085\n", - " 0.091937\n", - " 0.059917\n", - " 0.001220\n", - " 0.003040\n", - " 0.000801\n", + " 0.091983\n", + " 0.051195\n", + " 0.057827\n", + " 0.059279\n", + " 0.037479\n", + " 0.038869\n", + " 0.038894\n", + " 0.041632\n", + " 0.087360\n", + " 0.037998\n", + " ...\n", + " 0.042463\n", + " 0.034077\n", + " 0.036834\n", + " 0.069890\n", + " 0.030210\n", + " 0.039705\n", + " 0.045320\n", + " 0.051975\n", + " 0.025327\n", + " 0.022671\n", " \n", " \n", " 17\n", - " 0.811183\n", - " 0.167679\n", - " 0.015733\n", - " 0.003890\n", - " 0.001309\n", - " 0.000206\n", + " 0.087725\n", + " 0.037342\n", + " 0.061506\n", + " 0.071084\n", + " 0.028710\n", + " 0.038580\n", + " 0.037890\n", + " 0.035150\n", + " 0.126100\n", + " 0.034042\n", + " ...\n", + " 0.041944\n", + " 0.034975\n", + " 0.030699\n", + " 0.066693\n", + " 0.033787\n", + " 0.036047\n", + " 0.038344\n", + " 0.044913\n", + " 0.032446\n", + " 0.030885\n", " \n", " \n", " 18\n", - " 0.000140\n", - " 0.901083\n", - " 0.034030\n", - " 0.023189\n", - " 0.022851\n", - " 0.018707\n", + " 0.032999\n", + " 0.057029\n", + " 0.032893\n", + " 0.031609\n", + " 0.072348\n", + " 0.041264\n", + " 0.046101\n", + " 0.052090\n", + " 0.034681\n", + " 0.042465\n", + " ...\n", + " 0.045231\n", + " 0.049808\n", + " 0.037461\n", + " 0.046802\n", + " 0.039396\n", + " 0.052338\n", + " 0.076085\n", + " 0.051606\n", + " 0.029022\n", + " 0.029630\n", " \n", " \n", " 19\n", - " 0.855388\n", - " 0.021839\n", - " 0.004056\n", - " 0.011667\n", - " 0.106996\n", - " 0.000054\n", + " 0.032931\n", + " 0.041823\n", + " 0.033188\n", + " 0.033331\n", + " 0.115316\n", + " 0.046938\n", + " 0.050329\n", + " 0.046147\n", + " 0.032505\n", + " 0.042334\n", + " ...\n", + " 0.040709\n", + " 0.041920\n", + " 0.035222\n", + " 0.034031\n", + " 0.041053\n", + " 0.048224\n", + " 0.056014\n", + " 0.044282\n", + " 0.033669\n", + " 0.040630\n", " \n", " \n", " 20\n", - " 0.000404\n", - " 0.943844\n", - " 0.006562\n", - " 0.047808\n", - " 0.000533\n", - " 0.000849\n", + " 0.030760\n", + " 0.054202\n", + " 0.044486\n", + " 0.035570\n", + " 0.041990\n", + " 0.042787\n", + " 0.057056\n", + " 0.045820\n", + " 0.039764\n", + " 0.093046\n", + " ...\n", + " 0.034534\n", + " 0.042414\n", + " 0.061096\n", + " 0.058227\n", + " 0.026941\n", + " 0.047547\n", + " 0.048564\n", + " 0.058848\n", + " 0.026303\n", + " 0.027081\n", " \n", " \n", " 21\n", - " 0.010487\n", - " 0.174528\n", - " 0.544113\n", - " 0.001307\n", - " 0.000843\n", - " 0.268721\n", + " 0.033354\n", + " 0.059032\n", + " 0.036468\n", + " 0.030955\n", + " 0.064287\n", + " 0.039781\n", + " 0.045661\n", + " 0.050616\n", + " 0.032897\n", + " 0.043318\n", + " ...\n", + " 0.042850\n", + " 0.054727\n", + " 0.036977\n", + " 0.049809\n", + " 0.040564\n", + " 0.052956\n", + " 0.079728\n", + " 0.051484\n", + " 0.027723\n", + " 0.027752\n", " \n", " \n", " 22\n", - " 0.000149\n", - " 0.930636\n", - " 0.060365\n", - " 0.006790\n", - " 0.000683\n", - " 0.001377\n", + " 0.043943\n", + " 0.050321\n", + " 0.044892\n", + " 0.037023\n", + " 0.041556\n", + " 0.047991\n", + " 0.037874\n", + " 0.042047\n", + " 0.035697\n", + " 0.039862\n", + " ...\n", + " 0.150360\n", + " 0.033615\n", + " 0.038781\n", + " 0.048114\n", + " 0.035387\n", + " 0.052964\n", + " 0.036683\n", + " 0.042427\n", + " 0.037527\n", + " 0.031521\n", " \n", " \n", " 23\n", - " 0.000320\n", - " 0.517026\n", - " 0.044142\n", - " 0.193372\n", - " 0.216142\n", - " 0.028998\n", + " 0.086575\n", + " 0.034601\n", + " 0.058675\n", + " 0.073111\n", + " 0.029412\n", + " 0.038210\n", + " 0.037658\n", + " 0.035155\n", + " 0.128458\n", + " 0.032865\n", + " ...\n", + " 0.042086\n", + " 0.035956\n", + " 0.029215\n", + " 0.062356\n", + " 0.037203\n", + " 0.035600\n", + " 0.038399\n", + " 0.042228\n", + " 0.035287\n", + " 0.035151\n", " \n", " \n", " 24\n", - " 0.045499\n", - " 0.580400\n", - " 0.002498\n", - " 0.346710\n", - " 0.003845\n", - " 0.021047\n", + " 0.033616\n", + " 0.077075\n", + " 0.042619\n", + " 0.028655\n", + " 0.046721\n", + " 0.049217\n", + " 0.056031\n", + " 0.052203\n", + " 0.038103\n", + " 0.061711\n", + " ...\n", + " 0.041874\n", + " 0.047211\n", + " 0.069920\n", + " 0.057508\n", + " 0.023108\n", + " 0.052065\n", + " 0.046508\n", + " 0.059036\n", + " 0.021542\n", + " 0.018080\n", " \n", " \n", " 25\n", - " 0.006702\n", - " 0.022606\n", - " 0.171615\n", - " 0.000125\n", - " 0.798483\n", - " 0.000468\n", + " 0.030743\n", + " 0.062387\n", + " 0.043996\n", + " 0.032692\n", + " 0.043117\n", + " 0.044674\n", + " 0.057717\n", + " 0.047802\n", + " 0.038690\n", + " 0.086031\n", + " ...\n", + " 0.036194\n", + " 0.043663\n", + " 0.064207\n", + " 0.059341\n", + " 0.024537\n", + " 0.049248\n", + " 0.048372\n", + " 0.060466\n", + " 0.023488\n", + " 0.022653\n", " \n", " \n", " 26\n", - " 0.000488\n", - " 0.951579\n", - " 0.005742\n", - " 0.000836\n", - " 0.041309\n", - " 0.000046\n", + " 0.078209\n", + " 0.049287\n", + " 0.065102\n", + " 0.057921\n", + " 0.032000\n", + " 0.040219\n", + " 0.046224\n", + " 0.038248\n", + " 0.100858\n", + " 0.040724\n", + " ...\n", + " 0.043450\n", + " 0.036104\n", + " 0.038153\n", + " 0.072896\n", + " 0.026318\n", + " 0.039224\n", + " 0.040962\n", + " 0.052158\n", + " 0.025452\n", + " 0.022144\n", " \n", " \n", " 27\n", - " 0.419345\n", - " 0.062639\n", - " 0.001323\n", - " 0.506182\n", - " 0.010420\n", - " 0.000090\n", + " 0.034559\n", + " 0.065191\n", + " 0.040685\n", + " 0.029936\n", + " 0.048363\n", + " 0.046057\n", + " 0.051913\n", + " 0.047731\n", + " 0.033854\n", + " 0.051908\n", + " ...\n", + " 0.036911\n", + " 0.083034\n", + " 0.046336\n", + " 0.055994\n", + " 0.035326\n", + " 0.047796\n", + " 0.062853\n", + " 0.052634\n", + " 0.021429\n", + " 0.022588\n", " \n", " \n", " 28\n", - " 0.026586\n", - " 0.755681\n", - " 0.003308\n", - " 0.034438\n", - " 0.179953\n", - " 0.000034\n", + " 0.086283\n", + " 0.045861\n", + " 0.062427\n", + " 0.058375\n", + " 0.028427\n", + " 0.044481\n", + " 0.042494\n", + " 0.037384\n", + " 0.071423\n", + " 0.042134\n", + " ...\n", + " 0.035771\n", + " 0.064745\n", + " 0.040726\n", + " 0.066867\n", + " 0.038131\n", + " 0.034964\n", + " 0.039009\n", + " 0.045857\n", + " 0.026465\n", + " 0.026685\n", " \n", " \n", " 29\n", - " 0.039306\n", - " 0.790481\n", - " 0.000972\n", - " 0.162480\n", - " 0.006046\n", - " 0.000714\n", + " 0.062459\n", + " 0.041017\n", + " 0.058636\n", + " 0.057057\n", + " 0.041305\n", + " 0.047517\n", + " 0.050627\n", + " 0.041722\n", + " 0.076179\n", + " 0.040864\n", + " ...\n", + " 0.041665\n", + " 0.037326\n", + " 0.046682\n", + " 0.068976\n", + " 0.026715\n", + " 0.036728\n", + " 0.038237\n", + " 0.064387\n", + " 0.026799\n", + " 0.025560\n", " \n", " \n", " ...\n", @@ -362,371 +827,962 @@ " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 82\n", + " 0.065614\n", + " 0.039598\n", + " 0.111301\n", + " 0.051659\n", + " 0.029684\n", + " 0.034585\n", + " 0.040770\n", + " 0.034798\n", + " 0.067167\n", + " 0.036953\n", + " ...\n", + " 0.037534\n", + " 0.034122\n", + " 0.029891\n", + " 0.054243\n", + " 0.034711\n", + " 0.043401\n", + " 0.050102\n", + " 0.052792\n", + " 0.034134\n", + " 0.028355\n", + " \n", + " \n", + " 83\n", + " 0.035028\n", + " 0.071044\n", + " 0.042615\n", + " 0.029416\n", + " 0.056253\n", + " 0.044821\n", + " 0.069191\n", + " 0.051838\n", + " 0.037086\n", + " 0.058182\n", + " ...\n", + " 0.043910\n", + " 0.049231\n", + " 0.060864\n", + " 0.051451\n", + " 0.025514\n", + " 0.049892\n", + " 0.049833\n", + " 0.052714\n", + " 0.023082\n", + " 0.019822\n", + " \n", + " \n", + " 84\n", + " 0.101112\n", + " 0.048375\n", + " 0.064964\n", + " 0.062281\n", + " 0.031821\n", + " 0.042080\n", + " 0.039278\n", + " 0.040072\n", + " 0.083869\n", + " 0.040515\n", + " ...\n", + " 0.042343\n", + " 0.032872\n", + " 0.044111\n", + " 0.064455\n", + " 0.030700\n", + " 0.036691\n", + " 0.033516\n", + " 0.048578\n", + " 0.029632\n", + " 0.024524\n", + " \n", + " \n", + " 85\n", + " 0.030393\n", + " 0.052510\n", + " 0.037849\n", + " 0.029890\n", + " 0.086273\n", + " 0.044839\n", + " 0.050140\n", + " 0.050668\n", + " 0.030873\n", + " 0.043122\n", + " ...\n", + " 0.040347\n", + " 0.044339\n", + " 0.037591\n", + " 0.040867\n", + " 0.036208\n", + " 0.052100\n", + " 0.068486\n", + " 0.052356\n", + " 0.028037\n", + " 0.028341\n", " \n", " \n", " 86\n", - " 0.000623\n", - " 0.008444\n", - " 0.345578\n", - " 0.001594\n", - " 0.641204\n", - " 0.002557\n", + " 0.034393\n", + " 0.074622\n", + " 0.042625\n", + " 0.028708\n", + " 0.053640\n", + " 0.046086\n", + " 0.066082\n", + " 0.052191\n", + " 0.037034\n", + " 0.059698\n", + " ...\n", + " 0.043335\n", + " 0.048588\n", + " 0.062705\n", + " 0.053943\n", + " 0.024106\n", + " 0.050823\n", + " 0.049352\n", + " 0.055087\n", + " 0.021811\n", + " 0.018500\n", " \n", " \n", " 87\n", - " 0.018849\n", - " 0.475657\n", - " 0.000473\n", - " 0.416433\n", - " 0.088511\n", - " 0.000076\n", + " 0.034628\n", + " 0.048158\n", + " 0.034503\n", + " 0.029887\n", + " 0.063577\n", + " 0.045613\n", + " 0.057075\n", + " 0.096326\n", + " 0.034519\n", + " 0.042707\n", + " ...\n", + " 0.043000\n", + " 0.042002\n", + " 0.046209\n", + " 0.042759\n", + " 0.032315\n", + " 0.046696\n", + " 0.053674\n", + " 0.049011\n", + " 0.028683\n", + " 0.035491\n", " \n", " \n", " 88\n", - " 0.028410\n", - " 0.285428\n", - " 0.000136\n", - " 0.646256\n", - " 0.039668\n", - " 0.000101\n", + " 0.029707\n", + " 0.052203\n", + " 0.044853\n", + " 0.027425\n", + " 0.052746\n", + " 0.038242\n", + " 0.049532\n", + " 0.043025\n", + " 0.034755\n", + " 0.041804\n", + " ...\n", + " 0.028580\n", + " 0.038398\n", + " 0.049179\n", + " 0.032092\n", + " 0.034688\n", + " 0.037681\n", + " 0.045880\n", + " 0.060169\n", + " 0.030638\n", + " 0.032345\n", " \n", " \n", " 89\n", - " 0.001069\n", - " 0.003075\n", - " 0.004691\n", - " 0.000604\n", - " 0.988923\n", - " 0.001638\n", + " 0.032829\n", + " 0.060884\n", + " 0.036295\n", + " 0.030453\n", + " 0.066238\n", + " 0.039350\n", + " 0.045534\n", + " 0.051757\n", + " 0.033199\n", + " 0.043487\n", + " ...\n", + " 0.044384\n", + " 0.048178\n", + " 0.037859\n", + " 0.050210\n", + " 0.038253\n", + " 0.054807\n", + " 0.079265\n", + " 0.052785\n", + " 0.028003\n", + " 0.026768\n", " \n", " \n", " 90\n", - " 0.001752\n", - " 0.001348\n", - " 0.001095\n", - " 0.001028\n", - " 0.994771\n", - " 0.000006\n", + " 0.039032\n", + " 0.044988\n", + " 0.047372\n", + " 0.039070\n", + " 0.039515\n", + " 0.053132\n", + " 0.053471\n", + " 0.041611\n", + " 0.036943\n", + " 0.048158\n", + " ...\n", + " 0.033388\n", + " 0.102279\n", + " 0.044595\n", + " 0.045020\n", + " 0.044324\n", + " 0.038106\n", + " 0.045737\n", + " 0.046186\n", + " 0.028856\n", + " 0.034689\n", " \n", " \n", " 91\n", - " 0.907584\n", - " 0.002283\n", - " 0.025072\n", - " 0.003035\n", - " 0.056052\n", - " 0.005975\n", + " 0.035166\n", + " 0.051704\n", + " 0.040098\n", + " 0.030816\n", + " 0.108649\n", + " 0.053707\n", + " 0.060677\n", + " 0.045415\n", + " 0.034643\n", + " 0.058854\n", + " ...\n", + " 0.038591\n", + " 0.038493\n", + " 0.050301\n", + " 0.040746\n", + " 0.029858\n", + " 0.049727\n", + " 0.039092\n", + " 0.045415\n", + " 0.028905\n", + " 0.032281\n", " \n", " \n", " 92\n", - " 0.582291\n", - " 0.002645\n", - " 0.349497\n", - " 0.022665\n", - " 0.002794\n", - " 0.040108\n", + " 0.040830\n", + " 0.045328\n", + " 0.083087\n", + " 0.039127\n", + " 0.033020\n", + " 0.036804\n", + " 0.041127\n", + " 0.042001\n", + " 0.031746\n", + " 0.043694\n", + " ...\n", + " 0.039158\n", + " 0.036597\n", + " 0.040224\n", + " 0.047358\n", + " 0.042660\n", + " 0.053042\n", + " 0.055306\n", + " 0.048353\n", + " 0.042441\n", + " 0.031642\n", " \n", " \n", " 93\n", - " 0.020871\n", - " 0.000205\n", - " 0.078531\n", - " 0.005291\n", - " 0.003539\n", - " 0.891563\n", + " 0.041650\n", + " 0.057578\n", + " 0.045023\n", + " 0.034186\n", + " 0.042197\n", + " 0.048577\n", + " 0.040336\n", + " 0.043883\n", + " 0.034974\n", + " 0.042952\n", + " ...\n", + " 0.141277\n", + " 0.034930\n", + " 0.042204\n", + " 0.051819\n", + " 0.031393\n", + " 0.055175\n", + " 0.038236\n", + " 0.045235\n", + " 0.032450\n", + " 0.026259\n", " \n", " \n", " 94\n", - " 0.144768\n", - " 0.000388\n", - " 0.031331\n", - " 0.755301\n", - " 0.015876\n", - " 0.052336\n", + " 0.032713\n", + " 0.061353\n", + " 0.042793\n", + " 0.027991\n", + " 0.056604\n", + " 0.060919\n", + " 0.061583\n", + " 0.057007\n", + " 0.037884\n", + " 0.055115\n", + " ...\n", + " 0.039434\n", + " 0.046046\n", + " 0.060298\n", + " 0.051175\n", + " 0.024780\n", + " 0.052373\n", + " 0.051754\n", + " 0.053424\n", + " 0.020771\n", + " 0.019766\n", " \n", " \n", " 95\n", - " 0.055254\n", - " 0.005295\n", - " 0.026642\n", - " 0.022017\n", - " 0.714126\n", - " 0.176665\n", + " 0.045771\n", + " 0.049979\n", + " 0.041616\n", + " 0.033799\n", + " 0.042908\n", + " 0.042321\n", + " 0.056762\n", + " 0.104992\n", + " 0.042933\n", + " 0.047098\n", + " ...\n", + " 0.043015\n", + " 0.038799\n", + " 0.050409\n", + " 0.051644\n", + " 0.031264\n", + " 0.044841\n", + " 0.042476\n", + " 0.044926\n", + " 0.032908\n", + " 0.039834\n", " \n", " \n", " 96\n", - " 0.001022\n", - " 0.000145\n", - " 0.066657\n", - " 0.000202\n", - " 0.005606\n", - " 0.926368\n", + " 0.040931\n", + " 0.047643\n", + " 0.040107\n", + " 0.031950\n", + " 0.046874\n", + " 0.045935\n", + " 0.060147\n", + " 0.108192\n", + " 0.038718\n", + " 0.047083\n", + " ...\n", + " 0.042215\n", + " 0.039123\n", + " 0.053071\n", + " 0.045750\n", + " 0.030564\n", + " 0.043848\n", + " 0.040309\n", + " 0.045465\n", + " 0.032688\n", + " 0.040211\n", " \n", " \n", " 97\n", - " 0.017080\n", - " 0.055413\n", - " 0.075454\n", - " 0.013985\n", - " 0.000121\n", - " 0.837947\n", + " 0.034741\n", + " 0.052510\n", + " 0.039006\n", + " 0.036425\n", + " 0.061919\n", + " 0.043182\n", + " 0.046908\n", + " 0.049995\n", + " 0.042774\n", + " 0.037348\n", + " ...\n", + " 0.045532\n", + " 0.045355\n", + " 0.033203\n", + " 0.044898\n", + " 0.037339\n", + " 0.087399\n", + " 0.061417\n", + " 0.044706\n", + " 0.036172\n", + " 0.032557\n", " \n", " \n", " 98\n", - " 0.531418\n", - " 0.113480\n", - " 0.292914\n", - " 0.005153\n", - " 0.000225\n", - " 0.056809\n", + " 0.070671\n", + " 0.035206\n", + " 0.065472\n", + " 0.066309\n", + " 0.030341\n", + " 0.036256\n", + " 0.042044\n", + " 0.033793\n", + " 0.098926\n", + " 0.046726\n", + " ...\n", + " 0.032634\n", + " 0.031806\n", + " 0.034654\n", + " 0.058815\n", + " 0.034700\n", + " 0.034561\n", + " 0.041438\n", + " 0.053717\n", + " 0.035184\n", + " 0.036769\n", " \n", " \n", " 99\n", - " 0.060437\n", - " 0.044330\n", - " 0.089644\n", - " 0.004676\n", - " 0.000929\n", - " 0.799984\n", + " 0.072850\n", + " 0.049221\n", + " 0.067587\n", + " 0.054379\n", + " 0.032313\n", + " 0.039659\n", + " 0.043492\n", + " 0.037515\n", + " 0.100107\n", + " 0.038627\n", + " ...\n", + " 0.036176\n", + " 0.033324\n", + " 0.038019\n", + " 0.064474\n", + " 0.027746\n", + " 0.037270\n", + " 0.041472\n", + " 0.059757\n", + " 0.026183\n", + " 0.023426\n", " \n", " \n", " 100\n", - " 0.135961\n", - " 0.022681\n", - " 0.230616\n", - " 0.541610\n", - " 0.000142\n", - " 0.068991\n", + " 0.025679\n", + " 0.046917\n", + " 0.043180\n", + " 0.025024\n", + " 0.085426\n", + " 0.044842\n", + " 0.053735\n", + " 0.045834\n", + " 0.025718\n", + " 0.042990\n", + " ...\n", + " 0.029402\n", + " 0.037000\n", + " 0.045183\n", + " 0.028420\n", + " 0.033811\n", + " 0.042795\n", + " 0.048573\n", + " 0.055434\n", + " 0.028894\n", + " 0.030096\n", " \n", " \n", " 101\n", - " 0.117584\n", - " 0.483514\n", - " 0.042713\n", - " 0.343828\n", - " 0.011076\n", - " 0.001286\n", + " 0.034231\n", + " 0.049624\n", + " 0.045663\n", + " 0.034626\n", + " 0.047241\n", + " 0.056521\n", + " 0.060523\n", + " 0.045989\n", + " 0.034630\n", + " 0.051727\n", + " ...\n", + " 0.034507\n", + " 0.082339\n", + " 0.056270\n", + " 0.049734\n", + " 0.032287\n", + " 0.039418\n", + " 0.043215\n", + " 0.056819\n", + " 0.023095\n", + " 0.025953\n", " \n", " \n", " 102\n", - " 0.000066\n", - " 0.077169\n", - " 0.160841\n", - " 0.008179\n", - " 0.619626\n", - " 0.134119\n", + " 0.033792\n", + " 0.040988\n", + " 0.047591\n", + " 0.034842\n", + " 0.059777\n", + " 0.075034\n", + " 0.064774\n", + " 0.054025\n", + " 0.039948\n", + " 0.048264\n", + " ...\n", + " 0.038036\n", + " 0.042633\n", + " 0.060574\n", + " 0.036926\n", + " 0.026981\n", + " 0.042624\n", + " 0.038169\n", + " 0.052943\n", + " 0.026706\n", + " 0.027815\n", " \n", " \n", " 103\n", - " 0.000418\n", - " 0.000241\n", - " 0.010694\n", - " 0.000410\n", - " 0.000046\n", - " 0.988191\n", + " 0.044039\n", + " 0.050073\n", + " 0.044893\n", + " 0.037138\n", + " 0.041541\n", + " 0.047957\n", + " 0.037785\n", + " 0.041982\n", + " 0.035756\n", + " 0.039755\n", + " ...\n", + " 0.150544\n", + " 0.033580\n", + " 0.038651\n", + " 0.047953\n", + " 0.035551\n", + " 0.052896\n", + " 0.036629\n", + " 0.042309\n", + " 0.037734\n", + " 0.031740\n", " \n", " \n", " 104\n", - " 0.034173\n", - " 0.399004\n", - " 0.174507\n", - " 0.255038\n", - " 0.088751\n", - " 0.048528\n", + " 0.039508\n", + " 0.048220\n", + " 0.070464\n", + " 0.037606\n", + " 0.031462\n", + " 0.042207\n", + " 0.045672\n", + " 0.040224\n", + " 0.031544\n", + " 0.049167\n", + " ...\n", + " 0.033919\n", + " 0.075613\n", + " 0.040119\n", + " 0.051125\n", + " 0.045410\n", + " 0.046406\n", + " 0.055250\n", + " 0.046127\n", + " 0.031071\n", + " 0.029454\n", " \n", " \n", " 105\n", - " 0.000126\n", - " 0.008806\n", - " 0.072347\n", - " 0.003892\n", - " 0.001063\n", - " 0.913765\n", + " 0.033318\n", + " 0.056001\n", + " 0.038777\n", + " 0.028807\n", + " 0.108424\n", + " 0.052708\n", + " 0.060891\n", + " 0.047204\n", + " 0.033393\n", + " 0.058685\n", + " ...\n", + " 0.038305\n", + " 0.039929\n", + " 0.049885\n", + " 0.042224\n", + " 0.028364\n", + " 0.051583\n", + " 0.042900\n", + " 0.047559\n", + " 0.025985\n", + " 0.028312\n", " \n", " \n", " 106\n", - " 0.000118\n", - " 0.784845\n", - " 0.014905\n", - " 0.032352\n", - " 0.002857\n", - " 0.164923\n", + " 0.034721\n", + " 0.055520\n", + " 0.051867\n", + " 0.031946\n", + " 0.046088\n", + " 0.039720\n", + " 0.045655\n", + " 0.045936\n", + " 0.029345\n", + " 0.044850\n", + " ...\n", + " 0.036477\n", + " 0.068055\n", + " 0.036590\n", + " 0.051115\n", + " 0.043800\n", + " 0.051092\n", + " 0.075092\n", + " 0.050028\n", + " 0.027076\n", + " 0.026337\n", " \n", " \n", " 107\n", - " 0.001325\n", - " 0.005722\n", - " 0.620649\n", - " 0.001493\n", - " 0.362734\n", - " 0.008077\n", + " 0.032552\n", + " 0.054551\n", + " 0.039057\n", + " 0.030704\n", + " 0.067524\n", + " 0.035670\n", + " 0.043789\n", + " 0.048266\n", + " 0.035439\n", + " 0.038089\n", + " ...\n", + " 0.037341\n", + " 0.043735\n", + " 0.034683\n", + " 0.042035\n", + " 0.041449\n", + " 0.048337\n", + " 0.078866\n", + " 0.055057\n", + " 0.029704\n", + " 0.030256\n", " \n", " \n", " 108\n", - " 0.051256\n", - " 0.000053\n", - " 0.040290\n", - " 0.344267\n", - " 0.010992\n", - " 0.553142\n", + " 0.033187\n", + " 0.039050\n", + " 0.044955\n", + " 0.036343\n", + " 0.057956\n", + " 0.066457\n", + " 0.058844\n", + " 0.049751\n", + " 0.039147\n", + " 0.047794\n", + " ...\n", + " 0.037655\n", + " 0.042061\n", + " 0.075929\n", + " 0.032373\n", + " 0.027754\n", + " 0.039334\n", + " 0.033061\n", + " 0.055804\n", + " 0.031685\n", + " 0.031679\n", " \n", " \n", " 109\n", - " 0.012218\n", - " 0.059597\n", - " 0.012133\n", - " 0.084107\n", - " 0.000024\n", - " 0.831921\n", + " 0.033913\n", + " 0.073319\n", + " 0.045752\n", + " 0.030965\n", + " 0.046855\n", + " 0.050233\n", + " 0.056725\n", + " 0.051077\n", + " 0.042377\n", + " 0.053276\n", + " ...\n", + " 0.043072\n", + " 0.044549\n", + " 0.054345\n", + " 0.056473\n", + " 0.023588\n", + " 0.076329\n", + " 0.045670\n", + " 0.054391\n", + " 0.024653\n", + " 0.019419\n", " \n", " \n", " 110\n", - " 0.021150\n", - " 0.290898\n", - " 0.068613\n", - " 0.405920\n", - " 0.000064\n", - " 0.213356\n", + " 0.037041\n", + " 0.067774\n", + " 0.044258\n", + " 0.029269\n", + " 0.046685\n", + " 0.054345\n", + " 0.056277\n", + " 0.054281\n", + " 0.040839\n", + " 0.059444\n", + " ...\n", + " 0.042391\n", + " 0.046726\n", + " 0.059803\n", + " 0.060979\n", + " 0.026854\n", + " 0.054391\n", + " 0.052803\n", + " 0.049506\n", + " 0.022400\n", + " 0.020520\n", " \n", " \n", " 111\n", - " 0.013645\n", - " 0.160267\n", - " 0.033778\n", - " 0.468831\n", - " 0.000045\n", - " 0.323434\n", - " \n", - " \n", - " 112\n", - " 0.000130\n", - " 0.006521\n", - " 0.030344\n", - " 0.008270\n", - " 0.235646\n", - " 0.719089\n", - " \n", - " \n", - " 113\n", - " 0.011857\n", - " 0.000790\n", - " 0.041395\n", - " 0.209530\n", - " 0.000407\n", - " 0.736020\n", - " \n", - " \n", - " 114\n", - " 0.002886\n", - " 0.044982\n", - " 0.800494\n", - " 0.003210\n", - " 0.104091\n", - " 0.044337\n", - " \n", - " \n", - " 115\n", - " 0.000651\n", - " 0.000124\n", - " 0.047553\n", - " 0.001987\n", - " 0.008576\n", - " 0.941108\n", + " 0.034605\n", + " 0.073372\n", + " 0.042616\n", + " 0.028921\n", + " 0.054673\n", + " 0.045587\n", + " 0.067342\n", + " 0.052097\n", + " 0.037022\n", + " 0.059170\n", + " ...\n", + " 0.043520\n", + " 0.048837\n", + " 0.062061\n", + " 0.053001\n", + " 0.024568\n", + " 0.050495\n", + " 0.049570\n", + " 0.054210\n", + " 0.022218\n", + " 0.018925\n", " \n", " \n", "\n", - "

116 rows × 6 columns

\n", + "

112 rows × 22 columns

\n", "" ], "text/plain": [ - " 0 1 2 3 4 5\n", - "0 0.080322 0.406207 0.377125 0.101128 0.000117 0.035101\n", - "1 0.789287 0.068335 0.047145 0.094098 0.000980 0.000155\n", - "2 0.762841 0.024799 0.137096 0.073537 0.001202 0.000525\n", - "3 0.009087 0.000259 0.024026 0.875603 0.011644 0.079382\n", - "4 0.701870 0.000069 0.026003 0.156832 0.012586 0.102640\n", - "5 0.016722 0.001152 0.075507 0.088209 0.008319 0.810092\n", - "6 0.652011 0.014694 0.254270 0.076600 0.001153 0.001272\n", - "7 0.503152 0.190103 0.146537 0.140299 0.019612 0.000297\n", - "8 0.902592 0.000175 0.027184 0.066996 0.001453 0.001600\n", - "9 0.107776 0.036636 0.003279 0.797520 0.000214 0.054574\n", - "10 0.946610 0.000071 0.014849 0.027311 0.007029 0.004130\n", - "11 0.493794 0.010965 0.027937 0.185381 0.000163 0.281761\n", - "12 0.863658 0.107837 0.022543 0.002440 0.003282 0.000239\n", - "13 0.029164 0.388486 0.003546 0.142325 0.436363 0.000116\n", - "14 0.862394 0.027993 0.011049 0.077691 0.020628 0.000244\n", - "15 0.862394 0.027993 0.011049 0.077691 0.020628 0.000244\n", - "16 0.843085 0.091937 0.059917 0.001220 0.003040 0.000801\n", - "17 0.811183 0.167679 0.015733 0.003890 0.001309 0.000206\n", - "18 0.000140 0.901083 0.034030 0.023189 0.022851 0.018707\n", - "19 0.855388 0.021839 0.004056 0.011667 0.106996 0.000054\n", - "20 0.000404 0.943844 0.006562 0.047808 0.000533 0.000849\n", - "21 0.010487 0.174528 0.544113 0.001307 0.000843 0.268721\n", - "22 0.000149 0.930636 0.060365 0.006790 0.000683 0.001377\n", - "23 0.000320 0.517026 0.044142 0.193372 0.216142 0.028998\n", - "24 0.045499 0.580400 0.002498 0.346710 0.003845 0.021047\n", - "25 0.006702 0.022606 0.171615 0.000125 0.798483 0.000468\n", - "26 0.000488 0.951579 0.005742 0.000836 0.041309 0.000046\n", - "27 0.419345 0.062639 0.001323 0.506182 0.010420 0.000090\n", - "28 0.026586 0.755681 0.003308 0.034438 0.179953 0.000034\n", - "29 0.039306 0.790481 0.000972 0.162480 0.006046 0.000714\n", - ".. ... ... ... ... ... ...\n", - "86 0.000623 0.008444 0.345578 0.001594 0.641204 0.002557\n", - "87 0.018849 0.475657 0.000473 0.416433 0.088511 0.000076\n", - "88 0.028410 0.285428 0.000136 0.646256 0.039668 0.000101\n", - "89 0.001069 0.003075 0.004691 0.000604 0.988923 0.001638\n", - "90 0.001752 0.001348 0.001095 0.001028 0.994771 0.000006\n", - "91 0.907584 0.002283 0.025072 0.003035 0.056052 0.005975\n", - "92 0.582291 0.002645 0.349497 0.022665 0.002794 0.040108\n", - "93 0.020871 0.000205 0.078531 0.005291 0.003539 0.891563\n", - "94 0.144768 0.000388 0.031331 0.755301 0.015876 0.052336\n", - "95 0.055254 0.005295 0.026642 0.022017 0.714126 0.176665\n", - "96 0.001022 0.000145 0.066657 0.000202 0.005606 0.926368\n", - "97 0.017080 0.055413 0.075454 0.013985 0.000121 0.837947\n", - "98 0.531418 0.113480 0.292914 0.005153 0.000225 0.056809\n", - "99 0.060437 0.044330 0.089644 0.004676 0.000929 0.799984\n", - "100 0.135961 0.022681 0.230616 0.541610 0.000142 0.068991\n", - "101 0.117584 0.483514 0.042713 0.343828 0.011076 0.001286\n", - "102 0.000066 0.077169 0.160841 0.008179 0.619626 0.134119\n", - "103 0.000418 0.000241 0.010694 0.000410 0.000046 0.988191\n", - "104 0.034173 0.399004 0.174507 0.255038 0.088751 0.048528\n", - "105 0.000126 0.008806 0.072347 0.003892 0.001063 0.913765\n", - "106 0.000118 0.784845 0.014905 0.032352 0.002857 0.164923\n", - "107 0.001325 0.005722 0.620649 0.001493 0.362734 0.008077\n", - "108 0.051256 0.000053 0.040290 0.344267 0.010992 0.553142\n", - "109 0.012218 0.059597 0.012133 0.084107 0.000024 0.831921\n", - "110 0.021150 0.290898 0.068613 0.405920 0.000064 0.213356\n", - "111 0.013645 0.160267 0.033778 0.468831 0.000045 0.323434\n", - "112 0.000130 0.006521 0.030344 0.008270 0.235646 0.719089\n", - "113 0.011857 0.000790 0.041395 0.209530 0.000407 0.736020\n", - "114 0.002886 0.044982 0.800494 0.003210 0.104091 0.044337\n", - "115 0.000651 0.000124 0.047553 0.001987 0.008576 0.941108\n", + " 0 1 2 3 4 5 6 \\\n", + "0 0.027983 0.079788 0.036235 0.023015 0.065610 0.043837 0.052609 \n", + "1 0.082299 0.040789 0.077948 0.062490 0.031518 0.034720 0.037025 \n", + "2 0.032876 0.055980 0.046175 0.029865 0.054967 0.066957 0.064695 \n", + "3 0.031383 0.054110 0.034033 0.028100 0.069831 0.047403 0.057749 \n", + "4 0.029956 0.060813 0.046997 0.026556 0.085200 0.047002 0.056402 \n", + "5 0.032505 0.050670 0.060178 0.029576 0.043828 0.036130 0.045985 \n", + "6 0.103993 0.040298 0.066262 0.071247 0.028470 0.039297 0.036226 \n", + "7 0.032741 0.075311 0.043249 0.029438 0.045879 0.047930 0.057232 \n", + "8 0.054265 0.047404 0.050633 0.048070 0.033149 0.046264 0.051029 \n", + "9 0.026146 0.054937 0.048305 0.025034 0.053544 0.036021 0.047155 \n", + "10 0.044803 0.043459 0.058550 0.037652 0.048391 0.053492 0.055440 \n", + "11 0.039564 0.051063 0.054792 0.036674 0.033903 0.045849 0.049141 \n", + "12 0.025149 0.068353 0.036118 0.022852 0.066839 0.042206 0.055307 \n", + "13 0.034673 0.085115 0.041795 0.028061 0.050224 0.049211 0.054105 \n", + "14 0.042686 0.046866 0.064636 0.038779 0.044685 0.033205 0.039628 \n", + "15 0.078728 0.037026 0.098867 0.061680 0.027539 0.034491 0.037569 \n", + "16 0.091983 0.051195 0.057827 0.059279 0.037479 0.038869 0.038894 \n", + "17 0.087725 0.037342 0.061506 0.071084 0.028710 0.038580 0.037890 \n", + "18 0.032999 0.057029 0.032893 0.031609 0.072348 0.041264 0.046101 \n", + "19 0.032931 0.041823 0.033188 0.033331 0.115316 0.046938 0.050329 \n", + "20 0.030760 0.054202 0.044486 0.035570 0.041990 0.042787 0.057056 \n", + "21 0.033354 0.059032 0.036468 0.030955 0.064287 0.039781 0.045661 \n", + "22 0.043943 0.050321 0.044892 0.037023 0.041556 0.047991 0.037874 \n", + "23 0.086575 0.034601 0.058675 0.073111 0.029412 0.038210 0.037658 \n", + "24 0.033616 0.077075 0.042619 0.028655 0.046721 0.049217 0.056031 \n", + "25 0.030743 0.062387 0.043996 0.032692 0.043117 0.044674 0.057717 \n", + "26 0.078209 0.049287 0.065102 0.057921 0.032000 0.040219 0.046224 \n", + "27 0.034559 0.065191 0.040685 0.029936 0.048363 0.046057 0.051913 \n", + "28 0.086283 0.045861 0.062427 0.058375 0.028427 0.044481 0.042494 \n", + "29 0.062459 0.041017 0.058636 0.057057 0.041305 0.047517 0.050627 \n", + ".. ... ... ... ... ... ... ... \n", + "82 0.065614 0.039598 0.111301 0.051659 0.029684 0.034585 0.040770 \n", + "83 0.035028 0.071044 0.042615 0.029416 0.056253 0.044821 0.069191 \n", + "84 0.101112 0.048375 0.064964 0.062281 0.031821 0.042080 0.039278 \n", + "85 0.030393 0.052510 0.037849 0.029890 0.086273 0.044839 0.050140 \n", + "86 0.034393 0.074622 0.042625 0.028708 0.053640 0.046086 0.066082 \n", + "87 0.034628 0.048158 0.034503 0.029887 0.063577 0.045613 0.057075 \n", + "88 0.029707 0.052203 0.044853 0.027425 0.052746 0.038242 0.049532 \n", + "89 0.032829 0.060884 0.036295 0.030453 0.066238 0.039350 0.045534 \n", + "90 0.039032 0.044988 0.047372 0.039070 0.039515 0.053132 0.053471 \n", + "91 0.035166 0.051704 0.040098 0.030816 0.108649 0.053707 0.060677 \n", + "92 0.040830 0.045328 0.083087 0.039127 0.033020 0.036804 0.041127 \n", + "93 0.041650 0.057578 0.045023 0.034186 0.042197 0.048577 0.040336 \n", + "94 0.032713 0.061353 0.042793 0.027991 0.056604 0.060919 0.061583 \n", + "95 0.045771 0.049979 0.041616 0.033799 0.042908 0.042321 0.056762 \n", + "96 0.040931 0.047643 0.040107 0.031950 0.046874 0.045935 0.060147 \n", + "97 0.034741 0.052510 0.039006 0.036425 0.061919 0.043182 0.046908 \n", + "98 0.070671 0.035206 0.065472 0.066309 0.030341 0.036256 0.042044 \n", + "99 0.072850 0.049221 0.067587 0.054379 0.032313 0.039659 0.043492 \n", + "100 0.025679 0.046917 0.043180 0.025024 0.085426 0.044842 0.053735 \n", + "101 0.034231 0.049624 0.045663 0.034626 0.047241 0.056521 0.060523 \n", + "102 0.033792 0.040988 0.047591 0.034842 0.059777 0.075034 0.064774 \n", + "103 0.044039 0.050073 0.044893 0.037138 0.041541 0.047957 0.037785 \n", + "104 0.039508 0.048220 0.070464 0.037606 0.031462 0.042207 0.045672 \n", + "105 0.033318 0.056001 0.038777 0.028807 0.108424 0.052708 0.060891 \n", + "106 0.034721 0.055520 0.051867 0.031946 0.046088 0.039720 0.045655 \n", + "107 0.032552 0.054551 0.039057 0.030704 0.067524 0.035670 0.043789 \n", + "108 0.033187 0.039050 0.044955 0.036343 0.057956 0.066457 0.058844 \n", + "109 0.033913 0.073319 0.045752 0.030965 0.046855 0.050233 0.056725 \n", + "110 0.037041 0.067774 0.044258 0.029269 0.046685 0.054345 0.056277 \n", + "111 0.034605 0.073372 0.042616 0.028921 0.054673 0.045587 0.067342 \n", + "\n", + " 7 8 9 ... 12 13 14 \\\n", + "0 0.055141 0.029711 0.049585 ... 0.035592 0.045377 0.052197 \n", + "1 0.035525 0.095922 0.033952 ... 0.041695 0.033751 0.027364 \n", + "2 0.055646 0.039173 0.055304 ... 0.038458 0.044789 0.065258 \n", + "3 0.082137 0.033190 0.044436 ... 0.042111 0.044177 0.047025 \n", + "4 0.049594 0.028837 0.052252 ... 0.036659 0.040185 0.045348 \n", + "5 0.041704 0.034196 0.041549 ... 0.028658 0.035186 0.044895 \n", + "6 0.035376 0.104617 0.035680 ... 0.041949 0.031776 0.035615 \n", + "7 0.051124 0.038082 0.067939 ... 0.040822 0.046295 0.065309 \n", + "8 0.042253 0.072159 0.044815 ... 0.035738 0.084483 0.038417 \n", + "9 0.045463 0.026715 0.041865 ... 0.029586 0.038165 0.045176 \n", + "10 0.044599 0.060610 0.041145 ... 0.030184 0.036030 0.048406 \n", + "11 0.040761 0.034873 0.051248 ... 0.034034 0.097834 0.042714 \n", + "12 0.051360 0.029594 0.047536 ... 0.032840 0.045380 0.052624 \n", + "13 0.054421 0.036506 0.058971 ... 0.042580 0.047073 0.060709 \n", + "14 0.042859 0.039978 0.036608 ... 0.037727 0.037264 0.031588 \n", + "15 0.033485 0.084809 0.034476 ... 0.038219 0.031806 0.028372 \n", + "16 0.041632 0.087360 0.037998 ... 0.042463 0.034077 0.036834 \n", + "17 0.035150 0.126100 0.034042 ... 0.041944 0.034975 0.030699 \n", + "18 0.052090 0.034681 0.042465 ... 0.045231 0.049808 0.037461 \n", + "19 0.046147 0.032505 0.042334 ... 0.040709 0.041920 0.035222 \n", + "20 0.045820 0.039764 0.093046 ... 0.034534 0.042414 0.061096 \n", + "21 0.050616 0.032897 0.043318 ... 0.042850 0.054727 0.036977 \n", + "22 0.042047 0.035697 0.039862 ... 0.150360 0.033615 0.038781 \n", + "23 0.035155 0.128458 0.032865 ... 0.042086 0.035956 0.029215 \n", + "24 0.052203 0.038103 0.061711 ... 0.041874 0.047211 0.069920 \n", + "25 0.047802 0.038690 0.086031 ... 0.036194 0.043663 0.064207 \n", + "26 0.038248 0.100858 0.040724 ... 0.043450 0.036104 0.038153 \n", + "27 0.047731 0.033854 0.051908 ... 0.036911 0.083034 0.046336 \n", + "28 0.037384 0.071423 0.042134 ... 0.035771 0.064745 0.040726 \n", + "29 0.041722 0.076179 0.040864 ... 0.041665 0.037326 0.046682 \n", + ".. ... ... ... ... ... ... ... \n", + "82 0.034798 0.067167 0.036953 ... 0.037534 0.034122 0.029891 \n", + "83 0.051838 0.037086 0.058182 ... 0.043910 0.049231 0.060864 \n", + "84 0.040072 0.083869 0.040515 ... 0.042343 0.032872 0.044111 \n", + "85 0.050668 0.030873 0.043122 ... 0.040347 0.044339 0.037591 \n", + "86 0.052191 0.037034 0.059698 ... 0.043335 0.048588 0.062705 \n", + "87 0.096326 0.034519 0.042707 ... 0.043000 0.042002 0.046209 \n", + "88 0.043025 0.034755 0.041804 ... 0.028580 0.038398 0.049179 \n", + "89 0.051757 0.033199 0.043487 ... 0.044384 0.048178 0.037859 \n", + "90 0.041611 0.036943 0.048158 ... 0.033388 0.102279 0.044595 \n", + "91 0.045415 0.034643 0.058854 ... 0.038591 0.038493 0.050301 \n", + "92 0.042001 0.031746 0.043694 ... 0.039158 0.036597 0.040224 \n", + "93 0.043883 0.034974 0.042952 ... 0.141277 0.034930 0.042204 \n", + "94 0.057007 0.037884 0.055115 ... 0.039434 0.046046 0.060298 \n", + "95 0.104992 0.042933 0.047098 ... 0.043015 0.038799 0.050409 \n", + "96 0.108192 0.038718 0.047083 ... 0.042215 0.039123 0.053071 \n", + "97 0.049995 0.042774 0.037348 ... 0.045532 0.045355 0.033203 \n", + "98 0.033793 0.098926 0.046726 ... 0.032634 0.031806 0.034654 \n", + "99 0.037515 0.100107 0.038627 ... 0.036176 0.033324 0.038019 \n", + "100 0.045834 0.025718 0.042990 ... 0.029402 0.037000 0.045183 \n", + "101 0.045989 0.034630 0.051727 ... 0.034507 0.082339 0.056270 \n", + "102 0.054025 0.039948 0.048264 ... 0.038036 0.042633 0.060574 \n", + "103 0.041982 0.035756 0.039755 ... 0.150544 0.033580 0.038651 \n", + "104 0.040224 0.031544 0.049167 ... 0.033919 0.075613 0.040119 \n", + "105 0.047204 0.033393 0.058685 ... 0.038305 0.039929 0.049885 \n", + "106 0.045936 0.029345 0.044850 ... 0.036477 0.068055 0.036590 \n", + "107 0.048266 0.035439 0.038089 ... 0.037341 0.043735 0.034683 \n", + "108 0.049751 0.039147 0.047794 ... 0.037655 0.042061 0.075929 \n", + "109 0.051077 0.042377 0.053276 ... 0.043072 0.044549 0.054345 \n", + "110 0.054281 0.040839 0.059444 ... 0.042391 0.046726 0.059803 \n", + "111 0.052097 0.037022 0.059170 ... 0.043520 0.048837 0.062061 \n", "\n", - "[116 rows x 6 columns]" + " 15 16 17 18 19 20 21 \n", + "0 0.042461 0.029877 0.049065 0.059313 0.057875 0.023566 0.021527 \n", + "1 0.068650 0.033005 0.041409 0.051750 0.051339 0.029467 0.026703 \n", + "2 0.046748 0.023493 0.048465 0.043368 0.054927 0.021698 0.020615 \n", + "3 0.043393 0.029789 0.048610 0.058187 0.053505 0.024899 0.028315 \n", + "4 0.045102 0.028286 0.056712 0.056932 0.054910 0.023694 0.021604 \n", + "5 0.036150 0.035234 0.041594 0.049718 0.059555 0.031673 0.029378 \n", + "6 0.066399 0.032411 0.034684 0.034398 0.046455 0.032355 0.028351 \n", + "7 0.059787 0.023003 0.051813 0.047852 0.060252 0.021338 0.018432 \n", + "8 0.061949 0.041061 0.040599 0.048070 0.044206 0.024852 0.027938 \n", + "9 0.034079 0.036344 0.044400 0.056563 0.058041 0.030263 0.028583 \n", + "10 0.039524 0.027613 0.036440 0.040421 0.063431 0.025538 0.026594 \n", + "11 0.052912 0.044169 0.042934 0.052739 0.045535 0.027757 0.029915 \n", + "12 0.039152 0.029014 0.047138 0.058443 0.063205 0.022645 0.022546 \n", + "13 0.058086 0.024581 0.053250 0.049764 0.057859 0.021567 0.017666 \n", + "14 0.048745 0.043206 0.051650 0.075562 0.053607 0.034320 0.029350 \n", + "15 0.060416 0.035160 0.040257 0.046530 0.050388 0.034917 0.029220 \n", + "16 0.069890 0.030210 0.039705 0.045320 0.051975 0.025327 0.022671 \n", + "17 0.066693 0.033787 0.036047 0.038344 0.044913 0.032446 0.030885 \n", + "18 0.046802 0.039396 0.052338 0.076085 0.051606 0.029022 0.029630 \n", + "19 0.034031 0.041053 0.048224 0.056014 0.044282 0.033669 0.040630 \n", + "20 0.058227 0.026941 0.047547 0.048564 0.058848 0.026303 0.027081 \n", + "21 0.049809 0.040564 0.052956 0.079728 0.051484 0.027723 0.027752 \n", + "22 0.048114 0.035387 0.052964 0.036683 0.042427 0.037527 0.031521 \n", + "23 0.062356 0.037203 0.035600 0.038399 0.042228 0.035287 0.035151 \n", + "24 0.057508 0.023108 0.052065 0.046508 0.059036 0.021542 0.018080 \n", + "25 0.059341 0.024537 0.049248 0.048372 0.060466 0.023488 0.022653 \n", + "26 0.072896 0.026318 0.039224 0.040962 0.052158 0.025452 0.022144 \n", + "27 0.055994 0.035326 0.047796 0.062853 0.052634 0.021429 0.022588 \n", + "28 0.066867 0.038131 0.034964 0.039009 0.045857 0.026465 0.026685 \n", + "29 0.068976 0.026715 0.036728 0.038237 0.064387 0.026799 0.025560 \n", + ".. ... ... ... ... ... ... ... \n", + "82 0.054243 0.034711 0.043401 0.050102 0.052792 0.034134 0.028355 \n", + "83 0.051451 0.025514 0.049892 0.049833 0.052714 0.023082 0.019822 \n", + "84 0.064455 0.030700 0.036691 0.033516 0.048578 0.029632 0.024524 \n", + "85 0.040867 0.036208 0.052100 0.068486 0.052356 0.028037 0.028341 \n", + "86 0.053943 0.024106 0.050823 0.049352 0.055087 0.021811 0.018500 \n", + "87 0.042759 0.032315 0.046696 0.053674 0.049011 0.028683 0.035491 \n", + "88 0.032092 0.034688 0.037681 0.045880 0.060169 0.030638 0.032345 \n", + "89 0.050210 0.038253 0.054807 0.079265 0.052785 0.028003 0.026768 \n", + "90 0.045020 0.044324 0.038106 0.045737 0.046186 0.028856 0.034689 \n", + "91 0.040746 0.029858 0.049727 0.039092 0.045415 0.028905 0.032281 \n", + "92 0.047358 0.042660 0.053042 0.055306 0.048353 0.042441 0.031642 \n", + "93 0.051819 0.031393 0.055175 0.038236 0.045235 0.032450 0.026259 \n", + "94 0.051175 0.024780 0.052373 0.051754 0.053424 0.020771 0.019766 \n", + "95 0.051644 0.031264 0.044841 0.042476 0.044926 0.032908 0.039834 \n", + "96 0.045750 0.030564 0.043848 0.040309 0.045465 0.032688 0.040211 \n", + "97 0.044898 0.037339 0.087399 0.061417 0.044706 0.036172 0.032557 \n", + "98 0.058815 0.034700 0.034561 0.041438 0.053717 0.035184 0.036769 \n", + "99 0.064474 0.027746 0.037270 0.041472 0.059757 0.026183 0.023426 \n", + "100 0.028420 0.033811 0.042795 0.048573 0.055434 0.028894 0.030096 \n", + "101 0.049734 0.032287 0.039418 0.043215 0.056819 0.023095 0.025953 \n", + "102 0.036926 0.026981 0.042624 0.038169 0.052943 0.026706 0.027815 \n", + "103 0.047953 0.035551 0.052896 0.036629 0.042309 0.037734 0.031740 \n", + "104 0.051125 0.045410 0.046406 0.055250 0.046127 0.031071 0.029454 \n", + "105 0.042224 0.028364 0.051583 0.042900 0.047559 0.025985 0.028312 \n", + "106 0.051115 0.043800 0.051092 0.075092 0.050028 0.027076 0.026337 \n", + "107 0.042035 0.041449 0.048337 0.078866 0.055057 0.029704 0.030256 \n", + "108 0.032373 0.027754 0.039334 0.033061 0.055804 0.031685 0.031679 \n", + "109 0.056473 0.023588 0.076329 0.045670 0.054391 0.024653 0.019419 \n", + "110 0.060979 0.026854 0.054391 0.052803 0.049506 0.022400 0.020520 \n", + "111 0.053001 0.024568 0.050495 0.049570 0.054210 0.022218 0.018925 \n", + "\n", + "[112 rows x 22 columns]" ] }, - "execution_count": 164, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "results_df = pd.read_csv(path+'cls_output-'+prefix+'/test_results.tsv', header=None, sep='\\t')\n", + "results_df = pd.read_csv(path+'cls_output-no-lm-'+prefix+'/test_results.tsv', header=None, sep='\\t')\n", "results_df" ] }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(116, 6)" + "(112, 22)" ] }, - "execution_count": 165, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -737,7 +1793,7 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -789,21 +1845,101 @@ " 5\n", " 5\n", " \n", + " \n", + " 6\n", + " 6\n", + " \n", + " \n", + " 7\n", + " 7\n", + " \n", + " \n", + " 8\n", + " 8\n", + " \n", + " \n", + " 9\n", + " 9\n", + " \n", + " \n", + " 10\n", + " 10\n", + " \n", + " \n", + " 11\n", + " 11\n", + " \n", + " \n", + " 12\n", + " 12\n", + " \n", + " \n", + " 13\n", + " 13\n", + " \n", + " \n", + " 14\n", + " 14\n", + " \n", + " \n", + " 15\n", + " 15\n", + " \n", + " \n", + " 16\n", + " 16\n", + " \n", + " \n", + " 17\n", + " 17\n", + " \n", + " \n", + " 18\n", + " 18\n", + " \n", + " \n", + " 19\n", + " 19\n", + " \n", + " \n", + " 20\n", + " [CLS]\n", + " \n", + " \n", + " 21\n", + " [MASK]\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " 0\n", - "0 0\n", - "1 1\n", - "2 2\n", - "3 3\n", - "4 4\n", - "5 5" + " 0\n", + "0 0\n", + "1 1\n", + "2 2\n", + "3 3\n", + "4 4\n", + "5 5\n", + "6 6\n", + "7 7\n", + "8 8\n", + "9 9\n", + "10 10\n", + "11 11\n", + "12 12\n", + "13 13\n", + "14 14\n", + "15 15\n", + "16 16\n", + "17 17\n", + "18 18\n", + "19 19\n", + "20 [CLS]\n", + "21 [MASK]" ] }, - "execution_count": 166, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -815,7 +1951,7 @@ }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -828,131 +1964,127 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[[1, 2, 3, 0, 5, 4],\n", - " [0, 3, 1, 2, 4, 5],\n", - " [0, 2, 3, 1, 4, 5],\n", - " [3, 5, 2, 4, 0, 1],\n", - " [0, 3, 5, 2, 4, 1],\n", - " [5, 3, 2, 0, 4, 1],\n", - " [0, 2, 3, 1, 5, 4],\n", - " [0, 1, 2, 3, 4, 5],\n", - " [0, 3, 2, 5, 4, 1],\n", - " [3, 0, 5, 1, 2, 4],\n", - " [0, 3, 2, 4, 5, 1],\n", - " [0, 5, 3, 2, 1, 4],\n", - " [0, 1, 2, 4, 3, 5],\n", - " [4, 1, 3, 0, 2, 5],\n", - " [0, 3, 1, 4, 2, 5],\n", - " [0, 3, 1, 4, 2, 5],\n", - " [0, 1, 2, 4, 3, 5],\n", - " [0, 1, 2, 3, 4, 5],\n", - " [1, 2, 3, 4, 5, 0],\n", - " [0, 4, 1, 3, 2, 5],\n", - " [1, 3, 2, 5, 4, 0],\n", - " [2, 5, 1, 0, 3, 4],\n", - " [1, 2, 3, 5, 4, 0],\n", - " [1, 4, 3, 2, 5, 0],\n", - " [1, 3, 0, 5, 4, 2],\n", - " [4, 2, 1, 0, 5, 3],\n", - " [1, 4, 2, 3, 0, 5],\n", - " [3, 0, 1, 4, 2, 5],\n", - " [1, 4, 3, 0, 2, 5],\n", - " [1, 3, 0, 4, 2, 5],\n", - " [5, 1, 2, 3, 4, 0],\n", - " [4, 2, 0, 1, 3, 5],\n", - " [1, 4, 2, 5, 0, 3],\n", - " [1, 4, 2, 5, 3, 0],\n", - " [0, 4, 3, 1, 2, 5],\n", - " [3, 0, 1, 2, 5, 4],\n", - " [1, 5, 2, 3, 0, 4],\n", - " [1, 5, 2, 3, 0, 4],\n", - " [1, 2, 5, 3, 0, 4],\n", - " [1, 5, 3, 2, 0, 4],\n", - " [2, 4, 3, 0, 5, 1],\n", - " [5, 1, 3, 2, 0, 4],\n", - " [2, 5, 1, 4, 3, 0],\n", - " [4, 2, 5, 0, 1, 3],\n", - " [1, 0, 2, 4, 3, 5],\n", - " [4, 5, 2, 1, 0, 3],\n", - " [5, 2, 3, 0, 1, 4],\n", - " [2, 3, 1, 0, 4, 5],\n", - " [4, 1, 0, 3, 2, 5],\n", - " [2, 3, 0, 4, 5, 1],\n", - " [3, 4, 5, 2, 1, 0],\n", - " [2, 1, 5, 3, 0, 4],\n", - " [2, 3, 0, 4, 5, 1],\n", - " [3, 4, 2, 5, 0, 1],\n", - " [3, 2, 5, 4, 0, 1],\n", - " [2, 3, 4, 0, 1, 5],\n", - " [4, 1, 2, 3, 0, 5],\n", - " [3, 0, 2, 4, 5, 1],\n", - " [1, 3, 4, 2, 0, 5],\n", - " [5, 2, 3, 4, 0, 1],\n", - " [5, 2, 3, 4, 0, 1],\n", - " [5, 3, 1, 2, 0, 4],\n", - " [3, 1, 5, 0, 4, 2],\n", - " [1, 3, 2, 0, 5, 4],\n", - " [3, 4, 0, 5, 1, 2],\n", - " [0, 4, 3, 2, 1, 5],\n", - " [3, 1, 0, 4, 5, 2],\n", - " [5, 1, 3, 2, 0, 4],\n", - " [3, 1, 4, 0, 5, 2],\n", - " [3, 5, 4, 2, 0, 1],\n", - " [3, 1, 2, 5, 0, 4],\n", - " [3, 4, 5, 0, 2, 1],\n", - " [3, 4, 5, 2, 0, 1],\n", - " [3, 1, 0, 4, 5, 2],\n", - " [3, 0, 1, 5, 4, 2],\n", - " [1, 3, 0, 4, 5, 2],\n", - " [4, 0, 2, 3, 1, 5],\n", - " [4, 0, 5, 2, 3, 1],\n", - " [0, 3, 2, 5, 4, 1],\n", - " [4, 2, 0, 3, 5, 1],\n", - " [4, 2, 0, 3, 5, 1],\n", - " [3, 1, 0, 4, 5, 2],\n", - " [4, 2, 0, 3, 5, 1],\n", - " [4, 2, 0, 3, 5, 1],\n", - " [4, 3, 1, 0, 2, 5],\n", - " [4, 1, 0, 3, 2, 5],\n", - " [4, 2, 1, 5, 3, 0],\n", - " [1, 3, 4, 0, 2, 5],\n", - " [3, 1, 4, 0, 2, 5],\n", - " [4, 2, 1, 5, 0, 3],\n", - " [4, 0, 1, 2, 3, 5],\n", - " [0, 4, 2, 5, 3, 1],\n", - " [0, 2, 5, 3, 4, 1],\n", - " [5, 2, 0, 3, 4, 1],\n", - " [3, 0, 5, 2, 4, 1],\n", - " [4, 5, 0, 2, 3, 1],\n", - " [5, 2, 4, 0, 3, 1],\n", - " [5, 2, 1, 0, 3, 4],\n", - " [0, 2, 1, 5, 3, 4],\n", - " [5, 2, 0, 1, 3, 4],\n", - " [3, 2, 0, 5, 1, 4],\n", - " [1, 3, 0, 2, 4, 5],\n", - " [4, 2, 5, 1, 3, 0],\n", - " [5, 2, 0, 3, 1, 4],\n", - " [1, 3, 2, 4, 5, 0],\n", - " [5, 2, 1, 3, 4, 0],\n", - " [1, 5, 3, 2, 4, 0],\n", - " [2, 4, 5, 1, 3, 0],\n", - " [5, 3, 0, 2, 4, 1],\n", - " [5, 3, 1, 0, 2, 4],\n", - " [3, 1, 5, 2, 0, 4],\n", - " [3, 5, 1, 2, 0, 4],\n", - " [5, 4, 2, 3, 1, 0],\n", - " [5, 3, 2, 0, 1, 4],\n", - " [2, 4, 1, 5, 3, 0],\n", - " [5, 2, 4, 3, 0, 1]]" + "[[1, 4, 11, 18, 10, 19, 7, 6, 14, 9],\n", + " [8, 0, 2, 15, 3, 18, 19, 12, 17, 1],\n", + " [5, 14, 6, 1, 7, 9, 4, 19, 17, 11],\n", + " [7, 4, 18, 6, 11, 1, 19, 17, 5, 14],\n", + " [4, 11, 1, 18, 17, 6, 19, 9, 7, 5],\n", + " [10, 11, 2, 19, 1, 18, 6, 14, 4, 7],\n", + " [8, 0, 3, 15, 2, 19, 12, 1, 5, 6],\n", + " [1, 9, 14, 19, 15, 6, 17, 7, 5, 18],\n", + " [13, 8, 15, 0, 6, 2, 3, 18, 1, 5],\n", + " [10, 11, 19, 18, 1, 4, 2, 6, 7, 14],\n", + " [10, 19, 8, 2, 11, 6, 5, 14, 4, 0],\n", + " [13, 2, 15, 18, 9, 1, 6, 11, 5, 19],\n", + " [10, 1, 11, 4, 19, 18, 6, 14, 7, 9],\n", + " [1, 14, 9, 15, 19, 7, 6, 17, 4, 18],\n", + " [18, 10, 2, 11, 19, 17, 15, 1, 4, 16],\n", + " [2, 8, 0, 3, 15, 19, 18, 17, 10, 12],\n", + " [0, 8, 15, 3, 2, 19, 1, 18, 12, 7],\n", + " [8, 0, 3, 15, 2, 19, 12, 5, 18, 6],\n", + " [18, 4, 11, 1, 17, 7, 19, 13, 15, 6],\n", + " [4, 11, 18, 6, 17, 5, 10, 7, 19, 9],\n", + " [9, 14, 19, 15, 6, 1, 18, 17, 7, 2],\n", + " [18, 4, 1, 11, 13, 17, 19, 7, 15, 6],\n", + " [12, 17, 1, 15, 5, 2, 0, 19, 7, 4],\n", + " [8, 0, 3, 15, 2, 19, 12, 18, 5, 6],\n", + " [1, 14, 9, 19, 15, 6, 7, 17, 5, 13],\n", + " [9, 14, 1, 19, 15, 6, 17, 18, 7, 5],\n", + " [8, 0, 15, 2, 3, 19, 1, 6, 12, 18],\n", + " [13, 1, 18, 15, 19, 6, 9, 11, 4, 17],\n", + " [0, 8, 15, 13, 2, 3, 1, 19, 5, 6],\n", + " [8, 15, 19, 0, 2, 3, 6, 5, 14, 7],\n", + " [8, 0, 3, 15, 2, 19, 12, 5, 18, 16],\n", + " [8, 0, 3, 2, 15, 19, 12, 5, 20, 16],\n", + " [10, 11, 17, 4, 6, 19, 1, 7, 18, 2],\n", + " [1, 14, 9, 15, 7, 19, 6, 5, 17, 4],\n", + " [9, 14, 19, 15, 1, 6, 18, 17, 7, 2],\n", + " [10, 2, 13, 11, 18, 19, 1, 9, 6, 16],\n", + " [8, 0, 15, 2, 3, 19, 1, 12, 6, 5],\n", + " [1, 13, 15, 9, 14, 6, 19, 5, 18, 7],\n", + " [7, 4, 6, 18, 1, 11, 19, 14, 17, 15],\n", + " [9, 14, 19, 15, 6, 1, 18, 17, 7, 2],\n", + " [10, 11, 2, 18, 19, 1, 4, 17, 6, 7],\n", + " [10, 11, 19, 2, 4, 18, 1, 6, 14, 7],\n", + " [18, 17, 4, 11, 1, 7, 13, 19, 12, 15],\n", + " [4, 11, 18, 10, 19, 7, 6, 5, 17, 1],\n", + " [8, 0, 2, 3, 15, 19, 10, 1, 6, 5],\n", + " [18, 11, 4, 1, 10, 19, 17, 7, 6, 13],\n", + " [8, 0, 3, 15, 2, 19, 12, 5, 18, 17],\n", + " [18, 1, 15, 19, 4, 17, 7, 6, 11, 13],\n", + " [1, 6, 14, 9, 4, 19, 15, 7, 17, 18],\n", + " [18, 4, 1, 11, 7, 17, 13, 19, 15, 12],\n", + " [11, 19, 10, 1, 4, 6, 18, 14, 7, 17],\n", + " [1, 14, 6, 9, 19, 15, 7, 17, 4, 18],\n", + " [10, 11, 2, 19, 18, 4, 16, 21, 6, 8],\n", + " [8, 0, 3, 15, 2, 19, 12, 18, 5, 20],\n", + " [12, 1, 17, 15, 5, 2, 19, 7, 9, 4],\n", + " [8, 0, 15, 3, 2, 5, 18, 19, 12, 17],\n", + " [2, 8, 0, 15, 19, 3, 18, 1, 17, 6],\n", + " [1, 18, 11, 4, 19, 10, 17, 7, 6, 14],\n", + " [12, 1, 15, 17, 19, 14, 9, 5, 7, 6],\n", + " [12, 17, 5, 1, 15, 0, 2, 4, 7, 19],\n", + " [10, 11, 19, 4, 2, 1, 6, 18, 14, 7],\n", + " [7, 6, 14, 1, 19, 5, 9, 4, 15, 17],\n", + " [12, 1, 17, 15, 5, 2, 19, 7, 0, 9],\n", + " [13, 15, 1, 9, 18, 6, 19, 5, 14, 2],\n", + " [8, 0, 3, 2, 15, 19, 12, 20, 5, 18],\n", + " [9, 14, 19, 15, 6, 1, 18, 17, 7, 2],\n", + " [8, 0, 3, 2, 15, 19, 12, 20, 5, 18],\n", + " [1, 14, 9, 15, 7, 6, 19, 5, 17, 4],\n", + " [5, 6, 4, 14, 11, 10, 19, 7, 2, 9],\n", + " [1, 17, 14, 15, 6, 19, 9, 7, 5, 4],\n", + " [0, 8, 3, 2, 15, 19, 12, 20, 5, 16],\n", + " [1, 14, 15, 9, 6, 17, 7, 5, 18, 19],\n", + " [5, 14, 11, 6, 4, 10, 19, 7, 9, 2],\n", + " [17, 2, 1, 15, 6, 19, 7, 18, 5, 11],\n", + " [4, 6, 11, 10, 9, 5, 14, 1, 19, 17],\n", + " [6, 7, 5, 14, 4, 19, 11, 10, 9, 2],\n", + " [10, 4, 11, 2, 19, 6, 5, 8, 0, 9],\n", + " [13, 15, 1, 8, 2, 19, 0, 9, 6, 18],\n", + " [17, 1, 6, 15, 5, 7, 19, 2, 4, 8],\n", + " [9, 1, 14, 19, 15, 6, 17, 7, 18, 5],\n", + " [10, 11, 19, 4, 1, 14, 6, 18, 7, 2],\n", + " [1, 17, 14, 15, 9, 19, 6, 7, 5, 18],\n", + " [2, 8, 0, 15, 19, 3, 18, 10, 17, 11],\n", + " [1, 6, 14, 9, 4, 19, 7, 15, 17, 18],\n", + " [0, 8, 2, 15, 3, 19, 1, 14, 12, 5],\n", + " [4, 18, 11, 1, 19, 17, 7, 6, 10, 5],\n", + " [1, 6, 14, 9, 19, 15, 4, 7, 17, 18],\n", + " [7, 4, 6, 18, 11, 19, 1, 17, 14, 5],\n", + " [10, 11, 19, 4, 1, 6, 14, 18, 2, 7],\n", + " [18, 4, 1, 11, 17, 19, 7, 15, 13, 6],\n", + " [13, 6, 5, 9, 11, 2, 19, 18, 10, 15],\n", + " [4, 6, 9, 5, 1, 14, 17, 11, 7, 19],\n", + " [2, 10, 11, 18, 17, 19, 15, 1, 9, 16],\n", + " [12, 1, 17, 15, 5, 19, 2, 7, 9, 14],\n", + " [6, 1, 5, 14, 7, 4, 9, 19, 17, 18],\n", + " [7, 6, 15, 14, 1, 9, 0, 19, 17, 12],\n", + " [7, 6, 14, 1, 9, 4, 5, 15, 19, 17],\n", + " [17, 4, 18, 1, 11, 7, 6, 12, 13, 15],\n", + " [8, 0, 3, 2, 15, 19, 9, 10, 6, 18],\n", + " [8, 0, 2, 15, 19, 3, 1, 6, 18, 10],\n", + " [10, 4, 11, 19, 6, 18, 1, 7, 14, 5],\n", + " [13, 6, 19, 5, 14, 9, 11, 15, 1, 4],\n", + " [5, 6, 14, 4, 11, 7, 19, 10, 9, 2],\n", + " [12, 17, 1, 5, 15, 2, 0, 19, 7, 4],\n", + " [13, 2, 10, 18, 11, 15, 9, 1, 17, 19],\n", + " [4, 6, 9, 1, 5, 17, 14, 11, 19, 7],\n", + " [18, 13, 11, 1, 2, 15, 17, 19, 10, 4],\n", + " [18, 11, 4, 10, 19, 1, 17, 7, 6, 13],\n", + " [14, 5, 11, 10, 6, 4, 19, 7, 9, 2],\n", + " [17, 1, 6, 15, 19, 14, 9, 7, 5, 4],\n", + " [1, 15, 14, 9, 6, 17, 5, 7, 18, 19],\n", + " [1, 6, 14, 9, 4, 19, 15, 7, 17, 18]]" ] }, - "execution_count": 168, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -963,16 +2095,16 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(116, 1)" + "(112, 1)" ] }, - "execution_count": 169, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -984,20 +2116,20 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ "labels= []; labels_str =[]\n", "\n", "for idx, row in label_df.iterrows():\n", - " labels.append(vocab_label_df.index[vocab_label_df[0]==row[0]][0])\n", + " labels.append(vocab_label_df.index[vocab_label_df[0]==str(row[0])][0])\n", " labels_str.append(row[0])" ] }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 111, "metadata": { "scrolled": true }, @@ -1005,125 +2137,121 @@ { "data": { "text/plain": [ - "[0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 1,\n", - " 2,\n", - " 2,\n", - " 2,\n", + "[1,\n", " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 2,\n", - " 3,\n", - " 3,\n", - " 3,\n", - " 3,\n", - " 3,\n", - " 3,\n", - " 3,\n", - " 3,\n", + " 5,\n", + " 7,\n", + " 11,\n", + " 10,\n", " 3,\n", + " 9,\n", + " 8,\n", + " 10,\n", + " 5,\n", + " 13,\n", + " 18,\n", + " 1,\n", + " 18,\n", + " 2,\n", " 3,\n", " 3,\n", + " 11,\n", + " 4,\n", + " 9,\n", + " 18,\n", + " 12,\n", + " 8,\n", + " 14,\n", + " 9,\n", + " 6,\n", + " 13,\n", + " 0,\n", + " 15,\n", + " 8,\n", " 3,\n", + " 17,\n", + " 1,\n", + " 9,\n", + " 16,\n", + " 8,\n", + " 13,\n", + " 7,\n", + " 9,\n", + " 10,\n", + " 10,\n", + " 17,\n", + " 11,\n", + " 0,\n", + " 18,\n", + " 5,\n", + " 18,\n", + " 6,\n", + " 1,\n", + " 11,\n", + " 6,\n", + " 10,\n", + " 15,\n", + " 12,\n", + " 5,\n", + " 2,\n", + " 19,\n", + " 12,\n", + " 12,\n", + " 10,\n", + " 7,\n", + " 12,\n", + " 15,\n", " 3,\n", + " 9,\n", " 3,\n", + " 1,\n", + " 5,\n", + " 17,\n", " 3,\n", + " 5,\n", + " 14,\n", + " 17,\n", " 4,\n", + " 7,\n", " 4,\n", + " 13,\n", + " 17,\n", + " 9,\n", + " 10,\n", + " 17,\n", + " 2,\n", + " 6,\n", + " 0,\n", + " 11,\n", + " 6,\n", + " 7,\n", + " 10,\n", + " 18,\n", + " 19,\n", " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 4,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", + " 15,\n", + " 12,\n", " 5,\n", + " 7,\n", + " 7,\n", + " 17,\n", + " 19,\n", + " 19,\n", + " 11,\n", + " 15,\n", " 5,\n", + " 12,\n", + " 16,\n", + " 4,\n", + " 13,\n", + " 18,\n", + " 14,\n", + " 17,\n", " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5,\n", - " 5]" + " 6]" ] }, - "execution_count": 171, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } @@ -1134,12 +2262,12 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 112, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAI+CAYAAADNQ/leAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFaZJREFUeJzt3VuopXd5x/HfE0elHpBIpsM0cZxiQ0tK27EdYku8UKw2mtLoTWkKGoo4XhiqIKVDeqE3hRSq4kURxiYaiwdaD5gSUUOUij3YTNJgotHG2lgTchhRiFapTfL0Yq+UaTrj3rNP68mszweGvdb/fddeD7zMnvmud+13VXcHAACAOc5Z9gAAAAD8X0INAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwe3bzyc4777w+ePDgbj4lAADAGLfeeut3unvvevutG2pV9bwkH0iyL0knOdbd766qtyd5Q5ITi12v7u5P/aTvdfDgwRw/fny9pwQAADgrVdW3NrLfRs6oPZLkrd19W1U9O8mtVXXTYtu7uvvPNzskAAAA/9+6odbd9ye5f3H7+1V1V5Lzd3owAACAVXVGFxOpqoNJXpjkS4ulq6rqy1V1XVWde5rHHKmq41V1/MSJE6faBQAAgJNsONSq6llJPpbkLd39cJL3JHlBkkNZO+P2jlM9rruPdffh7j68d++6vzMHAACw8jYUalX11KxF2ge7++NJ0t0Pdvej3f1YkvcmuXjnxgQAAFgd64ZaVVWSa5Pc1d3vPGl9/0m7vSbJnds/HgAAwOrZyFUfL0ny2iR3VNXti7Wrk1xRVYeydsn+e5K8cUcmBAAAWDEbuerjF5PUKTb9xM9MAwAAYHPO6KqPAAAA7DyhBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwe5Y9AAAA7JSDR29c9ggsyT3XXLbsEbbEGTUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMHuWPQAs08GjNy57BJbknmsuW/YIAACn5YwaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMOsG2pV9byq+nxVfbWqvlJVb16sP7eqbqqquxdfz935cQEAAM5+Gzmj9kiSt3b3RUl+PcmbquqiJEeT3NzdFya5eXEfAACALVo31Lr7/u6+bXH7+0nuSnJ+ksuTXL/Y7fokr96pIQEAAFbJnjPZuaoOJnlhki8l2dfd9y82PZBk32kecyTJkSQ5cODAZufcUQeP3rjsEQAAAP7Xhi8mUlXPSvKxJG/p7odP3tbdnaRP9bjuPtbdh7v78N69e7c0LAAAwCrYUKhV1VOzFmkf7O6PL5YfrKr9i+37kzy0MyMCAACslo1c9bGSXJvkru5+50mbbkhy5eL2lUk+uf3jAQAArJ6N/I7aJUlem+SOqrp9sXZ1kmuS/HVVvT7Jt5L87s6MCAAAsFrWDbXu/mKSOs3ml23vOAAAAGz4YiIAAADsDqEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDB7lj0AwDIcPHrjskdgCe655rJljwAAG+KMGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADD7Fn2AAAAO+3g0RuXPQLAGXFGDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADDMuqFWVddV1UNVdedJa2+vqvuq6vbFn1ft7JgAAACrYyNn1N6f5NJTrL+ruw8t/nxqe8cCAABYXeuGWnd/Icl3d2EWAAAAkuzZwmOvqqrXJTme5K3d/b1T7VRVR5IcSZIDBw5s4ekAYGsOHr1x2SMAwIZs9mIi70nygiSHktyf5B2n27G7j3X34e4+vHfv3k0+HQAAwOrYVKh194Pd/Wh3P5bkvUku3t6xAAAAVtemQq2q9p909zVJ7jzdvgAAAJyZdX9Hrao+nOQlSc6rqnuTvC3JS6rqUJJOck+SN+7gjAAAACtl3VDr7itOsXztDswCAABANn8xEQAAAHaIUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAyzbqhV1XVV9VBV3XnS2nOr6qaqunvx9dydHRMAAGB1bOSM2vuTXPqEtaNJbu7uC5PcvLgPAADANlg31Lr7C0m++4Tly5Ncv7h9fZJXb/NcAAAAK2uzv6O2r7vvX9x+IMm+0+1YVUeq6nhVHT9x4sQmnw4AAGB1bPliIt3dSfonbD/W3Ye7+/DevXu3+nQAAABnvc2G2oNVtT9JFl8f2r6RAAAAVttmQ+2GJFcubl+Z5JPbMw4AAAAbuTz/h5P8Y5Kfr6p7q+r1Sa5J8vKqujvJby7uAwAAsA32rLdDd19xmk0v2+ZZAAAAyDZcTAQAAIDtJdQAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACG2bOVB1fVPUm+n+TRJI909+HtGAoAAGCVbSnUFl7a3d/Zhu8DAABAvPURAABgnK2GWif5bFXdWlVHtmMgAACAVbfVtz6+uLvvq6qfTnJTVX2tu79w8g6LgDuSJAcOHNji0wEAAJz9tnRGrbvvW3x9KMknklx8in2Odffh7j68d+/erTwdAADASth0qFXVM6vq2Y/fTvKKJHdu12AAAACraitvfdyX5BNV9fj3+VB3f3pbpgIAAFhhmw617v5mkl/ZxlkAAACIy/MDAACMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDCDUAAIBhhBoAAMAwQg0AAGAYoQYAADCMUAMAABhGqAEAAAwj1AAAAIYRagAAAMMINQAAgGGEGgAAwDBCDQAAYBihBgAAMIxQAwAAGEaoAQAADCPUAAAAhhFqAAAAwwg1AACAYYQaAADAMEINAABgGKEGAAAwjFADAAAYRqgBAAAMI9QAAACGEWoAAADDbCnUqurSqvp6VX2jqo5u11AAAACrbNOhVlVPSfIXSV6Z5KIkV1TVRds1GAAAwKrayhm1i5N8o7u/2d0/TvKRJJdvz1gAAACra88WHnt+km+fdP/eJC964k5VdSTJkcXdH1TV17fwnLDdzkvynWUPwVI49qvJcV9djv3qcuxXVP3Z2GP//I3stJVQ25DuPpbk2E4/D2xGVR3v7sPLnoPd59ivJsd9dTn2q8uxX11P9mO/lbc+3pfkeSfdv2CxBgAAwBZsJdRuSXJhVf1sVT0tye8luWF7xgIAAFhdm37rY3c/UlVXJflMkqckua67v7Jtk8Hu8Lbc1eXYrybHfXU59qvLsV9dT+pjX9297BkAAAA4yZY+8BoAAIDtJ9QAAACGEWoAAADDCDUAAIBhdvwDr2GKqvqFJJcnOX+xdF+SG7r7ruVNBeykxd/785N8qbt/cNL6pd396eVNxk6rqouTdHffUlUXJbk0yde6+1NLHo1dVlUf6O7XLXsOdldVvTjJxUnu7O7PLnuezXDVR1ZCVf1xkiuSfCTJvYvlC7L2+X8f6e5rljUby1VVf9Dd71v2HGy/qvrDJG9KcleSQ0ne3N2fXGy7rbt/dZnzsXOq6m1JXpm1F6RvSvKiJJ9P8vIkn+nuP13ieOygqnriZ/pWkpcm+VySdPfv7PpQ7Iqq+ufuvnhx+w1Z+/n/iSSvSPK3T8b/6wk1VkJV/WuSX+zu/37C+tOSfKW7L1zOZCxbVf1Hdx9Y9hxsv6q6I8lvdPcPqupgko8m+avufndV/Ut3v3CpA7JjFsf+UJKnJ3kgyQXd/XBV/VTWzq7+8lIHZMdU1W1JvprkL5N01kLtw1l7YTbd/XfLm46ddPLP9aq6JcmruvtEVT0zyT919y8td8Iz562PrIrHkvxMkm89YX3/Yhtnsar68uk2Jdm3m7Owq855/O2O3X1PVb0kyUer6vlZO/acvR7p7keT/LCq/q27H06S7v5RVfmZf3Y7nOTNSf4kyR919+1V9SOBthLOqapzs3YNjuruE0nS3f9ZVY8sd7TNEWqsirckubmq7k7y7cXagSQ/l+SqpU3FbtmX5LeSfO8J65XkH3Z/HHbJg1V1qLtvT5LFmbXfTnJdkifdK6uckR9X1TO6+4dJfu3xxap6Trw4d1br7seSvKuq/mbx9cH4/+6qeE6SW7P2b3tX1f7uvr+qnpUn6Ytz3vrIyqiqc7L2S6UnX0zklsWrrpzFquraJO/r7i+eYtuHuvv3lzAWO6yqLsjamZUHTrHtku7++yWMxS6oqqd393+dYv28JPu7+44ljMUSVNVlSS7p7quXPQvLUVXPSLKvu/992bOcKaEGAAAwjM9RAwAAGEaoAQAADCPUAAAAhhFqAAAAw/wP4x7UdLv2vcMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJFCAYAAACybzTvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGmVJREFUeJzt3X+Q5wdd3/HXOzmgxEAI5ABLvB4V1DK1lPSKVJSflgZjg2XoEKzyo47ptJVQdGqvtZ1UZ6QnLVKsxpoitBQkVUBKDUVgIBSGMeQnhHAgGAMJUAwWoQIthrz7x/cLLNtLbr/kvvve7D4eMzv53vf7ze1rdve+u8/v9/P9bnV3AAAA2H4nTQ8AAADYqwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEP2reMvPeOMM/rgwYPr+KsBAAB2vKuuuurT3b3/eNdbS5AdPHgwV1555Tr+agAAgB2vqj66les5ZBEAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAh+6YHAOt18PCl0xOO6cYj50xPAAAY5xEyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhWwqyqnp+VV1fVe+vqldX1Z9Z9zAAAIDd7rhBVlUPSnJBkkPd/ReTnJzkvHUPAwAA2O22esjiviT3rKp9SU5J8on1TQIAANgbjhtk3f3xJP8myceSfDLJZ7v7zeseBgAAsNvtO94Vqur0JE9J8uAkf5zkN6vqh7v7lZuud36S85PkwIEDa5gKAFtz8PCl0xOO6cYj50xPAJbcTrBTbOWQxe9L8gfdfUt3/2mS1yX57s1X6u6Lu/tQdx/av3//id4JAACw62wlyD6W5FFVdUpVVZInJjm63lkAAAC731aeQ3Z5ktckuTrJdcv/5+I17wIAANj1jvscsiTp7guTXLjmLQAAAHvKVl/2HgAAgBNMkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwJB90wNgVQcPXzo94ZhuPHLO9AROAF9fq9mpHy9Ws1M/jzv16x7Wyb/HvccjZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQ7YUZFV1n6p6TVV9sKqOVtVfW/cwAACA3W7fFq/3kiRv6u6nVdXdk5yyxk0AAAB7wnGDrKpOS/KYJM9Oku7+UpIvrXcWAADA7reVQxYfnOSWJC+vqmuq6qVV9U1r3gUAALDrbeWQxX1Jzkry3O6+vKpekuRwkn+x8UpVdX6S85PkwIEDJ3onsMscPHzp9ATYdr7uAdhsK4+Q3Zzk5u6+fPnn12QRaF+nuy/u7kPdfWj//v0nciMAAMCudNwg6+7/meSmqvr25VlPTPKBta4CAADYA7b6KovPTfKq5Sss3pDkOeubBAAAsDdsKci6+9okh9a8BQAAYE/Z0i+GBgAA4MQTZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMGTf9ACSg4cvnZ5wTDceOWd6wl3KTv08AtxV7dTb1Z36/dHHC+6aPEIGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBky0FWVSdX1TVV9dvrHAQAALBXrPII2fOSHF3XEAAAgL1mS0FWVWcmOSfJS9c7BwAAYO/Y6iNk/zbJTyW5bY1bAAAA9pR9x7tCVf1Akj/s7quq6nF3cL3zk5yfJAcOHDhhA5lz8PCl0xOAJf8eAZi0k78P3XjknOkJd8pWHiF7dJJzq+rGJJckeUJVvXLzlbr74u4+1N2H9u/ff4JnAgAA7D7HDbLu/qfdfWZ3H0xyXpK3dfcPr30ZAADALuf3kAEAAAw57nPINuruy5JctpYlAAAAe4xHyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGCLIAAAAhggyAACAIYIMAABgiCADAAAYIsgAAACGCDIAAIAhggwAAGCIIAMAABgiyAAAAIYIMgAAgCGCDAAAYIggAwAAGLJvesB2Onj40ukJAMBdnJ8ngBPJI2QAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEOOG2RV9S1V9faq+kBVXV9Vz9uOYQAAALvdvi1c59YkP9ndV1fVvZJcVVVv6e4PrHkbAADArnbcR8i6+5PdffXy9P9OcjTJg9Y9DAAAYLdb6TlkVXUwySOSXL6OMQAAAHvJVg5ZTJJU1alJXpvkH3X3545x+flJzk+SAwcOnLCBAADcdR08fOn0BNjRtvQIWVXdLYsYe1V3v+5Y1+nui7v7UHcf2r9//4ncCAAAsCtt5VUWK8mvJTna3b+w/kkAAAB7w1YeIXt0kh9J8oSqunb59v1r3gUAALDrHfc5ZN39riS1DVsAAAD2lJVeZREAAIATR5ABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADBFkAAAAQwQZAADAEEEGAAAwRJABAAAMEWQAAABDBBkAAMAQQQYAADBEkAEAAAwRZAAAAEMEGQAAwBBBBgAAMESQAQAADNlSkFXV2VX1oar6SFUdXvcoAACAveC4QVZVJyf55SRPTvKwJM+oqoetexgAAMBut5VHyB6Z5CPdfUN3fynJJUmest5ZAAAAu99WguxBSW7a8Oebl+cBAABwJ+w7UX9RVZ2f5PzlH/+kqj50ov7uPeCMJJ+eHnEMdq3GrtXYtRq7VmPXauxajV2rsWs1dq2ofn7HbvtzW7nSVoLs40m+ZcOfz1ye93W6++IkF29pGl+nqq7s7kPTOzazazV2rcau1di1GrtWY9dq7FqNXauxa3U7edtWbOWQxSuSPLSqHlxVd09yXpI3rHcWAADA7nfcR8i6+9aq+vEkv5Pk5CQv6+7r174MAABgl9vSc8i6+41J3rjmLXvZTj3U067V2LUau1Zj12rsWo1dq7FrNXatxq7V7eRtx1XdPb0BAABgT9rKc8gAAABYA0EGAAAwRJABAAAMOWG/GJqtqarvSPKUJA9anvXxJG/o7qNzq3a25cfsQUku7+4/2XD+2d39psFdj0zS3X1FVT0sydlJPrh8EZwdoape0d3PnN6xWVV9T5JHJnl/d795cMd3JTna3Z+rqnsmOZzkrCQfSPKC7v7s0K4LkvxWd9808f5vz4ZfffKJ7n5rVf1Qku9OcjTJxd39p4Pb/nySp2bxezO/nOT3kvx6d39uahMAbIUX9dhGVfVPkjwjySVJbl6efWYWP+Bc0t1Hprbdkap6Tne/fOh9X5DkH2bxA99fTvK87v6vy8uu7u6zhnZdmOTJWdyp8ZYk35Xk7Un+epLf6e6fG9i0+fcDVpLHJ3lbknT3udu96atDqt7T3Y9cnv6xLD6nv5XkSUn+29TXflVdn+Thy1/vcXGSLyR5TZInLs9/6tCuzyb5fJLfT/LqJL/Z3bdMbNmoql6Vxdf8KUn+OMmpSV6XxceruvtZQ7suSPIDSf5Hku9Pcs1y399K8g+6+7KJXbDdqur+3f2H0zvuSqrqft39R9M72OO629s2vWVxj+3djnH+3ZN8eHrfHez+2OD7vi7JqcvTB5NcmUWUJck1w7tOzuIH088luffy/Hsmed/QpquTvDLJ45I8dvnfTy5PP3b4a+iaDaevSLJ/efqbklw3uOvoxo/fpsuunfx4ZXFI+ZOS/FqSW5K8KcmzktxrcNf7lv/dl+RTSU5e/rmmvu6X7/+6DVtOSXLZ8vSB4duJ05IcSfLBJP8ryR9lcefSkST3mdp1nM3/ffB93zvJv0ryn5P80KbLLhrc9cAkv5Lkl5PcL8m/XH7N/UaSbx7cdd9Nb/dLcmOS05Pcd3DX2RtOn7a8DXtfkl9P8oCpXcs9R5KcsTx9KMkNST6S5KOT3yeX37//eZJvnfz4HGPXoSzubH5lFkcfvCXJZ5ffxx8xuOvUJD+b5PrlnluS/G6SZ09/zL7RN88h2163Jfmzxzj/m5eXjamq993O23VJHjA47aReHqbY3TdmERlPrqpfyOKHwCm3dveXu/sLSX6/l4dFdfcXM/e5PJTkqiQ/neSzvXhU4Ivd/Y7ufsfQpq84qapOr6r7ZfFIyi1J0t2fT3Lr4K73V9VzlqffW1WHkqSqvi3J2OF3WRwKe1t3v7m7fzSL242Lsjgs9obBXSctD1u8Vxbhc9ry/HskudvYqoWvHIJ/jyy+Wae7P5bZXb+R5DNJHtfd9+3u+2XxqPVnlpeNqKqzbuftr2RxJMKUl2dxu/7aJOdV1Wur6h7Lyx41Nyv/MYvDmG/K4ofTL2bxSOw7k/z7uVn5dBa3+V95uzKLw/uvXp6e8oINp1+UxR2DfzOLH+J/dWTR15zT3Z9env7XSZ7e3Q/J4uiWF83NyulJ7pPk7VX1nqp6flUd6+fF7XZRkhcmuTTJu5P8aneflsXh/RcN7npVFt8L/0aSn0nyi0l+JMnjq+oFd/Q/7lQOWdxGVXV2kl9K8uEsbtiTxT24D0ny4z37fKhPZfGF/ZnNFyV5d3eP3DBU1duS/ER3X7vhvH1JXpbk73T3yUO7Lk/y+O7+QlWd1N23Lc8/Lcnbe+hQyuWGM5O8OItHMM7t7gNTW76iqm7MIlQrSSd5dHd/sqpOTfKu7h75IXD5+XpJku/N4oebs7L4t3lTkgu6+71Du67p7kfczmWnLO8I2HZV9fwkz83i0eEXZfF82Buy+GH5Nd39M0O7npfkR5NcnsXn8ue7++VVtT/Ja7v7MUO7PtTd377qZetWVV9O8o4c+06tR3X3Pbd5UpKkqq7deFtQVT+dRficm+QtU7erG/89VtXHNt6mbt68zbt+MouQ+Mfdfd3yvD/o7gdP7Nmw66tPJzjG53Ts47V8/0eTfGcvDlP/3e5+1IbLruvu7xzatfFj9r1ZPL3lqVk8ov7q7h75pcfH+dq/3e9T27Drvd398A1/vqK7/2pVnZTkA939HRO77gwv6rGNuvtNy3veH5mvf1GPK7r7y3PLkiS/ncWhgdduvqCqLtv+OV/1zGx6BKW7b03yzKqavKftMd39f5d7Nj4idrcsDisb0903J/nbVXVOFodTjuvug7dz0W1ZPM9nRC9etOPZVXXvJA/O4jbx5u7+1NSmpaff3gVTMbZ83y+uqv+yPP2JqnpFku9L8h+6+z2Du15SVW9N8heSvKi7P7g8/5YkIzG29NGq+qkk/+krX1NV9YAkz87X7pSbcDTJ3+vuD2++oKomd91j4x1c3f1zVfXxLJ4beOrgro1HE71i02UjdwomSXe/aPnv8cXLz9uFWdzhNe3+VfUTWQT/vauq+mv3/k8fmXVRkjdW1ZEkb6qql2TxPNgnJPn/fv6Z0N3vTPLOqnpuFsH99CQjQZbk/1TVk7I4GqKr6ge7+/VV9dgsXjxpyuer6nu6+11VdW4Wh4Snu2+rqsmjp75hHiEDgDWoqtOzOLTnKUnuvzz7U0nekORId28+ImG7dj0ti+dufugYl/1gd79+YFaq6oVJ3tzdb910/tlJ/l13P3Ro188meWFveJXf5fkPyeLz+LSJXZu2nJvknyU52N0PHN5y4aazLuruW6rqgVl8HEdf+beqHpfk7yf5tizuhLspyeuTvGx5h+/Epku6+7yJ931HqurhWRyyeFuS52fxcXtWFg8m/Fh3v3to119K8tIkD83ieWR/t7t/b3lUxDO6+xcndt0ZggwAttnkq9feEbtWs5N21eJXd3xrd79/J+3aaKfuSnbuNrtWs1N3HY8gA4Bttvn5GDuFXauxazU7dVeyc7fZtZqduut4PIcMANagqt53exdl8NVr7VqNXavZqbuSnbvNrtXs1F13hiADgPV4QO7g1Wu3f85X2bUau1azU3clO3ebXavZqbu+YYIMANZjp756rV2rsWs1O3VXsnO32bWanbrrG+Y5ZAAAAEOmfx8EAADAniXIAAAAhggyAACAIYIMAABgiCADAAAY8v8AoDgh0KCUqocAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1166,476 +2294,460 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 113, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Label = 0\n", + "Label = 1\n", "Pred =\n", - " 0. 1\n", + "---- 0. 1\n", "\n", - "Label = 0\n", + "Label = 2\n", "Pred =\n", - "---- 0. 0\n", + " 0. 8\n", "\n", - "Label = 0\n", + "Label = 5\n", "Pred =\n", - "---- 0. 0\n", + "---- 0. 5\n", "\n", - "Label = 0\n", + "Label = 7\n", "Pred =\n", - " 0. 3\n", + "---- 0. 7\n", "\n", - "Label = 0\n", + "Label = 11\n", "Pred =\n", - "---- 0. 0\n", + " 0. 4\n", "\n", - "Label = 0\n", + "Label = 10\n", "Pred =\n", - " 0. 5\n", + "---- 0. 10\n", "\n", - "Label = 0\n", + "Label = 3\n", "Pred =\n", - "---- 0. 0\n", + " 0. 8\n", "\n", - "Label = 0\n", + "Label = 9\n", "Pred =\n", - "---- 0. 0\n", + " 0. 1\n", "\n", - "Label = 0\n", + "Label = 8\n", "Pred =\n", - "---- 0. 0\n", + " 0. 13\n", "\n", - "Label = 0\n", + "Label = 10\n", "Pred =\n", - " 0. 3\n", + "---- 0. 10\n", "\n", - "Label = 0\n", + "Label = 5\n", "Pred =\n", - "---- 0. 0\n", + " 0. 10\n", "\n", - "Label = 0\n", + "Label = 13\n", "Pred =\n", - "---- 0. 0\n", + "---- 0. 13\n", "\n", - "Label = 0\n", + "Label = 18\n", "Pred =\n", - "---- 0. 0\n", + " 0. 10\n", "\n", - "Label = 0\n", + "Label = 1\n", "Pred =\n", - " 0. 4\n", + "---- 0. 1\n", "\n", - "Label = 0\n", + "Label = 18\n", "Pred =\n", - "---- 0. 0\n", + "---- 0. 18\n", "\n", - "Label = 0\n", + "Label = 2\n", "Pred =\n", - "---- 0. 0\n", + "---- 0. 2\n", "\n", - "Label = 0\n", + "Label = 3\n", "Pred =\n", - "---- 0. 0\n", + " 0. 0\n", "\n", - "Label = 0\n", + "Label = 3\n", "Pred =\n", - "---- 0. 0\n", + " 0. 8\n", "\n", - "Label = 0\n", + "Label = 11\n", "Pred =\n", - " 0. 1\n", + " 0. 18\n", "\n", - "Label = 0\n", + "Label = 4\n", "Pred =\n", - "---- 0. 0\n", + "---- 0. 4\n", "\n", - "Label = 1\n", + "Label = 9\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 9\n", "\n", - "Label = 1\n", + "Label = 18\n", "Pred =\n", - " 0. 2\n", + "---- 0. 18\n", "\n", - "Label = 1\n", + "Label = 12\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 12\n", "\n", - "Label = 1\n", + "Label = 8\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 8\n", "\n", - "Label = 1\n", + "Label = 14\n", "Pred =\n", - "---- 0. 1\n", + " 0. 1\n", "\n", - "Label = 1\n", + "Label = 9\n", "Pred =\n", - " 0. 4\n", + "---- 0. 9\n", "\n", - "Label = 1\n", + "Label = 6\n", "Pred =\n", - "---- 0. 1\n", + " 0. 8\n", "\n", - "Label = 1\n", + "Label = 13\n", "Pred =\n", - " 0. 3\n", + "---- 0. 13\n", "\n", - "Label = 1\n", + "Label = 0\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 0\n", "\n", - "Label = 1\n", + "Label = 15\n", "Pred =\n", - "---- 0. 1\n", + " 0. 8\n", "\n", - "Label = 1\n", + "Label = 8\n", "Pred =\n", - " 0. 5\n", + "---- 0. 8\n", "\n", - "Label = 1\n", + "Label = 3\n", "Pred =\n", - " 0. 4\n", + " 0. 8\n", "\n", - "Label = 1\n", + "Label = 17\n", "Pred =\n", - "---- 0. 1\n", + " 0. 10\n", "\n", "Label = 1\n", "Pred =\n", "---- 0. 1\n", "\n", - "Label = 1\n", + "Label = 9\n", "Pred =\n", - " 0. 0\n", + "---- 0. 9\n", "\n", - "Label = 1\n", + "Label = 16\n", "Pred =\n", - " 0. 3\n", + " 0. 10\n", "\n", - "Label = 1\n", + "Label = 8\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 8\n", "\n", - "Label = 1\n", + "Label = 13\n", "Pred =\n", - "---- 0. 1\n", + " 0. 1\n", "\n", - "Label = 1\n", + "Label = 7\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 7\n", "\n", - "Label = 1\n", + "Label = 9\n", "Pred =\n", - "---- 0. 1\n", + "---- 0. 9\n", "\n", - "Label = 1\n", + "Label = 10\n", "Pred =\n", - " 0. 2\n", + "---- 0. 10\n", "\n", - "Label = 1\n", + "Label = 10\n", "Pred =\n", - " 0. 5\n", + "---- 0. 10\n", "\n", - "Label = 2\n", + "Label = 17\n", "Pred =\n", - "---- 0. 2\n", + " 0. 18\n", "\n", - "Label = 2\n", + "Label = 11\n", "Pred =\n", " 0. 4\n", "\n", - "Label = 2\n", - "Pred =\n", - " 0. 1\n", - "\n", - "Label = 2\n", + "Label = 0\n", "Pred =\n", - " 0. 4\n", + " 0. 8\n", "\n", - "Label = 2\n", + "Label = 18\n", "Pred =\n", - " 0. 5\n", + "---- 0. 18\n", "\n", - "Label = 2\n", + "Label = 5\n", "Pred =\n", - "---- 0. 2\n", + " 0. 8\n", "\n", - "Label = 2\n", + "Label = 18\n", "Pred =\n", - " 0. 4\n", + "---- 0. 18\n", "\n", - "Label = 2\n", + "Label = 6\n", "Pred =\n", - "---- 0. 2\n", + " 0. 1\n", "\n", - "Label = 2\n", + "Label = 1\n", "Pred =\n", - " 0. 3\n", + " 0. 18\n", "\n", - "Label = 2\n", + "Label = 11\n", "Pred =\n", - "---- 0. 2\n", + "---- 0. 11\n", "\n", - "Label = 2\n", + "Label = 6\n", "Pred =\n", - "---- 0. 2\n", + " 0. 1\n", "\n", - "Label = 2\n", + "Label = 10\n", "Pred =\n", - " 0. 3\n", + "---- 0. 10\n", "\n", - "Label = 2\n", + "Label = 15\n", "Pred =\n", - " 0. 3\n", + " 0. 8\n", "\n", - "Label = 2\n", + "Label = 12\n", "Pred =\n", - "---- 0. 2\n", + "---- 0. 12\n", "\n", - "Label = 2\n", + "Label = 5\n", "Pred =\n", - " 0. 4\n", + " 0. 8\n", "\n", "Label = 2\n", "Pred =\n", - " 0. 3\n", + "---- 0. 2\n", "\n", - "Label = 2\n", + "Label = 19\n", "Pred =\n", " 0. 1\n", "\n", - "Label = 2\n", - "Pred =\n", - " 0. 5\n", - "\n", - "Label = 2\n", + "Label = 12\n", "Pred =\n", - " 0. 5\n", + "---- 0. 12\n", "\n", - "Label = 3\n", + "Label = 12\n", "Pred =\n", - " 0. 5\n", + "---- 0. 12\n", "\n", - "Label = 3\n", + "Label = 10\n", "Pred =\n", - "---- 0. 3\n", + "---- 0. 10\n", "\n", - "Label = 3\n", + "Label = 7\n", "Pred =\n", - " 0. 1\n", + "---- 0. 7\n", "\n", - "Label = 3\n", + "Label = 12\n", "Pred =\n", - "---- 0. 3\n", + "---- 0. 12\n", "\n", - "Label = 3\n", + "Label = 15\n", "Pred =\n", - " 0. 0\n", + " 0. 13\n", "\n", "Label = 3\n", "Pred =\n", - "---- 0. 3\n", + " 0. 8\n", "\n", - "Label = 3\n", + "Label = 9\n", "Pred =\n", - " 0. 5\n", + "---- 0. 9\n", "\n", "Label = 3\n", "Pred =\n", - "---- 0. 3\n", + " 0. 8\n", "\n", - "Label = 3\n", + "Label = 1\n", "Pred =\n", - "---- 0. 3\n", + "---- 0. 1\n", "\n", - "Label = 3\n", + "Label = 5\n", "Pred =\n", - "---- 0. 3\n", + "---- 0. 5\n", "\n", - "Label = 3\n", + "Label = 17\n", "Pred =\n", - "---- 0. 3\n", + " 0. 1\n", "\n", "Label = 3\n", "Pred =\n", - "---- 0. 3\n", + " 0. 0\n", "\n", - "Label = 3\n", + "Label = 5\n", "Pred =\n", - "---- 0. 3\n", + " 0. 1\n", "\n", - "Label = 3\n", + "Label = 14\n", "Pred =\n", - "---- 0. 3\n", + " 0. 5\n", "\n", - "Label = 3\n", + "Label = 17\n", "Pred =\n", - " 0. 1\n", + "---- 0. 17\n", "\n", "Label = 4\n", "Pred =\n", "---- 0. 4\n", "\n", - "Label = 4\n", + "Label = 7\n", "Pred =\n", - "---- 0. 4\n", + " 0. 6\n", "\n", "Label = 4\n", "Pred =\n", - " 0. 0\n", + " 0. 10\n", "\n", - "Label = 4\n", + "Label = 13\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 13\n", "\n", - "Label = 4\n", + "Label = 17\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 17\n", "\n", - "Label = 4\n", + "Label = 9\n", "Pred =\n", - " 0. 3\n", + "---- 0. 9\n", "\n", - "Label = 4\n", + "Label = 10\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 10\n", "\n", - "Label = 4\n", + "Label = 17\n", "Pred =\n", - "---- 0. 4\n", + " 0. 1\n", "\n", - "Label = 4\n", + "Label = 2\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 2\n", "\n", - "Label = 4\n", + "Label = 6\n", "Pred =\n", - "---- 0. 4\n", + " 0. 1\n", "\n", - "Label = 4\n", + "Label = 0\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 0\n", "\n", - "Label = 4\n", + "Label = 11\n", + "Pred =\n", + " 0. 4\n", + "\n", + "Label = 6\n", "Pred =\n", " 0. 1\n", "\n", - "Label = 4\n", + "Label = 7\n", "Pred =\n", - " 0. 3\n", + "---- 0. 7\n", "\n", - "Label = 4\n", + "Label = 10\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 10\n", "\n", - "Label = 4\n", + "Label = 18\n", "Pred =\n", - "---- 0. 4\n", + "---- 0. 18\n", "\n", - "Label = 4\n", + "Label = 19\n", "Pred =\n", - " 0. 0\n", + " 0. 13\n", "\n", - "Label = 5\n", + "Label = 4\n", "Pred =\n", - " 0. 0\n", + "---- 0. 4\n", "\n", - "Label = 5\n", + "Label = 15\n", "Pred =\n", - "---- 0. 5\n", + " 0. 2\n", "\n", - "Label = 5\n", + "Label = 12\n", "Pred =\n", - " 0. 3\n", + "---- 0. 12\n", "\n", "Label = 5\n", "Pred =\n", - " 0. 4\n", + " 0. 6\n", "\n", - "Label = 5\n", + "Label = 7\n", "Pred =\n", - "---- 0. 5\n", + "---- 0. 7\n", "\n", - "Label = 5\n", + "Label = 7\n", "Pred =\n", - "---- 0. 5\n", + "---- 0. 7\n", "\n", - "Label = 5\n", + "Label = 17\n", "Pred =\n", - " 0. 0\n", + "---- 0. 17\n", "\n", - "Label = 5\n", + "Label = 19\n", "Pred =\n", - "---- 0. 5\n", + " 0. 8\n", "\n", - "Label = 5\n", + "Label = 19\n", "Pred =\n", - " 0. 3\n", + " 0. 8\n", "\n", - "Label = 5\n", + "Label = 11\n", "Pred =\n", - " 0. 1\n", + " 0. 10\n", "\n", - "Label = 5\n", + "Label = 15\n", "Pred =\n", - " 0. 4\n", + " 0. 13\n", "\n", "Label = 5\n", "Pred =\n", "---- 0. 5\n", "\n", - "Label = 5\n", + "Label = 12\n", "Pred =\n", - " 0. 1\n", + "---- 0. 12\n", "\n", - "Label = 5\n", + "Label = 16\n", "Pred =\n", - "---- 0. 5\n", + " 0. 13\n", "\n", - "Label = 5\n", + "Label = 4\n", "Pred =\n", - " 0. 1\n", + "---- 0. 4\n", "\n", - "Label = 5\n", + "Label = 13\n", "Pred =\n", - " 0. 2\n", + " 0. 18\n", "\n", - "Label = 5\n", + "Label = 18\n", "Pred =\n", - "---- 0. 5\n", + "---- 0. 18\n", "\n", - "Label = 5\n", + "Label = 14\n", "Pred =\n", - "---- 0. 5\n", + "---- 0. 14\n", "\n", - "Label = 5\n", + "Label = 17\n", "Pred =\n", - " 0. 3\n", + "---- 0. 17\n", "\n", "Label = 5\n", "Pred =\n", - " 0. 3\n", + " 0. 1\n", "\n", - "Label = 5\n", + "Label = 6\n", "Pred =\n", - "---- 0. 5\n", - "\n", - "Label = 5\n", - "Pred =\n", - "---- 0. 5\n", - "\n", - "Label = 5\n", - "Pred =\n", - " 0. 2\n", - "\n", - "Label = 5\n", - "Pred =\n", - "---- 0. 5\n", + " 0. 1\n", "\n" ] } @@ -1666,16 +2778,16 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.5603448275862069" + "0.5446428571428571" ] }, - "execution_count": 174, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -1691,234 +2803,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy import io" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "m = io.mmread('../sparse/adj/0_sparse_fname2_split_magret_adj.mtx').toarray()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGDBJREFUeJzt3V+srWdd4PHvbw40GHQs1E7DUGbKxEbSi6GYEwLRGIWo+CfTXhiicSaNIemNM8HEiYPeGCea6I3KhTFpAO2FCgRl2hgjNhXjzE31IDgCdQZsIBQLrRXin0lkWp+5OIvxTOfUtc7ea5299zmfT9Lstd699ruevrDJl2et9duz1goA4Hr3T056AQAAp4EoAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQ1Quu5pN9zUvPrdte8cKr+ZQAwHXsU5/53/3FXz47uzz2WFE0M2+q3l6dq96x1vrpf+zxt73ihf3BB15xnKcEANjZa7/9Mzs/9sgvn83MueoXqu+o7qi+b2buOOr5AABO0nHeU/Ta6pNrrcfWWl+q3l3dtZ9lAQBcXceJopdXl+5JPb459v+YmXtn5sLMXHjq6WeP8XQAAIdz8E+frbXuW2udX2udv/mmc4d+OgCAIzlOFH22uvRd07dujgEAnDnHiaI/rG6fmVfOzA3V91YP7mdZAABX15E/kr/WemZm/n31gS5+JP9da62P7W1lR/Tt//zOY5/jA3/+kavyPADAYf3P9fTOjz3WnKK11m9Vv3WccwAAnAb+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQHXNO0Wm0j8GLBjMCwPXHThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQnbI5RbvMB9plDtFxz2FOEQBcf+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoTtnwxl1sG6y4j+GOAMD1x04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJ2yOUW7zBjaNqdo2/f3tY5t9rEOAODqsVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKA6ZcMbr6WBh/sYRHlaXEv/LgDwfOwUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANUpm1N0Wuwyc2eX2T3HPcc+1rGP+UFmEAFwPbBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrzxyLYNNLwawx13WQcAsBs7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlTtHB7DI/aB+zjACA/bBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrzxYHYZzLjLgMd9PM9x7WOdAHDabd0pmpl3zcyTM/PRS469dGYemplPbL6+5LDLBAA4rF1ePvvl6k3POfa26uG11u3Vw5v7AABn1tYoWmv9fvWXzzl8V3X/5vb91d17XhcAwFV11Dda37LWemJz+3PVLc/3wJm5d2YuzMyFp55+9ohPBwBwWMf+9Nlaa1XrH/n+fWut82ut8zffdO64TwcAcBBHjaLPz8zLqjZfn9zfkgAArr6jRtGD1T2b2/dUD+xnOQAAJ2PrnKKZ+bXqm6uvmZnHqx+vfrp678y8pfp09eZDLvIsOkuzfc7SWgHgULZG0Vrr+57nW2/c81oAAE6MP/MBAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDvMKeJs22Uw4wf+/CPHPgcAnHV2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnKIjOy2zffbxPNvOse3fdR/PAQAnzU4RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDK8MYjM4zwyuwyAHIfQyT95wLAUdkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzitjBLrN/dpkhdNxzmEEEwCHZKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneyJ5sG6y4j+GOAHBIdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypwi9mTbHKJtc4z28Rz7eh4Ark92igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3sidXY2jiLs9xNYZIAnBtslMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUcY3ZNodo2xyjXc4BwLXJThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwRq4zuwxm3Dbg0XBHgGvT1p2imXnFzHxwZj4+Mx+bmbdujr90Zh6amU9svr7k8MsFADiMXV4+e6b64bXWHdXrqh+cmTuqt1UPr7Vurx7e3AcAOJO2RtFa64m11h9tbv919Wj18uqu6v7Nw+6v7j7UIgEADu2K3mg9M7dVr6keqW5Zaz2x+dbnqlue52funZkLM3PhqaefPcZSAQAOZ+compmvrH69+qG11l9d+r211qrW5X5urXXfWuv8Wuv8zTedO9ZiAQAOZacompkXdjGIfmWt9Rubw5+fmZdtvv+y6snDLBEA4PB2+fTZVO+sHl1r/ewl33qwumdz+57qgf0vDwDg6thlTtE3VP+u+pOZ+fIAlx+rfrp678y8pfp09ebDLBGurm1ziLbNMdrlHACcPlujaK3136p5nm+/cb/LAQA4Gf7MBwBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFDtNrwRuMQugxm3DXg03BHg9LFTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTmFMFBbJtDtG2O0S7nAGC/7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMb4QTsctgxm0DHg13BNgvO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RnFrb5hBtm2O0yzkA+Ad2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3wpm1y2DGbQMeDXcE+Ad2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCK4pm2bQ7RtjtEu5wC4VtgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQGd4I17VdBjNuG/BouCNwrbBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTmFAFbbJtDtG2O0S7nADgN7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwSOaZfBjNsGPBruCJwGW3eKZuZFM/MHM/PHM/OxmfmJzfFXzswjM/PJmXnPzNxw+OUCABzGLi+f/V31hrXWq6s7qzfNzOuqn6l+bq31tdUXqrccbpkAAIe1NYrWRX+zufvCzT+rekP1vs3x+6u7D7JCAICrYKc3Ws/MuZn5SPVk9VD1Z9UX11rPbB7yePXy5/nZe2fmwsxceOrpZ/exZgCAvdspitZaz6617qxurV5bvWrXJ1hr3bfWOr/WOn/zTeeOuEwAgMO6oo/kr7W+WH2wen1148x8+dNrt1af3fPaAACuml0+fXbzzNy4uf0V1bdWj3Yxjr5n87B7qgcOtUgAgEPbZU7Ry6r7Z+ZcFyPqvWut35yZj1fvnpmfrD5cvfOA6wTOsG1ziLbNMdrlHADHtTWK1lr/vXrNZY4/1sX3FwEAnHn+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQ7Ta8EeCgdhnMuG3Ao+GOwHHZKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4qAM2LbHKJtc4x2OQdwfbNTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrwRuEbsMphx24BHwx3h+manCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjMKQKuI9vmEG2bY7TLOYCzy04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDK8EaA/2uXwYzbBjwa7ghnl50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDKnCOCKbJtDtG2O0S7nAE6GnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQB7tctgxm0DHg13hJNhpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCozCkCuOq2zSHaNsdol3MAV85OEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAyvBGgFNnl8GM2wY8Gu4IV27nnaKZOTczH56Z39zcf+XMPDIzn5yZ98zMDYdbJgDAYV3Jy2dvrR695P7PVD+31vra6gvVW/a5MACAq2mnKJqZW6vvqt6xuT/VG6r3bR5yf3X3IRYIAHA17LpT9PPVj1R/v7l/U/XFtdYzm/uPVy+/3A/OzL0zc2FmLjz19LPHWiwAwKFsjaKZ+e7qybXWh47yBGut+9Za59da52++6dxRTgEAcHC7fPrsG6p/MzPfWb2o+qfV26sbZ+YFm92iW6vPHm6ZAACHtXWnaK31o2utW9dat1XfW/3uWuv7qw9W37N52D3VAwdbJQDAgR1nTtF/qt49Mz9Zfbh6536WBMA22+YQbZtjtMs54HpzRVG01vq96vc2tx+rXrv/JQEAXH3+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQHW94IwCn1C6DGbcNeDTckeuNnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqcI4Lq1bQ7RtjlGu5wDzhI7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAXgeuwxm3Dbg0XBHzhI7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThEAx7BtDtG2OUa7nAOuFjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxsBOKBdBjNuG/BouCNXi50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDKnCIATtm0O0bY5RrucA3ZhpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQGV4IwCn3C6DGbcNeDTckV3YKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4oAuAZsm0O0bY7RLufg2menCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZXgjANeBXQYzbhvwaLjjtW+nKJqZT1V/XT1bPbPWOj8zL63eU91Wfap681rrC4dZJgDAYV3Jy2ffsta6c611fnP/bdXDa63bq4c39wEAzqTjvKforur+ze37q7uPvxwAgJOxaxSt6ndm5kMzc+/m2C1rrSc2tz9X3XK5H5yZe2fmwsxceOrpZ4+5XACAw9j1jdbfuNb67Mz8s+qhmfnTS7+51lozsy73g2ut+6r7qs6/+kWXfQwAwEnbaadorfXZzdcnq/dXr60+PzMvq9p8ffJQiwQAOLStUTQzL56Zr/ry7erbqo9WD1b3bB52T/XAoRYJAHBou7x8dkv1/pn58uN/da312zPzh9V7Z+Yt1aerNx9umQBwWNvmEG2bY7TLOTjdtkbRWuux6tWXOf509cZDLAoA4GrzZz4AABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAave/fQYA17VdBjNuG/BouOPpZqcIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAoC92TaHaNsco13OweHYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCABXzS6DGbcNeDTc8XDsFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUUAcKpsm0O0bY7RLufg8uwUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG8EgDNll8GM2wY8Gu54eXaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMqcIgC45mybQ7RtjtEu57gW2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3ggA151dBjNuG/B4LQ53tFMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAQCXsW0O0bY5Rruc47SxUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDK8EQA4gl0GM24b8HjahjvutFM0MzfOzPtm5k9n5tGZef3MvHRmHpqZT2y+vuTQiwUAOJRdXz57e/Xba61XVa+uHq3eVj281rq9enhzHwDgTNoaRTPz1dU3Ve+sWmt9aa31xequ6v7Nw+6v7j7UIgEADm2XnaJXVk9VvzQzH56Zd8zMi6tb1lpPbB7zueqWy/3wzNw7Mxdm5sJTTz+7n1UDAOzZLlH0gurrq19ca72m+tue81LZWmtV63I/vNa6b611fq11/uabzh13vQAAB7FLFD1ePb7WemRz/31djKTPz8zLqjZfnzzMEgEADm9rFK21Pld9Zma+bnPojdXHqwerezbH7qkeOMgKAQCugl3nFP2H6ldm5obqseoHuhhU752Zt1Sfrt58mCUCAGfRtjlE2+YY7XKOfdopitZaH6nOX+Zbb9zvcgAAToY/8wEAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUuw9vBADYq10GM24b8LjP4Y52igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIA4BTbNodo2xyj1377/9r5uewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoatZaV+/JZp6qPn3Joa+p/uKqLeD64Jrun2u6f67p/rmm++ea7t9JXNN/uda6eZcHXtUo+v+efObCWuv8iS3gGuSa7p9run+u6f65pvvnmu7fab+mXj4DAEgUAQBUJx9F953w81+LXNP9c033zzXdP9d0/1zT/TvV1/RE31MEAHBanPROEQDAqXBiUTQzb5qZ/zEzn5yZt53UOs6ymXnXzDw5Mx+95NhLZ+ahmfnE5utLTnKNZ8nMvGJmPjgzH5+Zj83MWzfHXdMjmpkXzcwfzMwfb67pT2yOv3JmHtn8/r9nZm446bWeNTNzbmY+PDO/ubnvmh7DzHxqZv5kZj4yMxc2x/zuH8PM3Dgz75uZP52ZR2fm9af9mp5IFM3MueoXqu+o7qi+b2buOIm1nHG/XL3pOcfeVj281rq9enhzn908U/3wWuuO6nXVD27+e+maHt3fVW9Ya726urN608y8rvqZ6ufWWl9bfaF6ywmu8ax6a/XoJfdd0+P7lrXWnZd8ZNzv/vG8vfrttdarqld38b+vp/qantRO0WurT661Hltrfal6d3XXCa3lzFpr/X71l885fFd1/+b2/dXdV3VRZ9ha64m11h9tbv91F3+BX55remTror/Z3H3h5p9VvaF63+a4a3qFZubW6ruqd2zuT67pIfjdP6KZ+erqm6p3Vq21vrTW+mKn/JqeVBS9vPrMJfcf3xzj+G5Zaz2xuf256paTXMxZNTO3Va+pHsk1PZbNyzwfqZ6sHqr+rPriWuuZzUP8/l+5n69+pPr7zf2bck2Pa1W/MzMfmpl7N8f87h/dK6unql/avMz7jpl5caf8mnqj9TVsXfxooY8XXqGZ+crq16sfWmv91aXfc02v3Frr2bXWndWtXdwlftUJL+lMm5nvrp5ca33opNdyjfnGtdbXd/FtHT84M9906Tf97l+xF1RfX/3iWus11d/2nJfKTuM1Pako+mz1ikvu37o5xvF9fmZeVrX5+uQJr+dMmZkXdjGIfmWt9Rubw67pHmy2zj9Yvb66cWZesPmW3/8r8w3Vv5mZT3XxrQdv6OJ7N1zTY1hrfXbz9cnq/V0MeL/7R/d49fha65HN/fd1MZJO9TU9qSj6w+r2zaclbqi+t3rwhNZyrXmwumdz+57qgRNcy5myeV/GO6tH11o/e8m3XNMjmpmbZ+bGze2vqL61i+/V+mD1PZuHuaZXYK31o2utW9dat3Xxfzt/d631/bmmRzYzL56Zr/ry7erbqo/md//I1lqfqz4zM1+3OfTG6uOd8mt6YsMbZ+Y7u/i6+LnqXWutnzqRhZxhM/Nr1Td38a8Of7768eq/VO+t/kX16erNa63nvhmby5iZb6z+a/Un/cN7NX6si+8rck2PYGb+dRffTHmui/8n7L1rrf88M/+qi7scL60+XP3btdbfndxKz6aZ+ebqP661vts1PbrNtXv/5u4Lql9da/3UzNyU3/0jm5k7u/hhgBuqx6ofaPO/A53Sa2qiNQBA3mgNAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq+j9d+uO2wfnQ1QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10,10))\n", - "plt.imshow(m)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.count_nonzero(m[56,:])" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "eye = np.eye(64)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "shuffle_idx = np.random.permutation(20)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "G = nx.from_numpy_matrix(m)\n", - "shuffled_adj = nx.adjacency_matrix(G, nodelist=shuffle_idx).todense()" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJCCAYAAAA2m0iOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG/pJREFUeJzt3X+M5Pdd3/HXu76LIwdD7BhMznYJUDdSQOSITge0AYUGfI4VxYBSagsVA6mOUCIRqRUKRQqI/lOKAIkGYRliJaDUWAUMVnHYuAHJIJEfF2vtOMSxHcvIvjM22NQmhPxw+PSPnav21rO+Nzu739ndezyk1c58v9+Zz2e++525p78zu64xRgAAOLt/tuwJAADsFcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE0Hlj2BeS65+LzxiisOTjLWA/deMMk4wP7zL7/ps5ON5bUKdtbn8vf5wvh8nW27XRlOr7jiYD6ycsUkYx07dHiScYD9Z2VldbKxvFbBzvrw+GBrO2/VAQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBpoXCqqqur6lNV9VBVvWPO+vOr6tbZ+g9X1SsWGQ8AYJm2HE5VdV6SX03yhiSvSnJ9Vb1qw2ZvSfK3Y4x/keSXk/z8VscDAFi2Rc44HU3y0Bjj4THGF5L8dpJrN2xzbZL3zi7/TpLXV9VZ/z8wAAC70SLhdFmSR9ddf2y2bO42Y4znkjyT5GULjAkAsDS75sPhVXW8qk5U1Ym/fupLy54OAMDzLBJOJ5Ncse765bNlc7epqgNJviLJU/PubIxx0xjjyBjjyFe+7LwFpgUAsDMWCaePJrmyqr62ql6U5Lokt2/Y5vYkN8wuvznJH48xxgJjAgAszYGt3nCM8VxVvS3JSpLzktw8xvhEVf1ckhNjjNuTvDvJb1XVQ0mezlpcAQDsSVsOpyQZY9yR5I4Ny9657vLnkvzbRcYAANgtds2HwwEAdjvhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANC30BzB3ygP3XpBjhw5PMtbKqdVJxkky2WPa7/zMAM4dU73mHz322dZ2zjgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApgPLnsCyHTt0eLKxVk6tTjZWMu1jm9J+fVyOD4Dnm+q16oHxVGs7Z5wAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKYth1NVXVFVf1JVf1FVn6iqn5izzeuq6pmqWp19vXOx6QIALM+BBW77XJL/NMa4u6ouTPKxqrpzjPEXG7b70zHGGxcYBwBgV9jyGacxxuNjjLtnl/8uySeTXLZdEwMA2G225TNOVfWKJN+c5MNzVn9bVd1TVe+vqm/YjvEAAJZhkbfqkiRV9WVJfjfJ28cYz25YfXeSrxljfKaqrkny+0mu3OR+jic5niQvzgWLTmtXOnbo8KTjrZxanWysqR/bVOxDdospj8XE8QibWeiMU1UdzFo0vW+M8Xsb148xnh1jfGZ2+Y4kB6vqknn3Nca4aYxxZIxx5GDOX2RaAAA7YpHfqqsk707yyTHGL22yzVfPtktVHZ2N99RWxwQAWKZF3qr710n+fZKPV9Xpc8j/Jck/T5Ixxo1J3pzkx6rquST/kOS6McZYYEwAgKXZcjiNMf4sSZ1lm3cleddWxwAA2E385XAAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNB5Y9AXbOsUOHJxtr5dTqZGNN+bimHGs/26/Hx5T26+OCvcYZJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANB0YNkTWLaVU6uTjXXs0OHJxpralI/Nzwxguc7l12FnnAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJoWDqeqeqSqPl5Vq1V1Ys76qqpfqaqHqureqnrNomMCACzDdv0vV75zjPE3m6x7Q5IrZ1/fkuTXZt8BAPaUKd6quzbJb441H0ry0qp6+QTjAgBsq+0Ip5HkA1X1sao6Pmf9ZUkeXXf9sdkyAIA9ZTveqnvtGONkVX1Vkjur6v4xxl3/1DuZRdfxJHlxLtiGaQEAbK+FzziNMU7Ovj+Z5LYkRzdscjLJFeuuXz5btvF+bhpjHBljHDmY8xedFgDAtlsonKrqJVV14enLSa5Kct+GzW5P8oOz36771iTPjDEeX2RcAIBlWPStukuT3FZVp+/rf44x/qiq3pokY4wbk9yR5JokDyX5bJIfXnBMAIClWCicxhgPJ3n1nOU3rrs8kvz4IuMAAOwG/nI4AECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJq243/yu6cdO3R42VPYMSunVicba8r9OOVY+3UfTm0/PzbYDaZ8rUrO7ee0M04AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCg6cCyJ3AuWTm1Oul4xw4dnnS8/WjKfTj18TElxyLnoimf055j03HGCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBo2nI4VdUrq2p13dezVfX2Ddu8rqqeWbfNOxefMgDAchzY6g3HGJ9KcjhJquq8JCeT3DZn0z8dY7xxq+MAAOwW2/VW3euTfHqM8ZfbdH8AALvOdoXTdUlu2WTdt1XVPVX1/qr6hm0aDwBgclt+q+60qnpRkjcl+ak5q+9O8jVjjM9U1TVJfj/JlZvcz/Ekx5Pkxblg0WntSscOHV72FAB2nZVTq5ONNeXrsNf8/Wk7zji9IcndY4wnNq4YYzw7xvjM7PIdSQ5W1SXz7mSMcdMY48gY48jBnL8N0wIA2F7bEU7XZ5O36arqq6uqZpePzsZ7ahvGBACY3EJv1VXVS5J8d5IfXbfsrUkyxrgxyZuT/FhVPZfkH5JcN8YYi4wJALAsC4XTGOPvk7xsw7Ib111+V5J3LTIGAMBu4S+HAwA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaDqw7AmwP6ycWl32FHbEsUOH9+VYU5vy+NjP+3G/mvJn5lhkUc44AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKYDy54A+8OxQ4eXPQV2sSmPj5VTq5ONxd7jtYpFOeMEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQ1Aqnqrq5qp6sqvvWLbu4qu6sqgdn3y/a5LY3zLZ5sKpu2K6JAwBMrXvG6T1Jrt6w7B1JPjjGuDLJB2fXz1BVFyf5mSTfkuRokp/ZLLAAAHa7VjiNMe5K8vSGxdcmee/s8nuTfM+cmx5LcucY4+kxxt8muTPPDzAAgD1hkc84XTrGeHx2+a+SXDpnm8uSPLru+mOzZQAAe862fDh8jDGSjEXuo6qOV9WJqjrxxXx+O6YFALCtFgmnJ6rq5Uky+/7knG1OJrli3fXLZ8ueZ4xx0xjjyBjjyMGcv8C0AAB2xiLhdHuS078ld0OSP5izzUqSq6rqotmHwq+aLQMA2HO6f47gliR/nuSVVfVYVb0lyX9L8t1V9WCS75pdT1UdqarfSJIxxtNJ/muSj86+fm62DABgzznQ2WiMcf0mq14/Z9sTSf7Duus3J7l5S7MDANhF/OVwAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADTV2v+fd3c58uoXj4+sXHH2DQEAtsHRY4/mxD2fq7Nt54wTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaDqw7AnM88C9F+TYocPLnsaet3JqdbKx/Lw4F035HJua5zQvZD/++/LAeKq1nTNOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAEDTWcOpqm6uqier6r51y36hqu6vqnur6raqeukmt32kqj5eVatVdWI7Jw4AMLXOGaf3JLl6w7I7k3zjGOObkjyQ5Kde4PbfOcY4PMY4srUpAgDsDmcNpzHGXUme3rDsA2OM52ZXP5Tk8h2YGwDArrIdn3H6kSTv32TdSPKBqvpYVR3fhrEAAJbmwCI3rqqfTvJckvdtsslrxxgnq+qrktxZVffPzmDNu6/jSY4nyYtzwSLTYubYocPLngKwTaZ+Pq+cWp1sLK9Vi5vy55Wc2z+zLZ9xqqofSvLGJD8wxhjzthljnJx9fzLJbUmObnZ/Y4ybxhhHxhhHDub8rU4LAGDHbCmcqurqJD+Z5E1jjM9uss1LqurC05eTXJXkvnnbAgDsBZ0/R3BLkj9P8sqqeqyq3pLkXUkuzNrbb6tVdeNs20NVdcfsppcm+bOquifJR5L84Rjjj3bkUQAATOCsn3EaY1w/Z/G7N9n2VJJrZpcfTvLqhWYHALCL+MvhAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmg4sewLAcqycWp1srGOHDk82Fttjyp+ZY3Fx+/Vx7UbOOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAICmA8ueALAcxw4dnmyslVOrk4015eNiezgW2UuccQIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGg6azhV1c1V9WRV3bdu2c9W1cmqWp19XbPJba+uqk9V1UNV9Y7tnDgAwNQ6Z5zek+TqOct/eYxxePZ1x8aVVXVekl9N8oYkr0pyfVW9apHJAgAs01nDaYxxV5Knt3DfR5M8NMZ4eIzxhSS/neTaLdwPAMCusMhnnN5WVffO3sq7aM76y5I8uu76Y7Nlc1XV8ao6UVUnvpjPLzAtAICdsdVw+rUkX5/kcJLHk/ziohMZY9w0xjgyxjhyMOcvencAANtuS+E0xnhijPGlMcY/Jvn1rL0tt9HJJFesu375bBkAwJ60pXCqqpevu/q9Se6bs9lHk1xZVV9bVS9Kcl2S27cyHgDAbnDgbBtU1S1JXpfkkqp6LMnPJHldVR1OMpI8kuRHZ9seSvIbY4xrxhjPVdXbkqwkOS/JzWOMT+zIowAAmMBZw2mMcf2cxe/eZNtTSa5Zd/2OJM/7UwUAAHuRvxwOANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKaz/gFMYBorp1YnHe/YocP7cix4IVMei1M+p6d+ju3nx3Y2zjgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApgPLngDsZiunVicb69ihw5ONBWfj2F/clI9ryp9Xsn9/Zh3OOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATQfOtkFV3ZzkjUmeHGN842zZrUleOdvkpUn+7xjj8JzbPpLk75J8KclzY4wj2zRvAIDJnTWckrwnybuS/ObpBWOMf3f6clX9YpJnXuD23znG+JutThAAYLc4aziNMe6qqlfMW1dVleT7k/yb7Z0WAMDus+hnnL49yRNjjAc3WT+SfKCqPlZVx1/ojqrqeFWdqKoTX8znF5wWAMD267xV90KuT3LLC6x/7RjjZFV9VZI7q+r+McZd8zYcY9yU5KYk+fK6eCw4L/axlVOrk4117NDzProHSzHlcZ849rfDfn6t2s+P7Wy2fMapqg4k+b4kt262zRjj5Oz7k0luS3J0q+MBACzbIm/VfVeS+8cYj81bWVUvqaoLT19OclWS+xYYDwBgqc4aTlV1S5I/T/LKqnqsqt4yW3VdNrxNV1WHquqO2dVLk/xZVd2T5CNJ/nCM8UfbN3UAgGl1fqvu+k2W/9CcZaeSXDO7/HCSVy84PwCAXcNfDgcAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANBUY4xlz+F5vrwuHt9Sr59krJVTq5OMkyTHDh2ebCxg53n9gJ031fPs6LFHc+Kez9XZtnPGCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADTVGGPZc3ieqvrrJH/5T7zZJUn+Zgems1fZH2eyP85kf5zJ/jiT/XEm++NM+3V/fM0Y4yvPttGuDKetqKoTY4wjy57HbmF/nMn+OJP9cSb740z2x5nsjzOd6/vDW3UAAE3CCQCgaT+F003LnsAuY3+cyf44k/1xJvvjTPbHmeyPM53T+2PffMYJAGCn7aczTgAAO2rPhVNVXV1Vn6qqh6rqHXPWn19Vt87Wf7iqXjH9LKdRVVdU1Z9U1V9U1Seq6ifmbPO6qnqmqlZnX+9cxlynUlWPVNXHZ4/1xJz1VVW/Mjs+7q2q1yxjnlOoqleu+7mvVtWzVfX2Ddvs6+Ojqm6uqier6r51yy6uqjur6sHZ94s2ue0Ns20erKobppv1ztlkf/xCVd0/ez7cVlUv3eS2L/jc2os22R8/W1Un1z0nrtnkti/4b9FetMn+uHXdvnikqlY3ue2+Oz42NcbYM19Jzkvy6SRfl+RFSe5J8qoN2/zHJDfOLl+X5NZlz3sH98fLk7xmdvnCJA/M2R+vS/K/lz3XCffJI0kueYH11yR5f5JK8q1JPrzsOU+0X85L8ldZ+zsl58zxkeQ7krwmyX3rlv33JO+YXX5Hkp+fc7uLkzw8+37R7PJFy348O7Q/rkpyYHb55+ftj9m6F3xu7cWvTfbHzyb5z2e53Vn/LdqLX/P2x4b1v5jknefK8bHZ114743Q0yUNjjIfHGF9I8ttJrt2wzbVJ3ju7/DtJXl9VNeEcJzPGeHyMcffs8t8l+WSSy5Y7q13v2iS/OdZ8KMlLq+rly57UBF6f5NNjjH/qH5bd08YYdyV5esPi9a8R703yPXNueizJnWOMp8cYf5vkziRX79hEJzJvf4wxPjDGeG529UNJLp98YkuyyfHR0fm3aM95of0x+3f0+5PcMumkdqG9Fk6XJXl03fXH8vxQ+P/bzF4Mnknysklmt0SztyS/OcmH56z+tqq6p6reX1XfMOnEpjeSfKCqPlZVx+es7xxD+9F12fwF71w6PpLk0jHG47PLf5Xk0jnbnKvHyY9k7YzsPGd7bu0nb5u9dXnzJm/lnovHx7cneWKM8eAm68+Z42OvhRNzVNWXJfndJG8fYzy7YfXdWXt75tVJ/keS3596fhN77RjjNUnekOTHq+o7lj2hZauqFyV5U5L/NWf1uXZ8nGGsvcfgV4uTVNVPJ3kuyfs22eRceW79WpKvT3I4yeNZe3uK5Pq88Nmmc+X42HPhdDLJFeuuXz5bNnebqjqQ5CuSPDXJ7Jagqg5mLZreN8b4vY3rxxjPjjE+M7t8R5KDVXXJxNOczBjj5Oz7k0luy9op9fU6x9B+84Ykd48xnti44lw7PmaeOP327Oz7k3O2OaeOk6r6oSRvTPIDs5h8nsZza18YYzwxxvjSGOMfk/x65j/Oc+34OJDk+5Lcutk258rxkey9cPpokiur6mtn/xV9XZLbN2xze5LTvwHz5iR/vNkLwV43e8/53Uk+Ocb4pU22+erTn/GqqqNZ+5nvy5CsqpdU1YWnL2ftQ6/3bdjs9iQ/OPvtum9N8sy6t232q03/S/FcOj7WWf8acUOSP5izzUqSq6rqotlbNVfNlu07VXV1kp9M8qYxxmc32abz3NoXNnzm8Xsz/3F2/i3aT74ryf1jjMfmrTyXjo8ke+u36mb9c03Wfnvs00l+erbs57L2pE+SF2ftLYmHknwkydcte847uC9em7W3Ge5Nsjr7uibJW5O8dbbN25J8Imu/9fGhJP9q2fPewf3xdbPHec/sMZ8+Ptbvj0ryq7Pj5+NJjix73ju8T16StRD6inXLzpnjI2vB+HiSL2btcyhvydpnHj+Y5MEk/yfJxbNtjyT5jXW3/ZHZ68hDSX542Y9lB/fHQ1n7vM7p15DTv5V8KMkds8tzn1t7/WuT/fFbs9eGe7MWQy/fuD9m15/3b9Fe/5q3P2bL33P6NWPdtvv++Njsy18OBwBo2mtv1QEALI1wAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmv4fv36SWS5yKqcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10,10))\n", - "plt.imshow(shuffled_adj)\n", - "#plt.xticks(range(20), idx);" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "eye[:len(shuffled_adj), :len(shuffled_adj)] = shuffled_adj" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGNhJREFUeJzt3V2s7Wdd4PHvb0oLgi+lyDQMrQMTO5JeSDEnDERiFKKiEuHCEI2TNIakN84EEycOemOcaDLeqFwYkwbQXqhAqggxxkoqRuemWAQRqCNIILS2lBEIvmTKi89c7MV4rKesdfbea7+c8/kkZK+3/V/P/re7+fKstX571loBAFzt/s1pLwAA4CwQRQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqnrSST7Z199wzXrOzdc+4f1/9f6nnuBqrg7/8Zv/cetjnHcArlT/t3/o8+ux2eWxR4qimXl59frqmuoNa63/+ZUe/5ybr+3d99z8hPd/97+77SjL4RLuued9Wx/jvANwpbpv3bvzYw/98tnMXFP9cvU91a3VD83MrYc9HgDAaTrKe4peWH1krfXRtdbnqzdXrzyeZQEAnKyjRNGzq09cdP3BzW3/wszcMTP3z8z9n/rbLx3h6QAA9mfvnz5ba9251rqw1rrwzGdcs++nAwA4lKNE0UPVxe+avmlzGwDAuXOUKPrT6paZee7MXFf9YPWO41kWAMDJOvRH8tdaX5yZ/1Ld08FH8t+01vrgV/qev3r/U7/ix7/v+Zuz8fHxs7IOjp9/tgA8kSPNKVpr/V71e8e0FgCAU+PPfAAAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAADVEecUHbddhuZtG753HIP3juMYhgSeTc45AE/EThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQnbE5RbvYNmfmpOYDncS8pJNyJf0sAHBYdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTncHjjNrsMGjyOYYUnMdDwpAZRGs4IAHaKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjO2JyiszKX56TWwfE7jhlUAFyd7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjO2PDG4xisdxyDF3dZx0kMCTRo8F8yVBOAfbJTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFRnbE7RLk5iPtAutj3PLjN1jvocV5qz8s8WgKuTnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAANU5HN5ogN/ZdByDF/2zBeA02SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqnM4p+g4bJups4ttM3WOY+bOLus8K7N9tq3jPP0sAFyd7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKiu0uGN52VI4C7rPI5BlCfhvJxzAK5eW3eKZuZNM/PozHzgottumJl3zsyHN1+fvt9lAgDs1y4vn/1a9fLH3fa66t611i3VvZvrAADn1tYoWmv9cfXpx938yuquzeW7qlcd87oAAE7UYd9TdONa6+HN5UeqG5/ogTNzR3VH1VN66iGfDgBgv4786bO11qrWV7j/zrXWhbXWhWt78lGfDgBgLw4bRZ+cmWdVbb4+enxLAgA4eYeNondUt28u3169/XiWAwBwOubg1a+v8ICZ36y+vfr66pPVT1e/U721+obq49Wr11qPfzP2v3Lh+U9Z777n5iMuGfbLTCWAK8d9694+tz49uzx26xut11o/9AR3veyyVgUAcIb5Mx8AAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAdfg/CHsof/X+p+59MN49f/O+rY+5mobz7XI+tjlP52vbz3uefhYATpadIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKA64TlFJ8Ecmsu37ZydldlPZ2UdAFyZ7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKiuwOGN58m2YYRnZRDhLus4iZ/lrJwPAK5MdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypyiU7Vt7s622T+7HOOkXEk/CwBXJztFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxv35jiGFV5Jwwx3+Vm2nbOTOgYAVyc7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlTtGhXU3zcI5j5tIuth3jpNYBwNXJThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwxku62oYEnpVBlMexjrPyswBw/tgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAAKozNqforMwHutpm2ZyVn/c41rHtGGfl3zEAzh47RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqpq11ok92dfODes/zctO7PngMLYNeDTcEeD8uG/d2+fWp2eXx27dKZqZm2fmXTPzoZn54My8dnP7DTPzzpn58Obr04+6cACA07LLy2dfrH58rXVr9aLqR2fm1up11b1rrVuqezfXAQDOpa1RtNZ6eK31Z5vLf1c9UD27emV11+Zhd1Wv2tciAQD27bL+IOzMPKd6QXVfdeNa6+HNXY9UNz7B99xR3VH1lJ562HUCAOzVzp8+m5mvrn6r+rG11ucuvm8dvFv7ku/YXmvduda6sNa6cG1PPtJiAQD2ZacomplrOwiiX19r/fbm5k/OzLM29z+renQ/SwQA2L9dPn021RurB9Zav3DRXe+obt9cvr16+/EvDwDgZGydUzQzL6n+pPqL6p82N/9UB+8remv1DdXHq1evtT79lY5lThFXgm1zjMosI4Cz4nLmFG19o/Va639VT3QwhQMAXBH8mQ8AgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgusw/CAvsNphx24BHwx0Bzh47RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThHsxbY5RNvmGO1yDACOl50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y1wKnYZzLhtwKPhjgDHy04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJlTBGfWtjlE2+YY7XIMAP6ZnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjXBu7TKYcduAR8MdAf6ZnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqcIrmjb5hBtm2O0yzEArhR2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3wlVtl8GM2wY8Gu4IXCnsFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUXAFtvmEG2bY7TLMQDOAjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxuBI9plMOO2AY+GOwJnwdadopl5ysy8e2b+fGY+ODM/s7n9uTNz38x8ZGbeMjPX7X+5AAD7scvLZ49VL11rPb+6rXr5zLyo+vnqF9da31h9pnrN/pYJALBfW6NoHfj7zdVrN/9b1Uuruze331W9ai8rBAA4ATu90XpmrpmZ91WPVu+s/rr67Frri5uHPFg9+wm+946ZuX9m7v9Cjx3HmgEAjt1OUbTW+tJa67bqpuqF1fN2fYK11p1rrQtrrQvX9uRDLhMAYL8u6yP5a63PVu+qXlxdPzNf/vTaTdVDx7w2AIATs8unz545M9dvLn9V9Z3VAx3E0Q9sHnZ79fZ9LRIAYN92mVP0rOqumbmmg4h661rrd2fmQ9WbZ+Znq/dWb9zjOoFzbNscom1zjHY5BsBRbY2itdb7qxdc4vaPdvD+IgCAc8+f+QAASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq3YY3AuzVLoMZtw14NNwROCo7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThFwTmybQ7RtjtEuxwCubnaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUhjcCV4hdBjNuG/BouCNc3ewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJU5RcBVZNscom1zjHY5BnB+2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3gjw/+0ymHHbgEfDHeH8slMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAVyWbXOIts0x2uUYwOmwUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDK8EeBY7TKYcduAR8Md4XTYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4oATty2OUTb5hjtcgzg8tkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQGd4IcObsMphx24BHwx3h8u28UzQz18zMe2fmdzfXnzsz983MR2bmLTNz3f6WCQCwX5fz8tlrqwcuuv7z1S+utb6x+kz1muNcGADASdopimbmpur7qjdsrk/10uruzUPuql61jwUCAJyEXXeKfqn6ieqfNtefUX12rfXFzfUHq2df6htn5o6ZuX9m7v9Cjx1psQAA+7I1imbmFdWja633HOYJ1lp3rrUurLUuXNuTD3MIAIC92+XTZ99aff/MfG/1lOprq9dX18/Mkza7RTdVD+1vmQAA+7V1p2it9ZNrrZvWWs+pfrD6w7XWD1fvqn5g87Dbq7fvbZUAAHt2lDlF/71688z8bPXe6o3HsyQAttk2h2jbHKNdjgFXm8uKorXWH1V/tLn80eqFx78kAICT5898AAAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANXRhjcCcEbtMphx24BHwx252tgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigCuWtvmEG2bY7TLMeA8sVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAyvBGAJ7DLYMZtAx4Nd+Q8sVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAXAE2+YQbZtjtMsx4KTYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCMAe7TKYcduAR8MdOSl2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIATtm2OUTb5hjtcgzYhZ0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0AnHG7DGbcNuDRcEd2YacIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAuAKsG0O0bY5RrscgyufnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQBcBXYZzLhtwKPhjle+naJoZj5W/V31peqLa60LM3ND9ZbqOdXHqlevtT6zn2UCAOzX5bx89h1rrdvWWhc2119X3bvWuqW6d3MdAOBcOsp7il5Z3bW5fFf1qqMvBwDgdOwaRav6g5l5z8zcsbntxrXWw5vLj1Q3XuobZ+aOmbl/Zu7/Qo8dcbkAAPux6xutX7LWemhm/m31zpn5y4vvXGutmVmX+sa11p3VnVVfOzdc8jEAAKdtp52itdZDm6+PVm+rXlh9cmaeVbX5+ui+FgkAsG9bo2hmnjYzX/Ply9V3VR+o3lHdvnnY7dXb97VIAIB92+Xlsxurt83Mlx//G2ut35+ZP63eOjOvqT5evXp/ywSA/do2h2jbHKNdjsHZtjWK1lofrZ5/idv/tnrZPhYFAHDS/JkPAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoNr9b58BwFVtl8GM2wY8Gu54ttkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigDg2GybQ7RtjtEux2B/7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwSAE7PLYMZtAx4Nd9wfO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RAJwp2+YQbZtjtMsxuDQ7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAeBc2WUw47YBj4Y7XpqdIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAypwgArjjb5hBtm2O0yzGuRHaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUhjcCwFVnl8GM2wY8XonDHe0UAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJU5RQDAJWybQ7RtjtEuxzhr7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwQADmGXwYzbBjyeteGOO+0Uzcz1M3P3zPzlzDwwMy+emRtm5p0z8+HN16fve7EAAPuy68tnr69+f631vOr51QPV66p711q3VPdurgMAnEtbo2hmvq76tuqNVWutz6+1Plu9srpr87C7qlfta5EAAPu2y07Rc6tPVb86M++dmTfMzNOqG9daD28e80h146W+eWbumJn7Z+b+L/TY8awaAOCY7RJFT6q+pfqVtdYLqn/ocS+VrbVWtS71zWutO9daF9ZaF67tyUddLwDAXuwSRQ9WD6617ttcv7uDSPrkzDyravP10f0sEQBg/7ZG0VrrkeoTM/NNm5teVn2oekd1++a226u372WFAAAnYNc5Rf+1+vWZua76aPUjHQTVW2fmNdXHq1fvZ4kAwHm0bQ7RtjlGuxzjOO0URWut91UXLnHXy453OQAAp8Of+QAASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq3Yc3AgAcq10GM24b8Hicwx3tFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUUAwBm2bQ7RtjlGL/zuf9z5uewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoatZaJ/dkM5+qPn7RTV9f/Z8TW8DVwTk9fs7p8XNOj59zevyc0+N3Guf036+1nrnLA080iv7Vk8/cv9a6cGoLuAI5p8fPOT1+zunxc06Pn3N6/M76OfXyGQBAoggAoDr9KLrzlJ//SuScHj/n9Pg5p8fPOT1+zunxO9Pn9FTfUwQAcFac9k4RAMCZcGpRNDMvn5n/PTMfmZnXndY6zrOZedPMPDozH7jothtm5p0z8+HN16ef5hrPk5m5eWbeNTMfmpkPzsxrN7c7p4c0M0+ZmXfPzJ9vzunPbG5/7szct/n9f8vMXHfaaz1vZuaamXnvzPzu5rpzegQz87GZ+YuZed/M3L+5ze/+EczM9TNz98z85cw8MDMvPuvn9FSiaGauqX65+p7q1uqHZubW01jLOfdr1csfd9vrqnvXWrdU926us5svVj++1rq1elH1o5t/L53Tw3useula6/nVbdXLZ+ZF1c9Xv7jW+sbqM9VrTnGN59Vrqwcuuu6cHt13rLVuu+gj4373j+b11e+vtZ5XPb+Df1/P9Dk9rZ2iF1YfWWt9dK31+erN1StPaS3n1lrrj6tPP+7mV1Z3bS7fVb3qRBd1jq21Hl5r/dnm8t918Av87JzTQ1sH/n5z9drN/1b10uruze3O6WWamZuq76vesLk+Oaf74Hf/kGbm66pvq95Ytdb6/Frrs53xc3paUfTs6hMXXX9wcxtHd+Na6+HN5UeqG09zMefVzDynekF1X87pkWxe5nlf9Wj1zuqvq8+utb64eYjf/8v3S9VPVP+0uf6MnNOjWtUfzMx7ZuaOzW1+9w/vudWnql/dvMz7hpl5Wmf8nHqj9RVsHXy00McLL9PMfHX1W9WPrbU+d/F9zunlW2t9aa11W3VTB7vEzzvlJZ1rM/OK6tG11ntOey1XmJestb6lg7d1/OjMfNvFd/rdv2xPqr6l+pW11guqf+hxL5WdxXN6WlH0UHXzRddv2tzG0X1yZp5Vtfn66Cmv51yZmWs7CKJfX2v99uZm5/QYbLbO31W9uLp+Zp60ucvv/+X51ur7Z+ZjHbz14KUdvHfDOT2CtdZDm6+PVm/rIOD97h/eg9WDa637Ntfv7iCSzvQ5Pa0o+tPqls2nJa6rfrB6xymt5Urzjur2zeXbq7ef4lrOlc37Mt5YPbDW+oWL7nJOD2lmnjkz128uf1X1nR28V+td1Q9sHuacXoa11k+utW5aaz2ng/92/uFa64dzTg9tZp42M1/z5cvVd1UfyO/+oa21Hqk+MTPftLnpZdWHOuPn9NSGN87M93bwuvg11ZvWWj93Kgs5x2bmN6tv7+CvDn+y+unqd6q3Vt9Qfbx69Vrr8W/G5hJm5iXVn1R/0T+/V+OnOnhfkXN6CDPzzR28mfKaDv5P2FvXWv9jZv5DB7scN1Tvrf7zWuux01vp+TQz3179t7XWK5zTw9ucu7dtrj6p+o211s/NzDPyu39oM3NbBx8GuK76aPUjbf470Bk9pyZaAwDkjdYAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKCq/wds2UJurWFiSgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10,10))\n", - "plt.imshow(eye)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(4800, 768)" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "enc_df = pd.read_csv(path+'cls_output-embed/encoder_results.tsv', header=None, sep='\\t')\n", - "enc_df.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": {}, - "outputs": [], - "source": [ - "embeddings = enc_df.values.reshape((75,64,768))" - ] - }, { "cell_type": "code", "execution_count": null, @@ -1926,913 +2810,6 @@ "outputs": [], "source": [] }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "('[CLS] FunctionDef arguments arg self arg minval arg maxval arg seed UnaryOp USub Num Num NameConstant Assign Attribute minval Name Name Assign Attribute maxval Name Name Assign Attribute seed Name Name',\n", - " 31)" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snippet.loc[5][0], len(snippet.loc[5][0].split(' '))" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "('[CLS] FunctionDef arguments arg self arg sequence arg use multiprocessing arg shuffle NameConstant NameConstant Expr Call Attribute init Call Name Name Name Name Name Assign Attribute shuffle Name Name',\n", - " 29)" - ] - }, - "execution_count": 76, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snippet.loc[11][0], len(snippet.loc[11][0].split(' '))" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm0ZXdZ5//P98znzlMNt25VpSpDZQISIBAIiigoKoi0AzbYijbdOKFoi4LaStvtAPb6IbTaDK0o2qLggCLSNkJABIEkkASSVGpIzdOtuvN05rP7Dyosupf3+WysSoH+3q+1XCZ5Ds/Z+7u/e5/nnqr6VMqyTAAAAP9/V/hyHwAAAMBXAoYiAAAAMRQBAABIYigCAACQxFAEAAAgiaEIAABAEkMRAACAJIYiAAAASQxFAAAAkqTSlXyzcmUwq9XGN61nxWR7JJPAXWh2/YGk+H16db8svUpcryy2bY9+tRzWCxtN20PluEdWLvoevX5cz3EcqWTWrOSPo1+JX1PomOOUpL55TY4Ad7dmWcHv00KzE9a7I2YDSSq044N194IkJXMcuRakGK9Hdyjeg5I/l0LXX9t+Kf4ZLk+P7kB8LqWNnu3hrn9WyrE/1lvxC9z9JKlv9mme/eHk2evJrbt53kpScs+gvj8X+6zLsx45jtUfiKnn+JxzLfLsdbtPcxxHdUf87G+drtke7lhz7TFz/TPTotlaUru7keviXtJQlFL6RklvklSU9NtZlr0uen2tNq7bnvqKTevtMX84xVa8wAMH5mwPleP3Wbl5wrZYuSq+AXe9+4Tt0bxuW1iv3nPI9tCu6bDc3jpoW5RW4gd0du/DtkdxajJ+weSY7dHcORLWq7PrtkdhtRG/IMeDsbM9PtbegN+ntYfPhvXz33CV7TF8Mh6sizmGxPJDp+IX9P0QoIl4PeaeEe9jSRo6FZ9Ldc5cN0ntyXpYr8z7HguPHw3rE/cu2h694WpYb4/7gXfgriPxCyY3/+HxUc1d8bkUm/7aJnM7dAf9Xq9ciNe9X/M9Sstxj9QwQ6Sk7pb4+eE+WCUpM4N3rh+IzH2Z54eIvhlYqhc2bI/eYLwPOzl+MLv2Fx8K60d+5gbbozIXP7d7Q/H9JEnFNfMZVYn32CcffKt9j0f9k3/5LKVUlPRbkr5J0k2SXpxSuumf2g8AAODL6VJ+T9FTJR3OsuxIlmVtSX8s6Vsvz2EBAABcWZcyFM1IOvlF/37q4n/7v6SUXp5SuieldE+n43/5AwAA4MvhMf/TZ1mWvS3LstuyLLutXPa/vwUAAODL4VKGotOSdn3Rv++8+N8AAAD+2bmUoehuSdellPamlCqS/rWk916ewwIAALiyUnYJWRYppW+W9EZ9/o/kvz3Lsl+OXj88tjO79Zmv3LS+stv/0c36fPzHHSur/o+hdobiP07fzxFUkMzbVFb8cdjcnRx//LNbj+fa+qzPGNqYjv+oc57slsZUvGiD51xejtQeiXuU13Nc28EcuUxGqRFfl3750q9LnnMpr8WZW6nr7932iMmxypGp4zK3VvbG+0fy99ToMf9Hrgttd138z3jlRfPHx6v+5m9NxtkslSWfUdbYHvcYPLZme/QG42ubJzrCqR1fsq9p7I3jA1yGjCT1K/GLii2/19192avmycOJ65Vln4PnnmNZjkdU39yXI4f9/ljdG/92lZ5Zc8mv6ejRHFl6RrfmF6S0Hq97eSGOKPjEI2/XcuPsY59TlGXZ+yW9/1J6AAAAfCXgr/kAAAAQQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQdIk5RV+qoZl1PeO/fHLT+nve81W2x/jhOMTpwi0V26O6EAeBDZ3zAV0unK9n6pL0vP96Z1h/15u+wfZY+Oo49G77Xw/YHqVmnFh26mvjkDhJKq/FuVidIX9dagvxcVTPxwFdknTsJ+JQvML5qu0xvj++dnnCPVf3xPXtd/kcsfKF+C9Q7mzxf5fg0rXxtRs640MkT3xTHM64+298gFt5Lg6by6p+j2Wl+LpcuHXE9pj+4EpY/953f8D2uHPxxrB+6sevtj1kLn9h3a9pc3t8b1//iw/YHp9+663mFWO2x+rO+IZY/ro4MFOS9rzZhDdu+EDM1uviPXbq3ITt0e/Geyyt+Zv/xl+fjY/jDT7stFKK78vTH52yPdZ3xT2yIR+oe83vx5+V5fM+RLJxVbyHnvn6f/DHUY3X9A+/75vDelbM//0P3xQBAACIoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIusI5RUvzQ3rfH2yeRVR+5qLtUXtXnK3wud/7U9vjlrteHNYrr/eZOt2ZOA+n9bIF2+MP3/rcsL58R5xBJEkzW5fCeml10vaoXYgzUcYe54/juvELYf0TD11reyjFmRijD/hcjd3TcZZR2hG/hyQt7YtzRNY3fNbRM/YeCetn37PH9li9fjysdwZ91tHObz8aH8fqsO3ROREfR7/sf7ZaekK8D4ttf10GT8SZKGtX+R7t6TjL6E2/8iLbo7ElXvepMb9PZ18UZ/dcuHWr7TH98fh9fAaRtHRDXC/0fH7U/G1xHk6eD5nWZPw+laLf6wvrcc7Z4HCOPK1ifC4LnVHboz0T3y+j9fiZLUkF8yxcvW3V9kjteOWzhr8yldPx51hq+73uMv3e846vsT2KJqZq+32fCeup6a/9o/imCAAAQAxFAAAAkhiKAAAAJDEUAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgKQrHN6YelJlZfNQqvnFAd9jYzasu2BGSbr/qX8U1r95/tttj2xnHN64c9gHdJ1amYpf0POBZWcOxCFvWydsC2XFOKxwYdFvk08tDYb1+nEfAtevxIFlG3vGbI8TZ+IAt8qASQGT1FqNwxmLOdbj7/txWOXu8aLt4fQqfn88dGI6foHPO1RhI/7ZKSv541i+Ju6x6wMrtke/Eq97seGPozwXh3tWx/0+Tf34XGpnfLBedjwO+Cu0/LmkXnzxBubiIEJJWl+N13TwrL9fGo/EYbf9kr9fhu85Htbbe7bYHmtH4mDFUo790e7GrxmMt48kqfzA4bB+8lMmMVNSa8aEIvb9udRPmL2c495X2Vy7HOGNxVb8TB57JM+BxArj5rPhQv7nLd8UAQAAiKEIAABAEkMRAACAJIYiAAAASQxFAAAAkhiKAAAAJDEUAQAASLrSOUV9qbyxeSZBfbhle2TVOHshT+LBNe/6wbB+Q/ecb5LinIgHz5p8GEkjZiQdmvShGLXt3bBe/Vuf7TN076mwPvmDcQaRJLU68VZa2e23WmU0vv6Dv7tse5Sq8fl2zXFK0lW75sL6wmSc65RH7ZTPkGk+Pg6ZGjvYsD2WnhPXd25ZtD2OZ3GeVr/of7aaeDg+385onA0lSdXjC2G9PeavS3cszhdrjvtz6QzF9/7S4/w9N3bzfFhfWPT3XP/eeC83Jnw2S3NH/PxobPH3S+/2OGOqVvFZNt0PT4b1zojPj9KW+PnRXvM9ymNxj1Tz56L3xdlx5cf751jrfHz9U80/Pzo3xsfa6/i93huMM6hKG03foxa/z8aWS/9uZrjgevhcp0fxTREAAIAYigAAACQxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJUsqyPHGHl8fI0Ex2++N+YNP6+q4B3+NjR8P6ie+71vZY3xsHll39Jz4Ya21HHGp14Wl922Pfb6+F9ZV9w7ZHbT4O6GqN5whfq8TBVv2SD77qm7eZeMgHUbYm4wC/zGfRWb2q/zmgNRKfb33eX9vWaPw+Ew/G116SetX4hJtbfODh8tVxj+qiv//H95trlyMXrT0a3y+VFR+K1xm69KzZsnmf4roPkG3MxPdlr+73WLER76H1aX+uo0fjY62ciUMVJamxJw6arM36+3Zj51Dc47wPGc3K8T7tDPvgxdSP93Lq+b1eWo/3R54embkf2hNxgGge69v9/pj6xIVLfp/mrtGwXtqIP0slaWlf/Lk+9fHZL+mY/jGpEx/HP5z+Qy23zuVKcOSbIgAAADEUAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEnSpQd/fAl6030tvra5ab3/F3HehSTVb5gJ61MP+LyT8UPxLJgni6K+EOciTP+dD9Xp/NfVsF54s1+Pk8+J81+mP+kzl5KJ3Vnd5Wfn8lq8Zqt76rbH4Nl2/B4LPjPlkZeMh/XKko+qmLkzvi6NaX8uXfOSfsmvqduH1UW/14dOxec7dMJnyFx48mBY3/bxZduj1ojvl0LLn0v5TJzLc+FrdtgeE/ObP38kafvbTtse95+P32fLL8X3pORzeQbvO2l79GamwvrZX/OP9/o749fUTRaSJHXrcW7TI98V7x9Juu4P4kyl4nr8bJCkh38ofp/Sos86Km3E2V8pR6zf3t8+EtaPftte2yMzj4fRQ/44TvyrrWG952POtO3u+L4sP3DO9hiu7QzrC2/yz8LdI4thfflV8VyQnc8fcsc3RQAAAGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEkMRQAAAJIYigAAACRJKctypFFdJiPDM9lTnvQjm9Yb23zoWa8Sh9GNHlq3PVInDjScffqo7VFbjNdtdL8PtMsqcXBa5nMGrc6IX9PyWhzQVVjzwWntrXFwWmvcB8kVW/GaDpyMQxUlKTOhiP2aD3Brj8WvSV1/zxRbcSLm2oy/LvW5OPCwvBbXJalfMUGlOc6l0Irfp1/JEYyW4s3c2OrX49bX3BfWH3jtE2yP2mwcAFpo+BDJ3kgtrtf8Xm+Pxa+pLPlru74jXrPRA/5+6Q7HCX7FjRzrMRDfL8WmP5fZp8RBtds/EYc7SlJWiPdYd8jvsaIJGS1u+Gfhke8cC+u7PugDMd269wb9c6xbi+/LQsek9soH+/7AW/7U9nj7S74lrLcn4vtJkirzccisC0P91GffopW107k+UfmmCAAAQAxFAAAAkhiKAAAAJDEUAQAASGIoAgAAkMRQBAAAIImhCAAAQNIVzika2LYru+67/sOm9dWnx1kEkrTvP8fZG/tf4zOG1IvjCm5445pt0R2vh/UjL/eHMfoPcT7DZ37+zbbHvr97aVif+T2fZ+EyZF78639tW7z//OPD+kJzwPY4dWBrWN9yt5/hCy85H9bXWz6rZO3ESPyCHLE8+248FdbTjw/bHqefMxHWxw/5/JezL4kzUfZunbc9Dh7fHtb3vcXnrqxdFV//Ysc/h8orcb7Yse/3uSt7fi/eQ+efHOf2SNLAufhYe36LafFZzbBePOmzWyY/Fx9HluNH3gtPjuvbP+F7nH1GXM+q/rpc9wdx/k97xD/Hjr8gfo6ljo+pyUrxmqaOX9Tr/8dSWH/4R8zzJQ9znJIk95IcLW78uSPxC7bEzyhJWrt+PKwvXe1zvUqN+GCn/9fpsP4Pp/9Qy61z5BQBAADkxVAEAAAghiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgSfKpSZdRb7Cv1Ts2Nq0/bc8x22OhH4dFzUwv2h5nTEhgd8wHp7Um4zCx4imf8Nd8dhxE6YIZJeng17wjrH/NH/oUydr5ODTzL87dantM11fC+uH5KdtDo524fDgO75OkZ848GNbnOkO2x3tPxIl247v9HpseiNfjzMCk7VFbiAPLujWfRdY9H4eMHlzeYXuMbI/3aXEpDt6TpNpwnGhY6PqAv0IjDqscG/MhkkUTItp6kg9uVTU+jpF3+mDOfiN+9E4c9IfRGomv/9qz1m2PrB0fR7fmwyyzWrwez7n1IdvjkT+9IawPHPH33PfesT+sL3fje0GSdlcXwvp7zzzB9uiNxAHC3/Dkz9keY+X4mfyx2attj6/dfiisz7Z8iOTpiTi4NY+CCWYtPcsHyK5txPuw/wnzXD+X//sf+8qU0ttTSudTSg980X+bSCn9bUrp0MX/H0dWAgAAfIXLMz79nqRv/H/+22skfSjLsuskfejivwMAAPyzZYeiLMs+Kun//U7xWyU9+us275D0wst8XAAAAFfUP/U3Wm/LsuzsxX8+J2nbZi9MKb08pXRPSume3qr/NW4AAIAvh0v+02dZlmUK/r7dLMvelmXZbVmW3VYcHrzUtwMAAHhM/FOHotmU0rQkXfz/5y/fIQEAAFx5/9Sh6L2SHv3z4i+V9JeX53AAAAC+PGxOUUrpjyQ9S9JUSumUpNdKep2kd6eUXibpuKQX5Xmz1Cqo+MjmWRHX3ey/cPrE2K6w3u3H+Q6SVIjjcHJlpmQpzgjJcoybvQNxnkn5hjjrRpJePRtnCKUszoiQpOJ6nDMzu+azfQZKcY+btp6zPe5Z2RPWy2fiDBFJ+tjcNWG90/f5UdlQnIe00fTZLfOt+JeK+yW/Qdweqs+ZjSwpq5pbvOz3+sq5eJ9um/L5QJmJVOqVc6xHirPBWh1/Lu3RuEfhQFyXpFYlvqcqq3FuTx7dAZ9BVWzGx5Edy/HbFQbjNaus5cmPiu+phxY3/S2nX1DvxufS2hln/0jSgyvTYX217fPn9ivO5Tmz4LN99pjPhsMrW2yPbfU4G+zCkn8mr22Jn1NX1X0+0Kla/HnbnPbHUV6J74eloz7Rp7QRr2lqXIgb5Pgc/MJ7uRdkWfbiTUrPzv0uAAAAX+H4az4AAADEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkSSn7EkKNLlVtx65sz8v+w6b1qQd86FltLg4JbGz1wXq9ShwENTAbv4ckrfxUHK418Jtjtkd3IJ5J+yUf4FZZiYMGCz1/fY/9mzigbesHKrbHwLk4SLC04a9tayK+dtV5HxLYnoiP1QWJSVJja9yjYILmJKm8Gl+X9Vct2x7jPx3HiGV1HzTYGY7PpVfzPxe1Rn3gpVMyQYN51rQxGR9HbSlec0mqLMfXvzvgz3VtR3xdhk/4UM1k7svKsn8GNbfEYYTlFX8cLqh2+ZoB22PsYPwXfbdH/fOjb8I7B/fP2h7rN8chkZVFv6b9anz9Cy2/xxrb4+vSqfvnutvLec5lbdfmQcmSVDHPKElqjpv18C1UNeeyusvGJWrgfNxj6ME4vPETJ35fy81zfuHFN0UAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgiaEIAABAEkMRAACAJMkHBFxGWUHqDG+ezzH/vXHehSTtfm2cV9D8mQ3bY2FxMKxf/zrfY+xX4h5nX+XPpf3QaFj/yW/7S9vjL87dGta7P7fF9tj1J3E+0N+99S22xw+fflpY/9jpvbbH6vk4z2TH38b5H5L0gl+4M6w/vL7d9vjIZ28I64W6zzp6+jVHw/rCy/x1Wb0x3h+ljThjRpJ6PzEX1qfqa7bH2fWRsD76Cz7LprEtzkwpNXzgyZjJqTr8gz5j6IbXxed75AcmbI/aXBx3kiWfH7Xx9fFx9A4N2R7Dx+J6a8IfR+PmRlif/KCPdjn0yvhjZGbLgu1RfMNkWG/viuuS1HpF/D5zDf/8KBfjPbbe8JlL1/zqStzj15q2x3onvnanluPPH0kaHIyz0BrJZ4NNv/RsWE/jPo9v5db4mbtwq3+OLa/H9/Z1B80ok3JFFEnimyIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgiaEIAABAEkMRAACApCsc3pj6Umlj8xClWqVje2S1ODzruvHTtsenluLgq86UD6NrD8fhWs04E02SVFuOA6Xef/7xtsd0PQ4KOzC9y/YYPhz3cMGMkvTfZz4Z1p+/Pm57PLgYr/vQyThYTZLmOnHo3WCxbXuUh+PXpIIPPfuNXe8P6y8e+Pe2x+K+OLBs6JQPJLtxNA5vrBR8EOVD5+LwteGS/9lqfXt8LiMnfIBbx9xzmX98KCvHx1Gf9efSN/l95Q2/P27ZET+n7tt/ve1hcgZVyLMei/HJ5Mj3U78Zr+ns0rDtMV2M93JnyH9UFczBTg35QN1keuQJb2xujz9figUfDrxrZDGsL634z6i6+Txda8ahvZKUBuNzyQZ8IGZlOX7GFDb8mpZX4/2RNkwgZt8/X75wPLlfCQAA8C8YQxEAAIAYigAAACQxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEDSFc4pKnakoVOb50CsPd7nJmzM1MP6gYeutT3qx+O8k37J5+FU5+PXdJf8ubgckYWmz6I4PD8V1reajAhJKszHOUUfO73X9nA5RO/b979sj2d3XxDWe7X4XCVp/0qcqZMnl6fXjX9WuHn3WdvjWx/67rA+1PAhMiPH4myNgXM+c2n/wjb7GifL4oyQLEdO0eBsL6z3yz5zqTNocpsm4n0sSZ3x+PlRypEvVr4QZ9mUmj7c5/hKfL90hnyPynr8mu5Ajp95/bJbI1Nx/k+x4DNiCu34mVzo5ljTUxPxcQz4e79YjI+1kCOjrDofZ+YcOLnF9jhm8pLSqv/onjf18VGf25TV48+x5ozPoKqeWQvrA2f9Z6Xbp70to2E9Ox8/O74Y3xQBAACIoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQdIXDG1NPqqxuHo7V6fiApcFHTEBbGrI9+hUTvrbqQ/G6w5X4BZdh3Dx1YKt/0agPAXT6Y3EA1+p5v6YPLsZBky6YUZI+dNN7w/o3tF9qexxfjEPxul2/x55z/cNh/ZenP2h7POUDrwzr+0b8HqvNxde20IoDESVpYXkwfoEJiZOkiZGNsJ4VR2yPYiM+1q4JZpSkgTNxKF6z5MP5Suvxmg6dikMEJSkrxklyg6d8AqSNmdzqA2TbQ7WwXlvw17a0JT7WftHsH0nP2XUgrB9dn7Q9FqrxHqos+TVNG/Gx9nIEVU5NL4X1DRMyKUlZKX5NKvkwy2w9/mhOXX8yvU78IWSfDZImB+N9WFn0+zT14nu/Nu/3qQtvLJgw3NTP8R6P9sr9SgAAgH/BGIoAAADEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSpJRl+f/8/qUarW3P7tj5PZvWG9dO2R7lpTgXoTFdtz2SiYkYPLxoe2SVOEeitc1nQFTPrIX1zlSc/SNJ/VIc4FA9v257pI14Tds74+wfSSq04yyKrOBzNfrVOKumei5eL0nqjvnrb4+jHP+s4NZckqpzca5Kc5u/tqX1OHcnK/mfaUprcR7Sxow/jqFDcXZLb6hqexRX44yh3nCcuSNJxaPn4hdsnbA9GrviPJz6iWXbozsa77FC2+cltSfjHq1Rn9tUNzlWRZPJJEn9uomq6/nPh/ZYnNlW2vB5WtXT8bpnVR+pl1VNPlDLr0d3JN6Hza1+rw8fiO+X/oDJuJPUM89C96yUpOKGeX6YvC1JKq3E9206c8H2aN66J6zXTsTrJUlZLb62yzeNhfUH/vcbtTZ/MkdSFd8UAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEkMRQAAAJIYigAAACRJPhHrMuoOlrVw+/ZN6+P3zdseqRmH0Q2txUGEktSZjIMVXQiYJHWH4xCv+oFZ22Pjhm1hvXo+DgCUZMfalCN87dxzNr8mkjT5YBzgJUnl0wvxCwqXPn/PfdUO+5rhU/H1LzR9kFxl/ynzJj6Y0+3T9r44RFDyAZCNHf44Kg+eDOvDcz7ssjMdh3eWz/qw08a+rWHdBVVKsuGMvUEfilc7F4eZNncM2x7FTpz+2h72a1o/eD6s1yr+GaRy/PjOyj7gL/Xic8nTY/DIpYcVZnXzmq5J3JUPZ0xNH95YNs/L0pJ/FvZNsG9hecP2SCasMBfzzE0d/yyUCXd2wYySD0tu7PXhwJXl+Hk6eNY899t+/3zhtblfCQAA8C8YQxEAAIAYigAAACQxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEDSFc4pyopSayxtXs+RD9SZGgrrldM+M0XZQFhuzPj8F5n4n/JQ/B6SzyEqmNwNScpK8VybJ7tl64tOhPX0Ez5Tx2ViZPU410mS0kqcIdP1S6osbb6/JKk16Y+jfMyciz8MK/V9l+LCWliv54jeSDkylexxNOJ92No7ZXu0xuJHTfVcfK6StPS4OM9k+Gi8f/Io5six6g3E51KZ9/liWcnk/7i6pLQRZ+Zkgz4vyWXI9Or+mVw095zLupGk9kR8rOUVnz93ObhcpjwZQ/2B+DMqy5NB5Z6nRbPmkrKiySkynx2S1BmNn5eLN/jn6dR98ZqtT9dsj/JanGNWnovfI+XIuXoU3xQBAACIoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQdIXDGwtdqbaweZDX8f/oZ7Q9P7sS1s/8ug+CWpqLT3vPn9gW6gzFx3rwZ33S4OBdcWDZ6jU+SM7Z9gkf8jX6k3Gw1cM/4s+lPByHRPa6/to+5/qTYT37Ph9EePDn4tf0Wn49jr7tb8L6q2dvtT3e8/AtYX3Pb8TBe5LU2T4W1ttjPphz/hfi4Lxmw/eoVOPwxuH3+B4u8XJjtw8IHTjfDuuHXuFD8a5/Q3xPNbf4MLrGVLyXJ1fi45Skhf8WhwTOnh61PXa/N97L3Zrf62e/Jq5vucvft+1vj/dys+17TP+P+FjXd/t7/9Q3mE2WJ7+vGr+oWPN7/Zo3xUGDp/6LX4+NtXgfFk/5z7nudLwPU8kvyHVvintM3e97FNrxPecCRCVpcV/8Wbn1g3Nxg/5lDG9MKe1KKX04pfRQSunBlNIrL/73iZTS36aUDl38/3HcLAAAwFewPL981pX0k1mW3STpaZJ+JKV0k6TXSPpQlmXXSfrQxX8HAAD4Z8kORVmWnc2y7DMX/3lV0n5JM5K+VdI7Lr7sHZJe+FgdJAAAwGPtS/qN1imlPZKeKOlTkrZlWXb2YumcpG2b/G9enlK6J6V0T6d16X9hIwAAwGMh91CUUhqS9GeSfjzLsv/rdztnWZZpk99KmWXZ27Isuy3LstvK1Uv/G7sBAAAeC7mGopRSWZ8fiP4wy7I/v/ifZ1NK0xfr05Kvc64uAAAgAElEQVTOPzaHCAAA8NjL86fPkqTfkbQ/y7I3fFHpvZJeevGfXyrpLy//4QEAAFwZeXKKniHpeyR9LqV038X/9rOSXifp3Smll0k6LulFrlFWlDqDm+dR1Ks+3yOrxFkk6xs+Z6S4GJ92edVnyEjxcfRWfGZKc4vJ1YijTCRJ47sXw/rQn/lfskwmw6FQj3M3JCkV4nO5effZsC5Jvzz9wbD+4slX2B7XTsdfWLZ6fsu7HKLXb7svrEvSn++Pe7g1l6R+Od4A5TV/XTqduEex5LOw9k4uhPXGGZ+Z0qvHP3+lHJFcqR/vsaum4+OUJPXjvBOXQSRJnYE4U6df9TdurRRfu1T1C7IxFT/runWfU1TbHue+tYd9ftRXzzwS1gvJPOck3Z/i+2Xw+JrtkerxepRr/n65btuFsL7S8nu90I73WB7Fcnz9u4P++VEbasX1Spw/JknJPD8KfoupuB5/rje2DNsembktsxHzOXc+/2+ftp8QWZZ9TNJmp/7s3O8EAADwFYy/5gMAAEAMRQAAAJIYigAAACQxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEBSvvDGy6ZXlZb3bV6v9XKkFf7jf8XaFzxj7xHb4e/71+Z4n1ivGqdWFUd8MFbxdLz8e288ZXtMD8Tha4cnbrI9hpbjkK+nX3PU9viNXe8P69/60HfbHk/5wCvD+g3LPsDtptE4JPJCe8j2eM/Dt4R1F8woSYee9Xth/blv/B7b4/Qz4xC40aM+wO0Zuw+F9dmmD047tjAR1nc0fCje+nR8LoPn/P3SL8U/w52YjY9TkvapEdbXdtkWykwY4cbWiu0xWo4D7WoHfEhgsRNf/8ZWn6zXPBOH3o3N+z32V5+O74f6ZLzmkjTdjde0uX3A9tg7MxvW84RIunDX2SV/v+wejj/Hdo3FxylJI5U4QPjetNP3GIh7LK/7kMnC0nJYTwN+nzZ3xgGgK9f6oNLyigl/dZ8NPb+PH8U3RQAAAGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEkMRQAAAJKklGU+u+FyGRmayW5/wg9uWnc5JJJUXowzL3qDPiNEhTi/43G/9YBt8bkffXxYz8x7SFKvFudZ1M6s2h6dyThnpDwb5xhJUmrFmSl5dHZOhvV+xV/bQjvOklif8ZkYA7Nx5lJnwEdzlRomN8NfWnsu3brP5OqMxMfaGfAHMvHJOBMlG/Rr2h2uxj3K/tquzcT35ejhDdtj9ao4q2b46Lrt0RmLzyWP1Iufme7aS1JxLb7nCmcu2B4Lz7k6rNfnfH5U7Wyc79Kc9rle9Ufmw3p/LH5GSVLqxPdcv+rv2+5QvMcKbZ+HU1yP87J65j0kqbklfk3dPKMkqTMUn291zmc/9StxjyzHM3l1Z3y/1Bb8mnYH4vcZPO3PpdCIr8va1XEW0v13vklriydzPLn5pggAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgSfKJWJdTloUhXd1RH4xVbMSHvLrXB4WNfTYOG7vvp55oe7S3x8cxvH/B9ujNxIFTvSEfNNcdiEMAKx0f4LZ+8/awXl73PVrj5bA+eNQHUWYmbGzwpA/5csGKlSUfVFlo+/N1mtvioME8a9pvxCGAtQu+x9rNW8L6wGkfmlheiF/T2BXvY0ma/MjJsD73dbttj/p8fL5Z0f+Ml7px8GJ5xQfrLd40HNYn7l+yPWwY4eSY7eH2ev3Esm2RVeP7trwah+ZJPgC0X/ZBpU/97fvD+mdecqPt0RuMz2V9pw8qHTwV18vn/Jpe/4bTYf3Bn3+C7VFeMc+pgt/rvXq8xwo9HzLqAkB7dX8cI/sXw3p3tG579Abi2WDwZBzcmie48wuvzf1KAACAf8EYigAAAMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEkMRQAAAJKucE5RZXdbu/77sU3rn/yTW2yP6Y/HuRnr037OW5+Os1u23uOzW+qzce7Bys0Ttsetr74vrH/qzU+yPeaeGh/H5N07bI/qapzdcvYOv00qK3FoSrc2ant0q3GPscM+p+iR74izSKoLfn8MH4vXoz1iAmIkNafi+szf+dwMl6m0tC/OQpKkzpC7LkO2x/nb4h7X/1acyyJJrWu3hfXRR/y1jTLOJOnkc+P8IEna/f44Z2bfWw/aHh8+eV1YHzzjr0t7LL6nRvb7PK3h43Gm0sabfMbQ+h/FG7W27LNsmmPx+c4/2fcovCzO7ulu9Zltx/5dfN9mF2wLFVpxZk5pw1/b9J1xts+x1/jnR6rF+2Pos349OubW7lfj9ZKka373XFhPXf8c60yPh/Wh15+xPQZK8V5e+L7JsJ56/lwfxTdFAAAAYigCAACQxFAEAAAgiaEIAABAEkMRAACAJIYiAAAASQxFAAAAkhiKAAAAJEkpy/KHGl2qoYld2ROe/crgaHyP8locBNYcL9oetYU4XKsz5HtUf+hsWM9eFwdESj7ATTkuTb8UL1qp5YPTXI9+0V+YXsUcR9MfR7Edn3DtfBxWJ0mre+PwNfcekj+XPD1cEGX6Nz5JbuzV5bCeFf0+Xb3WhzM6xU58vhuT/jjGDzbDenNLxfZY3hu/z8TDPqywvBy/pjMcr7kkbWyL79uJB1Ztj8Z0HAJYWveheKu74jXLE4jZmox7tEZyPE8X42NNOT5j3PuMHvRrurY33uvFlj+OzmD8PYH77JCklnmut4b987SyFh9rdSnHcYzHx5HrmdyMj2Nxn79fpu9cCOsbe0dsj85AfF0Gz8WfDXff81taWT2dY8LgmyIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgiaEIAABAkmSCci6vQqevgSBPoD3iMw9cjkQpRxbFyp74fba//6TtoY/HeSezz/e5K2OH42yFs0+v+R6PxFkTpTWfd9Kvxmt64RZ/XeoX4nUvtXxERGYiUdZ2xxlEktQcN3N+juyn0WPxte3W/c8Smcl2mny5z1yae9bWsF5Zv/QMqpW9/lzctZ2612fINLfG1254f5xlIkkjn4jf58Jz99oeY0vxtS01/f0ycf9GWJ+9Y9T2cAodnw9UXo+vS3fI37fNsfh9WmP+vi214j1UbPt9On6/ybLZ49e0Y+7LUsNn+6RevKbr2/yaTv7N4bDeftwu26NhcrvmHu8/X4ZPmc+GDX9davceD+v1T9sWWrsjvi/Lq/6eK5q8vbbJF3PP4y/GN0UAAABiKAIAAJDEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkXeHwxvZIQce/afMQt/aUD3G64S1xgNuBfz9sexTi7DVN7Nlie/Qr8Ty5use20PzTzUya2rZH6fb1sD70K/4SZ+U4wG3kq32w3uLqQFhfzXx41vhwfGGGX++v7Y0/cSis33t+xva40InXbO+kX49jCxNhffTQpO0xeqQR1ntVH/B37t/F91St7vfYPbe/M6w/94XfY3u0TEhgaZu/tv2ZkbB+9b8/YHusfP94WD/0sjgwU5IK3WpYHz3oE0I737YY1peOjNkeO++MA+3O3e6DBstPjI9DH43XS5Ka3xPfD3vH/P2y9PO7w3rtrHloS+r+WHy/nDjv13TrVLweu4aXbI+Nz8T39sqrfNjpynoc3Ntu+Gtb+Zq1sN7o++9Epn/ahGaW/DOotB4/g45+qz+XZEaD694Zn2vq+KDKR/FNEQAAgBiKAAAAJDEUAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCQpZZnP1Lhchkd2Zk9+2is2rZfXOrZHY1uc31C70LI91mfiHv2yz9QZPBPnu2xsr/gep/2xOqXVuEdra5wfJEmFdpzhUGx2bY8sxWuWFf2adkbjvIp+yfeonY/XozvsMzGa43FOUW3e79NiK17TPOuRevG92Zr059Ize7nU9Pd/6sevKXR8j/ZInGdSm/Nr6tajuOYzl2TWvV/Jkbuy3DQ9fDZYY+dgWK/Nxpk7kpQVzc+0Bb/Hyifmwnpz3zbbozJnMoRyfMa4rLRCjmdQv27uhxzHUVg113Y4/uyQpPbk5ll8klQ97zOX3HM7Tw/142dQbyjO25Kk5tb4NcWGz/+pPzIf1jvTPj+qtBzfD4X5lbD+D7N/rOX2rL8hxDdFAAAAkhiKAAAAJDEUAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEmSTxm7jFI/yxXQGOkMxHPcQMeHSbnAOh8TJq1cFYdaVVf9cbiRdOUqHxQ2fCLOo2pM+ks8cD6+JhvTcRhZHilHcFp5pRf3yBGq2dger1me4xg6EQeF5QqiHImD5Hq1S/95pDnmewycN2uaJ7zVvGR5rw+RHDwXH0dxI8dzwYQR9kZ8YGq3Ht8PeQJCuwNxj/KKD5Gsn1m3r3GyUnz9Uydec0lq79kSv0eevT5hng85tlh3MA5vrCz4NW1Nxc/kyqLv0dgRh2qWNvya9qrxdVm/asj2kFn2ztXDtkVmHg+lHMGL5VVz3zb9eqw9Lt5j1UV/77e3xNdFU3G9v+yfUY+yT9WUUi2ldFdK6f6U0oMppV+8+N/3ppQ+lVI6nFJ6V0rJP5EAAAC+QuX5cbUl6euyLLtF0q2SvjGl9DRJr5f061mWXStpUdLLHrvDBAAAeGzZoSj7vLWL/1q++H+ZpK+T9KcX//s7JL3wMTlCAACAKyDXb2xIKRVTSvdJOi/pbyU9Imkpy7JHf/vNKUkzm/xvX55SuieldE+nc+m/jg4AAPBYyDUUZVnWy7LsVkk7JT1V0g153yDLsrdlWXZblmW3lcvmN0sBAAB8mXxJfwQmy7IlSR+W9HRJYymlR/8Yxk5Jpy/zsQEAAFwxef702ZaU0tjFf65L+npJ+/X54eg7Lr7spZL+8rE6SAAAgMdanpyiaUnvSCkV9fkh6t1Zlr0vpfSQpD9OKf2SpHsl/Y5r1KsWtHztwKb16pLPTagtxClCzSmf7VNsxe9T2vDBGsM/dC5+wasnbI+lffEvJw6d8rka7dH4ErpMJklqjcU9Bs42bY+sHM/XfZOpIkltcxz12Zbt4bhrL0nNbXHeST9HdkttPs7e6PzYvO0x+ItxFsngyRxZWEbPZO5I0vp0vB5Fvz1UXYrX49wdPndl+FScieIyVSRpdcbs9XnfY2VvnD4y+Tmfu9Ivx7kpqeevbcfkMrmcGsnfD2vTPt9l9Fi8Abq1OINIksrL8ZqVT1ywPdau2h33WPUL0qvE93a/5O+Xykr8GbWeY02T2Yb1C36Pre6K90eh6z8bmuPxsdYW/ZoOHVgM66s3+M/K5nj8PlOfWQ7rhW7+Z6W9wlmWfVbSE/+R/35En//9RQAAAP/s8dd8AAAAiKEIAABAEkMRAACAJIYiAAAASQxFAAAAkhiKAAAAJDEUAQAASJJSlvkAp8tleGRndtvtr9i03h7xwVgDpzfCenc4DqySpOU98WumPrtme/RNWKGSD/hzAW3rM3Xbw+mX/XEMnWiE9W6egL8d8ZqOHfR/GXBxbjWsr9y61faorMSpZ8WWD+crmNcUl+P1kqTzd0yF9aGzccCbJJ3/t/H7FO4ZsT1mPhLv5e6AD5LrDMfhe4PH/f0yf+toWJ+4f8X2WL0uDnjs54iiHTodB4CmTo6QN/PIbE3GYZeSVGzH71NZyBGYagJRU8fvdRXiHnnCPUtL5lh7/jOmsBTf+42bpn0Pc+0KZs0lqT1mwgrP++tS2IhDd7tj/rneGY6PozPov89wYbfFhg+ALM4uhfX2Xv9MdmtaMcGukpT68R5yn6Wf+uxbtLJ22n8Yim+KAAAAJDEUAQAASGIoAgAAkMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAElSjmSPy6czlHT2aZtnePRvibMqJOmaHzsf1o/8h6ttj2IjjisYP+yXxWXZnPraQdujuc3kZkzGOROSNDYW5/+M/39DtkdnJM4YOv4Sn3eSdeKsiY1/5XN5KqU4z2Li9X495n4qzhFZXhqwPZTi63/VdJxDIkmLs/FxTLzZZ7cM/E2cyzN4zq/pkW+L92G/5I/jKbcfDOsrL99ie5Q34vdpT9Zsj0In7vHxN77V9vj6F39/WD/9LH/fJnPbVpb8mi7eFjepnfIZVOP74x7LV/ufeQtPjXNoan/lnx8LXxvXR0fjbDlJGvvNOIeoX/IRMye+L16PPCE1WRbfU4Wi73L16+Pnx5Ef9j3scRRyZD8V4/UYH/bP04mfjJ+XvXqcYSZJlcX4eXnqOf6ZXDJbaObDZnb4EuIY+aYIAABADEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAgiaEIAABAEkMRAACApCsc3ljoStXFzetLSz7ALZsYDevdYR802KuaWbDnk57ao3HgYXOLSXiTVFmKj6PjM/G0cHosrG9dWrM9CgNxaGIq5JidS/H5Vko+aHDv2EJYX6zEYYaS1OnFYWLFsr8uO7cEm1TSvtE4QFSSjp+ZDOuFtl+P0aNx6Flzwt++5avjULNaJQ7dlKQbh86F9Y9NXWV7NCbjwLrKsg+0K23E9/ZLjpoUQUmpG9/blRXbQpm5Herzfo/t2Xc8rN/b22N7VO42x3HBr+nisTgkslTzPcrVeC+7e1KSSutxj+6g3+v9hc2DgSWptOqfY93xeI8VxvznS9E8c3ur22yP1I7XvbCS41yG4r0+ux5/hknSWK0R1kur/vlR6MRrVokft5/vYZa9sBSHGKeev25f6JX7lQAAAP+CMRQBAACIoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkSSnLfCbP5TIyNJPd/rgf2LSelfyM1qvHeRWVuw7aHmnXdFhv7I6zkCTpwq1xts9Vf3DM9mjcGB9H/cCs7aGuyfe4aqttsbGjHtaH/+6QPw6TA5FqOTKoRobCenPPuO1RPzwXv8eCD8VIY/H1z0o+d0WrcW7G+W+5xrYYmDP5Hss+66jyuTgPpzc3b3uU9sY5RPPPiPexJE18On6frBrfT5LUHTU5NPNxpookNWfiPVZZbNkeqRPnELW3xPeTJJU/cE9YL27xIWXNW3aH9cp80/bom4yyrORziirHzD1X8de2Nxlfl9Jxnw3mMuzShl8PJXO+OT4v2zPxc6rY8Nk+TmEjzjCTpKyc4zllbH/b6bB+6qeu9cdRNJlLLZ8hVJqPs59aO+O8vnvu+k2trpzym1l8UwQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQdIXDG4fHdmZP/Kof2/wFOQ6l2I6D04obPtAuq8Sz4NqOOCROkgo+b8oqr8ZNevUcM6tZs8GTcYigJDWmB+K3yJEBVmzE12Vjmw9wGzoVB5KtT/seKT4MKUd819DpOMCvPeyPo7zm96FTWo9D3lwo2udfE++hrOB79M39Uj27antsXBUH69XmfLDe4o0meHHNXXypshRfl86w3+ytkfg1KcczdfBMfG37ZX9dqnNxWGVrS3xfS1JzIj6XsQeXbY/1PcNhvVfx5zJ82ITzbfWBmP1yvE9Tz18X9/mS555zn0HdwTiAWJINkcyzP9z5ljb8h5h7PlyOZ3Ke+zb143OpLMSfHXfd/2atrJ0mvBEAACAvhiIAAAAxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEASQxEAAIAkKUdgwuWTepkqy5vnc3Ry5L+0R+JDrjd99kLP5FnkyYCoz8c5IwWTdyFJpdU4D6c3VLE97LlU/SWumowHl/8hSa2J+NrV531uT2ktPo7qis+Qcdkb3QHfI3XjTIw8mTrNqZp9jbOxLb7+azP+ukx/LM4QypP/UjT3VGt7nFMjSau7zX171t+3BXNdymu+h7v+QwcXbY/Srjhz6ezT/X3bGYxfs+WuFdtj9do4t6m66O+5kSPxM6g77DPbhh5eCOv9Eb/H3I/nLitLkkrr8fUvtnLk8phHv3tGSVJ3NF6z6rx/fnRMD3ug8hlDeTKXXD5Qfd6v6erO+N4fOhV/lkpSsRG/pjMSr1eePLZH8U0RAACAGIoAAAAkMRQBAABIYigCAACQxFAEAAAgiaEIAABAEkMRAACAJIYiAAAASVc4vLFfLmhj++YhS6e/Pg6KkqS9fxoHkh37UR+amB2Pw8Su/rM128OFWh34dwO2x7a/jwPcLnxTHKwmSf1GPNde9ed+7h04PB/Wj/7KoO1xy45jYf34yrjt4c529BdsC535uXh/5InwqlfioLBayYfiDZbn4he8wgcezj1lIqwPnfF7vf3LcQjg86f/wfZ45yNPCetbf9WHFfZLcbhac7vfYzUTAHr0RbaFbvyvcdDg2o3xmktSczQOgBx9xF+XT/7aW8L6LXe92PYYeUdcb076MNzjz4tfM/E5f8f0X70R1ldWfWDqzt+Pw057VX8cJ58bf5wVmn49+vX4uT64w4c3Tv9afP0P/Zs4dFOSsnJ8HKmV47rU4+NIXf/xf8N/OhTWu9fvsj3GD8T37fI1Pug2K8Sv2frhM2G90PLP7C+8NvcrAQAA/gVjKAIAABBDEQAAgCSGIgAAAEkMRQAAAJIYigAAACQxFAEAAEi6wjlFxbW2Rj95ctN6Y+oq26N6YTWsFw6O2R4Fk/FQOh3n9khSf3wkfoGPXNL4A8thfeFx/lwmDsb11I8zdz7/ong9eod8rsZ9+68P652hHAuyNU4qGin2bIvWA/GaZT4yRStTJuuo6o+jdiDO1djTPW97jD+8HtaLc/G9IEkHnh/n7nygcJPtsXIkXtOpUtP2GD8U57uU1n2OSKEdr3vtlM9+Sp34fYYeuGB7DIzFmUprV+XI9TI5RPc/9Y9sj2f+7svD+vjHNn/WPurcN02H9VLDZ/vcvuNIWP/Lu55kexQ68bXtVv2NO3V3/BzrDPpsn14cYaf2Fn8cpYX4vh06nieTK35eruz15zJ8f/ya5OO0lM1sDeuFjm/SGo730NTHZ22P/kh8YXpT8edxdi7Hg/8ivikCAAAQQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIYigCAACQxFAEAAAg6QqHNzZ3lnTgl7dtWp8Ym/NNPhkfcvnxcSCiJK2bkLflp+2yPXpVE4zV82GFJ34hnkk7cz7Q7rmv/GRY/9jPPM32aO8YDetbnuTDtYYrcfDi4bNxCJgk9dbddvShiS99wZ1h/XzHB/y978Djwnq16gMxd35dHM7Y+bsp26NvAuv6pfi6SVJ/LQ5OO/zIdtujsmMjrHeHqrZH6pv7wdUl9SvxerSvadgevdE4OO/Ma30Y3XAtXo/Sbw7YHqun4rC5J/z9D9se9dF4zRZ+Y9z22FZfCuv9sr9v3/fw48P6tzzlXtvjs++7NayPHVizPX70j/80rK/3/T797MbusH6h7YNsj07FQba/8EP/0/bomJTZNz7ybNvj278zXvfjDf8MOvSj8bmkrr9fevX4c27hTf67mZ4JIR57nbnnvoSvf3K/NKVUTCndm1J638V/35tS+lRK6XBK6V0ppUr+twUAAPjK8qX88tkrJe3/on9/vaRfz7LsWkmLkl52OQ8MAADgSso1FKWUdkp6nqTfvvjvSdLXSXr0+8p3SHrhY3GAAAAAV0Leb4reKOmnJT36C4iTkpayLHv0N72ckjTzj/0PU0ovTyndk1K6p7ca/0V5AAAAXy52KEopPV/S+SzLPv1PeYMsy96WZdltWZbdVhz2fzswAADAl0OeP332DEkvSCl9s6SapBFJb5I0llIqXfy2aKek04/dYQIAADy27DdFWZb9TJZlO7Ms2yPpX0u6M8uy75b0YUnfcfFlL5X0l4/ZUQIAADzGLiWn6NWS/jil9EuS7pX0O+5/MFRt6Y6rH9m0/vFP3GTfdGyoGdYLH/UZIdvOxdkKQyf8731a3xW/zzXvatse3/DmOGPonR96ru3xV9viTJ3xOE5JktQaj7Ns5j69ebbUoxZa8RsNz/vjqC3G16Ww4df07Z+7I6z353xWyY6/j/Nf1rf5PXZsR5xDs7Pqz6XYiHOqsqL/LYE7PuQ2gN8g84+Ls1nqR+NMJklSweR6NeKcK0nqTcVrWj0Q1yWp0I4zhn5438dsj0+tXB3Wj/YnbY8dH4nXY/Tuk7bHwjP+0d/G+QW/ecsf2R4/+tYfDOvjyz4rbeJva2H9r/vxM0qS9m7EGWSFhs8Ge9eFp4b1Yyv+upydj7O/ejmeHzcsxdlP//mh59kee8cXwvqFAz5j6Hc3nh7WO23/8X9NJ173QtPvj+pc/Kz7rj2fsj3mTL7cRwbj535mnj9f7EsairIs+4ikj1z85yOS4l0IAADwzwR/zQcAAIAYigAAACQxFAEAAEhiKAIAAJDEUAQAACCJoQgAAEASQxEAAICkSwtv/JI1z9d16L9tHtCYPc33KB+/ENbXX7jb9mgPx7Pg8DE/K1YX4lCr48+LA80k6e1/Eocztq+LwwwlKVuph/Xp8w3bI5kArjPfFr+HJGWLlbDe2mJbaH1LfKz1uThEUJK2T8ahZ+cUh7NJ0plnxedS275ie3TOxH/PX3HDh561x+LjGDiyaHtceF688J1JfxzDW+Lz7X7AX5esZMIbOz4Qs18thvXik+PQPEnSn8fBnG/7jRfYFlmKz6W0LX4PSVp4QvyaM8/fanvs/Iv4+fBjvxUHM0rS517138P6U3/2h2yP7d9/NKyPduNwWElqD06H9eJgfC9I0gMX4h7Vst/r9YE4RPTqW87aHhtj8XH0+j6I8uHZ+Prvuvmc7TG7HAceFktxYKYkZeX4nss6vkcyt8Nv/+a32B59k5m5dT0OZU19f08+im+KAAAAxFAEAAAgiaEIAABAEkMRAACAJIYiAAAASQxFAAAAkhiKAAAAJEkpy/L/+f1LNTy6MzdRFfsAACAASURBVHviV/3Y5geTI0ugX47nuIFTa/5AunG+R3NnnO8gSaX1OPOiaLJ/JKk1GWcZFVs+A2Jja5zfMXJw1fZobo8zYkrNHHkWJrulOeWzSpzyqj8ON+Z3a/7ngIGzzbC+PuMzqAbOtcN6seGzSnr1eM169ThDRJLKK/Fx9E0OyeXSHYwj0Uprfj1KnzkY1ju332B7NLbE90tpw2eD9arxXh8+nCPHajzO/srz/HDWdvl8sepi/D7dQb8/+iaDqluL65I0eDa+/pUFn7e2sm8krPdzbHV3LoWe/4yqzV/6mjp59unadHzPFXJsscGz8fOjshg/K/NYvSbH56053345vm733/kmrS2e9BtRfFMEAAAgiaEIAABAEkMRAACAJIYiAAAASQxFAAAAkhiKAAAAJDEUAQAASGIoAgAAkCTF6U6X2cSuZb3kDX+9af0N736h7bHzI3FY1OzTRm2PoXNxCGBl2adauTC6rOhzor7+1z4a1t/9P55te2zcsR7WK38QBzNK0tpMfC7L1/ptUlqPz7eUI+OruhgHo40cjM9Vkg7+ZDWsF8744MWp++PQu41t/meJC0+M32fH3/s1LbbiwLLiht+nCzcOhvXasg+BO/PV8bXd9ztLtkdpOa73BuPrJkm9W64L6yee63vs/fM43PXFv/+/bY+/mH1iWF/7TzO2x/p0HCI59pC/YTrj8R674ScftD3ufvcT4uM4kmOP3RSHEQ7ePmd7FF4XP6dSy4d71l5+JqyfOD9he6QUP4N6XX/v3/DTZ8P62bf6z6hm2wS3HvCBh93dZg/liDIc//U4vFEmtFeSmlvj5+nP/8rv2h4PNeN76q9f+bVhPeUI3XwU3xQBAACIoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIusI5RefWRvWrH//mTevVG1dtj8IH4kyM1Wc2bI/W5+JMjJ0f8j1SN849OPoCn4fzriNPCusrN/uMkOdcfTisH1vfZ3tM3bMR1ge+I65L0uxSnJtRrrdsj91jC2G9cfcW2+NbbvpcWH94ZpvtcfzqOM/kuVfvtz0+cPSGsF77M5+b0RuKs2yKzRwZMs+Os0qyHLkrT7rmeFhfebfP5clK8fukvl+P4nJ8LkM3+Wyfwv+Mc1V+9f5vtD36vfhcdpgMM0mae358rOe+esj2mP5IfBx3PhDvQUm69nknw/riO3faHi/5zjvD+n+cetj2eObky8N6cd3nFN02eSisXz08b3vsrceZSjsrvsc7tz83rL/46k/aHp9eviqsf6brr8vtu+Jru7XmP2/3l28K68Vl/1mpFOcUveqz32FbjA7E7zO0Gucp5Xm+PIpvigAAAMRQBAAAIImhCAAAQBJDEQAAgCSGIgAAAEkMRQAAAJIYigAAACQxFAEAAEi6wuGNhVbSwCObB9I1buzbHqXzS2E9FXzo2cauOPSu0PKheK2pOJyxN+HDxjp3j4f1kacs2h73XYiD80o7qrbHgAnWW8uxHlOja2H97OyY7XH/ShyquWfCz/D3XNgd1gvJh3h1jg+G9fd3b7Y9Jsfi9Ug9f13Wp+PX1C/k+Jkmi++p6mAceiZJn37g6rC+r+cD3NpjcRBlr+bPpVqJX9Ns+3NpbY/XtPJpf136cX6sFnxmonqLcYhkXL3Yoxq/auhgvOaStDYTv6a64p/Jb7/vjrD++5Wn2h7bCvG5dEf9dfn4bLxPR6o+3PMz5+Pn6dJS/GyQpD3j8T59+/54vSRpcng9rH/t1XFQpSQdXonDbj/5yF7b44b5+PM2q/o9Vl6JPz+6nxu1PeYVv2Z09UJYTz2/jx/FN0UAAABiKAIAAJDEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSpJRlPrflchkd2JE9bd/LNj+Yrs8SaO4YDuv1w3FegST1R+OsiX69bHsUNuJMlMLKhu3RmZkI66XDZ2yP/q6tYb2xPc7+kaTuQDwbjxxYtj0Ky3Guhpot2yObiLMoVm6Mc50kafjwSvweZRMyI6k4vxr3GIgzqiQpLcRr1r0qvm6SVFyM99DK4yZtj9F7/B5y3P2SZ6+7HnmuS3cozkQpL/kcGpnnXZ5nUG84zsxJPf9MLSzGOVb98Rx5azP1sD54NN7Hkn/WFZo+o8xlCBXXfWbb2lXx/hg86fdYcS1+xvSr/rmeleNnYXHV77GVm+Ln+shDC/44zLFmRZ9klTq9uN7010Wl+L5cenx8rpI09unZsJ4NxftYkvq1OFKxX42P8+57fksrq6fzxH/xTREAAIDEUAQAACCJoQgAAEASQxEAAIAkhiIAAABJDEUAAACSGIoAAAAkMRQBAABIkuJEpMusM5Np9pc2DzYrFX3o2cRr44CuU2+MQ8Akae1IHBI481Ef4NYvxoFT52/zQYNXPfVUWN9/cI/t8b13fDysf/TVd9geA7Pxmi69Lg6qlKRCirfSmVM+rDBtxAFc+343DryTpCe/44Gw/vDqNtvj0w9eHdZT3Qfa7Z1phPXya/we27gm3kOVZX8c+1+1I6xnZX/PzeyZC+uD/2nM9miPxQF/lSUf7lleiAP8Dr3Gh2rufXOc39Z/7bztIcXXtvnWadvh7EvjUNWpu/3Pq5X1eA+lN/rQ1QurcRhu6c98ON+F2+OQwBc9/V7b466feUpYL677Z9D7P/jusP57K/4ZdLgZPx/ONuPPDknq/Xj82fDdf3Gn7TFZjJ91f7P8eNvjjuFDYf3Bxk7b41P/9tawPn73Odtj+Unxmk796DHb4/+0d+cxdp3lHce/z13mzr0zntXjiTMexzZOHAIkThogFJQCKQhaaJBKIyoqBYSIKiilLQhBkYqgQmqFWsofiJIFCBVbmjYlohUiSoPKlsUkQDaT1cvE47FnPPt2t7d/zE2wQvw8x/bYY0e/jxTN3PuevOc97znvuc/cuf5NpeCf//GPbvY7OI6Mar1TJCIiIoKKIhERERFARZGIiIgIoKJIREREBFBRJCIiIgKoKBIREREBVBSJiIiIAKc5p6hRzTN54Ng5D52DcQ5Nyvk5I1niCAqLfh8Wx79QHg9yVZKfVQHw9Fi/P46aP06A6bq/H6vHeTj5+ZrbPrsY57+s75z391GJJ7URHK4142OZqftjbc9nOLnBbortcR8586/E3OxS2If1+8eSa8RXe6r4GTI2F98CDhzyc4h2zPn5QQD5sr+f3EKcQ9Po8LOO4tUChRl/3h876K/JLM6xeCS54PTXOuI+Us7/mfZgkEEEUCr613I+yEICoOxfY0eqcXbcwgb/+ijvi6/1KIfoPV2Hwj4+vbzebZ+t+9cgwNywf0+ebcT303xwE3pw0s8fy9LHXCM+lvzErNveGIhzmzr2+feHxw4PhH2k5K+H4bCH7PROkYiIiAgqikREREQAFUUiIiIigIoiEREREUBFkYiIiAigokhEREQEUFEkIiIiAqgoEhEREQFOc3gjGOYk9BXzfggYgDX9Oi5LH9W6HwRVOhIEMwLL/X7wVXE2Dl+L9pIKcWDZ5tIRt/2hepY4S1+m8xKEFebzcQjc+o1TbnsqxGFjRfPH2gxCwAAo+WM9f/Bw2MVyw19ajd5KPI5AFGQKQM4/L6kYn5fB9TNue6O7M+yjOOEHuNX64vloG/OD5FKKx9Ho9K+h5lwx7CPX4YedFufi9dIs+/exRpz9Sps/HYwfjsMb1/X7oauclw/7OHejvx62lsfDPp48EIR3Vv05B3hiadBtj4IZAT418Ijb/v6l3rCP6b3+tT5QCE4c8KtFP45wuR6/dPcW/XFEAbMAzU5/Xeam4+DWhe19wRaLYR8pGKpFGxyHTEWRme0BZoEGUE8pXW5mfcB3gC3AHuCalNLkqo1MRERE5DQ6nl+fvSGltDOldHnr8ceBO1NK5wN3th6LiIiInJVO5jNFVwM3t76/GXjHyQ9HREREZG1kLYoS8AMz+7mZXdd6bjClNNr6/iDwgr/QNbPrzGyXme1qzMV/8FVERERkLWT9oPXrUkrPmNkG4A4z2310Y0op2TE+aZtSuh64HqB03vDqfRpKREREZBVleqcopfRM6+sh4DbgVcCYmW0EaH09dKoGKSIiInKqhUWRmXWY2bpnvwfeDDwE3A5c29rsWuC7p2qQIiIiIqdall+fDQK3mdmz238zpfR9M7sPuMXM3gfsBa6JOrI6lA4fO/diMtcdDqa/7OdVHBmNAz46gmiFLPkvpXE/ZajeGed7NKbb3HarxW/k3X7gYrc9n+FY8kf8z3rNL3aFfcwv+seSC/JyABaqfkZMbz3O1Blb9se6bzbOGcm3+zkzM8vt8Tim/IyYrbU4yyZX8+esNOrnBwHQ9NdUZTDIqQE2rfPzo+YyzEe9y98mV43ng4Z//nMZ8rQKU1E6mH8dAzQXgwyq9njddpzrZ9VUB+L7R/9NfuaSzcW3923b/ZyzPdV4vfzO+v1u+6a2ibAPC5Z2fSC+B40u+df6bD3OOYtyiG4Y/knYx1sX/Iyhn89vCfu4Z8LfZmohfp27d9LvI0d8T47yf6yeJVvQb188HGeUFbr9HKtGkPtFlky3Z/cVbZBSegq45AWenwCuyrwnERERkTOY/syHiIiICCqKRERERAAVRSIiIiKAiiIRERERQEWRiIiICKCiSERERARQUSQiIiICgKUgnGk1da0bSq+89APHHkwzHkuz5Iea5ef9cMcsqr1xyNcL/6W33yjO+GFTEB+L1eKwwvx8vJ9IvccP1iuOB2mXAM0ofS0O+Wp2BYFkubiGz01nGGugPuAHL+Znl8I+LAiaXByOw+hqQQBoFIoG0PnktNuem4uPJZX99ZDlWJoFPzxtdjgOK9z4PyNue2N9PI7LbnzQbb//ut+KZPstzYJ/HS5ujMMsu+57xm1PJT/IFOJAw2Z7PKe5ZX9dpmK85ooH/SDK1B4fC+ZfH832OIgyup/SiF9fohDRLPfkRmcQZJshuLXW6c9ZYb4e9kGQV5jl3B7Z4V/Lgz+Ogznr3f593YJQ1izb1Nf596hdu77IzMxIpgRHvVMkIiIigooiEREREUBFkYiIiAigokhEREQEUFEkIiIiAqgoEhEREQFUFImIiIgAEIc/rDYnjyI/E2emLOzodtvXHVmMh7DkZxkVyhmmJci8KOwfj/toC/I7MmT7pE4/A2JpKEOGTJBXUazFmRjN7orbniUPx3bvcdurr74w7KMU5BTZcpzrVJgKrqGx+Nw2h89x2/PVDBlUR4Jsjiw5NBMz4TaRKNyjfXQu7qPqX0OVffGxzO7c6LZ37j4S9nH/+y922y3DmiPIKerYG88H9WBNzc3HfQQ5RcWJOLMruhcubekN+2ib9nOKwM/9AljY7u+n/WB8LPngnpzycUxNLpiPaL4AJnb656XnqfheWJwLXqMOxet6cVu/38dCfF8fuN8/tzMXxddHCqa948By2EeUD9Uo+WsyGsPR9E6RiIiICCqKRERERAAVRSIiIiKAiiIRERERQEWRiIiICKCiSERERARQUSQiIiICqCgSERERAcBS8gOvVlN5+7lpy+euO2b7eX2TYR/Nj/mBVEufjYLEYO/+9W77ln+Pk56Wev2wuYmL4z76Ljnsto/t7Qv7uOaKe932n37m1WEfHSN+MNrEp+JwreEu/9w98OTmsA+W/Dm98F/jc/vyr+5228eW4yC5nzzxErc9X4wD/i4bHnHbxz+5Jeyj2uOHiKZcfI2NvDUOiYyUuv2wuaEvt4V91Cv+ua3sjwMPo/C9x/86Hsf5/+SHd+75RPxzYrnkB+tVvtET9jH6e/59d+CeeBwp2KT4rrGwj4mZDre9cldn2Mf0Dv9YXvnKx8I+jnx0ONwm8jf/9m23farhB8wCPLp0rtv+48P+vQGg+Ak/YPhPvn5H2Mf7ug+67Vf84p1hH9dsvt9tn274wb8AP/vzy932wkS8bht9/jW2/Jk4iHJ22V/bgx/173M/2/M1phdHM0U46p0iEREREVQUiYiIiAAqikREREQAFUUiIiIigIoiEREREUBFkYiIiAigokhEREQEAD8IZbXN57F7j53hsPtlpbCLHdVFt/3gVJxDQ9OPKyjO+FkmAKSi21zrjevN6Xs3+BsM+XkoAD8e2+a2p1IczdBs8zNkJqf9nAmAqRk/A8Rm40vN6v5Ya70ZcjUObXXb6834vORH2v0+OuLsnwdsk9u+7YifDQUwN+Tn3ZQn4rykwhF/3uu99bCP6qJ/rZdGpsM+GPKzW1LRvwazyOXizLVqv39u7eH4HrQcTJn1xeOwIPprZmu8bs/9kd/Jvl8Nhn0M7Rx125uj8ZqbvNhvv3+/vxYANpf8818cj9fL96df4bY/OOlnEAEs1/31MrUQz8fmGf816vOPXhX2cUO7f27v3nlr2Mc1T/n7eWBfnA11wci4254q/noCmLrAf/2Yvjt+fWkGLx/ru/28pJTP/v6P3ikSERERQUWRiIiICKCiSERERARQUSQiIiICqCgSERERAVQUiYiIiAAqikREREQAFUUiIiIiwGkOb2yWEvMXHDsYcXhwMu6j7Icz1qpxCFx5nx9G1yzFoXgLg34fHU/H4WuLr/BDvliIT88bznncbf/peG/YB8kPm+voCJLmgHKbHzQ5EY+CRs2v0QtzcajmS3vH3Pb9834gIsChjf5+2jvj+eiqLLnti0PxeclX/fPSNhWPw4LUs9x8vF56NvrhjMtBMCNAKvjrYWkgDoFrm/TPSy4fh2pa8o936bz4Giu0++mNPbfHxzJZ9se67pfx/WNuqM3fYFNwfwHGpv37aWk4w0tE8ufj8uH9YRej7dvd9rZqHGT7u+v8e2Ge+ProLfohkfdObgn7mBsectuvveCHYR95/LUfBTMC3LLtTrf9+v44zPK27ivd9tQeXx+FJf9YypdMhX0s1/z9NEv+6zHxcnqO3ikSERERQUWRiIiICKCiSERERARQUSQiIiICqCgSERERAVQUiYiIiAAqikRERESA05xTBEDz2IEB53TMhP/7ZMHPRGkuZsnVCJpzcahB5ZCfzbHUH+QmAIWin4dUTfGxjC13+ftY8McJkF/wM0ByFkwYMLdUctt7u+fDPo5Md/jjmIlzVyarZbd9ruqPE8AKfp5Je5DJBDA974+jYznOTIlkuU7rleDcZTi3zab/s1O9EmcdWSPIXAoyiAByS/613LsuQ25Tw18vpAxzuuwfb3E+Q15S3d+PnfzlQaMe/8ybL/j3oOJ8fH1EP1pvaJ8NuzjY9PeT2uL76cOLm9z2uUa89qN7XS568QBywbW+3IyPpRbkaT2wbzjsI8ohuq77QNjHrd1B5lZw3gC6dvs5RFP1+P7RdOoGgHxwb8gQUfUcvVMkIiIigooiEREREUBFkYiIiAigokhEREQEUFEkIiIiAqgoEhEREQFUFImIiIgAKopEREREALCUMoRzrZJ1PZvSpa/7y2O25+oZgrFqfgpT28E4KKzZ6QdS1TvjcK09b2tz27d/ay7sY2Go4rZ3/vTpsA829LnNzXJ8LI1gm+Ije8M+rOIfC4UMAV0dfuChVePQRIpB4GUtDrNsdvnjIAhnA8jNL7nth1+7Ieyj/0H/WraaH7y3slEQErj/YNhFc/NGt33kzX6gKsA59/jzUZiOgxerA/55ad/rh8QB1Das8zfI8GPico+/XnK1+Pqo/OwJt916gpBJYGnb+nCbSG7Zv4YsQzhfYXLBbW+sCwIAM+wnN+3vA6C+IQiynYrDX1PRv0+lfBzumfL+RVTtzRAiGbwWlvZNhn00+jv99nIcDvx3N33Fbf/797437MOq/mt2tcd/LYX4db807p/bu3ffwPTCgfjkoXeKRERERAAVRSIiIiKAiiIRERERQEWRiIiICKCiSERERARQUSQiIiICqCgSERERASAOKlhFVmvSfujYeQJZcleapZMfsi36eTdZ9nDBjUGGzORM2Eehb9jfoC/Of6n3BJk6GTTb/Nq4viMYJ1B8ys+7SZU4q4QgAyTMmAEKc1V/HBlym/IT/rltdneEfTDh54h07e0Ju8jtP+S2z12xJewjzLrqi8dR7ffP3ebvTYR91Lv8Pua2+ZkqAN33+9dYfSDO9qkGGUPlkfmwj44gU2npnPj6SOf52U/NIF8KIL/oZ27lF+Jcr0aHnxGTn/fXE0Ct3z/eRnucUdZ+IMiXyzAf4etHhpyzeq9/P83Px33kav425ZF4TlMhyDoaitdts+DPWT7I/gH4h7e+022vbYtfLUuLfkZZeTRec0uDfg7e4pB/DTafyv7+j94pEhEREUFFkYiIiAigokhEREQEUFEkIiIiAqgoEhEREQFUFImIiIgAKopEREREABVFIiIiIsBpDm8kZzQ6jh2eVnwmDnGqDfT5u1iKw7VS3g8Ta1TiaVk4t9dtL87GQXLFKT8EjkIcetYo+dtEYYYAhSD0zDKEfNW2neO21zvj0MRGya/R2w/7IWAAjYq/n2YwXyvb+Oc2CgAEKLUNue3RsQIsXbLZba8cOHYQ6nP72RqdFz+8DyC/7J//hc3xtd4s+UFyldH43BKEwFmKx9Fo88fRLMdrf3HQD6Jsm/ZDFQGqfX5IYLUnHkfbVLCfDIGH0f2jXvZD8wAWN/jrweLbB7m6H95ZnIqvj+UgZDTXUwr7aBb9OZvZGofldj3tr8ss98LirP86Vq9keG1o9+8xucn4tXL+fP/1tuPX42EfU5dtcNvL4xkCMevJbR+/0L+P1e+N18Jz+8qykZn1mNmtZrbbzB41s9eYWZ+Z3WFmj7e++q8kIiIiImewrL8++wLw/ZTShcAlwKPAx4E7U0rnA3e2HouIiIiclcKiyMy6gSuBmwBSStWU0hRwNXBza7ObgXecqkGKiIiInGpZ3inaChwGvmpmD5jZjWbWAQymlEZb2xwEBl/ofzaz68xsl5ntqtbizwyJiIiIrIUsRVEBuAz4UkrpUmCe5/2qLKWUgBf8JFRK6fqU0uUppcvbihn+uriIiIjIGshSFI0AIymle1qPb2WlSBozs40Ara+HTs0QRURERE69sChKKR0E9pvZjtZTVwGPALcD17aeuxb47ikZoYiIiMhpkDWn6EPAN8ysDXgKeC8rBdUtZvY+YC9wTdSJNRKFSSfDIcgPAmib9PMqchMzYR/Nfj/PpHg4/uxTYdKvJ9Ovnw77WHzTJW57x90Hwj6KbScfNRVls+Tn46yj3B5/rMUuP4cEILX7OSIL2+LUh/L+Wbc9n+G9UQuOpbDJz/4BSHtG/D5efWHYR+lpPwNk7uXxODruftJtj1cc1C/Y5LaXn/HnHKDe5WfIpAwnJvV1u+25hfg6rYz6+8lyrbeP+31kyaAqP+mf21LFny+AWq+fmZOfC3LQAGv4mTmNDLlN64Jcniws+Tk0KUPmUuVxf06t6e8DoHpuj7+PJybDPhrd/nmpPBxn+6ROv4/CVIb1Es1ZhnthMXidW94c35N7HgrmLDj3ALUB/6M3HWN+GFY+jg57TqZX1JTSL4DLX6Dpquy7EhERETlz6c98iIiIiKCiSERERARQUSQiIiICqCgSERERAVQUiYiIiAAqikREREQAFUUiIiIiQPbwxtWRElZ3QpYyBLgtbai47fnuOPSsNBoEPDb8ICiA2gY/jLDx+leEfXQ+4v9llMbWc8M+cvN+QFuj0w9EBCgc9sP3Frf1xX2s989LrRJfavWKf/67fvh42Ef1FVvCbSLzL7vIbc814j46g3m3ehxYltr8YL3KnjiodOr3z3fbp7fGa673cf+AG0U/aA6gc8S/TrME6zXL/nykYhxFWXhy1G1vbhoI+1gaaHPbc7X4WJ5+95DbXrtoIexj09f9+SjM+EG3ALVOv4+l9X47wMTL/JDAdXvCLuja64dm1jbG11jHfn8cuel4TnPe6xOw9483hH0M3eWH/y5cFIeulvfHazuS2v17birEa7/a7V/rhfk4FXF2RxCIORKflyiIsm3Gv0dZI16Tz9I7RSIiIiKoKBIREREBVBSJiIiIACqKRERERAAVRSIiIiKAiiIRERERQEWRiIiICHCac4qqPQX2vX39sdt3+vkOANv/4km3ffC/a2EfW8oTbvtPPvCqsI9Gya8n00fGwz4e37XR38dwnDOyYb2f8VC4wc8PAij0+dlOSx8+EvYRGX8wzveo9/iZF+WxzWEfXZ/Z7+8jxVk2hyd73fblarxsij1+9lPlQ3Ef1aFut31qW5xBVX37lNteW/RzSAAmLvOzW4a+GGfZTL/Ev8b6Hp4L+yCID3vsPXFG2YX/euz7D8Dolf6cA9SCJTV8Z3wsSwN+J6XH4nW73O1PyMTL4nyx2e3+mlt/n58PA1Ad9PuY3BJn2Qx8btFtLyzG5/aZT/rzsTAXn9ueniBj6ECG3LcnDrjtB74c3wvLwbKcy7BulyaDOavH5/alX5z2NxifjMcxsNVtP/jadWEfzeB2OXy7n/mXW84QLvfstpm3FBEREXkRU1EkIiIigooiEREREUBFkYiIiAigokhEREQEUFEkIiIiAqgoEhEREQFUFImIiIgAYCml07czs8PA3qOeWg/EKYdyPDSnq09zuvo0p6tPc7r6NKerby3m9LyU0kCWDU9rUfRbOzfblVK6fM0G8CKkOV19mtPVpzldfZrT1ac5XX1n+pzq12ciIiIiqCgSERERAda+KLp+jff/YqQ5XX2a09WnOV19mtPVpzldfWf0nK7pZ4pEREREzhRr/U6RiIiIyBlhzYoiM3uLmf3azJ4ws4+v1TjOZmb2FTM7ZGYPHfVcn5ndYWaPt772ruUYzyZmNmxmd5nZI2b2sJl9uPW85vQEmVm7md1rZr9szemnW89vNbN7Wuv/O2bWttZjPduYWd7MHjCz77Uea05PgpntMbMHzewXZrar9ZzW/kkwsx4zu9XMdpvZo2b2mjN9TtekKDKzPPBF4K3As9sSKAAAA2ZJREFURcCfmtlFazGWs9zXgLc877mPA3emlM4H7mw9lmzqwEdSShcBVwAfbF2XmtMTtwy8MaV0CbATeIuZXQH8I/D5lNJ2YBJ43xqO8Wz1YeDRox5rTk/eG1JKO4/6J+Na+yfnC8D3U0oXApewcr2e0XO6Vu8UvQp4IqX0VEqpCnwbuHqNxnLWSin9H3DkeU9fDdzc+v5m4B2ndVBnsZTSaErp/tb3s6ws4CE0pycsrZhrPSy2/kvAG4FbW89rTo+TmW0C/hC4sfXY0JyeClr7J8jMuoErgZsAUkrVlNIUZ/icrlVRNATsP+rxSOs5OXmDKaXR1vcHgcG1HMzZysy2AJcC96A5PSmtX/P8AjgE3AE8CUyllOqtTbT+j9+/AB8Dmq3H/WhOT1YCfmBmPzez61rPae2fuK3AYeCrrV/z3mhmHZzhc6oPWr+IpZV/Wqh/XniczKwT+A/gr1JKM0e3aU6PX0qpkVLaCWxi5V3iC9d4SGc1M3sbcCil9PO1HsuLzOtSSpex8rGOD5rZlUc3au0ftwJwGfCllNKlwDzP+1XZmTina1UUPQMMH/V4U+s5OXljZrYRoPX10BqP56xiZkVWCqJvpJT+s/W05nQVtN46vwt4DdBjZoVWk9b/8Xkt8EdmtoeVjx68kZXPbmhOT0JK6ZnW10PAbawU8Fr7J24EGEkp3dN6fCsrRdIZPadrVRTdB5zf+tcSbcC7gNvXaCwvNrcD17a+vxb47hqO5azS+lzGTcCjKaV/PqpJc3qCzGzAzHpa35eBN7HyWa27gHe2NtOcHoeU0idSSptSSltYuXf+b0rp3WhOT5iZdZjZume/B94MPITW/glLKR0E9pvZjtZTVwGPcIbP6ZqFN5rZH7Dye/E88JWU0mfXZCBnMTP7FvB6Vv7q8BjwKeC/gFuAzcBe4JqU0vM/jC0vwMxeB/wIeJDffFbjb1n5XJHm9ASY2cWsfJgyz8oPYbeklD5jZttYeZejD3gA+LOU0vLajfTsZGavBz6aUnqb5vTEtebuttbDAvDNlNJnzawfrf0TZmY7WfnHAG3AU8B7ad0HOEPnVInWIiIiIuiD1iIiIiKAiiIRERERQEWRiIiICKCiSERERARQUSQiIiICqCgSERERAVQUiYiIiAAqikREREQA+H9wlGnB+jHX1gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sim = np.dot(embeddings[:,5], embeddings[:,11].T)\n", - "plt.figure(figsize=(10,10))\n", - "plt.imshow(sim)" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAANSCAYAAACN1iY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmUHMd94PnvL/Kqu/pEX2igcYMgCIL3IZISJZmSdVnW+JI171n27Mia52M8HnvGuzPr1cyzx+unnbU9nrVljcdPz7O2ZUvWZXl0mBJvUiRBgiABEvfRQDfQZ1V13XnF/hEJEI/mAeq0V/F5r19XZUVmRkZG/CIjjyrRWmNZlmVZlmVZlmVZ1qtT3+sMWJZlWZZlWZZlWdY/BnYAbVmWZVmWZVmWZVlXwA6gLcuyLMuyLMuyLOsK2AG0ZVmWZVmWZVmWZV0BO4C2LMuyLMuyLMuyrCtgB9CWZVmWZVmWZVmWdQXsANqyLMuyLMuyLMuyroAdQFuWZVmWZVmWZVnWFbADaMuyLMuyLMuyLMu6Au73OgPWPxxuvqiddUMgGqcjJAUNWgBQIaQuqAhUDIlv5tE5DZh0EgkSA6UEgDRSuG1BxZqoKDh9SHJAkCIdBRpEAxWTPokUXkNIR2KSROE0FUk5NcsOBVVISEKFn4tJah5g5k8Ck023C3FFQwriaJRKSTuuyXuWXwRIwQnNNogGrxKSaiHqeqjYbI6kkJRSM0tfoV2NeCk6FUgErylEJZNOYkgDjeqbstKlBGk5UEpIQwcVmjLRWtCxQCq4uZg4dHC68uIO0JCUU9ymIvFBBymqq0jzKSRmPuTF7VChWb87ENLveWb9AlqZeaWn0E62b3ugBiPipoekZh/GedCOyb9TjElTQZoOSXCxQqRm2z2NxGKqggCOhlgQDSofo0QDELc9glJImDjQdkg9k1b6cqlckyCbP9uOi8t1czFJ24V8ir64rW6K6ijS3ItlKymoUBMNarN9frasWHByMUniIP0sr36alavgtoTUNXVYUiCfQNdBexrPj4n6Lq5v6mEcOUgoaDcrm8vqinZA+2a/kL5Yr1QEaUHjezFR7CAdReoCrikbEkFFQDFrG6FzqWycEOJKCpECV6M6YtbjgngpdM15Tu2asnPaAtqsW8WQZvvYKcUkLRftZWWbmD+ANGfmS3xw+2Y/eC1N4oupL9kytMOl+uo5Cf2eh0Ri6kAkOCVTby/uj9QxxS8xpAWzDU4PUs+Ul8RZG8/2d+KBzpm66ZdNvXU6Ytp5pFARFAe7NPs5JFsH+QRHNHHoQCo4PRgZa7A6XyX1QGdlo7OyFlejmoq0nKJDhV+I0BrilocUEnTHMWXppjgtU7aJb/LoZGWjQtDlBB06OD0zzV/TxKOmTqWpggTctsnj1skLHK6No6IsdgSY09OiUT25VEeSAVO/xdHoyMRAFWXlo025qThrf2lWBxKTr7gI2tFIIvj1lLCiTN0payR8sX2gzb6Qvmkfl+pY/sXty5qsCd1OVhbNrCzKWdwTcGuKaCBFtRWUTWXSXQdyKb4bEzV8EFO/pG/qrdPL9kd2et5rapKxlLTjXIq/bg+issYNEtPuMelVYNbhLiqisiBJFqPyWfwMTZkh4OQSfMcUVm8tMGmzuu8VoxfbYT7FqyvinKn7AOlQjG65l+LfpfaWtXdS01dpxaXLDK4fk3Rc9MV6kodcISRZ9C/FUhVB6pvCdYOEuOeC0qa/KEBQMHVeXG3yFmR11snmWRW0EtOneaYs01IKfWX6TdGkfefFuJKC8lJ0zzH9WjE2fYNowq53KeakfedSvUo98PMRYcfDzcWkTdfEEj9LF5oyiCovtid6ph8IVjRJoNDKbD9Z93+RCl+MI1JIoO2gBXRg2oFWWZ3ztSnXi/Mm2b4OTF1WfUiKGrcpqEQT54U0n+J7CVHL7OSL/aMupDgNRTqQoGqOifM502dJksUlgNjUHbdryiD1tYnLiYmlQS68FO/IZ22gk8XegoklKDOPBNnnbROznL55H1YVQwNNVmtlE5uz/sHtQFSCXD6k1/FNOyXrWzwIlnqoLUK0GJi65OlL6yI12yGFrO9IBSJlYruAU4hJ11zTp5dMo5bI9F8X27gkWf+VHR+INuXntBS6Yo5TEG36XV4SH4IUEoXbhnQgMc2vbcr5oovLT31wOpBWTezEzY5DvGzlTrZNWV1JfVM2kpr4FNQSwqqDdsz0ZMjUSTBtywmBkYi45aFzKcQK5SfQdBCyftpP0XHWaMUcO6SB6eeTpmfaQ6RAgVfP+tqs/0uyY400n/V3XUgHE5wVh6hkYoHEJr86q1eOSolD91KhSWSOP+Sy2Cp9dakP1Cqb33/x+BJt4o/KjkF0z8ErRC/WdRdQGtUV0sCkkzVTThf7b/HSS/VVReZYh1JCGitzjBO6qJ6YOimg+pcdv/gJzqpDnL/smCFv2qLTN/tGUvBKEenyxQMM0/9rh0sx8uJ6tUC+1KffCEjzplxUV9DFxNSdQOO2hLj44lhDYsEpxMRdF5XLMtF2TDtVoJwszgXZ/hWTP+0BTlaWoboUUvyWRgvEeXNcnC/36NVzZt1BAqumAscls88vHjcDhKfml7XWo7wGO4C2LvHLQ6z7t/8SnU8Y3OdRuy5GQtMy8nMOvdGUwnlFYUHT3CiQQm9HD8dNSUIH94JPfkFI7mwA0F4sMvqYQ2Ep5vxtLpWT0NgOzHTwnivi9LKA+AOrANQvlFn/FUXnp2vU60UG789Rf0uXpO/gz/kUrqlRP19h89YL1D49BZj5G1tN4BvZLyz9QN8cNJdDivk+7QNDlM9Ac8ZsoznAEyonNWubBRXC5FvP0o9d5g+OkVs0B6VuR1O/oweAdypHfzQhP9oh7HskDY+JBxQLt5plBStCa2tM+WjWIG9fw320gtxVo3m2QvGMg9xRo9/3CGs5VEcxvGOFpbODDO03kTt1BRVp6nf1GPp6jtYGIdreIThYoH91l2TNw206JFnHjoLCrIPXhpEfPsvxYxOUTrikLsQFTbK5h3c0T1w04WTgMBR/4jzLX5vE7UJhMWXlGiEaSPFWFUM3LrLWyeE9UKW5OVvHcB//RJ7e+hB/wSPJaROwByJk1cPtCqU9K+Q9c2S2/MQYm+88w1yjSvzEIN2JBMoxueMBQQ2cUNPYAnEluTS49RY9Ul8zuHOV9mMjxLvbRB0PaTs4I31y+wu0doSUjppI73ShcjZm/sdC/OcLdGdCczC66lHdauqNNxuYIL6hC0DScxl52KO7TuiNpnhNhexeQx+s0FsfMrV+lbmTI4xurAGwdKFK7oxPOJTiryoqpzTNGTMADquaZLpH/mAepwftKVO+xXmheV2PjRMrzC0P4D1XpD+oSUbMEaWqe+SWFOqmOgCdMxXSSkzujE/5tGb1bV2Yz5EMR1SeCQgHIBxM8afa8FwZgP5oApWIgccCVAKt9UJuGcIB04kO3LpA/bEx+mPZIGRN4a2ZXruzvc/AvoDWtGbgqGmHkw/FrE27RGUhrJrtiMqa0qwiub3B9GCdI4enyC249MZicgsuA7cucGF+kGK2P/qDGtGQXxRa13eRhYCBw0JnXJAU8gsalbw4mGqtF8LtXfyjeda/8SzHj0wwvN+h9sYecj5H4bxw0489y31Ht+PNmjM5zs4mpXyfpbODuGsOlePwwX/5P/nLX387rUkHraA/BP0xUw+9ap/iw0Xad7RJzufZcM15klSx/NAE3o01on2D9MYSZDCk8lje5Gva1O3yKaG5OaV4ThHdsUZvvkj1sENrRrP+6zFLH+qY8mwF6JbLusdM+/3cb36Uuz75r8gtCm4Hmps0aT5F+ymlo+aAozSfsvLuLlHLJ6j2CC8UUJFQPKcuDW4745pg1ewztwv9IU1QEyqnExZuVkSDCV7NYeYLHc69uUhpTrN0V0Rw1uwPt2NiYuv6Lt7JPP3pkNxpn8opzcq1mspxobn5xYMkpy/0hxLUcEj1gRyioXaXiXuOlzD6mQIX3t2ntC9PfJeJ68mhCnJVi43Dq8x/cSOpB+2dffInA/qDKQOHhd6wkGQHTlMPhKz+Ypve/iGS7MBp6HDC3A9oxjeusPrUOnMAXdAUtpp1jP5+gXN3+/gNIaxo/N0NosghOV26NIAu7agxPWDa0/GvbsZrQXfcnFCbumGeuZUqwdMlOtd0GftiQH2rYuCEiTv9D6zSe3SEqKIJVoS4BP2RBK+mqJwCt6ep7VDExZQ0Z7ZjZNMqjf0jpC5Uj0Ftt+aq685Q//0NLO1VRNWU/AWHznpTD8c3rbB4ZJS0FDNxr8vCzbD52jmOH5nAG+zjPVekszECR+OXTZwY+4scYUmxtlHRm0ioHHXovqEFx4voLW3yuYj2iSrJUGR2YN+hPN6kd3gApyOUbl7GdRIKXsSp5yfIn3dwbqnRPTpAsJLFgvUJG3deYPa5CYZ3rNC9f5TOZEppU4PWySqlM4rKbMK5e8x2ewN95HiBcDxm2yci6lvzxHmoX5OaQXtXkbomDhRnTUOPKiB7G8iT5iRXb0uf/JGANDADkO50hOSTSwNoWfVx20K0oY97LqB8GlZvihm/z8Fvpqxc7dK7psvGsRXOPWb6/mRLl9yBAsmNTSp/U6L3vjr5T1XpjirWtsf4qw5+Xehca/oBvRqgIhh+VmhPCu2ZGLfu4K8J3amEbTvnOHp0ktx5l2RXy2z7gZIZKFzXJDpTJCmmuA0H2dhBOSn+N8oUFlOqR9sAnH53iZ94z4P81WfeSH5B09pgtm/kgObC7bBzzyxH923ENVmifBraU8LMHxym8N8V539/K6u7FL3JCJWPSdseTtPBbwjujaZ/ajdzqPM5vDUh9TXl61cI7x0hv5yyeKtGK03+vEtv1DRyFQp+Q5kBq2divAoh3dKl8kCe/tvW6M6WSXPmhLWJPWZgKZFJl6wGjDypaL9nDa0F54kK3VGNzk78BCsK0dCdShg8oOje06Q3V8IZ7eEeKdCbiM2JiUqErJpYVZhXdKZSRp4WvE7K8jUOmz5TY/Ydg0RlzegzmsZPNOmeLl9KX5lN4WcWWX10nGhnh3QloDy9BvcNohJozqSo9R3iFRPXtZtSOOPR2RIyObXK2tfH0bc2aF8oQj5h/Rdc+lVFWDFto3FVTOWoS3NvD/d8wNBBTfdHGlT+tML8HYIONF7NXBiKrjV1pFrqsXJ60Ay+NOTmPeK8xukJ4UCKDPXxTuYvnSyLi+YiSbqxh07BP5EHbfr70kyDOFFERytM3nCexQcmTTMfTUnLMZXnfFobU3IbmgT3VgirQpyHcCDFG+/g7S8Bpt/tjQjyhhrNxRKTG1aYnxui/LxPayYBgeIZh/Z6Ew/z65sM/GWZ1V0Kt2UGy81r+gRnfarHYGWvGehO3jpP9xMTpv35QlgVwiokwYvHQd11miSAa247zpEvbaN7lelPCs/nSG9cQ56q0JmJGH3MZemWhOGnHFZuTPCXHKrXL1M7OIK/dc3EhSeqtDfFSD6mUO4THq7A5jbxch7tp+RnPXoTCWrAxE/ndM6cONAw+XCCdmB5tzlBuOctRzj8mR00t8eMbVhFf9KMjxfviiic8ImLmmRzFwFOvv/fn+EK2Fu4r5CIfEREfuU7uPxHryBNK/s/KSKf/k7lxbIsy7Isy7Isy/r77AD6e0xEXACt9e1XOo/Wel5r/SPfuVxZlmVZlmVZlmVZL2UH0K9CRP6diBwVkYeBHdm0LSLyZRF5SkQeEpGd2fQfFZGDInJARB7Mpjki8lEReVJEnhWRn82mvymb9wvA89m0i1eXSyLyNRF5WkSeE5Efepl8zYjIwez1H4vIM9nfkoj8H9n0X71svf/hO19almVZlmVZlmVZ//9mn4F+BSJyA/ATwF5MOT0NPAV8HPiw1vqYiNwC/AHwZuDXgbdpredEZCBbzD8DGlrrm0QkAB4Rka9mn10P7NZan3rJqnvAD2ut10RkBPiGiHxBa615GVrr/yXL70bgy8AnROQeYBtwM+arC74gIndprR/8lgvGsizLsizLsizr+5QdQL+yO4HPaq07ANnV4hxwO/ApkUvfnnzxO4sfwQxe/wr4TDbtHmCPiFy83bqKGdiGwBMvM3gGM+D9TyJyF5ACU8AYcOGVMioiOeBTwC9orc+IyC9k696fJSll6/17A2gR+RDwIQCvNPiKhWFZlmVZlmVZlvX9zg6gXx8F1LXWe1/6gdb6w9kV6XcCT2VXsAUzqP3K5WlF5E1A+xXW8QFgFLhBax2JyGnMwP3VfAz4jNb63ourAH5La/1Hr7VBWuuPY66qU1g3/bJXuS3LsizLsizLsiz7DPSreRB4r4jkRaQMvBvoAKdE5EcBxLg2e71Fa/241vrXgSVgGvgK8C9ExMvSbBeR4mustwosZoPnu4GNr5ZYRH4OKGut/8/LJn8F+BkRKWVppkRk3evbfMuyLMuyLMuyLOty9gr0K9BaPy0ifwkcABaBJ7OPPgD8oYj8e8ADPpml+aiIbMNc/f1aNu1ZYAZ4Wsw930vAe19j1X8G/I2IPAfsAw6/RvpfASIReSZ7/zGt9cdE5CrgsexW8xbwT7PtsCzLsizLsizLsr4JdgD9KrTWvwn85st89PaXSfu+l1sE8L9lf5e7P/u7fP5S9n8ZuO0V8nMxzWlgd/Z60yuk/T3g917uM8uyLMuyLMuyLOv1cz7ykY98r/Ng/QPxW//pdz6Sf/vNjD7i0R0VSBV7bz7OxHiNC3NDDB+E+lWa1FV0t/Txl11iV5E75RMNpBRmXZq7Q6KmT9Tx8JddmtsSEtfDCQVJwAmF4KTPm37ySQ6fnyQuQbAvjxzLw+426VKeWtGj+nTAzAeOE/zuIP1SQH8sodf1qbzgEfxtnqXrFf0hGLtnjuZsBdFCZwLcVRd/2UUt+SSzBYrnIVjT9KsKFQvengZRPaA7DuF4RFyE1VoJ/UQV77o6/sEc6Vvr1MseOnTQoYM/0yZ4IU+nJKAF6Tm0pwS3IxTnhdSFcDQh2RgSTcZwrIgTC4UtTXrnSvRHUgrfyOPOBairWuQO5QinYtKFHCpWJIHQHde0t0Vsm17kQq9KcE2dsO8ROQpnxQMx68ktObhthdtUhIMaryksRGXKxxza61MGb1hizfEYGW5S+XKO+O413OE+7TSHt65HZ7mA3wBJBf8tK0ghQc7m6F4o4R/N0Z3QJOUE7Wl0ogiWHNY9AaAIq1A6q4gCRbCiULubNBfKNNfyNBsFBl5QnHUqxC6MPKKYeLhL7l1rJAdLNHbHhGVFMhgzcZ9Dv+zgtB2cnlCcE8LzBSpnUkbuWKL3zCDemkLqHpOPdOmVcvT2dInHY+LEZfwvj7N69TjJlh7iaIqVHv2eRy/yWPf1gLUdCW5TwVCMAP7xHK2NmmgwpXTaoTivSa/usmPXORZPj7DWzaF6Dh3t0ukEDD7uE1XB6QsqFvrDAtc06SkXLZAiuG0HfUuDMHHQQcr4IymxDlhUecbH66zqHNWjDsmWHkE+Ju56xBMRzqES+nyOaF2EU3OJJiJ04uIueEQbQqYnV6l1SoQjCbkFh3goofq0S9CAsCo4DZf8MuR+dAH9dInmbV1kok8/EFqNPG7ToXRakVtSdKdSosEUp6dQHQe0mHaoBW5Yo1HI0x3T5JaFgRMphQWNpA6Vey5Q/liVk+UBKCYkPgTLLqWzmmajhNZCsCqoGHo7+rzrtv08ywg6VlSOuqzd0SP0hfzOBv1WnsbumP6OkN7mmNwZj34Vxh6DM+sKDO53iQsCm3qo8z4Dx1Lmnxsn8l3Gn0gozWtWtwnduTKDzymcW+v02nm+kUyRdAKSuxq0XY/CeUV/XQICuaM57nj/05ysDaPbHvXVEtFzFTa89Qzzp0eQjR1kJaD6jIvbASeE1q6I8gmXxnUh+TkXtw2tYUEiRfUE5N6yQqNfJp0M0VooPlxE72oTnPBZ2av5dH8X3V5AflGhXehNJfirDhph8OZF/M1t+qdLpNt66At5dClhdLJBdKJEb13K5K3zrDbL+E0hyWlSD0bvPk9vQBO2AvpVhdcRxr6R0lnnUHtHRKRdgppQOapo7ExIiimls4L3thXCExWcrnDDbcdYODVCc0ajIqE/otEuFM8pvJbQ3hoxuXmZ5lyFwnkhKgm5nU30wQpx5FI6B62dCQN7VqnNV4k6PgPPK37snY/w3O9dS/PNHXLHffwll9SHpKDJLwn9YYiLmtSH/HtXKPzhALW7Qpy6i9MXVq9PKZ108R4psLYrYfrvUmq7IWwGhM2A4ryD0xHivBDu6tFfzaNXArymAg3RQIIcKTKXlFhcqRKPxMS+IvVgeu95Ts+OggJ/ziNJXVobAQWt9UJ7UkhPF/Ha0N0Y47QctAsqa+9uB1pTimhHl/wJH7+h8BuKVrPA8EFNb0jIv3mZ9EiJC36OkbsXKU61qTcLJIEQLDm4LUXd86i84NEfS0hxcdvC2ukqiODP+qQexCVNbrDHzMgqg8UuszJIayNE6yLcSkS3IriFCHc2IEpdqvfmaO/tU3ghh7/iUjkurLkBd955iJMro3SX80THy6j7SoRlxfChlHihQLi7SzweEY9HqEJC8/kh8kuKzoiGVZ/gqgaFT1fpjQq5FVi8I8FbdXF6ijhySUopXs2ls86nsSulP2D6kMJ5h/5UhDMYcue1R+jPxOS3N6nlPdIzRYZe0PSrwu6bTzFfH2TnG07ReXKA/hAQpPinczh1l9TXbPhKxNqUT+Wk0BsWiqcdlm9MaOzS5BYd+nlFba3IxENQPK/pewFJQeOdCOgPCG184pyJ7xvuOUvt3ACTj/QJVR5vwUOlQhqYPjP1BY1QOiu0ZhLGHhVm/QpeUxENp1SeDPDP+PgtWNuZoM7mSIqasU2rtGsFgtMB6nyAE0Nju2b5JpeVvR7aERb/fCOdMaF1VYTTcYjGI0afSIjvadFPPLqNPCoWUJC6QnciYfX2ERbSAknXp7uzh1PzSFHkLrhEozHlE4p0Pg9n8niLHr3piF975+d56MRV9C8U6I9qWldFlI96pJ6QeoADogU9FFE47dId14zdfAE11Kcd5tj0PzSLN7vExZQ0FQhScnMebldw+kLpHPTWQZI6OB1FXBC6voNeyDH1hjkai2XSfIp2NX5DEV7TITgdUHnbAmvPD1E6q3AXPJxbaiTnCzh9IZjzcK9aw62GRM0A2dChVXVZ255y++0vsH/HGDpyyK0K7Xta9M+WuO3Ww0yvX6Y3lTA/GpDsr5Jf0rgLPmkg5MfajP+3Hqt78my4t8fy1R5oU74SKyQWUlH495dw+qDO5IhKsGXnBS5sdfBO+rTe1CaaDvFLEcX9Pu1JcHqKsKLIPZWj8d42xadzqEgRrApxGRgNEYFmI8/U3ykG3rxEsx8QVxLcmgMKgpoid8ajty5FkuyLh5U5tpDhEJnLs25fSuvuDumaR78T4D+fp7c+Zm2hTFzSxCXNpqvPoz1NOtOjPNpBKU27l6c3nrDlU23qu3zStofbFhCISkJ/WBOuBZAK7cUS4w8qRt4/y3KriMQKvbWDfzrA7Qg98Whu0QzvWqYR5Qk3huRPBHhNobUJczymhVreo3jURYDFOxOctkO8u0X+SEBvR5/81Q04ViDc1mP50Dq0B/QdpO1w59ue5dix9aSuoIMU1XPwa4rmVg0a8ksKdaBAkhO6yiXq+OQvKPyawt3WpvCFClFJoO6RjkaUDvukPuaYfCBCBOLYNeVUTAmLLs2NQlzSRMMx7fvX0bqhi38uIDlSpDcihAPZ5xVznJQ/4RNpl/pXv3r+Ix/5yMdfa8xkn4G2LMuyLMuyLMuyrCtgB9CWZVmWZVmWZVmWdQXsAPrbTEQ+KCKT38X1feKy35n+ptNYlmVZlmVZlmVZr84OoL/9Pgh81wbQlmVZlmVZlmVZ1neHHUBfAREpisjfisgBETkoIj8uIjeIyAMi8pSIfEVEJrKrvDcCfyYiz4hI/hWWd1pEfitLs09Ers+WcUJEPpylERH5aLa+50Tkxy+b/l9F5IiI3Ausu2y5fy9P34XisSzLsizLsizL+r5gf8bqyrwdmNdavxNARKrAl4Af0lovZYPb39Ra/4yI/DzwK1rrfa+xzFmt9V4R+R3gE8AbgBxwEPgY8D5gL3AtMAI8KSIPYn7iagewCxgDngf+REQ84PdfmifgZ14tEyLyIeBDAH5+4PWUiWVZlmVZlmVZ1vcVO4C+Ms8B/1lEfhv4IlDD/A7z34kIgAOcf53L/MJlyy5prZtAU0T6IjIA3AH8hdY6ARZE5AHgJuCuy6bPi8jXs+Xs+GbypLX+OPBxgNLgtH6d22BZlmVZlmVZlvV9ww6gr4DW+qiIXA+8A/gN4OvAIa31bd/CYvvZ//Sy1xfffzP7Rb4NebIsy7Isy7Isy7JegX0G+gpk36rd0Vr/v8BHgVuAURG5LfvcE5Grs+RNoPxtWO1DwI+LiCMio5grz08AD142fQK4O0t/5FXyZFmWZVmWZVmWZX2L7BXoK3MN8FERSYEI+BdADPyX7HloF/hd4BDmeeaPiUgXuE1r3f0m1/lZzPPOBwAN/But9QUR+SzwZsyzz7PAYwBa6zD7ErOXy5NlWZZlWZZlWZb1LRKt7WOvlhHMrNebP/CvqZxJaU4rOpMpW3bPAXDuwWnCgZQ0lzL8tENzBsLhhPxIh+5KHgSCgR7jA01mD48BUD3sUHzPBRr3jhMXoXxG01ovdCdj3nT9Czx1YT3NpRL50x4AXgt6oxq1o0WvGaDWXLSnqT7v4ISatbe04VSRJK8pnTI3T8QFiPa0iZdzqOE+W8eXmPvSRryWpj0JfkMoLGpW3m7OYwhQeLzA2p6Q8iGf1kyCDlKCCx7aNW3BWxOisibJmfdpXlM64RDe2iQ9XkK7gIaRPYvUHxvD6cPYk33q/6oJQPjQCMGKprENtKdx20I4mLJ++yKek3DuG1NEgylOS+F2xMwzmOK2BO1ANBbhrHioCKLhmJGpBt2HRnD60F6fmjz5mvIph7WdEfnhLt5DFbQLWkFrS0zhjEt+SdMfMMvPL2mSAHojQmdLiLvskRTMsiQSbrj5GE+f2UDhqTxJYOqDvmGN+HiZeLKP7rjgpniTLqjbAAAgAElEQVSlEE4XCVaEn/6pL/Nfv3YPOjDLmfy6Yv4tCfmzHl4b9BtrNBdLOA2XyUcSzr0vxp0PSHIab83kq3oMFu+K2b75PPNf2kDlrRdofWmc7pgmtyy0N6Q44x30bBGAJNCUTylaG1K8pqJw3Qq9J4dJfI139Roj/71AbZsHAmHFbIfa00A9XkXdXqN3cIDiOajtSXDaDkFNKN+xSPS5UVrTJv3mT9U48rNVgkUHrWDDV9qcfleB/KJQWEhZ+MEQ/3RAsrVLcKAAgNMD7UL/5hZJokhXA/wVh+k7zjL7jfVM3jxP508nWbw7MiuJhI2blmh+eoIkENa2JQBs2LlA61MTrO5NGd5YI/rqCK2NpnyrR4XWeki2dCk9ViAqQZLXSCpE2zv4fkxvrkRxLmsbecgvaFJfkLes0t83hNcydSTNTp2Gg5rSGQjqpq4v/GCIdzbA39VAPThAb0Tj9ITuphB30SMeirPKYf4NPOdRvzqmctilO65J8prcgiKsauJ1Ef6cRzgRURwy7a/b9hkabNN7cITEg3BAkwzE5AZ6FL9aoj9o6kV/wLQbgN54wuBMjbVmAT2XJ1gVeru6sBKQVmJU3UWN94hbJo5snFlirRfQaueIagH+cI/3bn+Wz3z1NkYOaBZu02g/xWk55BdMWbWnUkobG+hHB3n3+x/ms5+9g7vetZ/7Tm4j7ru4cwGSQuGCyVNnXBOOxQwc8Eh8E1j0HXXcewdIAkh9CCua3IrQ3pvFngs5/DVBC/TWR0xvXGbxGxNopVGJ0JuIcEoxwSHz4w0qgvbGBLeliPOm3sd5SHIQVVPSSszGTwvLezzkljoAQ39SYvZ9CYWjAXJTg+DLFcIfbKBEs2Nkkaf2bSPNpeCml+L+yPga9YPDJBN9ZMUnzaVct/sUzzyzGe1q3nnTAf7nC1ejE7Pto/f7LN8d4p8J0I4mWBUGj5l6cfZtQuGcQ39AEw+aaW45Im55+EsuE4/G9KsOUV4I311HPzxIezpFFxLWPeTi/uQCAEv7xxh/PGH5GpfSrKY9KYgGFULr2h4IVJ7M0R0zFVESIRxMGN6viErC2vYE1RfctiIcSPEbJu/TXzX7YnlPARVr/JY2fd1VffJHAjobYyQWnJYy9XfeI57pmbIdaKM/O0xzBkRDbkloT5n1j+1dYPXhcZwe9IeyPG1po08Vuf7OIzz1yA70VI+07lOYdQgHNPlFQUVQvzqmONY2zUqDfqaK2zHb6bgpSazwzgZE6/sEp3Jo9WL8dPqmz/zwP/kSf/SpdxAXNKmnGXhBqO/SjD0GazMKp/9im29vSth7zUkO7NuC11QMHk6pHm1y/CfLJEMRxWqPTjNA9xwTdw55hGXobogoHfPo39DGe7bIhr9d5egHB6icVNR3xxRG25Q+b4Ku95ML1B4Yp7Mpwq/2CVdy4Gmu2X6W545MUz7s4d29TPPgsCmrFPy64PRNn87NDYb/pMjsu6B03KW9KcFbVahE0EpnMVdQMUgCzZ0RKhdTeipP6e0XqD0yTlzQDB3SSFbVW1OKxDdxujivmfynp1j6oxkuvDlm7H6XtRlFbzSleFbR3mTisQ4SSIXKCx7O3SvEaRYvmjnSWEGkGH7cZfU6sxKvpijsqTFVbXD2c5tweprmZtPP9d/RYPz/DljZnaM3kvX7FU1SiZG+4j1veIp9v3UDK1c7JDvbJOfzBDWFxNC7uoszm8vqeha718UECy7hhpD80YDu9j47//Upznx8gm4zx9BDPgD1nTD1QEJ9mwsphIMwfOsFlvaNkVsSumOaaF1E6ahPa5vpn/xFF7a20SeLbLr5LCeenmbgKKzcFJu49fi46V+Wsu2oasLhxDyAKICfMjjapD47QPG0Q3hTi7Dls+4Bj9aUmac0p6lvM/uxuyUkX+nBgQpJoFl/6xxnlwdwDpfYcOcsACf3TTO4e5nob0dpbknxVxWVNyzS/bt1dMY0xTkhyZkY0bzetFn/TEBcMH1YOB4hfsrgYIva6UHy8w7x3hbhao7CrGkcw286T96NOPbCFAi4Qz0m/jygts2ltTmhetihNW3qVFQ1OyI/77LznmM888xmUKD9FAkV5RMO7puXWXthGG9NqL7BxDZHNOeXquhE4eYi0nMFklJK6aSLigAN4QD4e2sUP1k1fcEHF1k4MEZQE7pjKWkxIX/Gw7mxTnu2gopgy3XnOHZwvakcSuO0FU4IaleT6cE6y381zdobu8QtD3fVpXIKUtfsC6+liUpC/ZqY8jGXxAeVQOpAGkBUTkkGYtwV71LsKZ3TrG2GeEsPOZtj8DAs35gisRCsKHrjCdIXvJZcaq/9Qc26fZqlH+rhHSogGrrb+zgLPtVjsHpnHzeIyT9WAqA8lzB/p6BGzFOu7vE86Y4WxYdKtKc05dOw52cOcuz/2gXA4o0Kpyf01oc4dRc91if3Qh4tkFvReB2oHusw96YicdHEkXAyInfGJy5q8gtCnIMjv/HLT2mtb+Q12Fu4LcuyLMuyLMuyLOsK2Fu4v4Oy2603vWTyv9Vaf+V7kR/LsizLsizLsizrm/eP7gq0iLxXRHZ9j9b9H0XkrdnrXxKRwqul11r/sNZ670v+vuXBs4jcLyKveXuBZVmWZVmWZVmW9e3zj24ADbwX+J4MoLXWv661vjd7+0vAqw6gX0pEnG9/rizLsizLsizLsqzvhn8QA2gR+d9F5IiIPCwifyEivyIiW0TkyyLylIg8JCI7ReR24D2Yb8R+RkS2vMLy7heR3xGRfSLygojcJCKfEZFjIvIbl6X7ZRE5mP39UjZtJpvnv4nIIRH5qojks88+ISI/IiK/CEwC94nIfdln7xeR57Jl/fZl62iJyH8WkQOYb9V+aV7fLiKfuuz9m0Tki9nrP8y24ZCI/IdX2NbWZa9/REQ+kb0eFZG/FpEns783XOn+sCzLsizLsizLsv6+7/kAWkRuAv4JcC3wg8DFW5M/DvyC1voG4FeAP9BaPwp8AfjV7HboE6+y6DD7FrWPAZ8Hfg7YDXxQRIZF5AbgpzG/6Xwr8M9F5Lps3m3A/6O1vhqoZ/m7RGv9X4B54G6t9d3Z70T/NubnpfYCN4nIe7PkReBxrfW1WuuHXyaf9wK3iEgxe//jwCez1/8u24Y9wBtFZM+rbO9L/R7wO1rri+X7xy+XSEQ+lA3S9yXN9utYvGVZlmVZlmVZ1veXfwhfIvYG4PNa6x7QE5G/AXLA7cCnRORiuuB1LvcL2f/ngENa6/MAInISmAbuAD6rtW5n0z8D3JnNd0pr/Uw2/1PAzGus6ybgfq31UrasPwPuAj4HJMBfv9KMWutYRL4MvFtEPg28E/g32cc/JiIfwuynCcyt689e0dbDW4Fdl5VfRURKWuvW5Ym01h/HnKwgmFlvf9PMsizLsizLsizrFfxDGEC/HAXUtdZ7v4Vl9LP/6WWvL75/re2+PH0C5L+FfPS01slrpPkk8PPAKrBPa90UkU2YK+83aa1r2a3ZuZeZ9/JB7+WfK+DW7MSEZVmWZVmWZVmW9S36nt/CDTyCufqaE5ES8C6gA5wSkR8FEOPaLH0TKH8b1vsQ8F4RKWS3T/9wNu1KXZ6PJzC3WI9kXxT2fuCB17GsB4DrgX/Oi7dvV4A20BCRMczt7S9nQUSuEhGVbcNFXwV+4eIbEflWTkZYlmVZlmVZlmV93/ueD6C11k9ibpt+FvgS5pbrBvAB4J9lX751CPihbJZPAr8qIvtf6UvErnC9TwOfwAx+Hwf+WGu9/3Us4uPAl0Xkvuz28F8D7gMOAE9prT//OvKSAF/EDJK/mE07AOwHDgN/jjnR8HJ+LZvnUeD8ZdN/EbhRRJ4VkeeBD7+ObbMsy7Isy7Isy7JeQrT+3j/2evHZ3Ox3lR8EPpQNcK3votz6aT3z079MflnTHxQ2vO00R/dtBCCpxDhNh6SUUnnBpTuh0QIIXHXLKZ7fN0NxVqEd6EylZoETPXw/Rp6q0NkW4i14OH0htwT1q2PGHlHUf6hNcroEQGFeaG5NcFsKDYxcu0izmyOOFYOfLXLhrpRtf9rn2E8FuA3zi2AqhuI58FqweGeMv+BSWBCaMyn5BUV/SOP0hf6gydONNxzjwAPbcbpCfHWb8n0F1raAs6lFvxlQft6nN6zxd65R+HwFgOWbU0onHVqbE8Y2L1Px+xydHYOegypH6JpPbtEhzR4MSHKa8imoX6WRoT5qPgfTXdJE8IKYgS8UQcPC3THrHvQAWL0anJ6w962HefzgFpyWg7+qiMqauJJQmmjRP1IlGnjxaQDpK3QlglDhrbhIApXrVqg/P4y/ZY3cVyqsbTVpU0+TW1J4LVjblqAdjdtycGZabByucez5KSQW0CDZ7nM75vn5uKipbl+lNjuI01bkloVr3/s8Tzx4FVElwW2ZfTF1X8zKh9pMD9R54eQkhYEu7KsSlTXRoMn30Po66jPD9IbNsiWFJIDeWEr1sFC7MaJyyCcqQvVkSntcoWJQkYlTbhdy9YS5NynSXMrI+jr1g8P4DaG7PmHgoKI7KoRDKUNbVwHYPXKeJz5/DdG1LeKlPLqYoLwE3fBNXRPQCpKSyaNEgtdQuF2hOKdJAuiuE9T1DZwHq3THNXEppXjGoXzWFFZrUjF4LKYz6rC2yZSdf+sq3b7H4OeKRAWhuQmSwGyH31DoPU2KXy5RXEyYfW+KU3cJZprEhyuUT8HK7RFeIcQ7YNqHc0uN9skqfl3hr0GcByeE4O5lVo8NIWPmaQ3/BfPreqkLg0dSlvcI8boINKimC8N90rZHYdalsyli3YMuS7eY7Sieceju7YJomM+x/YZZ5r4wQ2dMk5RTJBLW7Vhi7cExALo7e+hUQAvSchjZskrr0VG6m0MG9vt012mizT3UnHm6JJ3soes+wYpj2qSj0Y6msK5Np55HrbnkFhVaQVQ2ZaU3dEmaHm7NRU/34ELAnptOcOyL20hd6I2kiIaN184DcOrwBKovaAXBdIupwQannl5PsCpEe9roMwWm7w3pD3l0Rs055Po1MU5LIbGgN3RhPsc9b3yGF+pjnJ4dZeNfC7PvVAw/ZdJPf/A4hx7aitMV+kMp73vT43z2vlsonlV0xzRuR3A70F6fUtzUAKBzokoyEOOf9wiHEiqTTaKnBult66GWTF2MSyl6zDxBlDY9yCV4uZjkQh6nK0TrIsYm64R/M0prA8x8sUttR56oaNpTf9C0kfDGFvpUEW/bGt35EqqnmNxzgfMHxhl5RpP4Jv3KHs3kQ5rVnQ6d7X0mv+Rx4T19glyEfraCaMjdtMJaK08amnY++jUf7cDydZryaUV7KiUZiHGXPfw1oXI6xeukzN9hyqp6TGhs02gHxh+D83dpyscc+sMavaPNxt8VzryrAFvbhA3zVSe5eQ8VQmdDTLDgku5oUXi0RGdSE41EqDWXrdeeox35AMydHqE83qR/cICZ286y+NcbQKC+J8KruRTPCo2dCQPPmzw1ZyC/ILSv6zI63GTxxDCTD0D3p2p0vzFCXNbkdtYZ+ESZHf/rIQCe+OS1uB1NnBfCAeiNx0xvWuL8/nG8rU1+cdd9/M5zbyGZNd8HKlNd9FwetyOMPxEx+zZF5bhDbxj8NVAhNK7vM3avx8JbYgAG9vl0JjTpli7BswV613RJV3zyUy06jTyVZ02butQHaBh5JqU15RDUNJ1xobM+Qfsp+bMeowdiWpMOiS90Jsx80boIEmFsusbC7BCkUH3BpXtHi/wjJSbuX2X2XUOkXtaf5TW5RSEqmb5gdL9m6MNnOPTCNJXDLqMHesz9XMTPX30/v/vFdwGgIhN//LpQvGOJWqOI/1yBztaQ3KzP0PMJ82/RDB4wdaqxTSPjPcaG1mj+3ThJAM7NNSr/o0Jtu0N/JKV0RtHYFeMPmjgX1nJILqH6ZED96pjcgkv5tCYuwDt+9mE+98k7cduQW02zdSii7R0AgiAi8GLaB4YYPqRZ3SX0RxIkFsonHHT2g6PNHRHFkx6SmFi7/ceO8ORzW6gcdenf1iSaLzJ4SFi52ey/3JwHVzeJT5YQDYU5welr6jtN2Q8fEKKS0B0z752u0J0wxzyypU24msMb7CECOhUGKh2aT47i7GkQHTLHI2xvE10ogGjKJxziAnQ2RxALpVMure0h5ZE2yeODZl8kMP5YlyRQrO4KKCym9AaFtTu7VB/I0x0Rkj0toqU8OjBlNbTPpTUNqQ8brp/jzP4pgpqQelA6q6nvBKcHwYqJI9qBymzC3Fs16x5xWPnBLvl8yJahFU7/9RacnmZtC8SjEZIdL6hQKJ9SpB74axon1NTf08Z7skx/WBMNxeRnPbqbQlO2Z33ca+vEzwzQm4pwV11UAm5L6E4mlE6bYzDtwPAhsz8aMy5ruyLQgr/iEFVSZDCk8miewaN9Tv2Iw8bNi5x9ftyUbQppIUXyMTpSqKbL6I5lOl9bR+VMwsKNiqSYUj7ukGbfyhQXICql6PE+uuZTPOvgZF1o+44WyYUClWOK7v/H3n1Ha3LeBZ7//iq++b05dd/OSR3UrdDKlmVhWMA2A8bGOxhYszAmmWHGE9jD2eBhYIaz+Myuz+BdxrBgFjwsYI8wGBvZMgq2ZaVuqaXO+XbfHN8cKv32j3olN0JqNbKEZPR8zqnz1n3qSZXruVX11EgaP3/jMvWjgyBgb22gJwroziaZxwrU9gYQWi9s19b3LgPQbPt0KxmIJT1v7+jizXhEBcUea2GfKBBnvnWdlbvkEOWVzFJ6rAqLCblZi/rOkOyUS3syIjPYJgrTdRE1XbxSl6Du4eZDvGfyeHeu0D40iETpvLQ2h+zcOsv8fWmboHpjF3fBQze0iWoedsMif9kiuaeC9VAfA++e4dKxcZLeNmW1LQpTFlEO/IqSXVGW3ttCzuQpXoKVWyLsms0tt51i6hM70328IEx+6CxHDm9FYohzCRMPWoRZIcwLYRG4tYrzYDmt076Q/sMO7e9qEHQdZN5n9AmYe7viLdt0hyP8oTbx+QKyKe00Wc7mKU6RtgM6gtWFk//ho4d6HThf1ZvlHehPichu0nd4/8A0ng3DMAzDMAzDMIw3mzdFA1pVf/TVpBORT5L24n2lT6jq73/7tXrtich9wOYXBf+yqt7/RtTHMAzDMAzDMAzDuHZvigb0yxGRR1X1jpebrqq/8BJpvigi96lq5RrL2AR8QVX3vuqKvnIZn+6V8UOvFPeKNB8DGqr6cRH5VeARVX3gdaqiYRiGYRiGYRiG8Qre1A3oqzWer5Lm+1+PuryRVPV/faPrYBiGYRiGYRiG8Vb3hvfCfTUi0uj9jovIIyLyjIgcFZG3XSXNxd7npDaJyAkR+R0ROSYiXxaRbC/OTSJypNfD9y9ckdYWkd8UkSd7vVf/TC/8h0Tkq73PaY2LyGkRGbtKfBGR3xKRUyLyADDyCvP5GyJyvJfHx19i+qdF5H298YMi8miv/k+ISPEq9XjF5SYiHxaRp0TkqbjZfOWVYhiGYRiGYRiG8Rb1pm5AX+FHgftV9QCwH3jmGtNtBz6pqnuACvDDvfDfB35RVfe/KP5PAVVVPQgcBP6ZiGxW1ftIPxH1C8DvAP+bqs6/XHzS7zHvBHYDPwG87J10ERnsxd+jqtcDv3aVuB7wJ8Av9er+TqB9lXq84nJT1U+p6s2qerOdz79c0YZhGIZhGIZhGG95b+pHuK/wJPB7IuICf66q19qAvnBF3EPAJhHpA/pU9ZFe+B+Sfn8Z4HuA65+/2wuUSRvhF4BfBI4Cj6nqH79C/LuBP+5933lWRP7mKnWsAh3g/xGRL9D7DvTL2AnM9b6djarWAETk5erxapebYRiGYRiGYRiG8SLfEXege43du4EZ4NMi8hPXmLR7xXjMK//DQEjvTB/oDZtV9cu9aeuBBBgVEesa4l8TVY2AW4DPAu8G/vrvk/5q9fg2lpthGIZhGIZhGIbxIt8RDWgR2QgsqOrvAL8L3Phq8+r1zl0Rkbt6QR+8YvL9wM/17tgiIjtEJC8iDvB7wD8FTgAfvVp84BHgA713k8eBd1xl3gpAWVW/CPxL0ketX84pYFxEDvbSFnt1e7l6v2bLzTAMwzAMwzAM463uO6IBDdwDHBGRp4EPAJ/4NvP7SeCTIvIM6d3b5/0ucBw4LCJHgf9Cetf6V4CvqerXSRvPPy0i110l/n3Amd60/xf45lXqUgS+ICLPAs/n/5JUNSCd///c6wDtK0DmKvW4h7/HclNbkQRWb4ixblvj1NMbkIR0yMYkQyEjj9q0x5XEUbKLQlSKOfHYZvwVi9Y6RW3YemCarQem8Z/LoUdLWCFIy6bvFMQZpb5J6TvusHxACBZzxL4S+0ptT8jgIQtvR41kfYflIyP4bkg4k2ftOuHeG45z9r/PArxQr+IFWLsloLIT8uddorxSvblL4iutdQlRMaF8JsEa6mINdTmxNEriwLqvteFijqAsxNmEvkKbvsMe9W0RxSnIfKnEyn5lZb9SOmVT3xGimZiS16X6++vJnvdx12zcc1nUUZJ99ReWo7etRmVPgpZCMieyeBVBVRjoTztpW3hHhB0odi4itxCSWwiRBBJfOfKVXeQuuhQuWrQ3B7jb6iDQWMkRZ5TMnENmziE35WANd3AWPYbWVQnHQhIPlmfKuHUhOlGi72yAxCAxeFWL8PoGKJRP2ZTOOPTtXkGOFTn77HrW71gkyST0nxAkTgd2NXBaQuIq9ecGkXKAvyJwe4VD9+8mf90aVjEkzibE2YTGeofOmTLj2RrZCx6tlRyJD96uGuXjDn3H0gdAuv1CezyhPZ7QmkhQBzbsmaOxASYnV7jtnz5NWFIWviddLvE7KqzdFLJ2U8jywYTEFhjqMnDYpnZkEHdbnaBfecdNx6juVLojMaWzFrUjg9SODPLUZ/eRm1fsEwVKp22cRZfM8Szbr5tBIoiGQzLLglUIsQohhYs2kghhUWmPCIkrWBE4D5bpDijhcIhmYxrbQ9qDFu1BC7Xh0rvA+5EFrF0NukMJlZkS4/01Fg9C5/trBKMhcTkmLsdEWUWPF1m5OSYoWmApjHXpdjxys0JzvTC5bgX7ZAH/9hX821dozJRw1zexQqhviensaePWldqRQfxVi4nBKu6pHG4d3DogyvL1ghUDsbDxc0LptMXgAxkKZx0kBnfZoblOsNoWVtsi6FP6HsxgX8jSv2uVs9/cSFCEeLxLdqzBnhsusrRaojOa0BlNsOd97rnuNJOft8gs2awdHaIwo/Q/5dIZAEmEzLHsC9th4XAWLUSEO1rsPXAR9RNKJx3acwX6n3LJzlt097axA8gsC5llQWMhe9nFXxNG/sJHQiHnhIR5cBuQm7fwKhZzlRJzlRKaj8gsWdx+60naq1kuLgyS3VbFq4F9Kk+cS1g46DP7zpjCbDpMbl5i6BlI1nUYuD+LV7H46xO7mTo9xshDLo0Jh61/GrD2zjZr72xz7JFtRDklKCubvhByT+kEcT4hu5QQDkRkFxQrSI8HjVqWRi2L3RG8WZeBmxbJDLcJn+wn9hQNLVDoO5OQDAXoio+u+Ez8jSANh9IDOXQgILu7QuaSB/91CLWF7KLQmMxQ2wK1bQm1bQlhKaEzrOwZnyMaCwhDm8HDFnE5Yu7IGIPPKks3wtp16VA6ZzH97pjW1oDcaZ/2gDAyWCOfCXBuqDD6REDWC7EvZNHAQgOLlf1K8cdmWL9rgcSBuBSTuewR5xLCorKyV1i4ySa7tUZ2a438fEw8EDG8c5nqFovcZZugH7pjEf7jBc6/N0fQHxMFNl65i1fuMnl/E39VsZsWxYvKlpEVqgfSBWqvuSSFmDOXR1mp51mp50HB+0If8eYOpy+MUb0u5u3/4xPYhYiwHGN3FLdiERaEsCAk6zqEBcicyJL7T2WsQJi7Q1idLRMVlPy0ED/ez+V3KQ+f38bD57fxjh97ApV0Ox59IgRbuXxhmNIF4JkSH//Se/CfKGB3we49++ZVhKAvYfpem+J5G/d7lskeWKVzc5MoD1J3cH58EaviYFUcEh+yS0L+sRxxBnKHskgkdKaKSNPG+a7l9Pg+EaRDVmn/eIXGpoSlOyNaEwnvvv0w7zv4FEFfwtp2h8a9TTrDSvkMlM+kx4KBiSqdvx7BqdpkZx1qu2IyfkhzQjn5i0XsDumVkUBUSAj6lHBnm6FnlMo2iwv3bwY/oXtnnQs/pfiPFPnEs++geB6K5yEYjthw0wxWDJUjQ2RzXdrjMXQtJIG5d0VI1yIsCmFRSHIJuphh9vwQ7VEl2t/A/WIfzTGb8cc6xLmE+B0VrI6FdaKQDm0LZ86jMwT+koO9v0pti9AeET5339uQGKxQUUtQS+hu7uCdyJF/MoceLlO52EdYTli8Kb0EzAy3AWitU6wQrBCcqkNrQ0zrQJvq3pAnj24ls+DQGVS6axmSUkS3XyiccSmccek7ndCdyyExJK7SHlXW9iWsezjhuhunWH5HgNtUrECwAiG7qBQ21Bg4rty64SLjD1n0FdskF/PYJ/KsHR1K1/HFIlvvmmLrXVMkU3n8NQu3auG0Nd1ez7l4qzbt0QRxE+prObLLSnY5nZfV6zKs7fAJ87B4k9CYhLdtOQfA0N1zyMkC2Vmb3HmX3HmXsCAUL0D+snBpcQC7C7k5JdzZovWuGmorYUlJfEh8UBtm7wbpWsQ++H5IcLzM8W9uISzA2v6EqBRTOOkxun2Z0e3LJL5SuSGgfDGisUFYuhGG/jRH7MPAUWX0YZvOWIy96mKvuqilFP6sRLSzhbviEA1ExJvbtHZ0yV+2SRxojyW0x2Nm77aYvduiti9g8AkHLKW0fwVrsMv+DdN0761x6XtdAOqfG8etpsvTXd+kcN7B8WKyFzy8NYvWAyP0nYuYu0son4F1D0KUg+beDs29HcIdLW687QzWbAYUugP6wrEqrGTw1iwqeyNy80puXqnVczhNockQt0MAACAASURBVLhnhaDr4K8IcWTTHlGsukPphEPmrE/t9jarc2VW58p4jxWxshHDj9t0RhIsJ8FpCrlZi2ghR5xVwsEIf9HGX7Qpn0/IzQhRLt0OGevS2JBQOu4SFdPryDC0sc/ksM/kwFLyD+Vxll30co6JR5pUKnn6TyWIgnWwgnQt5molOsNKZ1gZ+7KLWxVyj+fIzDr4KxZxBvhmH2EBLl4apnjeSq+T12ywoLExIfGgsichf7lNtJLFaQn1jZC96GJNtHny67tYfX+T1fc3Kf3oDE8f24zdETKLFsUzDrP3JrTGheotXcYfa9NuegRvrxG8vYY/7+C8Z5nOaobBr2ToPy7U11sQCf/i/Z+neM5h4L/liQsJ0WKWaDFLbj4t3+oKnfGQcH/jas2kv+VN/Q60qhZ6v38A/ME1ptnUG10G9l4R/vErxg/xt+/0/tteeELaWP6VF2X7q1ekrQO7rpj2UvEBPnKN9Z0jfYT7xeEfu2L8Q1eMPwnc9hJZvVQ9rnm5GYZhGIZhGIZhGFf3nXIH2jAMwzAMwzAMwzDeUG/qO9BXIyKPA/6Lgn9cVZ97I+pzLUTkPmDzi4J/WVXvfyPqYxiGYRiGYRiGYVy779gGtKre+lrmJyL/HPg54LCqfvCV4r8aqvpDr2V+IvI24LeBEHgX8AlVfd/VUxmGYRiGYRiGYRivxndsA/p18PPAO1V1+vkAEXF6n5l6s/og8B9V9Y96f5vGs2EYhmEYhmEYxuvEvAMNiMhvA1uAL4lIVUT+UES+AfyhiGRE5PdF5DkReVpE3tFL8yER+XMR+YqIXBSRj4jIR3txHhORgauUt01EHhCRIyJyWES2Suo3ReRor6wP9OLeIyIPichnReSkiHymF/engR8B/n0vbFOvB25EJCcifyoix0XkPhF5XERufpm6fFhEnhKRp+JG8zVesoZhGIZhGIZhGP94mDvQgKr+rIh8L+n3mj8CvAe4S1XbIvKv0ii6T0R2AV8WkR29pHuBG0g/JXWW9H3mG0Tk/wB+Avg/X6bIzwC/oar3iUiG9B8Z7wUOkPYOPgQ8KSKP9OLfAOwBZoFvAHeq6u/2vmX9BVX9rIhsuiL/nwfWVHW3iOwFnrnKvH8K+BSAv3G9XtMCMwzDMAzDMAzDeAsyd6Bf2l+oars3fhfwRwCqehKYAp5vQD+oqnVVXQKqwF/2wp8DNr1UxiJSBNap6n29PDuq2uqV88eqGqvqAvAwcLCX7AlVne59ZuuZl8v7CncB/18v/6PAs9c644ZhGIZhGIZhGMZLMw3ol3atzzJ3rxhPrvg74bW9u39lOfFrnLdhGIZhGIZhGIZxDUwD+pV9jbSzLnqPbm8ATr3azFS1DkyLyA/28vRFJNcr5wMiYovIMHA38MSrLOYbpO9HIyK7gX2vtr6GYRiGYRiGYRhGSlTNa68AInIRuJn0HeiGqn68F54B/u/etAj4qKo+KCIfAm5W1Y9cmV5Vl1887SXK2g78F9J3nUPg/cAF4H8Hvg9Q4NdU9U9E5B7gX6vqu3tpfwt4SlU/LSKf5m+/A/0FVd0rInngD4DdwEnSDtLer6pnrrYM/MlJ3fpjH2XikSaXP5oQXiwgcTqt7zTUN4HakNu7RmW2hNvXJZnNEucTnJpNVIqx6zbqptuU3RKSTW3kUhavJnQHEkaehNomi+RgjfJ/K1CftLB6/ZzXd4ZIYFE6bZO4UN8W0b+uytpiEXfJJVrXpfh0higDYSkto3Qehg7XOP1LPv75DG4dxr//EqcvjGGvueSnhe6g4jQFgPa+Ns5UhtycUNkd4TRsov6IwcccqtvBqwq5O5dZudhP/8Y1ANZWC2QLXbyvluneWyPz1SKVPQl2y2LTTdPM3z9Jayxh5Kl0PnLzIdUtHiu3hYx/xWH+bmXib2DmuxWJhC2fC2mOe7RGrHRNA1EeJIYor9jttK7ebavYX+gnKArJXVWaa1mkaQPwjluO8cjD+3DaQndTl+wpHyuEOJvmEQ6FlI94NG5L30RIVj0mHobqFhuJobExZv3OReaOjCERZHZXiJ/oJywoYV/cW38WaoHTFjLLQv/3zTJ1fgTpWpRPWTQ3KImreJX0/3DFi0pYgLV9Md6KTZyBzZ9vM31vjsxNqzRO9RPnEtRWrG6axq0JaoO3u0rGjVheKJE7670w//Klfry60hxP4/trSpwRqge7aCIQCWOTq8xfGiB/wcVpQuuOJkliccumiwB88/QWaNvkph3sTrq8mze2edeuo3zt0wcZ+aFLXHx0kmB9AMD6v3SI/tkyy2tFhv4yw+JB8KoWbgPaI4rbEEafDLn4g8Kt+84C8MTh7UgsTN4fU93iUr+zRbLms33XDBeWBohnc5S2VrC+2A/A6sEQcROsZQ+7I+RmhW4/5G9bptbMEHYdtq9b5Oxz68kspvOe9J47cW9coz5fpHjawYqguj9It6PIou85h/rmBIDhw2BFsHALOM10P4s9JbMi2F1l7fqY3EiTzlQRfzUto70lwF51KJ8WKruU4cMQFISwKDhtaI0qwViEt5hWZuDGRVYqBbLZgPpUmfxli8a2iOxQiyiy8A8X6Awo0UC6kw8ccqhuV6xQ8FeE3KKSXYlo/lyV5jeHsEOIPWiviyhcSMtoTSRkFixy88raOzskqx6ZRRuVdFlET/UT+0ru+nR/tf6qn9UbY0pjdRqNDPlCh1Yzgy75qKNkZ2wG75mjcd8Y3f50X5ME3DrU7mgzNlSl+9lREgdySwnNMZuwAJ0hxd6QPpwUzeRQJ915/fEW3teL1G/o4l1Kt12JhfyssnpXF2fGT/enrhCWEuJyBCr0jdTRBwawvnuF6tl+cvMWrbEESVcf1voWSWKhCxl0MGB0uErh14vM/suQViVL7pxHdyDBX7UI+tK6xNkEf9nG3l+l03GxLmXJzQi17TF2y8IOQCIhP5PGXz2QMLF9icWnR4knOzhTGeyOpMeirBIVlcKmKq2TfUSj6f5hOQnlb2SIckJjU4x6CgqSj3BmfNY/GFJf71LtvegkMThNoduvJNkEChH+eZ/MKhRmYkY/eo5DpzYx9KjL8q3pdjKxcYWFYyNMfC1h5u0WOhiQPZHBq0JnCLwatCYUa2O6PoKGh7RtJBSciRbD5QZrj4yBgleHxnolyShJtndCsxVxE7xsSBzZ9H0lS3dA6BxskP1mgeSeCskTfYRlxV9Jt5HoljrhpTxxLmHoSZvGeqHv9gXmpwdwVxwGjyjVbRb9p9IV2PpghcpsCfwEadiUztis+/NLHP/VUejYOHUbryJEOYW0CIKBmOysQ+wp4cYumVMZgoGEuC9iYt0qa18fA4HOSDofmo8ZeNyluiNdB8WLFp0hGHssZP42l8IlZfV6JbuhTnM5B8Dgkw7NcaEzESFdC/UTrJYFAlZXyM0JdqDUN6Z1crY26C7mIBL6t6xif26QpTsj7JpNftqiuT4hHgj5iRsf48nVNNG5r28kGIqRWPAXbbqDCVYEXsVi7PGAoGQzew/4i+n5LPGUYDRix5Y5plb6Gf+9DIs3ugRlxQqg/6Ylkj8ZpvJ9TUb/NAvA/Pu6xCs+Q09ZrLyzQ+Z4FlFoborYuWOG0yfWUzplk1ntrY9Ri8SB8MYGhVyHai2PfT5D2J9QPGuTvL1Cc7aI3d8l/1i6rLr90B2Oya+rs29kjicubsI/lsW7dZXqVBmA4nkbvSc99rRP9eFVhPZ1HfLPZXDftkLnyUH8VegMg9OEzg0tvOfS/NvjMZpJsKu9g7so/qpFWFKiQoI30iK6nEdtmHgk3WflZxaZnhvAnfbY+bYL1H5jkqUbXMKSEpbjdB9oWmSW0o3K7sAv/fPP8qtf/iEmdixRv3+Mxsb0POwv2TgdaG6IUT/BXUrrYYWSHm9vCcgUAuxDRdqjCXZH8HdV0cf6iLMQFtJla0VClEsoXOxdXxxs41zIkJsXqrti3KpFnFEkEaLBEIDSsx6FuYTl64XCJVjbo5Q3VahOlSmet9n63jMceWor3mS6j3tuRKJCY65A//oqawsliiddUCjMJszfoZRP2gTfVaW1ki5fCS3KJ2xG3zvFmZkRrJkM/poQ9CsSQ1hO8FYt3Ea6rN77wYf5zNFbyDybxWmTLicL/FULK4TC5YTF7w7ZuG6ZmUMT6TE3o2z9kzazb8/jryqrByP6R2usTZcZPGyjFrRH5IXrXBScNjTXK/tuO8uzj28jPy2ERVAnzS/sj3CqDvFY+vCpM+0TTQR4U/4Ldbb2V2nPFLDbFpJA2BdTPJOuvygLQ3fPsfLwOOsfqNP9tTrz35zAbUJwU4N4OofVFexOOt9xTok9xV+z0OvrdOo+W/5Imf6ZkLDrMPlnDpffaeG0hNK5dDZa44LdgfZoeg7SG2uE54uUzkLmvQvMnRpJj/2969nS/hVWlotgKdRcnIbF0NPK2i4Lr5rWuTOSsG73AvNPj6XrL4LMktAZUYL+GGyFROh7zqG6KyY3ayO3VgiCdL6TqTz+qtAZSihMWVT3RNy05zx7SnN87r++nTgDd3zfszzx2eu54YePAnCmMoz3yUEu/ROlcMolysHpf/fRQ6r6kh0vX8k8Ctyjqpt6ox97UXgH+MmXiP9p4NMvkf7vTHuJtGeAe19i0r/pDVfGfQh46Iq/P3LF+IeuGL9I2qkZQAf4MVXtiMhW4AHSd7cNwzAMwzAMwzCMV8k0oP9xygEPiohL+r/tn1fV4A2uk2EYhmEYhmEYxnc08w7060hEPikiz7xo+Dt3s6+I/+g15Pm7vfeaEZFfeak4vZ7Bb1bV/ap6vap+6dXPhWEYhmEYhmEYhgHmDvTrSlV/4e8Z/45riPPTV/z5K8B/+PvWyzAMwzAMwzAMw/j7M3eg30REpNH7vUdEHhKRz4rISRH5jIhIb9pDInKziPwGkO3d1f7MG1pxwzAMwzAMwzCMtwDTgH7zugH4F6Q9aW8B7rxyoqr+T0BbVQ+o6gdfbSEi8mEReUpEnoqb1/r5a8MwDMMwDMMwjLce04B+83pCVadVNQGeATa9HoWo6qd670vfbOfzr0cRhmEYhmEYhmEY/yiYBvSbV/eK8RjzvrphGIZhGIZhGMYbyjSgv7OFvU9VGYZhGIZhGIZhGK8z04D+zvYp4FnTiZhhGIZhGIZhGMbrzzSg30RUtdD7fUhV331F+EdU9dO98XtU9ane+C+r6nXfTidiVxIFO4Cgz8N6uogVgdsU3KaQn49w91WJPahd6MNbtuFCDhWw2haxr+SmHOJ8jFu10qEhFB/NYYXg1sFtWKztspAEgsCh/5lVgj4lKEFQAmfNoW9Dhf/uJx9FEnArNvUTA0jXJiok2HM+bkOxIojyCVE+IbOacPoXM2hk0ZkM6A4oZ46uJ9ffBkvpjCjdiZDmzoDmzgDnYoab7jlJmAera+GtCe6SQ3dAKF6E9nhM7ZlBimdsBnJtBnJtrCUP+9EyUQ6i0CZxBXWUwpQwvdpHY2fAwI5VqlutdNjs4b9vAavhUN9g4S3bzN0l+AsOVkdYuDlDZjWmuT55YdknDrgNyM9AdKBBUFaqlRwrt4fEPjSXc4itZBZsMgs2K9088XgXpwWlwz7tdTFxFgqXleJ5ILQIC5A7lCV3KIs32mLm+2MSB6IcWKGw8vA4EsPkLTPUZ4uoBbK1SemUQ+mUQ37aIrOxTrK5TXtEaQYeTsUms2ThNpV4fQdv1UJtUBuyqxGJKww9ZQOQWRGCfo/ucEwQ2bC+Tf6SDW6Cv2Lhr6Rp7Y7gORHLl/rIljuEJSXxQUSpbYUoKyQuJC44XSXOgHZsxr/skL3ssvzcCE7VQQ9WaWxK8I7kkcsZpur9TNX7kYYDfkJQVtSGzrDin8pyeHmS9ohy7vAkUUGxV13sVZeVPTZrT4zCdJby2SZu3QKFxuYYryJIDHFGQK/Yd7MxTl3IHZ6iMwhxyyF/web0qQmihRx2IFSrOao7lOoOJT/QZmK0QpxLCMsJYQE6YzHVo4NoIox82aPazWC3BacNTru3nfjK9SNzSCi0bm7R7U/D7WyMt2zTGYLhw+mwttMi/tAyViQEG7u0xyOsXQ0SFzJrioSC9zdlBo8IVghWCNlSB7dm4TWUzJJFbbPF2k0R2SWlerBD4sPwN5wX1nn10VHCqo/1lX78VYvmxpjycQfbThjua+CvKH2noTTSoDTSwHrPCslwQDQe0NgWUdsshDmLlYv9uA1ojyTpdhgKTgOcBpCA3YXlW2PyT2WxAqE9ETH+aBfHSiifTwiGY/aNzLJvZJb2sDDyqE19poQ1nSE61E9/uUluxiK/rk5nT5vL54ap7P7W/mffvkZ2NSEJbH5g3XNEOaG+BRZusajsi3Ab4K8Jw+UGw+UGXtViw64FtBDTWckS9AOW0h2L8NeEzDLoD6xguwnhQEw4EBNlFR3pIk0Hb8Ghdq6P2vYY+74BcptruDVl2/5prFCwQkETi1+76fMw1CWb79KfaXP+hzO0lvJIwyG5oU4yHJCfVSQGidN5mfh6l+ZiHl3MIFG639hDXbyaYLeFKKes7UmHDV9M2N63hFcRLEsJ1wVYN1Rp7+gyfHCBsW8oQeiw7sY5rKqLVXVxLmUIysLAiRCJhckvgVUMcbwIa2uD2Ts9EheisYBoLMDqCsPPhPSdAnUTNBK6gwmV60MqW22evjhJdsqj/r0N7LqNXbeZOzuMta5Fp89m4FnBcWOCfsWvJnQmImIf+k6AXsijF/K4uZDi+hqjj0F8OcdKPU97LKa1KaRbhuyS4K1a+AsO/oJD/0gd201wnAT3WI7GBqF8ISasZAj6oDVVwml969icONCp+hTPW0gkrN7bobO5y8L5IaxshISwdKMQ5ZUwJ4Q5oTJbAoG+wQbqJ3TvrjP3rkmK/S2ys+kbWU4bory+sD9lhtpEWSXOKrsm51EHksEQNx8wd2YYOwCJwF+y8Zds7FWH9pAQlyOy8xZqgdOEyjaXwpTSGRDUUoLAxlt08BYdVg5GRDmFJD3pO1Wb3OYaTkOIhkLsrtJc961jW2cpS3Y6Pe6vnR+gWxasRnqMd1pKds5iaLjOl2d3cfrQBk4f2kC0qQNuQmbeJtrVIjdn4a2lx9GlAx6JI6iXMHgsZvBYnJ4HajYXnpgkWMixeKNLeyzdoDOrQhhbrF0HxXyHIG8R5C3kYhZv1aa6HbyzWTp72gyciMhOO5yZHcFupMvDitJBbegOKIWv5sm4EbroE0yE+Ms29QNdmpdKbPzLBOtcFitUrFDpbu0ggXDHugvUwgwiSntdTPViH5lFm43XzVOYiblpbJqbxqZhsk3fuQT3ks/wkYDBfCvdLwWc/RW8msKlLAOnYgZOxWgmgUiI8zGIEg+GtLYGeDtqSDnA/2YRKxQkgul3xUy/KyZMLKTi4lWF505NsrbTpTOSYHWF4hkHiQR/TbDfvor99lXCIvz64e/HCoToD0doTijaH+BWLfwKtMYSUMhOuS+cZ/MzSmdQoGNj2wlBSXHrQjgY0e24hDc26IxGDDwnDDwnjH89RgYC6nsD7ECxZjK4TcHuKtmJBmF/QpxPKJ8Cy4+x/JjCbMz87eDVhNaYYEXQONXP0GGLoART1X7c9U3G+mqM9dUIDvfjPNCH0xdQznbInXeRBPRtFebuSeg7blHbnpD7qxISWkhoYfd36fsnM1x6cCOFw1kST+kOKM62OhIJ7nAbryrptV0Ovjy7i7jmYnegMan4y+l1SuwrrYmY0oU2mgiXjo3Tfwz6j4HTFGbuyRP7EJQFROmGDgNHbIKSkLhCZ1uXgZMRAycjorxS2x5DAoutIk5LaN/WxG1AYitWV0CFxFEsOx1EIXPWx+6At2bhdCA8U0KLEYmr5C8LhXMOsQ+xD50dHeZXS4T7mlz6viJRYuHvXwOFaDbHthsuE44HFC8pxUuKhJD0h6gN4VQef9pl5mcDVOntsw4jT0I4ElLdDtXt0F4f0tzXYeMXQ/KzSnyiSOIpa9cndEIH9ROcppCbS4esG5ItdrAWfNRRRp5MaI5ZlM8mFL53nu6Aov0hl6eG6BVL7IPbVIKxkOysgwQWP3XnIwwe7zC4ZY2h50L2jMwTrGUI1jKQpMdquyM0JxVvxebZ6XU8uryF5o6AKK88+PheohwcXRrn6NI4Zb/Dpfco3qJDWITuts41t5lMA9owDMMwDMMwDMMwroHpmOp1JiKDwFevCLJJOwV7/vd536WqK69RGc+Xw4vK+LbKMQzDMAzDMAzDeCszDejXWa+xeuC1yk9EPgTcrKofEZGPAQ1V/fhrWYZhGIZhGIZhGIbxd5lHuA3DMAzDMAzDMAzjGpgG9JuAiPyEiDwrIkdE5A97Ye8RkcdF5GkReUBERt/oehqGYRiGYRiGYbyVmUe432Aisgf4n4E7VHVZRAZ6k74O3KaqKiI/Dfxb4F+9DuV/GPgwgNPX/1pnbxiGYRiGYRiG8Y+GaUC/8e4F/kxVlwFUdbUXvh74ExEZBzzgwutRuKp+ivR70mTWT+orRDcMwzAMwzAMw3jLMo9wv3n9Z+C3VHUf8DNA5g2uj2EYhmEYhmEYxluaaUC/8f4GeH/vU1Rc8Qh3GZjpjf8Pb0TFDMMwDMMwDMMwjG8xDeg3mKoeA34deFhEjgD/qTfpY8CficghYPkNqp5hGIZhGIZhGIbRYxrQbwKq+gequldV96vqh3phn1fVLap6k6r+G1W9pxf+aVX9SG/8Y71vQL9GFYHmwRb+WpewoDhNob0uor0uYnmfS94PiPMxALKzQTge4K5v4q5rQjkkyin5sSbd8ZDueIhXg8QGvyLUNydkF5TcnBJlIW641Hb3g0BuXsnNK1F/xNpsmSG3jtWFqJiQXRTyE3UohagFsSskDqijqKMERYvMOZ/sBQ9p2cQeuA3Bc2IGjwhuTXAXXayKg1VxCIYjnvzaLhIXvPVNgn7F7grNyZjmevBXbaKcUjvQZXq1j+nVPuJCQmEmwWlBId+huicEhc4wiCjugsvq6QG8CngViH1h6elRnKbQGVKiQoI91qY7EmGta+PW03rnpy3aY0p7TAnLCSioQDydIxqIcOZ8pGHT2hTiz7moQmcipjMRkyBoaFE+F1O7uYO/ZBN76SvsorBz5wyd0YT63oD63oBuzcdec8guKtlFZfQxpbUhwq0L0yt9WKUQpw2qkPjpUD/Qpd3wKeQ72F0hiGwQsCLo9gn5Qge/CmExISwmWN2EwaNdlm+NKF5M52XuThv1ElqrOfpKLdoHWoij+Kvgr6ZpO2MxlUoeb8WmXfdRG0bvmKVxfIDCZSHOCHYX7C4MPLlMdlHBVlavswiuaxHnE+LRLq1aBisQ1ILCZSGIHIIo7eYhe94j6osoXYyxO0JQUtqhQ/EixOWIpBghkSCRkJ9REEVt5dwPFwg2dbBCyF+ycTqQuX2Z7HyH3CUHz4rwrIj8WY84qyQTw7gNkI5NWAR/qI3dFsp7V9DAwmkKTlNormWptLIAZOZsohwMbloj2dAmWsmQWYtZXCrh1uSF3VMS8NaEb5zchvQHaCKgIG6CLvhEOaU7GBMUhaAo2B1IVAj7YrRl4y85BB0HtaDTLyAQ5cFtK34lHdqVDMFAgsTQ2haQn1Gka7G6V7GWPBJPyc9HFC9A8QJEeYUE3IYS5RVnuE2YB8+JaHR8Bk62Wdut1Fby1FbyLF/uAwH/vA9AdzgmKFo4dYvOHQ38FYvEVyiHBGUIyjC2e5H69ojsZYfOgKbTBVqjLmuLRRbuTOv46PmtPHp+K24Dqlsl3SeKCVYIo4U6sQ+WKEnNxQos1E9e2NZHig1awxbenMvTtUmCIhR3rVLavQKi2B3FX1VagUsrcOkOxSw38tC1GHvEIigneJmQ4kiDxIHGpFKt59gyuoxdCrBLAeVzUC63cGtCMBZiT7TIztn4tYR226M1AXP1IvnLQv6ysH18kadbG0laDt2uy4XlQYYPgdW2QJToQgEaLvUNQliOCcsxEgqr1/mQQOIn2G0hvrPK6ECN2IfW9oDymSsO+Y4Qq9BaH+OeyGHPe2waWGXz+iUWnx6lvsEmOl9gZrkPpy44dSGzKPhrSliw6D8uNMdsMseyhFWfcDbPxDcCwrzgzHo4sx5RQcnMtahvhoHDDnbVIb+hRm6whdrgeDFWCMFSLt2X8wnZ8QbO0QJhQaht6x3UEqhvtJjYtEx+Tsktx7hVwa0KN2+4hG0lACRDIWN9NTJLNuInqJvOq9MBryp4VWGsWMc9lqPd9IjyStCXsHTAAlvxatB3QmhNKBJBdyihO5RgVx3iDGBBElpkLvoMbVply/gy6kBmRYjXd2iPCO0RAUuRSKg3MzhrDsVch8q+tI7lOxbILApRBtRV2NSETU2SkwUyK4I6cLnSR+Gy4uUCkpkc2YkG/qoSlpTMCmRWQJ10H9yxeZ7CbEK3H2IvPZeHBUEU3KpF2PRIHEgcIBbi8S5W10JiISrHWKLEOcWbd+n2C25DUBvUhv7n0nOQ3YHieQsrhCQX40w2iT2hsSNkeamIb8f0nRD6Tgi65lEcamIHkCxkaI8ldLZ1CUuKV1WsKD2G5+Y65OY6SASMd2BTC8ohEoNbt4gLCVYXsm7EyKGE2olBCjMBhZmAcCzECtJ1ikDmWJZuyUYtSBpuej61oXSuSelck/b+NpCen+fm+9HBAH/GpTMaoR0bK4TV61ziDAQlISgJ2nDIz1g8vbSeRuCTLGSw+rsUNlZpbwyZfWwCt5Hw2OVNPHZ5EzqXobbRIvHg8r0u546uIz5QJ8xD90Q5Pce6SuQLkS9IJkZiQVTIbq2RPeeTO+vRrGbwMhFWAPH6Drk5C3/GxZ9xmSxWUEdBoX+sRuKADHdRS4kzsG7PAnYHKjMlKjMlrBB0LkPigh0ozsYG+ecy5GYFp60kfRHZWZu+swlJNh0A4oySu+RgWQnRui5Bf0J2ykVVODh5ifccfJql22OWbo+pbHXw0wwMXgAAIABJREFUT2UpPee9cK4K+hQrhOFiE2cgPV9WdkHSdEiaDrnFgMyihVdVJAanYaG20h4WrBDWVgt0V7KUvQ5lr0NnMiQsQjKf4eK5UbLLSn1rTGuqhLdiE5SFJB8T+2A3LOyGRdRxuLQwQOJAe1TJLFlE5ZgossjPKEHFp741wtlfwdlfIYptJjYvE+XS7aq1IaK9OcCrCOopjQ1Zys94eKvWC+dZtWH42ZDucIzEpOem1RyJK0R5iLLgTfks73NY3ufQHYlRR/ErwtzJEdY90iXzZJ7OoKJ2ek1kFULsQLCmMlhTGVQgKCutLSGdsQinBbK5ibPgYU+0GDzRSY8FBSUqKGIpeilH2HaxQphbKlNbKOCvKlYonLowjjfjsbYb1nZD2J9A107zbqbXKblMQNRJD56JqwQFwS92KUwJhSmhb6zOyFCNxZt8Vq5Pj0sMdZFQqB8bxG5YxDml2wfdPphfLRGdLKG24q3YVLbb9J8OWXhbwuzlQdymYM97eOXuC8dpLKUwG2HVHNpbAtRR/mpmD0HZoX54EK8SEiUW+YsO+YsOcTEhKCvBUExUiPFXhfzX8py7PILYSmZZKG6s4jaglOlSynQ58+wkExtXCAZi7A6QfOua65WYBrRhGIZhGIZhGIZhXAPTC/frpPdO81evCLKB+Irf532Xqq58m2V9ErjzRcHbgTMvCvuEqv7+t1OWYRiGYRiGYRjGW5VpQL/GROQHgdOqehw48DqX9Tbgt4EQeBdpA/l9r2eZhmEYhmEYhmEYb1XmEe7X3g8Cu/+Byvog8B9V9YCqzpjGs2EYhmEYhmEYxuvHNKCvgYj8LyJySkS+LiJ/LCL/WkS2ishfi8ghEfmaiOwSkTuAHwB+U0SeEZGtL5PfNhF5QESOiMjhXl4iIr8pIkdF5DkR+UAv7j0i8pCIfFZETorIZ3pxfxr4EeDf98I2icjRXpqciPypiBwXkftE5HERufkfankZhmEYhmEYhmH8Y2Qe4X4FInIQ+GFgP+ACh4FDwKeAn1XVMyJyK/B/qeq9IvIXwBdU9bNXyfYzwG+o6n0i0uvXk/eSPvK9HxgCnhSRR3rxbwD2ALPAN4A7VfV3ReSu58sSkU1X5P/zwJqq7haRvcAzV5m/DwMfBnDK/de8XAzDMAzDMAzDMN5qTAP6ld0JfF5VO0BHRP4SyAB3kH6n+fl4/rVkJiJFYJ2q3gfQy5deY/iPVTUGFkTkYeAgUAOeUNXpXrxngE3A169SzF3AJ3r5HxWRZ18uoqp+ivSfAWTWTeq1zINhGIZhGIZhGMZbkWlAvzoWUFHV17WTsCt0rxiPMevNMAzDMAzDMAzjH5x5B/qVfQN4j4hkRKQAvBtoARdE5P0AvXeS9/fi14Hiy2WmqnVgutdbNyLii0gO+BrwARGxRWQYuBt44tuo84/08t8N7HuV+RiGYRiGYRiGYRg9pgH9ClT1SeAvgGeBL8H/z959B1ty3Yed//5Op5vDy+/NvMkZGEzAAEQiIrNJmpJFqUSJysu1ZK3WZWlFr8oqD122y7ulLa8ke9fGsmRyZa5EURZFUqIIkgCJnMMMZgaT38ybl/ONfTue/aOfUGMUKUIMADg8n6pXr29339O/Tqf7d7v7NC8DDbIWsH9ZRI4BJ4F/uP6VPwX+FxF58ds1IgZ8FPiN9VurnwBGgM+vT+MY8BDw21rrue8y7P8LGBSRU8C/Xo+v8V2WZRiGYRiGYRiGYQCitXns9TsRkZLWur1+pfgR4GNa6xfe7Li+HRGxAEdr3VtP4r8O7NZah3/X97xN43rb7/8y3tcq5Fc0iweFZFMPgMqTedR7llg730duUdHb52NP5AiHYuov2aweSHj7gdM8enIX4qYA5F/JYYWQ2lCc0dRPt5m9rYy2ob01AQ0D21ZYWs4u2LuXPOI8FGYFp6NZvS0gdzbH+L2TXHx2HLsnhNWs7NHHsu22NW7hD2lKk4BA+M4mvZ5Dudijda6Gt7UFz1ex1m+C7xz0qT+cIyoJYQ3cNfBHNCOH5lh8YpQkr4kGIvITLr3d2bx757P56GyPKA106F6uULqkaG1N8VYUwWBC+byFJNk0GjdEuPM2UT3Fm7fojcZYbQu1sYt7rEhU1JSmoH1vB3WqBIBWUL6k8YcFpwUq1iSuEFZAWyAJaAfsdjYNbUF3b4AOFD9989N87oHbSQopTlMRDiTUX7JIXaGzMVtO/cc18/fEuLMOI08ldEYsegMCGrrX9bhv9xke/+IB+t4+x8yFQQA+eMvzPPGHN7F0T0D9cY/V/SneskVuAbQN4Z1N/LUcYq9P42GX+EOrNC/WSEsJqm1RuqzojKf0vSws3ZRiNxXpZp80yn67qz/hsXp9iuUrCtOCuneFteUSu7fM0ghytL8xTGc8wWlm4zstwbt9iZWlMiSCveRgb2/Ta3iQCqptkVtURBVNNJJt7k4+ovB4CefdS4RfH6B5XYR0LTZ9NWHyvYrqeIP40T56A9l8JMUUb8kiLmoKM4Kk0NyVgIDOJ1i5mP6v5FnZB6mbfSetxuzdNsOZqWFyp/KE+7vETTebfjUgWvOonLFpHc62Kd2xwdJYDZvCnMDbV4mfq+NvjBl5WOE1E668w2L3wUkmH9iSbYe3L8Ff9dPaDLklobU7YvhRi8UjUJhSpA44HYjvzn4rK3yhgragNyD0BjTumhCVNCqG6jno9QvdEY2kkN+3BkBfscva5zcQVsHfmFB7WRFVhPaekFw54LbxCZ6a3oz7YBWA9iaNtjX5eUVnPMHuKkqXIXpXg/ZSEXfBhh0dCo9m23lno6a0b4VGo0AaWjgLDlogv2eN1moBsTT37T7DI1+7gXAkypbfokPqagozirACTivb/jZ98gznfnsXqa3R/SHOlPfqvhQNxOSmHKwedMdSNu2dY/XLYzT3xFgti+o52PrRc7zy5V0AxCUNaVb3dDZp7I4Q9KfoWkT+jEflckp7o8I/4GfbSNNh+HFFVBC0ght/8TgPPnc9EgjesqI4o2lthYP3neHEF/e8WseGNU00EHPrvvM8eXo71WMuTkuzcoNGW5pNe+ZZ/vpYtqz2BehQUTrv0N3vk0YW0rEoTVjkVjTdYWHo+YDL73fo27ECwMq5PtyGIqymyHAP7+UCYTVb5+FwjLNkE9UTrHK2bEc+79IdVKwejsHS1J536Y5pJBbCrT3KL+Rob0opzCqSbHMm9TRhPeXmw+c4+8e7WT2YoLoKbWt0PmXgCZu4IKztj7Njxys2zYMBzqyLu6eJpVLyn6vS+FCH6HKR3JLCH07Jzyv867PlK3Me9qYOyaUSSSGFcoTuWTgrNiqCOA9pPsVdyeqFqKKxW0JuWWjuidmxc5Zu5DBzaQCJBW/RQkWQn8/21+gDa7QnqlS2raFUSrubw3umRPewj3sqT3UiJbeScPkfKJyhLCb32RLBjR2sM0X6X06YvV0oTilyKxq3ldIZtQjL4O/ODjbVeodmM0/p+TySZtvl3g+f5vhX9hDu7VJ8ukDz+ggioTSaVezyWI36mZjmFpvW5izWI7ed4dmJzaR+VmfQUxSGOwB0lwt4sw5xMUUSIXU11mgXdbZIYQaa2yEdCpBVF6eRLatgU8Dtuy9wammYkXKL6S9uoTuiiftiKicdmrtjShM2/lB2rLUCwbtuje65Gvl5wVvVrBxOsdoKp5nVjyqBzvU9hr+SbSS5X5zlykIf6ZqLtlOwNd60Q9iX4qwqREMwlICXHTS9SY/aTQustgrcueUCD76yBx0o0ML4V6Dzy2uszFSRUJGftbJ90Mvqu7CssXqCvz1k7G8sZt4Xv1rvO8dLxPlsOWoHrK4Q9qWUtjSIn6mTeIBoEi87xm54OGL6boetN18BYP4Lm6hcjkl/dQnPjpl+YgP5OaG5I2X8+jmWvz5G/8mIxRucrM6d17THhd5YBG6KVwyxny+TW9aEFaF9oIf2bQqXs6fw/A3ZeVD9hCK1heJ8wuIhhd7WRU8WcHc0SV+uQgp6/Th7w71nee7CZvoe8egNCp0tMe6iBQKVi7D09hDVcHBX19f3YILVVcSVhK1/nnDpQzb5aYvC7Ussr5QonMyR5KE3FNP3UrZsgz7B7kLf6RDr4/OcPzNK9RWbxnUxuCl9TzmsHEyonMnmozekqZ/SWB9dYPWxEUq3LpJ8YYDOBkErzeBN88zM1an3t2i0CgDkXyoQF7J9sj2exV6cT2hutuGdK6QP9cE9q4QvZI3bhvWU3KIiPdRCjpXpjSa8/20v8FeP34gz0iWeKZDb1MKfLr26rVcOLRM9MEB7kyYtpChf2HXjJOef2kz1LCzdlOA0LfT6pURtaZJqzPj4MrPLVXIvFajcO0f4Z8Os3tej+Eye1o4E7aaUz2br3LtnCUulpH82yNouUDvahLNF3Iaw4bZprjy7gbiSIkHWXlKaS8nN2/S2BIgADYeN30iZ/+kehUdKBHVIPE28tYd9OZfFJRD1x2z7bMrCYY/29hiro17dN+Wbddo3+qjpbPzCnNAd0zgtIT+v6byjTeg75E/n8EcTVKBwOsJ9/+B5AP76uQOULtokOeg/kbC8z2LopYgr77RwmkK8wyfpONjLNhseyfavyZ9M8S56pI7GbQneimZtN7hNwe5A+0CPsS86bPpnZwF46tw2nGmXOK/RnqbvBUVjJ6Qbe6jp3KvnUioSvB3NbB9+sEp7k8ZbEQbumyH41Ahzd6bkZmxKNy/hfarOzAcjdJytwM2fE6bvssktC4U5TWdMcNrQ2JswvH0J65MDzL5d8BYVvbGs7pFKSOXpPI3dCWMPw8zbhcu/8VvPa62/45uLzLO0r8/967dC54BPv5WT53UF4Bsi4gAC/Np3Sp4NwzAMwzAMwzCMv5tJoF8HrfVHvpvvich/JGvF+2q/r7X+L997VN/e+nPW5r3PhmEYhmEYhmEY30c/kgm0iHyK7/yu5tdb1i8AX9Vaz7x2mNb6n3yv5X8/iMhRoK21/r03OxbDMAzDMAzDMIwfVqYRsddh/Znib+cXgLEf4LR/JH/kMAzDMAzDMAzDeKu55pMzEfld4GeBReAK8Pxrht8H/B7ZsngW+FWtdSAil4DPAu8E/ncROQ38J7Lniy8AvwTcR3ar9GdExAdu1Vr73yKGS8CngQ8ADvBhrfVpEekD/gjYRvZqrI9prY+vXzHevt5/UkQeAD4EFIGd6/G6ZK15B8D7tNYrIvI/AB9bH3Ye+KjWuvs9LUDDMAzDMAzDMAwDuMavQIvITcA/Ag4A7+U1zwWLSA74FPBTWuv9ZEn0r141yrLW+rDW+k+B/xf4uNb6BrJXWf3L9VvAnwN+Rmt98Fslz1dZ0lofBv5v4LfW+30CeHG9zN9Zn8bf2ge8Q2v90+ufrwd+HLgJ+DdAV2t9CHgS+Ln1cf5Ca32T1voA8Arwy69jGX1MRJ4TkeeSdvs7jW4YhmEYhmEYhvEj65pOoMka8PqC1rq33rDWl14zfDcwobU+u/7508CdVw3/LICIVIGa1vrhbzPe6/EX6/+fB7asd98B/DGA1vohoF9EKuvDvviahPwbWuuW1nqR7J3OfzsvL19V3vUi8qiIvEz2nurrvlNQWuv7tdZHtNZHrFLp7zlLhmEYhmEYhmEYPzqu9QT6e9X5Ppa1/iZiEl7frfOvnXZwVXd61ef0qvI+Bfz6+tX0T5C9dsswDMMwDMMwDMP4PrjWE+jHgQ+ISE5ESsD7XzP8DLBFRHasf/4o8PBrxkFr3QBWReTt32K8FlD+LuN7lOxKMSJyN9lt3s3vsizW45hdf//zz3wP5RiGYRiGYRiGYRivcU03Iqa1flZEvggcB+bJbnduXDW8JyK/CHxuvbXrZ8kaCvtWfh74TyJSAC4Cv7je/1Pr/b9tI2J/h6PAH4nIcbJGxH7+7/Hdb+V3gafJGkx7mu8+sTcMwzAMwzAMwzBeQ7TWb3YMP1AiUtJat9cT30fIWrp+4c2O663I2ziud334nxFWQUWgbYj3ZXeSl4o91q7U2PbnEZff7ZHkNU5bQEO8uYczkSPYGEEkFC45ALi3rJBzI9aeHkYicJugYk1QE6KKpn4KFm5LyE9nv+P4W0OIBacSoicLpK6mflJo7AJvRQhqmriaYDct0rEeAPalHFEtpXjFonohYW2HRd+9s/h/OsLS2xIKkzZaZfMCEJVTth6cphV4LJ0cpH4K2puEYDDBHvAZ/38cLr/PwVtSqCj7zob3XWbqgc0E/RpJQQv0v6xZPALa0WhLI4lQHGsBkPtSlbAqpDZ4K5rGLihPwOrBBLsS4pwqkDrQ/7Y55k8MZd9ZVIy+6wrnLw8z8JjD0h3ZxJWbwJKHt6zoDSeUNmY3KHQmqkgCpcuK1s0+ac8G0RzYeYVzSwOEFyqoEFjfvb1VwR/WILDtxiucO7WBX7/na/zJpSMszVco1n2Kn6+wfECT9GfTtryE3LEC3Q0JTkuhdrXpL3dYfHaYsD9h1+4Zlv9knKAmAAyciJh8j0VhRkEKURl23DXB9J9tpXFdQv2YonVPl2QuT1qJAeh/yqG5HfQmH/flArnblli9VMduK6xAkAQSVxMOJgBIkN00s/nLMcvXu5SmUxYPCqIh8TSlSUXzQEDluEdnQwpA8YriI7/yNT47cRj/uX6i3T6Vchf/+X5SWxOORuSuuJRvXgSg+fwAw88mXHmXIPWQwvE83rKmsRNyS0JY1aRutk12N2Rx6VJC4ZyLFUL7QA8dKsRJKZQDOksFnGUbyxdSL1sh4UBMaahD8lyNqKqp7Vsm/VI/1geXaD81iDrUYNfAAmf+ZifVi9l8pD+/xPx0ndI5h/beAK8Ykp4vIds7OC+UyC1rlm+LcBay/a/2CiQ5SB1h7foY1VN4iwrnplX8UzWiWkLljI2KwAqzuOo/PcXEfD/2+TxOS9AK/NGU6hmhe0+b5GIJ2xd642G2jaw67DpymStrNcLQRl8sIgm4DaE8mbJ0QHCbQnw42zesF8vc+METnPrkdSzflCD5GNZcSpcV+UXN4s0p2kvB0hBl6zo3Y2OFEOfBCrJ9Sr93lfQbfQx94AqXF/qIF/LoUrZNiW9hdRWSQG7vGv7ZGt6K0NkSM/iUxeo+KE0K9bMhlz6YvaGw75iiPQ52R/DuWGLwX3lMvqtMUtDEBc2H7nyG2V6VJ1/Znm23Tzo0doIVQjAekj/vEQykaEtDJUbHQvmUi3+ki1zOA1CYERqHQgYedWhvEqwe9N07S+NvRvHeuUjwtUHCKhSns3WxciClfN4iKgGS/QV9KZULiu6oxtnbRD1eJb+oaX4gawCy9OUSpdmYSx8S3CWL0hVob8rqgdz1azRnykgppvakl9W5Q4J1oEFwrsKWI1PMPDgONzZQT1fJLWmW7wxRiy633XGSx57dm62PBYuooinvWSFOFa2ZMhseFJpbLIrvmKfx2DBjT/RY2p89QWS9cwn91/3YPviDQnt3hHgJojTOxRxaQVRNkVqYzSeQO5VHkuw4NPZwg6XDFYKq0N4R46xY2B2hejFlbXe2jVg+dLZFDGxoEH9lgObbfGQuR9IXIZZm8CGXhTtirFa2viUWxr8W4g869PoVrc0aFUNx3yqdk3WigRiclNEHHOZuy9ZH+YJFeSphdbdF6oK7Cv6Ixu4I6nAD/1KZtJDS/2w2jbU9WR3hjybofIq9amN3hLigiQcipGuhHY2Egi4kr+5P6VCALLvZPl+PcKddkrzGXVVUL6Ss7hXKE9lyqkyGzP1aj97lMk5bCPtSEMjNWsQlTVRLyM3YuC1o7l0/oAHlMw6WD0E/eCvQ2qLZ8EiC/T/PMfPoRrSls+M5IF2L6niD7ok6+XmhfUuX8uMFylMxUVGR+8VZVr+0gdZNPjKfbVflnWusLZYoD3RoN/LQdhh+XJi7L8adcYjL2TKtnslWuArB7mm6w4riXMrCewNY9kjLMYULLlFF4zQEf0OC3c7WedQXk6tn5wFyvIw/HmE1bJJigtPXo/aVIp1Robt5vV7IxziTHigIB2MkUmhLo3xF6bKivSVFhnokHQdv1n51OwmGErStKVy2ST0I+hNGdy6y2i4gL1TojscUJrPx08Mtkgsl4mLKxgc13v80y+xXx3Fa4N/dYugzeSSF9li2jbS2QlxKUX0BSdth22dTgprN7B2Cu7FDeKXI2GOaubcp8vPZstIWdMdSNuybZ/rUME5TUbmo6f3YGtGLdYrT2TlWe/f6cbxhUbkgtLZCblFo74iwyhH9X8mzeF9A5bkcu37qDCfmRjk8NgXAk0/toXxJ0b21Q+65IsWZlF6/ovrBGRYeHaM3kOI0BUmzmCoXNSvv6qEmc2y+eYoLU4PQdLI62bcoXLHxdweUX/Tojq2flGiIByKQbBvLjXawnqrQ2ZSQW7TI37xEmiqaraz+tC/n2H7bZbq/t4HLHxDshsXgi5rZexKGHrPpjAm9G3y8k9kyBsgtalbuDBBL457PY7ezc8HqxZTl64VkR3beMXg8W1YLhxzCesrBm89z7r/torUtYcM3YWWPRVjVJPkUSYTUS7Gb2Tq0AiG3BI3rI5RvMbJngZITMvX1TagI3KYm9+Pzr57rpZ7mnptO8uSXbiDsS3FXFdrK9gF/LEE7mkP7Jjj58A5Uki3f3ngIqWTH/h0RhQmHsK6xtrQZqbXQfzDE1DsU3nK2b5QmNYu3x/Q/bdMdE6zDa7RnSxy47jKTf7qNqCy094TkL2b1TFzQqB1ttBbCjotyEipP5/GHdBbjisLyhfpdcyw/NQJAMJhQuGJx8IOnOPuf97KyX5MOhlSfzbHhJyY4vzCAOlZ+dV8vX7dM58V+7Oub+F0XmfMoTiua+yKccoD7YgkrgNb2BBVk851bUuj1Y0JpWrNwa4LEQvGKxeb3TXD2yS0gUNy7CoBjJ7R9D/uJCtF6a1KlI0uIaHoPDdIdTUk9jc6lDIxm11KXL9ZRkZD2Rww+5JI48OInf/N5rfV/1+j0t3JNX4Fed7+I7CN7HvjTJnk2DMMwDMMwDMMwvhvXfAKttf7IGzUtEfk8sPU1vT+utX7gjYrhqlh+ATiitf719fdKt7XWv/dGx2EYhmEYhmEYhnGtuOYT6DeS1vrH3uwYDMMwDMMwDMMwjB+Ma70V7muOiPyciBwXkWMi8sci8gEReVpEXhSRr4vI8Jsdo2EYhmEYhmEYxrXIXIH+ISIi1wH/ArhNa70kIn1kzUTdorXWIvIrwG8Dv/lmxmkYhmEYhmEYhnEtMgn0D5d7gc9prZcAtNYrIrIf+KyIjAIuMPH3KVBEPgZ8DMCu1b/P4RqGYRiGYRiGYVw7zC3cP/z+EPgPWuv9wP9I1tr466a1vl9rfURrfUQViz+QAA3DMAzDMAzDMK4FJoH+4fIQ8GER6QdYv4W7CkyvD//5NyswwzAMwzAMwzCMa525hfuHiNb6pIj8G+BhEUmAF4GjwOdEZJUswX7ta7QMwzAMwzAMwzCM7wOTQP+Q0Vp/Gvj0a3p/4VuM9yngU+vdR3/QcRmGYRiGYRiGYVzrrKNHj77ZMRhvEf/2f/v3R+2fOkIyGBN7QtSfUH/Ew7voECwXsFuK5gd9QqVAgQoU2gZnwSHsS1E9C4kVzr4msiEgOFEjqGjsyx4CqAjam2DohYTGrSHVE4o9//AC4d/0kVvROCsWUUlwpjzsroCGYBCsnjD4Ukz9x2cp/FkZf1iQpo1q2iRbehT6fYKuR1hT1M6nzOZLRCUhP2cRHWoz9lcQli2sHvQ2xrTP1PAXipQnYG2fJrcklCeEQFzctqJ9KGD3jVdonqwjKbTP1ehsSug/JqAFFQtr+xPK402sVwrkFhUawT2ZR13K0R2DqAqpA0lBSB2wAyFxhNqzDp1xTTQQE4pCr3iIFoozMJ0rQKKI8goZCGHNwZl3QAtJQeOuWfiJS9jyUKGw4/AV5ttVpG1jdRX1ly0uJzVu2jPB2hND+GMp+26+xMDmNRbm6tg9oXJomaVHRxl6TvOg3o6f2lTqXfTTNcKqEI6H2AsuqmOhezZuQ8gvKtyW4OMSnS4T9mn27Z/k9MQYyrf54EceY/cNk5x/cTO3fvgYr/QGQQsoKIx1WG6WScoJVtciGEjZ/pmYtbdpxNZ0+4S0FrNjwyLNi1Xi4Ygoshl9BOR9K7TEQQ+FWIsuKlDUTwuJq1i+NYFEYQWCf30P6dgkpZRgNMZedEkdiAZjdC6F2OLlF7cTzxQozmr8kkWx36cVe5R3rmHnY+RSjkbBptv1wLcIahbplh561cNuK1rbNTqviWoap6UozgAiWIHCaSuigkYSwekIpfMW3pJNUFREbRfVU3irivj6Dkk5Ia3GjI6tEj00QFTVVPcvc+vIBMdz/fRCl7RnU3je4x1vf4mnww10By0649COHYpns3l7953HuPTIFsL+lO2bF5ijgMaiekrRHdNoG8b/eo2p9+QozkJ+XtEbgNpZ4HKO/lMJqbIpLKQsH0mo3raEta/D5OQAfY94RCVh53suMOVXqVywCKtC0naJawkSC3bbwupYODtajJSbrDy0gUBsBl4ClSi6I5r8u5foLhVR17UAQQQi32Xu1DBxKduXrKbNwIuwcmtIZ6NmbNsS79zxChPPbCYZjBBbE1dSJFRs/UKTsO6xelNEsJwn2h7QfKWPpJyw6QtCYx8g4M05RAMx9qiP91CV+ECHwW8oen0W3Rt7DD5iEVaEwnyM07ApTgudjUJY1YRDCdrVrA6UsHtC0K/Jj7c4MbOB6bUaKBBLE3o2+QWhMAv5aYvw9jZeX4/UBWsqx+4bpmhcqOFOOfRGUlJPI4kiyQGpIippgpGE8FSV3g0+vcDBWnDQFvS9EuE1U4K7fEYPLrCUc5GOTVyA7X/RY+EmG2d3k+5ikepZIclDq2oR+w693SGReFgdxcZvBiwdsnGbgj+W0D/Ywnq0QumGNdjpIzt9rJcLJMs5kjw0pitEFU3Yc7B1DttJAAAgAElEQVR3t8gfbNBeKeAM+0yt1lGLLioSwv4U3R/SmytSeDJPXFQ0d2uCgRS7EBMt5lm6OyYcjwg3xHhejL5QYG2fRsXChhvmaV2oIV2LHf91leVDedymIg1tBh+3KJ63AaGzOaV8GRq7c7Q3Q+qChAorFIL+FG9VuPEnT7BxxwITXpnUt+ktFPCOrNJbLFLZuoacKNH/nCK/FNM8kpCfcLE7ghUKi7dCcqSDj0N97wp9f+kxP+JRmLNQPYvEEvwBhd3LxpcjTVa2KNjQI9IWSU5IiilRPSVZzlE/JUhk4TVBNLT3RJQuKqKSoLqKJJ9SPS8U7loiOVPG8hVJX4wEFu6yhdW2iOsJxXMuqQdJOaVywiX1hNy+NZKFPL0+Ib8glKdi3HbKpZ8QZDJPXE2xfIXTzI7JQ8+n5BehvVkj4z5+SfFztzzBgY1XODYzjupZeA1NdwT8sRSAtUMxq6slGA1IfQerbaE6FvkFRauoKFyyaW1NSbVQOLTKcq5Ia7smea5K8/qQ4ZEGwVQJlQjBah6rYxGXEvq+nkdiRWsTFDa1kct5tn2uweLtNmFZCPrBH9UU5hSdcWgeitA9C2/YJ13IEfYl1Has4q/lcVcUUSWr3+y2xaYdCyzMVamdUgzeMY96pEz5skI3PDp3dgg8RX7Kxmkqxh7UrO0VQFC+Ag2jj0BrK/Sf0JTetUhzrQACGkXqgbsmRFWNu2ohqZDs7eBOeKwFebSnKe9oEE0WUXF2vOsVBdWxKE0plg/C2myF8qWsXuoUbJoHE/yKg6RC6gqpLbirisK2Fr1mju6AS+IporKGRQ9vVdF7b4tkNTtPSF3obo5xVyw60yU23jhL53KFoB+8l3KkjtAbAg62cE4XcNYsNjwaMfueBGfIx9naJWh52PMunU0aYkX5knAx6Cduu0xNDzA1PYAKBdECTQd/T0D5rMXaXlhrFLF8RVxLuOv2k5wP6yTV7FgSuUJh2kK+Waa1VVOccHCXbKLRiNreVcILZSQV7K5g+4J2wOpYqOEefY96tF2XYHNI/SWbymTKwmCOZLKAWj/XY1uH+bk6+RmLzqhgRYLfL2iEsJKdl/U/ZdHcDvXTGq+hWdsjlE87HL7rHPOvDBLWNL2xmKGnY8Kyg1+HwpTF8n5Fa7Mi3eGTaMXyKwM4baG3ISG2bOKDbbzzHoUb1ugpRf+TDtoWrEDYft8EU7qCFGPwUlprBVZmq3grCqetSQpCd6aU1V9acFqK6dPDVG5foLNSwGkLdhdyaxp3TRFWYFV5BK6QDEQk9RgCC9W1CIYSbtw3waQuk+ZTkq6DPFxj/q4EyjGM9kiHQkLtcvjm85x3athdRW3rGuG5MgueS3cEIk+wKhH2nINoCDZH5I8X8D2FvWIzsn2Z/NdyBHWLcCChekbhdGDBK1CYVlg9iLYG1I7ZnK2X6e2MSPMpOlL0hlLc/6/G6pjNyNOatetS0pwmuVgkrmjU5TwMhtgzHpJC2J+ShjaWb5G44LQVKs7qXBWBv6+Hs2TTHYXaKUVuUUjvXWNqcoCND2rad/oEgUsYOsTHqvRywvvf9SynL21AxYK/mqcVegw9r+m8LcCec1GjPv5Ehd5yHm3Dhm9q2jfEFM47LN0a0/jS12ePHj16/3fKmcwz0IZhGIZhGIZhGIbxOpgE+oeEiFwSkYHvMM7vvFHxGIZhGIZhGIZh/KgxCfS1xSTQhmEYhmEYhmEYPyAmgX6DiMgWETlx1effEpGjIvJNEfl9EXlJRE6IyM3rw/tF5KsiclJEPgnIVd/9SxF5fn3Yx9b7/Tsgv17OZ9b7/ayIPLPe7z+LiPXGzrVhGIZhGIZhGMa1wyTQbw0FrfVB4NeAP1rv9y+Bx7TW1wGfBzZdNf4vaa1vBI4AvyEi/Vrrfw74WuuDWuufEZG9wE8Bt6+XnQA/80bNkGEYhmEYhmEYxrXGvMbqreFPALTWj4hIRURqwJ3Aj6/3/+v19zz/rd8QkR9b7x4HdgLLrynzPuBG4FkRAcgDC6+d8PoV7I8BOOX6922GDMMwDMMwDMMwrjUmgX7jxPz3V/xzV3Xr14z72s+vEpG7gXcAt2qtuyLyzdeU9eqowKe11v/r3xWU1vp+4H6A/PD4t52uYRiGYRiGYRjGjzpzC/cbZx4YWn+22QPef9WwnwIQkTuAhta6ATwCfGS9/3uBv708XAVW15PnPcAtV5UTiYiz3v0g8BMiMrReRp+IbP4BzZthGIZhGIZhGMY1z1yBfoNorSMR+VfAM8A0cPqqwT0ReRFwgF9a7/cJ4E9E5CTwBDC53v8rwD8WkVeAM8BTV5VzP3BcRF5Yfw76XwBfFREFRMA/AS7/YObQMAzDMAzDMAzj2mYS6DeQ1voPgD+4ut/6Ldj/VWv9T18z7jLwrm9T1Hu/TfkfBz5+1efPAp/9HkI2DMMwDMMwDMMw1llHjx59s2P4kfaJT3ziF4CvHj16dObNjuVf/5///mj5ltsoXHJIXAEF8f4u4fYIe3OXsO0RagtvziHpi0ldKF6xCPd30R2H0SegMwqh7xK1XIrTiq7tkOQ1SQ78zTG5OYvWVuH/ePdn+PqLh7iQrxAWLPxhIXWFqJqSjgfo0QAaLkOH5mmuFgkrFsutEqllEezpofoDqEfohTxyJYcVCb0tIc6yhQoVwYAmrKakllA+a7G8X4gqoAsJ7sYuARbJ7h60HPpOpTS3KsKBlNKkEGuX5Ut1OjsigqGUsAL2YI9OySbYFBG7gqSQzOeJC4AWhm6ZIzpVQlLoDUBcS9BKSMZ74Fu4TSGsa8JDXeLEou8Fm3bNIj9rYftCa0dKbsHGWVOE/SnOtIds8olyUD9ukb99hehygaiWgoLyRYuVuRpxSZNbUPTGYgaf14R3tbm0MEB+X5OB/+Zxrr/CwnKVkX2LrHUKBHMF4pKmdShCO0BgkV4pEAylOC1FPBgztG2FwnCHVi8HqaJ2QdPeICTbenhXHGRfm9npPrwZF39jzIn5MU7MbkAnNgt9Dn4zR37GAi0EJypEFVCDAVFq4Sw4rO61cacd7CUHbQnaS1mbqJMUNX1jTQKtcCY94qkio4+nWIsuViC4LSG/rOk/FdC8OUX3LLRSRLUUnQq79szQOdZHeRJau2OwAIGxfQssk6PvZUVjF9i+0CvB4OgaSzM1rFeKlKY1G+6cob/agYeqxEUhyAv9z1uIztad1VWk+RRJBYmF1t6IqC8hqic4yzZDL6QMPrVM+9d99PkC7uE1Iktw5lyCwQS14KLaNqplc/2uK1zw+9A2dLoeCw+ME+UUSaKQWOG0hSdlA/nzHrYv2F0htRT5RSHo06x9YQT/7jaSj1m60odEQmlK0RkHECQRVvfn0cMBN7/jNLMvDxPWNIiiOwr5JWF1n6Y8BapnEUyWCCdKhBXNu37seRa/MsbsSh9xWRPnBKsnhH0acgmpB1qE1IHYgUhZBMMx1mSOsCq094TkN3ZYXSiTFlL0fA63L0ApTeEFjyQvSAI33HeWqbU6Q8/EhDkPb8kiOlfi4rGNhAc7FF/I483bBMMJRAr3pxusBCXSckJtpIX1bIVwZ4/aozmWb1Bcd2CS4b4mKxfrSKjQLRd/JMW5kqO9SShPQLeqGHv3NMtLFRo7LVrXRXS2pOiRkC1/prnxZ19h9oFNRFWId/l4ky4DO1ZpNArQdtC2Bi3ocoxs8/HFpbMx5Z37T3H22S3EllB/WbG4WCe8oUvgWFgDASqf4E45kApOWwiGUiQRcisKZ1uHJBUibVOahOYWm+6IhV+Fhp9Hr7jkFxXVCxD0Odh3rWA9WMdpKLZ95ByrJ/qRyMJpKujZRBVNOJDQq7vovR3cCZfUFvRLZZp7EwoPFVEnC6hTBawIrABSS4h3+uQuuRT3rtFp5wgTCzWbg1pEqhW5Sy52T7I6cnvI2JcsFo8I+e1NQt8hN+MQ9ccUj7u48w6xspGWjTpdIKyAFQphPaUzWaZ0Reg7ndLZmEfbijivSUop3RGhOwZhTVOYU2gR1L0rDI6vsdot0n9MaB4IQQtJTnFpZpDJySHSwMJbtvHWhHZFqBx36QQ58ssCAo2dNt4Vh+7GlLiskQS0JZQGOvRsRWe5SCo2YV+Ku6pIHUAJqadJ8prU03z44HOcfHkro1+2aG1SjO2fZ8f4HHOtCvaqjXPHCi3Pxl22SV2hN5agujbaAm2DigSvAd3lInZX6A2nkEsonXfojaWkeY0KFSoR3IZQ2r8C5wokHtS2NUhOlgirGm0JUdGi12cRbIypHbPwVi26+wKspoXa3mHwazHT97i4axZxYuMOdXnhzDaOXdmEs2pnx2RPEW/uURzoErsw8JCHOtQmnCmSVhLSUkJaTCFV2I2sHjx89xnmzg8RLhRIRgKK513Gv7xE813C7+77Ml/t7kLXYtxpB4kFb8IldQR/ROM2hGjVw20J0++xKVxyyC1l8zp+xzTzfoXUAXvVQiuBeY/KhBDWhW7PBS3sefsEzZN92L4wcsssk4t9WLMenc0p6VNVtCPERaEzniLLLqXLFk4H7B6sXqdIChpvWTFw8zzBxTJr+1P6X7AIK4qVsIhECvIJUoqhkFB/wSK3qOge7hFZiiRVeNvbbPov4DsF9NkCuRXoHvFJBiNKL+WwewIa3IagQqE3IIR1SAcjbC/Gu+wSVbJzomA4gVSwTxRItvdgIKTv+hUa3TxpMSUejklm8mz565Dl/RaJB9rTFHc0GNm+zOIDG3GbEBz0CWyHZHuPwnmH0p4G6UiItaFHJyqRYpE77dHzczAYIh0bqyuoZD3GXQHa1Yx+QyhdgdK0RkVC9yYfNZUDUXjL2XwUrwjs6xD84RiR7eCsWNhdiIsQ1lNaO1OcUkT5mENQF5L+BPehMn2nE7qjKmvhRyDJg4ohd94jrAm1Mxp/V0z9mIWkcOdPHmO57NC2LNJyQumZAhtumWUurlDds0LXz7HpgYj2Zpu4kpJbUjR3gLeziXM2h1aCc+8y4XyBqWKOuOuSlFPqL1uEZZugT0g3hPRyFt6qwgqF+257mblHN2CFQmt3RGmwQzqfI2052L4w+BdCfJdPOpcHQFJYXKgB4M47uAs2226cojFRI+zTuE2F09E0D0ToaowuJ9CzGHsiZq5cwtvcpvysS/SeBlzJE1XAbgs9bKqvOOjQwlqz6duzQidxIFEsTPRj9wfIQo5Ne+bpXioTVQFHkz9WwJ51ya3AzJDL7k1z9J6u4U+XqZ3X+Psi0oaH1VXY/QFb/qhL9VyP1oYS/oYYd8XCaQnBUEKylEcSwWlYSCKoGPwhjd1TaCero7s7Y2TZQ7uaYqWHXCiQFDSkNqmV7duV80L5ktC8KYRQEVdTdMsBhI/+o4c48eJ2Bp8WuqMQbgmIShpv0ULF4DY1sdjEu30qxxxWjiTUb12k89wgJIrmVmH3rhkSJeRzEfGlAnEBzrQGsdZsilPQ2R5DKkQ5mzixSD0oDHTpYaPzKU4toH19TDqfRwWK3LzFwtMPzB49evT+75QzmSvQbzKt9d1vdgyGYRiGYRiGYRjGd2YaETMMwzAMwzAMwzCM18Ek0G8hIvLE6xjnkyKyb737d37wURmGYRiGYRiGYRhgEui3FK31ba9jnF/RWp9a/2gSaMMwDMMwDMMwjDeISaDfQkSkvf7/bhH5poj8uYicFpHPiIisD/umiBwRkX8H5EXkJRH5zPcwzY+JyHMi8lzS6Xyf5sQwDMMwDMMwDOPaYxLot65DwD8F9gHbgNuvHqi1/ueAr7U+qLX+me92Ilrr+7XWR7TWR6xi8XsK2DAMwzAMwzAM41pmEui3rme01lNa6xR4CdjyJsdjGIZhGIZhGIbxI80k0G9dwVXdCeaVY4ZhGIZhGIZhGG8qk0D/cItExHmzgzAMwzAMwzAMw/hRYBLoH273A8e/l0bEDMMwDMMwDMMwjNfHJNBvIVrr0vr/b2qt339V/1/XWn9qvfturfVz690f11rv/V4aEbuaiqEwq6hcSinMCd6ihft8Cff5EurhGv3HNSOblwkHEqRtIZHQ2hlTfLKA0xQ6I4rB6xYpTViUJiz8IY012CMppcSlhP5nbNwWFK/Abz77k+TWNNaKTXkCyhPgb4zpf0Fxz46zlB4uorf4dP9ymKSc0N0RUj0rBDVN9bEcpUJAqRAgCSQupE5WVpwT/IM+ui/EaSmsOZfZ2yysHlg98CoBQ5U2xYsOUdfB8oWgpkgdkEhwWwnagt7GCHfezv6Gu1ivFMktKrwrLrklRfmCRTKcTV9SCBOLxBMST3DXBHfJ4s5bT2JN58gvKHqDGm9ZkU4VwNbk1jRONaB6MaF6MUGXY5K8xt8U4a5YqOuapNN5inUff0DYXF3BCqF03qZ03ibJQe2WeWSoR5IHb86hM2rRXSpgTedod3JM36UgEUiEmYUaaTHB2tpm8AWw5jykZVMabiMpOKsKSYCWw/yFAeYvDFB7ySEcjJl5R0L9bIpcyRGVIT1TIj/poEKwKyGqZaNaNvkFTfjoANg6m99VKL93juKUMNrfQFIh3uFTuQhxURMXNVYI1eMuSSWmeEXRDVziwGb1OmjsjZm6xyasCImbref5m0FSTfGZPFqBd9MKuzfP4Y50GS40cdrgDwj5Ph9SIIWFRgmnErJwW0L/CY0WiDoOvdAhN+XgtmDpsKYR5GgEOfxBIfEgN2eT5IXWtpQt18+Q5jTVV2ycnU16gxqrGOEsOThLDlF/TFBVdLfUWLvQR3uTpnOhSq3aIbcMYw9Dfl5Icpokp3n8pV1YviLNp7grFkke0oEQu2WRlBOaexJ01yKsafpPJfSfSsjPKsIq5BeFhbdBer6E58Vo0ehCwtq+GBUIw0+nDD+dokL4x4ce4eGnr8MfhtyionuDj7cmrG1XqFhY3i/EBShfSSlfSVE9RZxadIeF3mCCtjQIaBvs4S79TzmULtjYXcHuCtq32F5fwm/mSPa0CfpScpMu9jeqOMUIK5eQ5jSuHePaMVFJAOjuCHnx8V1oL6G5xUXetkZ7R0R7U4rT1rjHikgMEkOlr8PgCzAzV8dbFSrHPcq5gLCmKZZ7rN6QYvvCbKvCbKtC7VxK9TygITdvEdRTAJrboHzB4vzxjdTOauJSir3kYC85vGfXKWZv8XjwuetJbmsQVxJkMk+4x2fxiVGcWRdtaZSdZn+LLlFkoUJh8945Hv3cYUYPzTH6oMXyHSFy6P9n776jLbnqA99/f7vCyefc3LdzbrXUaqmlllAECcnGGIQJNoPzw+YtjMdpZhaM5y2/5zfY4zFjz7KN/cYBe7AwxoCxwWBjokA5tLrVUit0zt339s335FOnwu/9UdVSj6aVAAka7c9ad91zqnbtULX3rtqnUp2o46JD/af71+rxhPK2OTrLEkrHHSQSOuMJ3SNVSoU+Tleob1LiPMR5MHMeSWjwFxxam/rMXqlUj/ZYPDpIZ4nSWhez66m1OAFUTiiVE8q6a05QnDCMrFjE9OG2DU/QWJ8QVROaG2KW3CvMXh8yv1WZ36q4PaU/IBTPKHHLQ69sEN4/hHMyTzBfwF8QcrmIarlLv6b0a0p3TCgU+sxtcXF6QuXTVZymQ295iO4vExWFsAyVzfNUNs/DdYuMPB7j9GDl12OSnJJ4cOY6oTtqaG0ISTwYXLNAbt6QmzcUJg25eSWsQDfwuHrkOLkph35VoOdgegb/kjrJSEgyEuKO9gBor464bPVp4ly6PwNY3Kz0q0pzc/j0tiidBqcjLJypkttXIDflUjkRg0BuUQkrCfGSgOKEQSJBIuHTX72R4hnhzLUOJhRWVRZ4YnIp1D0kgnKuj7PgIYkiiQIw+lhI4oO/KMSFhH5VGHndJLlFxe0IlcEO/ZqiTvqX+AnBmoDesFJvFukNQXBRl/lWkagAAwfAbK9TPRlRPRnhzPrM3xRQvzim+nCe4iSwr8zkDWXcjjD0VEz5qCHnR5hqiKmGRMsDSicNXgvM6Ty9/TV0KofbVTpHq2z4uzam6TzdNtx22mZLN8zw8EObGHlM8VrC+hUzBEPK5M0j9Os5/q9db0dO55HTedRAMBYjCpWTMcVJIc5Df2lIMKiM7HAIL2sTliEsw/GHVmAiQVZ1CKuK6QnhWIjXgqQQYzoOXtNwfGGQ3lhMbyzmzGKFwu4ihWkBAV6/QHeJ4naUn73lbuJKQm9YccL0z20LTtuQW4RWL0e0oYvbcAjLgrpQ2FCnesigfZPWiX0FmqsMvRGh/FCB8ooGy75qiPfUOPpe6GzppfmvCJcun+TS5ZM0N0TE+bRMuQWluyzG7aR9EUBuV4n2ypg1n2+w5vMNRh90cNtC97oWUeAQdjxybsTIikVykx7eSZ/crGHyujxuF9wuSGDo7x7kHct207ooZHFrhE7mQZTSzgLBkDJ9cITGXInGXIl+TYlGQvy6MvgkOCfyjDyqVE5Abk4Ib6pjZnz8SY+JH46Z+OGY9hIHp68kczn8jQ1a27sEQ1A9ZKhviRmqtJl6jUNnVURnVUTlVILTEUZ2GdasncbbU2L+UsVrQ3mgQ+1YxOnXG4LhhGhbi2hbi+KEIBe3aGzt47Vg9goYHmoxfaUQlgzf/Ox2mg+NUhvoUBvo0NgYc3T/UgrTwuLBIUZ2GlrLfbyNDSqHHNyu4tWF8Mkq06+NmH5txPxkje5YQni6RHFSKB9xkAS6S4TOyohLVkySmzN0l0d0l0ccbIwiCbQu6lN9yoMHBkDBawmVkwnHbvOJHxyks1TJzad/bluoHhJ64xFeCw5NjrH2NSdxO0JcAK+jmEWXgQdyDDyQI6rFLGzySHLK8CdKLG6CjcMzSAydFRGdNSHqKbkFpbhtnuK2eeq7R5C2y7oNZ4gHIsKGz+tft4fjR8aQBPw5g/YcgmElGFYWrwt4y/onWOwVqJyM6S5JaC8zXLHiFPkJhySnGKNMXTfA1HUD9IdjnFpIVFK6S2N4qMbCtojeaHos11mmBLfV2bbtCN3xhO54QnGgi+tHSCQM3ePT7eRINnbwBnp0liboyh7Tr+8zs12Y2S44bkJtVR2n6eB2DMUp4eP/cCsqcOamhP5IRGFfHmKhN5LQG0nStmOgdmeBysmI0jGX+QfHiXPK+IMJcSnh8DfXEsWGKDaYGNRLEKP0RyLqN3dxGg7VpU0kBvUVd2mHgb+uMDDcYmC4Rdj1GB1owUhActMi/YGXMGZ6aUMsy7Isy7Isy7Isy3p1sg+mepmJyDBwxzmTHNKHgp39f9atqjr3baYxBBSA01n8nJPGVuDxbycdy7Isy7Isy7KsVzM7gH6ZZYPVba9EGiLybuAqVf3lZ4cRkZaqvqz5sCzLsizLsizL+n5mL+G+gIjIP4nILhF5UkTem037ORE5ICI7gBvOCbtWRB4QkcdF5L981zJtWZZlWZZlWZb1fcIOoC8sP6+q24GrgF8VkeXAB0kHzjcCl5wT9sPAn6nqVmDyuSIUkfeKyE4R2Rl12y9j1i3LsizLsizLsi5sdgB9YflVEXkMeBBYCfwMcKeqzqhqH/j0OWFvAD6Zff74c0Woqh9R1atU9Sq3UHq58m1ZlmVZlmVZlnXBswPoC4SI3Az8AHCdql4O7Ab2vcBi+nLny7Isy7Isy7Is69XCDqAvHDVgQVU7IrIZuJb0ids3iciwiHjAO88Jfx/w49nn78h7oi3LsizLsizLsl7N7AD6wvFlwBWRvcCHSC/jngT+M/AA6YB57znhfw34JRF5HFj+ymbVsizLsizLsizr+4+o2qt8rVRu3XJd/ju/BBN5CjOCXL+A56SvkXY/M8z0jRGF4x7dlRHSF/wFh2hjhyQ0lGtdmmcqOG3DyMWzACQqzJwaYPxOh8YaQ+VkwsxVQAK5eUOcU/rjEeKnaWjXpXzYpbUhxJQiRr6aZ+bWgNrDeYIabP6hgzz6+DoAqvvT11yXJmOCqkEU1AE1sHBdn9zRHL3lIbhK7qSPc2k9zVNiGPlkkeYKh864Eo5GmLaDDvXRwKFwzKO3NEaN4i2maUgMcVFhPCBZ9Pn5197Fpz9+C9e/czf7P3gpKkJnzCEYEACcPgQ16G/pULm3iDqQqyvttzUo5wPa3xgjuqZJ0PZxJ30ABvdCvyrUNyaMPwBn3hhSG2yzeLqKV3coXbJAZ88gS69Jnwc3dd8yoqISDURgwJ13ifOKM9qjuKNI4Q3TNO8Zo7elC0DloQLdcSVxAAOlU0JjU0ztKYfGdV2MoxSKAeEjgyS5tE+oXj5H9KUR2iuVqJTgtg3hSIhpuCT5hMKky5LXnebY4SXpeoqEa684wAN715M/6ZN4ijpQOwDzlynqKpWVDZL7B+lX0zT6wzFOxxCXEgqnXaItLfIPl/GaSpwXBg+EHL/NYHrpul39pZD2uMfMGwN0wUeLMdJ1MD2DWdmm8FCZxqV9vBmPaGkAQKEc4H+jRnEmYWGjwelDa31E/oxLfhqCWxp063mI0zRWfNkwfaUhziss65Es5NBcjGm65Fa2cB6qEuegN5ow/Fi6THu5UHjNLPOnB3CaDsVJoT+guJc2iPfU6K3okz/l01vZB2DJN1zmLhdQiCox1WVN9J5BOts7ePuL5OYhGIbe6gBnNq0jsrxLciZP6bRBEuiMK3EhoTjhEAwp/voGwZEqSS5J21MuYdU/CxOvdYhGQgpHfEwMcR76G7oM3JOnXxH8phLn0nIEQxAMx7zmyoM8dGAtRIbiEY9ga4fK/UV+99/9T/7tV96N5rPXy4eG6l6XxsUR/qyDuuDVhaisJC74i0JvLGFkdxp/a7kQDCdUjhhaa5Tld0UsbPRobe/iHsvjtYXazWc4s3eMwuomAL2jFVBI8srI2nmCr4/i3zrL/KEhSKAwbeiNJjjdNI3Bfcr8m7s4bsKywToLnQL1w4Pkpw3JlU2CiRIYJX/GoXY0XVfTPxwgBuKmR+mYS2lCmbk1wJnKkZtPt2X5OPSG0jT6WzoUd2/hXtYAACAASURBVBYJy2m/E67vorHgTOZY/ZWAY7f5SJiGLU2k/6Mi9Le1GP9UnpNvhO1bjrD3Xzeh2xsEJ8uUTxj6NfAXs1VbgWBTl8KTBfpVJbcoxD6El3RwDxQJ1vWo7M6z8R0H2PcvmwCoHU2YuVIYumyGmQMjOD3BbQlxXpFNLcxjFcItHaJu+gbL8n6f9oqYzVtPMvmPawgGobs8QiJBXaV01KV3eQdvX5FgXdqejJeQxIKXi3D2lMktQHNdwtDjQn0TLNkR0x53aK5Oy1E+AQuvCSke8gkGlSVbpyh9sMLkDSVam/v4Ux4mFCQE56q08PEjAyQuOAF0l8UUTjt0Vkd48w7xyh7M5tDhPhuXTwNw/N5VBMtCSoc8LnnLfiZaNc48McaqL4dMXp8jWBIzuMfQWZpuC72kCfvK9NcEyKzP4F6hs0SIC4rbEnILSmODIpGQ5NO+ym0JtYPQeksTdlcJq8oVNxxg972biGoxCJie4Zqr9wPw4MF1FPflqN18huZXx5EY2q/p4u8t0F0V4s676KoucdfF5NL2VHyswMjjIcd+FIpHPPqDym/8yD/yW19/O//n6+7k7/7uVsKSEq/rpev2wQKd69t4fkR3ooyWYnLlAGd3hd6SBHWU4bULdO8dYfBAmsbkdYZ4OMR4Mbn9BfKzSndcKG6fpfPwCCZM+4g4/8yxYbykT2F/DhODCcBvKt0xobM0IT9j6K4MkcgwuGoBgIWjg2g5Jn/cJ1gb8JvX/jO/9bW3U1jWYuBTZc5cL+l+tZS2P3IJuXJAfKyM1xSioqKruyz5bI7pKw3FM0JYhty1cyxM1NJ1Ndqm+C9VFn6wy+DXCsxdmeAvGILxiMo+j+64Uj4ueO20HM3VQm91H3ET3FM5onLCmn+JmbjRoz+Y4LQNuU0N2jNFak966fp90xlmHxon8ZU4pzAaUHq0QHNDhLfgUD6R7u81rVZ0x4S1P3SUAw+sAQGnI/TWBox/1WNxY3qckrhQPqlZfyt0xhM2/+Epjv1RDX2khtsF9+Y5VIXW/kGioZDcaR/vsmfaRndtn9J+H3PdAhuGZnls53qKE+l+IfGhX1Uqx9M8LVyWQNZdFycc2utCvEqfsOtR3uvTvrTHwGCb+qFBBvanBXE7sLg5PZ5ibZv8jjL9ASVc28M9nidc0cc76eO1s/6wquRnhda6GK9uqG2bZeb4YHqKTmHZ2lkmTgxDLBRPpH1PZ30fd95j5ddDuiMuc1sFpyeMXj/JmV3j+A0hKkB/JM281PqsWjLP8aeWkp81lK6ZRf9pmIVLlcEnhcZ6cJvCmh84xt69K9J9weMObhcW39gmClyG7s0x95oId97Fa6Z1UF2QKF0/vdGEpBaRP+ETrO8hsz4SC04f/AVhy9v3sf8Tm4nfsEDrdBUAZzBg4OsFWquEYCRG+mk5nCCNv7c0xlswuB15Oo3ihKG1IcQpR2gC2vCRQDB9we2k/fXA5bMsPDECkLaJklKYEm74qUd4cHI10Z3DT2+TpO1RGOmQv6MCQOIKzXUJblvwWkJ7TYQ/5+B0hDA79sotCN3s+LBU6VH47ABq0u1eOZLu1zrjgtsBSSDOQbC5y8YPpyvr2G0VVn21w9G3FiicEZobIwYed2mvUJxAMJfV0d011tx6DIATX1lD7oZZwjtHaG6IWP/piJM/mMMEAlubyJ4K8aUtwtkCY2vnABj6P+oc+4WNRCUlHIoYfNSlfkOP3L4CvdGEgX3p8cvUjWk/4g30WP9f+hz8uQFMIGz4xDyHfmqIgQMQloXFy0OGxuu0OnnCqQIAV115iOnfXcfxNwsUYlb+k8N9//Qfd6nqVbwAewbasizLsizLsizLsl4EO4C2LMuyLMuyLMuyrBfhVTOAFpG3icglLxzyZUn7mIiMPM/8+19ifDeLyL98+zmzLMuyLMuyLMuyXqxXzQAaeBvwsg+gRcR9qcuo6vUvR14sy7Isy7Isy7Ks75wLegAtIv+PiOwXkXtF5JMi8n4RWS8iXxaRXSJyj4hsFpHrgR8Bfl9EHhWR9eeJa0xEdmWfLxcRFZFV2ffDIlIUkTUi8g0R2SMid5wz/3YR+XMReQj4vey1Ul8VkSdF5K8AeYFytLL/N4vInSLyDyKyT0Q+ISKSzXtjNu0R4B3nLFsSkY+KyA4R2S0ib82m/3sR+Wj2eauIPCEixW97pVuWZVmWZVmWZb1KXbADaBG5GvhR4HLgh4GzT0z7CPArqrodeD/wp6p6P/AF4AOquk1VDz87PlWdBvIiUgVeC+wEXisiq4FpVe0AfwJ8TFUvAz4B/PE5UawArlfV/wD8v8C9qroF+Byw6iUU7Qrg35GeLV8H3CAieeAvgbcA24Hxc8L/BvANVX0N8HrSHwlKwIeBDSLyduCvgV/IyvC/EJH3ishOEdkZN9svIZuWZVmWZVmWZVmvLi/5cuPvITcAn1fVHtATkX8G8sD1wGeyE7cAuZcQ5/1ZvK8D/ivwRtKzx/dk86/jmbO/Hwd+75xlP6Oq2csCeN3ZcKr6RRFZeAl52KGqpwBE5FFgDdACjqrqwWz63wLvzcK/AfgREXl/9j0PrFLVvSLybmAP8Beqet/5ElPVj5D+6EBu3XL7TjPLsizLsizLsqzncCEPoM/HAIuquu1bXP5u0rPPq4HPA78OKPDFF7Hsd+r0bXDO55gX3kYC/Kiq7j/PvI2kg+9l36G8WZZlWZZlWZZlvWpdsJdwA/cBbxGRvIiUgduADnBURN4JIKnLs/BNoPICcd4D/DRwUFUTYB54E3BvNv9+4Mezzz/FM2emn+1u4CezPPwwMPgSy/Zs+4A159y7/RPnzPsK8Cvn3Ct9Rfa/RnqJ+euAYRH5sW8zD5ZlWZZlWZZlWa9qF+wAWlUfJr2veQ/wJeBxoE46sH2PiDwGPAm8NVvkU8AHsgdt/W8PEcviPEZ6RvfubNK9pGe0z16C/SvAz4nIHuBngF97jux9EHidiDxJein3iW+1nFm+eqSXbH8xe4jY9DmzfxvwgD1Zer+dTf9D4H+o6gHgPcCHRGTs28mHZVmWZVmWZVnWq5moXri3vYpIWVVb2dOl7wbeq6qPfLfzdaEqjq7Ud33xB3hkagW9vofvRVT+tgrA/EUObg+6Y0o0FGFaDmoAoxQmHfo1JRrrI02X4XXp7w3tB0borojIT7mElYT1n25z4OcLDD7qUL+hx+qPO/zoH32FP7/9LQDEOeiNx9T2OqBQ3xxTOungtkAdeN8vfp5Pvf9NzF3q0a+m9dZvCMEVbfxHS6iB7vIYdZXBRx0WtyZQDhn/V5/eYHpPfOeWFu4jFUoTisTK1K0Rww94dEcEE0PxjDJ9fUxhpENvsgTA4BOGzlIh8ZSwllA65pB4MHzzJCdPjICbII4yeG92u73AwtaE4V2Gxnroj0WUDnt0xxMG9gn1TUpcjdmw7gxHdy8HoHTK0NwYI31BxgJElHguhz/voEYxm1s4Oyt0VqS32bttQ7y8B3M5kkqEO+NRPQILlyfkph38BvSGlMHtMwAsPDJKWEuQSBjdBVFOmLs2ojiUPlcu2lclNyc0L+1TPOgDEGztsOp2l9ZSj1wz4cy1hsoRqN/Q4+p1x3nowFqcWZ9NVx1P0/jLVTR/rEmv6xPXPUzPIApuyxAsDTEdh/yUoXIyofNjdQBap6uom1Bd0iJ6aJDeli7GKOZwgfK2ORpPDbP+6hNMNtJ62D5cg0RAlNIpQ78KbG1iHqnQ2dCneMgnzkPtkDJ9Sz/dHAKF/TnUBTXQH0gwS3okiaCxsHnVGY5/dQ1RKa1T/ZEYCQWnY0hySvVQms6yW09yZGKE0qMFEg+qxxJay9PfIJsXhRSHOwSBx+r/6XD8TR7Oig7rx2Y5ODmG92QRs73+dFtrnymRm3EJRiOkFKGxgVBwyhGlHQUwcNW79rB7ejndXcMAeFcsEO0aZPiJmPwvT3Bs1wpIwMQQVhPMUJ/qPXkWr0vvAln+eY+gapjfAn5d8OtQmkpQA7EntFYKxUll/jLl8u3pcxWPLQ5R/YsqJ291GLt4htk9Y0gMJoJgWUi+FtCr5xh+0ANg8ZYuN607xAP/chnBcELppKG9IiG/ugk7a3Q2BTjzHm+9eQcAn3tyG9Q91FOclkENVI4Zejc2SQ6VkfVthqptel9cQum2MwBMPjVGftZQmFISH+oblaQc48+45OaE7rgyuktZ3Jhui+KUEgwK7VUxw7sM81uV0V3QXG0ILu2w6qMOJ3/QRx1l+V0JAFNXuUSlBBMJUTmhtrJO4/AAuXlDbzShdsDQWaok67ppXzWTx+0K/oKgBnR7g1qpy/RclSRwkK4DCRQnHNzs5h51oLE5SrflvIPTF8KSIjHEpYTiaQeA4SfTMJ1fWGTtwBy7dmxk/AFl8kZhxTcTpq9wSTa1qd5RpDwRMXmDS27LYtpmAw/niTK5q+bhq0PUL4opnXIIBpTcxXXMXQM0twUYP+1HBu4o0BkX1AG/CWERuisjKuNNwtAl/80KQ+84xdGnluKOpWV3Hy/TG4/RXEJln0fv6jbOvhIobPnBAzz15U30BxSzMi14NF2gctihuSnGaRp0ZQ/vYIEorxSnhDgHKtDd3KO4Nw9AWFaisjK0R+gNCebGBVpHa0gMxQlDWAG3A2tvOwLA43tX4S06hNWYoZWL9B4Y4aa3P8J9n7iSwmxCcTri+JtcihPm6fjl4ha9+Tw4ysh4A/9vhph6Ww85WSAaiPBnXJye0L84LfeK0QWOHxojN+uQ+BDWYoZ3OsxdFVM67qICcR68bHuvf/Nhjn96PVEpzWvjui5yJkdcTCgfdXE7sLglwp9zCAfSelg5nO77cm+YYXaugnsqR1xQGAnwDxWIC4rXkKfrVFiF7ooQ/ITigRydDX2cRZfyMcPggT7H3mYoLWnTaeTJH0r3T93VIbgJhSM53A50lyhxKUH6gr9oSDylPxpROJW2cacLrc19Sgd9uuMJ/oJh9c3HObhnJZrt/3ujCW+7aQefu+9qAPzFdD37ly2S+/wA87f2YDpHYU2T8j9WKM5EnLrFIxwNAchXA4pfK7NwfR/tOkgpwj2dozAlIBDe0KBbz1Pe69PalC6TG+jhuglLaw2mvriS5MY6cn+N3KLSXJt1tAmM7U7XbW4+5Mg7PLSQgKMQGC76aJeJ11bwWsroj59g+u9XsXBNn9yJdF0VZqCxIcFd2iE+VSQZDnEnfJyeEFaU9Vee5NiDKzFh9sydLU3iw2VQSDylcMYwcDimscYhLMHSm09xfPdyipNp+NyiMndTkPaJvlI+7CIxJB6010ZIYPCXtomOl/Fa6TLBWAyliOLeHO21EcvWzNL77BJ6w4Lbg8aWPrlqwPjtZ9uSw8QtCUPLFwnvHKG9PMFb0cbzYjrHq4zuhJkrQZYEeAcK6WrzFXWgOCF0rm9R+UaJxjrw2kJ3WYQ/67D0mkmm71n2dHuK84rTFQozQnNDxMCTLvWLYoYfMax9zwF2PrqB2l6H7pJ0P6sGwsGE/KRD4ivBWLrfzc04DBxMmN8iDD2pTF2fhc8n5E96mBC6S2O0EqV1fnWEhELpZNp2uksSVn8prSPH3uzhNQ3j101wYnII4yp+LqT8zxUWLwaJIVzeh0Z6p6TpC37d0L+4QxKldVg7LhIKq76ccPwdingJ1Z156luyujvUozdXoHLApTum+HWhsy6kfNAj9tNjyn5NcG+aS9vfI8MEwzHXXnmAHQ9ehAmEuKCUTxhIoLElxJ9yYVObUiHdlzf2D6GuUjpp6C5RvPVNepMlnI5hcC/MXab82Osf5B/3pnev6pk8Mt4jiQzFJ/O014VI36CFGJOLcY/nidd1WT02D8CR42MMPOLTG4F+LWHNZRMEf76U+c0OkkBnVcSKrwgzP9HBfzC9kFdi8BvK/FZFc0rpqENrY4i34LL03pjTrzcMPik0V6f11mtC65I+pf0+uRtnmT89AArV/S6NS0IGHvVYvLLP4E6P+qZ0m5dOG9pXdKk+UKC1Sll5R8ipmz3igjK8aY7OPaP418/Remoo237gtYStb93Lo1+6mH5NiSvpcbUJDHE1YniHS2M9hKPpftafdhncq8xtFZbfGbHwCy2eeOtv71LVsw+mfk4X+j3QHxGRS0gfnPUxO3i2LMuyLMuyLMuyXi4X9ABaVX/yW1lORP4H6dO2z/VhVf3rbz9Xz5nmMHDHeWbdqqpzL1e6lmVZlmVZlmVZ1nfGd3UALSL/GWip6n9/JeNW1V/6Tqf3YvIhIl8A7lbVrz9H2G3AMlX91+z7jwCXqOqHXqn8WpZlWZZlWZZlWed3QZ+B/m4REVdVo5e6nKr+5gsE2QZcBfxrFv4LpA9KsyzLsizLsizLsr7LXvGncIvIb4jIARG5F7gom7ZeRL4sIrtE5B4R2ZxNXyIinxORx7K/67Pp/0FEnsj+/t3zxf188T9H/m4XkT8XkZ1ZXLdl098tIl8QkW+QXYotIh8QkYdFZI+IfPBF5OP2s6+TEpGrReT+rFw7stdO/RbwLhF5VETelaX5/2Xh14jIN7K07hCRVefE+cdZXEfOiX+piNydxfWEiLz229lulmVZlmVZlmVZr3av6BloEdlO+h7lbVnajwC7gI8A71PVgyJyDfCnwC2k7zG+S1XfLiIOUM7i+DngGtJXTj0kIneR/hhwvrh5nvifyxrgNcB64JsisiGbfiVwmarOi8gbgI1ZOAG+ICKvA9rPk4+z68EHPg28S1UfFpEq6TusfxO4SlV/OQv37nMW+xPSB6V9TER+Pls3b8vmLQVuBDaTnrH+B9L3UH9FVX8nW3fF8xVURN5L+oosvPK3+7pqy7Isy7Isy7Ks71+v9CXcrwU+p6odgOye4DxwPfAZETkbLnsfELcAPwugqjFQF5EbszjaWRyfzeI154kbESk/T/zP5e9VNQEOisgR0oEpwNdUdT77/Ibsb3f2vUw6oK6cLx/PchEwmb3LGlVtZGGfL0/Xkb5TGuDjwO+dM++fsvw+JSJLsmkPAx8VES+b/+j5IlXVj5D+wEBxdOWF+04zy7Isy7Isy7Ksl9n3wj3QBlhU1W3fQ/E/eyB59nv7nGkC/K6q/sW5Ac+9pPwVFJybBQBVvTs7I/5m4HYR+QNV/ZvvQt4sy7Isy7Isy7K+L7zS90DfDbxNRAoiUgHeQnrp8lEReSeApC7Pwt8B/GI23cnuE74ni6MoIiXg7dm088V99uzuc8X/XN4pIkZE1gPrgP3nCfMV4OezM9yIyHIRGXuufDzLfmCpiFydLVsRERdokp7BPp/7SS8NB/iprMzPSURWA1Oq+pfAX5Fefm5ZlmVZlmVZlmV9i17RM9Cq+oiIfBp4DJgmvcwY0gHhn4nI/w14wKeyML8GfERE3gPEwC+q6gMicjuwI1v2r1R1N8BzxP188T+XE1n8VdJ7p3vPvrxaVb8qIhcDD2TzWsBPP08Zz122LyLvAv5ERApAF/gB4JvAfxKRR4HffdZivwL8tYh8AJghvQ/8+dwMfEBEwixvP/sC4S3LsizLsizLsqzn8Ypfwq2qvwP8znlmvfE8YaeAt55n+h8Af/Bi41bVo+eL/3l8XVXf96w4bgduf9a0DwMffgn5ePc5nx8Grj1P2lc/6/vtWfjjnOfBZ+fGmX0vZ/8/BnzsPPE/J1GY7FaJVej3XMqFgMRNfziI80p+DtyuEAcGiUFdxQRCnFfUVegbnJ6h2/cAcPpgyiE67RKXEuKShxQjEs8FAacbs9Kbg+Rs5oFKiNs2+K2E9nKDX1f6NcEEMBXWiAqG+Nw72BXEKHEenB6oo1l+Ban20bqPJIqa9GIL100Iy4oa8FuKOAmJA+pm2VAgF+M4CRKlZZcEooKSeIr6CXHBgQQ8J4ZY8GZ9wqGIqJiGT1xQowSDkq6jjgMC+WlDVAASkMBQ87t4zTRfcQ40F2O6Ln4uTKdJDqcHSU7otXyKBkiyNDxFEwFXQSCuJIDBaRuQNA9JDhyTrtyorEgoqKd4bQhLkuZD0nIkgeC1FXrPXJSisZB4QnkypDfokrhKb8SQtD0SFYiz8km2zj1h2/hp7tu3AdM3qJOWVY1CJORmDFFZMSHEcbY9GoZwPEIBE0LSdZFSiAmfqXeLvQLjlSYAB6plpGdQT0l8g9MHx4twFpRuyyUuZHnx03oBUK51idwcEp/dNlAoBjTnSwC0+jnUBaf7zI9k6ipxIcFrpvVNEii4IeOjdeYrBUwA/YoQDGR3dzhKFDnEXZc4L+n26TsM+F2SRJAk3RatZj4N3jF4TegPGDQ0SNsFUXIjfbxOHrerTPUquE6Cm904IoAKxL4QJWkblBj6y0IIBRElzkt2EwdEeSEsCpgEiYWomE47W98SL41UImG8kK7f4/VBTJCAccg5MZKkbYNQkLaLVgNMLqZf8wEoFgNOd2qYCNxOWk4TCo6T0F6SkC/3CZoujy6sSNdr18HtGnS4S9LP4XbSNuE4CYlJ60Un8DEK8630uYfqKyi4gRLkDSYEaTjkZyTdNjG4QUJYScvmHVZaKwSJ0vkmEqI8T/cbTi/GCdL1+DRR/EVDWEnbSRg7eM30OyZNX+Jz6oef4E67eE2IyiBuzGKrSNJ3kLaD5hNMx0ENT28PScCp9ok7LlHJoG5a5xEwfSEsKeqSthug0c6zdvkcDxfXE+cMmktQkbT8bpLWM1+ISko+y1cuFxJHEMYOjgvqpXk/G6ckIE6CZmUJBgW3C2F23ZPXgV4oqAq9Zo5ipByfGkbzCa6b9iXqQG7Wobc6JvEgClwcSdvq6VYNrwNxEaIoTfRsWyYSTATiRcS+UjotJH5ap9P+xiDZyyHDWoLpmbQf8yCJ0zaPCFEBJErL4kr8zCYMwW04GEnnPTCxBrejOIHitkKSvCEYyuq/r4xX2kw0cxAKvhvRL2fzigkSpP1X4kESpn3VXLuIFGMS10ElbcO90bS9uW3oLtGn6z9A1e+iTlrvnB4kPQfxFYkEdSC/kICn+A2hP5Zk7dLBbyi1fI/ZpIoJ0+2roUMwGuO2DOgz20udtO8hNJiIdP+VSLpdSg7+rMEsTSjVusSSNQCjSMN7uk6QZPtNIzi9tC6q6xJlfanXEqTnpPtXV3H62WKlGG/GTfctCXQTH8n2T2ePC1bU6ix2aiQtDyeBft9BFNxmiIoHQbpuHSfBRKChgXyMhoY4pzhBWqZIFG/KI/FI96dAPyxSWFFnsVtI+7bApVpX/KZiQkMwmJCbN7SWpuGLpzqgPrgJxk1IQiHxHaIiOMHZflEgSvtWgH4FEj/B82IiA8VqD3kylx5v9OH43CBhNcFbTMthSPcv6mi67QvgNSNM4BAuVaab5bSuZvGbEBwvISokSD/tbwpTab+FUXAVY5Qkl0Ar22ClCM32r5KPmWuUKDrgtdO2JF5CksjTNx6GBQFH8ZyEvknLGoUuqoKEAihe0xCdfXoOab032Y2BjqOUJ2LqGx2ioiKJUJgROqH3dHgTpvVeDeTmlU6tjwkdtBzhhB792MV0szblZ3UXkEBIfKVfU5y2IS7H6XIma3uuoE7aNsSPCSsu5ZNCpxw/03G4Cd6chwqYOMuHk85TX9NjsdhBuy5aDlEV4ny6DcJaggbmbBeN0xNU0jbv+jGuF9PtOWgxwWvEiCtoLGn/k/ULYd9N968FiEZDcgt+ur+IgFx6rOU3lH6SHfO0IRiGitdL13vWzhIHglEFRwkHEpZU25T9tLF1ukNE6wPimQKi0F0o4LVN2ty9tF12Y4+4ka5ccdLjjbjnEechP9QjOVAmGuiTtNO2n0SGwVznmY1BWm/dTrr/UyP0lsbU9jp0sr4mDFw855k64swq6ivSz/ZLfYMKBAOGJJ/2Ff3sGMn0DYTpcYgTp5E4HYOcPf434BQjwnJ6zH62XjGbQxJ9etu4nbRv6QQ+XgtE0nEIpPug3AKsKc6xYyA7fiun9SD2YqSX9j9xQZ8uswkFJ0jwF9Nj56FShxfrFX+NlWVZlmVZlmVZlmVdiL4XHiL2XSEivwG881mTP/PsM7qWZVmWZVmWZVmWBa/iAfTzXEr+XSMi96vq9d/hONcA16vq330n47Usy7Isy7Isy3q1ueAv4RYR54VDPe/y3zM/InynB8+ZNcBPvgzxWpZlWZZlWZZlvap8Tw+gRWSNiOwTkU+IyF4R+Yfs9VXHROS/icgjpK+cWi8iXxaRXSJyj4hszpa/XUT+XER2isgBEbktm/5uEfmCiHwDuCN7tdXvi8gTIvJ49oTss3n49WzaYyLyoWzac6X3ziyOx0Tk7mzaFhHZISKPisgeEdn4POVtZf9vFpE7s/KeLb9k846JyO9ledohIhvOKeuPPTsu4EPAa7P0//13attYlmVZlmVZlmW92nzPnH19HhcB71HV+0Tko8C/zabPqeqVACJyB+nrpg6KyDXAn/LME6vXAK8B1gPfPDvgJH0v8mWqOi8iPwpsAy4HRoCHswHwNtKngF+jqh0RGcqW/chzpPebwA+p6mkRGcjCvg/4sKp+QkR84MWeMb8C2AJMAPcBNwD3ZvPqqrpVRH4W+CPgtueJ5z8B71fV84YRkfcC7wXwS4MvMmuWZVmWZVmWZVmvPhfCAPqkqt6Xff5b4Fezz58GEJEycD3wmXPe1Xzui47+XlUT4KCIHAE2Z9O/pqrz2ecbgU+qagxMichdpK+Tugn4a1XtAGSD7edL7z7gdhH5e+Cz2bQHgN8QkRXAZ1X14Iss9w5VPZWV8VHSHwLODqA/ec7/P3yR8Z2Xqn6E9AcBSiMr9duJy7Isy7Isy7Is6/vZhTCAfvag7uz37O2oGGBRVbd9i8u/VM+Znqq+Lzsj/WZgl4hsV9W/E5GHsmn/KiK/oKrfeBHpBOd8jvlft5We53OU5Q0RMYD/oktkWZZlWZZlWZZlvaDv6XugM6tE5Lrs80/yzFlYAFS1ARwVkXcCZPczX35OkHeKDXdvcAAAIABJREFUiBGR9cA6YP950rgHeJeIOCIyCrwO2AF8Dfg5ESlmcQ89X3oisl5VH1LV3wRmgJUisg44oqp/DHweuOzbXyW865z/D2SfjwHbs88/Apx9y30TqHwH0rQsy7Isy7Isy3pVuxAG0PuBXxKRvcAg8GfnCfNTwHtE5DHgSdL7ls86QToY/hLpfcu98yz/OWAP8BjwDeA/quoZVf0y8AVgZ3YZ9ftfIL3fzx7u9QRwfxbfvwGeyJa/FPibb2UlPMugiOwBfg04+2CwvwRuyvJ0Hc+cYd8DxNmDzexDxCzLsizLsizLsr5FF8Il3JGq/vSzpq0594uqHgXe+BzLf11V3/es8LcDt5/zXYEPZH88K+yHSJ9k/YLpqeo7zpP+/7b8c1HVcvb/TuDOc6b/8rOC/r6q/vqzlp0Crj1n0q9n00OeeaDa84pzsP/0EtzjeQpNoXFFTHE4/Y3F7cDCtgi37pA/49AfSBjebUg8GPo3pzjy+HJKRzxyi0qDKgBDZ5T2Kh9RGHjCZe5il00rjnP05CquWH2S7qkSH9x3G72x9Cp004efufwhPt68EbdhGN42zZmlAyy5w2P2cuFTB7Yz3k6ISobcbHr/uddS4j1lvA4kDhRPuIQVJfEh6biYSJi/2CDZhe7RgSpRLaG1wqGeN5jpHM11kJ+BztKE4hmBRIh3DuCU04UWL1Lys4b+5R10Nk9YViSBXuTiLjoUpoRwPEGzx8NFRZBYCK5pEU0VUE/pV4WokqQBDPhzhsfv2sjAkTSN2SuV0iEfiaHjlCmuaUA5AnEIhmMGh1ssLndxhtIr+5cMNRgvNTg8P0IYO1S/UmHhIiEe7xF1HZbd4dAbFbr99EIENUr5pAMKs5dDbzzCXXTJLQtZrJfwtza57E3HuGvnJQTDaT51wUfihKntPmO3nMZfrJI7UqG3MeLhJ9YDUF5b58nDywEoLhP2zo1B3zB+P0xfJcSlhP7yCPqG7vKI8XsNi5sMvYkyAINHodfMseoNE5xZHGBs7RSn5gYoTCvt3cOU60J9fox6tv3MUIIKmHKfxHFRB25Ydoy7ll6BGenhTBUYfTRkYaMH2SMKSrk+8QmltUKIN3YYuqNAsEowdRd3WYfT0wMseyJm+qq0rhePu4iCCuQWFFEl8YQDU6P4foS/AMGw0lwD8douANUdRRpbhOIRj9a44tWhX3KY6lZI2i5JDhoLRZYvXQBgIh6kM55QfLxAtD0gSITSSIehUodOUqU7ath7apyk6TGcFX7haI1kWcTUoCE5uASTV3LzhoGdPvXNMVJL6I4r2km79bnLBImUoc1zzExXkaZL+6IYZ97FaxgkAknAxHC4MQJAff8Q8z8RMfCIofvIUgrvWCS5d5CoCP7SNsF8Aafap31FWu6LBxZphz7RlU2So2XcjhIXEpqzJbyuEIUOa74QUbgsTPuEZXWCoyNEvQLByj5J6JGfg9iN8U8IZkuH5hPDsFLJOWk9HHzckFtMmLw1RgLFX9IhiQ3lHQWm3tZDThaYvdTlJ994FwCfad1E9agy/4YejVEhrnvMXaO48y7O4QKH3xuQPyj0B2OaK9JGG1aVsYeUM7fEFI96tAsl8pc0ye2s0PUFdSEqJTCZT+vInKG7LGb4KeiMGhZOVNFCQvFIWu96I4LbFsKK0lkdPd3uzVQeNxRy84LXhKgArYtCpOPgZPVVTfrBPFVmenWFlWtnmJlcij8ndIcgLijx8RJSg6DmklvRoLFQBKC2O4cXKP0Ha7RXKPgJ/aoydvkUza+NEwzC+GidmUeXAGn97o0IYSUBDF4LTM8golSG2rRWDcBEHsknxHvTC5kKi6AOhHMe+Tml3XMonVQWLlVyTkyjAIN7ldq1MwB0/nE57SXK4FNC7Av1kQIrd8R0RhyCvNAbSxjaI3RWGVrr03U1+pBDY62wsDVm8AlDI/BQR3FahuDiLtUHCiQu7J0aT/vDVfPMLY7iN4TWzhGCFTFez8dZInSWOZgoT/6MQ+1QWqemboqZODFMebSN880BJhhmRCEOHLymoXIcGjd1WftfezT+ex+AzQPT7PvkpUxfBSNbp5l5apTukjS+OAf95X1IBL+e3j21Ir/I/asT1AU0O1fhgPSF6rGE7rChcNxgQvBn0zYb56H6RMThJ5dx6zVPsOuhywiWxYibMPKwRzAoT+9nANorE/wzHv2xiO6SBNNwiQcikjmP1rhDvK5Lq15g6J4c7RXpMrlKQFh3WfJwyNTVHnElwfQMxdMGva6Oe3eNzsYQaaUJOScNCHTHlbdf/zBf/odrOTgxBkZJVvfY+PsB+99T4drKIb4WXAFAfyghLiYcvnc1/Ztjlq2ZpfnVcdgQYkKlvSJPYUqIGmm5+/UqTlUYftClnr2npHxKGDgYMLMtR3igisTpajRB2j6ifEL9ZI21myeJ5iE4UyAYFOauivBnBC1HRIGHfySNb+GSMuXVi3Q6OfL5kE7dZ+LGIn4dEg+mW2X6NXBKIf3BtOzVQwY57rJt22l263LiPTX8CPp5pT8eYiZKOEHaPwDEh8uoA17DUJpQGuuUfs0lLoDbFtoTFcgnmDDrd0pQ2FmksyzhTTfv4u6PXU0wCAh4sy5+QwiaFUb2wdy2tK6ZOY9LrzrKwWPrGb7LJ3nH/8/enQfbcd4F3v/+ejv7cnddXV3pSpZleZNlyXa8Yjt2QjAhCSTAEAbeMLx4KgMJgcrUUDA1k3cCU0kxFAVTzMsbAoSBEJhsQ0hCEse2bMfxJluyNmu1dunu95579nO6+/f+0cfOjUeOlUSOt9+n6tTt0/10P7/ufvrp89x+urtKY7hAegYqV3Up7ErTHFGOvzNKtuOzQmm3z0x1EFkR47SFvlKdVtejVg5BXd7zzof47FduprM+qddH/ymgNupSWxPjA4vrPfr3KJX1UNzv0hxWOo8OMbAnyaM+4rC0XonTSm21C2fTxK7QN1Bj9qp+Zp5cC54SVJIYAfLPBHi3LOB8tQ+v4dAuK/6Ch9uG+SuEsBQxfVtMppRc82rVUqTWLVHXIv6kT2Zakvrr8ogo5VGcgdk3JfVHdaz3uyfTRZccVIWVE7MsPrACdcHpKH3PKLN3tZP6LU7KVGdlF0Sh6dENHeKMMPyQx+zVSnWNR+aAQ3NDmzD/nWNw8+qT7NBxWlEAAvUNHZyKh19TahMx+ZMO1dVC59kSAF5RSU+73Hf4EsLVHQgFJxtSy3uMbHOZ6ncojC8xs1Bgejo538QrQmQhoH15k8zODNFYSPaMj755gUa1Dy2E9PkN8keSgtgaVAq5FjWBTiYk+3iBKA3qxcQK8ZomhA7PfHVDEtOVDZAAtyU0VoecPNPPaK/Kqk7E+PMuU9cm5TLu9W1trO/QHPUoHHIJc7B0aYi36OJ0YfpaQKE54JA/nqSvrYlxciFhzqU9kyd7wqMxntx5GpTaBBWP8aEFTg1nnt+2EkNp3QLtqQFSi9Ac9GgPxnhVoZxtshSUqNcy5KaT9IubQ9J7PD7z2PW4o228yQxDj7nMbUp+Q+XWVVhsl2GojdP7TdkedJjZ6hDmImbERyvn32H3tXAF2hhjjDHGGGOMecW9qq9Aq+oxkm7PP+j877tgwVwgIjIA3HuOSXeo6txLza+qExc8KGOMMcYYY4wxL8muQP+Iqeqcqm4+x2dORL79UvOLyCdF5LLe8O++/BEbY4wxxhhjjAFrQL+qqOqN55Hm/1bVfb2v1oA2xhhjjDHGmB8Ra0C/iohIrff3NhHZJiKfE5H9IvJpEZHetG0ico2IfAzIiMhOEfn0Kxq4McYYY4wxxrwBWAP61etq4EPAZSTvr75p+URV/R2g2ev+/Ys/aCYicreIbBeR7VG9/tIzGGOMMcYYY8wblDWgX70eV9VTqhoDO3nBq7suFFX9hKpeo6rXuLncy5GFMcYYY4wxxrwuWAP61au9bDjiVf7EdGOMMcYYY4x5vbMG9GtbV0T8VzoIY4wxxhhjjHkjsAb0a9sngF32EDFjjDHGGGOMeflZA/pVRFXzvb/bVPXty8b/hqp+qjd8m6pu7w3/B1W99Id5iNh35e+CeyqNRCARRCdyVDbEVDbENFdF+AsuXkOI0oq6sHC5Up2Aw0dWEGcjGqsjauMQlkLCUkjsAYWQ1khIaiGmNQSnv7aGvn3Kk3vXceI9Y2T8kNIhks9h+Md/+jHId/FqwuSZPkbu9Wn1OZQPguwscOIXQ8KM0tjcpLG5iduG9mBMdiqmORrTWNtFYii9eZLUlEeci/CaybqpC15N2HD5KZpjId2C4leFvn3gdMCvOmTmI+g6jD3QIDMtZKYF9SB3Rsk9nMNpJ+s/8njMZX1TZKeEpUtCnIpPFEAUQLcY0zexQPBkHlTw+1qEOSV7ykXzIX2rF2iv6tIZjKivFOorJdneW6t0isrYtpj2gRJeKiS8qobmQ5rtAOkKYc0nrPlM7xxhx/FxKidKxDtKTN6sxCmFRZ/xiVmCSkjsKQszBRZmCnh1h9Y1dWoXRbTGO3gVl7A/ZPFQP3HNp5Rrsv9PL+fiS08/Xx5K+10yRxfoFpTp+8dozWToFCG7L03hoIe0HZr7yrjzPu68j9OF+ZNlssc92kXBrwpOSxh8yCc15ZGe9qhc5CAhXHzZaS6+7HSybxzY/+QaSkc7lIIm146foFMW2qMhmRmlPRzRWhHSWhESjNXBUdxTaeJUUk6/sf1K1tx8gvWj0zQmusxv9Fm6oot/PIV/PMXU4UEqG5JyUrovQ2tQiJ4so4HSqQW4p9KceovidASnIzTWdhl5vM2aL83x67/5RTpFYWl9TDHXQlWoTcSgQv9eJVoMiBYDli7vgijdglJdB04kFPYGTH1zFcGsR3uijdQ8zkyVOTNVJr8rRblUp7WpiewpkCq38N2IUweHidJCq18pFpqQiqmuhupqCFbVCWZdgoqDqDB++SSpa+ZZ3BQisaDHcmRPC+VdHuVdHoVn4cfftp2ZE32Ut6cAcBc8nFBQF1qXtAgzsHLLWY48Nc6Rp8YpXLyINFxSPznN9C0hw4UaxTsnyZ1V2vWAYMZl4GsZdD5A5wOevXctk4tFUg8XkBjmN0eMPCrkBxqgIE7M0Z932Lt/nL37x5k/VSZKQ3ddi0Jfg1tv2kOnKFSOl8CB+dNlwrE2XlXo7CvR2VeiNg5zVwrlXT4jjwiZBwqEc2lmrxTed8WjeE2hfDjm839/K5//+1tBoTYuRFUfRMmd8EhNengtIX8SSqUGwSIQC30HO/Qd7BBnIybfHFHc49OY6JI56dGayeB2wK8KEoMz1iQqh0TlkPSs4vS3OX1nUq8EKxogSmN1SJhV8ieSOivMxeSH6+SH66z6qkNubYXcSaFTUtyOUr+izei9Ll4z2Sfrrz9OZa1LZa1LlFG27byUSjNNtxgT5pTcVARAUHFwu0m9lLq/iLiKuEr31goq0BxSgkWhuCugMxRRbaWobWrh1aHaShGllCilOBFkppX0jENrVZf4pgpRLqK2mMUVxa8JXkPwh5t0BiI6AxHNYaV6dYvcaSFViRl83KXdL6SnHYqpFii0yw71bkC9G3DqrpjMXEy7T6iPK/1ji5y5xWH+6pjmSIy/5FCdELyqi7+QfCSG9uo2TkfwGuAczQDgtQSZSrF4VZduHsKuS9h1qd83TNgX0hyL8Gog5Q5XjZ0mCpTWcEhjyCEKlJkfbzPz422cuku6r0V3d4ni8ZDivqQjV25/iqEtU0gI4VLA4V/uoxu5dCOX7f+4Cb8W4U7UmDw6gNsSvJUNJBQaVzUp9jUgEqIURCmYahcpHhYkhOy0AuAvOKirzGwRquuSfbp0eff5bdsejDhxl4MGyjefvozKxcrQykVkPmD22pj6eEyU+s75LM6HpK9YxC90KB4R4kyMU3fJn4wZeayCnEqT25tm7rqQ1uoOrdUdcpk2Q0/B5Js8nDZIW4jTMWEOoqdLFE5F0HHwl5JPfQw0FeG2hS9/7U10r6qR3pdh5dc9dDrF/vfnKB50+f0v/CxDO5ShHcpFm08RzLtkZgQEZp4aobohxHcjprc6dPIOrSHFr4NfB6cjRGnoO9wiGm0ztuUs9ZtrHHuHhxOC2xK6/THtoZhwuEM43AEvJjXrMlvL0e6H9ZtOEaYhM9AkzCtuJiTsC5m5o8PMHR0q60G/1cfA1zK0DxYhH9LuU2rXN4nSsHiyTHswQk5kSE87pKcdugVA4LFjE8SxQ5hRwgx0hkK8GR9vtEH2kkWitBKllXC0TfkARBmlPpr8VjhzO3gNZWBvhHSEzFmXOIA4ACeC2rqILdcf4ivf2ko3D14D+m6aTJaZgnhVi9qYkD/mkD/m4LaErNchDmDhLU2a7YBgEfKTEfnDPhJDONT5zu86B5bWR2hKyZ1wYG2D2ZkC9TMFiIS5q4S/33kdXk1w/QjXj6iucikdC3HHG7CnQLtfiQPorAiprYmRWNjyE/uojbrURl2CqhIVIzKnXVoT7WR/FaH1xABOF9zeuXX+CnAqHk7FI7p+iWo9zfzVEY3RGB1vEWaU6KYKwaKQH6nhzfjk0h1y6Q7Fp5JzmEQw+LRSWx1TnRBGByusui+itloYWrUIDqiXfMSLcVvC9NEBpp8eobG2S5hVunlh/nLhirGzSCwUj0DxCGQPBWQOp+gfWySY9PEOZamNJ8dHddwBhdTRFIXjMSig8OTedZQfTKPZiMLegJ/Z/BRvvmk36kL/bofZrTEXvfko6VmH9KxDtz9GN1UZ7KuSOxDQt8Nj/egMxb0+rX4H6QgAhYezz+9zb8HDqzkUvp3BCSH7dIbmkPKfLvsK3ZLinw344tFNdK+t0r22SuEYzM8UCbbn8Y6nafcprcGYsO2RmvZI78rinkkhCqIQ7MlSvaFJlIKBJ136Hg/o5AUU4kApHQYnhHy+RXdTje6mGr+89RGcjtC8oUZmSskd9Qj7QzqjyW9w9ZRgSYnSEKXBHWrhehHrP10FkjrSLXZZWh+RSnWZu0o5dniE7BnBGWsmn67ifaGfTkkpHQ2Zu1Jwhlv4NWFlvkJ6XvGDkMolEZVLIvwZj9kfb4EoUc2jU1ZmfqyLN9ZAXUh/sUx5P/hHMmSfTj7psy5RWvHqDsNPdcn/c+G820zWgDbGGGOMMcYYY86DPZjqZSYiA8C9y0a5JA8Fe+7vc+5Q1bkLlMdz+fCCPH6ofIwxxhhjjDHmjcwa0BeQiGwE/oGkc8d7VPVIr7G6+Ydc7oeAT6hqo/f9q8B7VXUR4ELkYYwxxhhjjDHme3vDd+EWkQv5T4R3AZ9T1atV9cgFXO6HgOxzX1T1rucaz8YYY4wxxhhjfjRekw1oEZkQkf0i8ikROSginxaRO0XkYRE5JCLX9dLlROSvRORxEdkhIu/sjX+fiHxJRO4D7hURR0T+R2+Z94jIV0XkPb20W0XkARF5UkS+LiKjLxLTXSQN3feLyP29GPcsm/5hEflIb3ibiHy8F9dBEbmlN94Vkf8mIntEZJeIfEBEPgisBO4Xkft76Y6JyGBv+Ld76ff0rlQ/t32eEZG/EJG9IvINEcm8HPvCGGOMMcYYY94oXpMN6J71wB8BG3uf9wI3Ax8GfreX5veA+1T1OuB24A9FJNebtoWkm/WtwM8AE8BlwC8BNwD03rH833vptgJ/BfzBuYJR1a8Cfw78sarefh7xe724PgT85964u3txbFbVTcCnVfVPgTPA7S9crohsBX4FeBNwPfBrInJ1b/LFwJ+p6uXAIvDucwUhIneLyHYR2R7VaucRtjHGGGOMMca8Mb2W74E+qqq7AURkL3CvqqqI7CZphAK8FXiHiHy49z0NrO4N36Oq873hm4HPqmoMTD53pRe4BLgCuEdEIHkw19kLFP8Xen+fXBbvncCfq2oIsCy+F3Mz8EVVrQOIyBeAW4AvkWyfnefI47uo6idI3idNavW4/iArYowxxhhjjDFvBK/lBnR72XC87HvMd9ZLgHer6oHlM4rIm4D6eeQhwF5VveEHiC/ku6/wp18w/bl4I16e/bB8+0SAdeE2xhhjjDHGmB/Ca7kL9/n4OvAB6V0+Xta9+YUeBt7duxd6BLitN/4AMCQiz3fpFpHLzzPvKWBYRAZEJAW8/TzmuQf4t8892ExE+nvjq8C53u79EPAuEcn2uqb/dG+cMcYYY4wxxpgL7PXegP4o4AO7et28P/oi6T4PnAL2AX8HPAVUVLUDvAf4uIg8DewEbjyfjFW1C/wX4HGShvH+85jtk8CJXrxPk9zXDUkX668t61r+XB5PAZ/q5fEY8ElV3XE+8RljjDHGGGOM+f6Iqt32CiAieVWticgASYP0JlWdfKXj+lFKj43rxf/qt0nPKZnZkMaQR+2nqgD05xssPLCCKA1cWiUIQpqNFJzMwHiTvlKdufk8mT0ZOuWkTLlNYcUtpznz2ErctiBhko8TQWtzA1WBsykkFACi0Tb+iRTqQWpOaG1pkH84S31MSS0I2UmlsUKoXdrBn/QByJ0RunlojEXkTrrU1oWkJz06pZj0jEO7P0ZCYfTRCIBO3mHl3UfY+fQ6csdd2gOK2xaijTXkUI7SYWgNCLWLIsrjyZvCFqYLrPy6y8JGl9iDzXfu5+l7NtIaDvH7W3h786DQGooBKBxzaKxQMlNClIJgCRY3dyES3EKX4rfSLG5UCmsqBF8qA1C5GDbdfIgd29eTmnUo3jTNzHyB1P4McaB0BmK8gSbhbNITX/2YVV936GaF6bd08FIhYcvHOxuw5rpTHHlmJeoo3pILgF8TugUlXtkilenieRGtlk/UdVEV0gfSZKeVdf/XQXbfcwkArdGQkW85zGxN9mV6NtkuXsWhcOUc85Mlhh/06NuzBMCJu0o013Zwah7qKuv/vsXhX0zTv9NhfnNMeY9DHAitAeiUk23Vt09YurVJNJdi4CmH2RtD3FyXzM4szSEld0YY2Nvh9K92APB25umUlPS8UHo2orI22SdOCM5NC3Se6qOzoUmp2CC6fwCA+lhMlI8JZlzYUEefzbHhhmMc+5e1NFZH5J918epKfTwpn53+iNI+j/RCzPRbOqQPpQnzSpiNCVY0iGOh2wgo7gporkjKev4YBDVl6tYIaTmkJ126lzfIPZJF7pwnerCf2tqI9IrkzpHukQJOCP6S0OlTwhUdhu/xid87R3PbEPU1EfmjLvXxGK+WHB9D10yxuG0FbhvcplJdC15TkCuWCB4s4tWVxkqhs7GZbNtvpgkzgnrQGoDYVzLTQm11cmx0SkrYH5I96tNclRwfqSmX/Ell4XJFQiHsC8kMNEltK1K9oYl/KENmyxypf+hLykifQ2sInCsrxLFDvD/P2ptOcHyun/S2AkvXN3HOpnGbyTqUjii1dy4R3FuienMDOZEhysf4Cw5DT8fUh12ity7Q2lcmLCVlBIWhxx2mbwpxay6brj3C3gfWk54VbvrXT3HPfVcT5WKknJQR90Sa4S1TnDkyhAYx+QM+UQo6fTF9e4Ubfn07X350C8OPCtN3dpN6ZG+KzLTSKQqVqzsMPOLTzQl+XdF3zLFwrA9KXeidLrP70sj1i3j3lIl96PRBmFWIwe1AFED+hNC6vUprKQVAeUdA5Zo21D3Ui8FT+oaqFP+/Iid/IURjwfViBr6S3O3TWOFQejbi1DtCyk+kWFofM7hTmL1aWXVvzNR1Lp2JNhN/53Dyfb3K9USGiz5X5ei/d8hty1FfCd1yzMgjwtwVQrc/glRE7kASUxQkx06nrDhr6gx8McvsJmHswZD5S3xag0pnKMItdHGPJXHFHjgdiC5qElUCyrs93I7S/IklxvsWOf7AGjqlOLkBCrjthj089sVNdPqU7nAXf8rH37BEs5rGPx0w+q2Qqev8pE4YSu48krNp+vZB5RLwqkKnPyZ7UYVu16O1kGbgMY/msDxf50okeE2IfejbBzN3tgmOp7jlx3fx2P+6inafUj4IlfVJTOt/7BgHH5lAXcidEiqXdwnKbSYG5zn+8DipeaF6UYSEgl9NVkR7lxtSVyxSnc4zNLbIzMk+rr7sKDt3rSN/1CW6sYLnJjFdPjTJE8fX4B7KEqWVoCLEPqRnoD0AzXVtyttT1FYr4VBSDmk7EMS4mZCo6jMyvsBiLUNnMkt+9RKt/WW6pYjsieSur9SC0hpMtkP/LmHxMiWYd8jMKrnJiHbJZfrGZD2CueRcEGaVOBuTOe3SLSpRoGQmqvj3lahcGuEtOfhLQrs/Kex+VXC6IDG0rmoQd1wQJbM/TeFEzOCvHWfv/nGchkNcSOoRL9clnk6j5S7+yYA4BcQQjnSQqofbdEBg5YNJ+oUNHo1RJXdKCHNJefSrQmsoAhcKY0uEj/fRHIlxBpMyEnUciAVpuQx/W2gOOox95Syn3vmdF6WoQOfa5OGo6UfzeHUFgTAjVNdHEEP5GYfKTS3imk9+pIb3zTK13uNg3LaQvXqOhTMlsic8cjfN0Nw2RGtIyZ5N9mdzJMarJ2Ukd/UcjScHGX4yZHqrR//1k8xXczhPJR0I21c0Kd+fxunt7vlNStQXMji8RPWpAfInk+PLa8DsHW1u3XCIBx6/DK/u4DV6v5PSSmcoxFv00LEW8WJA6RmXMJPso+rGLmNfdzj9k706oeUSzLk4HSH2lSid/B4Y3B1RHXPplKB7WYOo46LtpJCXd/mEGbj8p/ez+ysbGX6yw+ymgG4e2iu6+KU2+QdydIpJTI1VEdmxGuGeImys0Wn6THzawf0PUxydHCRa8pGOQ2bSQXrVeuPSNhoJI/d5NFY41NZFOOUOciqNRBBsXKI+nQM/maG4K+DWX3qCez9/LbEPSFIPNdZ3GPi2jygs3Nlk5IspurlkPSrrIQ4gysSkZlzaF7VAhfyuFNmpmKnbQ4KzPk4kvbIOrQHFvbhGHAtBENLtuuQybcJvDpJaVGZuiEhNu0Trk/MsJzOUD0DlrXVuX3eIe565NKlwvoNBAAAgAElEQVT7lnwKR1yaI0qUUtxWb/+lFH9VHT2URx3wGoK/dQH3a2UWru2SLrbxvIj0l0rU7krKbnsqC8UuF/2lMntlBhVYujjiiquOs/+RtbhNwa/y/DEbJz+PiXIxXtUhzMXggHpKMOPiNYTGRBf83u+XfQFy8wLVqXxSn6Yj8rvSVC8KkUhwOkLhqIP3tlmqTw4C8NaffIKHPnUti5eHSCZCWy6FFVVqlQz5UpMwdJGnigSVJJbcT01S+eYKmlsaBM9k6eYV/6Iqw8UaJ/etQEIo7xfmbupAK6mrEBj+tsv0bV2GHvSprRLaAzG5kw5v+vmn2bZtE+FAl6HRJJPFXYN0B0IGH/GY2xrTv9Nh6c46l41OsWf7WjZsOUEUOxw8voL8/gCAsbcd59hDa2iPhAw94uL8/AxP/MTHnlTVa3gJr+V7oC+0L4tIGQiAj77RGs/GGGOMMcYYY763V30DundF+N5zTLpDVecuVD6qetv3EdOfATe9YPSfqOpfX6h4jDHGGGOMMca8urzqG9C9RvLmVzqO5VT11881XkQ2Av9A0tHvPap65ELkJyIfAj6hqo3e968C71XVxQuxfGOMMcYYY4wxL+31/hCxl/TcE68vkHcBn1PVqy9U47nnQ0D2uS+qepc1no0xxhhjjDHmR+s12YAWkQkR2S8inxKRgyLyaRG5U0QeFpFDInJdL11ORP5KRB4XkR0i8s7e+PeJyJdE5D7g3t7rq/5Hb5n3iMhXReQ9vbRbReQBEXlSRL4uIqMvEtNdJA3d94vI/b0Y9yyb/mER+UhveJuIfLwX10ERuaU33hWR/yYie0Rkl4h8QEQ+CKwE7n/uKdwickxEBnvDv91Lv6d3pfq57fOMiPyFiOwVkW+IiL0H2hhjjDHGGGN+CK/JBnTPeuCPgI29z3uBm4EPA7/bS/N7wH2qeh1wO/CHvfclA2wh6WZ9K/AzwARwGfBLwPPvfQb+ey/dVuCvgD84VzCq+lXgz4E/VtXbzyN+rxfXh4D/3Bt3dy+Ozaq6Cfi0qv4pcAa4/YXLFZGtwK8AbwKuB35t2buuLwb+TFUvBxaBd58rCBG5W0S2i8j2qF4/j7CNMcYYY4wx5o3pVX8P9PdwVFV3A/Te8XyvqqqI7CZphAK8FXiHiHy49z0NrO4N36Oq873hm4HPqmoMTC573/IlwBXAPSIC4AJnL1D8X+j9fXJZvHcCf66qIcCy+F7MzcAXVbUOICJfAG4BvkSyfXaeI4/voqqfIHnPNOmxcXunmTHGGGOMMca8iNdyA7q9bDhe9j3mO+slwLtV9cDyGUXkTcD5XG4VYK+q3vADxBfy3Vf40y+Y/ly8ES/Pfli+fSLAunAbY4wxxhhjzA/htdyF+3x8HfiA9C4fL+ve/EIPA+/u3Qs9AtzWG38AGBKR57t0i8jl55n3FDAsIgMikgLefh7z3AP82+cebCYi/b3xVaBwjvQPAe8SkWyva/pP98YZY4wxxhhjjLnAXu8N6I8CPrCr1837oy+S7vPAKWAf8HfAU0BFVTvAe4CPi8jTwE7gxvPJWFW7wH8BHidpGO8/j9k+CZzoxfs0yX3dkHSx/tqyruXP5fEU8KleHo8Bn1TVHecTnzHGGGOMMcaY74+o2m2vACKSV9WaiAyQNEhvUtXJVzquH6XUulW68oO/RVwMyR4JuOhtzzL1l2sBmL1aKR52aA5DmFVKh6G+UshMweLWDtJ0WXPJJNP3jdG8tAVAbk8avb5C+1CR2FcGdgkLl0H+hFC5NGLgSYeLf3U/jxxcl6Q/kCJKQelITHV18r+dxuqQ9FmPwd0Rfb95nAMPrsW/fInGyeSC/OAOYeamEG/eIz0j1DZ28GZ9CpfNs3Fgmice3sjwdmXqTck6Ol0hXNkmvzON11Qqlyi5Ew6loxHTWxyGd8Sc+ekOuhig6TjZLmd83DY0RyPcpkOUienf6fAzv3kff/PPb6YzEAGQPZH0xHdb0O5ThnfEnL4DpNghbnkEkx7dUgwChWddbv/Xj3P//7wOgG4ewivqhF0XrXn0jy8yP12kvCOgXQKuXiLeWyRc3wQgqvi45Q5R22XFikVmdw0jMXRXdBj9ms/cFUJ3dZsN41MAHDg2ipcOKd2XIfZg8YY2XioEFbpLAYNjFaKvDLB4afz8v9W8wSYXfSzkwK8WKO9zqGxI6oo4E/Nzb3qc/7X9WqTp4A0l+zu9PUf5rWeZKM7xxL9cQXsgpnjEwW0pC1fGeFWH4adi6itcKtckdxjkd6WobW4hoox8OcWqDxwijB2Of3o9xfecYe5fxqhtaqOxACCO4p8OiF3w60K3oMS+kp52aKwJGdjuMn+lMvw4RL+QPEKgE7o0nynjNoWgCmEauKZC83QeTcdI1wGFzGkXSPaz9HdY9Q8+J98qFA+5pOdjVr//EDtPriKd6dDd0Uf+hNJYkcTVGA/pW1Vh4WwRb9HDqwvtgZhVG6eYfnSUYAmql3bIlJNt5T5WpDkSw8oWA1/LUF0jSATNFRF+xSGoCtf9zC666vCtJy4FYOWGGeYeXcHQjpCp61wKx2BpLaQWhMZYDINtZDKV3HgCDD8B6kDj5ypUTxbJH3VpDSmpBSG6bolWIyC7N43bBu+OWQDqzRT9X8hx9raYwiGP9JtnmJkqkT0c0FjbZXz1LKcOD+NVe4VEIV7TJKr6pCZ9uoUYhtrEHZf+x306b6ugj5ZpbUrKrXckTXhRi/5yjdnDA6TmHSSG6Ioa7q48UVqZuPEkM58dZ2FLCMCK+12aQw6VK7vkD/i0t9bp1n0K+wJaw4pEkDsFrf5kxfOnlOaI0NjUJL03Q6ekhH0huIq0XHInXNplpVuOWP+ZLgBHftXBmfOJChEDT3hcd/cOth1fDzuL9O+PWLjYJTOjLN6e7L84FJzZgL49QuzD4qVK8ZBDfVyRONnuCMQurPxWUj/MXuExcecxAI5um8DpQmNtl2Daw+kKQQWWLgkpHErqkdqVbcSNKZfr8OUBKuth8GmlmxNq45CeEbym0ikJV77rGQAePzZBsC9D/y2TVL+2gqWNIf68SxwoUX9I+amA2irFr/WOpyiJUx3In1TcjrI04dBcFZFZUSN1TxH37XPML+ZYPzoDwNmvrKY2EeG2HDKTQqcEKx9qU10dsHBHi/SuDO0+RdY0krptMUVupE60s0S3GBOVQ4KzPl5DaGxokzoZUHwWKheD0+7FpSAhZCeV+iph9NZTHD01hH8ywGsKzY0tMrk2zbN5APyKQ5RS4kDJr16ivbdM8ao5Gg8PArD6XxY5/AslMlPJ8quXdikM1agfK+F0BLcp5E4r81si3JpDas6hPRgTZWOKo1UAWm2f7EN5ujnwGlDZ0iZ1IoXbgiidbMs4UJxOksftP/UUD35uC3EAxWdjpm6JWbNumrNPjJKaE9QBr5XUR41VybmmtF9oDQntDU0QyOdbuE5MbU8/3f6I9KRHah6WLknKlNNw8OuCd9UijXqK8eEFThwYQX2leMBDHQgz0BqJyJ1M6rdOSems6JLfH+CE4LShvlpxW8LotzuEWYfpLS4SJevhtpNlxL4SpZWxB2NSHzjLs0+P4TUFXdegu5DihqsOsetLSV3ldJNtvGHdWY7sXEXuogrxw33ULmvjTQUUjsHC5gh/PolJ3aQuCUc6BKcCOsMhCIx9wyEKhMmbY9KTXnKOK/Z+s65qIsczbLzxKKc+s5bFG9uUHk/TzUN7U4NwKcCtO2SmkrrKq0F1XYzEwuCV09RaKUb+JM3UdWlag0pq/RL5zxdorHAIeze8NcdC/AUXb0OVeF+BMKukZx0yU8rSuiQWTUfkD/sAZG6boXn/EK1hJTUndItK/gQ0B4XcWaV+V5XW2RzlfUlMrQGhtb5NkO3Qns9QfMajm4f4qirhiRz+mjpRJHQrKdKnkzw6fTH9F8/TaPuE+4pkNy2Q+UyZylqH1lCMphRCofBsksfSFV0QJXXGp3AMWoNCfXXE6g1TnDg0QjDn0C0q2TVL5D9bBGD6rjb996VRB+auC3HqLkNPwsxWSE87rPxWk1N3ZEjNJdspMxuzsNFBN9bgUI7OQETmtEdrfZsV/+Iz/O+OcvSLF9EtJNsUwC12ECD3aJZ2P0SX1Al25pAY2v1JWXPaghP1TjUC4coOwYkAVIgvqVG8N0enIPg1Zf66Lk7VQ13lkr9KjtkDH8qQOZDi+nfu4qGjF7F2eI4jk0PkHs8QpyC6bon2qTzZU8m2qm3sUN4RUJ1QooEuzqKHjLTxjqQpH1RmN0M83KH/oRRzVyeBpac8OuWY/DGHbhHaAzEMtCk/lKYxKrQHIjQV4xWSc020kEIzERPjM0w+NEZ7fYtSqUHmM2VmNwlxSgnW1Ogcz+OMJXVoOJ2Bcpfi9jR9BzrMvb+OfruPVr8SVITmipi1l5/h2RPDyfFX8YhTMaX9Hl5DmXtTiPgxhadTrH3XEfY/sI6xG08zU0ueqRw/0kdjPEI6gttK6qb+fVAbE+IUOFdW6BwuUrxsjqVnBp4/d+ROCd18cvyWjsRMXyPEgdK/W6ivFLJTSn1lrx65ooL3YAl1IfeWKaamymjLxV9w6fZFOC0Hd0WDbiXF2JqkYLX/cYTFtzQJqz5DjyTH/8x1McWDLo2VSmpWyN8xxeTRJKb0tEeYVQavnGbyZD/5gz71NRGajciWm3QPFCkeAZzeORqorO+dbyIYfTji5E8Ix//dv39SVa/hJbyW74G+0L4sImUgAD76Rms8G2OMMcYYY4z53l71DejeFeF7zzHpDlWdu1D5qOpt30dMfwbc9ILRf6Kqf32h4vlBiMj7gGtU9TfOMa2mqvkffVTGGGOMMcYY8/rwqm9A9xrJm1/pOJZT1V9/pWMwxhhjjDHGGPOj9Xp/iNjrioj8bxF5UkT2isjdvXG/IiIHReRxll0VF5G1IvKIiOwWkd9/xYI2xhhjjDHGmNcJa0C/tvwbVd0KXAN8UETGgP+HpOF8M3DZsrR/Avy/qnolcPbFFigid4vIdhHZHi2dz6uxjTHGGGOMMeaNyRrQry0f7L3e6lFgHPglYJuqzvReufWPy9LeBHymN/y3L7ZAVf2Eql6jqte4xdzLFbcxxhhjjDHGvOZZA/o1QkRuA+4EblDVq4AdvPS7pe0dZcYYY4wxxhhzgVgD+rWjBCyoakNENgLXAxngVhEZEBEf+Nll6R8G/lVv+Bd/tKEaY4wxxhhjzOuPNaBfO74GeCLyDPAxkm7cZ4GPAI+QNJifWZb+N4FfF5HdwNiPNlRjjDHGGGOMef151b/GyiRUtQ38xDkmbQP+j/dPq+pR4IZlo/7jyxOZMcYYY4wxxrwx2BVoY4wxxhhjjDHmPFgD2hhjjDHGGGOMOQ/WgH6FiMhHROTD5xg/ISLvvYD5vEtELnvplMYYY4wxxhhjvhdrQL/6TADnbECLyA9yz/q7AGtAG2OMMcYYY8wPyRrQF5CI5ETkKyLytIjsEZGfF5FjIjLYm36NiGxbNstVIvKIiBwSkV/rjfsYcIuI7BSR3xKR94nIl0TkPuBeEcmLyL0i8pSI7BaRdy7L/5dFZFcv/78VkRuBdwB/2FveRT+iTWGMMcYYY4wxrzv2FO4L623AGVX9SQARKQEf/x7pN5G8zzkH7BCRrwC/A3xYVd/eW8b7gC3AJlWd712F/mlVXeo1zB8VkS+RXGX+j8CNqjorIv299F8CvqyqnztXACJyN3A3gDtQ/mHX3xhjjDHGGGNet+wK9IW1G3iLiHxcRG5R1cpLpP8nVW2q6ixwP3Ddi6S7R1Xne8MC/FcR2QV8k+QdzyPAm4HP9pbFsvTfk6p+QlWvUdVr3GLufGYxxhhjjDHGmDckuwJ9AanqQRHZAtwF/L6I3AuEfOcfFekXzvIS359TXzb8i8AQsFVVuyJy7BzLNcYYY4wxxhhzgdkV6AtIRFYCDVX9O+APSbpeHwO29pK8+wWzvFNE0iIyANwGPAFUgcL3yKYETPcaz7cDa3rj7wN+trcsRKS/N/6llmeMMcYYY4wx5jzYFegL60qSB3bFQBd4P5AB/lJEPgpse0H6XSRdtweBj6rqGRGZASIReRr4FLDwgnk+DfyziOwGtgP7AVR1r4j8AfCAiETADuB9wD8AfyEiHwTeo6pHLuwqG2OMMcYYY8wbgzWgLyBV/Trw9XNM2nCOtB95kWV0Se5nXu5Ty6bPAje8yLx/A/zNC8Y9jL3GyhhjjDHGGGN+aNaF2xhjjDHGGGOMOQ/WgH6VEZFa7++EiLx32fhrRORPX2LeCRHZ83LHaIwxxhhjjDFvRNaAfvWaAJ5vQKvqdlX94CsXjjHGGGOMMca8sVkD+gLrXQXeLyKfEpGDIvJpEblTRB4WkUMicp2IfEREPrxsnj0iMvGCRX0MuEVEdorIb4nIbSLy5V76j4jI34rII71l/to54nhQRDYv+/4tEbnq5VlrY4wxxhhjjHn9swb0y2M98EfAxt7nvcDNwIeB3z3PZfwO8JCqblbVPz7H9E0kDxu7AfhPvVdoLfeXJE/hRkQ2AGlVffr7XA9jjDHGGGOMMT3WgH55HFXV3aoaA3uBe1VVgd0kXbMvhH9S1Wbvqdz3A9e9YPpngbeLiA/8G5Y9yXs5EblbRLaLyPZoqX6BQjPGGGOMMcaY1x97jdXLo71sOF72PSbZ5iHf/c+L9A+Qh36v76raEJF7gHcCPwdsPedCVD8BfAIgtW7VC5dpjDHGGGOMMabHrkC/Mo4BWwBEZAuw9hxpqkDheyzjnSKSFpEB4DbgiXOk+STwp8ATqrrwwwRsjDHGGGOMMW901oB+ZXwe6BeRvcBvAAfPkWYXEInI0yLyWy8y/X7gUeCjqnrmhQlU9UlgCfjrCxa5McYYY4wxxrxBWRfuC0xVjwFXLPv+vheZ9tYXmT/f+9sleUjYctuWDe9S1V/+Xnn3HizmAN/4ftbBGGOMMcYYY8z/ya5Av06JyC8DjwG/13uY2UtT8JoCAt2CcnS+n9qYUBsT4lJINw+dckxqXnC64LbArysTq2fQVMz712yjU1LK5Trlcp12v1KfyxL7SmreIUyD1xDCNEhHCGrKiWofwemA4HSA04Uwq1RXOwQVCDMKokQZpbLWZf+ZETojIe2DRZwQnBDcjiJtB7cN6oK76BGWI1SFo0v9SAhuJ07uEFdIzQradAmWlDAruE2hPaCEGcFtC6n5LqmDGbKnXHIDDXIDDZwOqANS7hDmI7yqQ+zDPz67BYnAyXdxC11iD2IPqhtCwpyyuN4FBXGVTF8TNtTRVIwGMU4HvnF0I2EWwiw0V4VEoQNLPk6hS6WaxZ33cdtKc6JLKdfEr4HGySc91CRaDMiVWlw9eBq/KoRZJTgT0Bx0wAGZDzi4bxUH960ifSLgohUzNIeEMCtQ8fH9iO5iissvOUW9FeA1QQshCCAQzmZoD2ZQT4nSAgpBxYEYPvv0VhBF+jtEkxmiyQzBorIyX+HQ4hDtoYhgtE5rAKKUECw4RFlFImj1g5cK8VIhTgjadSiVGjQHHBphwKlqmXZZSLkh3QJox8GpeDgVj1ypSbcUExViJIQopcSZmOYlbd68eR/Z2QiJobbKIZ9qk0+1WZosEFSEKK2oQGZWaR8r4HQFHMVfdPArDn4N/BoECy4AtZUuqVmX1pCCQKWdIZxLU0y3aY11aY4I6iRlw2041OppnEYyb2tlSLDoUG2liH1FYsgfCBBRRJTm1Q3ijOIezZCb7IImZd/pCk5X8KvKluJxfImTWtqB0ycG8GqwcImHVxOqExAHSuFETJyOyezOkJ5xiH0l9pVWn9AYcVhayJI/5qIedPsi/CWl1QhwZpJ97teU+ckS85Mlrhs/TicneIsusQeBGyFujBMCXaGYaqGOEiwKwaIgMQRBiGQivAZIDN7xNOLHdIqCiJKZVnQmhc6k6PTHpDMdNvZPESw6dNY3KR2J6SykwYHOcEghaJGZV5xsiJMNqaxziNKwcnyO1rASnc3gpCP8uuLVkziCpWQbSwztstDuU0YHK8QBqK9cuuE0bsXDrzjUJkIkgpGJedQV1BWoJ/9L9ott2iXhG4c20qqlcFvQyTuoC7EPfaV68umvEXuQrsR0C0JqvEanBN3BkM5QSP44pKeFaLBDs9+l2e/SKSuT1QKT1QKdi5uUD8dkjvtJeRnt0hhVvGLn+ToBR4lbHmPFJdp9QmZGiD2hNSCEeQWnVwe2oBw0KQdNVJMyfPpUP0sbQ0hFqNM7bjXZ16kFobUiorUiIjuphLnk0ReNUaHV5xDmFfViLh2ewgkhjByc02lOLpQ5uVAmqCjuYBu3BfkzMVFa6RY8GiNCJps87iMsRcQqxCq4NZdu16WzoYlfdZC2i9cQ1ANvKiD2wGslZSrKKlFWyZ9Q/DpEKWgPxDiiiBuTnk2OuctWn6UxmyVz2iVz2iU9LUgkuC2H9p4ynaGQzUOnidIkdfGlRfLHhTADYQYyx32qszniUpcwH+HXIMwI+ZEamWmHzKziVx1S09+5xjBUSva5EyZlIZXr4LaSaVFGiQPt1SnJ8frImQnCnOL1ns3pFju4TkxmSqivSo6pdhlKxyLidHIM+w3InlH8ZzPk8y26oUtlKYtXF0p7PVrjSfnwBpp4A010tEXsKrWpPMymOP7sMO5AG6eVnKPCTHLeQ8DpJJ8orRAKjdGYpUu7eE1NzosC1TGfyoSHuhAs9T6LSb0d5pRgyUEd4eTDq0jNOYQ5JZrMkJ72qIUpMjNKZkYJcyBNhyOTQ6jAWKmCX1Ok6uGsrRP7SR3z3HlcYshuXMSfDABwciHScZje4tApJL9J3M0VCie+U/fomTRuW9h9eBWlYyFUfWIPGpe1iBZS+IsuEgpRAFEArUFwm0LulKAqxLHQGAmSYw1ot3xEk337XF0SzLr0PQPN6Sz/P3t3Hm3ZdRd2/vvbZ77zffN79V7No6QqVUkla7Bky5aNgcSEgA2kacB0E0OHsNIBmrCAJpXQ9GKF0EDsBWknARtivGxDmAJt4wHJlq15qkE1z++9evOdhzPu/uNemVqOZcsYIVV5f9a66557pv07097nd8+55+o9HQqXFd19fURDvDlENLhrNnYH7A50PzdOUgBtaTrbEtBQnE8QDYkvJInCXx6cf7hNTX8qRfctktgGJyMuQDiWkSYWdkcRRzael4AetF+pr8nyKY1WQHc9x8SzGa12QGuzore3jxUJEgpuQ75Uj1gNC2/BJRrNkBTCikbbg2Ne2xkqFjI/w3cS4rwQ5wXnfEDqQVwQ7JqNHo3ILcW4sx16m1Ka23zivMYKB68kEFQE+2cWSQoapxISlzS6bxGVhNvKi/QmBu2SRIJEgl7yGau2sEKNvwZx2yX1wG0OYnNaQlrMSLb0Sbb0GT2u0YkQFzXBKvh+jJbBPt6eg+CiiySC3VZ05wp05wqInZHkNY9e3o7Wg/ZoarRBOALBsqYQhFh9watpvJrGXXIG9eW2FsEFlyzISFsOwbKQ+IKKBGXpwbly08JuWkgKWSGlsJjitAbtTdZx6M4I4UiGW7OwizF6IUAvBOSm2yCaqtclLg7OB+qrBdzW4NzFrSnSVA323cUc6WIOyQRaDsWrKXYnodf16E1mJCMJqQ9eTVHv+aimjWoOtpcqxbTv7qFiIBVmpmqkLpxankAS4dLSKK1ajlYth90FZ7xHVkoG5/cpNLcK/oameHGwPdydTTbWiiSjMcloPDiXz4PTgmBF050cpJNqLKQ7KcSlwTkAMjiPz/sRKKhcSEgzBR0b1VNkNkioyC0qkr6DxIo9lRX2VFYG9XffJjfWHdRBPuy+ZZ7Ug6SYoWLYVtpAMkEyoXoyw97WZuniKFiDY4xSzKZNG4wWutgdIfWEuCBf2tezXEbu2iCnCSsKq/3K02JzBfoGpLU+8grG+T3g9179aAzDMAzDMAzDML45mCvQNzgROSIiP/1Vhr/nK/xHtGEYhmEYhmEYhvF1Mgn0ze89gEmgDcMwDMMwDMMwvkEmgb4BicjPi8gZEXkU2DPsd1BEHheRoyLyxyJSFZF3AYeBD4vI8yISvKaBG4ZhGIZhGIZh3MBMAn2DEZE7ge8DDgLfDtw1HPR7wL/SWh8AjgH/Wmv9h8DTwPdrrQ9qrXuvRcyGYRiGYRiGYRg3A5NA33geAP5Ya93VWjeBPwPyQEVr/chwnA8Bb3olMxOR94rI0yLydNrqvDoRG4ZhGIZhGIZh3ARMAv1NTmv9Aa31Ya31YauYf63DMQzDMAzDMAzDeN0yCfSN53PAd4pIICJF4J1AB6iJyAPDcX4AeOlqdAso/v2HaRiGYRiGYRiGcXMx/wN9g9FaPysiHwVeAFaAp4aDfgj4jyKSAy4APzzs/8Fh/x5wr/kdtGEYhmEYhmEYxt+OSaBvQFrrXwZ++SsMuucrjPtHwB+96kEZhmEYhmEYhmHc5KwjR4681jEYrxO/8lu/emR0+/0UziucjuAd9WgcjIlHUqy6jexrMzbd4LbbL3HKGaF8a41GmqPWzCOFhMca24lz0N0I6Lc9gmsW+b0N/CcC2gci3GUbuw9eQ9PZkSJ9m+h8gd7uiKyUoiOLeDrC3tolTFy23DOP/kwFFQnaAt1ymfurlO7beqRNFwS8DcFuK8IxTekCdDZrBEG9mCe8XCDcHNOesXDrCisU+hMZ2oLUV3g1oXxBM/5CyJXvAjXbI20HtHdkRBMJcegQ9x1SR8gvCNmOPpkSSpubNLOAfmpT3V3D+1SJNLEZvWeZYK6N98kiwYoQFwRvXRE6FpXPebQrNmOb60x+0KO53aLnWKhQoW1AgHwKXoZzxWf//sss6xzp7j6FJwJkZ4+66zI5VSefC2nUc+QuuHgnPF5sTg+mn+3jTvXoTGno2EgqFC8pvHVFZkP3eAUEetMZ2mFQVj6m9uQkUTkjFht3zaZ4XgiWhf6OmPaYS2VXjXrBxqlZJMnMEXgAACAASURBVDmNt2FR2lmnv5Zj8x8L3SkLFQt2KCxcGyMZS5BLOQrPurR2p/hriuD+dfSpPFFJEZc1WddGtxyKl6FXVWSX8wTrmuUZm+i5KoUFzepGhcmnY8pnhcYuQEHx8wFjL2TEweC7v8JV6G/K2PLfhGv7bfJ/qdi43Sb1oYFLoxPgLLr0NyVkxRR3w6Jxe8zBAxfZODmGu2ZhH2zgTPRp4xFVNclYwtYPQ3faJi5rCvPQm1QsZXmsrkI/V0R1LdJAg8jghzAKnCsukoEVC05N8dA7n+HKH+9g6qEFlgsuyVRM1PSIew62l5LZmrHHLRb+cYL0LCaezXC/ZQP3iRythzo8enoflxYmcGoKqy+QCYgQlzTRSIZWUD4rdP9Ri+pfBcRva5Ku+ySlDBSMnBT6I0L+gkVzd4a/rrDbiqgsjDxjkbqK/FtXcL8Y0NqpAVg6NkVuBXqTYIWC9Xie7rjC6itECyvaZ3Z2g1qrQJIDpyP0S5qfOvwpHru4m013LLHRz1E47aItCNs+na0ZWIAF7oYiqXk0Hp6gvTPFnfdo3B6jcgmb/ySlfhgWV6t090f4x3PYqw5JQQNCTVyssRB7yWXXbQtc61WI5yISR+HVhcwRJIP21gw9GdJqB+jxmNLzDsu1CtoGp61IpyKycop6tMzKO2Pqd0DpqEvqQoJNPBfhngtIlWL8hYzmu1pEoUvlgRWWr4zQbfr4n8+jLUX3oQ7WvEda89AHW6hLPnZbYXeEuAx33X2Wi+0xwlEoXBXacUCSzwbbybPI37tGfCVPUsqoHlVEOyN000HbkLvkEFU1K2tlnIYiqmqCFWjPwviz0H1Hiyj0qZ5Lec6a5tzVKaY/ZdHcJozsrsHxIpVjFl4TmnsTxNEkysKrC8VLQm5RqO+FiTuWmduzzFrFxrriYd1dp/ypHOdVFRUpOn2fYFeDXscjiS24tYs6WiQNoLlbM/kEtGctupsysiAl6zjs/p06nUoZe9khOFhjvNRGPlGlO6PJchlJDlIXQCifg7VD4NaFeF8PygkxDm4dum9tkzvms1YvkTqQeIokr+k+M0I0lhGXNXElI/WEdDrEXXbIHNhz+1WOLc2Qjcbohou2FMG3ruA8lsNtQmN/QuV5l7Ao5OdtSpcztA3Zrj5R3ad3R4+kmFE+YdHGJ173SV4sMnY8ovrD86yPWKSXCoN26bY2sRK2/mnC6ptTxvau4892qDUKODNdxm7doD1fIrQtvD8romJo70oJxzMkVdRvS5G+haRCeHufzqiiuKtOp+uTxBbftudFzixOE45qtv23lM6MDTUXteoy+xea9cMQjHWJIxt33cKZd0l9TeZBfgHa2zKqxxWdWUgKkIwlVF5wSX0IFi1UAs29GSoUcm9bZcPxKJ6zaOyPCccz4l0humeTBRlOXVG7XaMFnLbgdIQH3/E8p9tjrCxXUHe2SPaEdH3Fpq3rNK+V0K5mrVYksxX//Ns/wfyv7aG5U5Fu71F63sFtQGdLhvtCDhUJ4XhG6ahL+Ry0bo9xNmzS7X2ipRxaFHFRk7mQ29NATfURW9O9MyZpuYwd06iaSziusTpCfl5o70pIShnemkIQ0JCdzuO96LH2jhDdt3HrgnfZoTcmdHdHJBMxyViC1bBpHQqx6g7lp1xaD/TIHQto3BWhY4vyizZxHpK8kBRADjWIKxnWmoPVVeT211ie85h8HKKiQjddrBhST0hywugJ6EwJ9qpD/qLNzKMdksCjHyimDy4zN1Jj9ckpMluwe4P6zWlYJImNRIrGPo297CKpkDI4x1GxkLkQFzVJXpPlB/Whs+wQjkIaaLxVi/Zigfy8RVTV/PBbH+ELZ3bR35rQ25xSOGPTm4Lurhh/0cZq2TR2WiQ9Z1An7A/xrjm4LRANKoHqdyxy8swse2+dZ+XCGMGqYstdCyzFRc7qKmFmM/qCoj8OkgrehqLZy1G6CPU9cPedZ7gW+LRLFlklxW5a5BYVYV5BaGF1LbbeN89aN4/qWHSUQ+opopEMt6HoT6XYHcFpC0mgCCuKLLLRFiQ5jSx7hE9X2YhyOF0hs4XwWp6xYxl2qLFDTfu+PoXb6jSWSoCgFdgdi95URm8CtD1oK3pTgtrTRo1EZBMxpS/6tOcUnVtCVC7BXnHJHLB7wvjRjEh7aBskg6jr4oyErD47hb+3QXq5gLdik9qDNrby4BI5P6J3tUA6HUEupXjaIapo8otC95816VwrIKmgPU2aGxyPufEe3YYPCkrHXZwVB/+Cg3agP5PRauYY2b9O8LEKra2a6jMOvQkgVfhriu4IWEFKMhOj+zb5BaH5QJ/O5oy46ZGKoCMLZ9XB6li4B+pwJSAuQXcaUh9ka5fRv/Bp3dcnFUF2dGHNBWDPvnmWL45Re3NIb75I+ZRFXAJ/Q7D6QrCmiXeFpLHF0tPTzJ+ZRMVC/rJCL/s0d2lAsb5aJimCdjROW3G5PooeicHLGH3zCrXTI1ROKlLHIi5CVklxvYSlK6MkxYzJ+5ZYi/JkHiR50ALeutDZHTPxeEr37T3WP/bwtSNHjnzga+VM5jfQhmEYhmEYhmEYhvEKmAT6JiUi7xGR9w+7j4jIT7/WMRmGYRiGYRiGYdzITAJtGIZhGIZhGIZhGK+ASaBvMCLygyJyVEReEJHfF5F3isgTIvKciHxaRCZf6xgNwzAMwzAMwzBuRuYp3DcQEbkV+AXgPq31moiMABq4R2utReRHgJ8Bfuq1jNMwDMMwDMMwDONmZBLoG8tbgY9rrdcAtNYbIrIf+KiITAMucPHrmaGIvBd4L4A7Ufo7DtcwDMMwDMMwDOPmYW7hvvG9D3i/1no/8KOA//VMrLX+gNb6sNb6sF3OvSoBGoZhGIZhGIZh3AxMAn1j+SzwbhEZBRjewl0GFobDf+i1CswwDMMwDMMwDONmZ27hvoForU+IyC8Dj4hICjwHHAE+LiI1Bgn2ttcwRMMwDMMwDMMwjJuWSaBvMFrrDwEf+rLef/oVxvsg8MFh95FXOy7DMAzDMAzDMIybnbmF2/iStGMjKQQbGV4jw2+kuMUItxgxfssq+mSBlVPjPH5pGziaKLHwasLsnhW8IMZWGf6xgNxlh9xlh8yGoh/S3KkpvuCReiAJ9McEUqG9OaM7rVFuinJTovEU/5JHv+uSlDIWamW0JagYrD6Uz2ka2x0CL0JboC3oTglRdRB/a4ug/Yz8JYu4qMk8CC66OA1F6ZKmdElTPi0cuvUiSU4TjkB9t2LxjQGkQnYxz+iJPqXTFhJabJ1bZevcKtrLyFzIzhdwrnjMlJpkXoa7alNv5uiPCFElY+nkBEsnJ+jMCvW9g5isPhQvKlbvTtFuRt6NaGxziAuarTuWKVzVFK5qrL4wUu2gVlxULFyqj1Atd0jPFYgL0Or6YGcsXauydK2KWnUpXs1QKWSTIdFYigC9+SLbp9eQLR0yTxPnIc4P18+OlM7mlNLuGu5El51Tq0R9h+yWNu7ZgNw1Yez+a/RHhf6oIBsOpfOwMV+hdMylcAXSYorTgiix0fmU1FNMfzFh+osJqQv92Zj+2TLhVMzYCy0kEZy2ZuPcCKWLGUkOvJp8aZ9zOhl6JCacTAg2UtJEUblnmfYmIRzJaM/Y2J0Ue6yPPdYns2HtNpv8giZY0TR3anIXHGq7HRqdgKX78vjTHfI7GljzPta8P9jvIoVq2bS3Jai2zYlr09g96E9mZE9WaF0pIakgqYCd0drs4tU11UOr9MYFLSCJkE1ENPfGRLf0cOuD7R5VMnKLwqbPdYmLmnA0BeAvnrkdr6G5tDRK8RkfnQkql6ByCfpyDh0pWpsVxWd99PYuqSPEiUV3Ukiv5fCWbcgAGbxuu+si3gaUzkP1uEKPRjT2anaPrdCeFeyHyzhtsMoxVjmmXxVUAv1xwVu3iIqD/TEJNK2tQlTNWL4yQmfKwrtm410bfJ/anhWS8Zioqlm9L6G6uUawokmmQ9xzAe3QZfMnIzZ/MiK3pNEdm988+hbU7jaX58fYs2eB3qEuAHElRYWCU1M4NUWwLMQjCXFeUPmYJJ9hbzhYV3xS32Lykw5WkCJXA+KSJi5pUl+TX9AQKfTlHPZtTc49vgWnJdyydRFtaTqbhN6hHr1DPSSF8dEWsu5+aT+zu4KKhfyiZu/mJWTDJS5BFlmDlwMjL2qCBQvbTfE2YOSooC2hGIRknmZprczIpjojm+q0N4N9sI77aBGtIBrJiC8VyByQTOhNgluH5V6RbEuPbEsPt6nRsz2SyEISIRzNCBOL0RdT/JE+Gwc0gR/jrwv+uhAXYO4TL8UPma1Jvb85bnorOfqbYvz1CKqD1+JbNZs+H1NvBXgbmvacsH5HSuGcg9QcUhc6sxqtQCvILwq1R6Y49ch2LCvDbWnajQC3k+E0FL0JjZrt4trJoG5acYnPlIhGMgC0pclskBTy2xqMlLrYXeHcD4wQFzRxQWNbGQvPzNDeDJmnUR2L4mwTmQzx14SRkz2svtDdlJF0bZKujYqFsWM9oqUcmTvYj9CCnuqjbQ0CpRMOTjnEKYeoGGg4ROWM8lk4PT9Jcq7I3Zsv4daFzIbwv0/QnhPac8LYTIO4CJIO2pdrD6VsHErZXKkTj2S4L+awvYTWZrA7gt0RepMZtT0uK+0CcWRz6L4zRBMJABJaLN/lI5YmjG3C2Oa22UX6XZcrZyfpTmuclqI3ruiPCf6ig1WIcWuC1bTQboZ2M9IND6fap9XxKRZ6+EHE8do02tL4W1osvMmjuznFbYDbgNpOF/+aTXSpQOWoPVjnZY1bU8x+OqKwkKJtTX9EiCspcSXFXXSoH4xQ0WCZehOCtjRuXVh7cQy7YaESDemgnfaO58hcTW7eprc1RtsZkg3qcH9N04p9JBqcSrbrAe16gH/FZeHKKBRi3A0LCRWpC7979l7mH1KkriZb93A6GqejCRYtOnMZKoHiBYtwBJpbFDQcOjOaNFH4yxb98Qy9tYfe2qO5VKS1VCSs+3ifLVE+bVE81UClmuI5C39NSPIguQTJJWQ25BY1pcvpoE3dDlnfIrco9Pb26Y9owtt6TH3KJjjlE5zyiUcyRGm8DSHxhYmRJlFJQ9tG+grJNFYkpJ4evFKF82KOySdTkrxmrNDByiXUd1okAfSnUiSB6rmY6rmYtQNCFmSUD67R2aRZP5Ajc6B43qIXO5ScPuFEitUXVDh4JXlNVkjRnqYw2QYN5YsZXk0RrAjxXMjkUxlMhDARIrkEnQnB8mCbqUQQDRPPDNopSeEPzhzGChKcKx7OFQ+rrymfgz1br6EVFC5rckuCZJD5GX4+onBV05kVOrPCxn5N3onwFxyu1ivoXErxcsaFxTGcLR26GzncdYu1QxpvQ+FtKHrbI7IgJc4LhSvCY2e2E0c2uas29oqD7GvTOtTHqoZY1RC3pdlZXCO46BJVNVgab11QoSJY01SPK6LpmMr5jMJiSmExJZxIyRzQvUGd0p4bnG8Urmi0Dd1tMRt7LdZvGbxyT+RoPjOGN9JDb+qDQDoRUd7SID+vmP1sRn8MVAiOk+A4CbnPF0hyQn93n31br5HFCrW9TVJOsbvC6u2KpKCRZHD+m/kZcc/B7grJcxVUBNHeHrnVjPbOmPVmnn5sE6wIbhDjBjHNfTHa0uSWI7pfGCNYtEgLKXt2LoKlsbtC57ExnLrCqSsyG7rTGc1dGb3JwXEsPUWjE7C+XyheUKzfkYLSoAbtQWWsjVIZadshLaRkHmTrLjpWWB2Fey5gbvMaSSEjKWTsHVvB6kOc1yTVhGg6xnZSNt7ZJciFiJ9iPVf80nnVydVJMhdY9wZ5wASM3rbK9Nuv0tse0RsTrJN5sDThnh7hnh7dGU1YFbp39hg5Nth/k1KG0xK8ycE5hp4I8XMRfi5i4ZkZqns3EA3xREzx0qC93FLewG5abNq+NtjnJ0IkA8ngzrvO0pnTSN8i9S2Kuf4rzplMAm0YhmEYhmEYhmEYr4BJoG9SIvIeEXn/sPuIiPz0ax2TYRiGYRiGYRjGjcwk0IZhGIZhGIZhGIbxCpgE+gYjIj8oIkdF5AUR+X0ReaeIPCEiz4nIp0Vk8rWO0TAMwzAMwzAM42ZknsJ9AxGRW4FfAO7TWq8N/wdaA/dorbWI/AjwM8BPvZZxGoZhGIZhGIZh3IxMAn1jeSvwca31GoDWekNE9gMfFZFpwAUufj0zFJH3Au8FsMvVv+NwDcMwDMMwDMMwbh7mFu4b3/uA92ut9wM/Cvhfz8Ra6w9orQ9rrQ9b+fyrEqBhGIZhGIZhGMbNwCTQN5bPAu8WkVGA4S3cZWBhOPyHXqvADMMwDMMwDMMwbnbmFu4biNb6hIj8MvCIiKTAc8AR4OMiUmOQYG97DUM0DMMwDMMwDMO4aZkE+gajtf4Q8KEv6/2nX2G8DwIfHHYfebXjMgzDMAzDMAzDuNlZR44cea1jMF4nfuk3fv1I8Pa7ac8JTlOQ/3kN90+q+OdcNtI8aV7jrSmC0y6Jq8g/6qNiCLfHdOaLWC/m8eqa/hhkDhQWYang49Ys8osQjgjlb1mitZZn7sAS0//HOvV/4pAu5qBtk5u3mHjzIvVGDokVE1MNVosu3ppFf0LTvDVm8jHN0qxH/qqN0xaCFQ1KKFwFFQvBgqKzRZO7pogPtYmwsLuKJBDi4uA1363grVuEkyl2U9GfTimetQnHNJI49N/WQl0OaF8t0b5aAi2gBOfWJlHHpXG2SjoVMb5zg/i5KnYf4gLklhROW3DaEJdg9J5lVh2fqATBNQvJFLV2nv7OCNW2qdULVM9o7L6mOy3EV/NknibNa1Jf071Ywl9TRIfa2HZGsuEjXoYIVOYajN+zSnBbk762qX7SJ+27JJsiNmoFZv7EpT0r2Lc0YSYkrGjyZ13y80IrDsgKGfVjY8zsXqPeyJOUUw695Swnzs2SWUKa0whQvAJkFpVvuUZzVuOcyRHe3iW+msddtxh/1zxXdvi0DmTQchjdt05nI8fIUYvlezzSYkp3k0aNhLRmhJnPaRrbhaSSoV2Nu2HhrNvc9uA5Fq+NU7ilQcGN0F8sEueFJC9EJRtZd7GWXDp390gTm+yeJtmGT+rDpjcusJzmSRILq2sx9WdCKysQTqVkvqa8tUH5kwGZrfD3NSg8GrDlvkXW56vM3HmNetFi4jMOrZ2DmHKXXLrTEFUg/1c5VARuG5IDXRw3pfyITxo7JMXBtsICu61YegjGH7dw2oqkCHqmT7g7olToE63liHNQHW/h+zGd1MXOJ3iXHZr7EtxCzMT9K9R7Ad4JD6et6G5OwIKRYwp/Ay5KhXAqJawIvV0xzoKHW1NEf12lfiAl29Wl71lksUKHFqmr6E1ogn11+kWwag6d7THuuoV2NHZXMfY8g+P99gbWZEhS8wlnYwqnXfxVoXx4nehT47S3gDvRJ6mmIJDc16d/d4Rza5vM1UxXmzSOjTLxuGJeV0hdSB0hN9Nm+uM20bc3sSf6ZNtDco/n6WzOKEx10FdzlM9B6e3L1JtlnH+8SudKaXAclBOyfEbuqo3dh3BPRKoEbYFUY8pPOVwKiuQWbFQCv/LOj/Atm17k0YcPkv+MT/uuiLmJDZb8gCQHTksR54SlfpHCJYvMhsoJRe6KRf1ggrtu0ZsEWXPozWUk+7vEoUc9CsgtWiRi0Wv69OsBVk/o+8LkF6AzpYhmYrSnGX1uUNckRU2Sh/7JMslEAgjtTRprySNLFf6aRX5B6EU+/Td1CFdyeGsW3dilcgacjqa1Q+O+fQPtauxLHlFFk18UWrfGtKcsvHWL/GWLte8KSZsuxIriOZt+1YKaS28G4pGMwiUb9cYa/jM5MlsoHFynV88TFwQrBL+maW/NyJYDvDpEnk3pHywj4yHheoBuuvRrAW5DYYWCvyHkliGqgluzaO7O0KII2x5JPsM57xGsQvVtSxQ2tVG/O0bqK3LXIFgWujsTpj/oojY8tC2svMGifFboTQLFBLE0E18Qrr7NJfMzCpcE544m2ZUcwWWHuDrYd+OSprq9TuDHlGdb9C4UQYSoAoktgLB4bgJtweiJjO6kIljXOB2oWQHxlpDiVBt1LkD2dhn//zyuzPi4VzxyK5riwRozv9bH+pEmubk2c3NrtE5UqXsuo5Mtzp/eRDDeJTlfpHBFkb2xQVT3SebzRGsB9+49w7lntkI2aE/joiYuQVjVFC9CrBysvhAsC6kvWKEiWFSMftGiOWEzMtEi/dQYq1UbVUoY+1iO7qRi9AVIcgJA47aEzAFtD+adlRIkUqhY6E7ZrL8pRvoWhStCklOoUKG39lBLHtOPJbRnLeJtfejZ2F1F9c5VCp/IsXaXhiADW1M4p+jPaFIfvv0NLzD/1Czx5pDYFdThJv7/qll9c5F/ev8jHH1+J6pjAZAGgzYnGtF4M12KT7s0p2HiYRu/JpQuwupd0J0Bf13wVwWVQuoNmlzJYOK5DIkVdm1wjGcOJB5kiUJ1LNRIhNgZzqpDb0ITVQLa2yANoLc7Iiprxj/vkrs4qEOif1hnfc5i26FF1tZLSKzwV4XcZYvObSHWvE/v7h5Sd9EWOE2Fu+Rw6z88zQUpk75QxqsJdluRbg/pexbxSIqkAgpkxSMNoDOjqJ4SastlRp6waM9BVNVk+Yx0S0Ta9+iPWtgdweop2u0cDzxwnItLk9g96MxlhCs5Vo5PIJlQvAytXSlJKUNFij37r9J5boTyIw7V77jGaq9M4Yqmfl+Ic8WjsU+jU0HHCv+Kh7Nq09mSkhZT/GWLaCQjenObrnYpnRfe9NYTnDk3i7e9hRoPCY65iIaFpILe3cW+5iIZqFQonxE6todKhZFTCfmlDLeuWF6rEu7uo04WIB7UFSN3rNM5OoIKFSgoXlSEd7fJpiJyzwfsuu8K9bNV4iI4GzbWuoPdH2w/qjE6E/Saj+7YdLZmrCufluVgNxWFixa51Yz43g4dz8FbF8KtCa1ZQXVtoqIi2h7iLThUbtlARiPsUzmyzAIRKudSmjs0oEh9TeZp+tMp2XiMXM2RJgp/pkPusTwt8ShchuY2i96OEGfdphd5xDWfTQ/OszFikTZc1pfLkAlqyadw0aI3nVG6IGgliBZUOqiXCmdsetMZbO+SYFEaa7NWDhh/yqKzLWWi3GbZCcjaLmnXAT/FajjUHkhwlxy6symlMzataY11Mo860OTwnedYe2YSuy+EVU1l/wadjoe/s4n3fI6oDKkNqS1E20M0Qu6ii1O36B7okZ0skcQ22gYEcvOK3tYE1baRdNDudjyFf9bDaSkuxWXC6RT/mo3VtUhKGdm6TxpbxKmF1FzsjpBb1rgtaOZdvJ0t1KWAeDImWLDYsD3SR6uEoxnBNYvyW5Zoreehb0NokVtQtG8Nca56WJHgr2vCqiAaiptb9FdzxKWM/BN5rMse8W1dyn9QZP0gBFMdZMGnfFxxuT1KmtO06jma14pkFujRmKycsPHkFJkDWSElsR3qgU3jTz5z7ciRIx/4WjmT+Q20YRiGYRiGYRiGYbwCJoE2DMMwDMMwDMMwjFfAJNCvIyLyxVcwzn8WkVuG3T/36kdlGIZhGIZhGIZhgEmgX1e01ve9gnF+RGv94vCjSaANwzAMwzAMwzD+npgE+nVERNrD9wdF5GER+UMROSUiHxYRGQ57WEQOi8ivAIGIPC8iH35NAzcMwzAMwzAMw/gmYBLo169DwP8O3AJsB954/UCt9c8CPa31Qa319/9tCxGR94rI0yLydNrpfEMBG4ZhGIZhGIZh3MxMAv369aTWel5rnQHPA1tfjUK01h/QWh/WWh+28vlXowjDMAzDMAzDMIybgkmgX7/C67pTwH6tAjEMwzAMwzAMwzBMAn2ji0XEea2DMAzDMAzDMAzD+GZgEugb2weAo+YhYoZhGIZhGIZhGK8+0Vq/1jEYrxO5iTm97T/9L0QvlnEbQnhHG/t4AYDeXIy7ZjN6TJN4Qm0fbHokYfHNNvbOFsnZIkkpQ1saf3Fwt3nmaLya0JvUTNy+zOLFMXJXbaw+xEVAw+T9i1w5NQlA+ZRF6/4u/tEcqQdOC3pTmjSXQSrYPcFpCN/zfQ/zkT99MwAqEvoTKeUtDcKnRuhPp+zeN8/pC9M4hQjrxQL9uZjgyuBCvVeD9G01uufLZOMRhed9kvua9K/lkVjIiinKT7Av+USTCQD+gkNUzVB9wWkJ4y8krNxpk9maaFOMdCycpiLZ3Aeg8nmf4LuWqT0yBYcb9K8UyXIpaAEguGoTlzXM9lAXAgC0An9dcNqa1BNUrOk/1KK3EVAY7xCdKBPPRngXvMFyJ9CdTQgmuliPl3CbmuZ2sPtCuDVk5PMu4ajQ3jZYBskljD7s0Z0Sultj0ILdsEiqCRIpynMN0s+N0BvXZLOD5VCLPnOfjlm5w6U/lpGOJKi6zfizsPymlKm/tlg/IDzwlmMAPPPhA8x+90Uav7mZ1YMWzoE67Y0c9qpD5TS4HU36njXWTozj72gO1tUfFFg5rGBrB3UmT1TJKF6wsB9ao3FqlCzIoBSje9Zg+y3bxNv6eEFMbyXH2FMWra1COBfhzTtoBaXz0B8T7O5gv07eVqffc8lSgTUPe6ZLvBxQuGSR3d+gGPRZWqhiBelgv40VXj5i6r/4XHmHxfjTULtFiMYT0DDyrI2KoDstdDcP1u9PPvBJPvJL38bGPoV1W4Mkscgu5ck29ZFlj+J5hXzrOtmnRoHB/h/e2iN4IaByNmXlsMJpCuGoBg2V09DeLPQnEub+arAc1o8vs/DUDP660NqZoPoKqye84cGTPPm5faSb+uimi8SD/cxpCtqCaDRFcgnWoocVCu7tNdw/r6C+a43w0+OkHqT+oAznYI3K7xapvaeNerjCyKmIS9+p2PyX0PuxGmvnRlGRDLYLoELBbitUAqmr0Q4kxQztZuRHu5Q/UmDlTjU4hgFdSMmVe/QWCuggn0YJTwAAIABJREFUw1mz0QLpdEj5SR+7q3G6mrXv7FF4JDdcV0JmQ/VsysqdisyG0aNQPdVm4edS1MMVeve2saxBWxZey1HY3ITPV1ERNA5FFE65hIcG+1jxsqY7KXS3JKAG04x/0Wb9oT4jf+3zEz/zcX71d76HcESTvyo0d2VUXhQ27o2wNgb1SPGCor1FowW0pdl/50XOfHoHcUFjheBtCEkOwtGMzBm2sZWY/HGfyrmU5e/pkawFUIopPO8TVjVqb5twJceOj0UAnPshi8ozLr1JjXugTmuxiBQSRh7xiCpC52CP0mMB9f0JKhx+F67BX1FoC6w+eHVN+s4ajUYO57JHuqNH2nZgsIsw/gWbqChYoWbbD5zl+LVpnKeKdLakWB2FWxdGTqXMvzMlOO8O2oKdIbkzHt/6rsf5xB/eQ3dbDJkgsfDu+5/gY8/fSXDeo7d9sByjX3Bo7hqUJwmMH16m0fMJ+w7ZYkBuQdHekaL68qV9Vzsab13h1TRTHz/Dqf9zF6PPC+sHNcULiiQHVghOe7BurRCa2wWrD/6GZuOeCP+SR+7wGptKTS7++XaSAvSnBsfr/n1XePHprahYCJaF/ogmmo5xlx3KB9dYOzdKeWud7vEqevugIpn7TzbNn2yxUcvjngson8vI//AiFxfHsBc8Rm5fpRs5REcrAKQ7e+RyIepTVbpTGmtfC+vJEv0RjRUKmaOxIiEcSRl5YbD9ag/20ami+II32LcU6Psa2H9dJljLWD8glM9AZ3awnipnM1pzitQFpwPdKU3l9GB4XNRUTkJ3SojK+qVNjsQQjQ/qOn/RRtuauKSxekL5LKy9McZZdvD2NQDoLBZx1ywQjdsQ/tV7P8q/f9/3Dtqo0UE5E09nNLZZ5JcGx/nym1IqRx22vPs8x57Zhh6L2PxRi6tvt/CXFcUrGWFZ0dw5GH/0BWHtrozZT2m64xZRaXD8SAp2H6qnYtb3O/QOdvH9GIDoTIn8VSF7e43o+SpOC6K7W9jPFonzg3UcjmbI5LA9uxRQPgf13aCGzbGzp0n/cpGsnECkwMmw1x1uvecCAMef2obTUoRjg+Ph1nsvcPozO1C3N7CsjHY9h+0l5L8weH5Mb0IjidCfSdjz/3Y4854iwZKiuyUhf8mmO51hd+VLx188kiBeCi0HijFbZtbxfrbAmX/hYdkZSc9m4hGH5lYhnBhss7GnFOtvG+wnsuHg1RRWHzJ7sFz9MQ0ZOJ1BIf2pFGesB2fzaAVWXwgnUwrnLdpbMsqnFfXDEZafoLPBNK6XMPaRHIsPCDIR4pwOcBvQmdXo6T6jn/ZZezACGRx/Y2Mt1s+M4tYVWvGlOi+eHNQNiMZZGdSdB990BoBnH9uNWxfy965hqYxm18d+rERrR0JppsW3bjnJx545jH91UO9U7llm+dwY408pVu/OIBEqJ4XanQlYmr2/0Wb5/9I0T4+QFgfrqnDBJnUG9UNnLkNSsKZ7yIUcWsHowRWWV8tYi4PzKqcl6IMtNo/UWGoViZ6rDtqUsRQVCe6GIn/vGt0vjNHbO9yvbE3asxBbYy25JOMxbiHCfaqAaOjOZNxz7ykee3zvoG6zNZRjgtM+vZkUrTRWOSZb87AnuyRrATqfQGjhrQzOe5K8xmkoUIN21oqE2c/0aPxsm/z7Kqz9aIfoxTIvyV0T6ndE5M+4ZA70ZhIkn0DDYfRZRWdW8Fc1+eXB8Tf/bRnekk2S1+y98zKnnt5C5bSgv2Od9vOjRBMJo0/b1N7cJ+sMzu+DeYfepgQJEvxzPiqGsKIZPaapfUeX7GIebWsyb1hHdxXJeIxVsxl/BppbFPlFTeZCYxeoEOJyhtMatDsAnf19dKJwFx3QoC1IA41WgKUpnrdob87IKvGwrXFZf0OCaltYkaBCofqGZWqtHGOlDunvTbB+m5BfEOqHBu3TXXsv8tTxHeQu26h00Ead+LWffEZrfZivwVyBNgzDMAzDMAzDMIxXwDyY6lUmIqPAZ67rZTF4KNhL7y95SGu9/ndUxkvl8GVlfEPlGIZhGIZhGIZhfDO7IRJoETkIzGit//Lvqbyf01r/39/A9A8Ckdb6i8Nk9eArnO49wGGt9T//esr7esowDMMwDMMwDMMw/nZulFu4DwLf/vdY3s99g9M/CNz3dxCHYRiGYRiGYRiG8TrxihJoEflBETkqIi+IyO+LyFYR+eyw32dEZPNwvA+KyG+LyOMickFEHhSR3xGRkyLywevm1xaRXxeRE8Ppx4f9HxaRw8PuMRG5JCIu8G+B7xWR50Xke0UkP5zvkyLynIj8o68Suy8ivysix4bjvmXY/z0i8v7rxvvvw3h/BQiGZX14uKynht0nReQPRSQ3nOaSiIwNuw8P498K/BjwL4fzeOBl4nq3iBwfrtPPXTdoRkQ+ISJnReTfXTf+b4vI08N19m+u639JRP7dcPmeFJGdw/7jIvJHIvLU8PXGV7CpDcMwDMMwDMMwjJfxNRNoEbkV+AXgrVrr24F/AbwP+JDW+gDwYeA/XDdJFbgX+JfAnwG/DtwK7B/eig2QB57WWt8KPAL865crX2sdAb8IfFRrfVBr/VHg54HPaq3fALwF+FURyb/MLH58MBu9H/gnwIdExP8q5f0s0BuW9f3D3nuA39Ja7wOawD/7KtNfAv4j8OvDeXz+ZUb9ReAdw3X6Hdf1Pwh8L7CfwZcGc8P+Pz98KtwB4M0icuC6aRrD5Xs/8BvDfr85jOEu4LuB//yVghCR9w4T86eTXuflFsswDMMwDMMwDOOb3iu5Av1W4ONa6zUArfUGgwT5D4bDfx+4/7rx/1wP/hvrGLCstT6mtc6AE8DW4TgZ8NFh93/9sulfiW8BflZEngceBnxg88uMe/+wDLTWp4DLwO6vs7yrWusvfAPxfiVfAD4oIv+Uv3ngF8BntNYNrXUfeBHYMuz/PSLyLPAcgy8kbrlumo9c937vsPttwPuH6+jPgJKIFL48CK31B7TWh7XWh+3g5b6DMAzDMAzDMAzDMF6Nh4iFw/fsuu6XPr9ceS/9GXXC3yT1L3uVmMG/6H231vr03zbILyvra5X35X+W/fXG+z/OUOsfE5G7gX8APCMidw4HXb/OUsAWkW3ATwN3aa1rw9vhry9Pf4VuBdwzTMQNwzAMwzAMwzCMb9AruQL9WeDdw79KQkRGgC8C3zcc/v3Ay92m/NXKfdew+38CHh12XwJeSiTfdd34LaB43edPAj8hIjKM6dBXKevzwxgRkd0MrlSfHpZ1UETU8DbpN1w3TSwiznWfN4vIS1d2Xy7e7/4q8f4PRGSH1voJrfUvAqvA3FcZvQR0gIaITALf9mXDv/e698eG3X8F/MR15ZmndBuGYRiGYRiGYXwDvmYCrbU+Afwy8IiIvAD8PwwSsx8WkaPADzD4XfTXowO8QUSOM7hF/N8O+/974H8TkeeAsevG/2vglpceIgb8EuAAR0XkxPDzy/ktQInIMQa3jb9Hax0yuIX6IoPbpP8D8Ox103xgOO8PDz+fBn5cRE4y+I33bw/7/xvgN0X+f/buPNqS4y7w/PeX293vu29fq+q9KtWqklSSSptly5Jt7DbttuUF3GPjAQy4PTAYaEwPzdIzDU03fZhu2oeB6TbQGAaDARsDtsESlq19qSpJVap9396+3n3J7Td/5JVcLlySLFmywPE5p07dlzczMiIjIzLjZkaE7OMb51v+AvDu5xtEjKTf9sHuMXgUOHClBKjqAZJXt4+RvDr/yGWr9Hbz4qdI+p4DfAzY3R3o7QjJwGaGYRiGYRiGYRjGSyRJd+VXeacidVX9B/1xX4u6o2p/UVV3foej8k2JyDmSuaOXX25YqakJver7f5bIAyxorQ+QVPK7gJcO2Dk6x7EvbSF2YPiNMyx+dZz2YExm0aKxKaB4xIUYOn1JeHFK8bZUsR7pod2vxJ6SWrWIr68RhRapJ3O0rm8RVZKH/dmLDlYAretbWBfSBMMB+BY4MViQPemhN1YJzhSQ7s8V7pYqzeUsubMuaoFbh8p1PoUjHlEKWsMxhbMWXiU5zytboXQUGmNCc0PI6Ncs5u6MsYsBcSRYix6MdsgcyOA0k300xhSvKmTfsMTyUpGefSlqUzFqgwSC3QG1QTe0kmN1MIvbgN/+6f+Hn/4PP0H5LS28g1kyy0rvv5xm+sF1dKY6eOdT2N0X9pubOzgLHs6mOqXP51jbaoEofimGYkj2WIqeO+dpfmEEgOptLVAQW9GFNIUzFp07amTTHTb3LbPvsS3kpi2ao0m6r771DM88M8nEV5TpN1nQEzA2skbt70awIqhtUIqnobJNoT+JVM8jaTp9Qn5aqU4Jck2V4HQBpyG0R0MyMw6tsRBvLenC79aEdr9irWtQ+FoOt6GU39ngqqFl6r8xQewIjR8t0/NbRS68LenNUToiqA2rNwdM/TlM3+kSDIZYdZvBfbC2Q4gdnuuYoK7irm8QBjaRb0PNwRlow9ks6kCUUtyqkF4W/J5uGYmgtSFAvBht2pCKGRiusrxQZN3ECgt7RoiySpxKdqLpiNxJj9ys4heFxoTilYXmeIRmI4bHylQeH8Krgd99z6T3RMzqDqEzEDGwvkz1QD/5a1dYO9/LG3cf4dGv7CTMKpYvyQbrW0RLSb55NWXdD52iGXqceXw9dluYuuscJ/ZtgLE2PQ8kvTXKOxS3YhFmFRlvkX0iS2Yl2a/dFtobfIqHPIrnk8KxcrVNa8pHLCVzIoVXhtqUklpNzv3SQYfK1ojSUYueM0FyHg65OB9cYPbcAE7FRhRSq4IK+NfXieaz5Ccr6EO9ALSGlO23nuXI3knUgdSyReGCsrxLifMRxcMutRvbpLN+kt+fzbOyU5AYgoISZyP6nnKovjE5Hukli+ycUtsIfYeS/Fi9u0nxnhzLrw9IX/DoDEQ4VYvhfTErV9v421roQorbbzsCwKE/vJr2oGC34X/50H18bWkLq382wdrrO1hLHlEpZMcvTVO7eT0LH0h6uPhraXJnHSburXDip9JMjK7S+rMRlm+OyA42CE4WiTwlTscAjN8nLNxk0XMamsPCW9+9h/0rE+hvDTFzp8WG62a5uGeceEObwb5qkn+PDRNmlf6DyuItihZCiAUshUgoPeXh94Bf+vo1eest5wg/3k95a56Va4XsrFDbEtG/z6LdL6RXleaIEOaeLSDJf35/hNW2iAsh7pJLmIvJTdt0epV4Q4stv5bUVRf+RX9yXuciUHAXk7q4eAZWdyp9h4TaJOjGJpzNJvXCKVi+NWTD5BKdyEZVWJgrIU2bzJyN3QHLh8oNST3iLniUjsLymzqUHktRm4L8eaH6uhbWbJqRx2Jm7gL1lMlNC0kd+otFTn4oyztue4pHfnc31ankehKnYrwVm6AUI4EQF8MkwRbgW1hNC00p7kAL+1Ce1rqAzHmX1kQIAvnhOgDtEz1Ewz75gyncurL9B4+y5/7t2B2h0x9ROGuz9b3HOf7ZrdTXJ3nu1pNy1tnZJKp6eEs22WvXqJ0qkZ6q8fbJI/zt2R10Oskx9LwQ74Eilet8iITRr9qUr7LoDMTExZB8X5Pm2SISA2PJeVh4OEvjjjpyKkd2NqkbwyxklpTMSkRtnUOQS5YBlE7GLF8PQ3uhvNmiNemTPeXhtKE5qqSXBasD9Q0xVpjUPXYbJBL6D0WsbrdpD0dkxurEB3roDEb0HrRojglhVp+rP9WGsBSSO+3S2BCSXnAonFMmfuQUTx+ZwmpZxKUAZ9F77ty1AvCqQn1zQOGoizpQ3xhSPOZQva6D1B3coeQ8DGezWL7glYXWSIzmQwr9DVJ/U2L1GqV40sKrK0u3xOTHk/LkH+jFvbZM6Y8KNIcs1m7zKT3ukZ+PmH2DxcQ18yx9bQyvlsSnclMb9W2kbWH3d4hWU2g6QhylZ1+KTgnagzEDTwvL1ydpLx0T6hsgtSxEaWht6pA5naI9HJEaadJeyfCmXUd45N5rAOgMRRSPJfcxsQfVbQFWy8apCW5daGz2cZfc58qpWxda29po3cFbtYk2tuj/coalt3TYPL7IiQvDFJ9JUd0aPnfu9n4qz8W7IwaHqshnBli8IyQ949Je7zN6j8PCbWB1BKeZ5Hd7gw++hV2zcWuCFcDg/oDz74bR+2wWdws60sY5nyZY170hEdj0yZjVHRnWrlZy66uE+0vEjuLWhfDGGvb+Ar3Hk2vNws0W8XibzKEM9q1rNE6WkurIVeJcRN9eh/ZAch159rFde1OHTKFNHFvo0TxhBqwIcheE8g0+vUM11uaL5E8l5am+zSdTbJP2AsIH+pP7u5EIiYV1O+aZf2wMUYg8ZfCGpB6ZvdDP4KMOa9u7x7smOLvXaJ7uwSsn5SV93qM9nlz/iIX0nEN7LGToUZvgfavUD/eR27FGZ08fEkNzXYi3auOPJtt4eR85lsefakPNpXf9Gtbn+/GLQpCDoEex29AZSeoqOx8w+MU01Q0WYV7pOQnlbZDeVsYW5baxc9z7wC6ysxbOnSsA1I72EWVj3LKFFSbXT7cOqbcsEX5hAPsdKyzP9WBXknux1IpF8Y4F+KNB5t8Y4y3ZeJXkHA7zSmxDnInJn03Wr+3s4GYC4sgmXvMoHbYob49R75L2oaV4Cw7D+5I8n3lfQNxwQRS8GLGUXLFNY6aAZiIsLyJzKEPpVLL+1p87zFf378Cp2hTOQpgVgm4r0Lq2Qvt8gdSKRWtdSPF4cn+Yf9s8y/uG8QcisucdcnNK36Eaxz+SwcqGZA5lCApK7ppVAMoXSmRmbFpbO2jLRnyL/HmL2g6f3CmP1nBMZsGiU1Ls5JaEwtnk+ItC/jzYHXjq93/2ye6gzc/rH8s80IZhGIZhGIZhGIbxHfVKDCL2gl6Jp88i8jbgP1+2+KyqvvvlhNudluolP30WkV8Evu+yxX+hqr/2cuL1LFWd/HaEYxiGYRiGYRiGYTy/70gD+kpEpAR8QFV/51vc7m+7233LA2V1R7T+oqp+9rLldwIfV9V3fKthXqrbUH5RjWUReVRVX/cC65zjm7yy3Y2vr6qPvsSoGoZhGIZhGIZhGM/jtfYKdwn48csXisjzNvRV9XtVtfyKxepV8kKN5xdwJ/BytjcMwzAMwzAMwzCex2utAf3rwKbu6NV7ReQhEfkbkpGyEZG/EpEnReSwiHzk2Y1E5JyIDIjIpIgcFZHf7a5zr4hkuuv8WDfMAyLyORHJXrLft4jIPhE5ISL/4ImziORE5H+KyB4ReVpE3nWlBIjIl0Tk2u7np0Xk33U//4qI/Fj388914/KMiPz7S7atd/+3ROR3ROSYiPy9iPytiFw6rddPishT3VG8t3UHOvso8DPPjvwtIt8nIoe66X3weeL7kW7a90W1xpVWMwzDMAzDMAzD+K73WmtA/zxwuvsq9s8BNwA/papbut9/WFVvBHYDH3t2burLbAZ+W1WvBsp8fX7mv1TVm1T1OuAo8COXbDNJMg/0Pwf+u4ikLwvzF4GvqurNwF0kU1DlrpCGh4A3iEgPEAK3d5e/AXhQRN7ajePNwC7gRhG547Iw3tON0w6SacJuu+z7ZVW9gWQ6rY93+2n/d+A3VXWXqj4E/Dvgbd30vvMKcUVVP6mqu1V1t124UpIMwzAMwzAMwzCM11oD+nJ7VPXsJX9/rDsX9ePAOpKG6OXOqur+7ucnSRqiADu7T7QPAh8Err5kmz9X1VhVTwJngG2XhflW4OdFZD9wP5AG1l8hzg8Bd5A0nL8E5LtPu6dU9Xg3rLeSzOv8VHdfl6fj9SQDjcWqOk8yD/al/vKbpO9yjwCf6j71tq+wjmEYhmEYhmEYhvEivaYGEfsmnnunuDtI1luA21S1KSL3kzRkL9e55HMEZLqfPwXcraoHROSHSPoMP+vyybAv/1uA93YbwC9kL8kT8jPA3wMDwI+RNHafDes/qer/eBFhXcmzaYy4Qh6q6kdF5BaSp+pPisiNqrryMvZpGIZhGIZhGIbxXe219gS6BhSu8F0PsNZtPG8Dbv0Wwy4AcyLikjyBvtT3dfsdbwI2Apc3lO8h6XcsACJy/ZV2oqo+cJFk6qrHSJ5Ifxx4th/yPcCHRSTfDWtcRIYuC+YR4L3dOA3zjY39K/mGYycim1T1CVX9d8ASyRN7wzAMwzAMwzAM4yV6TT2BVtUVEXlERA4BLWDhkq+/DHxURI6SNHAf/xaD/2XgCZLG5BN8Y0P9ArAHKAIfVdV2t638rF8F/hvwjIhYwFng+aa3egh4s6q2ROQhYKK7DFW9V0S2A49191EHfgBYvGT7zwFvJhk87SLJq96VF0jfF4DPdgc4+0mSAcU2kzzxvg848ALbG4ZhGIZhGIZhGM/jNdWABlDVD1xheQd4+xW+m+x+XAZ2XrL8/77k8/9LMujW5dv+0BXCvJ+kvzOq2gL+1QvH/rltf5mkwY6qzpI0Yi/9/hPAJ77Jdvnu/7GIfFxV692B0vYAB7vfTV6y/j66T6dV9QRw7SXBPfRi4/ucWHCa4LSgOaJgK2/cchKAhx/YyUEdQ0tKOOJT76RojUUM7rHoOd3g5EYPt64QQ3VbBIBbsWmfLVBowdjDIYs3uHgVqCxm2bRtlsUwRyHfwr03eRO/vE1JLwnxqkeqKgxev8ri/mFksk24lEEUOufyZJaEsDveWedcgcKmCtG5XjKLittUWnmf7LxDmBGswKLnbIhfSF62iB1ojFm0RiPS/S1WdubB0WSfKzbtkRA6Nn5BcZpJttkdIfKgkOqwXHeIbYiKEUSCWIJEFvkLQmU06WoepyCM4ROz30NrUOBC0ougsgkqC/2E4wFiKWor7aGkt4A772FtquO3HSJXcGsQFASJhLht0xyL8Mt5+ldjANqnMgSbW0QtB+nzqeRsKKeJCsJCuoDaUN0SMr4xmS78yNwwmouIUg52Sxjaukb5/hFakzGpVQtnQ51WrYAEENVdAFIVJT8fUR+xsTvghxaxq3SGY0jF+NtbWAr2TFKNWAG4DUEO57vHOTl+51b7KBRtmkMWtQu9ZHMQ5ZJ0SGxTmwQ7G5I5VWbbL7Y5dHADdktojghhLsZpCHG3php+ApYnhGgtRWbaprkhJFYhzseop9h1i55TEGaUvqPJPpaut7CaNlK1sSaaBE2PW4bP89Df34i9PsYKhN6nlfLmJP86YzGt4Zj0shB7MHGfT3XKozGl9O11Wb0ri7hKpyREmST/goygAlhQb6XIzAt17UcHIvbMrEft5DwKepOycduG8xx8ajuZ5ZjFWxSvWaDgdXC3VvFPFzl2eB3iKnHNpXg+ACBKeTTHlTgTs2FwjUYlQ3PYIhxv4x5Pkz/uUbgYUZlK0lE4r0Qpl6AnprnJJ7XXxYqgfXWL9IkMhemQytYkj5av9QDoPRHixxZWy8JpCWFWaY7GOE1hw+Aa58/kCEKbsD9Jd1gKOTY7TJxRnL427vkcVqjE+Yhsf5PWaBHWPAInyQsV8KpCkFfiUoC96tLuF8KKh4jSmvKx2x5WAAu3Jdtk3YjyNige8GiNKHZfh/SZLNV1NmFOseyIsC9gtZNUCuk1pXxbB/diiv/v+M20ayl67aR+89Ys2NAGxyG92CGaTiZj8NpJ3Rf0plGF6ZND5HuFdH+LVi1N6TyUdyiSDwFojKYRVQb3lJm9q5dz9X5mlksMp4QoFzOeK3N2bBDKHqtnkxeMbIXYU9yWYrcsoh7FWnGJXZjYtsDc6gixo6RWk7qqPRpx+OQEE+stYlcISyEy7WI1LSSGxmRE/5GY1pBLarV7iVHILsbU39Mg2t9Dp1cJ+kNS8w6dkhLmY8b6qsy+aSQ51/sUzYdI1cUa6DC0z2blGhs0qf+aQ4I/EOBZSriundRjpJGWTa3j0ep4RMcKZLbVaEUZ2jt8Mocy5OZiimOrADQfHsHvESh7qJXUbVaoxG2bVEW69TTYwy3OnUmO1dikjdoxjy9MUt0IaoFTF7zJOs12EU3HuGWHOEzqqvFdcyw8PEZ7XUDutEszzOKvC7CaNk4LMrMOThNqVnKOOOtaaM1FBVoDwubcInuj7YRZpXDapjmmVDoZ2gOKPdpK8u9gjtSqYmV8GmspYg9Gi1U6q300U3n290zQLGdIF5MeVq1aimhYsTMRUd2hOmWRu22Z1oUSzoqLP9uDGwthPqan0EyuHZJFL+ToPQ7N95SxHiiRWVLCtBClLGIbJAK1tHseWkik1NYJrYkAadq0h2P6nxasQGj3gWWDV07q7mcLoV+KcdoxQd5CXSWOLdLLgNhUNiuFLas0jvYm5W9WaI4phEJjYwCu0h4PkNClHbn0HHGobo4o9TXwvprUI0s3xUQjAdm9aQgFr6pU3tTCnskQZsHNBPSPlJm/0Jcc21DILEryXV3ITdVYWyiSjiDOxLQHLKK0kD9t02z3AFCaVtYKRVL9gl8UcodThDmIPIv0koWIEhSV1vYkP6wlj6gnRLMRpWITr6/K7MV+3IxPbdLFm6wzlG2z2hpEc+FzdW7kxdSvipBsCE2H1kRI4aTD4PYKZ5suj16cojOU1OvEEKWhPaj0P6P4PS6dqTbUU7Sva2ItpkHBrSXlVS2wFj16t60SPdNPNZ1GLVg/ssqpuUHcTEB1q41btumsJelul4AOrJzoJzsqFA+5+L1AILR7hTgdEWeUeCxJg72QIrNo4RcVtw6pNaW2zqFvH4RpKJwVOlMB6mew3KTOjSoec7c79JyJyK6rEwQ2dgBIUndrZNGZCEmtJtcanWjDUorcjLI4V4DegPS0R6cvhlAob1fUi0nP2gT55Dy05z0Gx1ZoBi6rmTzpZcGrKIWZkOaoSzWTxVtycOrJoXUXXOJ8h9qxPnREsTugrmJXk/oyyihuRYhzMLdQAkACi+K5Dsu7XXqfsWgPwFixyvGeHO60hxY7OC2P7LmkHgl31fFbWTIzDvVx6PUCokWhMp7FTSuZRcGp2khymACPYoI1AAAgAElEQVR475b9fGbpNnZNXuTAU5uoHu7HmRCGng6Zv9nGbgnR5iYSJPHcMLRKkzE6AzG5CxbN4aTirpezuBc97m2ksQKhvjFiUy6pF6KtFvUzPTgtoTkZ4C05tMYj8r6L5ITy+V5Syzad4STPm4WIW3sXeHTzMNnBGk0vQ3rFw1mDMAuWwg27TnHszNYkEb5F4KewWjb0+qxd40A6RizFnfYIJnycOQ9/OMTPd/O86oETYzVtYltx0iEf2fIIvzn7z3CWXKJCsp5XS8rG105swett43se9dBlwz0tlv91i/JyHhZyeE2hPRaRWnBILyfnyOy5AQqrQrTRx/aTe+/z31uEOCSb61C/yiZV7NDem4wnnQ2SMmUveETZGLcmpMpKs5JsGxdD4mWPsBSRGakl2+wpUF/n4G9u0WpmCLOX9+C9stdcA9p4zhdFpAR4wK92BxMzDMMwDMMwDMMwvkNMA/olEpG3Af/5ssVnVfXdLzPcc8BuVb3zedb5BVX9jy9nP4ZhGIZhGIZhGMa3xjSgXyJVvYdkQLDvhF8ATAPaMAzDMAzDMAzjVfRaG4X7Hz0RmewOgvbs3x8Xkf9LRO4XkU+IyH4ROSQiN3e/7xeRe0XksIj8Hpf0lxaRvxKRJ7vffaS77NeBTDecT3eX/YCI7Oku+x8iYnf/faq7r4Mi8jOv7pEwDMMwDMMwDMP4p8U0oF9dWVXdBfw48D+7y/5P4GFVvRr4PLD+kvU/rKo3kswr/TER6VfVnwdaqrpLVT/YHdH7/cDt3bAjkmm6dgHjqrpTVa8B/uCbRUhEPiIi+0RkX1SvvwJJNgzDMAzDMAzD+KfBNKBfXX8KoKoPAsXuIGF3AH/cXf4lYO2S9T8mIgdIpuxaB2z+JmG+GbgR2Csi+7t/bwTOABtF5LdE5J8B1W8WIVX9pKruVtXddj7/7UijYRiGYRiGYRjGP0mmD/S3X8g3/jCRvuTz5eOjX3G8dBG5E3gLcJuqNkXk/svCem5V4A9V9d9+kzCuA94GfBT4fuDDLyL+hmEYhmEYhmEYxjdhnkB/+y0AQ92+zSngHZd8934AEXk9UFHVCvAg8IHu8rcDvd11e4C1buN5G3DrJeEEIuJ2P98HvE9Ehrph9InIBhEZACxV/RzwS8ANr0RiDcMwDMMwDMMwvluYJ9DfZqoaiMivAHuAGeDYJV+3ReRpwOXrT4P/PfCnInIYeBS40F3+ZeCjInIUOE7yGvezPgk8IyJPdftB/xJwr4hYQAD8BNAC/qC7DOAfPKE2DMMwDMMwDMMwXjxRveJbxMa3UfcV7I+r6r7vdFyuJDu0Tsc+/jMUT8PadkUUolwMgASCukp61kEi0F017H0FiudiVt7TJLqQS9ZPKdnZpM3u1qB8bcj4VwQUahM2fi/ErlK8bgX5bD9qQWM8GXg8tXuV8KE+Nr/zJAf2bWLiqzHzH2rjl1Nkz7m0JiKcikXpumWWz/QB0P+0xcp1ihZCiCF30iPIK25DiF3wt7WY+GOHxRuTB/ZhXnErgl9SrnvdSY59aQt6U4VOxyWX7VD8oyIzd4Hd38Gyk7SHc1mc0SZ+JQUC+RMuzfGYzLxFczxi7AFYvMGi/1BSlsrvbjDyeymu+bUD3Pe5mwh6lMy8UNsU0bO+QrPtEbQdbDcmn2sD0NnTh98bUzwtdEqC36tEuRiraWG3IeiLyY9Xqc0VkvzIhWjDIT3n0J7qkLqQIkor4WCAs+ySXk6Oud+TxEm21JFDBfy+GG/Nwt/cIn04g9xUoX2mQJxSeo7bVLZESK+fbLOQIsrGeCs2QU9MYX2VWjWDtZDC7oA/FCIdi8xYMvic7u+hNRGwbnKZ5QdHyU8ra1dDdk5o9ykDB5Wl9zSxLMV7PElHp1fxByLcNRu3JoS76oSzWVLLFq31AVt/t8WFtxWxkyhhhZBeVlauhcxSct40x2JKR4W1q2M0FYOjbP2dFsd/JJekIxSKp2wkhMr2iOyMTadPiUY6WLYiF9Ok1gTt/tTktKF2XYeJz9vM32ozvCcms9Dm7LuyxK6Sv2BRm4qxfCE3ncRh8ECbpevSeFWlMSYERSUsheAqt287xWNnpujvrdO6fxCA2IXg2jqlL+dojghhBsKsMnLNAjPTfeROejQnoqTMzSe/c3b6IjJzNs2pgPSsS+QpsqmBX/MgtHDLNrffeYhH7t8JQNAT0XPEoTmmZLaXyf1pD8u7BKchdPpislNVCp8psrhbSK0m6dAbq7SbHtp0kFDoOWJTf30T71CWoKAEpYjiaI3adDEpf5NrjBaqHHtkimAwJH/cpTkWw2CHuOYysM9mdafi1pKDO7w35MI7IHveIXv7MssXS4zeb9EatKi/rol9MkuUVuwOBBuTshH7NtKwKR226PQKYU65/q7jLPzKRqbvcuk5CWt3thnsrwGw+swguYtCY0IJczE7rzvP6eV+4tgiPpbHaQn9R0IawzbtviTdrbGIgX0WjTGhc00T93gSj56TUJ2C1JqQXYxpvq+SnIdf7aU2GWOFgsQQr2/BXBpvzSKzpKzuTsqG1esjkpTBsOFiNWy8skXkKbGnWKEQjnbQlkNmxqHv9nlafzkMQH09BAXFrQr+cIi36BBOtokbDnbNJsrGbNwyz9mZAey5VLKP3pCpzymzr3eRSAi2tMhkO3SO9pCbFRpjStgTY9eT/NCJNn2lOneve4Y//MKb6DusrLyzSfErOfRdK7QfHaC1tYPlxjx7q2DNpJNzWwW31Cb3UJ7yjT52KiKquUgmxL2Ywu+PABi932L1aiFKQeEclG/rIKsehTMWdltp9wtBQQmLMc5AK7kWPZKnckMHZ8nDaQh+KSY3VaE+XeSG607z5NEppGORm0jyfOvAIif+aguN8RivYuGXYkrHhMpVSZ2RPw9WBKs7v36/k5m3aG4IyUw72G3o/Z45lh8cRWLIzyhLb+6QOpumPZFUPr1DNdJ/0svaNgv72gqdtstof4WLs33QtknPO/i9MT0bk2FM2nv78UsxEglWALlrVgnv70ci2PTekxz9ymaitFI8AxMfOgPAqb/bRHMiYuPnAs6828WtWdx45zEOLY3QONvD0F7o9Aj1dUka+g8qC2/3IRZKj3uUd8RkJ+o05/JoOiJ3wsNpQmV7iFUIko2WU8hwm8LDWco3+GRPe0TX10g/VGDL+4+z7+mrkF4fDbsVoigjf+uxts0iKMZEPSFj99jMvSOg/4EUtUnoTATQsXDXbABKx2FtB6y/x+fMBwWpO2ArqWUbtwbtm+pE81ky88k+gpzijwegMDa+iv/nw1Q3wvC+iMaQTXmb0nNCKO+IGdqTlNm17UJ25xrhQ32IQm1ziLtqUzwNlTe3sE9lkEhwGkkyGlMRVkuIh3yGBqqslPMUH8jQGIfBp2Nu/qW93FI4zc8/9l5kzQNgZNsivekWpxYH8Nsu1FzsukX/M8rS2ztkDmUYv7/O9F3J+DFRGuxO8k8t0NsqNGfy9D9lsXxLhFtqk0kHtA+VnrsOpFaF7LyydKePO+9RPA3lN7VAhVunzvL4Y9uwOvLc/Cz5CxC9rUy4p5cgr2TnhOruNumcT6flohWP1LINVydlo+evc6TXIiSC5Z0u9U1hEpYXkz/m0djRQVs2+bMOraHknie1YjF41yznLwxQGGjAQ73EDrSHYn7srffxyb9/MxLD8J4kTvEPL7F4bBCvbOE0YOBtM7T/YJR2ySLMJtdUvwixk1znAGwf/P6YzIyNFYAVQGtIcRpCqgKtQQgKMdm55BxpTMRMbFtgbv8IEkPQF7L199rUJrO0BizUFmoblCgfYbWSbey2kJ0XKlcH5E+7SAj1TRGZaZvBAwHL17qg0HPXPABziyVGvuQxf4dy1Z90OPfPM7g1QW1IlaG6KcYeaRFFFnE1uadMLzq4teQ+xK1Z6I4a0Zk8bj2pt+JBH3shhVpJut26RXs0IHfWxa1BfYMSu4o73qBTS+HNusQexCnFqSeZ7o/7iIC2bSQUxBcG9gvuBxaotNK0Wh6FR7JEyWWAMAP+1U1yT2Tp+d45pk8NUTpoEXtC8MYKPNmDdVMZ996epCxdG2E3LaxAUIGwECGh0PeMRZATuGuNZjOFlwoITiTX/vSyEKbhv/7w7/PTn/4R+m+Zp/zASFIOMkr/zQusPjZCZ1NyHS88laZ6rY+z6GIFUDgPlc2gdnIdtHzI7lqlUs2SPpJJ6oVrGuiFLNFIh/SpNJ3emOIZi9iG6o6A/EmXN77/Sf72sV1JnT5n09zSwSq79B4W7A7UJoXSiZjV9zYIZnNYQ20i38ZeTMp4/wFl4faY9KJDezzAXXI4/W9/9klV3c0LMK9wG4ZhGIZhGIZhGMaLYF7hfpWo6p3f6TgYhmEYhmEYhmEYL515Av1tJiJ3i8iOV2lfbxCRwyKyX0TGReSzr8Z+DcMwDMMwDMMwvhuZBvS3393Aq9KABj4I/CdV3aWqM6r6vldpv4ZhGIZhGIZhGN91TAP6RRCRXxaR4yLysIj8qYh8XEQ2iciXReRJEXlIRLaJyOuAdwK/0X0qvOkK4V0lIl8RkQMi8lQ3LBGR3xCRQyJyUESenfLqThG5X0Q+KyLHROTT3XV/lGRu51/tLpsUkUPdbbIi8ucickREPi8iT4jIC3aINwzDMAzDMAzDMK7M9IF+ASJyE/Be4DqS6aeeAp4kmUrqo6p6UkRuAX5HVd8kIn8DfFFVn+916k8Dv66qnxeRNMkPGe8BdnX3MwDsFZEHu+tfD1wNzAKPALer6u9155P+oqp+VkQmLwn/x0nmkN4hIjuB/c+Tvo8AHwFw871XWs0wDMMwDMMwDOO7nmlAv7Dbgb9W1TbJPM5fANLA64C/EJFn10u9mMBEpACMq+rnAbrh0m0M/6mqRsCCiDwA3ARUgT2qOt1dbz8wCTz8PLt5PfCJbviHROSZK62oqp8k+TGA7NA6M6eZYRiGYRiGYRjGFZgG9EtjAWVV3fUq7a9zyecIk2+GYRiGYRiGYRivOtMH+oU9AvwLEUmLSB54B9AEzorI9wF0+yRf112/BhSuFJiq1oBpEbm7u21KRLLAQ8D7RcQWkUHgDmDPy4jz93fD3wFc8xLDMQzDMAzDMAzDMLpMA/oFqOpe4G+AZ4C/Aw4CFZIRsH9ERA4Ah4F3dTf5DPBzIvL0lQYRAz4EfKz7avWjwAjw+e4+DgBfBf6Nqs6/xGj/DjAoIkeA/9CNX+UlhmUYhmEYhmEYhmEAomq6vb4QEcmrar37pPhB4COq+tR3Ol5XIiI24Kpqu9uI/wqwVVX959sutXFcJ//XjxOlleG9Mb0/fZ7pz0wBsHZNhAQWuRkLCaExEbP1d1c48eEBdt58hgOn14FCasYlvZz0C0+vxNTeU6O5lKN/r017QOj0Km5d8Htjhh9XWh8qszbbA0DvAZv6HU28VEhzOo9bsfCHQsS3yM7YNDb75I97pO9Ypv3gQJLWEII8eBXIz8XMv7ODZSk6kyG1sUruC0XCNBQvhgA0hhz8kqACdhsa6xVd3yKeT6P9Ps5cCueqGrkvFahs/vqxCXojELBrNuoocU9Iqb9Oea5I9rxDezgmM5f8HtV/JGTpOge5vkJ0uIjfo2ApufM2jakIt2yRu2aV6vE+0ivJsWpsChh4zGH51pDsWRe3Aa0hJTsrZN85z+y5AVAYmVwB4K6Rk/zZA69DBjvEax6bPtPh1A+6SMfCblhc9SdlTvxwD9qXZHnP42lqG2NyMxYqULvap3ewRuVUL05L8IcDiIVMXwsOFAHo9Mb0HxDq64QdbzvBXKPI8r5h1IGgGFE84dC4qUXUsgHIH/e4+u5j7P/KNtRWJIbUqtAaUtSCnpPQHhQam33oVjsDj7qs3BiTHa2T+UKR5Tt8UCF33KN9bQvrQppgKMCqJr0W7JEW4wNlFqt5/FPF7gkPUUrxKoJsr9NeyeAt21hhcmzbIyESCJk5m9iD2FH84ZCegy473n+Up2YmyN+TZ+XW5BzxFhxiB5yWEHtJRLOzQuP1DayTWdLLgtrQczbk4ruipOxc9NjyxrPM/tEUdgCdHqG2KSZOx0jHYueucxw6sAH0uTET+PBd9/NHh29BL2Qp7lhhdaYEXszEF2xa/Rard3QQUfJPZgDQO9fYNTzD6coA7cAh/vIAnRLYPjTWR0xtn2OtmaF+pA+AsBBjNS2i3gCr5hBnkr+zcxbtAUUdZfhxZfbNSmagCcC/2Xkvv/bX7yU7K7SGlcyOMoU/LjJ7F+TO2aTfuEzz0QGiXbUkTsfz+BM+1ppL/oKFX4LsrFJ+Q5tMzqd9psD6e0MuvDXJvzid7Neu2Ul8OkL+nEXleh93wcXbWsWyYqI9vQzdNQPAxQOjlI4LrQHBCiHMQri1yfBfppi9E/JnbWqbQ4ojSZxq53sYfViZvUvBAq+3TXwuh9NI8lMtsDuC3QY32YTKzR2sJQ8r6Jb3UR+xlaF7PRbuiBi9z2ZlpxDmk/MhtWrh1qC2OaL3gMVb/rfH+IuHbkEdZWCvjdrJeblyfYRckucUAnp766yd6aPvoLCyO8Ip29gb66QeK1DbFJE7n5Sn1vVNrhpZ4sThCZyGRTDskzmVwm0k9a/TsMgsws0/+DQP/N31SZ5nldyMkFpTtvyro5z9b9tY22Lhl2KiXIy3atN3wyKVRnJOFT+fp1OyqGyN8EaaOE8WaF/bwvVCbl13jif/4hqCHFgBtHe0ABi8J8Xy9WC3BacudHa2yObaZD5XYvVqyCwm6Q2TXTB4IKQxatMaEDLLytoOZeApYfGuADcTELQdRMCZ9Qj6kzI48ITD2lta2KczlE7A4h0h7pJD4Tys7g5xVp3kOrI9OW9dN8LvOKQPZ56Lp5sKyd2Xp74Oek5BlILqsz9pK7CuhYgip7L4gxHZ8w7NDSHZ8w4Dh0JqP1bB/nwfK9fHySaeMvSoTeTB6nUxVn+HOLQY/rLH4k1JmHZHkCQJ/Mt3PshnvngHmXkhdpPzoTWkuFWhPRyRWrEZ3htQmXSpXpXsY/RRZXWbjV+KkVgoHYXSD0xzcaVEfCpPlFYKZy3ag/pcfkf5GLvo03N/huqdLbJ7s1S3BfQ95RC8vUxtOUdqxiN2u9v0xIgveGsWnaEId83C7+9e3xoW4w/ELN7o0B5KEtJz1KF6U5v8gTR+j5JZFBrjStAbYTUt0ssWsQPhtibDn0uGgln7QJ3OuQJe2aI15ZPKd4hP59lw8zTn9k0w9nDE0rUO7bGouw+bTgnawxFWf4fUwSzOLWtk/7yH3KzP7O1p8tPK8k0xUkquaV4qRBUcJ4Yneuj0Kl5VaG1tA2Ate3hrFhNfS86Ruduy+L3K1G0XmC6XaJ0vYAWCWxU6fTEbr5vh9KFxJIL0UnIt7/QpI4/H9H3sPEcfn8IKIDsvlG/sIDUHiYT1O+dY+bvxpO7ZGpCedYk9pf8ZZfFdbQoPZ+n0gt2B4OYage9gTacBkBhEIbbBmmrAyRyTX2xw8gMZJBZSKxZOAzr9it1MylXswQ+8+6t86t47KR0X3vOTX+Wv/subsH2lOmWBgtOEvmPJcapsdKlsVVJLFnaQ3PeM3H2eSifN4nKRzKEMV33vaU7cu4nWVUlvQWk65M7ZtAeUyd3TTD+4juIZZWWXMvgktPot6pMxpSNJnFrDQnNDgJUNsWbSRPmY0iGL6iaIUzHS52NNpwkHAooDDQDah0pEU228oxnSy0p9Q1J3+EXQq2vIkQKdwQi7luSFFUCwocNAf43ygQGG98ZMf48iKuTO2eSnY/RDy9QeGkK69xdBXglKMWNXLTFzvp+x+2wWbxSsAEYfDVnb7LLu3Wc5s9yflI2TBaKUklpfp3Mhj6YUCZJ8sDvQHlDufsvj/NVXbsVpJGmXKPnX2t5Gmw5bt8xw4vAE/U9b2O9bYmGuRGraI7OUxKnTC35RsSaaxLGFdyRDa8rHqjmopzh9bfRiFm9NyC4kCWkOS3JPOKw4dcHvVdJLwsBbZ7h4YJS+7SuM5asce2AjALkZaLy5TnQmTzTWwZlOkV4RmqMxUT4GL6lvxO7WbZFF7oSHX0zu/Zd22dhtCHfVyT6Qp/76JmHFw25a9JxI0l3eqqirZKdt2oMxjLWxzmXwKkJzPMIa6DD4hTQr13TbA8tC4a3zrD46QmcoQlMx4lvkztm0rm/iHcnil+LkuMxkAcift6huTuomCYSe40JzVECUnXed5OInN7P4xgBp2l+vox+xWbwrAN/CqdpkZ4XmqGIF4DST89TOh3hHkguU35fch8QpJXaSfR7+L//6SVV9wZmLTF/aF+eT3Veh08AfvpYbz11Z4Gsi0r1s8+Mv1Hg2DMMwDMMwDMMwnp9pQL8IqvqBl7KdiPw2ySjel/qEqv7By4/VlXX7WZt5nw3DMAzDMAzDML6NTAP6FaSqP/GtrC8ij6rq615gnd8D/quqHhGRX1DV//iyImkYhmEYhmEYhmG8KGYQsdeQF2o8d9f5UVU90v3zF17hKBmGYRiGYRiGYRhdpgH9GiIi9e7/d4rI/SLyWRE5JiKfFhHpfne/iOwWkV8HMiKyX0Q+/R2NuGEYhmEYhmEYxncB04B+7boe+GlgB7CRy/pSq+rPAy1V3aWqH3ypOxGRj4jIPhHZF9UaLyvChmEYhmEYhmEY/5SZBvRr1x5VnVbVGNgPTL4SO1HVT6rqblXdbRdyr8QuDMMwDMMwDMMw/kkwDejXrs4lnyPMgG+GYRiGYRiGYRjfUaYB/Y9b0J3r2TAMwzAMwzAMw3iFmQb0P26fBJ4xg4gZhmEYhmEYhmG88kwD+jVEVfPd/+9X1Xdcsvx/V9VPdT/fqar7up//D1Xd/nIGEfsGsRBllaAU0Ri2KLcz1KagNgXZiw52R+g5EzHyRBO3Lpy/exBRyLsd7BWXLZPzdMYCgjwEeej0WDSXs7hlm1RNSa8o0YiPX4oZ2L5M8USV90weQDIhkgkJckJPoUXqniKlI1YS9lCDzKyNCmxYt0yUgnI1S3pZSS8rAFYACCzcDDKXJlpNEeUiitk2qWpMZiXm/Lvg/LtgbQdUr/Gp7fBRBwpnQc5lsELBXkgRFmL8c3n8oiAxSAyxp1gtC2KwQlBbGXzApVLJgq20B2OKJy0kAomgut4hzCrtiwWCvGJ3hNwFm/ag4i3bOHXBcyKiYkh2XsnOK+6KQ32d0P+EQ3sopjWkZOcFdWDp6WHselJUlw4NsXRoiKfW1rH+6jnSBzOgsLg7i/gW7ppF2BOxfGOJOBthz6Ww51J0eqH3iFDdFlDf1SbX26K8lkMiQTc16BuuYtdsgjMF2oMR7cEIe6yJ21IkhsNf2YIAVihEE22sYkB1R8C28XmcZRdn2cWrKOcqfaRWk/xYd/s09RtbBIMhTktQG9oDMe6SS6bUJlNqIxEQCik3IMwKbjokfcFjeF+Hkf4KwVAAQP+WFfq3rBCupgkim2Y5g1cW1FEmrp/FbguyvU50Mk/xqMPoYyFqKWopODFWf4fmVT7RtjoSCdKyqOwIeWZhjEwqwPZBUhGSivBHAiQGvxQTeUnR8IsQhRZsq1O9KqIxHrN8jYNYilhKZzTk0P5JVm+IqW0QBu++SHbWYnDdGpkFi4PH17Fl5zRjDyljDymlqTV+/9E7iEILryysne2l/0mbazZNU95ss7I74nu2HaVYbFHbFFHbFJH1Ag4vj7Cw0sPahV7a/VC4qNS3+6irDGdqrM0XiTwl8pT8aZvctFA86BEXQohBU0rsJGWmcNpCLcFqWgwUGgwUGvzmsTdTPA3NcSX2lNrFIgs3WaRnbcKba6ys5Om9Y54wcAgDBysUvFmP/AWLTp/iF2NWbwwBaNZTpFYsVnZ4RH0hUV/I1LY5JBAYb6GpGLdmEWVgw8QyvUcgCGxqKznaQzEN36Phe/QeFqpToA6kVpN4ZfZlyc602bR9lvr6GMmG3DAyzQ0j06SXLOoTNm7FTuqVhQwIRGkFhZ5T4FWgNRKTn4vIz0VYyy75i4L8/+zdebAl133Y9+/v9Hr3e9++zJt9MIPBDDDYiI0bSHGJRFqsyCbLViKpyiomsVUqZZGdcikVKFESO3JZcVnyHywlpipWaIkqMaKWiCQoggJAEjswwAxmnzfz9v3dvW9vv/xxH1kwSxQgiiBB8HyqurrfvafPOd23z+n+vdt9roJzrEPthQAxysaHBnibLp1ZQ1JVdCRGR2Lc3vC4cNqG3RPKV5aPQT3B6Rnah2DrrozWIQg2XFQUFcXpGpzVgO2lOsW5Ns1jEK64qAPe0xW8lkIO1Rs51Rs57uUil25O0Ti4g3Okg7Pt0d8/bA95QUlqOQBnt2ZAFETxm4LfUnZvhaeeuJXlD6eUF5SskmEqCZVrMFtuUghiCkGMKLSO5IQbDnqxTDSm6EZAlhrO/l+n8DqKSSBuKJoLmgsolBYMyb4Bbg9cL8X98zpJCZzDHbyO0ptWsuJw2rzdpbSS4Uawe2K4D3dOQumiT9IMkK5L6XxAYU0wxRRTTNk5qbhXCux/NKK8FCM9h7ScU7k5PLbGXlLKNxXvYhHvYpFB16fyVAGvA971EGcxRC+XGTSGfWh5MWZQF3JPyT3F6whp16NS7uP2hMoll6SqmMgwGMtZv8ulfWGE/oSglRStpEgsbN2utI6AN9HHzBfwbgSsvjuntGBwe0JxWZj+esr011OudscxsaAG7v74yyT3t8lKOf25lOplB7cL7X0uxc2cvDicVh4UygtKYd3Avj67t8L8c/sYdH2cYx2cSPA6igrDyYHaeZd8K6B9EIpPF+lNKqbr0J2F9lYJb90jKyiVG1C5AZII6imVm4okQmFDaLzsQJghMxFbJ11yT5FckFzwPrSJdl3crqIO7N6ekJZyqq+6TDwDaUlpXMr55O2P05106E46TNXa1F8VJt61DArxSomRc8r65+eGn3MyPDactsFpG/yWEuxC5YqDd7FI+OAmPNOoyPcAACAASURBVNZg405h5YGQwVjOzm1QuuFglkPMckhys8RgJ8SYYTtIaxkAfiFB+y4mEYqryvpdRdbvKpKWAYWLF2fpbhfw2sLIKxDdEpEXc66dnQWjBNuGtKyk5WF7SkNhu1+kcHyX7FBE62iOE2QU93UI5josPTtDFkAWDPuEpJLj7ww/93wjRB1wIzDv3EHOVZj7jEtWzMmKOV5HyD1Iqxn7x3ZwIiGuB7gdg7rD/Z17kBaUuL43jWR8+gsPk5VzutPC//now5hU6U0ZyotKUlMGD7VpHvZoHvZIKoJkkFQUf1dpHc94YPQ6jbCPezNk/MWYm806/cMx3zyw/C1D7VqGiaET++S+ErQyTtx9g+YRQ+NyQj4W43cUvzO8RijOezgLIfWLoK7SnYW8mOO1DHnHo3Bil8mvuLTWyrTWylRugDMfkpYUkzHcX3sPKsaRx/t/4jncpiGdSEgnEpxI0I5L7/FxktGUrZMO4bqLqcd0bknozBm2zo6TB8PrjGgsJ9wS3I5hZbOGhBnbJw1ZIWfsrLJ9q0f+3l3m//wQ6eUK6eXKXt+a8679V/GbBtMXtBFTum8Tv6n4O8JSv05xSYhmE6LZhNxX3D64fkpxvMulhUluv32eaETo/sUEwaKP24fMH05uD4rHdgnChPsPXad/JIZckFQIlx3y5QLOwQ7RbX2iUSEaFdKiou/bobQAwY4iKTQupbgmp3i0ydZ2mc1+CTXD/bhzW86gHaDO8Jg/+dA1ovG9Np0I0nYJyoNvfd5eMWbkQkqwK6zdZ4jHMkwKjUqP5n0R5VLE9FcNTl+IRoaTEw/7ke6RhNGzgn+uCAaCXR32L6WIzpwhGclIRjI6B3Kaj02R39aBckrjeRd/yxDXlazvUp3PYXpA0gowsWDi4XGrpQx1FX/HMBgRBlMJU99I2YpKeL2cyliX4pJDccnBqSTsnITwpk9poku4LrSPZmSTMSYReocSypc9ssghOh4RHY8Yu3WTcFMINg3lm4b2sfQNh0w2gLYsy7Isy7Isy7KsN8AOTPUmE5FR4MuveclhOCjYN+ff9H5V3foelfHNcvi2Mv5W5ViWZVmWZVmWZf0oswH0m2wvWD3zRtKKyNdU9cHXSfPbwL9S1fMi8s9U9X/9m5RhWZZlWZZlWZZlfXfsLdxvIa8XPO+l+XlVPb/35z97k6tkWZZlWZZlWZZl7bEB9FuIiHT25u8VkcdE5A9E5IKI/K6IyN57j4nIPSLyz4GCiLxoR+G2LMuyLMuyLMt689kA+q3rTuCXgJPAYeCh176pqv890FfVM3+bUbhF5JMi8qyIPJt1un+rCluWZVmWZVmWZb2d2QD6retpVV1U1Rx4ETj4ZhSiqp9S1XtU9R6nXHozirAsy7Isy7Isy3pbsAH0W9fgNcsZdsA3y7Isy7Isy7KsHygbQP9wS0TE+0FXwrIsy7Isy7Is60eBDaB/uH0KOGsHEbMsy7Isy7Isy3rz2QD6LURVy3vzx1T1I695/RdU9dN7y+9V1Wf3lv+pqt76txlE7D8iMP1kRmHZpXVU2Xl0mvoFqF+Awak+uq9Pe9bhysdDBpMp0WROcUV4fnkfJoMrL++j8axHb39Kb38KAnfeOk8WKCvvVLr7BP+mj9cx1IKIaKrE5xdOo10X7bqYFJpnRwl3lGhMyHwohwPcHhQ2lcWNBk4ffvGOr7B9Wtk+rUgO/emM5J0tJp4FJwapxbhth0bYZ/EDys4tDtIfTuUFwS/FkBjUQG9ScCIh2BLymYjR5wyo0JtWTCKYRAg3DM5MD380Ii0qXssgCsXygHBpeANA62hO99SA7qkB7UM56oATCf6uAYXMh6lv5Mw+tEgWQvOpCX7u/ifpfrRF96MtvJaQ+8r2nTnOdI/xe9YofmSVzn19skAxs328RkTuK7mvXH5xjuXtGr2ZDH/H0D6U47YM6oIkQmdOCFZdTAImgf7BhEFDmPszQRPDxw6fxfUzZm5fRa6W6Lw4Sv28kNZTpBEjjZjC18v0Jgz1d68SbsLqKxNkJzpoLhSKMcGKx5W/PEhWzMmKOc1blPsn5xk81KZ8AzY/N0f52QKjT7lE0ynOAPKxBEkguVohuVrBSRQaMdsLdYLdnHQrJL2lR3fKY2lhlMazHuVXfUI3JXRTNMzgt8fxVz3cPpQWDPNXJqnMQ5o4SAY/8XNPsPB+h8FYxmAso/KqT9byIRGylSJJJcckgtN2iC9W2V2q0p8QXC/D9TJQobAh1C4KeZgz9Y0MrwOFUkzc95BGDAKNizmaGDQxmK6D2xPIIa4qVxfH6e7PyD4/Rn82A6NcWZnApIpJlc75Ebxth/LzBQYjSvWyQ9BUzj9zkDQcNsdz29PUChFayNBCxkSpQ/+pMfb9Py4SC0k1JynC7Mw24bLLC8v7KF/xkKloOGWQVKBzKMdf9Rh50aF408FvQu7C7umUnRMGv2WIM4c4c2htl9i+KyMLFFRQTzEJuH2ItkP2T2/zwMR1EAVR/CZ4LaE/odQvKnkxR1JDsTzAcXP6+zLaRzKcbRdn26X5e7PsP76G52WIlzM4FNE9FbH1pRkQqP9pCek5lOcNmxtVNjeq7N4K1evD/WoySAtKf0LZOl3kys0JapcM03/s8dVLx/jqpWOkt3UJN5WJO9dg16c875C7Cod6zDyRDNv9lDLzuLJ6n2H1PoPXMbhdxd8V4oFL8p4m/qUCx39xnsKG4ETg9gQxihhFBbIACutC9cguJ0bWMBs+008qTl8o3XAxiTCYSsBVcBW3K2SBct/pK+izNdRRxh9cAaP09uVEP9HiHXdfpj1naM8ZJAfZ9tA/G8V/ooIZCKPPurRuSam/YjADoffuDp2vDI//yjykt3VJQyEZTXG7ApGhuJFieg7OQog6sPxbR3F/fxT390fZOi3kjYT+dEq8L6ZxHnI/R64UGfvEAru36vAcZJR6o0u90WX9fqVzTx9NzXB+uUzrCOzcFyPnKrTf16W0JATbwyktKfE/3qJ1IiEr5RhXyV2IG4oMDE7HENeU9rEMNgPYDPCbw/75xodCmod8xo5u4bUMNz6eEy56mJ9ZJ/wHqxTv2aR4zybuik+wq5R+YpXBVApAaQG6x2KcSHD7Gb1bB+TVlLya4ty1i9NyaHdDevtT+pM67LMn+1SP7RBNp+TTEepA4UpA4UqA2zGUbxiS8QT3xTLJWEpSy8EouQ/FVaE3o6gR1Ahf/8YJ4mN90iI8/5nT5BfKHP3diOINFwS6BzN2blM6M4aZLwszXxYkh40HMvpnesiNAk5feOBd5yAxpNfLpLMD3EjxW4LfEkoLw+PWm+gD0H1HDzcS8mJO3Mgpv+oj+fAc0H64S/vhLuFcm8KyQxaAMxie66L3t6m8HOBeKNK4lFFcEbzxPt54n83lGqV5l93TOUlZkSCjtOjQn1LiiiDHOmzeIXz21z/I8Z++wPGfvsDN52epfGKZGzfGmXjMI9gybJ6Bzr193L7SPDRsHzoXoXMROyegeSwnKUNSVvjjUUwMua/Ur2ToaIw6SncuI60Mp8rRXX7szHk6S1WO/vhV/C1n2Fc9V6Gw5JKWcgCaZ2KaZ2JyZ3hOR+HA/k1GX1HWH46Z+jMfp2tAwN92UANpUUmLymA0Z+39KUtLI4Sfq+NcD6ldFErPFOktldFXqqQzw2sUtwdjs01mH8tpXE7ZukN4xz2XyEJw+iBfbnDgPTfYPu6hvqK+knvQuG0Tr+Ww/OgcuQftORd1hm3uI3/n68QNBYE8zMnDnOKiw8ztq/hbDtnJDl7bkHtCcS2neWTY9rP5Mt1Z6M5CbyZn5MQWJoFoTNj/Jzmf+X/fy0qrCsDiz6aIKHceu4FpuZiWy2AiY1A1ZCGsLjWQVOiPOFx+4iAq4O8OqD0dsnVK2Dol5A7IvU3kSJedDwyPxWBHoJQy/kKO23RIXmiQu8LITJORmSb98eF6bkfYujclHUtIC8NzTe0bIZdb4yT1jKlHXaYedSmuK3hK/7Y+4UiEubtJaVE5NLVJ/SWPuKKEx5tkJzrULwj1C8LERxZQA7oVUK71iSZT3Ik+2ycM7VMDus0CWTCsg9sZHhv1l12++OxpJBtew8mOz4HaNq1DUFpRnn/0VgqbOfXJNvXJNoO5mN6UkmcOyeUqND1eOn+A3AOvq+SB0pvOaR9PaB9Phn3N1xoEf1rj6984gbPl4dcGBNtCfy4lq6cksYt/pUBvNqc3myO50D9fJwuF3BeygtKdcnAkJ7pQ5/T+ZZZujhJuCeGWUFx28DY8JIPSuZCLXz6CGQyvcaUeU75hKIYxhYsBhYsBpcfLrDzo0JvJyULFaQzwW0rzqQnclYDuuQZr94Fkwh0feZU7PvIqhVWhsOhSnPfYOj289iaHtCgUllyaN2vENSVcdQlXXczYgO6xmLjtI9seuydzBvsSCmtCsOTRPGIQUfy1YdtNS/mw7QQZpesulRuK2wd3x6V50GPxuRm6kw6DgUdahLQI+Y5PWsrJPaW3VKawoYwe3IGOS/GeTeb+VBj94DLi5biLAe5iwO4zE7RvSekdixk5n+DW4jccMtkA2rIsy7Isy7Isy7LeADsw1ZtMREaBL7/mJYfhoGDfnH/T+1V16w3k90vAp1S199eU8c1y+LYy3nA5lmVZlmVZlmVZ1n/MBtBvsr1g9cz3MMtfAv498K0A+k0ow7Isy7Isy7Isy/o29hbutzARKYnIn4rISyLyioj8j8AM8BUR+cpemg+KyNdF5HkR+ayIlPdenxeR/11EXhaRp0Xk6A9yWyzLsizLsizLsn7Y2QD6re3DwLKq3qGqp4D/A1gGHlbVh0VkDPgV4MdU9S7gWeC/ec36TVU9Dfzm3rqWZVmWZVmWZVnWd8kG0G9tLwMfEJF/ISLvUtXmt71/P3ASeFJEXgR+Fjjwmvc/85r5A39VASLySRF5VkSezdrd73H1LcuyLMuyLMuy3j7sM9BvYap6SUTuAn4c+DUR+faBwgT4kqr+/e+UxXdYfm0Zn2L4e9IEh/b9lWksy7Isy7Isy7Is+w30W5qIzAA9Vf33wK8DdwFtoLKX5BvAQ998vnnvmelbXpPFJ14z//r3p9aWZVmWZVmWZVlvT/Yb6Le208Cvi0gOJMB/xfBW7D8XkeW956B/DviMiAR76/wKcGlvuSEiZ4EB8J2+pbYsy7Isy7Isy7LeABtAv4Wp6heAL3zby88C/+Y1af4CuPc7ZPHrqvpP36TqWZZlWZZlWZZl/UhxHnnkkR90Haw3wa/+6q/+EvCpRx55pPe6iff82r/6jUcK732ItKwc/UyT3RMFkve0SG4ZkMYOjqM4az444Mz0KZwPUBcqtzRpqY8KxDWhfN0h2DKoBytrIxTWDfVLkBaEpAzlBVjr1ehNu3TLgr8Q4PYMvYMp1asOux/qksYupWXDds3F3XFxBhDtTxmMKMtSo3uzgkmF4jpMPbzMxlqN1HORVLjlzCJbS3W21mqYsQGVl13cviHYFbICDIyDVFPi6ZTKBYfO8ZR0OkFTh8R3mL1rhYnfFHZ+MkHHY5LUJbgaIPsinPmQwWyCu+sSvBLQuSdi7AmPzrEMEgOpwYzGZA7UXjVE4yAKg7mE9qxhd6NCPjOAvssrFw+StH2y3QCvK4w+uEZrt8iBzxhaGzU2qh6ulxFcD0hTl8Zsi2i9iOSQVzKyrsfU1wzd+yNyATVCVsgJN11mHh+gjkP3UE5eUII1l/5kTuuQUL3gcnZxP7ffPs+NLx9EXYjHM9KS4Wfe+zgvnTsCPZfklojxJ4SVQoX+vgwQMjUULwewHBLNJUhi8FsGt28It4TkYMLqzVFM7NCfUqLJnP6xhNIVn9JaTvtERlZWTN8BAbcjcKJP7oBp+eS+YDY9korhjvuvkv1xjc33J7QWa7Q2yxQXXPrjBu+OJiyEmBTMwFBcVyLfI5lI8Sopm9dHkcxgEgMquF2D03UQhbyo+NsOaS3HneuSxS6Vawaz7uMt+pAZ0iIUtsDtG9JACJvKoFsgm0gY+1JI50RK8abBa7qEqw7+rlBcBbdniPalTH3ZIy4b+pPKrWduQqDcOrnKza0J+mOG0iJgBH3nLu84eZVr5TLNGYMWM9y2g6TCbh7QXqiiDpALG0sNkpGM9F09dD0k9yEtCs4TZYImdIoe+bEuzqUSZtsjDyErKF7HcOp9l1m/MUYWQu9Mn9Jlj+xwhPZcJu9dZatdIoo9/DAl7XlQyDB9h9KiQ3Ft2K5LJ5qsLYxwfm0a7bvowIHM4Ny9S/XxkM17oHTDwW8ausZjfLpJ8Qtl0oIhKyoYGDSE5mYZZyHEme0jC0X85WFd65dT1u813Hb3PKvbdSr7W4SFhKSUk/UCpr+Rsn2bQ+7CoXsWGbxYpX7/JvpSiY3/ZMDYSIdiMabTCdHYY9v1QUBu6VJ+MYSmT/OoIbu/TeWpYNguGwaTCXEjJ5oAEwv+/h7phSqD8Yx0cpIsACdWqteVWz44z3S9xUK3Qe0KdA6A+0qRtXGPaOAT1RxKK9CZg2Qkw5RSKmcDgg0Hv6nENWHL8+lXBC3mZA7IfIGsoIQvFbiW1pl4Tgl3lMwzVOehfRCOfPg6uxdHSAuCv2toH8kxqVB91qc3A51bUnr7csJLIYVNpTc53JaxF4SVdxnCDcNgMkPu6LC736B3dIlPDAheDRnUYWxul147pLDkMDgRQ9/lF+79Io/duJXGeSH3DOlqkXS5iBMZzFTEibk1+IMxclcwiSCJw8z9yzQvjYII0UROUlVKSwZeKpGUDMUlhzx2SUcTzFhMcNMnKylu3wznE31MJWH0CZfs/U0G7YADf7jBRnmCaDqjet6nezihvVuk3Q9xnqmS3Sgy+a4VlusF6p8pMbg3YubIJqvFAuRCWs9ovAL0AkzPxd9y6Louc19Udg44FG94ZMf6pD4c+nfC6kSZ0RcMvZpDHijxZEpaz1ERSovgNV26+zNEBTMS4676SCb4LaV/OqI95tM+aNBQmZzdIVosgwODqZzWIZ+0rNz+4YusXxxHVMgC6L6zR+9kyuQXXdrHcwoXh+3biYVreQ3pOphEIHHojwv1y4rfVpKy0DkIecunvCgUrrmUVpTepOBO9vGWfESF3IfEOOSRS9Lx4UCfWD3UQFrLwFPC6x692Zyo4fBjn3iaSxuTqAra9EkqSvWyw8TzGa19DhPPK62j4HYMaTTcpuj0APNbY3QeH8H9iW3WXp5k8uvC1CevsxaEZJnh4dsucqFQJ/Zdwm3B2fRw1z2CbaG8AOoJIw+s0dqt0JvJGTkvVOcHbJ92KCy55AH4uw5u16DzBa6sTyITEavXxsmLitM3eB3o7stxIoPfBH/LJVhzGJzuI00XkxjSesZWI2DsKXfYByRCdihi9sQ6W54PsQHD8FjvOtx392WuN8eIZxIkdulP52AgKyveqgcy3MdN36V1e4az41GdV1onM7a8AKfn0L4lZWepTjyaUz/nEq4bJIdotUTjVaX73i7F8z5JWUhLUFhzuHBtDpMIbldIasMygx3D+Ikt1ptVNFDCBY/OgWE/YQ52Mcshk3es0d4uoS6MvCJ4zxbwW0LuCxv3CHKgS3qxyrGH5ullHs2VGmsrI9x151WmZ7bZfXGczkFFcsEdG6Btj8ImdA7lFE402RivcuxD10i+3CDcht4sxB2f6tM+vWnFKWbIrkew4rJzCnIP0kZKb58SZS5R5EPs4HWFuKaUbjrogYjKyx5JRXBiWAoLeNWY1pRD54CCOmTjCcG1AknPJ3g5JA+FzpUa0YQycl5peSHh1YC0LKRFoX29Ru7Dgw+d5/LiFNXzPhyMGGQuM3/h0B11KK4KBz5yncaRXXavNgCondmi31DcxYDisrC8PkpeUDqHc0wsqDGYywW4VuDIQws0Lzco7O+QFJVjh1fZ6pQpLDsMRoXxe9YYm2oSP9/A33VIizCYyIimQEZiNHYgzEll75qo6RLc9OgfSKhccfGbwmA0p/GqkFSFzqEMkwjhtlA5vcv2Qp3lbpXyZY/SSo7XUQaN4fUIIvzYx5/mklNDtj1MyyWrZoQLLr1egaSqZEVl+r1LuH9eoXM8ZeQFh/CaR2kjG15rdYRoJsNrGsbescbqZw+yeXaMuC6oA/19KWZ8wKAoqAszjyd0P9olc6Dyikt/Ssl9RVoemhuKk11iHCqXPLL9A9LcJR5PMXN9Ko8VyXwhGcvAVeKpjMqLId3TEYOiS1KGbGaA6bgkhyP6daEx3qFXhnw0QXsu5f0tBr2A/V/I2bzD4D9VZFCHvri09jnsNktMzezASII3HhH1AqQRQ9sjKbqUz7usPvfFlUceeeRTrxcz2W+g36ZU9eAPug6WZVmWZVmWZVlvJ3YQMcuyLMuyLMuyLMt6A2wA/T0mIh8TkZPfp7LeJSLnRORFEZkVkT/4fpRrWZZlWZZlWZb1o8gG0N97HwO+LwE08NPA/6aqZ1R1SVX/7vepXMuyLMuyLMuyrB85NoB+A0TkfxCRiyLyhIh8RkT+OxE5IiJ/LiLPicjjInJCRB4E/g7Dn556UUSOfIf8jorIoyLykog8v5eXiMivi8grIvKyiHxiL+17ReQxEfkDEbkgIr+7l/bngY8D//PeawdF5JW9dYoi8vsicl5EPiciT4nIPd+v/WVZlmVZlmVZlvV2ZAcRex0ici/wU8AdgAc8DzwHfAr4L1X1sojcB/xbVX2fiHwe+BNV/etup/5d4J+r6udEJGT4j4z/FDizV84Y8IyI/OVe+juB24Bl4EngIVX9bRF55zfLEpGDr8n/HwE7qnpSRE4BL/412/dJ4JMATqP+hveLZVmWZVmWZVnWjxobQL++h4A/UtUIiETkj4EQeBD4rIh8M13wRjITkQowq6qfA9jLl71g+DOqmgFrIvJVhr/v3AKeVtXFvXQvAgeBJ/6aYt4J/Ou9/F8RkbPfKaGqforhPwMI9s/pG9kGy7Isy7Isy7KsH0U2gP7uGGBXVc98n8obvGY5w35ulmVZlmVZlmVZ33f2GejX9yTwUREJRaQMfAToAddF5O8B7D2TfMde+jZQ+U6ZqWobWBSRj+2tG4hIEXgc+ISIOCIyDrwbePpvUeeP7+V/Ejj9XeZjWZZlWZZlWZZl7bEB9OtQ1WeAzwNngf8PeBloMhwB+x+KyEvAOeAn91b5D8Avi8gL32kQMeA/B35x79bqrwFTwOf2yngJ+Avgn6jq6ndZ7X8LjIvIeeDX9urX/C7zsizLsizLsizLsrAB9Bv1L1X1FuBDwAHgOVW9rqofVtU7VPWkqv5PAKr65N7fd6rq1b8qM1W9rKrvU9XbVfVuVb2mQ7+sqqdU9bSq/t5e2sdU9SOvWfcXVPXTe8s/983BylR1XlVP7SWLgP9MVU8CvwzUgBuvu5WijL6aUF6AaLoMCnONXeYauxRKMe75Eggk+waogmTQm87Z2KpAbPiHD/4leZiTPNAmeaBN5sPM/cuogbQgiILfEqIRIZuNkBSKxQGDqYTBVEJp3qU7q+QLJVChdWsCbY/uiQG9aaH6jQLSdklzQ+0K1K6AGri+PIZ0XEbOZ/h37XBjp0HtEvjbhsoTRVpHwIkUJ1JyBwqrDmbDp/Z0iMnAaTmEV0Lqox1E4d6xG2zeXiaNHdLYobBu8DqQJg5ZQXng1quoga33DtCmjxooXfGQMEPCjKnP+VQueMQ1oXxTQCCc93EiA7WEsS+GpJWc/fcvkjVSskaKc/8Ox+vrjMztsvBjHs2TGVNTuyTNgMFYzuxXcwaJS1ZLyWop1YkObsthUBXSnsvoUx6SCaaaMP7ACpu3B5CDN9bHG+vj9oBaQmHV0D6akYXQSQIK928STyVgFKcnfPqZB/H3dYfTqwW60w7ZaEK44lI7uEu45OF1oHc4oTDSp/EqIMOpspBxaXkSKWYMRpRwXfAnewTzAYMRxaQKux5ilLSRkjZSJIPx3ylSr3Vxu0rmK1lRyX3lxaePsnWbR/HVkGDbEGwb+pM56akOnpPhRKAORJMZuSMU1oXayx4vvnyYZCwl94f5RNMpWajkxzuk0zFazBh9cJXKFYdBJ8CrxLQPQudATudAzmBfQrAjDBpC+0xEb0bYOW7IPdBdn417csiEuCLsnk7YPZ2QeyA5mBjIhfac4fR7LxNsG94zdon20+Oc/5Pj39pXO6cUvb9J4Y9qvPC5U9x3cB6JhYMHNhh7KSOpZwDUjuxQmncpzbtMH1+neMMlf76GJFBaMLg9YeuBhNZRCPZ1SDcKJJWcpJJTWFWmv5bh9uD5l44wGFHSsuK4GcXVHBYKpOWc1p9OE68WiVeL9DeLlK+6jD3p4UQQ15W4IhRXlWazSHmyw61HlvG3HPwtB8kgTR36P7VLYcXQ3T/8XIJNh81z47T3C4U1UFeHk6c4Mz2SW/okyyWKy0JSUSSBzdMeui/ilfkZ0mpOc6FGc6FG4RtlJIOdox7RZIoTwfXVMXpTwsZOheYHerAesHlthM1rI/hhQm8uxdnxmDm0iff08Iag3oHh59rfLNI5AH4np7AGhTWoXDOE64asoMzWmrgnWhSWXLyu0p3L2TmTsvaRAedWpzm3Oo3bHbZrySAtQJy4mHJCYX04JobXFUafcTi9f5nO3X06d/eJxoRsJKHXCqHtUrgY0OsGODEUD7RQA1OHtli717B2ryGuQfuAEE+lXNsaJS0rcV3xm8rUE4LORuQOwzaYC+RCWlC8Xk646uD2hNwV8kpKXFMQiC9XoeuSXKySXKzS3ZfTmGmydaMBmdCfEPLIwWsLj3zxp6idd+hNCeMPLxNNZURTGX4Tyl8oc+7qLK3DQlxV3AjMQFh8foaskVBaUqa/Npyad8QMRoW0ntK7vY8TCf6aR7E4IJrMqFw3uD0IVx2c82Wc82XW7hX0aw1MImgxoD+VUz/n0ro1Yf/nBXfXhaZHWoS0CBuPzQCw+D5h5A9LFNwEf9VFIoMJMtpzIdwuFwAAIABJREFUATu3KU7E8PjccMgCwV93SUtKvdrDtFyu/rRh7AXBGSgP3nsBZiJM18F0HYrLBnXAPLyNFnLCyS7mZkjSyEhv67J9Z0a5EpFVMrJKxuSRTYwo5UUl9wCFmcdTvJbhqbNHicdSvLbgNwXvbBnvbJneuEEcJS0qkkN/fwKA2zW4fWHkJaG4LKy+J2P1PRmllZysmJOVM3IHepOC21dKNw1JKyDzYTCSYxJB4uHk9AxJz6OwNvxMZr4yvAyMqzB6yxbhJvzZl+4lbfmkLR9RcCf65B5kgXDi1ALbJxwqVw25D9PvWGH6STBOxvK7XZbf7XK4vkU2krB2v3JxfYLJkRaSCje7DcLLIY3z0D6e0D/Vp3+qz/jZPtUbMdG4srw8wmAkx981DH68ycpDBcqjPQobiru/S3KkT3KkD8BPvu8pUKGwaigsOTQu5wxGobBm8NpCaT3/Vr/unyuiDngtoX++DjnsHofO/hw1YBZCbr48zehXA7yWwWsZsnKOespT1w4O+24Fpz9sr9PHNkCH56BBQxk0FBIDbY/+mNA8YpgutShe9yiuKqPPOtRfFcI1h8JmTmEzJylDdT5n46MRerXE2Eu94TXJAPTeJtzaxm/CYCzH6RmcngGBy08foDLXgo0ANVBcFsZeEJKNAv6u0P/DyW9d1m2dyVm7D1qHBWcAwY4hXSvidoRL3zhIZ7HKR+95ATX6rf4tCxSvLdRObJH0PLJA6U0K3kSf9lqZ3FfOzs8iCqJQuimYyYiddw4gE7KOi+TQuSVBR2KoJTgdh2DdofJCSOWFkNKiEN/aQ91hH1uv9obXhgHsnkzxVzyciyVK111K113SotIY6eB2oHoN8gAGD7Tp3tnH6QlOrLg9YfSV4fk49yCpKnqgz3q/QvlcQFIEEaV+cJedY+Zb1y3XHj3EtUcP4fagN5tTCQbEbZ/ewYTByPD8Fa4bpJiSH+zTn1Ka74hoviOiEwdwqk3BT/CDhLV2hfCmT+dAjtuDlQsT3Hx2lrimxDUl2JFh5FVOcNyc8eeEypMFisuGcNXhAw+/wIMfewnxM1q3xbRui/Hahs6+4bbVzw3ba+swXFycHPYftQG9fTlrH45Z+3CM24fu7PA4+rMv3MvsaHPY755sMvKXAYNRyF2GfUcxZ/0L+4irQmOiTfsg6Me2SAND+I4turM5kgnxSMb216aIRobX8P3DMbmr7PuiYOYLVC+6aClj9f6A3lqJ/VPbdOfAxIKJBdnfpbBm6LdDbjm4ijpQeKFINhtBNjx2JQO5q4lXHeBVB0jPobsvx78RUL4hzDyRMf6lAL8FXpBSueJypLGJMTnG5ARTPbLMUL1iWHq3i8mEnduG/a9XSDB9A25O4GQkzzRInmlQP7aNczOkdNMhKSnd6W+Na/W67LO0b8yn9m6FDoHfUdXnf9AVeh1F4Csi4jHs9v+RqsY/4DpZlmVZlmVZlmX9ULMB9Bugqv/gu1lPRH6L4Sjer/WvVfXf/e1r9Z2paltEfhO4R1V/QUQeEZHbVPVfvpnlWpZlWZZlWZZlvZ3ZAPpNpKr/+AddB8uyLMuyLMuyLOt7wz4D/UNGRH5GRM6KyEsi8n+LyEdF5Km9QcseFZHJ18/FsizLsizLsizL+puy30D/EBGR24BfAR5U1U0RGQEUuF9VVUR+HvgnwH/7N8jzk8AnAZyR+ptQa8uyLMuyLMuyrLcHG0D/cHkf8FlV3QRQ1W0ROQ38nohMAz5w/W+Soap+CvgUQHBgn36P62tZlmVZlmVZlvW2YW/h/uH3b4DfVNXTwH/BcKRwy7Isy7Isy7Is63vMBtA/XP4C+HsiMgqwdwt3DVjae/9nf1AVsyzLsizLsizLeruzt3D/EFHVcyLyvwBfFZEMeAF4BPisiOwwDLAP/QCraFmWZVmWZVmW9bZlA+gfMqr6O8DvfNvLf/RXpPs08Om95Ufe7HpZlmVZlmVZlmW93TmPPPLID7oO1lvEr/3GbzwSfPCdoEJcNUTjsLtQY3exRmG6S9t3CZcdCjdd+iWHwoZBHeFd973K/MIEL10efvkdXggxywFeF7abFQrr4HcVyaB9NCcLwVRTxp50aAYFqpccwjWH9q0J4ZrD/ocW6V2scezTu2x/UKDp47UNgxElq2XU6z22e2UGDSitKJ1JQQxEo4bCMyEdCegeyHEGhqwA4y/lrD+YE00pqFBaht6hjNrdWyTXykTHYkpHWhSDGHmmzPl6naQfkDoGIod4NIfc4C36pEXYPDtOaSXHtD2C0038VwJ6U4JpOzgth91TOeGWofGBFTazEn7LMDga4YwOyHcDerOKhhnRcyOYnoPbcugPAq5vjlF6tETuCk5kSMdTkmaAiQy9SYd+UXCDDOPl3D6zzOLOCP6OITjVwn01JBqH0mWfwaUKwY4SV4U08mDbJ6lC4wWH9vGc4sJwm5rqMRj4OMsBWk/xNl1krk/cDUhjl7SWkYQOuQdpKccppehYQrcuuDseI/uabOclgm3BGQAIY+/YoLlapbRgyH3Iej5OLKgDikNyfMDBmU12V6pIKuSuYevOnKhZwIkM8cEBzo5L9Src9bHzRH8yytY9OZIJ6oG/a3BWfOLxjEh8imtQfXCT7HKJ3TMpkjikYyljT3oMRkFyEBVKS4bguk/iO1SuukTzZSofWuXwxCbL6w2KN11KKxBuCeGKQ/N0SvWKQfoeamD/F7t09vskIznl6y5e06E3A2ZgMAND46ISjRjUh/qr0H5Xn6XFMdKpmKuDMYLZHjozwL1QwIkh3IT2uJCpi+RwrTuCN9EnyR02ZjwaL7i884PnOH99FomH+7LZKZIHkJaVdCwlKUEykmE6Lm7fkLZ8Ro5voxdKuD2hNwvtAwY3EuJGTh4oeaD48yGd/bD/7iWS5+q0TyQEmy5OZJg8tU6rVcIZCMmZLqVzAa0zManjkPlCud5jab1BnjrkPqQzAyZH2jj/YRSTgorBxNCby8irKZUrBieFuCyYWKhcN/TqghumVCc7tJMClZvCYFyRTCgfaRJFPtJxccYHmELGwHNIS0rjopIbh2BXKJxsUn00IL+nR3qlgnpw+5l5Jid3WVoZYfQZl+6RlJFGl/Bwh/WKj7iK9FxyDxqvCqvvhmDbgIHePiXzh/3gRlak/qUi7cNKaUWQzOC2HWpnXRr3blEOY+RrFXbeH5FlDuqBWQzQ2CVuKGMvZ3TmDNEYtMqGZLkEPZdkJEMiAyrgKZKa4fpHevhPVhGFdz54nhsv7MMZDNtU98QAFD58/Dw3Xpwlrite19B8Xx9ZLBCditDTPdQBE2TkfY/qfE5vwpCfadNzffJQcXoGEw+3NZjroPUUGUkIx/r0eiEfPfMSN57Zj9+Cwukm6UqBdCJFIofe/pRmr4DpO0gumIHQu7+PAmkA5XmH3oziHm9Tnu7Q7wZEo0Jv3NCdEYqLLm4P4kMxU5/32bk9R2KDXC1QmReaD0b4Kx6DupJUlayoFNYN3cMJxQWHoCXs3Ane6RaVx4oc+cWLbD0/gdcRklM98rEE70AXc7nE6FlYfX9KVz2yVoB6StiIMIsBJjEMxpS0DCYVTCLUPrDG4GqF4KkCyZ09Ss8XSEpCFghXwgqFVwok9RwM5IciCpc9sqUiwakWUeRzx+l5Is/QWysz8XWHdK3AYDoFo3QHAYPURZsBvf0pM0c2aTZr+C34rz/xec5/7iSdwzkj5+Dg37/C2NFtrpsahRs+M19L2Hl3gux67Du8SctzcWf6sBGSBZCWQDLB7TqgZth2liAtClt35yRVBVfxmsP2Ek3mw69LDPi7DhMnN2i2S8N9UjPIVISsB8wc32ClWyOtZeDmYBR1lOozIbkHrSPC7rUGlQVl+0xGccmwXvXpHM+QhQLT38goLyrnqyOESx7jLwJnemzcbFBYc4mfr5GWoX0kx+04BDc93A2P7pTHzkkHtyecvvcaO+fGkAxYDCmtKmPv2GR7q0be9Km95FK44ZKUhYtenWwzpH5JaJ5JGJQcAOoPrMOLZbrThpELSmkZdm/PyAMlrSqVo7tEiUflskt/X0b5upDd3eHv3v0sZ0dHKLwc4LWFaCoHgfJ4l4fuuMS1xUnUCLoSsqsB4YrH6Hkl2BEKGzCoGVSgtCS0j6ZsZQWqz3qIwu5J6B5OSRsZnTnoHFTSao6JHMJ5j+hkRHusQOWmElcM+VbIwDN4uw5+U0gqwzFes2N9UlfwXioR748ZfdbQfH8f9/YO2XKRtAhJBSrzQrAtjLyq1K4pfhPUQHe/cuT0EutxmaySgVEubf7/7N15tCXHXeD57y8y896869uXevXq1atVpSqVVKXFWr0J72bxgnE3NB77AG632zBAN9DTA4xoupueYw4MwzTMuGlsj3EbY4MNpr3ItlbL1i7VpqpSqZZX9fb93TVvbr/5I6/sak9pQcgWyPE5J8/LGzcyIjIzMm/Gy4zIEUzDIfeUj5nLU5qBsR8+z/S5YbZvX2BjvkL1NDT6XC7fM83KXA9EhtEHQvK1hLk3pWjdY+heD9Ny8fY0KD+Ux18wRK5L6bSLOtl1QOJDUoDhR0IaPT7+sqGwKATzJdwOtHaElE95FJah+voFVpw8UX9Kbs0h7EuIohytiQSJBWc6T+mkS1wWJBHaI9Acz64j4v6YwpSHf8ajuSUlmS2QX1O8yxu0Hh9g/I4263tcUIe+181R3NpgvVamctYwdmCe4PYhOn1ZWSUVvLpA4BDlBXfD4Gy4OBsu67UyyUaORpgjd7SEs6VNPFugchY2Lk/omdggWiyQ5hR1wG0Jm6+ZY32tTNryIHFobU4x++oEqcvqF8d4cmME2i7+vIu37tAZTYjLSrvfxURCriEUFqF0YJ34bImgCvkFl8pJB3/apbFNSSpKftXgXbfORqtA/kQe98k8jdc1iQMXd7JJ/mQBb8PQ3B1SPeWw7vmUZgyNoEBcMjhHi0R7AsySR1pJSAZi8nMuJoH8okPYC7/4wb/isdv3knvzMu63qqgDcUXxewPCM2U6myPSUooz46MepCIEj/eBgaiqxK4AkFt1aG9SIteQP1bEWcgR9yj5RYeBmxZY0SK1SSHJGwaPRtQPJFQOeVzzqpMcf3AHspYjCjzy/QFhrUDfCaU0r7RGBBzI9wcky3mc4YC1tXKWd2+KHKmQO7AOUwWCTSkmFFbvuH3utttu+8hztZlsH2jLsizLsizLsizLeh5sA9qyLMuyLMuyLMuyngfbgH6RicjbRGTv9ymvV4rIMRF5XEQ2i8hnvx/5WpZlWZZlWZZl/SCyDegX39uA70sDGvgp4HdU9YCqzqjqj3+f8rUsy7Isy7Isy/qBYxvQz4OI/IaInBSRb4jIp0TkX4vIDhH5sog8IiL3isgeEbkJ+FHgw927wjueIb2dIvI1ETkkIo920xIR+bCIHBWRIyLy7m7c14jIXSLyWRE5ISKf7Mb9WeAngN/uhk2KyNHuMkUR+QsReUJEPiciD4jItc9QlveLyMMi8nDSaHxvNqBlWZZlWZZlWdbLgH2N1XMQkeuAdwJXAR7wKPAI8BHgA6p6SkSuB/5IVW8Vkb8B/lZVn+1x6k8C/0lVPyciPtk/Mt4BHOjmMwg8JCL3dOMfBPYBs8B9wM2q+icicsvTeYnI5EXpfxBYU9W9InIF8PgzFURVP9JdF/ITW/R5bxjLsizLsizLsqwfMLYB/dxuBv5aVQMgEJEvAD5wE/AZEXk6Xv75JCYiFWCzqn4OoJsu3cbwp1Q1ARZE5G7gOqAGPKiq0914jwOTwDeeJZtbgD/opn9URA4//9W1LMuyLMuyLMuyLsU2oF8YA6yr6oHvU36di+YT7H6zLMuyLMuyLMv6vrN9oJ/bfcCPiIgvImXgh4EWcFZE3gXQ7ZN8VTd+Hag8U2KqWgemReRt3WXzIlIE7gXeLSKOiAwBrwIe/HuU+Se66e8F9r/AdCzLsizLsizLsqwu24B+Dqr6EPA3wGHgS8ARYINsBOyfEZFDwDHgx7qL/DnwKyLy2DMNIgb8NPAL3UervwmMAp/r5nEIuAP4VVWdf4HF/iNgSESeAP59t3wbLzAty7Isy7Isy7IsCxBVO27UcxGRsqo2uneK7wHer6qPvtTleiYi4gCeqgbdRvzXgMtUNXy25fyxLbr5l38Jb0PwmmBCWL82W2Tz2Cqzp4ZAwXQMuilA5nycAOJtAbqWg1SoPmWo7U4AcJuGuJRSmHXwGrCxNwaj9Bzz2Lg8JrfsEG6OKPW2AWi3cuhqjrF7YP7GrG+5OuBtGOKi4q8IlfMp5Z+Z4fw3xwFIPcivCc0dEf0Pu5gfXWHtZD+FeUP51gUWTg2SX3a+vY6DRxJmXykgYCLBXxYau0OqR3MENzbw7y9T2xdCbKieyJ6U9xrK6is7OAt5cutCVFb8ZaHyhnnmFnrJn+1uh0KWR3FeURFElfaIEGyOKJ32aI+mFLfW0Pt7icrK7/3Tj/KLf/m+7nooJhRKM4K60NiaMrR7mcXTA5QuOPTcOs+Nw2f5q3uuB6D3CaGxFeKi0nNSaG4BFYg3d3j7FY/z5c/eQKdfKc1k27F+oEP/N3IEA8J1bz/CibVhVmslJgbXODM3iOOkxKs+lGKcXLb/mC6w+c6Y8282VE85bFweYzoGry5Url5h5Uwfww9+ewwAalsN8RVNksSQe7LA0KGYhescNn0zZvYWl50fX2L5xiE2dkFhPlsuzcHIWy5w/v5xJr4ccOHnY6KOS+6pAoXFbDtGFQiG06yOLhoQcFuQqymdPqG+M8G0DM5Ek7DlYdwU3cjRdyT7/2B9Esr7Vlk/34vTNOh4QFL3yC07JNsCdCmP0xacdlamra+ZIv2NIWqTPssHYctXY+avzxFsivH6AuSpEtFEh4G78qy8OutdoW2X6kmX+o6E4gWHpABOAEkO0rxiIiEYD3GXvWy980puvInzSPawSuLD0GPZ9vJXhNJcysIPd/DO+MTF7Bx9w00nOPGnl+M1lZUfaxEvFpC+EOMoPXcWWL9M8RqGsJptq/4jWV1ae1UAK3kK8wYVsu3XhsY1bcoPFahdFuP2Zsd5vJGj75DD6LunOP+VSUwE9T0Rm77usLJfYGeToZ4Gq/eOApBfh+a40nvlMqvHBxjcu0x/ocXx4+NUn3RpTKaop7i1bF8UZ4XRt09x4atb0WtqhB0PEUWmCkz+TYvajgLLB2D8ynmmpgcBKJzOEfYquZrg1aB+dYAmhk1fcTHvW8zKYiDel71FIFr1qYzVqS+Vyc96dDZFeKsuyeaAvnt8krxQ25FSPWVobc62rekI5QtKVBEGfnSac4fHKM4aBo9GLF/hkeShM5hC9+ey77iweoWifoK75iKTTczJMiaC4pyycRlUn4Lm6xp4D2X7uDmR4M87tDfHOG1DftlQeeUiC1P9uHWHNKdof4g7mw2n4TYENDufNMcFdZTqaUjyEAwI+RtXWJvtoecJl7Calau9o8PQ3Tn8fzpP/a83sX51SOlUjuKCsroPep+EXF1Z3ZvV9d4nlcs/dIz7v7ifm95ymG9++UrcBoze3+L0u3w0l2LKEWndY2jrGgArq2UQuGbyPEfmxsh9o0J9ZwIGRrYvM1RsMv2pbd8+LzTHIRxM8NaydUwKKaYS4U75jN8ww7kjY+RXDHFZiYtZ3cWAP+eQq8PAsQ4b23I0x4Shm+eYe2yUuJrgNB2SnhgAp+4gkVDdt0LroUHC3W3SwMHUXbQ/ZMtnXeZvcAhHIgCqg02ap3soXTCEvZC6iqQgsWCu2mDbwCoLjQrL073QLVL5nEtuXVnfo6TlhNyCS9SfYvo6jA+uM/+tMTpbQqpHclldf8MCRpT5E8P0nBDaw4K/CrUdKf6iIdzfovdrBdpDgnTzaOyKuHHfUzzw0GWkfsrQljVuGj3LXz94Ne6GQ2FJutv0O8f46n6FoQ6aCiKKO+WTbAvwjxSISkp5GtTA2iuyY7xyNE+Sg7ikOG0hqiru9gb5eys0JlImbo85+w6D08yO2dQFJxCSQooWE163/ziP/tcrMRGYBNyfXGDx0Aj5NSG5pp4dg5FD0vS4fOcMU7dP0toa4zQMMhbgP15EYmgcCMgXsv3BkQpRRek/BstXp7gtQ2FOqG9PKSwYWhMxhQsuksK2N54F4KnFQeLIJY0MGjg4dYf8mhAXlLii5NYNUSWluiurt+5f9hOVhOarGiTzRfoPCa1RIexR4qEIrxSSxA7uOZ9oS3Ze90/5mKs3cO7toTGRYkYCckeLtCZi3A2HuJLgD7VJT5YBGLx2gdbfjCKqmAj2/+xR7jq0B3fNZeShlJm3JvjncyT57EQi25s4TkpyooK/JDihUp2Kmb/BJcnD9a88zvRv7+L8mxz8pWx/DD0eU/nXFzh17yT+/nXqF6r0H87O7asHEpy2wUSSneuBNKfktzQofbHCytUp5bMOzfGUtDdi+I4cqQcrB1JQwRttZQudKhFVlMGdK9RbPsWvlUkdoTOQXauMPhAze7P77VtwUTXB6YnQhTzaHyFrHk5bKOxdpz7VgyikxYTROx1WrswKFldSNJfirbgk49k53Z3N4QRCmlfGXjELvzvE3E3Z8VRYgk3vPMeJI1twWob87hqlz1dZfn1A/x0+Ya8QDChxUek7luWxenWK0zSkYwFp3UOi7NqvdN4hGMrORf6CQ9+T2fE09yqld2Kdtbkq5dMeXk1Jc0JrTEnySm7NEO1pUflGkZ63zQIwfWQUNaB9EZoIZsOltH0DubuP/uMRSwc8Kq9eYH5qIDtXNQ25VUN7Swxeiqm7vPWWR7jjM9dlx/ZkDH6Cu5gjt7MGQGu5iLvu4i8JaS67Ng8GlZ9969f4fx57JaRCoRJQLQYA6J8NsfDKFHfDoTgv1PaHeAseia+k1Zj8TLZ/igtZPWxuEoLRhL6jhtbrGgQrBXoPu2y8ooMGDsP3OazvgbA/obopO8Yb53rwNgzh1g49D+eJiyA3rVH8TA8LN6dgQDqG0oWskrRHU9LhkOITPirQ2t2h/ES2nAmza8HOUII7ECCni9nxtyLULsuOfZNk10lJXkldMOMtem4vUn9zg04zqyP99+eobQO3JUTVlN6Twn/8tT/hn3/tfZSfcsmvKasHU7x1Q2ExqyPBLXW8hyo0dsQMf9Nh/TJ46t/+q0dU9ZJvLrqY7Uv7/Hyk+yi0D3z8H3LjuasI3CkiHiDAB5+r8WxZlmVZlmVZlmU9O9uAfh5U9SefK46IHADGVPWLF4X9Z7JRvC/2B6r60Re5iP8DVa2LyP8FXKuqH/pe5mVZlmVZlmVZlvWDwjagXzwHgGuBbzegVfVfvnTFsSzLsizLsizLsl5ML5tBxETkPSJyWEQOicgnRGRSRO7ohn1dRCa68T4mIn8sIveLyBkReY2I/KmIHBeRj12UXkNEfl9EjnWXH+qG3yUi13bnB0XknIjkgH9HNor24yLybhEpddN9sDug2I9dothP5/VeEfm8iHy1m96HROSXu8vdLyL93Xg/JyIPddfxL7t9shGRd4nI0W74PZdI/60i8i0RGXwRN7llWZZlWZZlWdYPlJdFA1pE9gG/DtyqqlcB/zPwh2T9la8EPgn8nxct0gfcCPwS2Qjbvw/sA/Z3H8UGKAEPq+o+4G7gf3um/Lv9i38T+LSqHlDVTwP/K3CHqr4CeC3wYREpPctqXAG8A7gO+A9AS1UPAt8C3tON81eqel13HY8DP9MN/03gjd3wH/2ubfN24N8Ab1HV5e/OVETeLyIPi8jDSav5LMWzLMuyLMuyLMv6wfayaEADtwKfebqBqKqrZA3k/9b9/hPALRfF/4Jmw48fARZU9YiqpmSve5rsxkmBT3fn/+y7ln8+3gD8GxF5HLiLbACyiWeJf6eq1lV1ieyVU1/ohh+5qExXiMi9InKE7DVa+7rh9wEfE5GfA5yL0rwV+DXgraq6dqlMVfUjqnqtql7rFJ+tfW9ZlmVZlmVZlvWD7Qe1D3Sn+ze9aP7pz8+0TZ5+31fMd/7x4D9LHgK8U1VP/h3L9N3lurhMHwPepqqHROS9wGsAVPUDInI98FbgERG5phv/NLAd2A08/DzLYVmWZVmWZVmWZV3Cy+UO9B3Au0RkAKDbZ/ibwD/pfv9TwL1/xzQN8OPd+Z8EvtGdPwc83UD98Yvi14HKRZ+/Avy8iEi3TAf/jvlfSgWY676e6qeeDhSRHar6gKr+JrAEbOl+NQW8E/h/u4+5W5ZlWZZlWZZlWS/Qy6IBrarHyPoN3y0ih4DfA34eeJ+IHAZ+mqxf9N9FE3iFiBwlexT633XDfxf4FyLyGHDxoFx3AnufHkQM+G3AAw6LyLHu57+v3wAeIHtk+8RF4R8WkSPdsn4TOPT0F6p6gqyx/RkR2fEilMGyLMuyLMuyLOsH0svmEW5V/Tjw8e8KvvUS8d570fw5ssG7/n/fdT//8iWWPwFceVHQr3fDV8kGALvYP3+eZf8Y2ePZT3+evNR3qvrHwB9fYvl3XCLZi5d7DNj7fMpiWZZlWZZlWZZlXZpz2223vdRl+Afpt37rt/7tbbfd9h9f6nJ8P/32H/7ebX37byLYGtLZFDN6/QKdQ3146w61tRIIVE87pDlwVzzSHCRFxVnz6D0pqGNwAwgmYsgp5dMucRny60IwpJTOO+SXHVpjSm7dwW0JsQ9RM0fUyOGsemy+O2XpgIsKJH0JA1vXSc4VcTrCm378fo6PVyjnQxgK8Te1iM+XaO8IKZ7J4bbBOVREbt6ACwU2miVMLBQWhObeDnFfQn3c4NUM6kBSTXAaDsVph/quhPJjPvWdCW7dpTDr0B5VoiqICu72Jtt3ztMeSvEfKhBVhNXUp/dQjrCquAc34IKPJFB6/SLLOZ+JV83gfKlMlHNRDwrzQu/eNVYKHoVpj9pWh9O1AdJCSn7RxcRCeLCJrOQIh2L6+5tsbBSRnU3W10scPzNB6byDVxO+DvR6AAAgAElEQVSCQSEcTJBY4GCDsJPDCYXEEaYemCAYSRl+GBoTkBQgrqS0h2DsGwnH41HKYw1anRxrxwdJE8OeHbPUD/eTn3XpuA7acsltGNrDDjiCiuB0DEklhc0BnZNVCvMGeesKKxWf5jiYHU3i2OE1O0+x+NAIS69Q8iuGtSuEocdg7jVltr7jLObzPQRv20C3B3TqPsvNMluunGM630d1oo6XS+is+bRHlcIiNK4NMDUPUSHsT6k+JaxfkeI2De0bG6Rtj7QnoljuEC0WIXToPWoIBoW4KEgitNo++TWHuKSkqWFscpmNZhGnHJIguDWHq19/gk07lzl+9w5q23Lk16HTL4x+bZFwqExUNKRtj2RTSLnaJp0rYOou7oqLv2RoXBVg6i7hREhcSUkdIZ0MSCoJCQanJyJ/wcPpZGWKmzlMLAw9FiFvW2M5X8K7rIYu+KztT1Eg8UELKZpXZps9tCYSTM0j3hLilGOSyCFtuzhtB9nboP9uj/awYBKhOZHS6Qdn3SM32WD4vwtRycHEUNsfkj/nIyk4LQN1F1nzKCw4dPqF1YKLjAe0XJfCrEt9K+y+8RytOIdjlI3QJy4rXsOQ+JC/r4g6hlqnQOf+PkCIy+AvGiQxhKMRaSml/6gwG/YisTB82Qqtw/0kkYN60OnPEwwKPQeXaf/1CN66S37Jof/WOWorJfLrgtdUQt/JtknqUri9QHNc6PQrbjVEBMy8T8/X8+i1TapbazRXi3ibW+SOlkg9oT2sDD8KzXFh4vY2vadiVt4cUzrlEgwIG3NVEEj3NfGm8qS5bF28mnDT64+ydcsS80eGCUYUt+GQ2xBOvOtP+L2VK5n4QszMW5T8okvYBx3jcPDVTzK8Z5nGXcO0x1K0kJJbc4iqUG/75Jcc4vEO7qpLabxBOlNAEiEpKCYSCstK71MxjS0GEwnr+1Mq54Tc4z7l88LKdTEjD0BhWWkNOjQmUwLjkDRzeFub5I/naG0Sws0hhRmHldd3KJ/w8JpCfRLmjo5QvXmRkw9sY/SBhKWbEtb2euRHW+SfKJCf8Yi3dmiuFmnVfdz5HP2T6xijLMz3kriGtJDi9IZ0jvWysNqLExhqexOCUWXr38as73JIyim9TxjCnSHOdFZ/GlNVJBWivpR0IILQgMDOTwUsH/Ro7wipbfbI37xKerbIsviogd4tNdqdHKYUI16K0xMx/nmYm8yT5IGOgyQGiQU1kF9yaQ+DxAbTMUQ+JKmhM5gy8oCSf8sytZxL4gnbtyxy9u5JauoBghQSxFNix+CvCKlr8NYc0subJCKwnmO9WSSppHjlkCjxiMrQni2RHqkQ7QiQhgcKaQ7UQLijQ1rziH3DG9/2EGePbAagfM5wtj6Iv2xwWobiXQUO1zeDCP6yoXVlm5F7hI1dgIGoIiQDMfnTPgQOaSWhtKVBudihVjIQOrRHyerqhotpOYS7A9LRiL77PZrj4K8KrbIQjkfkZzxaow4jDyiNCQEgrcZUT7h0doaMfM3jWH8vNDzCXkFet8b60UH6n4D1KxJkxkdXc2y63bDth89z+qvbCQdSSucdwj6FhktxDuo7lPysR6es2TlMDRgIrgrIXcgT9aQghoHDyqb/9gQ5M0xzC5hImGtXWVrsIV3LoZFD/4Mugzcvst4skHrgBgaJoe+6RcJzZZLzReKZIuPvPMc0VXq/mac1kaLiEFcUE8HgQ4b2ZRGoIY0d6DgQOCAQJC7FK9fQsyWinoTyUw7+kkN7LEUqMXEtT+W0g9cQWnNl0lxWzvp2OBdVUYHhbxnm3phw457T5P8gx9LrIa0m6IKPFlL6HvBovq5B6YjH2m6XYHMCKtR9h42rUkqP+jR2xMTVFKflcL5UQjHkHy3SmYxwNlwSXzChYeDgIqY/JKj5qAN9R4Xck3kQaA+D2xIq5+DmNx1j5d5hBn92iqXFHsxAiHuihCzl6GyJ2PWJDo2NHvbdcpbTaT89T0Ftu5KUldaQgzpQnBe8hoAKUUFxBwJkpkBSSaicdUgnO5Qe8AlGFImFxHcYvWGOyliDlnFgOY+/bDDrHjoaMvgNl9Ym6DuurK73sHy94tUMotAcT1k/04sZb+Es5NHBiHQ1T6cqqDrZdc6uNqYcI7UcSVEIhxNKUw6dPqV3tI6cKjF2zTzBpphkwSfpjXHrDm4LUk+IfYEni0RV6D8Kq1dBZ0BJ+mOKUy6iMHyPIXWFxVGPWqtAogZ1FG/Fw59ziStK73ADjhRZvNYgqbDRKtLzpIO/ZGhvTug7LgQDgj/covqtPIMHlznZGqT3qpWsvj3hoy4EniEKPIbu82huS0nyguYgGEsA4dGntpN6ypbNq6ye7yN/Z5n0eInUFdQ45NaF+t4Q/3wOtyUU54RwMqTvYZf6DQGh59IZgHR3i9KRPOsHYrwTBYYfgY0dUJxyKc4ZVl4R4y84FC7foLZYptPMMXKfoTMgxNUUwuy6Ipkv0NgCTmAoTtYpPlggqoJ6EFUUKcWYdQ83gMpTDrU9Kd6GIa4o4VBCbiDAnCwTjsYkpZTOWAyRIbdhUBckya5n8+tCGngUF6FedQGBxCChQ/8JpTkOhYVsP91119UkecOv/rO/5NjnL6O2Q0iqCaljiMqw4w8bzL7Fw7Sy3wwO1Fn5i7vmbrvtto88V5vpZXMH+sWmquUXO00ReSPwv39X8FlVffuLnZdlWZZlWZZlWZb14npZ9IF+MYjIL4jIcRH55PcqD1X9Svc90RdPL7jxLCKvFJFj3X7Xm0Xksy9meS3LsizLsizLsqzvsHegv+ODwOtUdfrpABFxVTV+Ccv0XH4K+B1V/bPu5x9/tsiWZVmWZVmWZVnWC2fvQAMi8n+TvS/5SyKyISKfEJH7gE+IiC8iH+2Ocv2YiLy2u8x7ReTzIvJVETknIh8SkV/uxrm/+yqtZ8pvp4h8TUQOicijIrJDMh8WkaPdvN7djfsaEblLRD4rIidE5JPduD8L/ATw292wye4o3IhIUUT+QkSeEJHPicgDInLt93xDWpZlWZZlWZZlvYzZO9CAqn5ARN4EvBb4EPAjwC2q2haRf5VF0f0isge4XUR2dxe9AjgI+MBTwK+p6kER+X3gPcD/8QxZfhL4T6r6ORHxyf6R8Q7gAHAV2euxHhKRe7rxDwL7gFmyV1jdrKp/IiK3AH+rqp8VkcmL0v8gsKaqe0XkCuDxZ1p3EXk/8H4AZ6D3eW0vy7Isy7Isy7KsH0T2DvSl/Y2qtrvztwB/Bt9+hdUU8HQD+k5VravqErABfKEbfgSYvFTCIlIBNqvq57ppBqra6ubzKVVNVHUBuJvvvBbrQVWdVtWUrDF8ybQvcgvw5930jwKHnymiqn5EVa9V1Wudcuk5krUsy7Isy7Isy/rBZRvQl9Z8nvE6F82nF31OeXHv7l+cT/Iip21ZlmVZlmVZlmU9D7YB/dzuJRusi+6j2xPAyReamKrWgWkReVs3zbyIFLv5vFtEHBEZAl4FPPgCs7mPrH80IrIX2P9Cy2tZlmVZlmVZlmVlbAP6uf0RYETkCPBp4L2q2nmOZZ7LTwO/ICKHgW8Co8DnyB61PgTcAfyqqs7/Pco8JCJPAP8eOEb2iLllWZZlWZZlWZb1AtkGdJeqTqrqsqrepqq/e1F4oKrvU9X9qnpQVe/shn9MVT/03ctf6rtL5HVKVW9V1StV9RpVPaOZX1HVK7p5fbob9y5V/eGLlv2Qqn6sO/9eVf1sd/6cql7RjRYA/0xV9wK/AvSQ9d1+dokQF5X8jEdvf5PzxzYRlZSopAD07FijMZmS7mohMZgtTYYeEcoXhLX9Kf1PJKQeuMse7rJHbV9EYXsNFRh6LKWxNSUYUIpzQjAeUp5JUT+FUgylmHggYmWvS+91i/jLQvGsx9rJfloTMYmv3Plfrid5tJdNxQ3qLZ96y6czmEBgCHuUsCJs7IT6SonG3g5pTnEmG/Q+FeEs53CWc6irvOoNh0l6EgY3b6AutEeVwoxDYzIlt2ZwtzVoTsYwFsBYgNOGKHQ5fnycjXO95GtKp1/BwPqVESh4X+khGE4JhlNq94xQmHOJ1VDb5hBsiokqKWEPzB4ZQQMHE8JcuwqpQCqYCIKJEKaKlOYUf9ajnOtw68EnKNxdgfUcbn9AY29IY29I+YJSHm3Q86RQ+mIFScBfEpymg15do/qkYf7VKYkPiQ9+pYMJDHM3uiS+MlysEy0VGLlygfIZhzNf3UbfyYTGzpj8WJP8WBNRiEtK9TQkBSUuZvUgXfSJRiLcNmw82Q8CCCTnyuzbMsfdp3ehAn2Hs/3iBML8zcqmb4Ucv38bQa9B7u5D7u7DqwvlzTWmjo9SnBeaQY5O5NJ/TCnOGiSFrZ9wSEY6JCMdqk85rO+B/IpDpw+K3yyzaccSg/fmaJ3uwV82DDxiaLy6RXlGKc8oUU+KekowFqF9ESYwzM72U5hzsnp9KEdSUB6a2spDU1vZfNMMA8cSohJ4dWH2TWOsXqEkxRQZ7uBdyNM63UPYA8GmhGBTQnMyofiEj1c3aCx4Sx6SCJX7Cmhs0EpMsRTQ6c/qzp7XnKZyTgCY+hFheboXk4Cq0B5N6XnCITefpVGY8ihMeSShYfCOPEkBolWfaL6Is5AHwITQ8/kSc7cobkNwG0Jx1sFsbkEK8kiV+rhHexhQ2PWnEYWrV0hy4LUgHI4Jh7M39nl1yOcj0mNVRu8TyjcsUZwXjp0doz5TZeXwEJIKkgr1/R3SHPDOFaIrmzijLZpbUjqjMSPXzhMMK1E1pe9hj76HPVpDBrcpBJsSpmYGSApKadrg1QyVqRRJILhjiLXrQ+p7Iup7ImZXeqicNZSnU7ymkgxEiJPSHk5Z+ictvJrQe1wo5CMK+QhvQwj6DcmhHhZm+sitOfT+dYlOn1K5kBJtCgEYfiRi+pdipn8pJmm4qIGoRxm8fh4nBD1dIr+RUL+xjRNAe3PC6Y1BTm8MknqC9IQkfkprIuaye9+Dth3WduXJz3rEe5uUDq7grjsc/+wejn92D4XllKSYUhpskeQBo+T6A0woTIyuEvXH1FZK+MvgL4MTCKkHnV7D2h6P1M2OZdMWGhNQed8MC6+JGf+SoVPNJlJh6EGH5HyJ8gWlM10m8QWnA+5ijvagUDhSoDGhNCaUXE1ojycsnOvn7W/8FvVxB6cUs+VLiojSnIwJBpW07pGfy6aoL2Fpppepu7ciuZTcurDv8guY8wXCwYTrrnuSpPCdn5XZW/JQjZFIaI8Ib9t7iKg/xm0K/rKgjjKwbQ2MUt5So7ylRnOzT//eZVChcsawdq4Pr579RqmfApBbcUgDlzRwiRo5pm/16B1sUNpcx591oBSTFlKqJzySPORXhDSvpHmFOR8pJIzea1jb7bD8xCBmIU9pyuGp+SGCTRHX7TtDbskhfy5P/lye4qxhbV+KXlEn6lHilQKVvhZO25Cbd5F8gnO8TOUsVM6CuhAMKr33+pgw++yvKCMPp8hKDgTUwNc//Qo61zTpXNNk9YYQd3sDJ4DOzoC1PYZoKGZy/yyisO2/CurA1r9N2Pq3CaVpAc3qSzwQUz7kU/5klZXlCmYxOzcU5g1uwzC4f5HB/YukbRdztkAwIMS9CX0/NMfQpg1yU3niitLcHjH9phTTEUxHkJZDMAjacXjjr97L8ECN1ANzcIP0rn6iakJzTOh/zIHtTdjeZGOby+nVAYLhlMoZQ2kuhd4QBNb3pmh/SGcwIX/WJ3/WJ7duGHkAig8XueoNJ9CcEm7t0NhimP6ZfczdnNWlqKp4awZvzaCesuPyWYJBIUwccssOPU8K2z96gXAgIYwdOiMxYW9K2JuSqkAKK9cmOJWIvhMJqQNRT8rCzVmdkhkfpy1gFIwiSXa+XJ/qxe2OirN2VcL6NSGmv4Os5Oh73CF4TZ3gNXVaewPcFjiBUp7KjuviqTwb2wz5GY/7H93Nk+8rZ/vpkI/2R6TzPo3NQuVLZVBwOlAabuLVhZs2nSOYK9GYUAqzLoXZ7DzVN1jHqwlhFXJTeaISjL35PElBWX10mNqZXgZ2rzCwe4XaDnjLL97D8rUJe648jxqoTEd840tX0RgzHDs7hukISdMlmAgJJkJ6Hs+xdKDEa3/uAR58dBfeusHtKMU5Q/mMg9MW1FW8Zjb5y0K+2qHwQBkEvDUXEynx4700N4O/4FA675D4yvThUaYPj2KOlUlKKWFF6fSnxIHL8pXCxJcDvJYS7Oowcq+hsKTZtGDwLquRf6TM5pun6bQ8Ru9vgkK4t024q01/T5O47tEcT2iOJ5imAwomn2C+2AcC04dHCQ/1EZeU3IJH2JsSFYWoKHQGE5pbEwYfMgR9Bkmy48dsuMgN6ww/FrF2mYMbKMz6MOsjxZihrWvsufEsUVVRgcUzA6Q5YcdnGkRlZWDHKrXdCbXdCW7Nob5V8JcMxS9XqO2Au07vwl9wWTrfh8z7NHeFVE+Ds+birLmsHFDU6dbJCCqnXCSGPddM4a56NDo5Smcd6hNQnwATQ3p5g6iS1dnOtg5xWQmrUHmwwMoBpVAMKcwLhXmhdG+J+tUBJNk1yeLbAvxlobE9YePyBBQKi0r9fJV8b0C+N2D+tQmdoYTJLUsEEyHxdXXi/Q10S0A0GJOmQmcAyueV8nnFDAVobBi4aZ7WNS06vYLT16H/ZEJxVvBWHTwvIVeDnZ+I2fmJGM+PKcy4hPtb9J5KaW8L6T8K7dEEryZ0erJ6KMUYKcZ0BlM23lWnOCc0DgTERVi/TAlHI37ns++k3e9w9YHTkEuJ+pLst+z6fiQ0qKMMPdahvVx8zqbS02xf2penInCniHhkzZsPqmr4EpfJsizLsizLsizrHzXbgP4eEpH/DNz8XcF/oKofFZGGqpa/F/l2+1nb9z5blmVZlmVZlmW9iGwD+ntIVf/lS10Gy7Isy7Isy7Is68Vh+0C/xCTzYRE5KiJHROTd3fBNInKPiDze/e6V3RG6P3ZR3F/qxt0hIl8WkUdE5F4R2dMNf1c37iERueelXE/LsizLsizLsqx/7Owd6JfeO4ADwFXAIPBQt7H7k8BXVPU/iIhD1q/5ALD56cHCRKS3m8ZHgA+o6ikRuZ5sFO5bgd8E3qiqMxfFtSzLsizLsizLsl4A24B+6d0CfEpVE2BBRO4GrgMeAv60OxDY51X1cRE5A2wXkT8E/jtwu4iUgZuAz4jI02nmu3/vAz4mIn8B/NWlMheR9wPvB3B7+74nK2hZlmVZlmVZlvVyYB/h/gdKVe8BXgXMkDWC36Oqa2R3qu8CPgD8Cdk+XFfVAxdNl3fT+ADw68AW4BERGbhEPh9R1WtV9VpTLn1f1s2yLMuyLMuyLOsfI9uAfundC7y72795iKzR/KCIbAUWVPW/kDWUrxaRQcCo6l+SNYyvVtUacFZE3gXf7lN9VXd+h6o+oKq/CSyRNaQty7Isy7Isy7KsF8A+wv3S+xxwI3AIUOBXVXVeRP4n4FdEJAIawHuAzcBHReTpf3z8L92/PwX8sYj8OuABf95N78MisovsXdBf74ZZlmVZlmVZlmVZL4BtQL9Enn4HtKoq8Cvd6eLvPw58/BKLXn2JtM4Cb7pE+DtelMJalmVZlmVZlmVZ9hFu6yICbksoLAiN430UZw1JMc2mkZDxng2KM4Z4xae9o0PUzBFWhODVdUwgrOw3hD1KMtIhGengT3ts6V2nsSOmNWjIrxi8hiAJSNPFxFAabGFWPMyKh7fo4bag/dVhOoNKeyQlKaRIIrgtIVdXAL5xaidBLU9Qy+PPO+Aqia9EVQUVCmdyFJ/M4460CBeL1Cdc3Da4bRh42OHrJy4DUVbO9THycETqgknAbRj6TihyuIK37lAsBRRLAV5DEaN4NQevJiz9aJBtp8EW7qpL1JeyvjdF89mU24DhRyOmH9iM6QD5lNIFQ+opOtKh95BHaS5loVHGaRqcpiG6sok4SmFe8FpK8dplLqz3cqY+QFjNds8Nk2cxNRdTc6ntgE7gEQwKa3sVEwr1bSlJOeHmLWdpbVJySw6SgqTQaXl44036jytJJWFPZYGtl82z2ijSub5Be2eHoN+weXKZOHKIIwcV2HRfzNqrAwaOKulIh9yKwQRCqa9Nc1xRA9IRpCP0PAlHD20lqXsEQ0p5LqHnKeg7rrh1w+LBHEkpZfVgSupA6kBxQbliaJ7CnMPYF2dIUyGYKROVhGBQ8VdT5m7MMTxUY3ioRmk+ZeTBlNw6SAxRCepBHqejJKWU9taQ+psbmCdL1CeE+oRQnDG4DYNTc6DhkvZEEAnt3R04U8LESuoB5wtwvsCF5V5y6zHV8zHt0ZTiUkLvcaE446AK4UDCyL5FANRV1FV2fDqkPJ1SnFWIDGpAjRKXwNRcUKj6HYrzQnFeWG6XWL8mxG1m9aP3iEthQWhv+BRnDGEVwtEoqxsVJaoopEKnT1ABt+HgLxnUKF61Q2E5ZX23wXQMcUmJS0pxXpHTJXIbQq4OaQ6iakptT8L0a0usr5WQqzdobk6RQoIUEuLr6jR2RYShS9iX4DVT1o4M0ncyQpouKko8ECNxtv17H8mTjHRYOd2Pe6zEzpFlTCyYYszMEyOQwua7Umo7ldrObHu0xmO0FEMqxAMR6mbbygmz49ttKbnZHE7Nwak5pKvZmIjLVwluW5GWi6ZCbt3guilJAdrDQqrZ5N+0THsYgvGIfE9AaRrUEbym0NxkIDQ0RwzrOz0602U602WcukNpPsZ0hIXVKp3NEaMPJHjNmGTDo7k7xG2Yb+eRepA/UcAbaWMCw/jAOm5PiCgUFgQ9XyT9yiBpXmkPdad+Q27FIe9FVM5B5azBGCUYTlislSmf8jB1l9p1AbXrAkwEaU5JfGgPZ9umcj4hKaV4deHM3CC9Qw1ST2iMZ5MZb2FiJemNSfLg1gW3pZgOeA3BX1XaoymbvpWw6VsJpbkUqYYg0E6y86/rxaxenv1vvXzWJRqOkFKMd+U63pXr4KWMblkl3NXGzcUUlpSTsyPoRJst25d48PFdxEWFXAq5lN6nUrwLOUx/SGcw4StTl2NKMZJCc0t2btw4OkD5kE99rUh9rcjCDcLycgX/XI7CSgoGogqMbV/GXXNpnOjDXxaK/S2K/S2Gxtbxl4QocWidreJfvwJ1F4mFTp/SGhaiCmgxQYsJqafQcJl/XYzbBB3tUJoWSCHZyIGjPHR0B+FQggnBhNDcH5BfcYhmSiR+itPXoXW6h7gvxt1bQxsuwaY4e95LoHr5CvFYiBoIhhUERr9wlum3JBTmDYNb1uk7AW4LvMMlvMMlnFWPMHDp9Ct7tswT72pRGmjRl2/RHE849yM52n0O06/1mH6tR9gDhbM5kgIQC8GQsrbbwZ3N4TUEVLJzkUAQegShh2k4hEMxuZqSX3S4MDPA8lMDqEDUH7Pp6w4A0UBMNBBjQiG3Ac6GwyePXUc116EzmODe1UPqQWWsTlyAYEDw/Qjfj4jK0Nwo4LSFTh8sXQNmKYc6igkMxSd8NJ8SjIcE41n9m3tDTGuT8vDUBMUpF3cuR2tzQpKDkd1LuE0hrqREPdnk1g1Ti/10+pSCF1E9m/3GL946DrmURsun+oT37f0x/YVJCrMOpJD3Q2rbHHRTQHnKwdtwEIHET4n6km/XE0kBT1E/pX1Vm3wxwpQjpOWwY2QZiQU1gjEpxqRoInT6oedsyMa+hH+x9S6SPFTOK6YjaD7FaRlaYymtsZTcVB4ZDQj3t+j0Cf56QpKHnBsT9igPLk6QW3VI8vrt83plOsExSrwjIOxR8qtQmVJOHR3HbQhptvtYXS+zul7GxHBofZz8ssP8p7dSmlXO/3TC5beeIslD+Yk8fXtWKVzw8Ksd/GqHqAwYONscAIHCotCpGsJexWtmvy25NYPXULyG0umDzppPfWdC3BdT2bfC+r4Up5P95kRlpfxDC0gseA2D18h+16QYE20JcduCtBzUVVYv95n5IShUAsKK0ByH5nj39ytyCK9tcHZ6COOlzN9Ywmk4pCv/H3t3HnTZfRZ2/vv8znL3+9777ku/vavVaqmlltTW5gXZAjtgGIctTGAAp2AUaoZJhYQJKZgJSgoYyFAzmUAGRjiUDQMpyiYpgwFjbCPbsrG1WGpJ3a3eu9/ut999u/u5Z3nmj/vKdDRyLMWSJbWeT9Wpe+75/c75PWc/T51zzw3J2j6rK1X8TZ/ZTymzn1KyakLzYEyYT9i4t0//YBediIj3dtFyQjzTx+sJ5YWU8kKKpIIGysrdKcXVjMKSIwshqya0Ngu0J33a+/tkgZBWUtJKij+fY/XCMBfWh1GBXYcWyC95pDlo7CtRnhM2G0Wqpz2qpz2KV4V+LSOuKPW/f4XiVSFNBqlY5axPWk7xiwkbNytMRTAVIbFQPuszdGpwLZxfVXJrjrwXk+YzNlYqRMPK/e97mvvf9zSlxQQRxetB+fkQF6ZICp3dMVuHEtRX2itFXAIuAa+vOE/JL/qUrir+qSKdKcV1HZpPGXncp18Vgobjjpkr3DFzhfpEg+opj0snpgivBvTWCsStkNojeYaeDeDJIbwu9EaF3qhQfKIITZ/5i6OkkYc6cOcLzL8vIylBOtvDuYz2bMb5B+H8g5AuFOhNpSSbIbWnV5HIo7FXqJzz2PPeC4w+12N23wrOz3B+ht9yVIs9gqbi+RkA+b3Nr+U2rVnh9NoYwVKI13F4HUfjfW28jmP0SYeoEq56LztlsgTaGGOMMcYYY4x5GSyBvk6JyAdF5De3+x8SkZ99vWMyxhhjjDHGmDczS6CNMcYYY4wxxpiXwRLoNxkR+TEReUZEjonI74vI94jIV0TkKRH5tIhMvN4xGmOMMcYYY8z1yN7C/SYiIjcz+P/n+1R1VUSGGfz11T2qqiLyk8A/A/7p6xmnMcYYY4wxxlyPLIF+c3kP8FFVXQVQ1XUROQz8kYhMASFw4ZVMUEQeBB4E8NRgvWkAACAASURBVOr1VzlcY4wxxhhjjLl+2CPcb36/Afymqh4G/iGQfyUjq+rDqnpUVY965dJrEqAxxhhjjDHGXA8sgX5z+SzwgyIyArD9CPcQML9d/uOvV2DGGGOMMcYYc72zR7jfRFT1uIj8MvA5EUmBp4CHgI+KyAaDBHvP6xiiMcYYY4wxxly3LIF+k1HVjwAfedHgj79EvQ8DH97uf+i1jssYY4wxxhhjrnf2CLcxxhhjjDHGGPMyWAJtjDHGGGOMMca8DJZAX6dE5IMi8pvb/Q+JyM++3jEZY4wxxhhjzJuZJdDGGGOMMcYYY8zLYAn0m4yI/JiIPCMix0Tk90Xke0TkKyLylIh8WkQmXu8YjTHGGGOMMeZ6ZG/hfhMRkZuB/wW4T1VXt/8HWoF7VFVF5CeBfwb809czTmOMMcYYY4y5HlkC/ebyHuCjqroKoKrrInIY+CMRmQJC4MIrmaCIPAg8CODV669yuMYYY4wxxhhz/bBHuN/8fgP4TVU9DPxDIP9KRlbVh1X1qKoe9cql1yRAY4wxxhhjjLkeWAL95vJZ4AdFZARg+xHuIWB+u/zHX6/AjDHGGGOMMeZ6Z49wv4mo6nER+WXgcyKSAk8BDwEfFZENBgn2ntcxRGOMMcYYY4y5blkC/Sajqh8BPvKiwR9/iXofBj683f/Qax2XMcYYY4wxxlzvvIceeuj1jsG8Qfzab/3rh8L330XqOZLxmP54wsjjPoUlIbfosbg6THcyI5zsUH6sSG7Voz8EheMh/Vt6xAVIczAzu06l3CP4fIlL+QoSO9K8MPlYwtq39ylc9PGPbtFrFfn+d32FC5/dQ7gp1E9nbH5Hj9mP9nBpQHdMYDhGESrnHB/8n/+ML6zuR5o+/paH1/bIAhjau0lytQhAcVkQoDuZcWD/AqvdErkFn7gKCPTroIlHbskn3HL0qx5+JISbivpCUhT6dcX1hWyhQLZYoDMJufM5SlcBEZKpmHA+oFtThp7z2f/ARRrPjpBUMgDUCZ1xj/JlSN+3Sb8d0i9DVlSCpYC4DGne0awJGnuoB2ns4W35RKMZrcMxURQQPlZhrVWhvyNm6KTPmd4IXs8h6WAe4xykYzGZCi52BG0h3PA4uz7Ono93WX9fihuJkHoMi3nizCPY8CgsOC78zU6uDuVJWiETk5tknlB8OmRhqED+dA5vOQAHQUvIzQc09jmSALyuw+sLuZkOu/Yt0zhT44a75xid2qL9TI3eGJQue8iRBiPvXmFlo0ZvFPojKV7kqJwX+lWIdvXpj6do6rN4bgxub7B8wyhJTtFA8Td9or19ooLP3m+7xPfNPM2ttav8zcw4G/sF3d1j9BGfNHDkDrZYHg+RnsNr+Yx+NkCd0L21SzqSoJFPFkDQdKCCv+khiSNY9elPxaSBx+SXlaTg8HtCFHgoAcv3QW7VIxpyxFVh/P6rJDi800XSE2XiiiKxw0WOxnsjfujvPsqXN/ZQmvcgE8buXKJRF7ylkGDTZzPwcVs+mQ8buQB/OUR9Idj0CN65xtawY3JyE/lqCUE4+I6LLC/UKKw6/K6QTPcZOubR3KfcctcFlgo58mdzDB9aZ2WHh2z64EEWKurDjs+0WL81h0uFpAT9GpQvOcCBg5HHHeGpPC51xDMxInDrjnlaXxwn0gDG+tDMEY0oZB5yWxNdLOB1HOoN9qdoWCF2lOc8oroSf6mGinD/O57jwsVJ3GyXrJGndyBCSylZ4uF3HJVdDfR0mfe+4xhnFiaJRxO6dQ+9qU0/DclyyvBNaxRGu6Rntpd1CpnviKYTyqdyg4PWfB7JwKWQ/2oe71SejaBAYVnQPT1qf1YiKQrRiNCvZ8RVZeRpj96o0BtTilcdYUMoLsLSvYJLIev5UE7Y2idE7+6RrubRYkqWV5Jnh+jOlemNZcS1jNKxPJIIq1EJr5hQuG0Lea5IZ1dGmhMkE9QH9SBsCv0ayKkSjZsToqoQns3jYke2FhKNKC4W8pcDglWfsXdfZWLXOhujgpvLk9sU0kBQ59Hd3YdmQO0vCqzcIdz+nlNM7l/lynodtxGimUMDobAC3Ukh86G7Mybc9OhNJ7RuTWgeyiid83GbIZI6TjQmyK052kWf8m3rINCJc6gAKrizJbKlPNVTjmiujLceUHg+YOPtEeGZApVnfepH1ug+Nozc1mTv5CojtRbJ4R7yRJlwPkBSB5MR1U+VaM8q5YuO3qjiEqGzt4+3HuI6Htl4H/GU4tmAzRvB6wppAeLTFaKZmNIlH/Ug29EHhOipYXqHuriTZYZuXaPTy5Goo3w2oLAKGgj9Q10AxCnF8yHqBBI32L5DZfbP+jT2BOSXHflFj9yaI9h09G7rkI7HlCo9KruadJeL1I872qNC5axP6ju8C3n8liOd7FM94eFFULijgfv0EElJcLGQ3NJi6dtqkDji4QyerbB1MCMNhf5IRlJRsqGUoSfytG+IaWUh4VNlol6OTlmI1goUFx3qDbYrLxLiW9v4V0OiO9qUns0jRxqM3rDB5M/MEe0Zo3sw4shd55hfr1P6fBF3ukBnTwoCftMjbAj0PZLhBB3r49YDXOyIi8LwMx7Fq25w/K4pfk9IPMfaVhmA3LojvW+LTqOAa3nc813PsfDnu+BSgfYNfcL5kHi6T+mST+2MElccI4dXyf91ifqZmCQMiUsgiSO34aiecaShoKMxUV7wp7uMTW0RXSqzGRdQJxQXHUFz0CVlYDMgGYvx/rJG5b+9ytV8iaQk5BZ9euHgWDH8lEd+VQja0J2AtKzEqQe7epS/VKJxMBlcy9Qy/LXB/GcBkAmlOY9oRPm+o0/ScSGbJ0dIc0rxYsBmzVEY65DNF2gPOeIowF8JyfZ22diRo3bC8ekzt5JfhWhE0ACSesrk54XOhEMyIR5PyJ/L08+D3NAhbRTozGR023nwoN0LSQtKYWFwwJVUWL8nprNWZOSLITghKUPzhoxw0zH2dEpn0pFNRwx9MU9uzgeEhY0643cs0T9TYev+HlnfY8/YGvFMwti/7TF3uAbTEd7xMrKUo7szxmt7NJ4eoV+DoCkU1pTGPkgLQv1syta7e/QJ6Y0IQRNKVxxkjvIFj/rhdTY6RTIcLhFuf/tpTl+YItjyyK+B34HegYjysTzRaEaag9pzPshgPann6Dofr+vRm0xJC4rXcaSRT/3RkH7eI7wc0hvP8KLBMRYEaXtkOSW/OrjmzMQHdbirOYq7m9QqHVqLFab/wiMjYM8d86z7IW4lJC4J3dkUiR2iQhp67P+uc8xnZYKVgOKcT+OAUpxs001yzP5VRu152HxHH3IZnCuR7e7SOFsnd8smcr7A5o2DZRcsBEQjSlKEtACFZUf/UJfG8RG6MxnS9smtC1kALnIklQx/JKJQ6BOECVE3pD+eUr7o6E5A83DM0E0bnD8xQ/WcRzSZMnnjKrH6NOM8Zyt1Rqe36F4tEw0rWeyRVDPyIz2SyMdre1BN6O+MiXYkxM4nKSipB91p5aZ7LlL+fwq0ZwKIHbXzGWEL2jPC1blRrs6N0m3mUQ+SSkZhySPzhCyE7u6UwhWPcEupXM1YPZrRH85QJ+TWHPFYAghxPSO34lE+uIk32yX3uSqNQkD9WUe35iDy2PUXGUnOZ+yrSnNfGcWR3tIimk744L6/4Ytnb2bo8Abtx0bxVgLUV9rrJdzbN8lOVojGMu47eJa5M5Nfu2YZ+7hPXPTQQy3cUEy/lWPnJzJW/14PWSngd2Hp8U8tPPTQQw9/o5zJfgNtjDHGGGOMMca8DJZAG2OMMcYYY4wxL8N1mUCLyG4Ree4lhn9IRA69Sm38lIj82Deoc1RE/u12//0ict8rHP8hEfnZ7f5/JSLf/mrEbowxxhhjjDHmlXtLvURMVX/yVZzWb7+MOk8AT2x/vR9oAV96ueO/aFr/4hWG+P8jIr6qJt/sdIwxxhhjjDHmrei6vAO9zReRPxCRkyLyMREpisgjInIUQER+S0SeEJHjIvIvXxhJRH5VRE6IyDMi8utfb+Ivujv8iIj8mog8JiKnReSd28PvF5FPiMhu4KeAnxGRp0XknS8a/78XkcdF5JiI/LGIFF+ivQ+LyA9s39V+ert7VkR0u3yfiHxSRJ4UkS+IyMFrxvttEfkK8K9fpWVrjDHGGGOMMW851/Md6BuBn1DVL4rI7wL/w4vKf0FV10XEAz4jIrcC88D3AgdVVUWk9gra81X1LhH5LuAXga89bq2qF0Xkt4GWqv46gIg8cM24/1FVf2d7+C8BPwH8xks1sn1X+8h23f8d+OR20cPAT6nqGRG5G/i/gfdsl+0A7lPV9MXTE5EHgQcBwvHqK5hdY4wxxhhjjHlruZ4T6Muq+sXt/v8X+EcvKv9728mjD0wBh4ATQA/49yLyCeATr6C9/7j9+SSw+xXGest24lwDysBffqMRROSHgDuA94pIGbgP+KiIvFAld031j75U8gygqg8zSL4pH5jUVxi3McYYY4wxxrxlXM8J9IuTwa99F5E9wM8Cb1PVDRH5MJBX1URE7gIeAH4A+Gn+9i7uNxJtf6a88uX6YeDvquoxEfkgg99Lf10icgvwEPAuVU1FxAGbqnrk64zSfoXxGGOMMcYYY4x5kev5N9A7ReTe7f4fBh69pqzKIKncEpEJ4DsBtu/kDqnqnwM/A9z2KsbTBCpfp6wCLIhIAPzIf2ki24+V/wfgx1R1BUBVG8AFEfnB7ToiIq9m7MYYY4wxxhjzlnc9J9CngP9RRE4CdeC3XihQ1WPAU8DzwB8CLzzqXQE+ISLPMEi4/8mrGM+fAt/7wkvEXlT2vwJf2Y7j+W8wnQ8Au4DfeeFlYtvDfwT4CRE5BhzfrmeMMcYYY4wx5lVyXT7CraoXgYMvUXT/NXU++HVGv+tltvHQNf3XTneV7d9Aq+ojwCPb/aeBW6+ZxBeuGee3uCbB/zptXBvvR16i7gXg77zE8A++eNjXk2aO/OWQkWdTrr7LZ+LLsHz34Mn30pxj5O5FNj83iS5XaE8rxSUhurHL7P0rtFeH8dYDsnzG4toQANUSuJ4jt+EoXlUW7/HRNKU9C2UvxZ9Xfu8r91Hbfri+M+qYGG5w02/N8Zd/chfDx5XoSh4E1m9L+I2PfTf5vtDd3cfvBgDUTsHyaBWpZuQn2rRdhfyqMHvLIrvL61w8u5v2rPJt73kGgC9/7Da8G5t0c0XySz65TaWxR8htQH5NSYrC0CnINVIaP9oAoPjnNdo7FK8ntG6IkZU8koDnZ2zeG3FfcYNzGUgy+P251xU6uxLCLZ/kiTpyoAddDy0m+Fdy+D0oLWREI3nSmd5gPSWOic86Nm706IaKOqVzR5e05UMitHZmHLjlCucf2wlAFiij4w02Tg1TWHCkeYiryo6/7nHl3TmuvrNE6QkIWoOFu344QyJHaTlj5YgjC6B4NqQ3lpFmjpmhLdZKVYIND78zWB+t3RmL94GWYyTIuHvfRU5+7CCFlYzl8SGiCZ+hs7BycRcASVnISglkjs5yiQvPV9GcEm4KWeDRG08oz3n4O9sUnhg8jNGZzAg3HVnqcDHkyhHJySpJAVyY4reF+Y/v5jfuGR1sU58p0d8h5G7bIA2ENA+bV2uE1YiwnhCdHCIuCM29GVlncHjrjydI5JCGh0th7FhGc8ajcXNM8VxI6R0rLLlRGLzQnvJ5b9B+x1G5qDTe38J7qsLc1RFyF3MkZWXi8YSLHxDef/QYAH/1yTv4CHcz/WhKe9IjqkHrLydJ9qX4Hhy+/xTPLU4hWX6wPw11CYZbtJ8dJlwX2s8OQyVjsTeMvCui/HSe9V6R0rwj8wbrI3+iQFxSmOpy7OwsKFQ3lTj1GKs3WSnmUQ/GHt/en3YUCfY2cU9U8SJIc0Ljvi6VxwrkNpX2jMNFUH8+prl78MqEK8M1VMBvC8lijiyELFRq5xKuvMunctM62adHyPzBtp7bVJq7hTSE4oLQ3KVULik5t/1veReLpDkILwzmu/a2ZZYuDpO287gbW3zmU7cTNgUVn/GvZsxPhJQaQntvwtqZkcH62ILuBAQHGvROVClcCHExlC9nLL8/YvizeVbflpLc0R20OV/Ci2BmdJPLRwqkxRSvGpM7XiApKls3QJrLuPOuMyz92j4AFn44YvQvimwegAN3zHHhkd30pmO8zw9Rffc6uY/W6FeExjsGbRSeKqD3bdEoFAgrfbQVEvd8mn6eksDQCY+tG1NKVzxk++0Tfk9JpyLaxQAUXAy9sYz6cSGuCM2hDDfToa8lAK6uDXF05xwruTLtIw0ay0X8lsf44ylXJxy1XZss5qrUv+rzlcr+QSOFFBdDPJwRp+Bij+Ki0v2OJuGpCr3RwTbuzQ/Wx9Z+oXjnKs3zw9Snt9jq1Lnl1kucmJ9kemSLVlilNNmmvVJk5J5FABafG8ebbVP+bIn2Ay1GPlkmC5TNd3cZB6JhJV4tcqYdDo5tbZ9KUehXIRpLcHMV/Irg+lB47zKNS8MU53yK50PSI83BPrtSRBPB7yqTX87Y+NEWvfMVKnNKZ4/Q3J8w8ahj7ezgOOILzE5s0PxCnrVLdYpTLconQ6JRpTsBuXUY/YscK0e3z3UFiEcT/FJM+FyRuBuydgvEFaW7I0OLCZXncrT2J4TnCwA0R0NahQQtZzQeiMj7GWk+INjfJPfpCuqE/kpIUhjsG989dZLfPTQOQLDlSBMPfzlEPSUtZiRFJb/o0Z1O8NqDnXz6xmU2TkyRuxrw+N/5Te7xfoKsE9Jq51EH/aqS7wu9iWww3dMlshDSxA2WezvH1fNVKj88RRaCv5Dj6asH0PGYztSgjXAowp0o096RUbkwOO4G1T7xVg5qCXE5pHjVsXXDYFupHxf6VUE96A92ya/FW/qTKtl3t+DGPl/44s342yfz/FxIbzIhfylH864u0ekC1QvK8vAoQ2WhuSOgf2eL8T8Z/OHIxkGlvS+h+lxAPF8g1xFyp8s035nSryk3HJrn/OOzRDWluDhYvv4VoTOpBMsBaSBcnBujOO+RBRC0oHTJpzKX0dg1qJ9fV1wqlC76dG+JyS6UBtcx4226WZnc+TzDJzLak47e6GD+mvtShmc2+dPTh/m9u3+Xv3/xp0ChO5Uil0v0ihnVDMQbrA9RSFby5Nccokp3OiELfIImSAL5KyGNPYP4AHQ2obcvo3w8R2ufEN2SDI4NkUMFSIXCFZ+wCf3td7yOjTfwXEbrwgS5t6+SfGaUfl3IQqg8u8zCD9UoPFOksW8QU+0U3PSB0zz52A2MNpS0GUAGvdRn9dEpFv6Bkp8XojFHOjY4WBXmAto39vHWAtx4j3ijSJIXggZkOVg75JO0lLFTgzZaM46NIwmu7ZHbcCx+Zgd+TSksC+3ZjGPzM7h8SumK0tg+VA1/IcfGzRnjjwQ0dwnRMHR3JARNn6So3HzwMifLk0yPbgEQfXWCjVtg5b4EiR3s7iFzRZKy4rcEr+fo7ozJzwesvG0QV1aMCdZ9/DY0VsrE9cHx++r9EDSUM0/PUrri6L/wumBPyS97eF1o70k596f7KHkQNpSN22Nu/J0e57+vipcIzdnB9UXWEorjbXqlkPxzRVDIHUzJeopkEI0o0XhK7blB/e640rylT3CpwPgdSyw9M0HhwCbtbIjigqMz04euR7/j4Y0P5qNyxqN1tI9kPlkI438dsHbrCDrap7UrwG35XO2P0pkeXLO6GBYX6gSHWrjzJQ6+bY7VTon1Y2MECiO3L7Px+Dh+Z7BvVC9kLEyC33ag8NyxXcj3C15XSScjlu/MMXxciSf6eKuD47rXE0buWqL1l5PUT8XMv8snN9zFHavQH4LOvpjCpZDcymDRRjsj4lFH4UJIdyahfsyjtVNJnxqhcGQdr6+4vmPjcIbXGtzbzXwl3FLmvzPFK/RJOz6/dvvH+d/+zY/wyK4bGXmuy00PLrJ+dXZwHLlZYbpH68IQpVs38b9c5+T6BPldTeSxIcItpbnDJxpWkv52+psJy3cGeM+G9CsQDfOyXc93oI0xxhhjjDHGmFeNJdDfgIj8wjX/u/xC9wvfwvb/lYh8+zeu+Q2nc1FERl+NmIwxxhhjjDHmrei6fIT71aSqvwz88uvY/r94vdo2xhhjjDHGGPO37A70t5iI7BaRkyLyOyJyXEQ+JSIFETkiIl8WkWdE5D+JSH27/odF5Ae2+39VRE5s1/n17WFjIvLHIvL4dvf27eEj29M+LiIfAuTrBmWMMcYYY4wx5huyBPr1cQPw71T1ZmAT+H7g94CfU9VbgWeBX7x2BBEZAb4XuHm7zi9tF/1fwP+pqm/bns6Htof/IvDodhv/Cdj5UoGIyIMi8oSIPJE0Oq/mPBpjjDHGGGPMdcUe4X59XFDVF/5+6klgH1BT1c9tD/sI8NEXjbMF9IB/LyKfAD6xPfzbgUMiX7vBXN3+P+t3Ad8HoKp/JiIbLxWIqj4MPAxQ2D+t3+yMGWOMMcYYY8z1yhLo10d0TX8K1L5exReoaiIidwEPAD8A/DTwHgZPEdyjqr1r61+TUBtjjDHGGGOMeRXYI9xvDFvAhoi8c/v7jwKfu7bC9l3lIVX9c+BngNu2iz4F/E/X1Duy3ft54Ie3h30nUH/NojfGGGOMMcaYtwC7A/3G8ePAb4tIETgP/IMXlVeAj4tInsELwf7J9vB/BPw7EXmGwfr8PPBTwL8E/oOIHAe+BMy99rNgjDHGGGOMMdcvS6C/xVT1InDLNd9//Zrie16i/gev+XrXS5SvAj/0EsPXgPd+E6EaY4wxxhhjjLmGPcJt/jPRSIrfy8ivOrb2O9RT1FNae1P6iU9uU5EMEOiNKJoKp89MkywU0ckeZELpsQKlxwr4PciKGV4X4oqQXxEKz+dJQyiFMWE7wxUTWrNKa3Yw3UYvx8cfuwPXh7UHemQB+B0lv+gTtAQEpOuR5pQ0pyQFcC0PFaU3X0YUXAKbfzrNVxZ34vXAi4RPHzvEp48dojeq3Dp1lXBtMI38Zkp/JCUpCJ0JQTJo7RTaUx4HRlY4MLJCmhf6Q0p3XAmHIlwCvVElaYS4lZA/f+wI3cmUYNMRbDqyHIRrHp0ZxcUwOtIkXPcg8kjKit9Was+s4+9vIks5ZCmHtxbQmnJULiqFyz7S9QjOFBh/1Kd8OsAlwnihSVxLiWspWaisrZWRWOhMZ/hdCDeE9mRI8cg64ZYy/niHJC8k+cFy8zuO7ogjmkhIqhmdPTGF3U2WrtQ5c3KGsKnk1oTmgZTmgZSh00LQEnLzAW4px4mVCbIAVo5CsOHgqSrL98dsPNBj44EetTMxXikZHFVyGWle8TtCUoTCslA74ZOGkMQ+cQniEoQNR29HTNwNKC4Id83M4UVCFkK6GeJt/7I/buaImzkqlxO8HjQvDbF5gyNsKsXhDv7TZVqLZXKbQmdSqB8XJHJI5HCFhNyKR7gF/bGExi6P1tu6eFs+nV0JG1sl8qsCCihEI0p7NmXyyxlxRRj/wwIuAUQJjmxQuiK0pn28tuNLC7v50sJu+iMpucfKtCc8opqQhUpcBr/pYHeHJy/u5MGbHqV2NqV2NqWU61MMY8ItoTyfoQ5m/0oZntoiuJyjN6q0opA0B/k1Jb+m9MYz8psKKgTFGAS6Y8J/M/ssOS+FTNBAUSeoE7Z2+/QvlokrSr8C4ZaiWyHqQWtGyDzoTCuXv8Mj3BLCLSFToTuhZDd0QAUVwIOtPQFp4njH9Hka+7KvHS/Wbxnsg/0hpT2b4RJoT8Njy7so7t8ityH4HchCJQuVpfk6CBSLEfFmHq8nFBeUtJLhYkU6HqV5xbU8XF9wfSEaVoKmUC32yEKIxjK8npJrpEyObuESyI92qZZ6VEs9tB6zdVPK0lYFb0eH4pxP2vJRBy4Whg6vkeUzTixP0qt79OoezsuoXI6QDFbaZVwfyucCcpvKe3acprHHDdbrZki2GdLemRLHHv5agO+nHN5/BboeAJJAd3yw3ADat3dp395laz8UT+bx2w6vEpOWM7JcRlQTkjygQtL3qJ2C2inIMsdX53ewdm6YbiNP+bwPClcfUFzH0X52GG/Lp7UTwnWPcN2j+kyO0nKK13bkVzy6ExlRXQj8FHWQlJTJ2XXIgAzKl5T11QrF2SY7hrbI8hnPX51gYrjBlcU6+QWP3vkKZML85RHmL4/gEqHfDlGBaCuPCmzckpEljpV2GUkht+xRKEcUyhFe2wOF2c92wcH99z5He4dSPQfLZ0fILfuIgjq+tg4LVzxwSlwRNm/w6HVDJBFkex8tXfKJS0JaykhLGZNvn+fq2hCF9YzCFY/2conemOLta+F3ZHDeSv/2PFeeU/AH23GaV8aOLJHfVJJKBokgLZ/mwZjccJewIYSNwfHBzyVIMSFf6BO1Q/p1Zaa+hRdBbxRKVxxeH7w+DHldGBrsp/2RlKwRUD0PWU7JrXpkPqgP1ekmfhf8LhSDPtGwEm4K/925D9BeLoFCsp5HCylpXnEJlC47SpcdaV7xIsidLpDmFW35aKD0xqE7rvj7m6gD+g7/zg38OzcQUeJKRmHB0R1XulMpXChSOe1z540XiStKVFeSkZhkJCYLoDuhNA8kzOxexTU9/F0temNKY6/gf6VCcqFMWsro74ro74rIQqX+rEdcydDE0a9ntGaEoCmD42JPSa8UUU9QT3CxUKh36d7bIrchJEWltTMjfWaI4eNwdmGM/PrgGBWXIS4P5m/4yArqDZa9dDwqlzOynLJ1OCauKLUTDQorSmFF6Y4KvfGE9u6EseEmhWUhHk1IEo/ckkdhSenVhLgE0XhKNJ4SNBwbF+p8296z/PHmUQB2za4ydNrDn+kgxQSAG3Ysc8OOZdK8Ur7kSApK5gvkBttYe2eKSwf7HArJLS2SW1qogrcYkvlQmWwOtrGGh4xFTN+4DKng9QfLPxrOiIYznCjtKKS1L6FxfASA6hmHpNC6eZypkS06Myn+Z7PGdwAAIABJREFUzjb+zjaSwGxh42vn4nDVI6hHnFyaxOtBbl3g5iZePSLYcgRbjrSg+KsBOtVjx9gGkkFpKSHZ3SPzlcpcRrjiEzZSwkZKZ1LxKjE60qdfge50ihdB+0gXDZR4qUDW9kmKgrrBvh5XBuu9XxU40iC3ARINzunJSEwt7FIsRSyuDrG4OkRvRPAmO+QXAtQp8UaO/KqQnx1s41mo5Go9on09qmcc1TOO8libNKdk/mDaqoN3AxUWPMhg+MA68b1N/A74HZCeR7+qZAEUrnhkAZTnMzaOxri2RzSSp3LLGvl1iGpCVBOCDY/xaotgyw2uW25vAgzmS2HisRQpJiQFSApQuQD+akDmQyno42JoLpfxO0Lt7OA8jkB+0Sd9vkL6fIUshMmxLSQbXI8DjD6t1IbbZIGSFTOqp33kk3Xkk3X8zmA+84+V8dvCmaUxGl8aJ2gIaVHZaBbp746IK0pcUTYOOvx8QvnSYN240Yih5wVJIX86T1LKyG1luCAjyw86t7fFerNEGkJ+oUMWKv1OyPCplM7OhGAlILcG0XRMNB2TK/UhyOjOxgT1HgjEowkuhq2tImFD8Sa6g/2jlpLUUua+C3ojg+VR+WIBCTJ+6cR3IZny3NIUcdnn8ZWdbN4ImzdCbs3hLhZQT2mulXAxrKxViM5Xae8atNWvDpaNyKC78+AFopEMF8PwyYjC0st/l7Il0MYYY4wxxhhjzMtgCbQxxhhjjDHGGPMyWAL9BiIiX3oZdT4kIoe2+3/+tY/KGGOMMcYYYwxYAv2Goqr3vYw6P6mqJ7a/WgJtjDHGGGOMMd8ilkC/gYhIa/vzfhF5REQ+JiLPi8gfiIhslz0iIkdF5FeBgog8LSJ/8E20+aCIPCEiTySNzqs0J8YYY4wxxhhz/bEE+o3rduAfA4eAvcDbry1U1X8OdFX1iKr+yH9tI6r6sKoeVdWjfrX4TQVsjDHGGGOMMdczS6DfuB5T1SuqmgFPA7tf53iMMcYYY4wx5i3NEug3ruia/hTwX69AjDHGGGOMMcZYAv1mF4tI8HoHYYwxxhhjjDFvBZZAv7k9DDzzzbxEzBhjjDHGGGPMy2MJ9BuIqpa3Px9R1e++ZvhPq+qHt/vvV9Untvt/TlVv+mZeIvafty8EW4645NGdSejuiPFHe/ijPVwkrM7VkBTUh6AlVC7A9MQm773jWYKGIIt5Rp8S4grEFeiOCdO7V+mNKxNfadPaqfQPd/A7wmSpgQqUyj2y6UEXV4R8kFCc8/E7UKu1iY626A8J0XhK90gHScBrO6YfzZh+NEMSyK84hp/2qJx39Cdj0jxU5lOS1EN9yK9C7elg0D0PJ1cmiGsZpXkhqnhQTmhPK93ZhPxaRlzJaO1Unjy+lyeP76VxIEUrCWlekefLhBuO4e0/EstySu1ZB7WYLIAsgInHY4oLQjIdIQq92Kd0VfFajngoA+DSB0bpXywTNBxBw5EOJ6R5KKwm9CZSigsO14fmbqF1sE9SzGjFOfxqH7/ah2qMn0sItwR/pkMaQjSsbH1/i14/oH66T1IOSAuQFgaxDp2C9Vsz/ErM9L4VxmY2GS23CYcipvevsHgvZCGUppuUpps09sK+P1ijsCy42TbN1RLd8YwsnxFXlAPvPQdA9Qt5ql/Is3Y4IO07omFl+pM+6XBMbywlmo5xEVQuJ9TOxxSOFVBPUU8ZeS4lWPe564YLFFcy/mZuN5IM4pXY4VKonU0oDncoDne4/O0e/bri9QQE0lDoNvNEw8rYzg28LgRtSAPBRdudp+RXoT2tSDhY/s4paTWhPr2F8zJGn+kjKUgKaU4pLHqs3OGIarBxwGf4ZMLBnYv0egHqweo7YvyOsHm5xublGpIJzf0JG7dleH0oLDu6szFJJSNZzVN5rMAfXnwbnTGPzpjH+laJ8WKTzlRGryaEm0J+pcdWs0i4KfhtYXO9TJqDND/oxg+usHGjI408kuUCw48FhA34/T95N3OnJ8jG+qintHYIrR1Cvwq154W4rER7I9ozUN+5QeuOLt0dKZ3dMfWTkBUzXCy4WOhEIWk9JpsvULkgNA8MVkZrJ4T5hM9cOsDo/jXaOzPaOzO86Q7ZWJ/64VXyK47+eEJ/MmHpao3eyRrt2RT1IK6nxPUUFKSU0H+mhlft0xtP6UwJrickBYcGSpqHrB4zcesSE7cuMfKc0plNWDk+hutDlsvoDwkuylg4O8baYZBjFd6/4zjv33GcwqkcXsfR3cxz28w8aR5c14MjDbwerJ2v4yJHkjiSAiQFiOdLpKEjvyJ0ooCkrHTHFBQ+9Uf34HWhN54h1T5S7eN1HHquhN8VulcqnJifpHTJp9fMsXEIvB6ULnp0JzK8K3m8K3mS4YQ0BHZ3SBshQyd8ipd92od7dPbG5DYc4dkC7SmhPSUUjhVIEg83GlE8E9LekxK0hJHHPfy2kOYV9RX/QJMsHOy7ZJB5gteD6r3L7L/jMn4bCmFMFipDp4Sl5SGSakZSzQhbGdLyaS+WePbsDnDgP1di4wuT+Fdz5LZAEkFiAQUUCgsCfcfG22IKcwFrR1Nyqx5DQx3STEj29Chfgs5Kic5KifKcUFrMiEs+ruN4ZnUavwu5TYVqQn4V0hz0xlN6sU8v9lEPClc9ohqMHI/xLuRJRmPaUw5UUIHeiFA551E559Huh1TKXdZv8igtKNO7V0nqCeGjFfojKZKCFyuuL7i+EJcFafqUvlxEUmHlqxNs7XFomOFPdNBcBolQ+3iJ9qGI9qEIFzm8E2XCizmmKk206+F1hQuLo0R1IdrfGyyjbQv9ITR2+G2H6znwlLgk5Jc8XF9IyxmVi0rhY0NfO3dcWBkhme6TFKEZ5/A3PQqlPsGGw7U9wk1HbjOjeSCmeSAGhf6Q0hvNyPJKfsmHkYj0YIuwIXRXi9Seh+KcT/J4neTxOtF6gbSeMPx8QjTbZ/hZR1LNGLqYcnxxiqEz4EXC5MwGkzMbdCYF9cF1HYUgJqslZOfKpHmlPKe09iVIBnfefB6NPDTyyPZ2aexX/Nk24VxIVk6JhxTJINxSWjOOoOlo7BEae4TyFYWnqnjPl0lKSlpOqR8XRp5N6Y0ImsrgXL+qdHbFdHbFFBeF5ZUqu++8gnqAQHvSke7p4m35+C1h/j01eiNCb0RIKkpluklQ67F8ZpRoWCEV4m5Av56xcWtKYx9MPNmnPNGiPNFCssH2/5mTB/njL91FUO5z6fIovWHot0O059GZUk6fneL02SnUV5ISxBMxhbWMwlCP0rySW/eIS5CUB+V6qYReKlF4rkCWU7ozKYGXUjnjM/5EhlzOs9ooUZ1q4rcgHsrIrTlya46Nr47hu2ywLy4LzT0ZpaUUFwtzH8i4fGEMSYVkrkQyV2LzJvjrD91NbkNYvyOhflJ5555z3Dy5MLjmWFbyYUy2lGfq7gWm7l4AhfyyIIs5Gr0c9edTenWPrOPjd4XmrCO3LmTBoPM7QrXcxQ9Tejd38bqD8rGRJppP8TuO3XuXKS+kpMWMtJiR5CEZjQc7y7Eqjf0Z4aajuUsIlgIWOlXaVyo4pzin9IeUkaE2+dvXya34eG2P2rmUWqlLmlf8jrBrZANt+UQ1iGrQWiijvpLe3kR9JXy0Qn7RwyWDdbE6P0QcewRNJWgq+UUPpnv4d28g2WCfjGoOIofXEy59j2O02KE7rui9W+i9W6QFZWmrQjQZk1uHfi9gY6tEZyajdFXY2uOjsaM7mdGdzGjsB53pkV8VVtol1IPpnWtkPrhYmd21SlDrDY7F7cG1QHt3ytX5YVwCXk9YPwzqhGKuj1YG18zJO7ZoT0N7enAucJs+zYMx3ZkEOVUiv6Yg4LeEaL2A9h3p7h7p7h7xgS5cKVBYy5i6fRHvXIGgDf3RlNzWYBUtHfXJWgFDJz2GTnpEawWixSKdHSnxcJ7CssMFGcWFCFeJicdjOlOKa3m4lkeSeJAKuXoP55TNmzJyiz7jT8bIaki/KsyMbgIQ1HoEtR5+08O7ewOc0q9B8fkcrfkqm7dk7KxvsHpbSCcKSeoJSX1wrRK0BteGruHjYsg6Ptl4RH7ZJy0IvVGlP5JyaMcCh3YscGlrmLSUoQ42DuRQT152zmQJtDHGGGOMMcYY8zLYi6leYyIyAnzmmkEeg5eCvfD5ggeAP1XV+77B9D4E/B+qekJEfl5Vf+Ul2nihHV7UBsADqrr2SufDGGOMMcYYY97qLIF+jW0nq0deZvX/YvK8Pb2fvObrzwO/8grbMMYYY4wxxhjzX8Ee4X4DEZHW9uf9IvKIiHxMRJ4XkT8QEdkue0REjorIrwIFEXnaXiJmjDHGGGOMMa89S6DfuG4H/jFwCNgLvP3aQlX950BXVY98My8RE5EHReQJEXkibbS/qYCNMcYYY4wx5npmCfQb12OqekVVM+BpYPdr0YiqPqyqR1X1qFctvRZNGGOMMcYYY8x1wRLoN67omv4U+726McYYY4wxxryuLIF+c4tFJHi9gzDGGGOMMcaYtwJLoN/cHgaesZeIGWOMMcYYY8xrzx4LfgNR1fL25yPAI9cM/+lr+u+/pv/ngJ/7lgVojDHGGGOMMW9h3kMPPfR6x2DeIH7ll/7NQ6X33MP/x959h0ty1Qfe//4qde6+Oc3cyUETNZJG0qCABJIlkgGZoJclWPZrs+yyxmHxvvbaa4t917tg72MceI1X5sUYsDHGiYxAEpKVRqOZkSbncGfm3rk5dayu8Ns/qgdmZc0oIyHO53nuc6urq8751anQfbpOnRPkLaKcItkQ93AWa9KjsHGK8FQOiQVRqC0OsHwb/0SeNRuGOHBmIXEqJndGEBWcBjRLkL4nS5ixmFnrcvUNBxjZ3U/bYRg73kV5qXDp+pOcHu9EY4tmUamHLt6EQ2Vdk54vpAkbGXJnY8KUTRTapGaFwpZJ5msF6l0WjS4hWFMjjF1SM9BcFlBYPcdov4eTjmh2h9TaBQlsoiz07GwwNpADG6KUUNvcIK7bpMdswr6A2uqQzkVzxIdz3HbrVtYtHGb47sU0FoR0Pe5QXhYTu5B73STNk3lQaBaF3IIK2cfTpGah0WGTfssYzv1tNDqVeDRNegrCzVWs4RTZUfBfV2bpsjHmj7UhCk7Zpu1ozNxyh/aD0OgU1r/xECPpNDKRQnp9RmdLIMm+ktE0YWxDLHT+i0vsCvWFEYykSe9LE2Zs5lbYqA1qASLErhC0xcSRhX+kSG5BheGhLjYtO83ZcpHi9zMse/dRRnYNEE6lSc0IcS5NdYHgnfJo9ob0L5/Cub+A3wHzuzspHbCoDkJQACsQ0ivLdH7TI8wIzbVNIhtyRzyqgzELvjrC0Z8vEbQpHWumSPfXaJzN42+o05avMzHcQc/GSSa9FHFskVsyT9nxCHI2tbwQ+A6D3xZmVwkIxCklPwyBY6OuEh3NE6Xh+nfvZF+jB2/Wxm4KQTHGb0vW6X3QZvqqgMyBNPmTFpUFMSIwvymCOQ8EZLBO1HSxmsk62bPK6FsC5vZ1EjVcFn+rQuBliT1h5VWn6OqeJ9dRx/5eCadiUe9RnIagapE7ZRG7gsSC3xMRz6SI0tD5sM2RYgmrYRG7Fv6aOmGcg3mX2pIQd97CW1qlnrZodEGjV9m8dIihMz3YNZuoEBGvrVG3XTo3TOKfyiN1m56twuxrfMLukMgSCkMQZi3CFERtEfWZDN6wh9UQBtaNM13Loz1N4u6QqCskk25S+laW8roAaThkz1p4MxY9T4ZMLXAJ6h7sKRBlFFHQsovUbdxHcyCC+Dbe0gqFB7NUL2my4gsBU5c6OBUbp2rhVC3CnEJPgMaCM+nSXNHAmnPJjoGqjXvLFH7kEGxrpzGUZ+Yan9wRj9SMYEUCKuRPg3oW5VURqSmHS289yD0nVrN3agCd8wg6IpxZh/GjneiqKt7JFA0c7LqF3bAIShFRw0UCmzArZEeEWr/N/PqAVK5JZnua3FlIzcdMbomQ5TVkMkW6v4brRcQTKbp2KWFOaC5solWX2AVn3iY7KvQ9WqPW79J9zSjySJ7UDBDZBEUlddwjGvSRskvxunHCvSWizhDp9dGugK4HbTJTiluBuOFhT7qsfuMR5iyXhrpkR4TK0hhtC8kdc4lnUzS7QuJ0TJgRBv5iHxO3duOUmrh/1Mn4NeA+mKferzSLUFo4T+Qpdi7EHklR7wYRWLZijPnQI3AsMqMWURpAKA5Bfa1P5mgKd9amsiLEmbUpLZkjPJMlyiphR4S7I898m4U9nMaKBadi4c5ZVJaHBFmL8iKLsDOkVk5j1yy8N0zRGCoAQqM/xGoLsJ8soMMZJIZ6X0xqWmj/y8eYfd0gg3crM29qYI+myJ+BRi/UlgX4PRHuI0V6NkxS21fCbxOmJYVVsfG7YzQVkz9pMblRCHuaxLmIzLp57AM5an1K0BlhNS2aXTHpMYfelVOU/RRSdaj1gaYUVHAnbdLTQnV1k+nhNjqftOG1s/gTWcIM2G1N6iWh0SbUe2Eql6IynifKxmTP2AQlRW0hzIJTEyQSoowwd2WT/GEHtyxEi32iwMYqO8yOF0hPCW2rZylP51BXCQuKN2PRzAtW0wILYg9yIxYSC7EHXY/ayFSKIA+F40JtQGiWFIkFtcGuC7ElNK+vUfp+lqnLI5yyTb1byO3ymH19g6YnLF0wSc4NmM47WGdSBD0B8X0d6KoahR0e9V7wO4TMqJ18pn2/nVqPhdW0uGr9Mcb39bD58mOcqLXjlXx673ZAhWZJcKsgMTh1sH3w25LvFWFWSU8LQUmpLQ+w512CHDjTDrXFEZ3XjzE/kwOE5jIf70SGVauHGT7VBQMNotAhEovUtE2YVcIsNPojgraY0iGLYCqDPe4l5bRbqW/0cY9n0EV1UoUmQeDg510a7UoYOGjVwfaFKBcjoYWVC/COZvCX+dCw6Vs8zXwjjTPrYDUspK9BYFtkh1zyoxH562bwDxWorAopHrXoPBAxfXlEnI2JMzGZ1fM0fA9vysbPQ2b1PM7uLJkJmFtoYe3LYzchtoUwD1Ea0tNCpV1In0gRO8mxpAjNdrB6fexMiKZjMic9nJoQ5pRoU5Wo4kFs4bcJx4J2Jvb1EGWg3qs0JzPEuZj5iTxzU3ncsoUVgrW+TCHjUxsp0ugUZHmNqOLRtSdm6oqYxlUNqhtC4oqLP5MmfSyFPenid0c4FYvZMI2VD5H2gLlj7cytVshG4MVYVYeuHcLsWiV2ST5rR4TaomTdZkdEs5JCXUVjoX2nw+wg2A+WCDZVCCMbd85mtpYnyikrPn2Gg5v6kExE5pSDHYBds4g9yOxLE2TBX+4jleR7ZPvBmNBxCDoicscdBLACaKRtorEMbVvGiQ/kceqK39E6dxoW5aNthAXFD1yCqgelgPhMltSkTfOyKlHVJVNs0AwcrKZNdUMDOxWRPpHsD7cqhAMBfh6a41mizoCm2lhjHnOrhLkoRdRwCEsRYU9A2BVS2uWhq2qkjng0uoRwgU+Ei7eghvtACf/qCtGRAplJwakLg/dUmbzKAlvp2urw+vc9zu7yALELmXHB74hJjTlkjrl4Iy5+1iI1bRF5FrNdgsx6ybm6MKA5GNCxzcWtQryuRi3r4HcrpGOKh1z8npjI9vDKip+yqXV7dK2doup7uKMu6oLEQmrIIyjFRDUXOxPhDKeIV1WZGfCQpPQpjxTJnbFg1sMe8yichLKbwplzQITGqga4Su6Iy2TJoWE5+PMpMj013GxI28MuM5dG2A0Lb94iKChvu+Fx1vWeZXejB3fKoTEQkemuMftAHzNH2rntum3s3bcUvz8kd9pibpUye/d3z9555513PVOdydyBfomJSCdw73mzbJJOwc79P+cmVZ16kfI4lw9PyeMF5WMYhmEYhmEYhvGT7MeiAi0im4ABVf3Wjyi//6yq//0FrH8j0FTVR1qV1U3Pcr07gM3nN9l+Np5LHoZhGIZhGIZhGMbz8+PSidgm4E0/wvz+8wtc/0bgmhchDsMwDMMwDMMwDOMV4llVoEXkAyKyW0R2icgXRGSJiNzXmneviCxqLfc5Efm0iGwVkeMicqOIfFZEDojI585LryIinxSRfa31u1vz7xeRza3pLhE5KSIe8F+B20XkSRG5XURyrXS3icgTIvK2i8SeFpG/FJE9rWVf15p/h4h86rzlvtGK9+NAppXXX7e29WBr+oCI/L2IZFvrnBSRrtb05lb8S4APAb/aSuP6C8T1LhHZ2yrTfznvrQER+Y6IHBGR3z9v+U+LyPZWmX3svPknReT3W9u3TURWtOZ3i8g/iMjjrb9rn8WuNgzDMAzDMAzDMC7gGSvQIrIO+G3g9ap6KfDLwJ8Cf6WqG4G/Bv7kvFXagdcAvwp8DfgksA7Y0GqKDZADtqvqOuAB4HcvlL+qNoHfAb6sqptU9cvAbwH3qepVwOuAPxCR3AWS+HCSjG4A3gP8lYikL5LfbwD1Vl7vbc1eDfyZqq4B5oF/f5H1TwJ/DnyylcaDF1j0d4BbW2X61vPmbwJuBzaQ/Ggw2Jr/W6q6GdgI3CAiG89bZ661fZ8C/qg1749bMVwJvAP4zNMFISIfbFXMt4eN6oU2yzAMwzAMwzAM4yfes7kD/XrgK6o6CaCq0yQV5L9pvf8F4Lrzlv+6qiqwBxhT1T2qGgP7gCWtZWLgy63pLz5l/WfjFuA3RORJkuGe0sCiCyx7XSsPVPUgMASseo75nVbVh19AvE/nYeBzIvKL/LDDL4B7VXVOVRvAfmBxa/67RWQn8ATJDxJrz1vnS+f9f01r+mbgU60y+hpQFJH8U4NQ1btUdbOqbnbSF/oNwjAMwzAMwzAMw3gpOhHzW//j86bPvb5Qftr6H/LDSv0F7xKTDObzDlU99HyDfEpez5SfXuD1s433Xyeo+iERuRp4M7BDRK5ovXV+mUWAIyJLgY8CV6rqTKs5/Pn56dNMW8CWVkXcMAzDMAzDMAzDeIGezR3o+4B3tYZKQkQ6gEeA/6v1/nuBCzVTvli+72xN/xvgodb0SeBcRfKd5y1fBgrnvb4b+CURkVZMl10krwdbMSIiq0juVB9q5bVJRKxWM+mrzlsnEBH3vNeLROTcnd0LxfuOi8T7r4jIclV9TFV/B5gABi+yeBGoAnMi0gu88Snv337e/0db098Ffum8/Ewv3YZhGIZhGIZhGC/AM1agVXUf8HvAAyKyC/hDkorZz4nIbuD9JM9FPxdV4CoR2UvSRPy/tub/T+DficgTQNd5y38fWHuuEzHg/wVcYLeI7Gu9vpA/AywR2UPSbPwOVfVJmlCfIGkm/SfAzvPWuauV9l+3Xh8CPiwiB0ie8f50a/7HgD8Wke38n+Mtfx247WKdiJE8t72nVQaPALsutAGquouk6fZBkqbzDz9lkfbWvvhlkmfPAT4CbG519LafpGMzwzAMwzAMwzAM43mS5HHlH3GmIhVV/VfP474StXrV/oaqrn+ZQ3laInKSZOzoyReaVmrZQu3/tV/B8i3sRVXCs1mcqiRvxhAs8tGqgwQWmTELbxaabdDoiulbO07lO33EDvibKwCkH89T64/pfUypd1n4bUJtUcjKLzY5e02W4lDM3DKL0o2jAFS/2YcVKN5bJxgbbSNbqtM8VsQKICjEUAxxhz2uuWkvj319AwBuBeIbZ9GtbTTbldwZYfYKn1vW7efwXA8nj/ZSOOpQ3VQHYPXCMU7cv4Qoowx+t8mJ2xwKx238diVc3iCqOFh1G21vovXWEwdOTKatQXCsAAphZ0hqxCU9CRLD/JY6cWAjTgxA5/dTzN1aJRrNEqdjvPYG0akcyy8/zcRXBml0C6WjMc2iMHt90sK+uDVDeWlMlI3JnnbInlXCt8/gBw66u0i8rgKHcwTF5HwtnLRY/PbjHBjuI5pMoa6yevUwqsLk3w0ys1bp2CNMbU5+18n3VhBRosfa6TgUMb/YplkCXVumv32eatOjsrUblaRMAYIiFE4qE9cFLFk8wdlHB5BYsJoQbKwQjWYpHrao9ybLdxyIGX9rg3gyhaZj7FyIcyxNUFDiXETmtEuzFNO+X5i5KdluLxXgPFIk9iA9pQy87wTH7l5G7EB6EjLTMfUOi9x4sh3jmy2IwVlVxvuXIpmJmLFrlcIxm+rmOu33pplZp9DnI5KUVRwJKxeMc3THIgonhMoSJSxE2KUm3V9PU+uxCK6fp1FJAZA5nMKbB//GedyHigQFqC8KSJ92aT8UM7vKwq5DdUMDjZPzw3JidNYje8amtjBCsxG5Ix61tQ2Yc1FbyZ5x8NclxyEjaeJMTO/ySUZH25B5l97HYGq9sP66o+zetpy2g8LUtU1kPmkM484L6kLbAZhbBbKyQngqh90QFm4Z5sT+flL9NUr/nPRl0OiwkAjqvdBc2sA5k8JuCHYTohQ0FjWx5h0W3hdTXpB0wzBzaURqwibMKT2Pw9iWJNz8SYtGlxK0xVAIKDyRPEESuyDXzhDsbAcgWlOl8+sZJq6A7IhF48oKoe/AXLINmbM2esU86XsLzK6PcWct2g7B5OVK/kTye26YhXp/BJqUbemwRXWhogJOXQjyStTVJL8/RZiD6JIK2Ufy1HuS/Z2eFBBoPxxw+qdssiMWYRqsEGIH/sf7P8+df/IBylfVYTLZ59rZpLAjTfXqGgu/6DLyWocFV4wwvGMAqwmpGUEtKPxUcq06e7Qbd8YiLCj5kxbzl4TgxWSOedQXBeSOu1Qv8UkPpVAriUtioXTVOBPTBbyjGdoPxsn14z3z1GspGElTOCHYQbL8zDplzaYhDj+6hLAQY3X4DHbPcPJYL8UDDo1uJTsixB6UVyTnh3ox9pxD3Otjj6RQR3GqFu+77T7+/4dei121yY0I8xuayf445hEUFLcqpCeV+eWKtaBOLutz/YJjPHzXZuZuaCCihNVkH3Y94jB9UwOd83DmLXRxnezjWRpditqQGRMsH8qyEXN9AAAgAElEQVTXJsd6POuRHrWpLwroWzjN2OFu+h9SZlfYIODUwJtX8u8Z4eSx5GIigWA1LGJPKR2xmN3UxJ5xSU0L9f4Iu25hNSHMJ2VVOiTMrVIyYxbhFWX8yQzFgTLZvysxcQVkzlpEGciOJMvPL4e+xyKGb7QoHrXITsR4cyFnr3XxFwSkT3s4NbB8qA4m1/U4rXRvs6gOCLELsaukJ4TqoBKWQjp2OExviuh7KDmOJzcKbllo9MTgKP3LJxjf1UvYmaQfZpQoo2g2om1XUraVQaV4HGo3VwgDGx1JE7WHSNVGcxHZox5hVikdbV2j84JEyh/8+l38Px//ILUeIfeaSaZnc1hn0oTdAVJxcGpC0JYcI3apSTTr0bbXIcok1wK1we+M6dopTN7SoLAtQ707KaugIyY1btNYGOBMOWRHhVq/kl09S+5vS4xdBeoolm/RsTb5GhLFQs4LqH2lj/mbatyxbiuf+8brURvCthC35HPD0mMc+P3ka9Xk7TWaNQ971ENd/cE2pyZsJIZwfQXXjVjaOc3+3T/s7iY9blO6dozxg93EqRi7bhHlYvLHHGr9MT2Pw9RGaZ1/0OyIaNvjMLcuwq5aRD1NlnwRhn42xj2ewZsnuWY1kv2RPZiiNpBcz91cgFhKczbFwL02M6ut5BiYFKoDSVmpq+ROW3DjDGFkUa+k6LovxdwKCJc2SO/PEHsgQeu6OqzMrIXiMQjTgltVrvnQdr6xbwPF7WnKy2KspuBWhI1vOAjA0Hw7E/u6iQoRVs2meNRibk1EZtimtizAG3cYuGqEkyd7ku2u2ZQOW/jtJJ8HlzRwRlLEi+tEDYeO7nkaj3ShV8z/4DMzOFIkPSGseNsRhr64gpkNMYN3K8PvCSg+mMapw8TV0Q9uwa35nxOc+v0sANXZDCsWjzE03sHA5z1GX+PQ7IjJDNuEWSVute3MXjKL50TIVzqZXQOZS2bh/naCHKSvniKIbOJYcB8oAdB+qMnJnxE6djrMXtcgrrp0P2qTGwsZeqNNZtSiWVLaDkOtN9nntWUBXY86rP6FAzy67RLibAShkD/pUO9WrACitNK+L1m+vAS6d8VMbrDxB5vYMw7erEVQULLDQnpGmbjJZ9Hf2Qy/1vnBccWSGu7uHLkRZfImn8KONOXLG8i0R3rCwu+McctJYTWX14mbNpmTHo2eCKerQTiRRgshNGwyww715T7ZwymiTOs7zMoaYWDTeX+KyesCrlx1gidPL0zWS8ekR1yabTHalhxYi75sceoNNh17hPJS0GU1SoU66c+2c+bWGLsQoGNpUlNJTIUhZfyaiPwJB29OaXQk1ziJob7c543r97HjTy+j/NYy7oPF5Fq1NEZtpXjYprpQKR2GqSsj3LYG/X+dZvR9DZo1l64HveS4eFMZ3VvEX9Zg4+Jhjn91OeU1AflDLivfeoQD962k0R8gqRj1k7j6HrAZvS7G7Wjg7M0Te0pzsQ+t70TpcRuJoLYyefI1PZQCBb8zQkIhO2JRXRSRO2NTXRhhd/nJNbV1jQAIc5CaAb89KYepjcrJX/3ojlanzRf14zIOtGEYhmEYhmEYhmG8rF6KTsSe0Utx91lEbgU+8ZTZJ1T1theSbmtYqud991lEfgt411Nmf0VVf++FxHWOqi55MdIxDMMwDMMwDMMwLu5lqUC/FFT1bpLOxV40rebb16jq31xkmU3AgKp+6wJx/R7JM+RPt24K+CbJ897/A/h3wEdVdfvziPVXgLtUtfZc1zUMwzAMwzAMwzCemWnCfXFLSHrdvphNwJueZ/qXAajqJlX98jMt/Ax+Bci+wDQMwzAMwzAMwzCMC3jVV6BF5AOtnqh3icgXROSnReQxEXlCRO5pDQuFiNzQ6jX7ydZ7BeDjwPWteb/6NGl7JD2I336uh3AR6RCRf27luVVENl4grh7gi8CVrXWXP+X995zrpVtEPnHe/E+LyHYR2SciH2vN+wgwAHxfRL4vIotF5IiIdLWG6XpQRG55cUrUMAzDMAzDMAzjJ9Orpgn30xGRdcBvkzTDnmyNYa3AFlVVEfkF4D8B/xH4KPBhVX1YRPJAA/gNkibVb3m69FW1KSK/Q9IL9n9o5fmnwBOq+nYReT3weZK71E9dd7yV/w/Sbw1rjYgMkDzPfQUwA3xXRN6uqv8M/JaqTouIDdwrIhtV9U9E5NeA153rjbtV6f40sA3Yr6rfvUAZfRD4IIDd2fbsC9cwDMMwDMMwDOMnzKv9DvTrSTrsmgRQ1WlgIXB3a1zoXwfWtZZ9GPjD1t3cNlUNn2ee1wFfaOV3H9ApIsXnmMaVwP2qOtGK46+B17bee7eI7CQZF3odsPbpElDVzwBFkvGfP3qhjFT1LlXdrKqb7WLuOYZpGIZhGIZhGIbxk+PVXoF+On8KfEpVNwD/FkgDqOrHgV8AMsDDInLJyxfi0xORpSSV4ZtUdSNJB2TpCyybJfmxAODHYsxtwzAMwzAMwzCMV7JXewX6PuBdItIJ0GrCXQKGW+//7LkFRWS5qu5R1U8AjwOXAGWg8Ax5PHWZB4H3ttK8EZhU1fnnGPc24IbWM8w28B7gAZI7ylVgrvXs9hsvEscnSO5c/w7wF88xf8MwDMMwDMMwDOMpXtXPQKvqPhH5PeABEYlImj3fCXxFRGZIKthLW4v/ioi8DoiBfcC3W9ORiOwCPqeqn3yabL4P/IaIPEkyFNWdwGdFZDdQ47xK+nOI+6yI/EYrbQG+qapfBRCRJ4CDwGmSZufn3AV8R0RGWjFcCVyrqpGIvENEfk5V//K5xmIYhmEYhmEYhmEkRFVf7hiMV4jU4oXa918+gjPjYIXgzgvxlcnNc1WhMZcic8Kj0R/hzFvEnhJnFKejQTiZRvMhvfe6pD8wCsDwZBthzaGw36Pep3TuUuaXWUQpJTUtBAVwL5uhfjjpvEwX1gHYNHiGk3+1kp73DnF45yKiXEzuhIPfroS9TajbYCfHbfcjDtO3NGi/J02zTfDbICjEYIHlC1GfT8dDKay3TwLQkalx6PAC0mcdUjNQvqpOHFi46ZBYBW9/FrsBtQUx6iR55E/YZMdjxm8OsCZd7MEaqW15Sscjxq+wyG2cprq7A22151i25RQnHl1EszcgM+QRZpW33bqVf9h7GT1d80zO5ln2/8GRO1zWfHIOgJO3dZG/ZoKpmTzOUBq3LNQWRkhTiPMRPQ85NNqFsDVQWX21T3/fDGN7e7jjlvv5xpn1RLFF+K0u5tZE9DwmBDkhdpOO6eqvLeNuL2AFEHkQpaH32hFOHewFC9RRcicdagsiVq07A8DoPy9m4LaTnPn6EsqXBBAL2Er6tEuzI0Z6GriHsrjl1vEzo8g7J1lYmOXJXctwqhZhISbbX6HwlQJuPWbkeovUpIW0LjupaWVmnaKZiPSIi98VYflC3BmQOZQiKCpBT0DnVheAmXVK9+NQeUeZYF+R7Jgwf3Wd3JMZgi1lct/NM70xxilbZMZbnfLFEKWgOhihhRB3zCPMxiCQmrJxalDvjcmdSXZgeUVEx06LMCegML86gmIAsy6ai0if9mj0hEgkLLwn2ZDhGy3s/hrx6RybrznE0KdWoe+fZHZ7N/7CAGfCxfYh9pLttpdXiI7m8eaEwlDM+Jt8nFNperbHNNotpi6LsesWxWNQ70q2IzULVqDMrlEsX/DmBW8ear3aKn8he/M4jW/3ABBloLKqiTfqog6074PxGwKIhDV/MMn4jX2Ul0JqWggz5/Yh2L6CQr1HaDsWc/YtTZzhFN7qeaJdJXRdmeZEciC2Dc6iKsi325nd0sSadMmMWYRZkAgaPRGaj0ifTDZcFFAI8krU12TtkhH271mERELpoFDvEfzlDQb/3mF+UfL7rhUq05dFeJM2QTGmcMKmurlO7vEM7W8aof7FfuaXCN7lMwBUTpaISwHOhEdYjMgfTdKprG2SPeJR74spHrNodCkSJmXrd8ZYIXQ+KcwvExBou3qMqu/h72tDbejYo9T6kmMk2FImCGzsYxmCxT6WExPNeRSOONQ31yjenwFJypA4KdvSdWMsL02xa2yA5v7SD66BYVZRS7ECIVzgo2GSx+KvCMM3OISdIbnOGtmvFplbmezn2kCM2rDw3pjyL87hP9qZHFetY6y6sklq2MVZP09woIjdEJwrZiiPFvAmbNxKst1hFqKMEjtKcfksqb9rozpgURuISS8qE+8u0VgYQCBIPukWJLs/TWpaWf6Bw5z47Crml0F6SgjT4G+oEYcWGlpkjyT7vLayCTHYmYj2e9JMb1CsplA8AbV+IXYUKxT8ZQ2WDiTX6ZF/WUizI8ZbUEX3F3A3zlIZy9M+MMfsTA6xlZ9es4dv3HclAIObRhga6aS4PU37W4cZOtjHotVjnNnVT5SPcGdt1Ibex5KdMXa1RXpCcOqgVlIO1VVNskc9wpzizQn+ZVVyD+covXUEgGrTY3K0SHGfh1pQHYyJvRjJhVjjKaJSiNRtFl4yllxHGinqu9rp2hVT77RoFoXq4gi7ZhF2hLTvdAgzQpiD+jIfAHfMo3OXMnaN0rtiktHRNgYHpjl9opv8cQe3rMxcHrJkyTgAp/b0IwpRJmbBfcLkRotmZ4zTWWf9wFlqv9bLoZ/PgqtkTiXXUBR6XjvC+IMD1AcDrGxIYVuGeo8SexClY9LjNlarF5jCUMzoDTFOsYmcyoCC3RDitRXkUI7Ig+yoUL0yOScBnJsm8R/qIj2tXPNvt/P1Jy9FGjaajiC0wInJd9aIdiSf/XYTGp1KakawtswQhjb1cgqZd1n0nYiJX6gR7SsSLG2Q35Hk0f1kg6m1aRpdEK2pEo9kWHXXJIc/2EXXmknki1002iz89mQ7oqziVIX8GWV6HSy6Ypix7y0kM67U+gS/Q0GUzt1CbCfrlJfCB3/mbr45up7VpXG+vWMjVs0iTscUBsrUD7dRPArNYnI+efPK6p89yGPHl6DzHqmx5JolsRC2h2SPu+TPKNUFyfJWEyqbGmjdxikEdH4rzcStPpm9GSSC6pLk8zC1pEwYJkHZe/IEBSVsC+l7wGZ2pQUC17xhN/c/up64ELJ40SSn9/Ylx1TZotkRkT+RrO+3K0Fb8vmXPW0TZiE1DeVVEalx+wdxNduVKKV0Lp+m8EcFht7skl86x9L2afZuX4rVFAonknKqLoRme4xTseh/JOLsextYh5Njw11RhieLpKeU6gKQKNl2uwFxCtoPxoxvBrsuuBVBLUhPK40OodETE7cFSSax0Pmoy+xqiDPJeaxujDvlELRFZM845M8oM2uBxbXk8+yJHGEWul9zlut6jvGlx68m310l2JNcf/t++hSHT/bh5prJdX02TefjNvnbz3LqcC/elI1bhtKJiIlNFoUhmLmhgc54ZM4mZVUbDCEV40y5hPmItv0O/o3z1KczSN1GInCqQmYi2e65tSH5Yw6Ny2os653k7LcWUdnYwD2Vwm4KEibfWdwKBK02pWEGmot9lvyNYNdCTrw9jTpJmakFbkXwO2LoSq4jHfelqQwKjf4QKx8go2m8eSE7qswth/TqOZr7Syy8OmmMe/xIH26bj7crR7OoFE7CzMbkGEmP2OSvmWBZ2xTbdqxEs1HyebbLY351hKYjssc9aiuadGx1mb4ixC4EMJImPWHht7e+n8wK/Q/XKf9mmYmpAhoL7ukUTk1ITyXfa9RW3HkLSbKgWUrWdStC39aIaq/N9AaldNii1qc0uyMyXTXch5JupmIn+ZxPnfZQRwlKMV3bLWZXwc0/9QT33n0ZKLQfVGZXJZ+zcSrJQ8LkutboiRj6pV/foaqbeQav9ibchmEYhmEYhmEYhvGieFU34X4xicitJM8Vn++Eqt72LNb9OeCXnzL7YVX98IsVn2EYhmEYhmEYhvHSeskq0CLyiKpe81Kl/0KIyB20xm4WkQ8BNVX9/MXWUdW7gbufT36tZ4//1fPH58fxbNMSkc3AB1T1I88nFsMwDMMwDMMwDOP5eckq0K/UyvNTqeqf/yjyEREheeY8fgFpOKq6Hdj+4kVmGIZhGIZhGIZhPBsv2TPQIlJp/b9RRB4Qka+KyHER+biIvFdEtonIHhFZ3lrup0XkMRF5QkTuaQ3ThIh0i8j3RGSfiHxGRIZEpKv13vta6TwpIv+rNeTTheL5ORE5LCLbgGvPm3+niHy0NX2/iHxSRLaLyAERuVJE/lFEjojIf3uG7f01Ednb+vuV1rwlInJIRD4P7AUGLxJHt4j8g4g83vq79rz4viAiDwNfaJXnN85777OtuI+LyEfOS++/tPJ+SES+dG4bDcMwDMMwDMMwjOfnR9WJ2KXAh4A1wPuBVap6FfAZ4JdayzwEbFHVy4C/Bf5Ta/7vAvep6jrg74FFACKyBridZKimTUBEa/zlpxKRfuBjJBXW64C1F4m12ep97c+BrwIfBtYDd5wbT/pp0r8C+DngamAL8Isiclnr7ZXAn7Xib14kjj8GPqmqVwLvaJXNOWuBm1X1PU+T/SXArcBVwO+KiCsi59K4lGSs6Av2JiciH2z9YLA9qlQvtJhhGIZhGIZhGMZPvB9VJ2KPq+pZABE5Bny3NX8P8LrW9ELgy63Krge0OsjnOuA2AFX9Tmv8ZoCbgCuAx5PW0WSA8QvkfzVwv6pOtGL4MrDqAst+7bzY9p0X93FgEJh6mnWuA/5JVautZf8RuL6V1pCqbn0WcdwMrG1tC0BRRPLnYlLV+gXi/aaq+oAvIuNAL0kF/auq2gAaIvL1C6yLqt5FMoY0qcULzZhmhmEYhmEYhmEYF/CjqkD7503H572Oz4vhT4E/VNWviciNwJ3PkKYAf6Wqv/kixslTYntq3M+nvJ7tbV2L5A584/yZrQr1xdI4P8YI07O6YRiGYRiGYRjGS+KVNA50CRhuTf/sefMfBt4NICK3AO2t+fcC7xSRntZ7HSKy+AJpPwbcICKdIuIC73qRY38QeLuIZEUkR3LH/MHnGMd3+WFzdkRk0wuI52Hgp0Uk3bqL/ZYXkJZhGIZhGIZhGIbBK6sCfSfwFRHZAUyeN/9jwC0ispekwjkKlFV1P/DbwHdFZDfwPaD/6RJuNcO+E3iUpHJ54MUMXFV3Ap8DtpFUkj+jqk88xzg+AmwWkd0isp/kmfHnG8/jJM3HdwPfJmmOPvd80zMMwzAMwzAMwzCSYZVe7hguSkRSQKSqoYi8Bvh0q9Mw4yJEJK+qFRHJAv8CfLBV0b+g1JKFuuq2/0izHUpXjTN2soM7rn0IgM9tuxZJRTjDKTLjQuyA36GkJ4XyipB0Vx13a4GgAE4lSa86GFM8ZlHvUbxZwe9QYk+JXUgNVCl+Lc/MGkjNJs99Z88q5cWCv7pOZl8G24f6VVWisxnUVdKjNo3VDdxUSOlbOQBq/UJzU4XUzjxyzQzh9nbyZ5Tymys0pjJYuYD2B9LM35y0gi/ek2PqNQHFPR5WALPrQuyaReG4xeDtxzn48FI69ilj18ZIlMSV7q/iPFIkzEBxKGZ6rRC0R+SPO1SWhzizNk5diNLJueSWhTCrqAM3vG43925bD8WAzcuH2HPPatx5GHhgjslNRaqDSR6WD7YPdgMa3bD076c4+KE2nK4G9oEcfleEXbOICskoaO6MRTDo455J4c0I73z//Xzp0BXEx/JIBN6cYIXQ6ExiCgZ9xFK6704xt8wiyijx4jrxdAqnq46zN096UonSQq0/WSc9KfhXVMg8mqf9zSOcmWgnqjmIF9HbM8dsJYu1s4AVJPu7eCqm9z8c48A9K7ECaKyrk92VIT2pzC+H7IgQZSDMgrb6y488JVrUAIW44ZBua5C9J09lEGIPUtNCbWGEXU1+6/PmBH99jci36XzYQyIQhfRMRPaXhzn1/cVICH5XjDufrGNtnKNeSZHbm6bRpaSnBL9NCfqbdD3o4VWU8qBFUEhiyowqzTbB3jKD+402ar1Cai45Vrq32jRLwvzKiK5l01Qf7gYgvLSCtz2PN6dUb66gh/MEi3y04tCz1aZ22xzVMwW8mSSm9ivHaU/XObp1Md2XjTG6v4f2fcLcSiium6LxSBd+h2L7kJppnR+jMeOvUdxZi6AU07VsGutLnUxcDt2XTBL9fTdTl8Ws+cQZAA78tz7Ejol9G6vs0LlqinItDXsLZEeV6c0h/ffazFxi0egLk+tGU5D2JqlDGXLDytRlMZqKyZ50qS0LcKccwnxMz9YkpqmNggpYIdi+kB1RZq71cU+nCIoxucEytRPF5IEbIDNqUVvjIzNuss8zMYWjDvUexakLfmdE/oSN36646+YB8I8WcSpCxzWjTOzsxZsTCjeOYf1lN2NXQ+G4ReGtZxnd0Zcchydg6soQLMU762I3hPrCEKtuEWdj0qMO0eoq+VyD0p8VAZhd4RJmIMiDW4YoDfXlPjQtrGyIznjkT9pULk2esBFb6e4oI6KMjrRjzTtYvQ2iwKK4I02tX8mtnaH05wWGb0yeqlFbcaoWEoPfE5EZtikdixm9XpG2JjrnkT9uU+tLzj9vPrkWymiKuKeJNmwGFk0xerCH/AmL6tU1VvWPc3TrYvouHwXg7BN99OxUygsteO0MtVoKHU+jrmJXLaI+H2ssxcDGZPmx7X0ExZjMiI1a0FjVwHJjstuzhFlodMcsWjNKrMLMvcnv0+kJZe7WKulteYICNBYGlPa4zG0IkFQEMx52Q4j6/B+UVVxxKR50qF5VQ0fT9GyHRodFZZHSvVM5e0tIrq2OfzTZH2EpxJlzyA8JsQflJTGpgSrWzgK1pQHtOx0qi6F7Z3I9bLRbZH5mjPJ3+nBummR+XydqQ5yN6d5qMXWpkh+ymL8y2X+lbWmIk+tQlE6uvd276kyuy9AsQb0vpmcbjF+d7DOAG16/m21fupR6rxK7ihUKQSnCnbN/8D+2oe1gcqzPrQanKvgdMV0rpujLlznw2FIkAgSCUkT/AxaRJ0xuSvZ5btkc8dZ2qkuS8zF/3OFDd3ydT+27keaZHH2Pwtk3BXTf5wEwvZ6knBWK29NUFscs3DjK5H0DqIA6kJqBWm8SL4CzaZZ63SO3LUtlUYzaybnrloXmJXXcIxkafSEdTyQX6Zm1SmbUAgF/fQ05naFjH0xtVDp3CxNXxnTstpjaEpA9lsQVbKzQ9u0cM2sgyihuRbB8oe1IzMxtVTwvpFpJU3ooDUDt9RWsPQXUBm8Wypt8sBRt2NhzDpu2HGHH3mXgxrRvd5NjJCuUVwdIJqKwI01laUxcCli1aIyR7ywiNaNUBgW79VCcN598tlo+pGYUefMU02fayPVWqc2nye1LUV0Y0709uQ5DcmxICEFPgFQdEGXlumHG/3ERbkWZ3qCkpixqS5MPQbtsE3c3yRfr1A+3Efc3KDyeoTKoRIWItj0OubGI4ZuT/S2+RWbUouNgxPDbQmTaJbOkTG0+jTeUIlpZwzmUpTHY5JxLV55m7+NLsRbWSO3ME7kgl89hP1zCb1eiZQ22LD3Boc+sSY7DFWAFyfeBMKMEPQGXrjxNPXQJ1WLsewuprm6CKN6w94N8mgMBhY4q0WPtpGaVoCBUlgc4hQBvT5ba4h8eI1FKaBYgKCqiEPQ2yRxLEbsQpZJtLQxBbixmbHNyPkkMzZ6Qtt0us+tDCocd/KsrFO7JMbccws4QZ8ohyibneOmQTfX6Ct6TebLXTzBxqp3OnTZBTqj3KkFXyOLFE0x/ZwBt3RpMTyu1XqG2yqejq8y6rlF2fnU96Qml0SVEm8tkUk1yf9kGwJlblL4HLepdFvVrK8ihHF27Y2ZW2dQWhRQPOqx71wEOfuESikPJOTq6xSVYXid1KEOzLcYaqBNOJcd1asKmsbhJR/c80+PJtS171CN33QTTBzqJMwoKf/6Gz/Lvt70X52iG3DC4b5tg7rEeYicpO+uSCkHTwTqdxmqCtbZMdKhAMOizqG+a4Z39tB+AiS0RAAuWTjJ8vIvsaYfOG89y5lAP0tGk4740tV6h3h+xfN0Ik/84CIDfDs22mL6tSpC1KC9Kvs92Pxkz8lqwOpt0fidNZTC5Hp/jVGDwzSc5cHQBmSGXKK1ESxt4BzPYl88S7mpLHn4FgktqlO7PoG+ZZr6cJZ5MofmQ4l6PMAP508rUG+ukUgHe90vJOZ6GZrvSftkEtXt7aF5dZlXvBCOfX0p1UGj0B3htPs1WeXdvs2m8fZZgZztqQ2FI+b8/+jU+8eCbKO53qV1dg9MZMuNCZUPy+aRNi8VfhfHLXIK84tSEwx/7tR2tzqQv6sfhedlFwN+JiEXSi/Uvvszx/Li4S0TWAmmSZ8UvWnk2DMMwDMMwDMMwLu4VX4FW1SPAZc+4YIuIPAaknjL7/aq654XG0hrG6t6neesmVX263rlfNqr6b85Ni8hJEfkLVZ282DqGYRiGYRiGYRjGhb3iK9DPlape/RKmPQWY5uOGYRiGYRiGYRg/gV5JnYgZT0NE3ici20TkSRH5XyLyYRH5g/Pev0NEPtWa/mcR2SEi+0Tkgy9f1IZhGIZhGIZhGK8+pgL9CiYia4DbgWtbHadFQIVkmKxzbgf+tjX986p6BbAZ+EiryblhGIZhGIZhGIbxInjVNeF+lbkJuAJ4XEQAMsA4cFxEtgBHgEtIhsSCpNJ8rnI9CKwELvpsdutO9QcB7M62Fzt+wzAMwzAMwzCMVw1TgX5lE5IetH/z/5gp8vPAu4GDwD+pqorIjcDNwGtUtSYi95P0wH1RqnoXcBckw1i9uOEbhmEYhmEYhmG8epgm3K9s9wLvFJEeABHpEJHFwD8BbwPeww+bb5eAmVbl+RJgy8sRsGEYhmEYhmEYxquVqUC/gqnqfuC3ge+KyG7ge0C/qs4AB4DFqrqttfh3AEdEDgAfB7a+HDEbhmEYhmEYhmG8Wpkm3K9wqvpl4MtPM/8tT3ntA2+8QBpLXpLgDMMwDMMwDMMwfoLYd95558sdg5sq5HwAACAASURBVPEK8d8/8ck7vTs2EdoWwdEC11+/j6/ffyW7jy/GrtpkTrtILNQWRKSnLBqrfQLHQjMxcjpN5/6Y1AzEjmAF4K/wiZY2iGsufn9IetxGPRh4MEYn08ytBBFwNs3BYINVNwzR/GY75T6bZlvM/2bvzqM2ue4Cv39/t/Z6tnd/3357X9Utdau1tDbLMvKGsQEPsZkwwYGBMHgOmYF/mCRzkoG0T+BMMjDhDAxhxpDEBCbMCTFgxjPYBmxjybZktdZWd6v3/d2X532Wemq9N388r6FxBJaxbAnpfs6p89Ryq+rWU/VU1e/c+9zbvCDIik/jKvhtobdbE1712X7HIjfdOsmswewZULRDVKoY5AGjL0H7uxLyxGP7jlU6vYjCcXHnAtSyT/fuDOVqTOaCCDsfuElRN/SrEDNa0mvH8HCHPPXwOg6qEMqaocBF+5BOCMV0geo5VPsH1F8IKGvgJkJtDoI2xIsG591rJK7DpblpvNGU6PmY9nMTYED7sPhWj6IpaA+0B15P0D4YD0YuaK59b8TI3nWS+QZeR3HsO84yd32C5nlFuKwIVyC8e4NiLsZ4Qn8aFldbxNt6NB4P6e6EdEqjtg1grEC3A1THpfbOZZwna2RjULoCgLMQULQMrYuw+paC+gUXryuUMTjzPtGyYTVpIG0Xd2vCxCcj7n3nOa5+dhfNqxrtDM+3duH6REg1UULfxaQOckePPA2IF8DvQX8bZDMV/+W7v8DhQ1fojytW5kcwhUP9okc1m9OPPJQWqppmy2MVnT2KYFXhpELjmqa3R9McGcC1CDeFzl7QjkPxZAsQvO9YJcGljKBsaB45cAE/LllMmkRLiv72CicTth9aZG2jSd4UBjMa7Ru0b0j2lKiBQ7kako1D8xJk7+1QrYXko0K4DF5XkS3UyA4nVFMF5mZEdWBAlfmUA5/mFXA6HtP3LrKyXSiu1nnogbNcW5hAe1BcauD9QZ34e5eZjru0XZ/gbEC4CqP3rrFxs0W0JBR3JsiKj3GgfV+OUy/xb3qUW3MqFM5dPQbKIbneABR+W5HNtujvbZHVFDOfc5HUxT26QWcjpvmnMVUo5C2hHKlIDhWULY2z7qFyRe2monHapXOwIm8omhcV6faKomZQqUNV10i9pD+h6G8DdyD4G0JtHqQUdCDonSll6YIDej6idXCNHb+QMf5sSjYZUr/oUDQFtqfs/i1DOuaS7C1onVK4PYXz9jXy1QjnUgg3Q4wCLxGiP45IxxX6aJeNhSbRnKK3W1PUYaNbw+0LosHvgNd2UKlDPqYJb9+g9sUY0Qq3q8gmNPv+Tcb8lhbdnQ6d3Ypkd4nXdjAOJDtL0ILTc8AIwTUfJ1OoEo6+5SKzYxvcXByjvxGhnmiS14TJZ4T8YEa1ElHGYLanaCP0vYhtn89pXayIlxTt2w2yY8D453027stI6y5OIkjHZeSMoH3BHQheXyhjQ2UUU18RJt62xEYa0t2Iia67FPd3KVcillebOLlCxjOKyqGYiynqiv7OCnUupvGiS3Y4JTofkI9qjFaYwNDNAzr9CFM5OANFvivHbMmpn4gg8YhWDJ3bS5xUsV4G9G40//ze5WTCYIsmj4WyoZFKkc5UxFc8TOEQrihq96xiTjdx2y5TB1ZJrjfw+sL73/kUL65uobcNtCOUTU20oJCBy/QdK2zcHO4nXHQo9qR4Sx697ZranMIsB5RH+kRnQoIN6O3U9LcKve3CYIuhu1pDtMKbTUh6EWY8x1v0cBMIV4XuIwN07oAW0lGDFIpwzaBdIVrV9Gc9Zj5+geW/H2Fyh8GdGbp00M0KXdNcf3GWiVMVG/sFMRAuKypPcDII1hzyCY1ulFC4FHUhn6pw+woBqvM1FtZGiBcEJxfcRPDXFL2d0LkzZ+SkS7gmpP2Iwa6cidkN9Et10inNl67uZ3SqS+4J3nUfd8PF7xhEw2BS8KZTytSDcnj9yhcb8PY2WS8kuLNNTwdUDYP2oQoN3ukIXbgYJbTOg/YVqhTS2ZLd/w6W7wMMDHaXDLZVuB2X+nXoHKpww5ISRdZS3PPQeVZPj1PekRBc9gmWXB76e8+y4+ACF09v5+EPPs9VGkQvBQxmKzCCkwq9poNfLxhv9dEn64iGrPLJthdIqvA7QuErJHGY/rLCuIpr6QjRvEvZ0BQ1RTYG+Yihftml3JZTf8klmTVMbN1A/8YU2hU6e6BxHTqHSooRjZM4DHYWqIFDstUwEAd/wSN4MSQdN+QTmtpVl407NFVsqGKD8Q1jB1eRZ5tUkQGE9bkmXiJ4CfS3G8qWwRtNcYIKZySnWo7Icg8dav7u3U9z6sY2yoZGZYoqgo39EC47uL3hsQ5mNHnLIbrm4vWEsYPrJKWLs+ijVj3iRYNKXMqZAnEMgz+ZIrhvHW0UZdenaBmKvg9GUezK0LlD4Qvu4R7OHX3UeE6ShOidKffddYHFQYO56+Ostut0L44Q3bPO2O9FOA90caYy3KmUsU/5qI7H/vuv035hHDGCkxm8DQc6HvGCIZ2CdNKQThlq14XBQ31aT/m4AyE6soH3bERtweAlQn93Re2mYuUeKFsaHRk+9M7HeWFlltJ10M2SYMklx6XyFDoARnOk6zJ6WogWhaIl7L37JmuXR+n1InAhviFMPtNj5V2G1nMB+kSdvCUk26rh91IXolXB6bgk3YhqTJNeaOCU0D2gqTZ8ioWYjdsM3T1Qu+6iPaGzr0IiTZW79O7NURseYy8Mr6n1yCV4IWThrUJnr6JsVkjXQ+3r4dwM8a/5w99+K8e/7qG3Z+QXmoTzLt6ag9+FdYnYcWSe6qkWRgmfKfcjYohP+gxmhP56DIDc1kMmctTJBkVLo7oO2oci8REt+FMpG2fG+dH3fZaTL+wh3VGCa+jN1/EmUrwbPt3lBs3b13A8zdinFUtvAWoVG4OIwbQmna0Yf1ahXQVaQCCdgHBNWLsTnMmM8IUY0ZBsMzjZ8L0xH9E4mbBSd3FvhEyc1DRuasJH2jhP1dgYcXE7DrV5g98DPfDJxmEQCXrgMrN7leKlJtm4IZ8p6W/XGKMo10O8jsI4UNbBGQjMZqTdEO9qwMbpUZItsP2tN8hdIfrjBum+AvE1uvDI2yF3PHqB9slx8qZwcaxFb76B1xV06qI9qN+3ijrRxF92yScquttcii0FwZaEcFufxd/5wvzx48c/+vViJluF27Isy7Isy7Isy7JeARtA/y0jIrtE5MXN8WMi8suvdZ4sy7Isy7Isy7LeDOx/oP8WM8acAE681vmwLMuyLMuyLMt6M7Al0K8jm6XLZ0Tk10XklIh8RkQiEblXRJ4XkeeBf3RL+kdF5JOb48dF5DdF5DERuSoiHxCRfyEiJ0XkUyLivWYHZlmWZVmWZVmW9QZgA+jXn/3Arxpj7gDawAeB/xP4SWPM0a+z7l7gHcD7gd8GPmeMOQIMgO/+1mXZsizLsizLsizrjc8G0K8/l40xz22OPw3sAkaMMV/YnPdbf826f2SMKYCTgMOwb2g2p3e93Aoi8mEROSEiJ8qk/83m3bIsy7Isy7Is6w3LBtCvP9kt4xUw8Y2ua4zRQGGMMZvzNX/F/92NMR81xhwzxhxz49rfJL+WZVmWZVmWZVlvCjaAfv1rA20Reevm9Idey8xYlmVZlmVZlmW9WdkA+m+HHwV+VUSeA+S1zoxlWZZlWZZlWdabke3G6nXEGHMFOHzL9C/esvjWBsT+283lnwc+vzl+/Gu2Vb9l/C8tsyzLsizLsizLsr5xzvHjx1/rPFivEz/3v/7S8e3xI2TjYLanXF0dY3Jnm3gyQZ6v099VMXYSnIFDWQN/2aXcnTIy3iOaSeht1Nl4dIDOXco6lDEE5yOKUc3u39ds+7FLLF0fI284dPdrRk8JvYMF+kZMuRZS/f44y/cogl1dgpMx2ZiQThlAGMyA21OoApJJDVdinFRheh7hkoPXBycTiroQXvBxb+8xWevTOzFBdNc6acugJwvC0xHSc9EuFAcH9J+eIG+HBAc6bHRitAeNz8bkDaGKDdo31F/0ie9fxTlZI92fQ6VQowVjI33WY4+tty1TnWygPcG4QtEU2jWX4FqAmcxRCnJx+cAHH+fSl3dQ1oXGZSFvQdXQGN8w+ZxBu4oyGp6LdBKS1GdiR5turLi+PA6jBdL1qEIoGkJjd4d+rNjzvydclxnIHJzzEdoVBjtLRl90oO3jLPo4iULvGZC/MEpy3wDTqkAZJHGoxgsoFIO7cuqtAdyIQIEqQfub+3pghV37F+l+doZ0XDidTTLxjLD4XTmzDywQHeqw2mlStipqz8ZkkwYmM6Z/NyRYB+0IG7cx3G6uePH0Lk6e3cVyvwEKpnes0S5DKiXULnkUTYNxoX0QWmcdensryqbBX1Psevgmg9LDXIwx71+lP4ioQujdnVF4iul/59Kb8dHhsAmAxSqm+P0p/K6iu6+i9ZKD1xMWaiH+skN2Z0JwxSe4s403ltH40xrdgyV6rMDZcBl5zwLt0+NgBAy4iRCvaKpAyD0H+i633X2N5bUm048LRazQrtA7UKC/0qL1jEtvp+HayjhTXxHiBcjGhPU7DZ1OjPn9cTa2Cf0dmuJQSmkcBv0AEHJfIYWgPTCVonbOp7+3gNyhrBzUsw20dqjGSsL9HfR8xMzjHeKFjP62iM5uULmQ5j5O20O9pY2ei8jGNPE1l6nHFb0pZ1itReC2d1yic3KUwXaNDgxGhCoyjJz0GGwrue/wJfRvT1H6Dm5PMfulgrU7hcHBHNV16e8rMD2f73noGa68sBW/K3Qcn/VDMWt3RZhjXXq7NN6CT97UZFGIk0E6pYkWFXlT6FU+++65zrypUYxqnK0DZMln7YjBOII7llFmLlocypYmmneQSihGNVVkkELh9wxj3zVPcqnJxM42y7pGuCYULcPIWWH1SMh7v/sprj6zDScV3K5DWTNUIUTbe3jnQ9KZCr+tSLeVxDcd0glDMDMgrTw2Lo/QuOAy8b03aC83CN66RvXsKNozNC8L4WWXIgvwEsjrDum4w/K7CoxA/GJI+7Cmdt5HtFBFUMUGqRT97Zp8uiQfHx5LNJPQnnK5a+d1bpyaRdcq3LZLWhPGZjcwF+pIJSS9kHQtopwoia87lLFQ7Mgg8Zj4ssNgSpBSqJoaFZeopQDpOwTrClUJZQh7di4x70eUsaHyFVVkGHteUR7IqAqHqqGp6praNYV7Z4/gmRi0omxWqMRB9PA4whUhPNAlaYKZzBk8P4ZUYHzhhXySmS1t/D9rkI1CNVoiiUtvX0nnepNqtELHGn/NQRcutTloXoG1+0rKpmb88wHZmNDbYTAOOKlCKqF+QzH14CLr/RrZSoQAs3+iCFdh7TszmqccamddkkmFZIqJpxX5d3SHx7YaEq4Zxk71ufF3tlAYByZy4mdj8plyWOdLwN1w0K5DuCZkEwZnIOx4+AYrneE97INvf4JLyRgjX/QI1w3j71ikfK5BNm6IloTB3pwyVBS7UrwFj3DVMJiGxjmXjQOGdAKqWDO9cx39BxMMpiHa2+F/eOCT/Ken7+X2fTe5Xo6Qbi3p7TL0dhlUodBtn4mvOIgWxAjJFoifCKnNGdphSDyvaN61Rvy5mHhR6LwlRceasqFRiUvRNKAgXHTo7HVpXBSKukIKhWQOzkCozRukcigqD39D0bwIS5cm6Ow1NJ4NqCKhe/+Ai5dmuXRzGlOvuHx+FlOrcHcnFKnHbb+yxNLDDaqapvWnEf2lBsYTdCBoVzAzOWbgEK6AKhXuQEjf2SWpC95IRuYrfvihL3HlT3YRtAW/I0w/2Sd9tKBajpBS0TE+6T0pA98jWlQYR5Dcwe06uClUviAl6ADiyYR84FMeHKAHLk7PoYpg+gno7jbD8+4aiit1jBKK8ZLRnW1SV5HFw9+qM5ZD10PiCoxQrkaYWoVkDqPPOzy/up2ybjhw+AbdCyOEK4IOQB3swVSOtyOh8YWIcAXW765473tOcOLpA5hAI30X40AVCsn2kuCmj9N26e8qybRDmblUzQo1UlA/FbDzEytUNMjrir64VE+Nkl2pk63EqAIqUdy8OkGlBDVw2HlgkeCP6qzVQvy2op/GpHXIcxe15tHda7jZbyKZg5vAYFpIbx+gK4fanJCOC15PcFLBOAJtn/6xlG2fyNmgxeCtfUafVDh/f5nuWsxgqyFacFCZ4PYVzyRb2Ld9mfT5FipxiVYNgykopgskU4xs6+BPpnSIyCbA7QvtS6OUdYPeljE122a5FtLZE6K6LvE8rNxXAUI8r/A3FF5fcFJDuA69XZqu8SiNSxUO74dOJlShIVxxcPsKvzP8rQerinseOU/+BxPo1Ceb1OR1AYGte1boXG0x8aKmcQ16WxXGN5SFQzla0Tin0IcTqrmYbEuJ6XiYqYz6WRd3AH7XoB/ost6pkdaFqqF5x21nOXd9C1qGz7JyVwo9l/jFAPdaQH9HhdvMaTzrkTfBHQzz4k2llLHh+dVZkjFB+i6SK9xEEW5JGIxDdMljw4SUnqAHw3OdjYIKK2Y/4dM8p+hudyiahngJtAf9HRp3oNAuqDWP/EDK2DOKzh4QLRgXECGfqnCvBzipsHZU059xSDyFrPsEhzqMfC5g6WHNYNagfdAu1F/yKUIh+FydwQwE64qyBuPPOAym4eG7zjF3cRLjwu7/e45sqs76iEfjokNvp+bh95xk/oUZVuoe6mSD7r6Kma3r1GsZyVINvyfc6Iyi7ujCUsAqIdFNl6JhMB44GfS7w3fGMob/7l2f5IlTB2mdduiOKRqfrjH/3Gfmjx8//tGvFzPZKtyWZVmWZVmWZVmW9QrYAPp1TES+T0Ruv2X68yJy7LXMk2VZlmVZlmVZ1puVDaBf374PuP3rpnoFRMT+392yLMuyLMuyLOubYAPobzMR+RkROSsij4vI74jIPxGRHxeRp0TkeRH5uIjEIvIW4P3AL4jIcyKyd3MTf1dEviIi50Tkkc1tOiLyC5vbeEFE/uHm/EdF5DER+UPg9GtzxJZlWZZlWZZlWW8MtlTy20hE7gM+yLBFbQ94Bnga+D1jzK9vpvk54MeMMb+yGfh+0hjz/24uA3CNMfeLyPuA/xF4F/BjwIYx5j4RCYAvishnNnd7D3DYGHP5r8jTh4EPA7it0W/FYVuWZVmWZVmWZb0h2AD62+th4BPGmBRIReQ/bM4/vBk4jwB14NN/zTZ+b/PzaWDX5vh3AneKyPdvTreA/UAOfOWvCp4BjDEfBT4KEM5uN9/wEVmWZVmWZVmWZb1J2AD69eFjwPcZY54XkR8BHv1r0mabnxV/cf4E+EljzF8KvEXkUaD/ambUsizLsizLsizrzcr+B/rb64vA94pIKCJ14Hs25zeAeRHxgA/dkr67uezr+TTwE5vrIyIHRKT2KubbsizLsizLsizrTc+WQH8bGWOe2vxf8wvAInAS2AB+BngSWN78/GrQ/O+BXxeRnwK+//+/xT/3Gwyrcz8jwz9KLzNswduyLMuyLMuyLMt6ldgA+tvvF40xx0UkBr4APG2MeQb4ta9NaIz5In+5G6tHb1m2wuZ/oI0xGvjvN4dbfX5zsCzLsizLsizLsr5JzvHjx1/rPLypfOQjH/nYRz7ykZ8B/hHwO8aY332t8/RVP/+Lv3Rc/fAxMML0H7sMah799ZhkJaY4kKIFatccBjNCfkdC/bRLicvfe+AJnri+m6p0Gf2KR7xkCFeh8lzyEY3xDe2jhoXFMYJlBwTKGMqa0NrTJg0FmiWdGYWua/xTMfJQm/qTAW4iFE3IRzTaA1UJ/8Vbvsyp53ajSsi2F5S+EKwLzWuawZRQf9ciawstJNR0yhDndI1sRKMrRe2Ky9g7Fugu1XGXPcq6wd9QJLEibmTo+Yhk1iBacBKFyoTySJ9KO7hXArR2qAKD0YJxQV2NqF5o0L1vgK5cyjo4qRAf2qBYCSlDg3c1xE0Uz/ZmUQMHrwf5OztU7QCVCyoXvK7QvsPgdYWiKahCqGqG4moN1XWZObBC/vwog70ZxXiFZA7OE3WShsNgKkYeaJMGQv1gG30lpn5ZsX5Ugxa0D/WbEF7xSO/v06wP0EbhXIiJbyq2HFsk8wXvuTq1PV02RhXFlpLGSZexswVVoOhkMatXRimP9MmVw+yeFdaTBloU+bMt+heb+B3hH7//Uzw+d4BgRRHu6ZEkMV7fsHFAGDkHRV2QAz0YL2C8ID4ZMn1skbUnZmhcEbY+NM9iUaf1kqKMBCdTjJ3VpGMKJxWKBiyttUjbEVII4Zcj8hGh2pHSeDoi25OTviXDHc+Ino4JVhTu3oSDD1/lYjVGbbbLD37nYzyxuIeRkw6dQxXNZwO0D33XI+8FDHZWeMseWhTRkqJ/o0EVgQ41TiaoShiMCyjQHkglvPXQWa4+vou1+yqiOYds3DD2rCKdFjYOVYycckm3VFSeSzYm1OYM6SgEMwnV4ZRiKWb2s0LvNoPzVJPaTegeLJnc1oYzNdxUMIf6lLmHv+7gdRRsychiQQcG1XOoPx6hA2HpwYC1IwFVzTByTijqQj5TUrvmYG5E9A9m+BMp6ZghGfFAQdWoMIFhsd2keV5RHE1pPBWSj4LXUUycKtk4IKSfmqT3/h4sBACs3aHwuormGYcqFNiRovsuZ1em0T6oTFG7rph6tqR5ReOfD0kOlgRXPfzbeqSjhlK7qFQxfqrC60P3YMXqYovmTI+glqNfaDHYnRPd9BADVTsgXHCYPpHTeN8K2YUGrYeX6CUhuAaVKfL7+lR/Mo7SwgoRjYsO+cjwPlc+1CUVl6X/tI3OoYpiRDN2Usg2OyHIMo9tnyvozXpMPK8ZeccynZUGrYvQumcNV2nWJGDkhEvwSZ/1Iw7ZckxtXtjzrissLY2St4RgDbJRQ7QKqoIKl6pV4a07bLt/jqW0zuTdiyTzdbydfcLdPZp/HDHzpZKxFw29rR7OlRC3r7h2dQo3EcxMgZnJYDUgGQT4u7uwGOJ1BDcRtCgmTlZsHILokk/QNqzfLjiZULQM/9lDJzi3Ng31ChoVo19xMK4ghaI/AnIlZuSMItiAeE6RjQu1Mx4YB7fn4HYdBKFYjqi/fYmNKkCiChk4iBGCPV1YCOkv19E9D9P2KWYKJHVQhaC1optEBMsO8VtXSfoB2z5T0t3m4exIhufP12Qtg4znlNqjjBRjLwi9/ZpkGqaPLpFdauAmimJ0+HxxE8WKHxDddKnNCdm4IR1X9B9IQSA+77J2ePhbQSA9kuK6FZxoES8bkhnF/LsVRSy4WxO80zWMA+GiQxkIkilAqGIwMvw+y5rh0IHr6IZmvQg5NbeVMnNRfZeiLiybmHxfBrWKdESon/PJZgvCCyF+Dzr7oHEZejsgaCvcZPjM0VM5yc6KMvMIn434UmMW56WYZFKT4BJd9gmXHfw1hyoEJ4dkFpxM6O8q0Y2KsZPC2u0OVVPj9RRJJ8KIUNYEZ9WjchRUQuOa0DtYcPDodVbmRmlcNaw9VCCtAq0VxjX46w5lJKgCdjx6ndXAx130QcDrCv3tBicXnLaHdkFKQUYKnHWPf/roJ/n8V45S29aj50+SjRsYKSjFI9iAkQsF0apm9QFNcCVg+oRm7IUNFj4AeR28szH+qoN3w6eYLXj+yk7SSU06pbnnnWc542+hWgpJpwzGgZ23L9Du1Igv+VQBlDUYfXCRcHufjUHM2IvCYIbhc/dKSD5TEL4UMnZ0hcZ0j8RXdCZd4pk+Xq0gfC7GiJDtzHHWPZzRHM7WiecUBmHL/lXK2BB8uYE355HNljhrHo2LCuMK9besUF2o06475DGE8y6iharnY1Z9irWQ3m0FrbNC6bvc+PJWdv37RbpbRxEtxHet0RWfcNFFGDZ2E99Q7HngBu2z4+h6xehon+pKzGAmYu2eCuMZcBi+q0RgHECB11aUTY235hLt69B/bIq1+wrGnnXIxoV0f8aWqTb1OKO/2CBaFn7gex/n2bkdhKswckFT3DvAvRAxer6gt80hONLGmU7pjwiq7+Ateizd71I0Dc0TPosPQ/9mAxSoQlGMaFQ+fHZO7l9l6YuzRMsGYXht1m5A6/5V5NkGyYwmu9DC2d1DjeTEp33896zQ+o8hGzuFkZEETjQxjhAtCbVFzeBYhrPgEy8a3BS8Pmzsh+6+injOpZouqIxi5x8VFHWXcBmywymjTzkEbUMVDt+XOkdy5vpNeqMuosHZ3UctBJQNQxEbuBax8mhO96DGXXfxVxW33X+NQinaQYjEFfFLAQYFsymOY+iPKgZbDGWokMmcfC0kWHaQmYwL57Yy/rRLcX8PWQooneH7zmCbJpswGF/jLARk41BtyShjiG84ODsHmDMNypEKb85HtKBKYfQMrI+5IKD6LlKBdF2SXRV50+B2HSpRZCMOyRZhsK0ivuGgfSEdF7Q7fCctbkuh7+IuedTmh/fJ5mUI2jC4PUN1Xcz2lNoZF5U7uAOBnktxx4Afuu0pHst3E6w6uL3h8ZRbM/xFd/i+dSSntWODHgFSCKKH18fiqSmyCU3ZMDQWQ+bfLkQ3XXp7SqiXLJc1yrWQ3bfPs0jE+FMuq9MO/UHA9k9oVKkYTAjRiyFFHVoH1unWFFNfckgeTKhSD2drgnctwMmEyQNrnL6ynWRfwcjTPlUsLD356fnjx49/9OvFTLYE+tvMGPODr3UeLMuyLMuyLMuyrG+cbUTMsizLsizLsizLsl4BG0C/hkTEea3zYFmWZVmWZVmWZb0yNoD+FhKRPxCRp0XklIh8eHNeT0T+pYg8DzwkIu8TkZc20/2yiHxyM91xEflNEXlMRK6KyAdE5F+IyEkR+dQtXVb9rIg8JSIvishHZcjdnPfoZpp/LiI//1p9D5ZlWZZlWZZlWW8ENoD+1vqvjDH3AseAnxKRcaAGPGmMOQqcAP4t8N7NdJNfs/5e4B3A+4HfBj5njDkCPT/DOQAAIABJREFUDIDv3kzzr40x9xljDgMR8D3GmBL4EeDXRORdwHcBH3m5DIrIh0XkhIicKJP+q3bglmVZlmVZlmVZbzQ2gP7W+qnNkuYngO3AfqACPr65/CBwyRhzeXP6d75m/T8yxhQM+4t2gE9tzj/JZhdWwNtF5EkROckw2L4DwBhzCvgt4JMMA/n85TJojPmoMeaYMeaYG9e+qYO1LMuyLMuyLMt6I7OtcH+LbFaffhfwkDEmEZHPAyGQGmOqV7iZDIb9PItIYYwxm/M14IpICPxvwDFjzHUROb65j686ArSBqW/2eCzLsizLsizLst7sbAn0t04LWN8Mng8CD75MmrPAHhHZtTn9A9/gPr4aLK+ISB34/q8uEJEPAGPA24BfEZGRb3DblmVZlmVZlmVZ1i1sAP2t8ymGpcRngP+ZYTXuv8QYMwD+a+BTIvI00AU2XukOjDFt4NeBF4FPA08BiMjE5j7/gTHmHPCvgX/1TR2NZVmWZVmWZVnWm5ytwv0tYozJgPe+zKL610x/zhhzUEQE+FWGDYthjDn+Ndur3zJ+/Jbxfwb8s5fZz4Fb0vzyN5h9y7Isy7Isy7Is62vYEujX3o+LyHPAKYbVvv/ta5URI1A/41O74tDdpqjfEIJ1RbCu0IVCHENnj5DuzajFGf1ZoXEV5rIRqrZP/arg9w3hekW4XiEVTB1aBl/jz3lgYPKFkvoNQ7CmKGPDxtkxdLG5/VIIb3pIBb3FOktvLdE+SAXBikM8p4gWDH94/QjJzpJkZ0l41ef+Y+cYbDF0tymMA50khEpYXmoSX3cwAqNP+ow+6dM+XLKw1iSeF8qaASOkE5rmWJ+kGzD9JBjPUI2WzNy7wMy9CxSdgPJyncGUwShQ9YLvvPMU+nSDkZeG+XtgzxWKpqZoaoyCjXZMFRhqF3yymRIEKAWvB6LBPNNCDDSuDIcqBF2ryEcM1eEe5mCPQ7fdoIoM2jMUlYMqgNQZDmp4voynSSc0+akW01Mb9JIQlUN/q+D0FcG6EKwL/a3C6kMFReLTOTMOgLq9S1GHfc0VvMeabPnigLVOTJUrqlzhpob2Xo/ObmidH14j1XxM65xDkvlIBbXrijKGMoagbfjdG/firwtF05A/N4qTQzqqqHxQpSHbk6Iv1jFaMFpwMrh5Zpp0S0ltUbPUreN2FJ19hmK0QvsGN9HkWwryLQUYYeI5oXlOMZit6O4SirGS8FREb4fGpA4HJpcZ9AJ4+zq8fZ1B5vHi8gySC/mpFv9x7jBVZOhvFVAGJzX4D64huSC5ELYyivGS+IZDNmbIRwxSAa2CoC0YBdm4pmgYyvGCcrzg01cPUb9h2PGHgpMa3L6wdqehccVw7+FLaA/E1+Qjm0NTUKVQVUJvvo4JNI0LParEReXQfiQFLZSVwsnAyaBVH+Akgt+G2k1D/UsxuBp/xSFaVBgXqgB0pNGRZuS0EK5ranMGd93FKNAuuEs++WLM1EQHb28XHRjUwBkOfsXqEaFYjkgnoH4N4rvWKCOFv+oQdAx3bplDlaBKCFeE6lCPvCloH8rcIb7pMDrdAQP1+1bIW5A1HbKmQ+VB2fbJRg1VNbzOajcFVUDeVHR2K9wVDxRkz4+SPT9KdaiP6rq4A8hHNcVYSbK9ZDDhsrDeIG8ZksxnYssGE1s2CFaFPPEQA2honXHxeoZ0W47bF4rcJZp36OyDR46+xCNHXyJaLWlcBicXjK/Z2O0TrgjxUo42QtHQVAGspxHraYS5GtOfVXR3BhhfIxrKEE69tB1VQtHQ6ADqd63iJQYvMZSxYWy6w+DwgMuntzD2ojC/OIIzEA5NL9A9M8biw5rlO0OW7wyZvXeesmbwOqA9cHJwroSYazVGTwnTO9ZIOiHjJysG24aDv7tLGSmMryljg9cHb2+XvGVgKuPTVw9RrQZ4ZyO8sxGDSUW4YqjdNIzVEpyBgIZ0fHjPGH3nPBt7YbDrL9qgLCOIlg39zEcNFGEtJ9jeo3VkleJsE+2A9g0qB5VD0MioZjPyEQ0KVK2gv92wstygds4neOYS2jeUhYO6EqGuRLSe86n6HlIKecuw8DaNt+ABMHd2iqKhSXfmTOxeY2L3GsmhlImpDoPdOW4y/L02L4CuBOZClo+BOxCCNWc4BAWDuTrZhGb1wYL+bTn+kos3kyBna4gGfbTL7GM9/LbCbyvK0RK3J6STmjIyFJMlX7y4l+sXJ0EZMFAbG9A5XNA5XBAuOZhK0AOXYNElGxs+D7QPRQO0a8hGZHhNNgxFw5BNVHTXaogYtty2hNp8dGRHEu6dvoH0XMq6IZ0cDto3BOuCaJh5aoDKFP6cR1FTjJzXBEsOgylNMVrSO5TTO5SjfdCNEq87fP1rjvW5uDxB/bohHReohOhUhJMonEQx2FHgJsNn1Hy3gV4LyJswmDYgoGNNf3dJUTNUdU1V18hiQFnT/Kuzb0flwiAJGEwbqkaFG5Q4KUQrmmiuTzTXZ3K2TRka5h9S3HjPKMFLESouqaJhsy+9vSVBLWdiWxuVKlSquNwZo9iWoT1w+0LzErR/fyuNpyKSOweUNYObwMLlcRYuj6MKoagL/oZQTJQYB951+AwTJ0uWz03Q8DO4HBMsOagnW6gnW3g9Q3HbANVx8TtCdz0mm6hQBRx9+zlunpnG+2yLdMyQjhm8RQ8nH96Hezs0M/Uu2VSF+3QD5WnyJhR399De8DftbQiq6zL3vpJsXJONwOqD09RuGKqDPVxneH+vQkM8NxySLYYrq2OUkwVRI2P9yijRimEwJYQLLlIIzWcCynpFWa+oYo3s6WNcQ7joEC0LVaVQOYTXfNoHYDCloeciDK830dC6UvL48l5qNxTpmLCxxyFZi0n256zd5rPzjwZ0V2p0V2o48wFlbfiuYholjOa4CbROOcNznihq1xWNrR3y6YJ8umBhfpSibujuAlVAf6tmMC10HpvGSQ2TrR5TRxfJ+j5Z32f0pZSVy2Os3uFAJdS8nHDV4HWh8qGMBO9kjWjRMHJuwMi5AeuHoAoMUijKmsG5GBFP9SljhzKE/jbQqwGdXYrOLoWUBr89/C3r3CFYVWRTFeX1GmXN0LisGKQeve0auh50PVrnYbCtZFB6tG82kQpcr6J7qMBNBL0a4J6qIZlCMkU2W5BfrRMsuZQRaC1ghs/qInfJJircjsIdCEYMRgyq5+C3hdp1wSQuzdMe/e2a2yaWyKZLdOogpSDV8H1UDDiNAu+6T+OKQXtgnOG7qz+ToLemIIa7Hz3L3Y+eJb7mwtvW6RxLiRcN1UiJaKgSFyPgDmD1DgftG/IRIR8RvKAkvqFgLhy+mwqUdUO+pcA5H/OZhUOEy4psrCIbq4juWcX0XLJRg96ZYiqhFaVM7V4lWFH4bYPTKMjHK4xvML5h/YDP7L5litsT9ny8on4qIDvTIlwZPov9eQ+/azClwpSKvOWy9ncSypEKtz+8HiOv5C37L5FMKaKwQE/mmGs1jDP8TkJV4O7sEdQzolVNMmN4pWwJ9GtIRB4B/gFQAB8E7jbGJK9trizLsizLsizLsqyXY0ugX1sfAv65MeYuYBr4wdc4P5ZlWZZlWZZlWdZfwZZAv8pEpAb8P8A2hn03/0/ACvCLDL/vp4CfAH4I+M+B94jIe4G9wKHN6ty/CawD3wfUGPYf/YuAv7leBrzPGLMmIj8OfHhz2QXghzZb/v4E8HFjzP8lIv8QeJsx5kPfju/AsizLsizLsizrjciWQL/6vguYM8YcNcYcZtga98eAHzDGHGEYRP+EMeY3gD8E/pvNwPafAo8ZY+4yxvzS5rYOAx8A7gN+HkiMMXcDXwZ+eDPN7xlj7jPGHAXOAD+2Of/DwM9uVhP/aeAnv6VHbVmWZVmWZVmW9QZnA+hX30ng3SLyv2wGr7uAy5vdScGwdPltr3BbnzPGdI0xywy7t/oPt+xj1+b4YRF5TEROMqwSfgeAMWYR+Fngc8BPG2PWXm4HIvJhETkhIieqpP+NHKdlWZZlWZZlWdabig2gX2WbgfI9DIPcn2NYDftvKrtlXN8yrfmL6vcfA/7xZun2R4DwlnWOAKvA7F+T348aY44ZY445ce2byKplWZZlWZZlWdYbmw2gX2UiMsuwqvVvA78APATsEpF9m0l+CPizl1m1CzT+BrtsAPMi4jEsgf5qPu5n2A/13cA/EZHdf4NtW5ZlWZZlWZZlWZtsI2KvviPAL4iIZtg91U8w7N/5d0Xkq42I/ZuXWe8FoBKR5xmWKq+/wv39DPAksLz52RCRAPh14EeNMXMi8tPA/yEi7zDGvPJOzizLsizLsizLsqw/ZwPoV5kx5tPAp19m0d0vk/ZHbhkvgHd8TZKP3bJ81y3jH/vqMmPMrwG/9jL7O3pL+j9k2GCZZVmWZVmWZVmW9Tdkq3BblmVZlmVZlmVZ1ivgHD9+/LXOg/U68XP/8peO1x95EO0JqoLJ777BSlKjrBmCOY/oustgtqJ23qNYi8BAvGx4zpvCH0spU594SbN+0CWZdojnDen1OvWLCkSofKH/cIpa9qlimHjeMLhvQNXzoVQg0Dy0xg8/+gVOf/4A488J3Xf3Gf2yizuAzj4DKMxMTrkYoQqhbGpuJk3iix7dfSXNi4JeCmneuYY+3cTJIR817Pj4IvXLfYzfYOB7oIQqNIgR4r0d8hdG8Rdc0nHB21A4PYe1MqLTrjH1RRephMG0wbgQXvHR2wqWJSKrOZR12Kg5xI/HREtCZ7/GaZQ4yx7pzgJ31QPg8LEr9E6M0n4wxxQO1WyG9DyqSDCeoFKHeF5w5n0GnsvqQovmeUW6P6e/EmMQdKxBIJp36O02mEgzccKht0uT3qzj3AxIJw3hipBOGsoIijqUTY3kCgk1Tseh7HtEJ0PSac2DBy5w4cROFh9yUIs+rVMO0Q2HtTthMA1bH9eUH1qnuFajbGhGX4L13YK76KF9SLcXlE3Nlj/LGLy1QJ6pkY9AtSclm66odmWoJY/6PPRmFEYgnEhxXE237vIdx05zrTvC4GhO4JcUDU3pCDJwiBYU64cU/rKL23ZoXTYsP6CRIz3CFyP6+3PGn/Do7jUcu+88ieOy/qmtuPv7lM+NUC1EZKGQt0PCJYdwVeguNSgmSqgUxjdQOejrEToE0YJZC5h4WtHdbYgWFFueKBi8O8E9XaM2ZwjXDOmkEN3eJkt8AOIna6zdX7D140tc//6YcFGRTWnyOxMWTs0Q3r9Gmnn/H3t3HmXJVR94/vuL/a25V2ZlZWVl7VVSbSqVSmhFQiAWY5bGbmxj3Jh208ZtzxmPwU336YU+PXPabtzjcfuMxwdveLplmmGxMWAkgYSE0L6VVHuVas/KfXn59hfbb/6IJyirJSQkATK6n3PeyXg34i5xY3s348YNvL42dimimbNJfcU/HRDMW0xcPcnMNR7xdI5oa5uRL3to6hBP52msSen0Ke7DRaL9NXp3LBPsrDGb8+l52qO1JsXdViNsBKS+4jQs7JaFe/MiC4U8jc0xqQ3hQEo8ErH5L1tI7NM5X6QlLqP3QvPqNlYxJlnxKJ+yiTZ3iFwhdSzi6RxWR2jtbVEdFabPDWHFgjrQHkkYWVMhOVyks7dB/sk8zdEUThXYdPV5LpwcJvFBsQjLwvJVEYUzLp1BJfGU3LEAp6lE+xp4pz3q6yC3tYJ7qAAKkoCOhLhnfTp9Svm0RXskJX/ORVIIU494bYdCvkPRD/HshJWlIj1HbCpXh6TYhL1KeEUT/0SOqKTEtjD2jZiVLRaVe4eZe3oVC3uF0fvbLL09QhZ8Ghtjoh7ovLnF4lQPVsfCDi3qQ0qr45EWU+wFFxWh54RQ3xkiEy2sqQC7I6QudPqV9EwBVIjzQuoJnZKSNFz8eYfEF1K18GrCdMGn/wGP5paY4ikbO4LlSpmwV4l6FbXh1nc8xnmvSNh2aa1S6qFP/qRPfVxIc9mTOemiz8DTEZ2SR2c4wVuyaK5R0nxCcDyH80yAt2uFZmAR9yX0HLGZuykisW3ecsVBJu8eo7JdCcdDPvG2v+XvTu4ksQXclGDGwYqhsS4mtW2SBZ/yZUs4d/RS2lVh6cAQoqCWEPWmMNpB+2L0Qp7cORevKqSbm6SJReIIhYEWuSd9Lny0hDrKz+1+jDP3r8NtCD3nY2o7EqRls+ELVZbfKPQecIiKFjv3naH2+AB2zWYFn2Y1x+D9Lsm2NumpIo1xJS0mRJe30Nkc/YeEvhNKbUKI+lKSvCK5BGfSp3xKsNoOuSkbb1lo5mzi/hhii6jjUlvnwfY6DIXsmphkaqmftJiSBoqVjykcyJGfsog3dghKHZqzBYqnXbwlm86OFt4zOeJSyvgdCdU3tVm3a5rF2R6clmBHQmFK6fQLSSHbxuPbZ6lOlRi4y6O4r8LSfA/hSkBsCZMHV+O0hNIZKMxAbg4aYxBtbOPMuyxvc/CWLZyOAEJ+MaE5bOHWhTgHIJAIqGC1bJymEPYIyUAMB0vUtiREYyF+KSRuemj39kr+okPqQ2NDRLQc4M/ZtEdj0nJCOJyw4XMpUc4jKil228LqWKQe0BNhP1WiM5ygCPlJh7AvxQ4SQsfGub7CitVPbUNArZnHqwj5WaE9oFiJcOt1T3P2yChuE4pnhGBXlYULffiLNnZHqMQBw99yiHMWfkWobklJXcGrCZ2cjd0WvHq2vk7TwmkIcQFamzrYFYeopMw9vJp2n0XYqzi9IYU786iVXTuTAJyWkLZdku7xVTjrEI7EWE2b+ZODpA60tnZ493WPs2XzRU4fXIvTzvLJTwut8RjriSJhWQnWNGAyIHfUJVgEfwnC6+sUngxoDyrequy3kN64gmxr4X2rBzmUpzma/U5pbI5ojaWkHuicD6kw/BWPxr4OsqtBtBQQFxRntEWzRygON/BKIelMjsJBn8a2iO37znExH9BzZ4HKFTFJAFZHUA+GNy8wfXaQWiVPkoPYs5nLeaSpTfkMJJ4Qexb9T9ks74uoXZfgns3h1GxK50Alq8fRu4Vm2SUJBHXBbluEgwn5KYtq4GEVYsRRvHyEFhOsBY/GlhBJBbtlMXZ3g4UrXOoFofNkP+lghFiKNgPYXSeuemAJ1u09VLaB3RI2v+skUwuDhD3K8BMRZz4Ey1cKaWrh1i1yCxadASX1YfjLLnP7bNZ/cZHF90KCEMzaWAl4ty5Sb+UZesTC3V+l0QkYOGDRHsj2TbemNHMufUcFq2PhrVhUdib0jlapPDgMIngrFmu2z7E0X6J0RlCx6GxuM3S/Q2FakI6DXxHy1y3QaPmoCP/0um9z8NAGtOWSujCwc4GVwMbKJYifkjoQ9aWEZXAaNtH2Fv5ZjwuVfnqO2rSHU4J5GysU7FCIikJ+U5XOUo5gEZI31AgdITgZ4Fzwsdc3iSKH5YeGmTsxSG5Oke1NnIfLFKdSwsAhuG6Bzmwh25/zICrEgxH9uxbw1jdYmSoTjsTkphzsNy8x8GWHpR3C2g0L1ApC9Xg/dlvIzVn4yxYrPTakFt6yTdpxSPMpK7Nl6m2f97/5AQ6eW0ec2uSmbOy2hVO3aOwIyX+xTHUc7KpHWBbiIqSuUE18kkJKY40wNrFAudQiPlSkvik7xzRWQ+mUw1Inz/l2mc3XnmfmidUEky7hRAerYaM2PDmzlt7v+NT6bJxrV2h5Fit/fdf0Jz/5yU+/WJvJ3IE2DMMwDMMwDMMwjJfANKBfQ0TkgZewzJ+KyGXd6X/9wy+VYRiGYRiGYRiGAaYB/Zqiqte+hGV+RVWPdL+aBrRhGIZhGIZhGMaPiGlAv4aISL379yYRuUdEviAix0TkNhGR7rx7RGSfiPwOkBORAyJy24+14IZhGIZhGIZhGK8DpgH92nUF8L8ClwEbgOsunamqnwBaqrpHVT/wcjMRkY+IyGMi8ljSaLyiAhuGYRiGYRiGYfwkMw3o165HVHVSVVPgADDxw8hEVT+tqvtUdZ9dKPwwsjAMwzAMwzAMw/iJYBrQr12dS6YTwPlxFcQwDMMwDMMwDMMwDeh/6CIRcX/chTAMwzAMwzAMw3g9MA3of9g+DTxtBhEzDMMwDMMwDMP44TMN6NcQVS12/96jqu+8JPzXVfUz3embVPWx7vS/VNXtr2QQsb9HwKsJVgRRSTn9zAjWYCf77Fqhtj2icN6mubsFKVgRNFZbWC2LcDGgM96hOWzTHE9ojif41ZT6+pTGWiE/qySDIf4TBWrrU9pjIdM3pUR1D1IghWDGIXBj/vCRN5G4MLcPworP9K0xtQkon7TwlyHnRZROWZROWfjzNqsGqzTGUopnHOpvalC/vEPzgUGS7XXqmyPifMrR3x7g6G8PkHjC2O5p2utC7Law+oGU+mKeuJjSHk4BSK6o4dZg65aLbN1ykfkrlTgAf8nCW7aIi8rM345TOOITD0WoQGWpwNL+iKX9EeN3pOhUgKTgLLokOSVcFfPU6TFqGyB33GfwaWXPxAXsDtgdaO5qEeeUJAdREfoPCoWJFaqbU4bvcLEbNlffeBRvwcFbcND9K6S5BGnZANgti7ic0F4bEQ9E+CuKv2RhjTWxxpqol5JbUyd/1CcupqivVLfGOE3hmcYQ8tZFeo8J4WhE521VOm+rYkXC5s82aQ7ZLJ7pIy4q676WYsVKUnfoe+MMhSnFrtrYVZvaRMDcQhm/quTmBZkM0KaDe7CAlQiFi22CGZs0l9Juu7TbLvlzDo98eSfFUpuerxcQUaKFHF4xRN0UtSFYyPbJbH8TgmkbPVgmKsDAQy5xQXBrwuOPbIZv9FMfT0mf6EFSkBS8aRe7J6K1IaQ+rvRdN0Pf4w65OcFdspEUrASSnpikJyYuJTRWC6vvV9SGxe0e8TMlJIYkyNKMBiPCA31YfoLlJzSvrbPui8LUO9awZfMUCEhPiPt0kXS0jd45gHZs5FAJOVTCH2ghuQS7DWrDmbkB2gd7SXpjSvfnWNht0dzdonN5i76jQt9RIb11mdy9JVaaOaYeXw2xxcplMXbDIj7YQ+Ir4WCCFYMVQ+uhQZyGYFUdSqM13GUbe86j/PtT2B2luq9Nfsri4i2QphZparFl6xRxHpj28eccnIbQWZUwfPt51q1awltwQCFYzD5ajJlfKVLdnBK1HWo7OhQmLdpDCeeX+xj5juBVLIq3zFK8ZZbcGY/GRExurIZlKdb+Co01wMkCXiMlmBOaJ3tp72zRGUrpDKUEDxSRBLwVIQnAysd4K+DVFG9bFe+sTznosFAvsFAvEBeUyg1tVo8sk7pKfsoiWvEJ+1KsSMCC8293kUio7A2p7A3xVizO/nSOuOrxwVvvpeeQi1O1sO/toeeQixUKte0hYcslbLnYZwPsEBprlcZqC40tVv1VjmgkJOpRymdg9f0QDiSsbM8+4UBCtOwjoYUoqMCmvRdoDyhJbFNfIyDK8o7sk59RrFDYvOsCOhByx+376JwoU3rGJpi1uXLzWZKc4lUEq5V9VCDJ2bRHEgaetKlNQL7Qxpr1SQKltiFB7u2j93Gf3sd93GaK1B0Q6KQOle2K3RI0Fv7TV99LcCRHMOVA+r1jMD/p4DQhHI1YOd7P8r6ImaOr6D+sXHXzUUpXLrDmbrAuBFgXAoI5QS2ICxAvBJTKLfpGV7hmzVmWL1dW3eHhLrj8j6f30RpRWiPK9BtsNLbwlwSr1sQ5FxDnhdRVDj22HivKrlejdwmjdwntAaHZ9oj6UoJZi7XrFrCPFVFXSf/RInY7ZexbEeqlqJfiuglRWfGrit2C5oiCBfmLNvayS/HyJTSXkPp8d5sf/vYm8tOChII/lz1R1biiRWtESecCRnpqSCoUplIKU9m1xN69Qu9TLuc/FJNM5Tn9yHhWJg/CsmJHSnFSSYOUNEg5f3yYD77xOzRWW5w5sIawL0XHW5SPuUgKvccVp63MX50yf3VK8byFdzJHZ22IOoqk0BxL6PTC4nYHtw7NjSFO/Xs/9YI5wV8U4pzSGUzotFzaayIKZx1Wf9Vl4PN54jUdiuctiuctxt96luZogjfvUHrG5p+//+/oPexQPOFRfsrj9AfBrSpJf0zxnFA8J4xtmwUB/5pF7JbFyOgySQDYiv94gf4DFtVanqgAUQHW3BODgFrg7VihNRbztad2EpWy69TS7pSFM/3kzzu0R2LaIzGlkw6z16eEvUr18ginYREXlPpaRa3sGlTbkJBubpJubpLkFCsEa8Wlb9sSwZo6wY0L1DbHaCkmjG1m90PvMxGpp6SesrIrIvUVLcWoBb23TkNs0dwQkuypka5p417w+dJTe/nSU3tpbewQlbL8R+9epOCFtPc18JcF/+968KpQ2ZHitMFpgyoU3jmDlY/p1HzKZ6D4+TKNI31U39Ci+uYGA08LSSHFm3HxZlwGHrVhdQd6I6prbXQmIDrQRzzRJvUV/+EiVtPGvbMH984e4lUR9XVK8ZjHuS9toPxwjs67KxRPuuQnbYoXhOuuPsLM+X4KZx0KZx3yFy06g4o948P6BvUxwe4odhsSXwjOe9hHC0SllKiUUtsAnW0tgnmLi29PiEsJaoN37SKj108i+ZjahGK1hPLDOcoP53AfLSGidIZj7IpDaaxKYVJZ2JXH6ghbRuYBSOsuad1leVdKGDqsfjBh+55zLF8GvcegPaQc/eZmVj0RgcDUdR6Fg0H2OW+TbGjR3NXCbgkoLOxwiAvK0hX99JabWFUHv6L4FSW+fZBVV88w86aE5ZkydluwYug5CZ39dVa2QGHDCpJAfWtIfWuIRMLK+R7K18xlv8FGEmZrRbxFm8GDLdSGVYNVKlugsgU6vUqnT2lHDsGcQ/GYx58fuJagorQmQvq2LTFeXgYVbDvFtlOcBRd3waHnhE3qKfbJPAjYq5vYoSJBQms4Zfs7TrD9HScIFpRaPcfAIQWgVfOxvZT2qoTmzhatqSL5nhZWkv32qd3aoH6on+aIMvnWlM5QgvzNAOX1FaL1J2YfAAAgAElEQVSxDvlZoXRO8aZdZs4NMHNugHWb5hh4wKVwUeHr/Uy+yUX6Qqz/OsiGVYuorTTHYwqzKYXZFHvBI3/OISoqsq6BP+kRTNsUj3r81YH9xHnFrVq0h1LivBLnFeoOs9cq9pJLaTKivSolGYiw2yBBwuBDDlZ/yIWpfi5M9RP7QrrgU3gwj73skDqw9w0nEVs5u9yHTrRorItxJ33yM0J+Rrh5/2EWrotwqjbc2Y8157/kJpNpQBuGYRiGYRiGYRjGS2AGpvohE5EB4K5LgmyyQcGe/fusW1R18VXK49l8eE4erygfwzAMwzAMwzCM17PXVQNaRB5Q1WtfZJkbgD8GIuAaVW29kjy7jdU9L7F87wFOqOqRl5OHiPQCv6Cqf/SDl9QwDMMwDMMwDMP4fl5XXbhfrPHc9QHgP6nqnpfSeJbMq1WP7wEuewXxe4Ffe5XKYhiGYRiGYRiGYVziddWAFpF69+9NInKPiHxBRI6JyG3dhvCvAP8Y+I/PjmwtIh8XkUdF5GkR+Q/dsAkROS4i/y9wCFj7Avn9vIgcFJFDIvK7zy1Hd/pnROQzInIt8C7gUyJyQEQ2dsv4B93vh0RkfzfOJ0XkY5ekcUhEJoDfATZ2l/+UiKwWkW9fEv+GV7M+DcMwDMMwDMMwXk9eV124n+MK4HJgCrgfuE5V/1RErge+qqpfEJFbgc3AfkCAvxWRG4Hz3fB/oqoPPV/iIjIK/C5wJbAM3Cki71HVv3m+5VX1ARH522fz7qYBkFfVPd18/xzY8X3W6RPADlXd043/W8Adqvp/iIgN5J+nnB8BPgLg9PR9n6QNwzAMwzAMwzBe315Xd6Cf4xFVnVTVFDgATDzPMrd2P08CTwDbyBrOAOdeqPHcdRVwj6rOq2oM3Abc+DLK+VkAVf02UO4+5/xSPQr8soh8EtipqrXnLqCqn1bVfaq6zy4UXkbxDMMwDMMwDMMwXh9ezw3oziXTCc9/N1743vPQe1R1k6r+WXde4xXkrZdMBz/Ass9+j/n72+550+g2um8ELgKfEZFf+gHLaRiGYRiGYRiGYXS9nhvQL8UdwIdFpAggImtEZNVLjPsI8EYRGex2n/554N7uvFkR2d4dfOy9l8SpAaXnpPP+bt7XAyuqugKcBfZ2w/cC658vvoisA2ZV9U+AP302jmEYhmEYhmEYhvGDez0/A/2iVPVOEdkOPNh9HrkO/CL/87uVny/utIh8AvgW2Z3sr6nql7uzPwF8FZgHHgOK3fD/AfyJiPwvwM90w9oi8iTgAh/uhn0R+CUROQw8DJzo5rkoIveLyCHg62QDnH1cRKJu2c0daMMwDMMwDMMwjJdJVJ/bQ9h4rRCRe4CPqepjP4r88ptHdc2HP0b/IWXuHR1yh3O0dmRv8uq7NyB43yyLD4zQHo0JphzsDqgNb3jX09x9aBt+uUN6qsiqK2YBmDo1xMC6ZazPDVDZAoNPpzRX2TTGlHi0gyx5eBXru53UJQErBknBaYHESm0D9B+C+atT+saXaT84SHMsJn8h+9+POtAeStj65zUm39JLayQlKSfkzrq01sZgKdK2kP4QAMdNKH2jQN+xFufflsPeVqM1l4dcQnDWp9OfIimoBeqnAIzcazF3FRQmLYJb5uncOUSch2h3Hc5kz40nOaXvoACweFXCmm8Kt/zb73DHp26gucpCHWisSSk/Y9F7OuLcTwtW26LnWBancllK/qJNe3eTpO1guQm67GG3LRJf8UcbyIESrQ3h9zaYgNRttu28wOJfrGP5MohXdyg+HdAeVIIFIer+a8YKwWlC6mf13BxRkp6Y8hGX6paYnZef5/h963FrQmNb9nRD8YiPX1FWbm4RHMiz6tZJdvZN8dW7r4LRNknHRuwUy83qiYs5fvOnvsp/+cZPsf7LEe6/mWHmr9dRW5+y9psJtTEH612LuP+tn6XLs/Ue/3qTU+/P4VaFnmdg7oaY4nGXzr46zuEi+Sll6cYOPb1NANy/7mNph+IvWbztfQ/xlZM7SCfzrL/iIqenBrEnA9yqgECnPytXbmOV0ufKzFynBHM2rYmQ/CmPYEFZ3pWya+dZzlX6CB/qB6A1mqBeijfnkJ8WVrYnBDM2nYGUwkWLvuMxs/ttEj+r16yCIXXgp978KHfftp84D62xGBT8OYeolKID4XfrKvdknsaONs60j90Uwt6UkQeVuX0WblXYcuspAJ46MY67mO3rUU+Ct2BTOgftgWwdm9s6DHzbY/mWNptWzzF55zoa62IAvCWbwgWoj0PUl1A85VDfEjHyLZuFPcLGL9Q5+QsFgjmLsCc7COP+mMJpl/bOFqpQeCIHAlEhO9bD9W28sz6SZNuv/5oZFlaKlL5RYPlyxV7dxDtQpOd0yvxeoTApxLdUSB7Phm5IAsVpCG4DWkNKEoC/JKR+Vo2pq6gFUX+MN5+tt72tRmeyiNUWencs0rx/kPZwit0UymdgaVcK5Qht2wD4My5JTknyKeqnSMvCaVgE2yu0jvXScxJqtzbQUwW0+y9kpy5EPSml0xaVXRG5SZfEV+K8kvZFuLMe+YtCeyirJ3fnCtHTveTmsvjxmyuEh3rwaoJa2Tks7FESX1nVPXsv7BaYaJJ7qEBtbxvqLkMPWVS2ZftO7+WLdO4epHllds4NDuYIy4rTElI3q6skSJH+EGsyIPWU4jmL8PoaycnsQC+fgvo6SL2sDkvHXWpbI/xpl3hTC7kQEA/E0D1kvXkHb0W49ece4ivfuJqoN6F83MFfUtyWUlub7Rt9R5XG+1cAaB/txakL47ec48ThMQrnbPreMk3ljtXUNseUjzuUJhOm3pjl0f+UxdIVKRok+JMe/jKUJhMqm2ySANwaNNamOKubyPHsfOovCX3vmGJyoRe5kKPnRFany5d1rw2J0F4TcdVlpwE4cN8WEIiLKf6CTbyliU4FOA2LzlBM39gKlbO99B3OOt0131wnSQTrRIE4r0gi+EtCe1WKFQpWBN6uCvpAH/UN2fEkieDP2SQ5pfwMLL+xzdax7Fp34vFxNu29wDNPrKVn61K2L6cW7Sf7iXNK7zFYvLmDfzog3NRi4BsB89ckOFUbtbN9FaB8wqE5ouy85hmePLQeqxzxG1d8iz+471astkXhgkVUhLEbLwBw7uEx/O0ruHf0EBeExposnWBdjU7bo/eegOpGSB3FX8zWPckp5SsXWDw5ACl4FQt1lM5wTM9hl8YaZeCgMt/tr2aHglsVmusjBh90qE1A4kHPSai+pUF6oYAoWB0o7M7WvX6kn6g/JuhrM96/TKwWS18aw46U6kaQGHqegaW3tLM8nARViOoeWzdMc+aBccp7Fml9Z5DUgfCyJsP9VWYWevCP5rLzYUkZ3D1H5eFh2mMhw6MVwq8M0RiDOKc4a5qUby/gNbrntkCo/FQDOVbEbUCnX4l6EkonHSSB1hsa2EcLJHmlcCE7v9XHs+PPbkFzPIFShHZstm6c4vZtX2PD53+V/JTFmm9lw8vMXl3ipg89wlfu24e/aBH2puSnLNSGxIe4kJ3/JNulcOuQe8csi0+tonjZEvXD/URDEbmzHtFlTeR8DlKIe1IkzMqU5lIQpXjKRRLo7K/T/+U8V//WY3zl2/uQVR2Y9vFWsu3tVcCKlco2pXTWIlhQch+cZqFewL6vB1JojSh2S5DubzG7BZ1BJXWVdCjEmvVxmsKGG89y9NgY+QsO/rLSGpbvntfjkRCqDhNfTZj/aJPmmTJ9RwXnvfPMHx+kuH6FWiVP7nh2snda2TVl4FBIElikjtDut1i8OqL/UZewJCQBtMajbJ+edLE72XkVC/bfeJQHTm6AqovdtOg7Co3VQnJFDc/LKjh5pA8rhPr2ELcQknuwSHONMvikMr83W9/iOaF8Plt+5mqbcHWEXXHwKhb5mWx/jfpjBkdXWDzXR27SJs4rbMme4tRTBYKF7LzvNpTl3Qn5oQbBHWUq2xRrpM3A1wLmrulWbilClj3sthCPhIidIjMBTlPoDMdIx4LeEFRwpj0A+o7A3HUJuUmHYP8ilbO9OE2LqDchmHboO55S/7kV6hfKAAw/IMy8McVZsbFCKO5ZJP36IK1hCHtT1E1xKzbOlmy/7bRdgsM5orKSjLXJHc4R57N9ork2pnzSoXFVk6TpkD+VlSn1YPiRiNkPt9EjJSSF0lllaWcWLxyOGbrfIf+B6ezYuH+U9nhI7qxHurPG6j/zmXyTS7K6Q993fJb2JqyZWGDm4DA9z3Sr6kLM4L86w+NH12PlY8aHl5i9dw1odizZoeAvZccWQJzPzi2pB4mvqJ3tZ7/4nm9x2/Gr6MzmKayp0TnWQ2nHYnaMNwPCis/QAw7zN0a48y6n/uVvPa6q+3gRpgu3YRiGYRiGYRiGYbwEpgv3q0BEHgb85wR/UFUPvpJ0VfWmVxLfMAzDMAzDMAzDePX8WBvQIjJB9t7j7/du4x+J7que6qr6ez9oXFW9+tUv0atDRD4E3KmqUz/ushiGYRiGYRiGYfxDZrpw/wTrjv79IWD0x1wUwzAMwzAMwzCMf/BeCw1oW0T+REQOi8idIpIDEJF/JiKPishTIvJFEcl3w39WRA51w7/9QomKyIdE5EsicruInBSR/3zJvLeJyBPdNO66JNplInKPiJzujoSNiHz8kunfF5G7u9NvEpHbXiBvW0Q+0y3nQRH5zW74PSKyrzs9KCJnLynrl7vzT4rIv++GT4jIMRG5TUSOisgXLqmHW0TkyW76fy4ifjf8rIj8rog8QfbqrH3AbSJy4Nm6NQzDMAzDMAzDMH5wr4UG9Gbg/1bVy4EK8L5u+JdU9SpV3Q0cBf5pN/zfAW/thr/rRdLeQ/Ye5Z3A+0VkrYgMAX8CvK+bxs9esvw24K3AfuDfi4gL3Afc0J2/Dyh2w28AXqgBvwdYo6o7VHUn8BcvWgtZnu8DdgE/+2xDG9gK/JGqbgeqwK+JSAB8Bnh/N30H+OglaS2q6l5V/e9kr8n6gKruUdXWczMVkY+IyGMi8li80ngJxTQMwzAMwzAMw3h9ei00oM+o6oHu9OPARHd6h4jcJyIHgQ8Al3fD7wc+IyL/DLBfJO27VHVFVdvAEWAd8Abg26p6BkBVly5Z/muq2lHVBWAOGO6W6UoRKQMd4EGyhvQNZI3r53Ma2CAifygibyNr+L6Yb6jqYreR+yXg+m74BVW9vzv937vhW8nq7UQ3/C+BGy9J63MvIT8AVPXTqrpPVfc5PYWXGs0wDMMwDMMwDON157XQgO5cMp3wvYHNPgP8evcO638AAgBV/VXg3wBrgcdFZOBlpP2Sl1fVCDhD9izxA2SN5puBTWR3xv8nqroM7AbuAX4V+NPurJjv1Xnw3Ggv8P2Fwr8fcyvZMAzDMAzDMAzjVfZaaEC/kBIw3e0u/YFnA0Vko6o+rKr/Dpgna0j/IB4CbhSR9d30+l9CnPuAj5F12b6PrFH8pKo+b2NWRAYBS1W/SNbY39uddRa4sjv9M8+J9hYR6e8+p/wesjvtAOMick13+heA7wDHgQkR2dQN/yBw7wuUvUZWl4ZhGIZhGIZhGMYr8FpuQP9b4GGyhuSxS8I/1R046xDZHeGnfpBEVXUe+AjwJRF5ipfW3fk+YDXwoKrOAm1euPs2wBrgHhE5QNbt+l91w38P+KiIPAkMPifOI8AXgaeBL6rqY93w48C/EJGjQB/w/3S7pP8y8PluF/cU+OMXKMtngD82g4gZhmEYhmEYhmG8MvICN1GNH6Huu5r3qeqvPyd8gh/he7L9DWt0y3s+RlgGUYhKSupk+8fww9DpEaKSIDcsU7tYRiJBbcVftAk3tRi63WfpcsGrCABqQWtrh8F7PDp9QnO1oraSFBOsfMzY/+dSXetQvTYb2yw4kqO9vcX2tTNMfmk9K3tC/EmXdHMT70AB77pF9PYBGjc0sE5kz2u7dWhf0SRuORSPecQ56GxqUyq3cOyEpYUSdGxKJ7Pe+3p9Bc+JSb4xSHNESQIlWLBojSZokGBVHbBAEvCWsv8vDd90kbOnhgmmHeKtTdLZALsjlE/C4r6E0uoatcXCdzvX9z7p0byxTrnQxv+LPmauEZLeGCcf4x3MZ3W9rDTGwIqyuuo7njL9lhgEnDmX4gUh8aG1r0nPXTlW/eI5Tt2/DqeRLR/vqfP2TUf42jevonwKhn7uPMdPjYKljN7hMP2OiMJhn6iYlal05QJJKiR3DWDFULk8xq3YRCMR0rSxGxZJPmX4AaExmq13p19xa0JjPAZbsRo2xXMWtY0JgxuXWFwqYl8MyE9lZRo43OH8WzxSX1FH0SCl/1GH1pBQvHaehdP9eEs2hYvK8u40K5iCP2fTXt+hcMwn2VfDeTTrMNEcTXGrQvEcxPksD+sti1hf6aexWhg8lHDxJhh40iIJoP7GBrkHi6Q+1DdFbNo4A8BKO6DR9mhdLOKuWPTsXWDx+AD59VW823twmiCp0vPhSQBOTq7CmvOxxpqs//2UmWtKFN8+w8xCD/13BQSVlJX1No2xFG9t9rREf6lB9Nlh8vMxCztdwl4l2F6h2fRJF3zspkVSSMlfzIZtaI2kOA1BbUg8xQqF3LyAgnvzAq2HBmmtjbHLIUNfyZ72qGy28PYuUz/bg9UW4r6Y3AUXdaAzkLDl8knOf2sd/mJWtWEPdAZS7Jaw++YTPPHwZtyaRWeigzvpIYnQfzQlcYXly7I4qQNJb0zuvEtuTmmuFvwlSHyob4zJXXRojUcQZ9sjf8Fh81tPcfyujcQFxasIUUmJ+hOspkVajikf8qhPZNt77K6U8+9OsZdd+i9bYP5CH8PfsZh/Wwf/eI72SELhnI0KBEvZAbWyEfLTQlSGxFfC4Ri31KF4T4HlqyJGvukw85aY4ZFKtg6fG2LonkmO/JsRpGlnJzMVsJSxLXNcODdI/qyL2tn6AoTr24x8zWP65pRgyiHsS9m59wxPHR/HWXLIz2TbatO7TwIw9emNrGy0iPNKXErwFm3i9W2Cwzma62KCKYfgyiVaB/qR7nkh8ZS1+y9y+vwq3FmXdbe3OffRhKjlMrp6mfZfD1NdD3FfDED5qMvOf3yEQ5+9jOqWhN51FepH+omLKaWTNvV9LdKOTf+jLo3RbHuEgwlr7oL8v7jIiZPZ+aBw2qX3phkq94xQOpeystGi059tDysW4sGIwe+4LO5JcZoW3rIQ9ipr9k1R/+woC9fEDK9ZZuHwULavH4LahBDnFX9zlc7JMs6GOp3pPHbLIh6KWH2HQ/pPFgCYne3BmfMYelKZf1ebJLTpe8Cjvg7CgQSnauMtCx/4+bv482/cnF0L5i2SK2vEZ4q4K0LfDTMs3zeC24TW/gbeUwXivTUKueypq9ZDgyDQWhODl2IHCXIhoOckNNYKwUK2C8TdYT7iHBQuKkt7EuyGzdq7YvKHpjj68bXkZizCHsVbEeKiEvYlAEghZuibPmFJaA9BezQiN+lSPp2y8FPtrD7P5eg/nG3w2tps/yjsXqJ2rB+1svDS5grJvf3UtkUUn3HJzWbHGUBjXQyO4hZDktkcTkMIRyJuuvw4D12YwLu/ROsNddynsxO73c6uVT3vmKZz2witQaExlmKFgtsQooISD4cQWThL3WvgeIuk7VA86hGVsmO2cUWL/MEc9U0Ra/9OqI06VLdk+0h5fQX7q31U39Qkncox8qAy9c4YTYW+R1yaq4Ukp2y+6hzDuRoA95/ZQH9Pg8qjqwgn2lhzPkkxofewQ+emKuGZEmkuZfzrWR4X3myTm7Xo9CtxOQFLsfIxadum73GX5s119qy5yHI7z8mLq7K6nvVxG0J7dYS0bdRLKZx1cJpQv6aJnM8x+JTSHsiuZ1aoLO1NGL3bgg/PUWv7NJs+Q18JWN4upC6M39Hh/Nt88hele55WoqLyKzd/i7/4+ptI17SxLgaMPJwy+dMxfiHEfrJE3xuza83sUhn3aJ7UgZ5nlPb7Kvh/00tlG1x2zWku/NUGqushyXfr9qRNc41it4SwN0UtWLV5gbn5MhrakAg9RxxWdoXccHk25M1YUOHrf3I9tY0pbtXCaUF7UOk7DPM3RtgVB7X57u8RpykMPK0sb7UIFiAJoDWsxH0x/oxDnINkIEIsxTvvAeAvZufbnmtnqd89/N30GutivCWbxM9Oq3EpOza2/mmDs+8uE46HyJKLpJDmlP4nLaKiUNuYIJFgh4Ksz66ZzoEi1v4KhS+WmX1jgl2ICJ7Koza4NVjZHeJNuwQL2bYoTqdUNlq0RlKK61Zo1AOGbvdZ3i74S0J7QOl5JvutEHb7XDbHY3JDTdoXi6ibIsUYL4hIzhRRC9JcirtsYXeyPDr9KWvvSpjf5WJFkLrZ79i4oKgNubnsWOm7J6A5nMWxO9AYT8hftJEEorLSGUqw2hZOQwgWhOqOkMEHXACWdirBeI3kUA+pp7C+QanQpnKyH3Wz38g/vf9J7vrSVbRGsvrVfIKz4CIK/pLAtRXqCwVKR106V9eJI5vCEznqu7PzEHUX9RNy5zzG7m4y+/EOpaBD+/PDLF4d4xQjrll/mgfuzy78aoH2R2jbpnTCwQ6huiElzafkzzm0L2vhnA0IhxLy57LzSFxQCpMQLCvV9RadXsWKQLbWKXyzyNL+CCwoHsn2qeQNVfqKTaqtgDB0KH2zQGWrMvG1kNO/DMHJgNz+BSqn+rGbWd3m5oTapuy3+epvOtRHLep72tgzPmorkghWCMmGrA2hswF9R4SVm1vEVQ9v0aa8e5HlowNICkkhRfMJpUMetS3ZddZqWeRmLVI7u35s2DLDPbf8n4+r6rMDOb+g1/IdaMMwDMMwDMMwDMN4zXixQbVeNd3Bvu56nlm3qOriK0j3rcDvPif4jKq+9+Wm+RLy7AV+QVX/SEQeBvznLPJBVT34AnEngGtV9a+eDVPVz5B1tf57VPUs8CO5+2wYhmEYhmEYhmF8fz+yBnS3kbznh5DuHcAdr3a6L6IX+DWy9zNf/QPGnSAbDOyvXmS5V52IOKoa/6jzNQzDMAzDMAzD+ElgunC/PL8DbOwOzPUpyXxKRA51Bzh7/4vEvaEb9zdFxO7GfVREnhaRfw4gIjeJyD0i8gUROSYit4mIdOf9jogc6S7/e92wCRG5uxt2l4iMd8M/IyJ/3L1T/p9/uNViGIZhGIZhGIbxk+tHdgf6J8wngB2qugdARN5Hdnd9N9no2o+KyLdVdfoF4n5MVd/ZjfsRYEVVrxIRH7hfRO7sLnsFcDkwRTYa+XXd0bjfC2xTVe12Jwf4Q+AvVfUvReTDwH8lex0WwBhZt/Hk1awEwzAMwzAMwzCM1xNzB/rVcT3wWVVNuq+5uhe46iXGvRX4pe4rrx4GBoDN3XmPqOqkqqbAAbLu3ytkr9H6MxH5R0Czu+w1fK9b+H/rlulZn3+hxrOIfEREHhORx5Jq4yUW2TAMwzAMwzAM4/XHNKB//AT4DVXd0/2sV9Vn70B3LlkuAZ59hnk/8AXgncDtLyGPF2wZq+qnVXWfqu6zy4WXuQqGYRiGYRiGYRg/+UwD+uWpAaVLvt8HvL/7PPMQcCPwyEuMewfwURFxAURki4i8YEtWRIpAj6r+HfCbZN3GAR4Afq47/YFumQzDMAzDMAzDMIxXiXkG+mVQ1UURuV9EDgFfB36brAv1U2Svr/9tVZ15gehPA4mIPEX26qo/IOua/UR3kLB5vvfs8vMpAV8WkYDs7vX/1g3/DeAvROTj3TR++eWvoWEYhmEYhmEYhvFcpgH9MqnqLzwn6OPdz4vFi4A3PSf4X3c/l7qn+3k23q9fMm//86R77nnSRVU/9GJlMgzDMAzDMAzDMF6c/clPfvLHXQbjNeJ//y//1yf9t19NNBSTDMZ4sw6SgBUJ6S0rrJRcEh+sk3kQwYoFtSEJFK+vg3XRp/9YwuJuJSorWIKzbKMiNEeVZCCiMFqnfHeexiohsRzcphJuiBABZ8bFnXNpDqfUwxxOxSZcHeGdyeE2wTmYI+wV3nDNcU5FvSQ9CYXTNoVdK4TnSqQOjN/RpOPn2bB7ivOzA+yYmCK8e4DalW3C4RhOFrhl72Gm7hsldQTd0qBTAokstmyepnmol3BNCJFNXFDigpI81oNTt2hvbuMfz+G0hHAgJc4JqQth1Qc/ZeABj/ykDRbIlha1k72Mvfc8c/O9rNs0R7WRI/+MS2uVMnQwJuyxicqKuhAWLeJyCrGFv2gz/HibuassEge8JYepko8/6dKciIl6U1jwWMp7dPLQ8lxWrakwv1yiPNjAe9qnMWTjrQjNjSFJOaFZDWh3XApnbaKCoJZQuCi0h1Kc3pA4UFbd77DyngbOWR9JwWkKjfEEt2bjjzWwLvoEy+DWLZLxkGiywKpHleZqi9SDxLfZ8e7jXJzrx61aJIGSOBZuU6jYPpIIbtWiOaakgWYPkOQS4gDsFRd1gP6QeCSi3asUTrn0nUiJSkJxKsWvKvV2gerWBBlvYs35+BWL2nroO55S3apYFReA0uXLzBwapjJTZt3EPEuNAsGRACyh1srBYIdOwyf2bIYfbVOb8JhfKVOZ7KH/cYf2ICSRTeIHJD4kR4rkTzq0VwlRySIuQrq+RTKVJ6l6tCaL1LbG+PMO1S1Kftoi2FSncbGEOgpDIfgpg5cvEEzUSZ8uEeehtGORjmuRuJB4QurB9m2TTC4M0H/QIm17hGWh0yv0PpMSVvIEi4KoMLBrgWojT25WAAvnqyW2fvA4+rkS+fmYpZ02aV5Jc8pUvYzmUxJXsJcdvKoQFZXaFSG5Cw5xvns8e5AWEySy6PRBXFTaayPCwQRp2UgC3oKNW7dwaxZJTpmb6cNfFlIf8jOgjqAijN6XUrs8JXYsvKqF3Rbycym5izZqW8SjEVdsOM/0mSHS0MFfEVAh7AFJhcQX4rxgh0JjbcrAnjnqOQs3FxMv5iidyc4hcU4Y3D1P5doEfWkAACAASURBVOFhOhcLBEswd10Pdt3GSsFuC2lOceoW+miJkWtm8O4ssHyZ4q1YWAlIw0YSC3tnjTWfVRqjHhfbZbCV/No6DTxAcEbbtBOXi4UCpW3LWEfzRL1KUkgpHvZp7WqRP+GT7K7T7rh4ky7+MjgNUFfIj9dZWSjSc9zCCYUoCogKQlNdqLm4dSFeGyJuijvncqrTT2ciRBOLdjUgP1EjjB1SsdCOzeDEMtH5Aq1tHZLehMIzLu0+i9ZTPUSb2xSfDmjtadEMXQa+YzPzzojCSYe4AFYi+BWhcNamvg6SwQgii3A0ou+gTXWdsjJo0T9SZWm5SHDexWkJUVmIykrckxA1PLQvIlkOsvp1FKdqE5YsaiWh2fbQtoNEwv/P3p3HWpLdh33//s6p9e5v7/de9+t9uqdn58xwNlIcLloi05aEyCYiGwhhJYRgOwKcOE6UGEZDRpxAUqLAEmxnghhUHAUWJMUSRYkiZYo0xVk0+0zP1vvy+vXb37v7rfWc/HEfpfZ4KI4IkjOcOR+ggDpVp+r+bt26p+qHqjpVhArv4JB8I0YVirAtFEdSZr6mKUPhwJ1rvHZtPyiYfNXSqwboVChjSK7WUTmM5gzhTELj6wHtBU31j2rI6xWSOcgbluZZjX97l8bv1RguWgZLBskFVQqqgP6hkrxuaZ0d/6f0UBFtCcmUxpcKnaOKoCMEHaF/tMAqGf9/BR45dYGLgxmiXejdniGepRRF/6ghPheSVcFO5lQueyDC4ADkcznl1RplxbB4aoN2GZKtValfheHhAhmN6+Z1MD5EWworitb+LkOr8XY9Jo63ubg1TbZZIV5T5KVP2Nn7PsdKykAYxkJ81qd3CKJjPUy9wLsRkO4r8bd8QNAjQQwUvoAGivETfMnJFFsqbKkxtZLhtMfwaE7jDY9wV0h3x8ffwZRAvUTveAQbHtU7dqk8EVFbMWR1zeZWEzNV0M5ijk9vcvbiAotfsaT3p+Qo8C3hmuaeR85z7NAa15Im/kpIESvij2yT3qiStwxTz2vymsKbSlj4rYDRlGZY0ww9zfpuEzZDZKSxvqXcNz5Wt97QpK3xuYpYkI5PbRk6x4RoB1TJeB9vlnhtTXk0pbPRQPkWb90nuWcErYLt4z4qUVQ2QRXjNjncFZ5mHn8mQZ+t0rxnC16roPo+w+ZeO7pbobdbQW8EGB8ad2/TySuk/ZB4XegdLwnqOd3NOtmBHMkVCAS7isZVi5dAURGqNxSLd66T//40fluTThvql4S0rtkJA9YHDS52Z0h3Y3QiHPyDDhsPBZStkrShCOdGmE6AXhgSTKR4zQy5EWG1YB7oUrZDmh9bo7dTJdjReLd3SVFIopGBppgsKWuG+iXFcAEmFztEv18h6FlGs4r5u9dJz9exHlRvCK1zUFsWkumQwaLQeN3DeoJ/oou6GmFF0Bl4I0XtKhSxkFagzDQUigSPYEeTzBtsoZBCUVmFrCUUswXe/Ig8CyhqoFMhfbhP/GpEr67RayH161BdtWzfYwm3FKNZaFy1qAL8IWA19acDzP19JDCU/QDvSoyXCFNnLINF4bYHL7NzYRKxYAKIdgSrhfSRHpUjPdKtmHhrfGxKJy37j23i/fsKZajwUsir4N3Sx2yHBF1IZiDc1pjAEm0penekkGnSWzOSIwVeMyNdraITNT4nWhgBQpIGNBZ7NL5c4aXGJP66TzZhxueTcUm45pM3LJVV6NZ8phc7dEyEDQ2eX5IXPtYoSDVYOHJ8ne5Kg/YJj2QYUsQGWYlQqUYvjtgY1QhfqBB0hGS+RHc9Guc1jWslG48W6J4m2tCkUwZplNRe9ylvGRFdDNAZJLOWZBYG+8EeG2AbJc0XfOYe2OBGK+RvfuBpXj17iPknCiobhq2jHsEXG+hTA9LMoziesXBwhxveBLVDXYr1mJ7vobuasm4wocUqQeXCbXdfo/9Ci907DdFEgtyI8PpCfjBFdzxMqwQrGKOYeHiTEsF/tcLC4xkrx0Kqlz3ypuWOe66w0avjb3pkLQMWbGgoKuD3FFhhcLnJ9le/uHr69OnHvlXO5K5AfwsiMgV8+S1mfdxau/0XLHcH496wb5Zaax/4TsbnOI7jOI7jOI7jfG+4BPpb2EuS7/42ljvz7Sz33SAiV4D7rLVb73QsjuM4juM4juM4369cL9yO4ziO4ziO4ziO8za4BPpdTkT+log8LSIvisj/ISJ/V0R+8ab5nxaRX90b/x0ReU5EXhWRz7xzUTuO4ziO4ziO47z3uAT6XUxEbgU+BTxirb0bKIE+8BM3VfsU8G/2xv+2tfZe4D7gZ/ee33Ycx3Ecx3Ecx3G+A9wz0O9uHwfuBZ4ZvyKaGNgALonIg8B54CTw+F79nxWRbyTXB4DjwDft6Axg70r1ZwD0ROs7Hb/jOI7jOI7jOM57hkug390E+DVr7c/9BxNF/jbwN4A3gH9rrbUi8ijwCeAha+1QRL4KRN/qA6y1jwGPAYRLB+x3NnzHcRzHcRzHcZz3DncL97vbl4GfFJFZABGZFJGDwL8Ffgz4z/jz27ebwO5e8nwSePCdCNhxHMdxHMdxHOe9yiXQ72LW2teAfwR8SUReBv4ImLfW7gKvAwettU/vVf9DwBOR14H/BXjqnYjZcRzHcRzHcRznvcrdwv0uZ639DeA33mL6J99UToH/5Jus49B3JTjHcRzHcRzHcZz3EX369Ol3OgbnXeKf/sIvn9639DDppKV2LkAMJEcyykaJvVJl9mkh6AiLX95h45EQKYRwW3H/R19nsjqk88IUxldEW0K8LvSPlpSxpahAtKPIG4ZsFDCaEryBIpu0+H2F7fuoLZ+iZikjeOTOsywubXHtyixTx3YZ7VQwvgBCfdlwdjSHbRaIgDEe/UEMFlBCOhmAhutJE6uh/coUQRcK5aF6Hl4iXK1V4EpEOil48yO8N6pYhP75FrMv5kycEYqP97FrEaoQsqZFGSFY90huSWmd2GVpYYutjSamajh2YpWdTpVkShjNW7KTCdlqlaCr2K16+JciOnXhrgMr9J+apH+spHtYUb8qtC4YaiuW4bwiOtIjqqeMkpDuEQ8zlxFdDkknLTbTIDB3apN6a4huZZjPTZMezmk9FbCStAgXhiSXGvg9xezHVtka1fDbGt3XGCWgwd/VZA/2+Pi9r3JufR9eX1G2So7v32B10SPbjUkXCtK5Eq+r0UNFGYGezEiNTxkIyamEe/cvM/zCDLs/NsT0fUwAgwOGaDJld72BzgQ9VMSbQlGBYjYHIwRdRf0qSKHxO4p8qsRvZKjNAHt0SDYMkPWQcNOnDGFwQDBa8EZCGQijWWH+CUt7v4fX03RP5Uy+rFh/EOLLAentIwqj8SYyzGqMKoUNieBKhanXDbsPZQSTCXOTPQoRUtF0DgYUNSj2p5hmyehIgc00t9xxna2dJv5QyOrgjUCVQueelKJm8eOCQgs2MjTOegTbGn9gGeyH6gpET0aMphXV6xqGPv6GRzmXkxUe5Y2YdH+OOV/Dmx/hn6sw+5xh986S1dUpmm8IybQwWso5cO8qtSNdNtIG+z++TOdak33PpOyOmuhUyOuWvG6prgqvx5MMZwO6hz2iHcH4QlkrIVe0ng+wWjABZIdS/NkEsx4zOFwSbmlUCUFP0H0NQP0aDJdKMIrouk/QE+pXoagKw4M5RcNgRfC7iqALeQNGc5ZsIUcmc9rHQW/7VK8r0kmL8cEoze6HUqqXNOWRjMtX5qhcVxQ1IZkxeCNF2BaMB0EPdA79WzP8tqY3jAkvh+TGo7bUZZTEJEsZ9QuKzWmf6Vu2ifYP2KYKCChQuRBvCWUk5K2SZM4wN9Ohe6FFvCEMF6GMwBsI9RVDJ46IdhVWK2YeWGd0qUneDbGBpXJDsVEN6fQqNGYG9M9NcOCrCZ0jHniQLhbYVBPc0kc/1yCfKTjyrwes/LBPOmPJ53JKLQQvVegdtRSxZnigRI0UH7n7dTafmmXuuRF2FBNd88gbQlG3LCztULzWQKdC9emIqYc3Kc7UKeqW6YUO+qtVvB2P6LombwjxlqX/6JDWv6vQOWWonAsoRz6165b6R3bYHVUpJkpMbPH6iv6pDCOCqhUw9Khf8OjcajDrEVaEUT8ivBaODxIKqquWtAWVFY1VgmmUxJMjslGAToRwRxjtLzEKbKlQfQ+VCfnRBP+FGvXLkNeEweESA9QvKnqH4UpYp1iLkUIoQ0U6X4z3mVpJeKiPLKaY9Yg0gsG0pn7BY/eukuF+S2VFkx3KSBdL8tUKRayQEuKjPbgek05Y/L5gtaBTYXDA4t/RIR2GJPMlUih2Twl/9dFnufzKIo1rJb2jQCmoQpBS2PV9zI2Y6VcK5CM99LN1Wvdt4j1Rp3+0YOZAm8F2FYMmawplDKZqoFSoQhis1DE+1Pd3mfm5l9n58X1UrnoEHUveEMTCwuMJo2mf/jBi/sg27X6VUS+C0GBE+IEfepmLeQvpjtvcIoaJs0I5DNEJZE0o2iHRhZDRgkGlgt9RmEMJduRhPfC7irJqCDY98qbFIgSNjNqLAcmiQfc1taUeySCiqEJ+JGH6KaFzu0F5hqSh0Hf2yJ+bZDSjqK4ayh/b5UfufpmnLhyl06tw49Is4bpH+6MJ5noFlSqsgPWEYspwrdui+rnGeDtFQuv2XborDbyhYv7JAZsf1OiVCCkU7TtLMJAMQlRoMIn+s/+2DDQTryp6h2D+SYs3EroPJcjAo6iMf4OsBekEhG0hXtG0LuSMtuvc+4mzrL4wT3UNRscKuBajUkXRKhnNW0bzlmKyJGtYDh/aZPj4DMmMIWimlNcriBEoNCYAlShUrkCgrBnUy7VxfEYI2zDzkXU2ezXyQUB0w6OsgFihjCDegK377Hi5kWJzpUX/WEntspBOCv5DbbhYgeUYez0m34xJZ0tqt+2yE05gfWAyo/6aT3yyx2gnxl8JqRzo4Xsl/SzE7ylG4nPqQ5fY/NwSZQXidaEXe9TO+3B8iFoNOHDHGq2JAfnLdQaHDT/3gc/zhRt3E3YAC739BlYjgq4QdCybDxsGSxa/qynDvWPL8RHxEzWsCMPbEtL9BaSa6up4P89rFkrBxBa0pXZF03odJPXJmpDXIN6E5r3bdK83KScKTM3QOKvoTvpEG4oiEu584CLtM1O0jyuiLUU6ZYlPtcm3K5SRUIbCaN6Q1YTUV1RfjikPJ+SeYEUYLIzbghtpDa89Pr8qq5YiVKgChtOQpAHhqk8yYwnvbFN9MsKcTCjO1+gcH//foh1BXwsZze8dD4eCN4SsadGJUO7L8W8EeHMJWhvCJ+vIqQEyk5EnPnYtwrYK6k9F9ObApj5ZFY792i79gzW8geKvfPh53lhZQEoBGR/Lan9YY7QPGvv6BH/UGLdticIbKqyGYajIEx+VCeGuQl2PGCwZioYhLzxqjRHhsxFeYkmmBTubUuKR1RXlvgw9lTL1NQ1WM5qyVJYVgxkhqwvppCVe6uHVc6rPRgxnLcqz2EFA/UiX8itTPKvmINVMn8lRhUH9UJ/teoj3fA21GZCnAfefvMja0/N0appgU1NqwT80wL8Q4fUV/kDITiRsvz6DPxDSKZhZaFOcqzFaKLGlIjzcJ089sELtjYAdE2N80Bs+Gx8taT0bMnpwgL8c8uG7X+PMpSWKCoRbGq+vqF3RJAsGDo5ovOATb8GNl760evr06ce+Vc7kbuF2HMdxHMdxHMdxnLfBJdDvISLy10Tkv3+n43Acx3Ecx3Ecx3kvcs9Av4dYaz8HfO6djsNxHMdxHMdxHOe9yF2B/j4hIodE5A0R+ayInBORXxeRT4jI4yJyXkQ+KCKfFpFf3av/WRH5ZyLyhIhcEpGffKe/g+M4juM4juM4zvczl0B/fzkG/K/Ayb3hp4APAf8A+B/eov783vxPMn611X9ERD4jIs+KyLPFcPBdCdpxHMdxHMdxHOe9wCXQ318uW2vPWGsN8CrwZWutBc4Ah96i/u9Ya83e+6Tn3mqF1trHrLX3WWvv8yrV71rgjuM4juM4juM43+9cAv39Jb1p3NxUNrz18+w315fvVlCO4ziO4ziO4zjvBy6BdhzHcRzHcRzHcZy3wSXQjuM4juM4juM4jvM2uNdYfZ+w1l4Bbr+p/OlvMu+zb56/V659dyN0HMdxHMdxHMd5b9OnT59+p2Nw3iX+yf/+y6fjH3yQaE2z/4evYr7aYDSpkUQTHumxO+VTv6q48YmYciLH3/bIW4aiaVhut2A9YuJsyu5Jn6IqGA9svcTf0QRtIdtfEF0NQEMZG+YfF7Z/IKNoGopWydzjitGscG44xVZZYeqLATu2Sj5ZErQVwSPb9LIqE/dtop5oEq55pFOWT3zoJa6/uoBVoBNhsN9wy+3XOTSzzfWkSXVZkd/fRyYz8iRALsUMFy0msMwv7dKuaqJ9Q/LJgm4rYueBAtEWuxMAELQVBz56jZ31BmSKdK3Kelqldtkjr0G7DJma6mNCi1fLaX6pytSj6xRn6gxawuKd6+xsNFjrNhi1NBOvKFSuGM0CRshrQjILWQjeM3WshmhbCG7pUUyWhBdC/Ds7lFsRbQno9WPylSp3fPIcJ6fXuXpunmSfwa9nqGbB0Avo+4rayyHpJFgNjaNtvOdr1K8buo2AK3kTte2Pt9lsQqOSUnlsgu5hIb7u47c18aYlrwtlBMUg4PCpVbaJiF+PuGSalLePqH25RhkIKheqK4rOchMEDn5+yNb9mjISKmuQzFmO/kbJ5g8WZL5HXrcUFQu5psw14aE+8kodtTiieiYkmbEEJ7vY1RDrQf+QZTgPlXVh4tUB7R8As5Ry8P9WrD2sULmQ1y3h9YD8QEqW+pRVS1k32EJxzwcucUFNUTvn4x0d0jkzTRYKesfnwJcLBh8fEkYFflCS7URQL8hEEb4Y0Tk13v/KSKhsGIzxOfgHOTuLEffdeZHFqTaH7rnBpfVZ6iuWwYJgQoXKhNZFw3BOEXRhtGDgSoVyLcb4oAeKbLYkejkmb1kaVwzBtkd5z4DRgRKTeGAE7w8bZC81SGZg8HqL6g3Lxv0a6wllYAnu6FBsR6hMkTVg5kVLvGXxRhYpFHqoMUooGmCPDJle2iU72+ToyVWyJydoXFBMv5xQXy5Yf0hT1AzNc8JwQdBDRRlb9j1lGU0phPH+UD+1S1xPKZYrpAdydE+z+Ccp2w9YFr+gGdZ81EATthX9ExnhmodOhQNf3GH7oQDV9xhUFR++/RwXe7N4Q6GsWeJ1QeUwXCrBKMoIapc1lUe2kTM16suG6gr0TUzjMgwXwIrGTOUMLzUZblTxRoLfg7xl8fuC1SBGKKuWyrLH4PUWw3lI7xtQGI0JLX5v/PuqXNi90xJ0FJtRSLjpUQZw7/3nWbs2jc01aqDR52JMBFY8BrcUeB2P5isauX3AaKVG0FGots/aDyuiVR9vqIhWPQbax3pC0FE0Lxl6xwxzx7dohCnnqw06+yOyJmQTIAiH7l1h86uLlBVL6zzs3GEpzjQoquDd0mNrrUUeeYzmLekUSCE0rhrai5oTP3iJ7rPTlBFkCzndI8K9h65yeXua/X8kNC4K+se28cKSrBdCorEVQ7ZQUJkZ0vxayHC/xetp8qUU3fVAwWC/pZzPmLx9m3S5SnRgwKBdQY3G+4ffF4oYmq/5RDc8vKFw4hOX6D0xy+iOEenRnMoFn9aDmwzW6kSbQt4QWoc7VL5QpboGvYMQrWusFuoXNYMpIX6ySnpbgsk00YpHctcIawW0pXpVkRwosCMPlQrWB5UL+kLE8FjGgS/C9l0Q3tJDz6TYuERebJBNl1Sue9SvWaxSnCmnUUOPwaLgHxhit0NM1WA9S7EVU1sW+vs1PQkJuoq/9QN/wp90DxPvG7K/1WF7eYLGZfAHMDyVQqGgWuJPJ2RKEWx5DK1HcmqJrGkJtzRWhKBr8fuQfLpDVwI+eN95Xr+4SO2SRzZlaDwbYm8Zcu7SIpVzIVaPj9n5vpxw06N/PCeZBf/ggDyAaMWjDKF2TVFWwM5mFBpsbKhe8YjWNFaP29NkzjAz1yFZqaESTTZbkG/G1K4p/L4we+8m8kSF4bRPWTEgUP+TmOGCJdwV8p9okz01xaWX92OXEpRnKEUwSjDFuG020znxtYDpM4bNos4giyh9RdCxSAmr1Gmeg/4Rg05DuK9PEgizT1k6twK+RXc9vIkUWQtRmYAVwl1F1hSyuYL0AwnDyMefSikSn3hDKEPwT3bRUylmI2JwuCRt+AyWDJsvzzL94DrrYQW1E1A50YZWzswfhBSRxusrgi3N4Q9e58rGFJlWzJ/YZOvCNDpVFBVI5kv8uRHeRIZuZYSzQzKrKNF4QyF+cItht8qWiWEtYu5pQ39JmL5jk+r0kN4gpn9Lidf1aJzT9G/NCLY9KquKzq0GWytJNyrk+3KKGPKGJWgr/J6ib0N0oph7rqS76DHxBmwtKaTv4feFZCcmW69gKhZzbITsBHRfnsQqKE8NKIcB4Y5icDLFFJrKVY/tYY3ueh2rFNl0yYrfYm1YZzgnWK0YxQrd10ycL1EGBgdArFBGQr6UEi176LZP8JEtOF8hvuqRzBqCTY+gB2lLAEGlCutDuOFRRsLOPYb8UMrUEx720TbFVsxgEmxgsZkGK0y/aPF/aJfyYhVzRx/RUL5Uo7pm2Lkdgp7CPxNTfrRN/amAoGfJa4pwR8irQtAVois+tXt3iB6vsP+P+2x8RMAIUy8JYdvSP2RpnRM6xy3R3JByvUIZgqkYMhSFeBy9ZZXtc1PoD7bxpxKyTkyyzyAzKYVSFHVL1gRbLfHbmplT2xRv1GE9RFZDspYlOBeiDo+QqzH5lMG/OG73gzUfbwAWRe9IFe++XfR8wisvHsEElsqaYnigRA8V/WMltf09shcnGRywcGSAnc6x0zlHH0tIP1aQr8e0zkP7VIlRQmVVYbUgqWIgHrrnU1QElKA6HtGWII/sEj5VZzRl6R6zpLMGf8tHECQdNzyqEFKtMBsR6ZRl6fPQPimE6x6d602khLQJ/vQI/3pMXvPoFFXKmiHcUWT39ZGtgHO7M4S7CgpFZQNGC5aJ2R7DnQomgEO/12HzrggphHhTGO43FD6YnRB1eIh/JSJ+MSRZKscNYqaxcylxNaPyTIjue5Qf6ZB0Q+IbmgvPL5Et5Xhtj7At6Az42C5p5qNuRCRz4+PA1te/uHr69OnHvlXO5G7hdhzHcRzHcRzHcZy3wSXQ32Mi8rMi8rqIrIjIr36Luo+KyMM3lX9cRE5996N0HMdxHMdxHMdx3swl0N97fwf4QeB/fBt1HwUevqn844BLoB3HcRzHcRzHcd4BLoH+HhKRfwkcAb4ATNw0/a+KyJ+KyAsi8u9EZE5EDgE/A/x9EXlRRD4C/DXgF/fKR/eGPxSR50TkT0Tk5N76Pisi/0xEnhCRSyLyk9/zL+s4juM4juM4jvMe43rh/h6y1v6MiPwI8FHgkzfN+jrwoLXWish/AfxDa+1/s5dw9621vwQgIp8DPm+t/a298peBn7HWnheRB4B/Dnxsb53zwIeAk8DngN96q5hE5DPAZwC81sRbVXEcx3Ecx3Ecx3FwCfS7xX7gN0RkHgiAy99qARGpMb69+zdF5BuTw5uq/I611gCvicjcN1uPtfYx4DGAcP8B++2F7ziO4ziO4ziO897nEuh3h18B/jdr7edE5FHg9NtYRgFta+3d32R+etO4fJM6juM4juM4juM4ztvknoF+d2gCK3vj//lN03tA/a3K1toucFlE/jqAjN31PYjVcRzHcRzHcRznfckl0O8Opxnfiv0csHXT9N8DfmKv07APA/8G+G/3Ohs7CvxN4KdF5CXgVeDHvsdxO47jOI7jOI7jvG+4W7i/x6y1h/ZGP7s3YK39XeB336LuOeDON01+82usfuQtlvv0m8q1bydWx3Ecx3Ecx3Ec58+5K9DOnxOINoVkznD2/AJ5VahfUtQvKUbX60wvtTE+xGuCtx5QXbH4HYUSS1kq0ha0j4eEu5Zw17LvCQtiyaZL8jpYC8nBjKJZ4M+NkHI8P6ylhLUUq4BjA3Rc0F+rUV0eEnSFcFNjfNjdqtM6b3hw7gp+z+L3LDoRttMqwS4UdUMZAt64L7SFuAMGkmkh3YlJd2Jqy0LesFgPKjcUJ1rrFJ2A/kaVvB1R1Euk55F2Q4wHxoP6NcP1dhO/J5SNknhdkERTVKBxXuNfitjZrZKuV0jXKwzmhfV2ndG85dHbznJju0mw5mELRe2yItoxlBHEG8JobjwEu4K6EeGNQKdCvGmxVjixb4PywS6jUUC2L0cGHjLwiDYUl9pTnOvMUsQw+ZJi1A+Rl+tUVwSzXKWyYUBZUJbeYLzuMhj/1EXqYTVYDdONAZduTNNd8vD6ChNYTGCxAmVksb4lOtDj0vIMNtF4CUzOdkl3YnqHYHQ4Y3Q4o75SUNzbw+8Jo30RH/zAeSzQvs0giSLYGCA7Ad5Q/nwYCFII+5o99E1P7Yc7wqAdY7xxjCoVVCoMFg2d41Uq1YTpZh89LKiuKIpmiYkM6aSBro8oC6kaDwKZ8VCZ4PctvatNsGATjYkNaUuTrVcY9kOG/RCxgh/nTFRGGE+oz/cY7TMYD0YzCi8BKS12Iuf5awd4/toBAEwAeUXBQoLRlqwhdA5pytgyXLRUD3fIJgzZhEFKyA9khJMjyggkh6Sl6S8Kt86tjTfC0ghvIGzdY9m6x5LXLUUFhvuEbKYgr1oal6G/W6GcyilikNmU9jFF+5jCH1q6x0vCXYvKwSrIOyFrV6fIpkpev7SAlBDvlKw+ErP6SIz1DV5f0TkO3gCKiqWy7GE0ZC1LEY1D21ltsrPaxATQej6gcdVQhppg1SdpKby+EBzv4vdAdzzqy5b6smX5RyexmcIKeJs+V7pTTL4yXrfXF7yRHbcVoSHahmgbhvOWrbXG+LvPKnQO1RXwdve4RQAAIABJREFUhwbJFPGGxe6EIOP2JG8YvCFYgebFEjGQThkqC32SWQMCfl+w16pEqx7RqkdRsxgNqgTdV/SOljSmBhRVS9kqeO7yEqqA+ESb+EQbq0BK8BJLeN3HO9yndwgmakNg/NnphGH2qz6VNUtlzeJ3LTYwAKSThqBX4nU85qtdHn/tGDZX+B0h3B0PRcXSSSLSCUs2WbJzG5ipnNHseB1KWWSkKEOL2Rt0AmLA62jWh3XCXYvfh79y1xnq+3ooLFhoH9e0j2t2Xpum14kJtzQ2KiEXRBseWLjKxocKpJDxZt0OMNpi9LjNp+2zsdWgDMBaIbjhI6VgfIvVEB/t0n1wRPfBEWLglWcPo0fg+SVKLN7QsrlbB2XRuSXowDDz/2zf1cn4+0sJU6+koCyjWYtajpiY6VFZt5Sp/vNDlwG9HhLf8MAKKmccy8MddNtjOKPHv5lYRCzFRozOQOKS6oolr4JOQXoeyaGUvGng1TomNuCPh+hAj/YHMpJpi/Us3gBeH8xjfUt+oc5Kp4mpFxgfjA/0fMQ3KN9QiTKOHF6niC1ePaeoWsJWwnCfBYHG1ZzG1Zzjk1uEm5o/ffkYFEL9uiG+7jGag/JSjQOHN/FGUF2xVFcsMtDUVkrwLcG2xlrQQUk6Nf4dpLRUr1vqtRHVyfFQRtC4WoBAMg3Vyx5ry5PkjfHve+ToOrWrit4RQ++IoTCKZEpjfIu3ERA0U8SAKoR00tK53iToQjphyXci8p0IFZSEOwqplJStApRl4qwBC3ndoofjdlln48FGJdaDaE0jxpJeaDAz22U44zH5rEflYoDKhfmJLlKO/3smsuRNS16z6I4m242YuW2TdDtGp+NuX2rLkKY+aeozOpZSWdb4PQjaimSupJuEeEOFOjhgcL5FMgzoLyrSownp0QRvCBfXZihGHmo6ZSYeEC4MqKxZ8oZl6fg6lSgj2YpJtmL6Kw3syKNsFFRXLZ1ehfo1i9fWFPWSjXsVk69Z+klIPwnxpkfotkdlVfAHlgMHtom2x/s6ClRQYqMS1fGo7e9S298lm7AUFYuayIh2YDCrkUyorGewFWKmxvtXGUIZQnxdUxaKMrKkU+O4i60YfXuHvGGZnulhR5qsZTEzGWYmY3A8o3LF5/LWFMG+IaoQwm04cWgV41sar+3SX1RgAAPGs9hcUVRhuFTQ7VXIaxB2DZJo0inD5r2WeMNSzOQUMznSyJBCGO0riW54mJGHPzIkic9wseSnTj7LgdldKpd8Kpd8vGHJ7ivThG1Lo5qwfHWaqF3SW9IwkeENoXvcMOhFDOYUgzlFOlOiU4sU0L8roXvEUAtTsNA7VEECg7/j0T2s6B4e75PJpKByYdiN8BcGeCOwvoHdgNoyLFV3qWyW6C9NoL80gfUsVlvKgYf1x+dL4Y4CI1RXLVU/Y7BUjvfVpqWILYP9htGFJnnDoCdSRgdyioolu32ICSHcFerLht5Old5OFVMtCdqKwVKJHij8nmLiBY/eboVgF9RMQnmjgn6jin6jyu6pBlGQg4yP+/HsEH2kj1VQxJZiOkft+n92jhu0IZ0uGSxYeps1RjPjY6n4BjXQYKFxxSBmnCNEm4KMNKaVYwNLb7+HXguoLxuS6XG96uyAMtd/1h7mTYOq5egRmKtV4nXBb2saV0qwQue4RSXC9m7tz85By4qPRCUmtAzmBX8iZXGig1VgzbidtxrURojaCBEDdjdgsdmhcxxGM+P2nkLRO5WNj5vbPjoVsiZkTZit9wmXxyfG4baiqL79vpRdAu04juM4juM4juM4b8P7KoEWkUMi8spfov6nRWThbdT51b/EOv+6iLwuIl8RkUdF5PPfov7dIvKjN5UfFZGH3+7nOY7jOI7jOI7jON8Z76sE+tvwaeAvTKC/DT8N/JfW2o++zfp3Az96U/lRxu9/dhzHcRzHcRzHcb6H3o8JtCciv753Ffi3RKQiIv9YRJ4RkVdE5LG9V0L9JHAf8Ot7vWDHInK/iDwhIi+JyNMi8o1XTC2IyB+KyHkR+YVv9sEi8o+BDwH/l4j84pvmfVBEntzrYfsJETkhIgHw88Cn9mL474CfAf7+N3rmFpEZEfntvfifEZFH9tZ3WkT+lYh8VUQuicjPfhe2peM4juM4juM4zvvG+7EX7hPAT1trHxeRfwX8HeBXrbU/DyAi/xr4pLX2t0Tk7wH/wFr77F4y+xvAp6y1z4hIAxjtrfNu4B4gBc6KyK9Ya5ff/MHW2p8XkY/dtM5Hb5r9BvBha20hIp8A/qm19j/dS7rvs9b+vb34YqBvrf2lvfL/C/yytfbrIrIEfBG4dW+dJ4GPMn539FkR+RfW2vzmmETkM8BnALzWxLe5SR3HcRzHcRzHcd773o8J9LK19vG98f8H+Fngsoj8Q6ACTDJ+p/LvvWm5E8CqtfYZAGttF0BEAL5sre3slV8DDgL/UQL9LTSBXxOR44AF/Le53CeAU3txADRE5Buvrfp9a20KpCKyAcwB129e2Fr7GPAYQHjgwNvvfs5xHMdxHMdxHOd95v2YQL85SbTAP2d8lXdZRE4D0V9ynTe9gIeSb2+7/hPgK9banxCRQ8BX3+ZyCnjQWpvcPHEvof5OxOU4juM4juM4juPw/nwGeklEHtob/yng63vjW3tXbn/ypro9xrc/A5wF5kXkfgARqYvIdzIhbQIre+Of/iYxvFX5S8B/9Y2CiNz9HYzJcRzHcRzHcRzH2fN+TKDPAn9XRF4HJoB/AfyfwCuMnx9+5qa6nwX+pYi8CGjgU8CviMhLwB/xl79S/Rf5BeB/FpEX+A+vFH+F8S3aL4rIpxjfWv4T3+hEjPEt6PeJyMt7t4//zHcwJsdxHMdxHMdxHGfP++qWXmvtFcYda73ZP9ob3lz/t4HfvmnSM8CDb6r22b3hG8t88lvE8OhN419l71Zta+2TwC1viglr7Q5w/5tWc+ebyp96i885/aby7X9RXI7jOI7jOI7jOM5fTJ8+ffqdjsF5l/iffumXT0c/8gA6FUy9xBqPdNKSN0Avjhis1CkjIdyFogrGF6wH3e0aRWyZfE4jFnqHIW/AcF4INjz2PWXZucdQuRzwgYfPs/3CHOXAJ2sqqhc8Bg1NOfIZzgq1F0Im7t4m+HKd7TtDRidTqhc9hguGeMWjfXvJHQeu83y6wGjOMnVG6J8oaU8p1FZAfRnCbaG9H7ayGnctXWf13Az5XA6eJW3B/K2bRF+qEbUty0cCksLD3wz4r3/oD3jmxZOUEwVBPaMoNDaw5DVF9ErE4AMjKmdDgq4l6CgQxtvnUIp3I0IKQeVCZUMoD6fkuccg1PQ2qxy8c5V2v0K44TGcVUy+UZK2FCoHnYHVkM6UpBOQN0v2PZnTkxortop/tkIWCPGyj8oEPRKSOcP+hW0uv7KIPTrkxIevkIhm2Is5+IUeOz9kyQjwTvTQrYw89bCFJq8o/L4QrnmoQsgmLFkIRepRu6gZ3J7RfFkTdKCoCVkL4jXF/O2bDF+epH5RSGagun/AYBCy9AeGaN2jdlmBCM2Hd9geVDFac70RkRuNShXhrma0r0KyvyDY0WRNi/HBzObEV3w2VITxhHAqYUhAUbOE6x7TZwx5RTF51lJdg7QlpC1FuDjE/H8zbN8R4A9h9mlD/76c2msBtWVhuA/UUCOFMH1wl5WdFv7VkLwmhG0hO54goaFyIQALUihsqVF9j+qyIvE82oOYcEuT78bEm4I3Ai+xIMLubT6No23Sq3Xoe1zJmtD3ACE+1iN+KqZz0pAdylBzKeHsiOEgYmZ/m+rUkOJSFVLN5KE2nSKmnCywpUdRs/zInS9xvj+D//UGJhT8ruANhdp10IlQVKGYKGkudZELMaWnsaVi6lVL80Pb1H43orpmWHtIg4UyVCw9fJ1dFaC3AhrnNdVrQqk1g6MFjQuC8QQvAW+gKUMQC9mExSrglgGVh9p00ohgV5PXLM03FPENRVGBMhTKUNi+UzHxBgwWBauh9bWArftL1FRGYXzSCWH6lYLS81EFJIsFvTTE3/ApGlC9LqQTwmixRKWKyiqoElQhlJ4inynI5gt6h8b7gU40iIASpu9fJ/zjGvGG4A8UZQgqF0YzirxhKfdlmKtVwh1FcveQyjmP0cmUaNVDFWACaF6ydI9A8xxgFf1Q4+8bYToB3qaP3xO8w0OUWPpZxPH7r7FzbQIvEbIsQBUwWqlRhjB93zrx1AherVLEglWCCYRsf45BUb+s8UeQVxS956fIK0K44YGGdMJQVC2ts8J2GGE9S2Oxh55KqdUSipUK6VyJCktMN6BxSZj90BrNqQHJhTp5VZHOWOYXdtjoNGl8aJPl/gTq85O85k0x9ZxmsB+KCljPQq4oKxa/7WGnc2zfZ/Sbc3gPdiluxDzysVfY9CL0+RidCioH71SPrBtiaiV5LyTa0GSHU+KrPqM5Q9YPqM0OCMKCXuTjDRUoIW+VhK9USCeFQhQqUUipsB7c+8ELDOYs8cE+o+UaOhXKGHoHNbbQSCnj/X+qZOrfK3r7fCbOaOIVTRkKxheaFwyDu1MqF3xMIBQTBeXIR5WKrGWwqzHlVkTtmsJLLDL0EITKpkGMUAaKYMOjqI63TbyqKRcyxLP81K3PcuGPj+L3BY4NkY2A5XP74PAQvREwGkVYAW+oMaFQVIBCYUeaxGqWpnZZG9WRjQCskKGJ1zTDBQto0gnN9fUZxAi1W9pkmzHDefBOdUlLHxtYvD+us3tXSf2yoEoYLMFoWiFTOdU3fIazMDXZZ+Jgh85ODZ2Ot3s7CDFrEeVOSHowY3R3TnQhIJm2pPtKUKCHCuvDdh7jtzVBR/B7Qm+7StAW+icLJFXIVkD9mqV8tEvjayGDBfAHiqIGMpeiopIj89tsDmvs+4pm4iOb9K806d2Vo7o+k4+s8+jtr9OdUpQv1RALo2nBeArrW6ItGC7AYBAz/VJJ76BmeEuGqRraOzX8jkaMEK8LWRNYHLHwBUX2wIjehRYI+J3xsRURKuc8oss+aV2RTxjmnyzZfrgEz6LO1hAjNA91yK9VKAIh2lLMf8XSOqPoHNWY6QIEqrWEayvTGITWiwrjKTaikGytgvUt7PXjqlLFLadWWM2alLlm7tmcnTuEhWNb2Jfq7NxhyDsReSek+XSANxqfS7RvM2SvNbj3b7zC+ktzWBFKH6b/1GO4YHnoxEUWal3iuSHJMxMUBzNqr/oUkTA6WJA0Q/L5DIyw78QWC0vbTC102Og0aD3vU9wxxL8eou/qkhWa8KUq2fGENPPxVgLmH1zFaAijgsrXqgwOWPYd2MX/zQm8vtBfgqxpGIjHaKbOcN4w8Zoi/v/Zu/MoO677wO/f3639Ld3v9Y4GGjtAkCAIkARJk5RIiXK02pQs2WPLY2fkeEbJxMc5kzn2iU+8DJhZYsWyPZN4nJhyPBrHtix7Ykn2eKzNEimJFEmQBEmACwACaAANdDd6e2vtVTd/vKaEwBRtSqQok/dzDg7q3br31r1V972qX9d2SWg8r8mVg7+sUYlFdWeb/EIFSgEUKBh6XtCWkPmCihS1Ey7hNTGVMy76QJcS6I/YeKc8pBAe620k1hb2nIeUEI3ZcKBLueLT0j7uikVlEawEisLBjhns7x9SxGODY1P/kkLbQumANZkg9YzW6RFUpkiHFGyNSEWhlVAEGgph5FlN4Sms7SFxx6c6a6MSi9LV5BVheKbLpWfGSUeE0gPU4H+7Y+EtWxRVjcoENR2hOx6LlcH+I5tKKWsF2tMMb+oQ9zycrmLPvjnahQf1HK0Fe9Ghtz3H6Vg413bwggw7yIlti+CizdBp6G4viTaW+Odd4nGNPZKgFjyyYT3ox60dAifH/mqN1tXgjQ9eGFR5wiMZETQCDqhUUTpQBEAhaE/jz9tkQxrtaLxzHmyOcCcjojQg3pJSOW+hcpBMIengGKO8vk/Rc7D7gndTi86I8JbtJzm9MsbEVzVut6S9w2L06w68d4U+DttvPU/rTJPW1RpvVxd1JiCbSdChgxUpRAsrd2p0aFPf2EWdDoiHYHV5aLAfKCyyyRwVDY6bUOCtKYptCUsrQwRzNvWzIHtD1LEa2XDJxlvn6Z4fQhVC4Wu0DeGzw2SNEjtSpFdFuNMhy5+8f/7QoUP3/m0x0xvqDPR3k4g8DHhXJP+k1vroa9EewzAMwzAMwzAM4ztjAuhXidb6FgAReR9wQmv9zCtVt4h8HPjPWuv/9ErVaRiGYRiGYRiGYby0N+JDxL7b3gdc81o3wjAMwzAMwzAMw/jOmAD62yAivywix0XkayLyCRH5ORHZISKfFZHHROSrIrJHRG4D7gZ+bf2p2TtepK49IvLIZZ+3isjR9elfEZHDInJMRO6V9Zc7X1F+VkTG1qcPish969NVEfk9EXlERI6IyHtfpdVhGIZhGIZhGIbxhmAC6Jdp/T3QHwD2A+8CDq7Puhf4Wa31jcDPAb+ttX4Q+HPg57XWB7TWp66sT2v9HOCKyLb1pB8FPrk+/Vta65vWn6AdAC/5hO8r/CLwJa31zcBbGQTx1Rfpz4dF5FERebQI+y+jesMwDMMwDMMwjDcWE0C/fLcDn9Fax1rrLoP3MvvAbcCfrr8z+neADS+jzj/hm6+iujyAfquIPLx+RvouYO/LqPPtwC+st+e+9TZuvjKT1vperfVBrfVBq/I34mvDMAzDMAzDMAxjnXmI2CtDAS2t9YFvs/wnGQTffwZorfVJEfGB3wYOaq3Pi8ghBkHwlXK++YeQy+cL8AGt9fFvs02GYRiGYRiGYRjGZcwZ6JfvAeAHRcQXkRqDy6pD4IyI/AiADOxfz98F6i9V4fql3QXwy3zz7PMLwfDy+nJ++FsUnwVuXJ/+wGXpnwN+9oX7pkXk+r9b9wzDMAzDMAzDMIwXYwLol0lrfZjBfc1PAX8FHAXawD8EflpEngSeBl54aNcfAz+//iCvv/EQsct8EvgJBpdzo7VuAR8DjjEIhg9/i3L3AP9ORB5lEIS/4F8CDvCUiDy9/tkwDMMwDMMwDMP4NplLuL89H9VaHxKRCvAV4DGt9RngnVdm1Fo/wN/hNVZa648CH70i7ZeAX3qRvB+6bPqrwO4XyRMB/+3f2hPDMAzDMAzDMAzj78Q6dOjQa92Gv3fuueeej99zzz2/DPwM8Amt9Z++1m16JXz0Y796yHvrrbhrFkwl6PGU4KSL0xecOZfr3naS1mNjxOPCyE2XaPkOVteiqGq8eYf6+ZKV94aUfRdtgb8ihLtTcnHQCKULS8+OU13Q9Pdk1E8qkjFhw/5Fhpsh5RNDJKPQyn12v22W5XMjFJYQb86pnLeJNxTMfB6O76xRnqlixQqVCct1l+A5HycUgmVN62pBNVPanQpzq010YlPWBifnP3TLg3zt8atpnNRcvEuTn69Sf8Yh2ljycHszRW5RPeuQNDSjjzhUFhTRDRHpphzddnGv7tAetbjuzudZPTpGtKkER1M9ZZMOAQJWIuShS1ErCWMPSS3auUdQTagc8UALhSeEU6ByQStw+iDX9NF+iX3JpbN10F//ggMK8lpJUdWozSGMZbhDKUutIfZddZ7k0xOcjUbZvmORXqDIV4cIaxbZVEbR8sj7LlqAQjH1SEG4QZE2NNWLkFeFvF7ywesOc+TSZqyORX+zJpqEYEnIA4h3puyavMTUjmU6Xx+jsy/jwMwci09Nsna1Qt/eId2bkPQCWg2BSkle2uh6QeMhFytRZNf1iSoW7qrFyLMaLQq3KyRD4LQVVmiRD5VkLY/JhwGt8Fc16bDCX9NoJWhLsCOYfCymfbOm3bQIFiw6e3KcloWz4JAOQ2kLaUNDPYegxAtSosij/oxN893zTOxZRhxNGHqoroMWIbuxR3WqjzsWEyY+ZaVkZGOb4lyF0oPSh+bJgtW9gtsZbLPesFB6Gh2U6EIRXLCxYwblbUFKgcSmiBzSwsK54OFOxmgtRCsB7t42vdDHraeUiz4jz2h6BxOOzG9GP19D5UI4k+MvKVQBSUOIJzT1WXDXbNLlgKGzJWvXFWgbcsfCmQnprg0Rj1rU5sAOFaJhqVtn5tNCb1qRHggpQpdkQ4E3EjP8kCJtWIgGKUAVQnldj6GHPEpfYV1w6S1XkVShcqGoQH9LQTSlCS5ZxOMlyUyG3bGID4aoJZepN1+gMz+MRqBn4/QFVUDuKXoHYiYeEqJRC2lmOBcd3JvX6OU+lQUYPapp789xWjalJ4RTmiIocUdjypZH/aSNu79FsRQQbU+R2KK3UiXaMBi3eRWkFEoH7BiiLRnBaY9sc0LWKKkNR+RLAcPHLKKJwe8SCqRQg+2mBTRcdetZ5k+NU9nUI7YVWQ2inkfc9Rl5SnGuUiWrCFYsONe3iLTD8HFF6Sq6FUV+pIEdQmtfSTKu8dYUuaOoXLRImhp/BVp7NOnuGGs4o3bMoXZBkwwPfte4o0XplciKR/CwT7YW0FEu1saIylGfyu4u5fEqXgtWe3V6c3WsbDBGgh0dWl+fonYewuUate0dVooqEztWWfYDhk4q3LYQ70whU6hU0BaQWDS2tOC6iPaJJohwrqgT9zwKpchrg9+F2mMuuWuTDxcMTfSIIh97xcZbE2oXwFsVrKv6WEpTPl8jnc5wly0yW5HXNSPPCHmgGL5uhaHPOqzsU5xeGSNRijBxsedc0hFNPppBZiGlkDcKJBNSV8jFJdmcwTUh+Y4U94RLb0dB4VpknuCtKMLtGeJoykJRf16IJ8BbU1ipkFegd3VGYQsqFUpH0TiV0npnDG2X0tF4LYXbgWJbgrI0jx3fTl4BpyfEjkV1Tohv7ZPHDvZ0hKpnlErQmUURgBQCAs0da0QdH3wNjw+hr+qz9fdz2rtc0MLI05r+tCKvCNWLmu6enKQV4LYG4yAb0qhKTm00pL+5wD3jI1ooAqF+RhiaLQlrzuD3tCaEhYO+v0m6O6YobMKtObVTNtqSwf5mLMN/qoK2wW0JyXhJMBqRWBZlUEKhkFSRDmvyKozecInqF1xy2yXdmqBzi/L2LuprDQpPsGJFb3vOHbc+Q4RDNUg5d2oCKQStLX7mrs9xRG/AfrROVoNV7XNidYLywQZeRyMl9LZphk4J/WtTas9b9GdAjaZ45xy0JaQVwZ8IuWn7WdYOj2NHMPKDF1gLA/zTPtm72+THhskaBVIKlT1t4sgnaUJWg7Qx2PZZDcBGYovazjZps8A55xKuVECguqNDVzzCSYvu5sH6TyvwwesP8+Qju9mwa5nOWhWdOYQbS6zQoqiW2MMpyiuwqxn2cMrSiTHctiIbK/AXbbo7S3qJh7doo5Xg7ejiDKU0vmbTnVFUFjVDZ6DwhM4XxmnfGeFccFGZontVjr9oc8aqc25thM7DE+QVaO5ssexUcPpCKYrGCU1/M/jnXKKGZmGxyXKrzsgRi7X9JfXRkDD28J4OSBsatbOP9WwVujbF9oj48AgynQyO1RYD0tGS//ngX/DZC/vJb+1StD3SlYAN9wvV+RJvTVjdB/EYTBxO6G12sHKh8KGjXPKRHO/S4LvgtoWsLtgxxLsTdLUgGS1RbYdgSVDzHkldsEKFdiGdzvDqCcXpGnY4eHtrPKlJCpst/yVi7Y4SazKGZY+kqbBi6O4sKDxIG/KN7158Q0gZ2UzfepGVS0NYF31UJuR1iKcLhr7uk2zJaT5u4y8LaUPIaoraBU17UkGm0AhpU1P6JY1nFJtvuoj+SMbF91XIRkqcVQuvLcTTBf6yIp0omHoA0synvzslOOETLAv5thRla2TJJe76+MsW2VURrTigOF0j1xZaC96SRWkJKhN6rkPa89DzAVZPkcxkJHUFWrC7imJHjD0Sk6wE6MkUnVigYPSvfBY3W0x8BaJxm2zFJykcrEghueB0FaULE0dKKkuaaFwNjlcUZEMaGUvQiTXYH3Zsmhu6yBMVks0FpDZ5BdKRkqJe4q1YZM2CA9fMcnFpjJ6n2P77wmPT49B28NYssprFtR84zvPZKOVsldrzFvafV+i8Lab5gEu8I4Nlj8IWtu9eIDk6jB0K9eMW0SZN1vKxEkU+VIIWJFXo8RRr2UXlgrung9NIqe3swAMN0smcLBDiaxPSU3WCZSELFLu2z3N+bQQQiqBEOxqnpwZjzILJ+xTFUsDi4c/NHzp06N6/LWYyZ6C/DVrrH3+5ZUTkd4EKf/Ns9L/TWv+HV6JdIvJfgB9fv/z78vRDQG/9LLdhGIZhGIZhGIbxbTAB9HeJ1voffxeW8e5XexmGYRiGYRiGYRhvVOYhYq8CEamKyF+KyJMickxEflRE7hORg+vzf1pETojIIyLyMRH5rfX0j4vI/ykiD4nIaRF5i4j8nog8KyIfv6z+D4rI0fW6P3JZ+qyIjK1P/+L6Mr4GXPXdXQOGYRiGYRiGYRivPyaAfnW8E7iotd6vtb4W+OwLM0RkmsHrqr4PuB3Yc0XZJnAr8D8yeNr3bwJ7gX0icmC9/EeAu4ADwE0i8r7LKxCRG4EfW5//buCmV7yHhmEYhmEYhmEYbzAmgH51HAX+KxH5iIi8WWvdvmzezcD9WutVrXUGXPkAsr/QWuv1Oha11ke11iWDV2NtZRAM36e1XtJa58AfAndcUcebgU9prUOtdYdBIP6iROTDIvKoiDyatqLvoMuGYRiGYRiGYRivbyaAfhVorU8ANzAIgv+ViPzKyyierP9fXjb9wudX/J51rfW9WuuDWuuDbiN4pas3DMMwDMMwDMN43TAB9Ktg/TLrUGv9B8CvMQimX3AYuFNEmiJiAx94mdU/sl5+TEQs4IPA/Vfk+QrwPhEJRKQO/OC31RHDMAzDMAzDMAzjG8xTuF8d+4BfE5ESyIB/CnwUQGt9QUT+DYNAeBV4Dmh/q4qupLWeF5FfAL4MCPCXWuvPXJHncRH5JPAkcIlB0G4YhmEYhmEYhmF8B0wA/SrQWn8O+NwVyW+5bPoQXK0RAAAgAElEQVSPtNb3rp+B/hTw6fVyH7qsjlng2ss+Xz7vE8AnXmS5Wy+b/tfAv/62O2EYhmEYhmEYhmH8/1iHDh16rdvwhnPPPff8m3vuued/A/4H4DHg334vbId/8ZH//dDIntvJK6BWHfKKpnndCu6OPiuWz8WVJqVS2KGgj9UoxEIKQW3rI8suWaCIGhBcsLEjQVuQu1CdV1QvQHdXwa6bzrG8UaFOVUhGIQ8gOlOnP1fHW9WAcP2dJzjxqd2kTU1ZKVFdCynB2dZjrenx/gOPc/bLm3G7EKxqoqaFFQv9bTlpVeGvCJF2cUcSilxRf9pB746w3YJn1jYwsaFNcaxGsKCIxxj0NxfedMNxZtsj5AFUTzqkDSGrCdaSQ5nYlJWCtOsRnHc4Rx2rbeOtKHRpUfiQj+Vov2TrzRdY0gEfuulBjj25nbJSUh8JmWm2uJA3iMc1Q7OQNBTTD8bULuQs3WiRaoW96GH3BacnlLbg72sRhx7uVEjZcrHPeciSi5rzsDeHXDg9Qbi5YNe1czw3N0U2X2X6KxH9GQ+7bYEWVCq4qzbZSEHm2VQvasKDEVnpkG7IsC96PNHZgAotmicgnB6MB5ULpQPlcMHOiSUeue8aulfn+Odc/Jk+a+caaBuc4wHM+RQujO1eRX2hwdCsJrwqp0hdoo0Fuu0QLFokEyXDp6C7RVF44PQUUkC0KcdpWRQjOUPPKzrf32fsq4ruFovudk3jpMZKNdmPrhIvDdGpOEzfp9j5U8dZfWyCyrJm5c4E/4LN0LkCK7QptiUou6S/ViE47uOEsBLW6TzbpJ374JVUn7fp7SrQLZed2xYY9mPCR0YoHaE4X0UrEA3ags4OqJ1VRFOawoP6lg7JYhVJLKy+Ip0o8FYUN7z7WeZPj5MNafREinfRQaYjrEWPjnYJOz5SKOzjAfmGlPxsjcqCIpwScltBYiHTMc4FB7elSEY0eQXymqZ+TtG9IyLdlFFOZBSRR2krZCJhbM8KDT+GL9bxOpqlGyHZE5OMljRmOixs8tATKcz7VOaF+hlBFjziURttCdoSsiEhvj4kW/WRwsJKoL8rpRzJ8eYdnD6kV8fYlRwrKMhTh/Frl8ifGUbvDBn+QgUrgdbKEFYKN999jNn5cUoHCh9KR1ChxcTDPVbeoSlim6wi5H7J5BdswklFf4PCmokoOx6FB15LSMZLxifb9CIPf9Fi6/XzRA83ILfJ6iV6OsFqpMhQhnPOw0og29/HvuiSThRUZy2SIWHiAZuO6yGl0NmXUZkb9DGayRk+LmR1IdxYYkXCUs1BgpLiTI3KeZvaWcG+oYNXTwkznwM3nmbt6BjhTE6xGGD3FE4oFBWQiYQ8dhg7ltPZppBSBr8R4xnOik0yWeKtKtyOIhqFMldIZJPVBOfmNeypGP/TDfpbS1QjpdwdU655TF17ieyhEQofhre16dQVeeqSjpUUgYZS8NaEPi7BolC+o0U6XtB/pom2oJu7OGs22h6001myKR3BWx38ro88rSnPVYiWq5Qu1Gehel2b9Gyd4JLg9AXR0NkOyaaM4IxLMZ6TpzYqE5JRTbw/xr3g4u3pYilNr10hmLNx+lA7J+RVIWlCsCh044DSssirMLSjzfhQj3qQkD05RF4FmUgZfdAhviFCVh28VUVtT4uO77Bv1xwXT42T91woFSBU5oW0DiCoWJGLwu5aVC5Bf0uJFELpQjJR4AwnVJ71GH8qxeuUOP2cyK5SepqhM0LjHQukx+uo3X1su2SoGVH5UoV0WCg90ErhnHMJ5mxC3+b9Bx7n2aUpqicdnL6Q1WHqIc2lcR+7ZdNfq5Bvi8kjB2/Fo7OzpHTBihW9HTn5UInTsXA6FulUjhaF2hpy69Yz9EqP9IFRvDMu/R0Zds+idKA/A8Xb2lSn+jiHfaIJgdTijvc8wemVMWrPOdRPKURD4QlSwrU3zHJp2GXkfptkWJE2NP6xgNoZhXOgQzFXoXYBgiXwV6G/XKO32SLcmiGxjRUruOATbs4JLil6W0qCeYvn0xHC+Rr9lSqSCfWzFtX5kq9vnKR9uknhQTqTEjRjDmyeY64WkOIRjwlOWxFNgrdg074lQXslojQjh4XejIXe3acsFKtpQLYaUPggD9SJJuBD7/kyz/7pNWTDGqdjAULc9yiqJZu+pPFXhcol8FdLepuFkec07dtixob7RI+PMny6pPAU0XSBnKzirwgTj+fUz5f0py3KDSmR7dK6OEQ0V8PZGOHMeqR7YnRkoTJB2g50HPLYoT7WJxiNSFYDVKiwYiHzFaPbWqRzVSqXoOe65B0Pu6vobdfEE+DetUq0WiF7W4ek42FFiiLQ+Is2WaOEeg6AvegQzWSEicfIYzad3Ro7EnqbgaEcd9Hm7bc/yamjM6i+Rbw/RtYcyrkA0UI8XjK5bRXHLulmHkW9wLngkWzJ8CopIlDOB2QjJSdlgpXcZ+SLASoVrnnHSZb2CO28BlrQSrBiIa/Y5IGQ1cDpQfPGJconhsmGNfrqPmXPIbgE8aQgsYXq2VihxcyBefIn67R3aagUOKs2XksYeUpIUx8EklFNVtcUzRyJLaJ3xmRLAYUSpG9TejB8pkArC5XIN/aVRUXTOOxgRcKlEYe79z3FKYbJQwe0YI0nJLbD8DGLcHqw73thf9PfBKUlVM/ZbP3MGp3dAbVZi/qFgqemm6zsbaIdDRrsvoXbgXiiJBvS2MMpaenhhGB1LcIdKe6KRV7YSNsZ/E4LsDVEZisMbewys22JlYVhVGxhh0Lpg7cmZNsSxC1xLzgkMxnWmk3trCKvQXVeSFwL+5xP6YJ9yaEYy8AtiRo2U1tXKY7VWL2+oPSgesbC6WtULvSvj/DHI9ZGXLpboPQYtAmozCucRYeRA8v0c5fSBssv6E4O8qi+hbZg7AlQkYWVQtzULD83jnbgPbce4VF7huGZNslyQOko0oZwdnWUbZ9JuPQmcK/rcGkqwD3tMXk45NK1Ls6axTu//zEOz25l7CGF39K0dyjKqYTRDR2GPu8RNSzsvkLl4M472JHgtSEsPfI1j/z5Gv3dKdaaA6MpOleUfom7YhFvyajVY/KvNgkWIBkFKQVVCMlIiRQQ3tkn9Bzaf/X5+UOHDt37t8VM5gz0a0Br/XOvdRsMwzAMwzAMwzCMl8c8RMwwDMMwDMMwDMMw/g5elwG0iDz4Ctb1cRH54Vewvq0icuyVaIOIvEVE/vMr1TbDMAzDMAzDMAzjW3tdBtBa69te6zZ8L1p/aJlhGIZhGIZhGIbxbXhdBtAi0lv/f4OIfEVEnhCRYyLy5pcqIyK/KSJPi8hfi8j4i+T5FRE5vF7XvSIi6+k7ReSLIvKkiDwuIjvW039+Pf9TInLPZVVZIvKx9WV9XkSC9fwHROSh9fyfEpHmi7ThnSLynIg8Drz/svSqiPyeiDwiIkdE5L3r6R8SkT8XkS8Bf/1trVDDMAzDMAzDMAzj9RlAX+bHgc9prQ8A+4EnXiJvFXhUa70XuB/4Fy+S57e01jdpra8FAuAH1tP/EPj3Wuv9wG3AvIi8HdgF3AwcAG4UkTvW8+9az78XaAEfWE//feB/0lpfBxy9sg0i4gMfA34QuBGYumz2LwJf0lrfDLyVwXuoq+vzbgB+WGt955UdEpEPi8ijIvJo0e+/xOoxDMMwDMMwDMN4Y3u9B9CHgZ8SkUPAPq119yXylsAn16f/AHjTi+R5q4g8LCJHgbuAvSJSBzZqrT8FoLWOtdYh8Pb1f0eAx4E9DAJngDNa6xeC+ceArSIyDDS01vevp/9H4IWA+wV71sue1Frr9Xa+4O3AL4jIE8B9gA9sXp/3Ba316ot1Wmt9r9b6oNb6oFWtvlgWwzAMwzAMwzAMg9f5a6y01l9ZP+v7HuDjIvIbWuvf/7sWv/zD+tnf3wYOaq3Prwfl/kuUF+B/1Vr/zhX1bAWSy5IKBmezv1MCfEBrffyK5d0CmFPLhmEYhmEYhmEY36HX9RloEdkCLGqtPwb8LoNLmb8VBbzwpOsfB752xfwXguVlEam9kHf9rPaciLxvfZmeiFSAzwH/zXpeRGSjiEx8q4VrrdvA2mX3af8kg0vJL/ccg7PVO9Y/f/CyeZ8Dfvay+7Kvf4m+GoZhGIZhGIZhGC/T6/oMNPAW4OdFJAN6wH/9Enn7wM0i8kvAJeBHL5+ptW6JyMeAY8ACg8vDX/CTwO+IyP8CZMCPaK0/LyJXA19fj2l7wE8wOOP8rfwj4P9aD8BPAz91RRtiEfkw8JciEgJfBerrs/8l8G+Bp0REAWf45j3ahmEYhmEYhmEYxndIBrfSGiLS01rXXut2vJa8rZv0pp/554iGYmOMbrtQCABb/yIjnHJYfldC0bPZ+meaubc5lLbGjoTShspFwV/VtHYP6nM7gtfSFJ7Q3VbiLSui6YKJh4WVfUI+XFA5a1PeMLg1vThVw9/Tot/1qTwZ4PQ11ntWWDk1gpUIG/YvEP7JFJ0dkNdKAKQUrKmQapDSWqwzethm9VpNsKlLuFjllv3Pc/I/XkWwOsi/fJ0i2xZTfSIgaWr0zj75SoC3ZCEZcH2H4ngdpyuEM4O/dVh9hd0brIeiorG7QjpS0nhWaO8Ea3uP9FKF4KIFQDqsuf72Ezz9l1fRuHOB5D9NsnJDgd2zqMwL8Ygmr2usWL6x7jd9MaU74xL82AKLh6eoXBTaVxdor6RyxsH9vlXCp5qk0xkATiUjX/GhEEafFFbfGmPN+WQTGZNfskmaimQY0muiQR/O+FSvW6X/5Aj1s7B6XTm46B+QQtCNDNoOdiSD9QD4K0L3QMLQ4x7hBo23IvT3xejQxluySDbkiFNiLboANJ+B3oxgh5A2NOzpUT5fw7mqQ7hUBQ2jj1ukdaF71WAh7pKNu7dNEjtMNLvMPzsBGrSt0UGJu2iTjhZIOrhYJlhUlNd3Ga5GWP9hlN5Gi+EzOed/QPOzt/41//cfvROVwsx7Zjn14BYAym0RectFJYqpBzXzd4B2NKqW4T8TMP5khhQw+z75xvoI5izCnSl7/o+QSzcP4/7QJRbmRqiccZj+SsjKtQHR23rEy4O7L+zhlLztUn/eprszZ/xhi/pPXGDhS5sIN+UMnbAZ+4E5PCsHYMiNefpTeygdSEY0RSNHvIKhR33yt7Sp/b91lm4CKxaGTg62R3cbNG9YYvWpcSQHdvXxH6yRVyFpakafArdXcuG9g2XQdkA0KhXKiZTpiRbLj0ySjBdUztu4LSgdGJ7NmfuhwVhvPOxSeEKwXJLWhLQhZHWNtypYd6zSO95Eq0GdAP41LawvNLFSTTQmWAmUb2oT9V3etecZ7v/TG9ECQ2cH37/578+xWjalA2M7V1g636R6xibcWGBFinw0w110cFtCdX5QJvhH81x4dJrKvNC+JkdSQY0l1B+skFWhelHTubvHdLM9+I7/xSakhP6tIfZzFeKtKcopcE4HjN6ywPzxCeqnFaJBBougcKHwINySY/UVajri4OZznOs2WXlwinhbAqliaLIHQHysgZSDsZLuivCfDiiu75JGDs55D23BDXcc59hf7MFtD/ax0YQMthsQzeRglzjVDOdolWiqwFuxSHdGWPagURv+0OPcu8FdsfBXhX/6Tz7Db3zmbrQCf1lIbuwhp6rUZ2HtjhiAkS/7NE7GzN8e0L8qwV50GT+iWbtaITnkFU2wJEQ3D+7qqXy9SjSpqc6Bd/cl+l+cpLe9YOwRxf7//inuu+868kaOs2Iz8vSgH71NiqymSccLGhs6ZA+OsPmds1z6gy2s3pGgM0XltEsyOujH8O5VylIRPtVk+IZlli42CM46RNM5wUWbaDqntqHHe7cd5Y+fuXFQ5r4AdfcKK7NNtKXBKRl62iWa1KjtPawjdfSNHcpyMA71yRpqd4+xT1QoP7zExTNjTG1dYWGhQeWEh5VAf1P5jXFbehpta6pnLXq7M/wLDmNHCxb/QUT1azXaewqcliLdmCJq0G/LKVGnAqQU3PZgnFv3D+P0Na09mj0Hz/Lco1tQ+WAZWTNn+JhDe2/O6GGL9lXg72qTHxmMnWhTzuhjFqtvSrAWPQDykYxg1iXePdieza95xKPCxF0XmH9wI6WryUZzas87g22xO8Vq2fjLinBDSfWCQqWDvg49L0QTQrwpQyKL4ZOD39D2rpL6ljadSzWaj9skTSEZK6lcVIw8l3H2BwS7bSHrh4ZWJBS+xt3ToSgU6vE64eacYM4m2pox+rDN2l7N1NWXWH50EoB0tKA21SMKPbxjASqH/uYCb9kinspxly38ZSGvDJaRXBvhPhcQbUmpnHKp3L7MymoNd9ajtEFlQrotRlZdytrgS1R/xqV2oaQ/rcgqg/XptC2cjhBPlIweEfrTwvCZwThcul5o7F0hfGCMcCaHoMDxc4a+WKH9toi863D1r6/y7D8bpXLeXh8nUDoab2+L4pEm4faUyekWva9M4PSgd1uIf6SC/abBI2bix0eIN2Vs/Kyi8ISlG2H0CWHplpJfffsf85Ff/3HsCJLG+ji8a43oeAMEikqJ3VHsvm2Wp5+dwbtkkw2VqETIJzIkHBxf2D2FBpyuMP5kztL1Ns3bF1h8egJ3S4/ymTrp1gQvGOxj0wtVpu/XzL2zZGrzKvFfTtLdViL54BisesZGK0C++XsYXNKEk0K4O0EE7AWXykUhnNL4y8Lmu8/w3OGtlJODuxErT/uE0yUojbdkYV/fordSwbs4GKfX3XWC2d/djf/BBebmRwbjasEdHA+NaZy+UJsrWbta2Hh/xvK1LvG4pvkMLN84GIgzXyg4926FaiaoswHZRAaZonLOpnnHApeemCSvllTPWky96zwAp56dRjVTGvf59DYJ6dYYa37wXRt7StPbqMjqmnJwCEMeDPZt1YuDduWbY8quQ/WsTX9XSv1Zl+6unNFHLaqLg33mubs1djXDeaZCsKRJh4SsBl4LtEBWg8ati6SfHlyA2r4jxjke4NywRm9uCG1ptu5cRD4yxuxPaoYf9mndlFB9zqNyx9KgzJExrFhIRkvsnuBe20Y/1CAZ0ah8sB/f8EDByt7BuM329dHnKhSTKSNfc+m9vUe6UKE6Z9HblnP1njmSwubiVzYN9n8VTTaWMXTUJdyocTqDZQWLCreliSaFvKopKiW6Ovj+idIMPeYzeizh3D8umP4jl/4Gi872wX5m+KSiv0mz8b5B/tn3w5atS5w9M463uD7m1sdxuLHAChWyJWTDH3rM/dhg7NqzPk5XKDyIZzLcSzaTBxdY/uoGou0ptp+ThzZOLR3kP1ojr2rGb1ikdf8U4a4UYsXk1lWWVus0v+zTuismeDJA3bY2+O15sokdgnPbKoUWKm7G4Xf96mNa64P8LV7Xl3AbhmEYhmEYhmEYxivl9X4J998gIg8D3hXJP/lGP/tsGIZhGIZhGIZhvLQ3XACttb7ltW6DYRiGYRiGYRiG8fePuYT7e5SI/HMRObb+75+JyFYReVZEPiYiT4vI50UkWM+7Q0Q+KyKPichXRWTPevqPrJd/UkS+8tr2yDAMwzAMwzAM4+83E0B/DxKRGxk8gfsW4PuAfwI0gV3Av9da7wVawAfWi9wL/KzW+kbg5xi8rxrgV4B3aK33A3d/93pgGIZhGIZhGIbx+vOGu4T774k3AZ/SWvcBROTPgDcDZ7TWT6zneYzBO6FrwG3An66/Lgu+eY/3A8DHReRPgD97sQWtvxbrwwDWSONV6IphGIZhGIZhGMbrgwmg/35JLpsugIDBVQQtrfWBKzNrrf87EbkFeA/wmIjcqLVeuSLPvQzOYONt3WTeaWYYhmEYhmEYhvEtmEu4vzd9FXifiFREpAr80Hra36C17gBnRORHAGRg//r0Dq31w1rrXwGWgJnvTvMNwzAMwzAMwzBef0wA/T1Ia/048HHgEeBh4HeBtZco8g+BnxaRJ4Gngfeup/+aiBwVkWPAg8CTr1qjDcMwDMMwDMMwXufMJdzfo7TWvwH8xhXJ1142/6OXTZ8B3vkidbz/VWugYRiGYRiGYRjGG4x16NCh17oNxveIf/Xrv3lo6PtupX4GguvapIsVnJ5gJUJas3H7mu4Ghd2yab05o8wUXsvC7gvJ5ozxw7D03piRr9sEy+C3NEu3aOpnhOLmHrEa/L3GbSnKg13KZY/qBVBXhVhWSXkhIFQ2Y5Md9Ikq6V0dqn6KfrJOvCmnO1+ndBTpTIoUChRoW+Oe9QkjD28yIu975BWN+1xANpHjVHNay0OghbwiJAf7qPMVqnNQOkJcEUaOWNghWHeuEZ4borSh2B4jazaSC+V4htWxUfs6pJlD4UJZL4hHBH9VkWUO/kyPSDnkQ5oyKGkdniDeG1GKEG0tKEOHspGR2wo7Vowe1YAiWAKvBaWnWL4ro71cowg0aQOsRFG6msKDZM2nqGmsWo6yNXreRztQn+lQzgXkYjO0dwXLK0i7Adadq+hzAdaSg33JId6cUZ6u0XxW09muKHyoXLAobaH0NN5FBwRGnoasJqhC0Bao0KIyD+EUpGMlO/6fgrWboRzJ0FoYftwDEaxUSEYFtw3RzSHFcEEeOlihhTXrs/Pmc/SOjZBXBLejB8tIFcV0iv9wjXiipHikAbv72Oc9pBSsSDF0BgpfseWvMprHS5beljPxKZ+FKQ97zaZzU0LYcBg9ori402Uhr2F3FQt2QH1LB2cipkRojPUJ7quwdBMMPW/ROLhMGHpYKw5Jw6K9S1E0C7A09eMOdsxgG6Q+tfmChWodmin1p23yus3yzSXilgTDCW4tI12sIIUw9pSmt1nIKkI7sGBDwvhkhxXHJzrWYGb3Iq5V8Mhz2ylFYcVCOlHgLdrYKw7ZsCZ2hahpMf4YdLdANK2JNgweT9BNPYJ5i3hbihdk1A67tK4u0RbE1yV0R23Gv25TPWMRjwneisLb18JxC5L7x0gbUJ0bjHdtQzYEViRYbRtvwaa2UNJ+e4ha8AinoXQhncrI6pAvVKjMC3kVZP1pCXHksuOus5wNauSTGZVZCznnY605nDo1TXRVjNWyad2S0NtVMP1XNt1dg7HnPlQh3AD+siLZmEOpsFsWUoKVCOOP9/BXMk5tbVA9b7Hh7rOszg8TLFjkozmpa+EvCdGUkDVLWrNNWpfquC1h4khE6FcoKhpSi9KC0oPUFpwzPlYOnf0pVteidEHdvsbML8+y8uZxpIBcKS6cG6MT+6hQoQsFWrBqGaUWyiUPLHB6QtLQBHMWo/tW6cwNw8aE/fvO8MT5TbizLt3tmmQUqnNCf3tBPqSpzdrUTinK0CXf16O0hOC8zfAxm37NRvcc0prFnXcd5fTFCUoPvrKyg8aziqwOUgjO5pCodBg9CvGBBMsu6W6AsOFTu22JKHLR9YIksGnedIl0tjZYB00NbRc6DlkN9NYIa9llTQekTY27qkhG4GQ8gtbC3r3n8adClqMh4jGhebyktbdEMsFvJHQth+WlIa5710k6X5xCxRZ2DPb+Nk4zIYxc4silzC2sIzW8JYu8OhhbRaAJ5i2sUz633/Q0Xz++Gx1bSG5RnqyQbMjBLRmZ6JJM5wRP+qjdIfaJgF5TqNQSLKskKhzy2CYasciHS7gQkJ+ooUILlQuqgJk3z7HSqaFdDc0M1bHRDpQ2VOYVI8f6dO/Q5D0PSiEfKhl7yCacEMgU1ZGQiU/brF0jJBMF3lMVwo0lyYhQNApamYc3FmMf97FDgVKRDYM9HdFrWGy9dh5RmpZ4TN+vCcctov0x3omAbCZFVwucRZesrhmbaRH2feIhxfD+FZZadYLjLloJ+VjOyBGF29GoyCa7KiYbz7FXHcZvW2BtxMKbdYknoToP8aYCq2cRbc+INxRIUDDxCZ+04lCf00STwuj1lwi+HLD0ExEbPuUguWL6qyGNExmr+xwaJ8Hd1yV5qoHbFUprsA6wwO5ZZDtirp5cxN8Q0ZjpkH+tSfXqNtZfN0gbmmh7xtBzDsXBLuWKB5tjyq0xcskDgbE9K4TzNeqnLPo3RMSzdXS1wD/nECxDuEGDX6JtjT/nYncs1M0tmPOJR4XmiRK5tUNkKbLRAkpFWhPSiZKhUyAljD2VEi/VQYR0c4qz4KE7g/rteZcsULhJgIptklFN6YLbEvSBHknsUqY2o49bLI07TN0HSzeAdckhGdUc2HWW8Uqfs2ujVM/ZxKMKK4FsSJh4PKa30eG+bBuh75DWhWQE0mGoPOwTj2tUJhTNHBVbvPnq53jm4kbsUNA2NJ8T7DUbtbeHXctIShuno7j+Hc/xdGOUYHeblYVhgos2bEhIcgdVy3GcAhGNXvRBK5JR6C9V8VpC4YK2wFu2iK5KKFFkMynStykdcHvg9CH3LLwLNoKQ1TRWKljft8aFUxNU5hTpSAmlsOXPE5zQRmNRVDRZy8fqDY4NG89rzmyo4J9yCM/WqexrEVRS4tUK2+46y8pCg5k3z7GQD5PXS0rlUFksiaaEtAG18wpvVUiGLcprQmoPVFGFoCKL6ftLVvZr8mNDFBUILilEQ3tumO7sMIUPpWKwTa+K0KGD01GU/mDcp8OaxnEh3KTRNuigIJi30Aq2vOUcq90q9rLL0BmQ2EZK0Nsjithl5WBBezdUTzlYyw5DsyVWCv2NkNc16fBgu1aWNOFijWhycEyRi6AyIU5damcs0rGC1lqVwnZJGppkW4bjFfgnXf7B9z/INcMLPLy2GZmJuGb3BVbONYmUjZ5JKGsFMppSBCW9cZt0vCAbLilLxftvP8zJI1uwYqFfs/BWB/u6xnHFeWuI/slhJo4UVBdLgiVB39wjOOKR3NRHll3yTQnugk1WF+rnNeF1MeIXVI/6uEs2/kWbvAJZzWL/HadYeH4CbUF/T4rd+f/Yu/Moya67wPPf331r7JF7ZlVlZu2l2lQlVZU2W0I2xoyx8YIN7gbDYOYcj5uZdtMMDPQcBpfp5hzTdJqQyUsAACAASURBVHOGhmlAw7RtGg7GjLFN27QX2ZJt7Vvt+15ZlZVrZOwRb73zR4TtorBQtWxJbul+zskTkffed999L94Sv3jv3WvTGU8Z375AfKJA4iuG3rjAlSPj5NY0kUsZumsjvDkbuwvFvctYB3O0B4TaBsG55qKqdi+2GEnxl4XCBYW2hOYQuGc9VMciGYkoPeXTyVqkbQenoQiHUxq1LCoU9FDE2287xMFnNqJjC+/OFcILBfKXYaXkEDQ9xp/QJI4i2dClsZinEzlU/+Zr1/bv3//AC8VM5hZuwzAMwzAMwzAMw7gJJoB+CYnIY8+T/nERec+LrHO3iPzYdf+/XUR+vf/+nSKy7cW11jAMwzAMwzAMw/jHmAD6JaS1vuclqHY38O0AWmv9t1rrj/b/fSdgAmjDMAzDMAzDMIyXgAmgX0Ii0uy/ioj8oYicEpEHgdHryuwRka+LyLMi8iURmeinPywivyMiT4nIaRG5V0Rc4LeA94rIQRF5r4j8fL/ue4C30+t5+6CIbBCR566bz6br/zcMwzAMwzAMwzD+25gA+uXxLmALvavDPwfcAyAiDvAHwHu01nuA/wT89nXT2VrrO4BfAj6stQ6B3wT+Smu9W2v9V98qqLV+DPhb4Ff7eeeAmojs7hd5P/Cxl3IhDcMwDMMwDMMwXs3MMFYvj/uAv9RaJ8CsiHytn76F3tBUXxERAAu4dt10f9N/fRZY+yLm+6fA+0Xkl4H3AnfcWEBEPgB8AMAaGHgRszAMwzAMwzAMw3htMAH0K0uAY1rru58nP+i/Jry4z+rTwIeBrwHPaq2XbyygtX4AeADAm5zUL2IehmEYhmEYhmEYrwnmFu6XxzfoPbds9Z9xfkM//RQwIiJ3Q++WbhHZ/gJ1NYDCzeRprbvAl4A/wty+bRiGYRiGYRiG8T0xAfTL4zPAGeA48GfA4wD9Z5rfA/yOiBwCDtJ/Pvof8RCw7VudiN2Q90ngV0XkgIhs6Kf9BZACX/6+LIlhGIZhGIZhGMZrlLmF+yWktc73XzXwvz5PmYP0npG+Mf3+694v0X8GWmtdAfbdUPzj/bxH+YfDWL0e+Fj/+WvDMAzDMAzDMAzjRTJXoF/FROQz9Hr9/v2bmkBp7KagEqhcLZObUVgdwer00ubuT1Adxdp9V0gbDqs2L6IFnAYUj7jUpy3ilkN3UNEdVNTWKVRXWLwvIjpXwKkqcpcsEleIIwu7JQA0LpVoXCoRb2qz5ouKH5o4S2NtSnshh/MfhugOa5xCgFMXUltTOOpRWlOjtKaGu2LRXRWRmVNEoY2/qNFuyuo3X6Z4xOXiuTG6owlhUQiLwlCpRWH7Mu1xIRzQqFxM6gjtcaF+oczklxPyM4qkZVM+KZRPCmKlDJ5ISVPBGe5gtwRn2UaNdEl2NyieFeSpEhIIEgg4KXpPnWKhg36yjFKakScUmbMehYuKqJBSn1aEBShciSlciZl/fcot09fIDLcpnej/rqVhy+aruCsK7WisliIJLJLAQitYs3GB+lyBzrgmyadUqzmaCzm6wym1aha9r4Z15wrWnSusWlMhzmlqmxReBeyO0FoXU9haITdjEWc0Y0+ltCcEpwlOE/xlTTAR035HnYETkJ+s05jyoGHDsoe0LZp3t0l8TeJronxK4kNS8UgDi+IxFzSkNpw8PolbA7sNYUlIiglJMcF2EmIfvHM+dhv0+RzBaEJ2TpAUmlOQvwTn3yecf5+gbI2KwVqxiXOCc8UjzqdUt8BiK4dkYuKsZnr1Es2WT7PlY1kplZUczSnBqQvagmbXY/VolWA4JXEhzsDwaJ3h0Tp2RyMpaCdl4UdCKlsdxm6dJ/9chqgoLOwDb8GCC1mSRJEkCm1pnJpieZsFpYhwIiKJLCYG6lTqOSQR2NngmXPTPHNuGnvJIR6IKdy7gDfYYeCkxr1thWRtF3vexV9SLO0G0VA6aVE6aeGuKJQf41U09qJL93KB5Z2C1VaUziiSUOE0FP5K0vtbFoJbOvDNAeIDZawAtKXpjKeoWKMtyN25hNtMae7r0NzXIbWEqOUSliAqpVihIF0L1RX8BcHqaJyG4NZ7fyNPK44fmYJIuH39ZapbU6I8tDZEdMdjrHkPbYMz4+HMeHSGFRs+FaIFahsEb8HCW9EgoJXGqwoDpzSt6QRtK7StyI220BacPjKJioTUBS8TgYaNP3WasJQy9jkPrTRa9bpxWNnsk3qQeJrsnFA45SCxwMk83bEEu60ZfdjBboHdgu6RMid+exMqFCQWxE0YWr9C6aBLOJKQnVNkZy1+auMBfmrjAcafTLBvqZN44Mw7tFdrNpSWGDgmWHbC1WYJPZPF7mjSTEqaSRl7qs6OnZfQohl7ukt3WIgKGn05x8BQg9SBpds1XkXhVRTdbR2++tQO8pcU4USE+AmlCxGpDZ1burRmC6iOojOkCK/lCK/lQAvhYErlxBClp3yseY9wMGFhqUh7OiYaTPCWFdlrQvaaEJcTmMmABokFbWuCkYQor8lcdCmetbAl5dLVYYLRhGA0ISwo7JqFv2hRq2ZRHYVTtXjquU10xjVRXtNanZJxIzJuxDs2H8G54JNmUtwfXqI7qMnsrjD6NKReSjCoqW+N+KO/eQveoo23aDP2TEhYgvxQG7E09UaWzkKW2taE8NAAmcW0d+5YztFYzuFULfxrDtbGJsHZIuWTEAylRAVNdySlvTrlWq2IRIJEQuE5nySfooLe/pP4UNmWx3qqSGpp4nKCxEJ9A+zcdpmd2y7TPV6mPWqT5hPcFYvmxhg9FhAXE7IXHGw7pX0tT3t3h/buDsOHUuy2sG5kGaujuH1whrnLg2QH2zQmLaKBhOI3fVQEzlUX56pL8Tz40w0WF4rcvuESuhAzlG2xbnSZ9iqN0+qdGpZ3Ccu7BG9FkzQcELBbwsyVIVb9pUuc09htoTMiFI+6TN92lTfvPMabdx6jNNCiM2hRPpOyfKuQWdDU2z71KYs0FSpbbBrrYOnWLEu3ZpHpFq1VwuJcCacpxBmQDS1UV5E769CaTHHPZDixOEY99KiHHt1hzdylIeIsBCNJ7/vBzpAosnDWtIgDC60Fpw1OG+pfG6d8JkVFGvdMhoFjgiiNtqH9hiZpJsW54qKa113zeaxMavXaX1uv6J4sky12Gf+yAwloGzZ9ok3iCokrzO/zWb49IXctJX/YZ9vd59G2Jval1xsNUJ+2aE9opj/fZvrzbSSBrB/gnM6gYqivE9xsyJUfVqTl3rkGgQv1QS7UB1HDAZ0dHYoXU6q3QJzRzN2ZIT8DQSWD3RSiyYDcFSF3RShciVGxEK8O2PzHAVrgM1+9C+wUFQpOXbF8X0h7tSaYyRPM5BmbqpB4sKt4BSxNq+FTfs5FWxCfLZCZtcgczNKuZmhXM0QDCdUdMVOb5tHFiM5o7xiZOhqvCm42REUCdZvyvgXK+xZIHKF0IWT9HZcpXE5J3N5nkZ3XdE+UsYc6tFenWBUHq+LQnPRZuFPjrWjc7TUGj0Ey2aV8NqGyXXAO5wBIfOgELp3AxWkIWTskOyucvTBGnE9RgyH1zQn1dQpJYPzxmM6opjOqaazT5B7KEfvQmk4IBhNq62w2bb+KV9XEAzGpBblrKRKDxKBGu1g1m+7ODmnHxp+ziYqapBSzevc1nDUt6hsgO6vIzipwU+KcJrVh9vPTpJGF3RDCvNBcFzNwJkZfzjJyIAYtoHvH8My8pvqOFtUtQjiSkJYj7FVtCpc17THBrfXOt9oCf8EmWhNgD3XpDmkKpxzGpyo01yegQMeK9WNLaAv+5KE38icPvRGURinNydkxrEDInnfIZgNkwUNZKTpWuFWFP9dbxu0brhKkNplFoXg5JnPFxm4JsrVJnBHsuiKzKMzdZTF3lwVakz5dpvH2BvbBPN11ve6XukOaOK+JsoJlpyir991IUgjLEAxqVu4IeeqxW1i+K6IzIojVOw87dUXZ79CaULQmFK8fPYe2IH26THd7h8JRl/xVTXtCU61n6YxpnEUbt2LhVQSv0tsvVSAEQxq7rXHq4DxeILOckjq9Y19rjUYFggp6n8XA9ErvO7iCocEmX3hwH8lAjLts0Wz5xMO9dqJ737ETR+iMQavp99azdfNdQZkr0K9iWut3vdJtMAzDMAzDMAzDeLUwV6ANwzAMwzAMwzAM4yaYAPr7SEQuisjwC5T5P16mtvy8iPzhyzEvwzAMwzAMwzCM1wITQL/8XpYA2jAMwzAMwzAMw/j+MgH0dURkrYgcve7/XxGR/SLysIj8fn/oqKMickc/f0hEviwix0TkT/l2VxQgIp8VkWf7eR/op30UyPTr+Yt+2vtE5Kl+2p+IiPU8bbNE5OP9+R8RkX/ZT39YRPb23w+LyMXrJpvs558RkQ8/T70fEJFnROSZpNn6XlafYRiGYRiGYRjGq5oJoG9eVmu9G/hF4D/10z4MPKK13k5vrOep68r/gtZ6D7AX+JCIDGmtfx3oaK13a61/RkS2Au8FXtevOwF+5nnmvxtYrbXeobXeCXzsJtp8B/Bu4FbgJ78VaF9Pa/2A1nqv1nqvlc/dRJWGYRiGYRiGYRivTaYX7pv3lwBa62+ISFFEyvTGb/6JfvoXRGTluvIfEpFv9YI9CWwClm+o84eBPcDTIgKQARaeZ/7ngfUi8gfAF4Av30Sbv6K1XgYQkb+hNyb0MzcxnWEYhmEYhmEYhnEDE0D/fTF//6q8f937GwcHe97BwkTkfuBNwN1a67aIPHxDXd8uCnxCa/2vXqhhWusVEdkF/CjwQeCngF+4oc03zuOm22wYhmEYhmEYhmH848wt3H/fPDDaf7bZA952Xd57AUTk9UBNa10DvgH8dD/9LcBAv2wJWOkHz7cAd11XTyQiTv/9V4H3iMhov45BEZn+bg3r9+6ttNafBn4DuL2fdZHeVWyA99ww2Y/068wA7wQevcn1YBiGYRiGYRiGYdzAXIG+jtY6EpHfAp4CrgInr8vuisgBwKF35RfgI8Bfisgx4DHgcj/9i8AHReQEcAp44rp6HgAOi8hz/eegfwP4sogoIAL+F+DSd2neauBj/XIA37pq/e+AT/U7KvvCDdM8BXwaWAP8udba3L5tGIZhGIZhGIbxIonW5q7eF9K/BftXXu0BaGZiUt+97Re5/CMeXlVAQ2csBUDFQukUhCXBr2gW7o/InXJxWlB+x1W6sU3382PEWcjO97ap7qDQuK2LbtlIpNBeij9n010dgaVRNZvCBUXU77ssGErxlhVb3nKGA6fWIk6K5SaocxnCsZjSUYfEh+bmELF788gd9UgdaK+NyF5y6GwOsBZcSCFZFTD4TY/2uHxnIVMYvu8a7b8eJyoInTub2MfyhEWNvyQUL6ZIqin8sytcrvRuKOgsZBk6YFHZoVExbNh9hXPzw/iHsrSmY1atX2K5nkOpXpviyELOZ0kdYE0H71CWZG+DQrZL8rlh2quEOKvJXxTcZm+axIHhn7nMbL1IzguZPz0CtqZwxqI7orGbQlTUjNw2D4AlmuRPR5l/V4B/OEt7dcIb9h3jG9/YyfBBjX7fEstHRyj3fwJauiPBLobkH8tS29fl3TsP8Lkv3oVoCEdicsNtWgs5MjM2nbURAPlTDtqC1qYQYoXVsMjOCd29LfxMiPrqALXdIQPP9G6oWNmVsHbDPDOLAyR1F4kFq6nwK0K8r4EcLhBnNU79O59He12EUwhJr2ZwVxSdyRi7ZuGtCN1b26QVD7eiGDraW0/L72kx8NkclW2CtiCd6lJ4NENzWpPkU3Q2RgR0Kqj6d34fTP2UkScsWj9ep72cRWViBgdaVM4M4lUUTh0ae7oA6I4FAl65i/dogcxyyvJOQUUweEwz94YE8RJ0pBhf3ev2oPLsKHZL8FY03SHBbcDgyZCLb7ewWgorAG9ZKLxlDoDFZ8ZQW5p43yxQuy0ge9pj6HjMzFtAAoVTF+y2cNuPH0dJbx988mvbWXf3ZS49PM3IoZiVLTYSQ+L39p3MnCIY1MTZ3roqnlUkGWiujbEbFvkZIShD4mvCkRjcFGvZQcWCCnvrKfEgf1lAILUgHIBgbYB33usdByIIB3rb47f2WUSTuWbR3hRiLzlIAlqBtjRJMWHsGxa1d/R6+PcfKjD87hnmvzBJY3tIptTF/2qBzpiQOhp3RUgdcBsQlHtt6qwPKR5xSe6t0W56UHdQAyGFxzMEA+CtQHVXxL6t5wE4+M3N5C9DcxJEQ+k0LO1J8ZYtuqsjJqeXWHlwAjQ018e9di3YjD8eUp92UBG01gjR1ja5J7KERdAWOA1obO+tqO0brnL88BS3/EmVE/+8hLNiEY2HlA54lN82y8p/XUVQhuHDCdde31tX+XU16itZ6FpIJmHsSw5z96VkrtqsfsMMl55eQ+k0JG5vueOc0Ly1y9BQk/Zjw3RHUya/nLD4P7Vxvl6isa9DNh9Q/s8FFm7r/a4aDaYMPavo/niN9oUiKha0pcnMK/xFTe1HW0QrPirf28fdsxmCwRSdSRgYr1M7N8Dqh1Pm7raIx0N010KyMdnjPt2R3nY4/Bws3yokvsZu9fZDNMjaFlzI4dSF9sYQ+sfDzDmP1NVE67rkn80wcCri6g/ZxOUE3JTiERetIPemeeYuDPWOby2L3KYq2U+VmHtDwt3bzvL4sY1kLjnk71lkcb6Ef8mlO9H7/HIXbTpjKWqsi3s0S5zRJFlNkk9wKjbRWETxkPvt40F0b53OUha7biExqEhIPc3qPbM0PrkKt6mZu1fjLVkEw0lvonyMd9GjdCZl8S0B2YMZWtMJg4cUy3sTVFeR5hJyZ3vHw9bGCDsXkXsiS31LglNVJOs6rBmu4v+rHKd/Ic/Yo0JrQuH0zwPlMyHNNS6Lbwq4a8MFnjizHtuLSRKFjhU71l2lHvhcmhnu7Y8Nm/wlxfjbLlP9+CSVHcBkBz3rk2Y0dr13LGmvjXAX7f4+LHTXBrhXXeyWEAyllLZUsD81RGUHWN3euij0dicqd0Zs/LOEsz9jf2ecETvFmXORlN656dYW9647x9eO3QKAd9UhLGlkMCANLcRJyR7zaW/vsnnNPFdrJfSTZTILveW2f3KB+jfGKMykhAWheleAc8UjKqYMHlRUt2rGdiwwf2yUZKD3mSsnQRY8xp7QLO9U5GcgcYTanV10x8afs0k8je63eeorIZ1hB7ubcvV+xfbbL3Lh8+sZOh5x6V0acVJyR3ziLN/erlSgSAsxOzde4fhT6yidhdoPdXBOZUk8jdPobevfPgfeESIC5SddJIHqVs3UF2Oqv9ikGzrE5/LYbcHpD3gSlDX+stDc2yGNFNkzHu0NIfaiQ+ksVG5NKa+t0j44SLqpDYAoTXohx/1vOMwjX9hFsq1Jci2LxII93SQKbDJHM4S7ezOxj+WwuhDnICqkTDyqufrOiPwhn+Z0Sm5G0dwWIm0LNdA7vlkXfVQg/It/8jn+4D+/g+EjMcs7bPS+GsnREuUzKVFWsN6xBID+9DDdQaG5IUYioXDeIs5CeluD8EoObWvKxxRRXmhu7K1bq6lwpls4jxdIfNACmUVNaw2UT2ma727QqmQg7h3bpr4AC3tsopzGrQnFexbw/miQy2+F3AWbOKdR2xo4jxTJLvSOVfW1ioH75lg4MEY0kDA2VWHhwhCqrdCWxq0r7BZ0h3rbodPobftoIRxKkFJI9lAGuwO1rQnjjwgLb+/iHcmS3NYAYOAzOZqTve+x/jK0V2mioRh72carCt0hjYogGki+faxK9jaIL+TRSpMMRZAKGz+eUP21FsuXBtCZhHWfhMXdvWPWpred4eRXNhEWNbmrQjAAbp3ed+edDdzHCsR+77wLEBX634csTe6iTXc0xakpJIFwWwfLTojmM2Rne4P+pBbsfdtRvnnoFoqnbLqDmvvefJgjf7CT2BeaU71zYDiUQG/VIpFCxVA6JVT2xkjHwl9UDN97jaVHJoi3tSjkOxT+uNSb4F8scunKMM6cg78sNLZEWPkI61yGJKPJzShaUyn+ugbdc0UAsnPCjp84wePHN5K57ICG9NYG9rMFOuMpejDEvuYRlXvrduCQxcptMf5VB38R0jevUL9W4M17jvDlw9vZumGWk4enUKFQuCj9dQXBoKZwS4X0wSFSG479+19+Vmv9DzpdvpG5hdswDMMwDMMwDMMwboK5hfsmaK3vfznnJyJPAt4NyT+rtT7ycrbDMAzDMAzDMAzD+A4TQP8A0lrf+Uq3wTAMwzAMwzAMw/j7zC3cP8BEJCciXxCRQyJyVETeKyIX+z1yIyJ7+89nIyL7ReQTIvJNEbkkIj8hIv9WRI6IyBev6/nbMAzDMAzDMAzDeBFMAP2D7X8AZrXWu7TWO+j17v2P2QC8EXg78OfAQ1rrnUAHeOt3m0BEPiAiz4jIM3G79X1sumEYhmEYhmEYxquLCaB/sB2hN5bz74jIvf2xp/8x/1VrHfWns/hOwH0EWPvdJtBaP6C13qu13mtnc9+vdhuGYRiGYRiGYbzqmGegf4BprU+LyO3AjwH/RkS+CsR854cP/4ZJgv50qYhE+jtjlKWYz9owDMMwDMMwDON7Yq5A/wATkVVAW2v958DvArcDF4E9/SLvfoWaZhiGYRiGYRiG8Zpjrkr+YNsJ/K6IpEAE/DMgA/y/IvKvgYdfwbYZhmEYhmEYhmG8ppgA+geY1vpLwJe+S9bm71J2/w3/558vzzAMwzAMwzAMw/hvZ+3fv/+VboPxA+Jf/8Hv7fd/+D4SH/IzEAwIq78eUjqbYrcVi2+IcFZsWhOghyJyZ2xEw1wmQyex0V2H9rqI9ii0V2mSjGDVbECwu0LxnEXxQkLx/iUiFP5xn/qWmKHD4NU07XEhnAypBFm8kxn8qzZSc1A7GsSRjQQW2gKrZVHcUCWTDXEOZIjur1MebNEoKMrlFls3XcEZDWh0Mgw8q6jcEeNfs1AxRCVN1XJQdYfG1hD/RIbk1ibeeY/ixZTGlKK2UVhs5YmbDnHLwalaxDlBNEzsmufCzCjOZQ9tC8lwRLPjk0QW6bUMSc1Fzbu4VSFYF1J6zKe+JcE5m6GeseiMQFxI8RYsmttCrKZNnBUyFc1st0xHbIKLBZJyjFO1cWtCeyphet9VGhdK6MN5ojN5FgsuQdYmFkWSgcycxezRMdyakF1ImFtv419y8Fc0KoH25pidU7M0Dg6gmg7nD00iqaCVkA5HpFqRP+wRFTRJIQGBcCwmyoM/2CV7IIO7p0q37RM5kPtGDiuCidfNUV0lxOtDJv/cYmGnQl/IM3HLIvVqluIZi9ZqTdy1SXzQNng7qkRVn9SF1IbMKQ9tw/CRlKBoAZD4kHZtnPEO1qzHyq6ExjqNrnh4FaFxS4wz0aZU6FDJuGgHMuNN4iUfb9YhGY7QjkZ7KQNrqgSpRfnOZYLHholKGh1YtGs+VkdhhcLEj84QPDGEs2hTPqmw99QJzxRZ/UiXyjaXYE0EiSIqKBIHJh60CDMOP3zbUSZzVY5WJ4gnQrIXbRobU7qjKRLZeHuqpJeyhCMpqSNUuxka1SxJViNeAhWX6c9FNKYcKrdqJFZIAsULwut+5gAHF1dx6RtrmT07igqFylyJYCwhKFl4FSEY1uRnIHNvBZnq0G57uDWFFQj+MjTWaTZtv0r7aBm7q2mv1iQTIeUDHoll4S8qho+mdAcUkgj/8098iSNPbaA1BVYodEdSrIZN4QI0tsZ4mxskSz7phg7pcIRUHfRgxMBhC3a38A/5ZBbBfV2Fdtcje8khzgvtrCLu2nRXJzRCj3hNiH3JJ+q4TDwekfvpeZqXioSDKf6y4LQ0TgucJgQFRWpDXPWgFGMvOuSPOZTPhizt1fiLiu6QJvKFapChVc8wdFwTDCgmv9Kh/YE6oa2gZaPLMd3jJeIcdNdGuAs2VkeRutCesGlsjhl43SLx8Tys69BWDtFQwsAxoTskaBFUV7F0rYzEis54FkmEaE0IkcJbtGivTggaHioVfvyD32TlT9ZQOqdZWOsgLRtBkKZFnFEw2SUNbGQwRI7kWNkdEwxBd1SDFgrr6qxU8ujEIh2KCFyXoKQJcgocTXwtS2dYEU2GpKWEVVPLtGcLtFOXtJDgLVpYXaG9MSTMWmRPeETrAtSsjzRsSmfAbilILYbXr9C4WqQ9pnjTmw+wd9UlWr8/QWPMQ4XCmruuUh5vMB8XUTHkZhVqT5245uK0FLnpBu2uR+oIVtPCGg6w7JTCIYfmrSGZkz5xDpb3anIzFnEWMldsmltCrJZFOJygLmax2woVCZ3AY/XXGoT5LHfsOcWFR9bhL2saazRaIFYKp2ZhdRT5y9CaTklDCxUI4WhCdk2TOFWkhQRp2uRmhc6okGQg0DZYGm91q/ceWP1QwuW1PqOPwcpWm9xlobk+Ye3mecrDTVqny4RjMbFvMfSkRfOH2thXPIIBkKTX5jSbklpCnNM4NYvIFSS0cGu9Ng7fucTsMxM0J31yM4rl+wNy5yzq6yAYgGDApnw6JI18FsZsomtZ8kc8gqxCWhaLc2XqC3mkFCG2xqo4eCvCrORRoQIE/7xDdyIhf97GqwmpC/FYjNWwQMBfEuK1IWkxIQ1thg/D9OuvcrE7RPaaYIW983/iC9oSukOaIO+hQkWSS8mdd4hykGY1dsOiuyYi7disKI/4cg7VtojGIiQVvBmX9buvsn5kie5XB7ErDldVntxjGeq7Qpxlm9QVVpIssrlJy/GwQkHHFmxsQcWlMAPdvR20CP5Q99vzWLNxkeZMAVBYXSHOC1EOnEWbf/qWbzLzhWlKF1PCfO942Ji26Q4Iy/dErNs0TzP0CM7n6Q5ZSKSIHSF/SWjeGpI97+LUFHZbSEWonhrkh950mIujGfSZPMFkyMjGCuHlHGOPQVBWaCUUT1sEvoV79wpBJYu2YeBUDBdzDL5uiepiASwYOKXx6prWasGKhDSwA631SwAAIABJREFUsRsWUR6yV2zW3neZmXwWb8GhmbokWc2dWy6wqlRjsZ0nrnm4I10ap8voVQH2jE+8OqT8YIZuzmLyK12WNrukgU3uiqI1lSIxTD0YcfmtirE1K1R8l9IJm8aWGFLBW7KgaSM1GwSyC8Khr2+h8/oWK1vAv2LTFpfCRegOKRChFmXoLGWZeCKgssNmbNsi+lCR9u0d0tAmd8Al8QVWBbTLgr+kCKdCxEnxZh30socVQmc8RduQWYDuGDSnILKE9VOL2LmIXKlLe7nA+FNdKrsUUTGlFbg0x2x0ISYaSEmVwjvh0xnrfZdsjwvh2oDO6RJWV1BdodHOkJ+sI6WISPX2U3fZIs7R+84zHpOZswiGU4YPKNoDityuFbr1LHZLUTof03V8rAiKzzj4p1yqWxSdqYjMNYv8bEprQshP15n804TaJhcV9vbB8cegcEGo3gIy75G/BNHODpNjK9QXCiS2S3NMk7bs3rllyCEYTInzmtlWEX/ewgp6dQWjCVEO4lKKfd7HrWla073vetqGaCIiM9QhDmzGn9C07u6iJgLSmktsCWnTYervUpZ3CXFeoy1Y8j2SuQx+RWhPpXjlgKthmdy13vqMV4XYyw4qVKhQkeYTKCRIx2byizGdMYfE16x0M/hLCntdm+DZQeobFI0pxYq4oIXMrE1zQ8zQUzbOnAsIUUkTDKWkGc3oSJ2GsiEfYy85nI/LSKTQIqQORCgy8xYSCYWTFtt+/DSNR0fxKr19UDa3CSOHzkRCuOJDNuVKu0QmH8LHRmlsShk4rqhuSwmGNVN3XWVlrog+nwUgKkLloS9d279//wMvFDOZZ6ANwzAMwzAMwzAM4yaYAPoHhIhYr3QbDMMwDMMwDMMwjOdnAuiXiYh8VkSeFZFjIvKBflpTRP69iBwC7haR3xSRp0XkqIg8ICLSL/dwfyzop0TktIjc20/PisinROS4iHxGRJ4Ukb39vDeLyOMi8pyI/LWI5J+3cYZhGIZhGIZhGMYLMgH0y+cXtNZ7gL3Ah0RkCMgBT2qtd2mtHwH+UGu9T2u9g15v22+7bnpba30H8EvAh/tpvwisaK23Af8n/eGtRGQY+A3gTVrr24FngF9+6RfRMAzDMAzDMAzj1cv0wv3y+ZCIvKv/fhLYBCTAp68r8wYR+d+BLDAIHAP+Sz/vb/qvzwJr++9fD/w+gNb6qIgc7qffBWwDHu1fxHaBx79bo/pXwz8AYA2WX/zSGYZhGIZhGIZhvMqZAPplICL3A28C7tZat0XkYcAHulrrpF/GB/4jsFdrPSMi+/tlviXovya88OcmwFe01v/0hdqmtX4AeADAm16jb3aZDMMwDMMwDMMwXmvMLdwvjxK9W63bInILvSvEN/pWsLzUf175PTdR76PATwGIyDZgZz/9CeB1IrKxn5cTkX8wdrRhGIZhGIZhGIZx88wV6JfHF4EPisgJ4BS9APfv0VpXReT/AY4Cc8DTN1HvfwQ+ISLHgZP0bvmuaa0XReTngb8UEa9f9jeA09/zkhiGYRiGYRiGYbxGmQD6ZaC1DoC3fJes/A3lfoNeoHvj9Pdf936J7zwD3QXep7XuisgG4EHgUr/c14B934fmG4ZhGIZhGIZhGJgA+r93WeAhEXHoPff8i1rr8BVuk2EYhmEYhmEYxquStX///le6DcaLtH///nD//v0P7N+//4/379//R/v37z/7vdT3b/6v39s/vPUetBJAGDwVc/V+h/p6i8amlPwZl+bWAH/WRq8K8XbUCZZyyHQHdTaLVxXsusXos5riRQhzih1vOkNSTGlVsnRWJ3TLFq35PCPTKyyTwV2xyM6BaIh9RZQF7WjsBYfUAxXDwNdtrLpDe01K7orQ3tHlTetPMVWocigdJ7Uhea5EeXOV5dkSc9eGqM8VSLXQLVkMPWdRvUUTlTSDx4SffOejPF2bxK7bBJMRo5/3yM8mLN9q4VZBJUK0KmT6s0L5DDSmFE5T8JeF1myBaDjGalpM3HmN7vEysSuopo3VFSQRBm9fpL2UI/Z7y4QWsvNCklpoB5yaRZzXOCNdCgdsnLZm/h6N3RFSS5BU0CKkrqY7FaMyMVODFa7WynTHUoKRlMJJF//OCpliQDybJfVAO722h2+v0a35WB2L1BGivLB6zxwXHpkmdYV0T4Pc5jrJeIS/qoX9VBF3Y5PCIy6prVBtC6dqMXjQojMiqEJE4YDDSsEjHYpQTkpnBJyqRfd4EfeWBo6d0K4ViCYjQm0RHytSOi2gYORwTOHHFrG+UUASRTv2cKsKFQnRcIKzuYl/yCdTSVm5FdTqNs6Mh90SSpuq1LIWmXIXJxehlz0GjyfYdZvGgEW77ZI755DdXmXH6BxzcQ6qDmk5Ye3qJcqlNteuDEHLJjxVxF/WxBmFdsAaCLGWHQRh0fIY2bGEv67J4oTNxAMunTGbynYbty6EJU1pbY12DkqHXBbvTEkGYs4/O8WZM2tIPciddokKgreiKJ0WWmuEVlaYeBi6ZQvZ3GTg6z7Zq4rOOJRGmkRXsxRnYpZvtbFCQcW96UE4nS3SqmdwF2wkASxIHZh4BCQRqls1aKE1neKVAqoXy0x9McWtC5lF6A4qUgcqcyUGT2msENq3B6hZn/aGCI1gtxUr24ENLdKxkANf30awp02kFeGqiIE1NTr1DG5N9banBR+7LVB3UBWn165Y0ZrSRE2X5JY2q+6cp/25ccJNIWFZo5oWmWsW3rJFNB6TOZxBrwkIsdiwfZZr0SCNq0WSjMbuKIqXUla2C63JlM64RhcTEg9kNETHiuxFmw3vPsM5NYKkvWV16hadiZQwsvFO+NgdSH6kysKqPDqXELYdRjZUcL5aJHUEFQlO1cJpCVYgWKHQ2Rjgzjs0VnKEm7tEbZfcRZsop2lPaOKcxq1ZWKEQDcWs2ryIPJ3jrT/3KEfPTuMNd0ibHvGSh9UVkm0tTj+4icV7UmpboXjUJZiKKR9ysDuC3YbAtXplz+XojGokFhiMwE+JCympCEnLIX/ewqrZDB+Lae5McGc8nGUbtalJ9ohHioXVsKhqD3/OojueMHDQJr67QeFJl9ZqIBW0De983TOcPrkGSSB1hfaqFElhGQ9diPGuOSw/OM4znUkqu3rHIqchbLv1EiW3y/naEOlwRP60RXs6wZnxsCLgbJZgTYw/3kau+YS2Ig1s2qs0qmWTOlA6A+4dNdIrGcaeTuBdFfxcQDPySKoeAmib3ufTEOrrfZIsHD87idsUarekaEeTxgpv3iYqpqSuJjsvFO5ZZmp8mQXLp3DEozOqcc9kyJ+16U7GBEXVm9bVFM9YpJbCPeMTTsRIoChd1DSHXSq7NFEpJVgXk7nsspK1qbczqGUHq63wK0Lt/g7lYoeGYzF4wCLa1yQKbJyaReoCCqx1LazLPqIFpwFRUZDH8jQ2J4w9qVE/vUgn8Ag8i9JZwVsB583LzG7wsGs2m3ZdYX5ukO5kRGakQxTZ+HMW6bouzrkM1opDnNV01iTgpzhViySraW+IkECRZKCzOsGrKFJtwdo2DER0bRtnzsG/4mAFQmdEmHN98kddattjpr/QYfafJJQOW9hdTWJbDJxJ6A4oiltXaBQUA6MNRj7lU18n5C9YpBs7xCeL2JsbWIMhw3/n01oD7qYG6V+NUn1uiOVdQjDS28aLF6E1rfHnLQBSD1hyEaAwA94KRLGH0xBqmzXUHMKqD+eyhKMJqa9pa4s4ssldEap7I1THIt3RJHfU4f1v+AqfLW6mIz5uHawIUhuiHW3UrM9ykCU6USIYSnvbWlNgUxs15zF4SNGe6O0rSVaT3VJj4pNwwFtNsuSR31Gh2/bozObRFrg1obpdEw5qWtMp/qJFuOwTlTWZecXcfZA4FtXFAsVzQpyDoKToDknvsocIwUiCihR6skMa2ESlhG7Lw1rdQfkx3lmf5YMjLB4fIbOlgS7GzM4PkNnUoL2QI39BoWMbSYVgLEUih85Er0/YqADbb79I4+ggi7crBo4raqvAO5HBbWhSy8IKhHA8JvU0aUajQoVbFVa2a5LQQjVsnIaQZMFfhigvJD6oW5pY5YimnSM7B8nxPPU9Ias+61DdkeAtW3S2hGSO+cQFjb+oiJWFatpE5RTorXuvJvjL0Hhjm8gSpv5Oc/u7T3HiS5vYtvMyg36b+VMjzL05IX/aISprxtas4D+Ug1tbjHzOp7E1wWpYxOu6OHMOKhIyV2z8ZWitS7E7QuJB9okM9gWP7uoEtxASJg6Fi4JbE8KCkLttmfhKFisQMgtCciVLayom8aC+TpFZEiSFxlrojAqrvxlR3QWs7RAFHsFYQmIJlTVZnKaQWdIkGaE7pOgOK1TS295VIgRDKbVmht+892+5/L85LN42it1SJJmUwjnpHTNSIXUgHEmIM5DfsUJ6MUuS02RXNenm6Z0nBZJSSlJIyZ116Vg2dimEmkd7UJj4tEPtnhArk/D+fY/yUGEab7H3vTU/A53phCS0iTd3SWPF0kqR/AWL7pAweELTWK/ZtesC6WBMdqxFs5IFAW9jg06Qp7O9Q5oqVKwYOKFp4hOM9fbV1NcQK0iE0ikhKAthSejcEpA9byOxEI0mjE9ViD41RujYqLrN4PGUzW87z9zMEIULimhXC+dSBivo7zqJUJ+EcDaLtiDOQ2FtHfIJ1vks8UgMoSJX6lL8iyLtEYvtbzxL7eAQsSdYXaF1ukS0NiBNFcOHUzqjiuWHv3Rt//79D7xQzGQ6EXsZiMg7+518vRLzvl9E7nkl5m0YhmEYhmEYhvFqYgLol8c76Y3L/Eq4HzABtGEYhmEYhmEYxvfIBNAvARH5ORE5LCKHROQrwNuB3xWRgyKyQUQ2isiD/fzn+h2APV9dvyYiR/plP9pP2y0iT/Tn8RkRGeinf0hEjvfTPykia4EPAv+yP+97X/qlNwzDMAzDMAzDeHUynYh9n4nIdno9ad+jtV4SkUHg94DPa63/v36ZJ4GPaq0/IyI+z/NDhoi8BXgHcGd/DOnBftafAf9ca/11Efkt4MPALwG/DqzTWgciUu4PjfXHQFNr/e9ewsU2DMMwDMMwDMN41TNXoL//3gj8dX+4KbTWleszRaQArNZaf6af39Vat5+nrjcBH/tWvta6IiIloKy1/nq/zCeA+/rvDwN/ISLvA+KbaayIfEBEnhGRZ5Jm6+aX0jAMwzAMwzAM4zXGBNCvLm8F/m/gduBpEXnBOwy01g9orfdqrfda+dxL3kDDMAzDMAzDMIz/XpkA+vvva8BPisgQQP+26wZQANBaN4ArIvLOfr4nItnnqesrwPu/lS8ig1rrGrBy3fPMPwt8XUQUMKm1fgj4NaAE5K+ft2EYhmEYhmEYhvHimQD6+0xrfQz4bXpB7SF6zz9/EvhVETnQ7zDsZ4EPichh4DFg/Hnq+iLwt8AzInIQ+JV+1v9Ir1Oyw8Bu4LcAC/hzETkCHAD+g9a6CvwX4F2mEzHDMAzDMAzDMIzvjelE7CWgtf4EvWeTr3fjMFZvvMm6Pgp89Ia0g8Bd36X467/L9KeBW29mXoZhGIZhGIZhGMbzM1egDcMwDMMwDMMwDOMmWPv373+l2/CaJyI7P/KRj3z5Ix/5yAev+3v//8/enYfrcd0Fnv/+an/39+5Xd9G92mVJtmXJu2Nbjp10EgIJWQZomoQZeAJDIECamZ7ph6FNAzMwDXSzNNCGDoEQICRASBziOMROnHiRbdmy9l26uld3X979fWs980e9zriNl9hxiJfzeR49t96qOlW/U8upOqpTde68884/+ZeM49d+6z/fWbz2BpQJQVlRvSmg53ELbwVix6A9FuPO2dgNQVYdouksrYkI96SHv9kne96kvsdH6g5B0WDgKZ9T9iD1jgcGmOUQZ8am/0jCbClH8aRJayKmuR4aEzDwJHi3rtJcy5KM+Uz+lc/CzSatQYMoC8ZEC+e8Tc/VKzxxeDOnLq1j7MuKVtbBbgrNepbepwzaWwPWTa7QvlDE2NygNmDgLVhYbaEzABf/cRJnTegMKFQmJnvRYv5GQZmAEgCCPLQGLOrrDXKzQmNTzNCjMcv7QogMChtqVB4fpOeEorFeoUxFkktIsgnO1wo0doRI28Aeb2LOujhVaO3w2frHPst7bJQJPd9wWLoxoble0XvQxGoLRiQYoWDXDML+GHPNxunvUPEzWCezyIYWZiZClhzUVBZrokU4nyU/DcoQ1v2raeYu9UICQ4/A8t6EoDehp6/BcpQlc8lE5lxkfYfO4R6S6SzNrQHlUoslK09+BmqbFVFO0dwc4yxbZI65rF6hUNmY7BmXJLBYv2Me/2iR9r4679l0iK2lJU4dmKRt24zfo1i9OeD2dxzk9PlR6hMmV+y8wLmlQZQlmL4Qu4rEBgkNoqxCajbNdzSIV10yJ11iF/y+BN+BuGNhnsugllystmB1wH93lWJPC2t/Eb9P0e64TNfKuNkQFj1omzRmCtQvFfjpt3yJRxY3kD9jUt2VoAzYdeUU84tlshct/L6ExIb6Wo56JYtUbBrrLXbffpLq/gHqV/jkTzs0YhcVmZRPQc9xRW2D4KyZSCzsvvk005VeNv3FIu3RHLVNEPYk2As2a9dEEBmEoUVrU0xrIqF4wiaaztLZ2WZtL/Q9bKFE6IzERDmF2TYIehLMFYewJyEqKpyKgURCa8ig0w+F8+l5IYnQCh3KRy0Wb4T6BkVjUqEQwp4Ep2bQHAVlGESxhVMTMpdMytcsU82aWKsWucMuzpRDY3uAqjoYoUH5KQtOZzFCAyOB+pYIp2LQGUwY2r1AdqxBM2tgXXLpOwxWw4Q1h4V2nk4/WIUQ51wG04fS+Ri3qmhcFhFkDOK6zTW7z3L88Un6DyuqN3SIEXIzBkYE9Y0xfU+ZZBaE9hDYayaqbWKtWVgtYbrRg7tmYHWE/KwiKAh7bjzNaLHKzMVB/LIQL2RwKkLQcSictKiEGcLL25iLDokL3gq0hxVxFpyKkLtg0tgSgRLMXMS6wQqrQRZKEeaaRZJNMNa3UAMBcdumXs2QmCaHZ8YxQiHOJIQexOWYxBBygy2M0xkycybegkl9Q0L5sIkoaEwoOusScjMm7Y0BZsMCSfdl7pyNs2DxpluPcWG1j/xBj/awItzcob4jYef4PJ2Hy3SubWE7MWHDI3ZBGaBEMNsG4WCE3yOM/rVFfcKkZ+8S/lSesC9h6uH1dMYi4lxC6ZSBERl4qxB6BkkmIczCwG3zrDWzFE7Z+EMxds1g+uwQM6eHiHoieh51qG2Gnkdsrviho7TXJaz5Wbw5i8EvGgR5E7WphelFJIHJlstmWVkq0hqFwBQGHxDWtlnUIg/n0Ryd9REqG1M6auJUoDMEN771CJdODUECe956gpWnBiidhcao0HPAprEp5q3XHGbT2AKn59dRnKgxd984xa1VKiWD4sMZtnzfadaO92FXTPz1AVbVQmIBETqjEUGvQlombsUgKJh4e9cIFjMg4F20ySwqfNeChoW7tY491EbNZpCaTS1x2LpxnupUGVl2sbbXCRsOTtXA7Ai+ZYISnJoQFiBz/TLLQxb5/hbxfIZl10OqNvkZgygrxJ5QsRysFRt/ImTxQj8b/96nssFBLbkYHYPb3/EkZ4+OMbw/JjefUN2mGHrQQHwLuwGdfoW7bIEIatjHnXLx+xKUBV5fB9NKiGousQfJpjbOjE1nRxtjOkOUh8y8ycINFs6MQ32DojUCYTHBrhpYbVjNuXgXHZq+h7Nm0Lqyw8DDwtomg027ZlmY7SFq29irJkEZ4opLZyC9fk58MaE2aSDDPs2Sxaa/CYk9C8uHbe89xeqRfoIehV0XgqKg9tbIHEnLorCoSLyEwSsXCU4WsZoGm3bO0nyql8ZGRXmsSqeSwR1s0zBcPjd7JUnFwW4aBCVFlAOrLZhLNuGmDvYlB2tXjSSbUHjKprojIWnbJI6Qe9siu3edZ3zzIrMnhmgqm/CtLZjO4Oys0j7WQ/68ReRBXEhobguRQgTZGHPFobBnhfBSDqspODXF2FcCau/qYPQGmNMuzY0RUV9M1BPT94RJfYNi9KvQXCfkRxtwLksjcpHYoHDAY8v109QP9tIaUelx9NUstXGFOefi113sanr8TH6+xtqOdN+Gl7cpPOnhLRtIIsw5HkFfgtPXIW64+FmIXEH21Mk85dK+vIMKDDL9bexsSBjahAWYvGKW6mwRc7hN0nQwQ6HTB6Xz0F4H41sWKWY61C6WMH0hKAu9TxgEH1gjOptH2env6lZF30GDtT0R1nAbKYckhlB+yiTOCsWpmPqEQRRYjG1d4uJ6j4u1XtRQwMr9IyyeGMDvU4zeB0HRIHGELZtnsf7UYmWgxOj7pmg82U9QTqCTNqxVFrQ3hhgti7CckDhgDbVpZWwSW3CWLVTVJskorJagbPBHIpQFw583qGwzaA+ptGwf91G2wqpZvP/9DzB173qCkoERCyu7wWiZmLMuPacSmmNQOuAgSXov2R6GYCDGCARlQeEiJLbQGUhQSsj1tfnK47vpbOjHXx+gShFm1SIoC9lZwW4I/lCMdAzsoTbJwTKd8ZAtfx7wPR98jMMHNiOBgfQGlPc7ZOYMlCFsvnmKhdke+p+E4Jo2QSdDaJpQtTlBH9GqS+ms4NShsR4CMREEMxeSxCZm1SLKQexBdHOd4v1ZZmq91B2TZttFhSZGJsKvefi9CpoW/U8YtNZB6byiOSJYI22Smo0kgtkT4OYDeh40kMjEWwEV2qx7pEVlmw1KCDyo9xsoAxJH4ZcNVk71Y9eFsJjeCw7sWaC+mqM9GRJvadNYzdK7awV3oklrOUt0Pkc7J3iXLIymSTwYYB8osHo5YArT7RLuqklzY3oNDAcjcic8ki0tjEUHIxQW939p7s4777zrxepMugn3q4BS6jDpu8zfJCIfEZHjwBNKqR9+dhoR+VHgaqXUTz/HtIZSKv+dilfTNE3TNE3TNO2NSFegX71+CrhDKTXzSixMRCyl1LfUN7SmaZqmaZqmaZr2z+kK9KuQiPwRsBH4ooh8HLi5+7sFfEgpdehZ828A/pK026p/eMb4fcCvAGvAdmDrv0D4mqZpmqZpmqZpr0v6I2KvQkqpnwRmgduASeBJpdQVwL8H/vw5kvwO8IdKqcuBuWdN2wP8rFJKV541TdM0TdM0TdO+DboC/er3JuATAEqp+4A+ESk+a56bgL/qDn/iWdMeVUqdf76Fi8iHRORxEXk8bjZfqZg1TdM0TdM0TdNed3QF+vVDPc/4F6wVK6XuUkpdrZS62szlvgNhaZqmaZqmaZqmvT7oCvSr39eBH4ZvvtO8rJSqPWueB4Ef7A7/sy92a5qmaZqmaZqmad8+XYF+9bsT2Csih4BfBz74HPP8LPBhETkMjP4LxqZpmqZpmqZpmvaGob/C/SqllJp8xs93P8f0jwMf7w6fB254xuRf7I7/KvDV70yEmqZpmqZpmqZpbyzmnXfe+d2OQXuV+JXf/+07BzffSGssZuAJ8K6tsuJ6tIcV3qKBsaVJ/gmHnjMh9QkTuwF2zaCwb4FEhHrRIltuY531EAXzb00w+gOS2ABT4Z53UbvrrA1b4CVMfLZFZatLUozATrBWLVbyDuLFJA2b+qjL8K5FjIfz5PctYRgK83iGtRGD7BEXZ82gsk0QBe2JCKthUN8Uk5lyqK/miNf5lL6axWyZ+LvaJP0R2dM2jduamPMuVlNQysRqQZQTot6I3JSJKHAqBsoQjEiIsunvlX0h5rxLklEYh/PEOxvUNyjEN7FrJtmJOk4uJFnIEA6HlA/ahBsCoraNERqo0KQ+4RIOhUguwqrYZOYNvEWDTp/gDyjCjR3CUoK1ZpFYQvmkENdc/JaL3RB2X3uWkWKNS9kMbddAncnjrgrNcQg3dVit5MmdcohdQSKT8mnITwuXMnmsikn/0Zj2O+u4doQ/lyUsKsQ3SHIxUdXB8A2cuuBUhWg8IIlN2qMx/ZNrjA2sUZ0qEW/qECQmYd3DGPZ54vAWDl2YoDAFu991giM9vWTPuJxyStizDu4auNsbVI/0EmXSPGbP2lhtwQiFKLZAIPQdkmJEIgblUxA7BmFvjHPRxdhRRwYCejavMV/MYJzIUf6cQ3WzSdAfUz5qUdqzQuVSEastFKYgvKaB9AWskme1mcWdtfE3BvQcsFi+1EtuW5VgLUPv7iWsh4pEG30MN0HyMeXHLc6UCmQuWmRmTNrrwJlsEEYmRsuiOWIQZRVxFuKcYnaxF7NlUN+UR9nCjd9zmNnD63AurxJUPayWQZJPyJ9ycJZNWusSnN0VzIMFrrruLMtH+/H7hDff8hSXnhpBGRCbwsC2FZyv5cksCKYPm7//DJUjfSQexK7g1AQMIR4M6N27jH+uAKTbVdmgLIiHAuiYxC6YgeCtQuumBtGjPZSOmDQnEq55+zGGrlxk/tAw2XmDnlOK8hmfhfeFeBdsYgeUIYQlhQz62E5MnBi0LxQJe2NixyTKgNmBYDRCQqE0VCfuDxn5tCL6uVXY06KU71Bte/Q/alG4co3FqT5i2yCztU48nSXc1Yaqg9kxCG+qE24OyBzMoAwBA4xQiDOK/GUV3Mc9alsSYtvECMHZ0qQdO8zXSpRPQefGJmFkkWQVYQFyMwYBNsqBYCAiM2fQcyohP6tYvRwkMQiLCm/BwljXodbI0rPfpjUATsWkcE5QmzsYhgJboRDwTTZcPcOKcikUOyQzWaRj4q0YtIL0nN32P52k7/IVLq30EGUMWhMxZsdg4ADUNiuMcoixZmE1hdiD4gWwm3Dx3DAbr5lhcbmM6QtSt8ict5lWBWLbIOmJSM7kiTMKSQQAu25gt8BsmCQ2VK6LyJ82WepxKB0zaY/HxKMBNCwkFtrDisKeVVq1HHZdiBzBbpiEpTjddomJ1TDoTIao2CBxYfIfYjp9JsmeBn7kci4sET9RZt19H/fiAAAgAElEQVRDEStXgV0xaY0AFQdZc5DQoHWkjN0Sgt4Yc9nBL5vEGchur9DAJTdlERTBH4DOkMKuGUxfGEQSoe9ozLHeMuGGAHfKpjWiQJmYLYNT1QHOzg6hDKg0s4Q9McbBAkFJkZgGa8f6EGDwoM/aFpPBx4XsIjTGQPWE5Pta2CcyFC8kJI4QbfAJ2g5my0DZ4FbBqRm4FaGlHHIPZUhsIbyygXvaY2W1iLcCzXFFVHXJTxv0PxWSv5TgvXUNfzpH8TxYd6zQfrSfwuYqfLWX7LLCLxsUzwveqqIxCXEW8udN4iwkhmAPt2naOawdNcpjNdqLOaaNPGrZpTls0BwxKJ42aK4zCHc3SFoOUTnBbBtMXD/D6qUy8XBAYkHhtIWa9+CSx5W3neJSo0Rxv0d+NibEwQiFsKj4N+++n5nPbKBxXQdn2sHsCFFeEeYEp57un97DQlASBp/woeUhSvBzJj2jNdxCQKHUZjXMYwSCGu+k5dhYhaVMHmOyhQDZ4y7zt0NzVNEcV8wu9ZKdMxh6PKIxZtJel+Ad9qhellCYEra87TzlviZTs/1EniLOJySuQo34JF5CeKyEe1mV1lSR3q2rROfygLDh72t0+j2sllA6H+P3GPhZwamYJIseSdtGEkGJ4C0b5KZhJclzYaGfqUsDROUEvJgfv/xBjjh9hId6MH0hu6hobIzJzFkkkl7b6ZjQ79MJHApHLPw+aF/RQWoeDc/G7vEJGx7FUwadXkFCg8Q0sDpCbiEh/32LhJ8fIPYEq20goeD3wFwnT1CGvq0rZAZb1Js54t4I76INBoRjAeVDJrmZNl7dorLFwFhysBtpmRAUFdaKjdE0MeZd3CpsvHEasxSQdULa0wV2XHeBlVP9RHWHuOJAIlgtwRzyaa5l8c64FC4q7LesEE3lGH64wdoOh9bxEvVzJXJzCr9X6AwkNCYUbWVhVSwK1y6TnMwR5gSrDSNfi1gd8UjqNt6MTWODwlsRVvYFRJbgLZmsxBnMukVmsIX9SJHoujrJaEDxUYf5t8QYTZNka5OZhT46pRzvfu+DHPrjK6hvSXCXzTTuIP2nYoPyNUsoNwEvIZnNkpRDMrMWyoLSOSAxCMqKOANxRqGWXNYuh2QgxJmzEQVJaJHYComEQ61hyodMqpuExEnLB4khzkBzFLxFk+a4wojSa1Z2FqyGSeyl99mZJbjlg49zLiwzOb7M0lIJoxhBw8ZomRRO2tz0vYc4uzhAflowQ2iPJXgDbULfovykRZAzCUoO+2vrueLas9ATUVsq4K6aKFOobYuonO7FahpUrg9QCKplYUy2iDsW+b4m7Y6LXTVJHEGZgl0zcCoG5pyD0TZJHIURCwJkhlpUBk0KJyysJRtnziazYOBnTKyGSXbGJLtgYETQHlW0Bg2Gdi9QWc5jdExECWYxIJzPUdmpiFwDRGhtDCF0ybx5mew/5WhbDta6Ns55D6tpkJ+Fxp4O1pKNssCtCKtBlsEnoLk1Ri5lMAd8rC+VSU7mGH3rNK2jJWJlEhbA8gVrvEXUcDBDIehNGHzYZOWmgMJxB3fFJByKGXxQaOYc/F4w9tZY/tTX5u688867XqzOpJtwa5qmaZqmaZqmadq3QFegNU3TNE3TNE3TNO1boCvQrwEi8h9F5I7vdhyapmmapmmapmlvZPojYq8BSqlf+m7HoGmapmmapmma9kann0C/DCKSE5EviMhTInJERH5ARH5JRB7r/r5LUttF5NFnpJvsdjWFiOwVka+JyAER+ZKIrHuB9X1cRN7XHb4gIv+PiBwUkcdFZE83/VkR+cnuPIaI/IGInBCRL4vIPz6dXtM0TdM0TdM0TXt5dAX65XkbMKuUulIptQu4B/h9pdQ13d8Z4J1KqROAIyIbuul+APiUiNjA7wHvU0rtBT4G/NpLWP9FpdRu4OukXVm9D7ge+OXu9PcAk8AO4Ef4H7u4+h+IyIe6FfHH41rzJYSgaZqmaZqmaZr2xqIr0C/PYeAtIvIbInKzUqoK3CYi+7tPmN8M7OzO+zekFWe6fz8FbAN2AV8WkYOk/TaPvYT1f+4ZcexXStWVUkuALyJl4E3Ap5VSiVJqHrj/+RaklLpLKXW1Uupqs5h7CSFomqZpmqZpmqa9seh3oF8GpdQpEdkDvAP4VRH5CvBh4Gql1LSI3Al0e33jU8CnReTv0qTqtIhcDhxVSj3vk+EX4Xf/Js8Yfvq33qeapmmapmmapmnfAfoJ9MsgIiNASyn1F8B/AvZ0Jy2LSJ60STUASqmzQAz8X6SVaYCTwICI3NBdni0iTz+xfiU8CLy3+y70ELDvFVy2pmmapmmapmnaG5J+WvnyXA78JxFJgBD4X4F3A0eAeeCxZ83/KdKK9gYApVTQ/ajX74pIiXQ//Bfg6CsU398CtwPHgGngCaD6Ci1b0zRN0zRN0zTtDUmUUt/tGLTvABHJK6UaItIHPArc1H0f+nllhsfVph/5KKYP9tuXaD0wgF1Pp9U3JRgjbeRMlrA3wa4YxJ4ie8mAW9aoL+Xp228RZYX+Qx0AGqMOS3shySYMP2Aw/+aI4fssOr0GuXfOk3x8kJXLhXA0AMByI+KFDFftPcOJu7cS5hWFC6AsqNzcIZ/v0D5Rxq4JrS1py3V32sEfinCWLILRAKNiY420CBczkAgDB4TFfSHSNAFQXkL2nI0RAQqCksK8rI5SQvbLeVojgt8bQzHCO+0C0F4fgpMgTYsN2+fo3DWC+WMLzD8xTJRLyE+ZtEYSnNW0QYfdhMSCxqaI7LRFe1uH3gdc6pNgdoShxwPq6238ktDYHAFQPmSRXYrxywZhXqhvijFbBomjyMwbhFc1CBoOphcD4BzLoCzojAcUjjlklhX176vTaToUH/dIHDB9sFrp+d36nhr210q0hhVhTwx2glv0KX8uR/VdTYKOxcjfOczdaDD0aPL0QcTqdoPOugi3r00h67M8W6J8yKayK8JsGnhLBu3hdP7ycaGxHrKzgt8L9t41okd76AwmuCsGPScTVt7XxDxYILyiAUA8l8VsC5tvmOLSZydp39DAezRPczyhuLFC5VKR8Xth9qZ0//UfVNQmDbwVRe2WNplMQBia+A2X3oEajUN9eDsrNM6VSArpthoZX2FHzwL/dHAHfY9atAcFBDqDCUZHyF0Sqnt8tk2kp8fMvRM0t/kYazblk0J1M2QWhdaVbTb9QUJlSxbLVzRGDRpXpse6ZceEVRdvzkISMAIIC4oop3CXDdqbAqRtUj6cHiOl985y4fQQ45uWUP9tkEv7oHjGpLYlpnDOJL65SrvlIHMe7qqkx3pFUdmRoHIxYiU45z0SRxEOhBAZSCjkpk1UOju5OUXpbJuFq7PUdoZYaxZqrEP2QIbESeMzfCE/rVi+Pj0O7ZKPeyBPp18xtmeWlS+OUt8SseXPfc5/fxYSECAsptu257DJrg8c5cDnduH3J7iTdZz7SjTHFNGIj6w4OFWD4rn0OFy7LI3NqQqtHR0KT3o4VcXydTHj90CnbLK2A6LeEHvRBmD0mllmnhghsRWF8wb1DQnmSIv+z2ZZvkK4+tYTPP617biXpf9HWP5EgdXtJokNylREmzogis3DS8zePUFnQGHXhfZojOqeTwMP2HT6hcySovGuGq3lLO6Chbcs1CcTcjMGnX5F+cplAIJ7BrrLh+b6GAoR9rSDGQjt0YjsRYv2uhizz2f402k5MnejQZJJGNuyyOyRIQrnDCpXBWSmHNrrQ7wZm876gOwZJz1nJ0PKw3XMu3tY2RszsXGR6aPD6Tm31Sdb7DD0+x7n321RPpYeV81RMCKhdN0iW3sWOfyJXVR2RRiFEFl0MQIhHAixl9Jtm5kX2sMKJTC0e4HFJ4dwV4T2cEL/k1DbYBDlFBJDvCE91tWiS+ImOKsm9o4a5tdKtEYU8bBPz0Muq1fGmE2TxEvLhdJxE7eWEGWEym3pOSvfKNPe28I6lSUoJdDvc93GC5z6+Pb0fGopFt8S4p5zGTgUMfOeCPeMBwZEGYVTFfy+hMLmSro/Hunl2ncdxo8tTv7Zduq3tZAzWbxlIcpCUFbE2QTlpDGZNQuzA5IIcUZhdqB0BipbIRgNyBY7BGeLjN4fUfw/pgE4c+9Ghvf7zNzuUDgPq3tiEIV4MYVSm9pKDmfeJn8xPcb9stAaj1m3eYmFw0NkloTWSAJ9Psash7IUzppBZzAmP5WWb7f84AEenp+gUs2xcd0yF5d7MM0E47EizW0B1pKN3RCMMF1HazyGBMyWgdUSlAH+QITd26F0b45Ob/caYyro3uqJk9D3gMPqbR3W/YPDwtUG8YiPc97DCCDa1cR7LIffkyYo7VnG+Ms+Or0G7SFFWEwoHzMwfVi+JiYzaxHmFcpSGIF095/QHou446qjHFgYw7Ujkr8cpL5ecNegOa5w14SRB9LrwOkfypKZN/D7EyQW1FibuG7jLlgE5YS+jWvknICpCwO4c+mxW9i7jH9fP/XNEd5AG38uS3bWZOD2S1w8vA5JYGi/ojaRblu/X+GuCu0r22RzHcKDPbCzTnQ2j1sRCrcuIH82gBEp1rakaewG1K9rY1zyiEoxI5PLzJ0dwO5vs3dsmkcObKV/0yqrx/sASNLQUNmY4ftNGu+vYXy1TKdfobY06f18lsUbFEYn3U5xMYZIkEigGFEot7A/X6Z6e5uoaVM6bFPbEpObMmluSMuqXbummP/YBpZuCTGcGC8b4NxXor4hwW4YRFmFs5aeHwB23aAzFrLuKyZBXkhsWLs8JjPYYvBjGabeo8j3tWifLZJkugdJPsQ95xGUErxlg9amtFxqjUd4C1Z6j9iA5I61NN8P9tD3llmWvjpC7CmCCR+qNj1HDVavCZG2icrGZM459N8yB8D0TB/SMbGqBt6KUN8ekj1nM3z7DBcPjJKMdlCxoNrpc77Nnww5+34HIxDicgSRgbNiEpYSzF6fwb93aQ2ZVHZEuEtpmrCYkHgJvQdNVq8N6f+GzfItAfmjbnqPdO0a8rUeSufS69/M98fYMw7Dj8SsbrfoDCgkAashtDcEOPM24biPseyQ2VhLz6dvlImykLtumebD/XSGYrZfPs3pxybITQthHtrDCZn5tIyOcgqrKYRFReE8rO1KkERwVwzaEwFDIxUWF0uo0MBomN1y2qC9q41zOoMRpvd2zfEEGeow3FsjSgwWl4v0fTW91tQ2wvvf+Q0+87k3senjc1z8rSyN5RylwzbVy0PEickd9TBuTPdftL8Hf1cb85yHW0mPzeZYQu+WVSpH+8gsCH6PIhiKMGvde+nhtBzrP6jo9Bi0htP7neycQeOyAMOOSRo2RifN974bjnBoeYTWg/20JtLt7S6ahMV0e1gNIb6qjt9wyZ5Or4HrHu4we5NHezxCAqFw3qSxPqHnmFC7vUnYtikedIlvTa/9/ukiTkUwr1ujc6xMZkmo7Qy4ausUx+aH6ftMjsW9glNJy32AW992kHsPXI43Z9EZTQvWix/6dweUUlfzIvQT6Nevu7sfFHOAX3mxyrOmaZqmaZqmaZr2wnQF+lVERP4rcNOzRv+OUupPX+qylFL7XpGgNE3TNE3TNE3TNEBXoP8ZEWkopfLdD4X9rlLqfS8w788BdymlWi9xHT9K+sXun37meKXUh19OzJqmaZqmaZqmadp33hviK9wiYr7UNEqp2ReqPHf9HJB9eVFpmqZpmqZpmqZpryWv+Qq0iEyKyAkR+aSIHBeRz4hIVkQuiMhviMgTwPtFZJOI3CMiB0Tk6yKyvZt+g4g8LCKHReRXn7XcI91hU0R+U0SOiMghEfkZEfkIMALcLyL3v0B8bxORJ0TkqW5/0c+e/r0isl9EnhSRf+p2O4WI3CoiB7v/nhSRgoisE5EHuuOOiMjN3Xnf2s3DEyLy6W5XWojIr4vIsW7Mv/kKbnZN0zRN0zRN07Q3nNdLE+5twI8ppR4UkY8BP9Udv6KU2gPQrbz+pFLqtIhcB/wB8Gbgd4A/VEr9uYg8XxPqDwGTwG6lVCQivUqpVRH5KHCbUmr5uRKJyADwx8AtSqnzItL7HLN9A7heKaVE5MeB/x34t8AvAB/u5ikPdLpxfEkp9Wvdp+pZEekHfhG4QynVFJF/B3y0+z719wPbu8suP0+MH+ouF7vY8zzZ1zRN0zRN0zRN014vFehppdSD3eG/AD7SHf4UpF06ATcCnxaRp9O43b83Ae/tDn8C+I3nWP4dwB8ppSIApdTqtxjX9cADSqnzL5BuDPiUiKwj/WL2+e74B4HfFpFPAn+nlJoRkceAj4mIDXxWKXVQRG4FdgAPdvPmAA+T9vvcAf67iNwN3P1cASql7gLugrQbq28xX5qmaZqmaZqmaW84r/km3F3Prvg9/bvZ/WsAFaXU7mf8u+wF0v9L+j3g95VSlwM/AXgASqlfB34cyJBWjrcrpR4AbgEuAR8XkQ+Qdsv65Wfka4dS6se6lf1rgc8A7wTu+RfPmaZpmqZpmqZp2uvI66UCvV5EbugO/2vSZtHfpJSqAedF5P0AkrqyO/lB4Ae7wz/8PMv/MvATImJ10z/dFLsOFF4grkeAW0Rkw7PSPVOJtEIM8MGnR4rIJqXUYaXUbwCPAdtFZAJYUEr9MfAnwJ7uOm4Skc3ddDkR2dp96l5SSv0j8PPAlWiapmmapmmapmkv2+ulAn0S+LCIHAd6gD98jnl+GPgxEXkKOAq8qzv+Z7tpDwOjz7P8PwEuAoe66f91d/xdwD3P9xExpdQS6fvFf9dN96nnmO1O0qblB4Bnvkv9c09/tAwIgS8C+4CnRORJ4AdI+4heAn4U+KvuvA8D20kr9nd3x30D+Ojz5E3TNE3TNE3TNE37FohSr+3XXkVkErhbKbXruxzKa547Pq52vv3nWb3Fx1hwsdrg98cAZOYsZHcV9WQJgM66GBLw5k3e/p5H+OzxK5EFFyWQ5NM0RsMkKcT07bfwe4TCdEJt0qA1HmP3tyl+KYcywX3vAgDLjw2Rn4bWWxpEoUnvPRk2/cQJjn76MsI83PDOQzz8hSsw91TwT6RxmG3BakPsQZhTlE9C9V81MU7liDe38Q5mKZ2LufSObkw1i9KJ9D34ymUKRGGEgjHSJlryGHxU8IsG3vcuUH1oCCDNtxI6TYe+vgb1J/rIT0PltjbukSxmBxqTMU4l/f+ooDehcMakeU0b53gGiSHOKIKeBIkFqyH07l1k+alBcrNpLLEDVgsqV4bYKxbRmI9hKuK2SXmgQTnbZvULo3RuaAAQhSbmtIcRCP56H2PNpnjOoLYpoXRKuOXHH+O+T15L1O1krT0WgRtTftylPqnYfs0Fjh1eT+8hg9XdCSoTY3oRQ3/vsvDuID0evIDoeBHrshrh6SJhOQZRSCbGtBK8J7OUbp/nLetOAPDJf7yVZH2HYqFF62Av/kDM4MMmnT6hMZ6QWTBobgzxLtlkFtNyp74BjMkm4WKGzKxJayIie9Fi4GDIxbcbbPy7kPmf8WF/ur8RGHzcp/XRKgsLJcq9TTpP9BJlFfv2HeIrj+5CmQpnxSTa0EnTKBj9jE191KK6PcZbMJE9VcLQxDyWpzMSYdZNkkE/nb1jYuQiEt9k4AGb6hZwqkJja4g3bRNnFYYv5C4pgnK6/xqbQqyqRZxJ93Fm3kAJuDessDZfxJuxCXoTZCBdh3s0Q2s8ou8Jk+ao0BmMKB23qF4VYK5ZlE4J9ruWSJSwvJw2cpE1B3esQfaLBSRJt50/EpI749Dc5rN1/QJrnxin+b219FjfX8LsQFCCoJQw+Bi0BwzCHDQ3hmQv2PSeiEHg0m18c/tmZ0zsG1apNzLYJzP4/TGSCO6SwbrbZjg3NUj2jANAWFBsvfEC5+/dQFhQGJsaBAtZMMBeM7Dr6fZprU/PP2UqvFmL7Lyi/wemuXTvesb+qcqpn/FQkeDM2Vg7arSWckiUps2saxCeKhKWYvASvIsOE7dMceHrE0gCuUuKzGrC4g+00zycylE+BUtv8bGnXa7ad5JHz0zinvUItrYpf92jNSwkjsJqdOObiLArJomtMMdaJFM5+i9fpPLwEN4ydAZh4gt1vN9cBGChlWfhTD89hw0Q2PaBExy85zIKU4q17el2jHIJ7qqJRGlYdh2aY4q4L8TOhJSLLWoH+gkLiuycgUTQ6VeYfhpTYiuyl69RmS0y/IBBUBCCktC6Is2D3ysEpXR+1f20hxGB2YZt7zrFkfu2ktm9itzTQ3WrQjmKgUcM/LIg6e7A74PMtct4dkT7H4aw2lD6kRnOHxzFHGtR+KcclX0drDMZ3vN9acOuu//iTdS3REg2QlYdCucMans7eGc8wstalL6SSc+JiXQdfUcU4QdXqNQzeI/l8csKuyEYUVpuSigYgRD1Rjil9PzwHs7T6VMULkBrnTB5+wWOnxxj/Rdg8QNtPCekMlekf6wCQPVQH0YoBD0xzppJuLGNOePhVAW/R9H/lKI1aGC10nLHe88Cs9N99AzVqJ7toXxCqG2AeMSn9KhHbXOCMhW5KZPWSALAZXumuPQ3G0hcMAKobovZtHOWS/ePU7xxkdrDg2QWFGs703WoXIRZtVAG9B4Slq+LkUCgHEIiqEggMnAXLDbfmn765OLnNxAUQVmKMK/IzRjsfPcJnvrSdpKdDZLYILs/S217elCVjlnUtqTnp7eQXn+i3Q08N6RztEzhPKzt65DUbOxa2punMmDoigUuXegHBd6cReIqgr4Yb9bC748pnTTxb0vLkSCw6P1ShtomKJ6D+qTgb+zgnvHoDEeQiTHdmLdtOc4XDqQN3cbuFWbeqrAqJomnUL0BhQMe9T0dio971K7uYM26GJvS65nrRHSOlAn6Y5wVk57jirVtgtUWEguMEDo726hVB6uZ5vP6fUfZ/5WdSAJBX4I3Z1KYUnR6hfrmGImE8nGhtS49OYJSgrIU5WMGjQlQE21678lQ3SQktiK3c43qhTKqGGKu2AAUtlRonOwhKsRkLlm0xyKMloG7ZhDtbGAez9N7LMZbTffH+fdYmE2DvqcUjTEDswO5+YTEhoU3JUggZOZMwmJ6jBiB4A+HbP6LiOQ/rDD79TESRxF7CjXkk/gm+3ae5Otf38XYlXMAzD22jsSGzLzQmEgwBzqoSxniXExxpE6r5RKvuWRm0v1tN8FqK4wQqpvB7AiSpNdFb1XReHOTYNWjd6xC56H+b5br3rLQHlLEwz7WnEtuWqhcEeIsWxiBoEyFP5AWJMUTFkEJopyi75Bi+R0+5nmP3ExaFgZvqZEcKNHeGCDNNC6nYpDY0P+Uoni2yeLVeYwQ7PcuEv7tICvXRunLlVa6rUoHHVoj6XCUT/hfbv0aX/zVfcxfD6VTQn0S3IrgX9GCmbQM8pYFw4dkX4XGWpbSQYfq9oiJLyhWdtiEeRj/covFvemNUvv6Jpn9OfxeRX4K3FrC7G0Ko2OQnTdoX9mm+HWPTp/QGUrz7qyZlM4qVndB6RTEjlDdluAtGxgB+D0KqyVEuW65MNYhrtlIJqbU06RWy5A9nCGzoFi5o0MSmIidoBrWN8/ZxFJk5g1aownFjRXGyxUu/u1Gogy0RmMkFq7ce5ajD2zubluhNZJgjzVxHy5Quyyk5wmL1jrBH4jATZC2idlIzyVJwPQFfyA9b7wFgyivMDtCbkaxfEuACAwOVnHuShvSrm6zyCwqVm4NUIkgZkLPQy7125pM/p6B93/Pc+zRDcT96f1k/phLZt8Sxl/2sfDmiLEvmCzuMfCWBautaKyHq/ad5LFzEyTN9PzrOWjCO1ZZWyxAZJA/Z32zPM5PGYRZmLzjAsdPjKUXGyeh/IRDZVfE+D0wd4NJ4ihUf4BhJcjFDNamBoaREJwtpnmP07wHm9r0f9ljaa9i6iO/cEApdTUv4vXyBFrTNE3TNE3TNE3TvqNe81/hVkpdAL7rT59FZD///5e9n/YjSqnD3414NE3TNE3TNE3TtFfWG+oJtIhc6Pab/LLnEZGPiMjxbvdS36SUuu5ZX/ne/UpUnkXkP4rIHd/ucjRN0zRN0zRN07Rvz2v+CfR3wU8BdyilZp45UkSsp/uJfiUppX7plV6mpmmapmmapmma9tK96p9Ai8ikiJwQkY+LyCkR+aSI3CEiD4rIaRG5VkR6ReSzInJIRB4RkSu6aftE5F4ROSoif0LaZ/LTy/03IvKoiBwUkf8mIua3EMsfARuBL4rIz4vInSLyCRF5EPiEiHgi8qciclhEnhSR27rpfrQb35e7T7h/WkQ+2p3nkefp3urpdX5cRN7XHf51ETnWzedvPmP73Ncd9xURWf+MdL8rIg+JyLmnl/Ecy/+QiDwuIo/HzeZzzaJpmqZpmqZpmqbxGqhAd20Gfou0e6btpN1IvQn4BeDfA78MPKmUuqL7+8+76f4D8A2l1E7g74GnK5eXkXYDdZNSajcQ8/x9QH+TUuongVngNqXUf+6O3kH6RPqHgA+ns6nLgR8C/kxEvO58u4D3ANcAvwa0lFJXkXY79YEXW7eI9AHfD+zs5vNXu5N+D/iz7rhPAr/7jGTrutvpncCvP0+e7lJKXa2UutrM5V4sDE3TNE3TNE3TtDes10oT7vNPv08sIkeBryilVLfv5klgAngvgFLqvu6T5yJwC2mlFaXUF0Rkrbu824G9wGMiApABFl9mbJ9TSnX7T+FNpBValFInRGQK2Nqddr9Sqg7URaQKfL47/jBwxbewnirQAf67iNwN3N0dfwPdPAKfAP7fZ6T5rFIqAY6JyNBLz5qmaZqmaZqmaZr2tNdKBdp/xnDyjN8JaR7Cl7g8IX1q+3++ArF9q+2eXywPL0gpFYnItaSV//cBPw28+SWsU553Lk3TNE3TNE3TNO1FvVaacL+Yr9Ntgi0i+4BlpVQNeIC0uTci8nagpzv/V4D3ichgd1qviEy8wnFsJW0yfvIVWC4ikgdKSql/BH4euIuRmzsAABKaSURBVLI76SHgB7vDP9yNQdM0TdM0TdM0TXuFvVaeQL+YO4GPicghoAV8sDv+l4G/6jb7fgi4CKCUOiYivwjcKyIG6RPsDwNT32YcfwD8YbdpeQT8qFLK7zYT/3YooAD8Q/edagE+2p32M8Cfisj/BiwB//O3uzJN0zRN0zRN0zTtnxOl1Hc7Bu0FiMjngd9WSt3/nV5XZvOIGv7Iv6V0QmisB2VAVI4ByA406bQcxv/aYup7BNwEa8WmdBpW9sZk+lvwZJHymYSF69LlOTWDxFTkZqHvWIeZfRn8/hhv3qT/ljlanx5m9WafnodcAFrrhM5oiLgxsuwgsSAKop4Ie9kiWhdgX3LouWqJ5v2DAPScimisM0kcoT2gGN4fM/12oXDGpDGekGQTCqcswnwaU7i9hVrwMH1BQpBEcFehttsnX27TOVnC2VLDu7dIa136Hx+JrYgnOwB4mYDSXxdY22KAAe2xkMyMjb+tTfGRDACVHRH58xbj77jAxS9N0twSQCRkpm06wzHusklnwkfqFtt/7TwAZ39mE1ZLiDKK8imoTwrtsRAJDZQXI5aChsXQQ2lMS3sg7guZHFtmerGXZNXBWTVJHEViQeb/a+/Og+Q46zOOf39z78zOnjrXkqyVLVu2ZGtly0YG2YAdbA4jU0AoKBITQwKVclFQgUpI8geVUFQqRVU4CgoKbHNVQgLGBooEbCMbHwGMJUuybEsC67AO76Fd7ew5O0f3L390y94IH2sjaWet51O1td1v93S/08/MO/POdL9z1Ki2OmE6ut9h1xSLfpxhaE002HxyzQiTg3mskqBwKMmGd+/gVz9aS6UzJJwXXRFR3JalbV+dQ9cZ6VKCakdAdl6Z+tPN5FeWGOsr0r49yfC66NfbinvSTCwNSU0aHY875XkJRi6oc9Hqg+y9awWZUSjPh/nbA47Ev2yeGktQawmYt6xE7e55jHWHhE0hJKN2ycqJ6OOi1qhOiYEMQWvAWUuHGPrNIjIlqG0cpVJOw2CWRMXIjBrtvwsIk9GxGlxrpCaNzCjUCjDZXaN90SjD/S3M7ypxrNRM/tEmguhhSHXNJPXJFMVdGZoPh5hDshJy6B0ByaE0QVudxGgK76hReDK6UefjNfovT1PpCMgfiY7xZFdI5znHGN7TQdBWZ+HiEkd3Rz8xn1k6QVBPkPhdgfnbAzZ95hfcdvt1ZHqGqexop94cMu+CQfoPdlDYH33OGawfo9KXJ11K4OdOUvxlnkJfwLxP7Gfb3mVcu/pJNt/fQ/ZYdL+zw05m01HGHlxAeVFIvjdBpc1p3QvNz9QZWp2msm4Cns7TsfO514H+K0PSw0lqrQG5+WVsR5F8nzO0oUa6UCMME6xZ8gwAE/UMA2PNjO9rJTOaoN7kzNvu9F0ZUnwqRbUV6isnye7MR/nVID3uTCyBoHsKH8jiSadteYnyo50kqrDyur3s6luI74sGNZy/rp++XQtITRqpcSPIQaWrxnm3Vti/qUCyYkydXeXGS38NwI+++XpqBaisKrN88RClco7qg/Nov6aXQ3vnkxpLsuKH4wxf2EwYf4Q8djYkakbLAefoa0I8E5LI1UkeyRGmnRV3THHk9XkmV0ZXxTQ/kSXYMErH9wrU8gk2fvxh7vjtes7abBxdl6B2VjVqU/dkKXdFbeiCh42By53iviSTXU69vU5iPIl3VmEsTcvuJPU8NB8JoxxeH5DpT5GaMGqtTpBzwlxIri/FwkdqHPqTJPO3wMCbamT3R49DT0DzISd4+zDc3UFpTZ0l9xiDa5KYQ7UtJNc9xkR/dGzzB1NMdte4YOUR9uxYRq4/QXbYqRWN8XPqWN3IHk1SbQ2xRVEbGEymsHISWmvkn8wxcW6VZL6OD+QIcyEknMLeNE1XDkbt4ROdNA0YbtC2L6B0TpJEHapFsBDqeafWHpAZTFLriO77sv8OefpPQ3LNVZJbikysqpA8liZor5MrVqjvaybMOuevPQhAT9th7vzxRqwOiTqUF4Z0njfE0WfayAykKO6H4dUO86P88oUK44MFirvSJKegsKmPvicWkBtIMLGySvpomuyqEcZ7myksiq7Squ5pIUw71jWFHWii3hpiLVXCcoq27WmKN/TSv2URQSZ6TKWXj5N9sMjkIic1YZS7q6QG0yy/7DC9Iy2UDxZJVIz6gipNxaheiS0tlBeGZIYThFknN2hUizC1pEbLrjQT68tkn2giMxrto3RxjVz7FM3/00zpfKjPr9HyeIapDeMkEk64u5nmQ5ArOQPro3YhM2zU886CR0P6NiSwZZPUKynSRzIE3WXsUBOZkpG9YgiAkX3ttO42hnsCSDhNh9LUC1F7UVtYZeHmNMNvnySTqZO/ozU6VkVj4qpxWjYXOLbGWfyQ03slNPUmWfRwhf3vTJEaS+Dxb5/kjxjjy0OSZaNpwKgVoXxWnaU/h1pTgv4rnLYnE9Hjsjt6vbFCHUs6HffmGFsOLZcOcmx3J/O2QfU9w6xd8Az/e98aWn8X7aPSbrRd10vvjkUE+ZDUaIJsyUhUod4ExSujYXDGp7JUnmqJbhRConuCVCqgMpWB3ixtu4x6wRg9PyC/eJzJI810PBadzOmbhpjY1kmQg64HAob/coyxYwU6f5Wm1mwkrx7C7+p89v1IegxKPTVyR9IEqybIbiuQGXFK5zthc0DXsiH6n1iABVE9AQqHodpmTHYFFA4laXsq4PB1Tq43RaUzINefZKorIHs0OrjVlpCwtU7LzgxT853MiBGk4dxr9zHwjeUM9oDVjaA5ZOOluwDYNbSI+s/mMdnlJM8fwx9rIRFfKJl77SDD+9vBoGNHdL8nFxpBzln86zoj3WlKF9Up/j7F2OroMZ8pGeWFIU19CVKviYYiGj/QCg6pCWPZPVM887omUmXIDTmVVqO8yKkXHIt/HDborHHRiiPs+nU3QXNIcckoybvaGL44wGrGks3O0bUpai0hQTFqcy0bsvT2JNWbh+g73IFNJule/QwHt55FqmwEq8bJPdL8bB5TZ1exiWT0HvXxOgOXpPCE09wzxNjOTpJTRrIKUxeVaW2J2oWWXIXRH3Rx7JIAa6pDKUOqbGSHjOLBkKF3TpLY1YwF8UPqojFyDxbxBIyurpE+lmJBTz9jU1m4v53Riyu0bc0y1QnpddGxsl+2U3ntGJ23F6L31w5dD4XUPjLE8CMLqCwIyLRPkX8wuiP1PEycHbWpQdZpv2iQwQMddG5NMLixxsJFJfp720gdjd4gBouqFHdkOWvTAfYcWUjqQI7UBaPUd7eQKRl+xQgTAwXSrRVaNkev5fUmY/S8gOLSURK/aKd0YZ1kW5W2zU0MrQ/IL5iALa3PXjzql4xSraQJppK07sgQpmBqvtPyFJQucJIVo9oekKgkyA3Ej6vlNbJ9aWqtIa27Dd56DH7WweTi6LWu2lUjmauDRzsJKklSA2mSK8bJPVRk5MI6zftSjK+qkkgHZHc3kQigvLpMOBm9+C++N0nvG0OyA0kyJWNiWciBj31yq7uv5yW8Wk7hflUys9uAPPDQbNdFRERERETkTPdqOYX7pIp/Mmrz8yy6xt2HTtE+vwK87oTiL7r7B0/F/kREREREROTlUQf6ecSd5J5TsW0zWw781N3XnLDPm1/idm8APunu15+KeomIiIiIiMiL0yncIiIiIiIiIjOgDvTLZGbLzWyXmX3DzJ4ws7vNrCle1mNmvzGzx8zsTjNrj8svNbMdZraDaLTv49tKmtnnzOyR+DYfmWEdLjOzbWZ2jpkVzOw2M/ttXHZDvM4DZtYz7TYPmdna59nWh81si5ltCUYn/8ijIyIiIiIi8uqlDvQrsxL4iruvBkrAu+Ly7wB/5+4XAzuBT8fl3wQ+6u4ndmA/BIy4+2XAZcBfmVn3i+3YzF4LfA24wd33Av8I3OvulwNvBD5nZgXgVuAv4tucB+TcfceJ23P3r7v7endfn2zJv6yDICIiIiIiciZRB/qV2e/u2+PprcByM2sF2tz9/rj828BVZtYWlz8Ql3932nauBW40s+3Aw0AnUef8hVwAfB14u7sfnLaNT8Xb+CWQA5YBPwCuN7M08EHgW6/0zoqIiIiIiIgGEXulKtOmA6DpFW7HiL6ZvmuG6/cSdZDXAc9M28a73H3PH2zc7B7gBuA9wKWvsI4iIiIiIiKCvoE+adx9BBg2syvjoj8H7nf3ElAys41x+fun3ewu4K/jb4kxs/Pi069fSAl4G/Av8ajcx7fxUTOzeBvrpq1/C/Al4BF3H37l905ERERERET0DfTJ9QHga2aWB/YBN8XlNwG3mZkDd09b/xZgOfBo3AE+CrzjxXbg7v1mdj3wMzP7IPAZ4AvAY2aWAPYD18frbjWzUaJrsEVEREREROSPYO4+23WQU8TMuoiui17l7uEM1h8D/uBUcGlo84DB2a6EvCzKbO5RZnOL8pp7lNnco8zmFuU1M2e7+/yXWknfQL9KmdmNwGeBv5lJ5zm2x93Xn8JqyUlmZluU2dyizOYeZTa3KK+5R5nNPcpsblFeJ5c60C/CzDqBzc+z6Bp3HzpF+7yI/z9SN0DF3V/zcrbj7t8h+lktEREREREROQnUgX4RcSe55zTvc+fp3qeIiIiIiIi8NI3CLdN9fbYrIC+bMpt7lNnco8zmFuU19yizuUeZzS3K6yTSIGIiIiIiIiIiM6BvoEVERERERERmQB1oAcDM3mxme8zsKTP71GzXRyJmdpuZDZjZ49PKOszsHjP7ffy/PS43M/tSnOFjZnbJ7NX8zGRmS83sPjN70syeMLOPxeXKrEGZWc7MfmtmO+LM/iku7zazh+Ns/svMMnF5Np5/Kl6+fDbrf6Yys6SZbTOzn8bzyquBmdkBM9tpZtvNbEtcpnaxgZlZm5ndbma7zWyXmV2hzBqXmZ0fP7+O/42a2ceV2amhDrRgZkngK8BbgAuB95nZhbNbK4l9C3jzCWWfAja7+0qiUeKPf+DxFmBl/Pdh4KunqY7ynDrwCXe/ENgA3Bw/l5RZ46oAV7v7WqIBHN9sZhuAfwU+7+7nAsPAh+L1PwQMx+Wfj9eT0+9jwK5p88qr8b3R3Xum/ZSO2sXG9kXg5+6+ClhL9HxTZg3K3ffEz68e4FJgErgTZXZKqAMtAJcDT7n7PnevAv8J3DDLdRLA3R8Ajp1QfAPw7Xj628A7ppV/xyO/AdrMbPHpqakAuHuvuz8aT48RveE4C2XWsOJjPx7PpuM/B64Gbo/LT8zseJa3A9eYmZ2m6gpgZkuAtwG3xPOG8pqL1C42KDNrBa4CbgVw96q7l1Bmc8U1wF53fxpldkqoAy0QvcE/NG3+cFwmjWmhu/fG033AwnhaOTaQ+FTRdcDDKLOGFp8OvB0YAO4B9gIld6/Hq0zP5dnM4uUjQOfprfEZ7wvA3wJhPN+J8mp0DtxtZlvN7MNxmdrFxtUNHAW+GV8qcYuZFVBmc8V7ge/F08rsFFAHWmQO82gYfQ2l32DMrBn4IfBxdx+dvkyZNR53D+LT3pYQnZGzaparJC/AzK4HBtx962zXRV6Wje5+CdFpozeb2VXTF6pdbDgp4BLgq+6+DpjguVN/AWXWqOLxHzYBPzhxmTI7edSBFoAjwNJp80viMmlM/cdPs4n/D8TlyrEBmFmaqPP87+5+R1yszOaA+BTF+4AriE5nS8WLpufybGbx8lZg6DRX9Uz2OmCTmR0gutzoaqJrNZVXA3P3I/H/AaLrMi9H7WIjOwwcdveH4/nbiTrUyqzxvQV41N3743lldgqoAy0AjwAr41FMM0SnfvxkluskL+wnwAfi6Q8AP55WfmM8suIGYGTaaTtyGsTXVt4K7HL3f5u2SJk1KDObb2Zt8XQT8Caia9fvA94dr3ZiZsezfDdwb/ypvpwG7v737r7E3ZcTvVbd6+7vR3k1LDMrmFnx+DRwLfA4ahcblrv3AYfM7Py46BrgSZTZXPA+njt9G5TZKWF6HREAM3sr0XVlSeA2d//sLFdJADP7HvAGYB7QD3wa+BHwfWAZ8DTwHnc/Fnfevkw0avckcJO7b5mNep+pzGwj8CCwk+euz/wHouuglVkDMrOLiQZWSRJ9qPx9d/9nM1tB9A1nB7AN+DN3r5hZDvgu0fXtx4D3uvu+2an9mc3M3gB80t2vV16NK87mzng2BfyHu3/WzDpRu9iwzKyHaKC+DLAPuIm4jUSZNaT4A6qDwAp3H4nL9Dw7BdSBFhEREREREZkBncItIiIiIiIiMgPqQIuIiIiIiIjMgDrQIiIiIiIiIjOgDrSIiIiIiIjIDKgDLSIiIiIiIjID6kCLiIiIiIiIzIA60CIiIiIiIiIzoA60iIiIiIiIyAz8H6hfMtp5xb0hAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(20,15))\n", - "plt.imshow(embeddings[:,0], aspect=10)\n", - "plt.yticks(range(75), labels_str);" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(75, 64, 768)" - ] - }, - "execution_count": 106, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "embeddings.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.metrics.pairwise import cosine_similarity" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(75, 75)" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cos = cosine_similarity(embeddings[:,0])\n", - "cos.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7wAAAO8CAYAAABqQ7g3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcnXV99//Xe/bJzGQPIYQlgMgOARIXQIrLz1utVlQod8UqWouiaK116V2pRautrdy21Co08sNwW260oAjVCpQlhMVCQkjCIgE1yE72ZTL7zOf+41xTj+Msn0MymYX38/GYx5xznff5Xt9r+57zPdemiMDMzMzMzMxssqka6wqYmZmZmZmZjQZ3eM3MzMzMzGxScofXzMzMzMzMJiV3eM3MzMzMzGxScofXzMzMzMzMJiV3eM3MzMzMzGxScofXzMzMzMzMJiV3eM3MzMzMzGxScofXzMzMzMzMJqWasa6AjR+zZ1bHggNqU9l1v5qdLrevWvlKZKMzetJFVj9bwfir8tmoYLq6puaz9Zt701mqK/jNKiIdVW8u2zE3P/6a1gqWQ76q+XUGqO6soOC+fLa7eYx/O6xgHtS0V7Ae9OXL7anPV6Ki5VDJrE0W29M4Cm0SUNVdQbEVzNve+ny2uquCciv4BlBbwXrTOSOXa9iYnwlRQds8Wipp81VB+9FXs+enrZL5FdX5cmt2VfD5VEEd+mrzG3ol8zb7WQb55VDVlS+za3oFn5Ht6SjqqaANraS5q2DeVrI9jIbe2vz4qyqYX5Vk1ZNvw3ob8w1ub+6rOAB1O/Lfh/vqcht73yjN2745+fajrzU3v7q3b6GnbdeIFXaH1/7bggNque+mA1LZ0z/4x+lyO6fnP03TDdjvb0qXOfPCuvz4p+azXVPzLdJTb8w3Hi+/ojWd7ZmW/yasCjq8NVtzn7zrPtmULnPW8vy8Ha0O77T1nelsdXv+Q+S5k5vzlRgFvQ357JzV+V5ZTVv+w2nbYfl1cdov8r2y3oZKftTJxTYfnd92+yr44tH0XH7FrW3LZ3csyM+DlifzX8B27Zsvd86ajnT2F2fnvloc8c0d6TL7plTQflSgko5h17R8HWrb8u1H5/QKVrJkdbsb88u2kh9k56zML7PeCpZZ2775bCU/2tVvzbc1HXNydZjyTL5nuv7t+c+GWQ/mp6thc74dr6RjWtORb/O7WvLrbSXfP0K5+u6am/9uOWVTfrrqt+Xnbe2G/Pe17cfMTGdb98tP2/ybN6azbQum53Jz893DKRvzbd2u87ens+135Xasrf/211I5H9KcJOkiSZ8axfLvSWRai//7Sbp2tOpiZmZmZmY2GbjDO8Yk1QBExMnZ90TEsxFx5ujVyszMzMzMbOJzh3cYkj4n6TFJdwGHF8MOlXSjpPsl3SnpiGL4WZIekrRG0vJiWLWkr0paIWmtpA8Vw08v3nsD8EgxrH/vbbOkWyWtkvSgpLcPUq8Fkh4qHl8uaXXxt1HSXxXDP1023i+M/twyMzMzMzMbX3wO7xAknQT8T2Ahpfm0CrgfWAJ8OCIel/RK4JvA64DPA/8jIp6R1H+Q/B8B2yNisaR64G5JNxevnQgcExHrB4y6A3hHROyQNBv4L0k3RAx+AkREfLCo70HAjcBSSW8EDgNeQemMnxsknRYRyweZzvOA8wAOnO/VwczMzMzMJg/3cIb2GuC6iGgDKPbGNgAnA9fo1yfV91+p5W5Knc1/A35QDHsjcJyk/sOPp1HqiHYB9w3S2YVSB/VvJJ0G9AHzgbnA80NVVFIDcA3wsYj4laSPFeN+oIg0F+P9rQ5vRCyh1Iln0fENlVwqyMzMzMzMbFxzh7cyVcC2iFg48IWI+HCxx/d3gfuLPcSi1Am9qTwr6XRg1xDjOAeYA5wUEd2SnqDU0R7OZcAPIuKW/lEAfxsR/5KbLDMzMzMzs8nH5/AObTlwhqRGSS3A24A2YL2kswBUcnzx+NCIuDciPg9sBA4AbgLOl1RbZF4uaaT7uEwDNhSd3dcCBw0XlvRRoCUivlI2+CbgA5Kai8x8SftUNvlmZmZmZmYTm/fwDiEiVkn6HrAG2ACsKF46B7hU0oVALfDdIvNVSYdR2rt6azFsLbAAWKXSMdAbgTNGGPVVwL9LehBYCTw6Qv5TQLek1cXzyyLiMklHAj8tDr1uBd5TTIeZmZmZmdlLgoa4FpK9BLVM3z9OOPXjqeyyy7+VLnfx585PZxu35m4O3lfBjdQruYF30/P5m5O3VXDT8/2ufzKdffqdB6azqmDz7Zqaz3bMzc2H2SvzB4lUd1dy4/l0lL6aCsIVlZvPVnJT+9FQ05of/9bD60cO9atgfjVu7Etnpz+wMZ196oy56Wx1Ry5X05ZfF+es3J7O9jbVpbM9jfn2o3tqfmXsnJrfJmva8/OhYWtPOts1NTdtVZW0CVUVrIwVaHq6LZ3tbahgOcysfTHVGVHL6udSua2vmp8us2Fzdzpbt60zne2cNdLZWL/W+NSOdJaeCj6nD5uZztZt7Url+urz26668+1ixz75tnlKBettJcuhpj0/b+s2tKazHfvnv4Bkt/WulnxbN+2Rbens86fl15m2eeko8+/IrV8AUcl33Hn5tmbOrbnvou1H7JsuU/lVnJ0H5D8j63blCl57yyW0bnlqxBnmQ5rNzMzMzMxsUnKH18zMzMzMzCYld3jNzMzMzMxsUnKHdw+TdK6k/fbi+JaW3ef3RWfMzMzMzMwmG3d497xzgb3W4TUzMzMzM7PBucObIKlJ0o8lrZH0kKSzJZ0k6Q5J90u6SdK8Yi/qIuAqSaslNQ5R3hOS/rbIrJR0YlHGLyR9uMhI0leL8T0o6eyy4f8saZ2kW4B9ysr9rTolpu28og4ru7t27ZH5ZWZmZmZmNh74Prw5bwKejYjfBZA0DfgJ8PaI2Fh0Rr8cER+QdAHwqYhYOUKZT0bEQkn/ACwFTgEagIeAy4B3AguB44HZwApJy4FXA4cDRwFzgUeAKyTVAl8fWCfgA8NVIiKWAEugdFuiSmaKmZmZmZnZeOYOb86DwP+W9HfAj4CtwDHAf0oCqAZyN8f7tRvKym6OiJ3ATkmdkqYDpwJXR0Qv8IKkO4DFwGllw5+VdFtRzuF7oE5mZmZmZmaThju8CRHxmKQTgbcAXwJuAx6OiFfvRrH9d2/vK3vc//zFLBftgTqZmZmZmZlNGj6HN6G46nJbRPwr8FXglcAcSa8uXq+VdHQR3wm07IHR3gmcLala0hxKe3bvA5aXDZ8HvLbIrxumTmZmZmZmZi853sObcyzwVUl9QDdwPtAD/FNxPm8N8I/Aw5TOx71MUjvw6ohof5HjvI7S+bprgAA+ExHPS7oOeB2lc3efBH4KEBFdxUWzBqtTSl+16Jxencou/tz56QlZ8eVL09mTLsqV21erdJmzH+pIZ7um5jeJ6vb8Kc+bTj8gna3pyJc79YnudLZue1c6q+7eVG7TiVPTZTZu6Utnq7ry2db9atPZutZ8uU3P5Neb9n0b0tnRsGNBXTpbuyu/frU8lV9nOmbmt53WI2els/vem29C2+bWp3I17fn1YOfL8r9fbj8k134CHPDDF9LZjhPnpLO9+VWBvup8O9qwOb/e1G/tSeXq7nssXWYcflA6W4ktx+SXb8es/Pyq3ZmfX8o1twA0zp2eytW15gvdfmh+panqymfn3LAund152mHpbPP6nels05pn09ldx+ZusNFXl18P2mfm24RZq3eks1Wt+XaxoZKrs/Tl28auuc3pbFTl55n6chXuasnvs+trzH9PmL02P2+r7st/B+ttzm87u2bnPssAmp/L1yGm5ZbZtpfl69ryTL6tqerNr4x123KfI+rJlekOb0JE3ATcNMhLpw2S/T7w/RHKW1D2eCmlTvJvvQZ8uvgrf28AFwxR7uoh6nTucPUxMzMzMzObjHxIs5mZmZmZmU1K3sM7iorDjw8eMPizxR5jMzMzMzMzG0UTbg+vpDMkHTVG4/6ipDcUjz8hacpw+Yh4R0QsHPC3251dScskLdrdcszMzMzMzCazCdfhBc4AxqTDGxGfj4hbiqefAIbt8A4kKX/1AjMzMzMzM9st46LDK+kvJa2TdJekqyV9StKhkm6UdL+kOyUdIelk4PcoXTF5taRDhyhvmaR/kLRS0s8kLZb0A0mPS/pSWe6Tkh4q/j5RDFtQvOdbkh6WdLOkxuK1pZLOlPRxYD/gdkm3F6/9gaQHi7L+rmwcrZL+t6Q1lK66PLCub5J0Tdnz0yX9qHh8aTEND0v6whDT2lr2+ExJS4vHcyR9X9KK4u+UId5/XjGOlT0duwZfQGZmZmZmZhPQmHd4JS0G3gUcD7wZ6D9UdwnwsYg4CfgU8M2IuAe4Afh0cXjwL4YpuisiFgGXAdcDHwWOAc6VNEvSScD7Kd1T91XAH0s6oXjvYcA3IuJoYFtRv/8WEf8EPAu8NiJeW9yn9+8o3S5oIbBY0hlFvAm4NyKOj4i7BqnnLcArJTUVz88Gvls8/lwxDccBvyPpuGGmd6BLgH+IiP75e/lgoYhYEhGLImJRTUPTYBEzMzMzM7MJaTxctOoU4PqI6AA6JP070ACcDFwj/fe9u/I3pSq5ofj/IPBwRDwHIOmXwAHAqcB1EbGrGP4D4DXF+9YXt/gBuB9YMMK4FgPLImJjUdZVlG4P9EOgl2FuUxQRPZJuBN4m6Vrgd4HPFC//vqTzKC2neZQO5V6bmnp4A3BU2fybKqk5IlqHeY+ZmZmZmdmkMR46vIOpArZFxMLdKKOz+N9X9rj/+UjTXZ7vBRp3ox4dETHSXZm/S+neuluAlRGxU9LBlPZsL46IrcWhyg2DvLf8jsvlr1cBryp+SDAzMzMzM3vJGfNDmoG7Ke3dbJDUDLwVaAPWSzoLQCXHF/mdQMseGO+dwBmSphSHE7+jGJZVXo/7KB1yPLu4MNUfAHdUUNYdwInAH/Prw5mnAruA7ZLmUjrcezAvSDpSUlUxDf1uBj7W/0TS7vx4YGZmZmZmNuGM+R7eiFgh6QZKh+q+QOkQ5O3AOcClki4Eail1BNcU/79VXDjqzBHO4x1uvKuKvab3FYMuj4gHJC1IFrEEuFHSs8V5vH8O3A4I+HFEXF9BXXqLC1WdC7yvGLZG0gPAo8BTlH4YGMyfAz8CNgIrgeZi+MeBb0haS2k5Lwc+PGxFBL21GjbSr3HrSDutf+2ki85PZ++/6NJU7uQ/HX5SyrXPqUtna9r70lnlo9RWUO6UjflsT1P+wt+bj2keOVRQTy5XlV8N6JyW/32tty4/XZ0zcusswMyH29LZjn3yB3bsOGBsL8BetzNGDhWquvPZtn1q09nth+aX7/xl+eWw5ej8cqjqzuW6KthuooJF2/RsftttPXJWOtu4MTlhAJFfZtUVrAuVtHet++fa3JaTDkuX2TVtdL6uND2Xn7fTH8tn2+cOdkDW4Hoa822YunMLomNGfsXtaciPf/ozyQ8HoO/g/dLZ7qZ8Hbpn5OftzmOnpbN1rbl5W92V3xi6puWn67nT83Vt3Jjf79PVkq/D1Cfzy7eSz5KoYPfas6fk2rApz+Wna+fB+WvUdLXkK9v8TL5dapubb5t78qs4ndPy5bbOm5nK1eY/oitatpV8T+hqyX2O9K7OrQdj3uEtXBwRFxX3tV0O3B8R64E3DQxGxN2McFuiiDi97PEyYNkQr30N+NqA9z5B6eJW/c8vLnt8btnjrwNfL3t+NXD1IHVJ9TIi4gJKhzWXDzt3iGz5NFwLXDtIZhOlC2CZmZmZmZm9JI2XDu8SSUdROgf1yohYNdYVMjMzMzMzs4ltXHR4I+LdL+Z9kr5B6SrP5S6JiG/vfq32PEnXAQcPGPzZiLhpLOpjZmZmZmY2mY2LDu9QJN0TEScP9XpEfHSQ9/yHpOsiYltyHAuAH0XEMSNEX7TiXOEfRcQ7RsqWvecioDUiLpb0RWB5RNwySlU0MzMzMzObdMZ1h3e4zu4w73nLaNRlLEXE58e6DmZmZmZmZhPNeLgt0ZAktRb/50laLmm1pIckvWaY9zxR3B5ogaSfSfqWpIcl3SypscicJGmNpDXAR8veWy3pq5JWSFor6UPF8HdIurW4PdI8SY9J2neYvCT9s6R1km4B9hlhOr8i6ZGijIsHeX2ppDOLx4sl3VPU/z5JLcPUY8T5Juk8SSslrezp2DXyQjEzMzMzM5sgxnWHt8y7gZsiYiFwPLA6+b7DgG9ExNHANuBdxfBvAx+LiOMH5P8I2B4Ri4HFwB9LOjgirgOeo9Q5/hbwVxHx/FB5SvfDPZzS1aTfCwy5p1rSrCJ/dEQcB3xpmGwd8D3gT4q6vwFoH6YeI863iFgSEYsiYlFNQ/6y7WZmZmZmZuPduD6kucwK4ApJtcAPIyLb4V1flr0fWCBpOjA9IpYXw78DvLl4/EbguP69qcA0Sp3m9cDHgIeA/ypuQTRc/jTg6ojoBZ6VdNswddwOdAD/f3Ev3h8Nkz0ceC4iVgBExA4ASUPV48XONzMzMzMzswlvQuzhLTqnpwHPAEslvTf51s6yx72M3MEXpT2/C4u/gyPi5uK1/YE+YK6kqkQ+JSJ6gFdQupfuW4EbK3n/cPXYjflmZmZmZmY24U2IPbySDgKejohvSaoHTgT+z4spKyK2Sdom6dSIuAs4p+zlm4DzJd0WEd2SXk6ps9gJXAH8AfA+4JPAxcPklwMfknQlpfN3Xwv83yGmrRmYEhH/Ielu4JfDVH8dME/S4ohYIamF0iHNQ9VjNpXMtxk98Pubhhn9r/VdMTOVA+irVTp78p9+OJW75x8uS5f5xjPfl862HtCYzta2RTq76bj8b0sH/qQjnY2qunR2xrp8fau7+lK5LUfkx98+Jz8PqjpHzvSr25GfrtYF+cP2p616IZ3dfMy8dHY0bJ+bz+5/W3c6W7c1vy721k9NZ6t3VVCHnQ3prHpzuUrWxdqd+fWrt4K2rnNadTq75cj8R/Xstfl5u/no2nR2vzvb09n6c7akcvrS9HSZlXyOVKKqJ1/uzoPynw81Hfn1pqq7gnWsOdfmts/Kr+Nt++XHP/PR3GcDQF9dfh1v3NiTztY/nm+b657Kf0ZtOnXfVK756Xxdq/JR1JtfDnU788th2s8raMcb821Nz5T88m2fmS93/h1dqdzGE+vTZfbsrKDN37XnvysBNG7KrwzbD863zfNu2ZDO9k7LtWHbD8t/V4rqfBvaNSM/v7Ll9iVn1YTo8AKnA5+W1A20Ujovdne8n9KhvgGU75G9HFgArJIkYCNwBvBnwJ0RcVdxoasVkn48TP464HXAI8CTwE+HqUsLcL2kBkp7aj85VDAiuiSdDXy9uABXO6XzeIeqx+ns2flmZmZmZmY2YYzrDm9ENBf/rwSuTL5nQfFwE3BM2fCLyx7fT+kiTv0+UwzvA/6i+Cv3xbL37gSOKHttsDzABcn6PkfpkOaBwy8qe3xu2eMVwKsGKWqweqTnm5mZmZmZ2WQzIc7hNTMzMzMzM6vUuN7DOxxJ9wIDD+D/w4h4cCzqkyHpOuDgAYM/GxE3jUV9zMzMzMzMJrMJ2+GNiFfuyfIkfRw4H1gVEeeMlH8xIuIde7I8Sa8BLgO6gd8FLomIM4d/l5mZmZmZ2UvDhO3wjoKPAG+IiKf7B0iqKW4bNF6dA/xtRPxr8dydXTMzMzMzs4LP4QUkXQYcAvxE0nZJ3yluEfQdSQ2Svi3pQUkPSHpt8Z5zJf1Q0n9KekLSBZI+WWT+S9KQ9+2R9DJJt0haI2mVpENV8lVJDxXjOrvIni5pmaRrJT0q6aoi+0Hg94G/LoYtkPRQ8Z4pkv5N0iOSrpN0r6RFQ9TlPEkrJa3s2dG2h+esmZmZmZnZ2PEeXiAiPizpTZTul3sB8Dbg1Ihol/RnpUgcK+kI4ObiPrdQugr0CUAD8HNK5+OeIOkfKN0C6B+HGOVVwFci4rridkRVwDuBhZSuHj2b0q2Plhf5E4CjgWeBu4FTIuJySacCP4qIayUtKCv/I8DWiDhK0jHA6mGmfQmwBKDpsHn5m4+ZmZmZmZmNc97DO7gbIqK9eHwq8K8AEfEo8Cugv8N7e0TsjIiNwHbg34vhD1K6L+5vkdQCzI+I64oyOyKirRjP1RHRGxEvAHcAi4u33RcRTxe3TVo9VNllTgW+W5T/ELA2O+FmZmZmZmaThTu8g9uVzHWWPe4re97Hnt17Xj6e3j1ctpmZmZmZ2aTkjtPI7qR0cajbikOZDwTWASe+mMIiYqekpyWdERE/lFQPVBfj+ZCkK4GZwGnAp4EjXsRo7qZ0fu/tko4Cjs28qfpZMfPCutQInj+1Ol2Z2Q91pLPtc3Ljf+OZ70uXefO1V6azh3z/Q+ls9a7870X73tuXzu7avyGdbZubXw7dTekoNcnTueu3VXAUfAXR3txqAEB1Vz47dd32dHbXEXPS2ZmPju217Wpae9PZLUcNvJvb0KY+mV+/qrvyC7hner4OLb/Ktx/05erQ0zAlXWT9zvy22z4z3yZEvljm3d0+cqjQOas2na1tzS+zHQfn59m0C3Pl7to/v6HvqqCtq8SUDfnsrv3yy7enMV9uw6b8cuitz207c9bkt5uae7rT2e6W/DLrmZL/itk1Nb98aw/Kt83bXpZfEDMeze3raD0gX2b9tvyG3tOodLb5sa3pbG9L/jtF6/z88q2roG2c+UC+vluPn57KHfDjzekyO/dtTmc7KmhDd83Lz6/mZzpHDhX6avJ12LZwdjrb1ZJbx5qfy3+n2Xx0vq7THs23dbXJXY/VydnqPbwj+yZQJelB4HvAuRGRX2sH94fAxyWtBe4B9gWuo3To8RrgNuAzEfH8btR5jqRHgC8BD1M65NrMzMzMzOwlw3t4CxGxoHh40YDhHcD7B8kvBZYO8v7fem2Q9z4OvG6Qlz5d/JVnlwHLyp5fUPb43LLHT1C6iBZAB/CeiOiQdChwC6Vzj83MzMzMzF4y3OGdnKZQOpy5FhDwkYio4MBPMzMzMzOzic+HNI8iSd+QtHrA32/tLS7L35Mo8/LivFwk/cVgmeLK0Ysi4viIOC4ifvLip8LMzMzMzGxi8h7eURQRH60wf3Ii88Gyp38B/E2l9TIzMzMzM3sp8B7ecURSa/H/dEnLJF0r6VFJV0lS8doySYskfQVoLPYaXzWmFTczMzMzMxuH3OEdv04APgEcBRwCnFL+YkT8OdAeEQsj4pwXOxJJ50laKWlld0/yXjRmZmZmZmYTgDu849d9EfF0RPQBq4EFozGSiFhSnO+7qLYmf59FMzMzMzOz8c4d3vGr/F6/vfh8azMzMzMzs4q4wzuxdRe3HjIzMzMzM7MBvNdwYlsCrJW0anfO4/1vVaJ3al0q2vR8b7rYrqn51aymvS+Vaz2gMV3mId//UDr7y3f9Szr7lnVvSWe3rzownSUiHW1+Nr8cthxRnc6275Orw363bk6X2XrY9HQW5aNbX55fv7paZqSzTS/k521NW269HS275uW2W4CGLfm6djXnfxNtn5XPVnfmf6drfqI1ne2a0ZDK1XTmt7HOqfnp6pyeX3FnPtqTzu48sD6drW3LT1tvQ76+jRsruJV7sg2rZP3qG6VvK731+Xkw9y1PpbPrX5iVztb9V/50oq6WXG7zUbltAWDa+vxnw+aj89vuviva09mtFXw+NT2dX8eru/PZJ97alCuzPb/OHHjj9nR23QX5ZUbMTkfrWvPzoK86P207DspvlG375D97a9pz9d2yMF/m1iMqaevy2ZoK2tvtC/LLd8eR+c+H5ucq2HeZrO62Q/LbeU8FZ0PO/Fn+e1W2bVbyK407vONIRDQX/5cBy8qGX1D2+PSyx58FPrvXKmhmZmZmZjaB+JBmMzMzMzMzm5S8h3eUSZoF3Fo2qJrSRaj6//d7fUTkjw8dfhz942HAOHZrPGZmZmZmZhOJO7yjrOhcLtxT5Uk6F1gUERdIughojYiL9+Q4zMzMzMzMJgMf0mxmZmZmZmaTkju844Ck90paK2mNpO8Uw94m6V5JD0i6RdLcURr3eZJWSlrZ1b1rNEZhZmZmZmY2JnxI8xiTdDRwIXByRGySNLN46S7gVRERkj4IfAb4sz09/ohYQun2RkxtmZ+/vrqZmZmZmdk45w7v2HsdcE1EbAKIiC3F8P2B70maB9QB68eofmZmZmZmZhOSD2kev74O/HNEHAt8CKjgjuRmZmZmZmbmDu/Yuw04q7i1EGWHNE8Dnikev28sKmZmZmZmZjaR+ZDmMRYRD0v6MnCHpF7gAeBc4CLgGklbKXWKDx71ulSLrqm1qWzb3OqRQ4Xq9vypwerL5Wrb8mVW78r/rvOWdW9JZ//j8P9IZ0+Y85F0dtovu9PZnin5aWt6Nj/Pds1TKtd+4LR0mdWd+fFHbvQAND+VXGkAKii3uitf3/qtnfmCR0FVb76u7bPyzX7VwLt4D2P6L3rS2YZNHelsb2OuTQLoq8ttD11N+RWhYXt+/arbmY7StOKJdLbzDYeks9Vd+fr2NOTb8caHnk5ne/efk8pN+0VbusymF/LrQSV6GvNt6M/XzUtnm57Mb2ez1+a3h6qu3EbZNi9/UFhfXX57mLkuv53XPrcjnZ3+WH06W/PzZ9PZFu2XzoYaU7natvw21ttcl87uc3s+2/R8/ntCdXu+Ie+rrWA/WL5JoLulgu+MHbnPs9odXeky63bl16+oym8PnVPz82vaE/ntfNf83LoI0PR0/oKz9VNy7VIl83brUc3pbCXtbU1yO1Nfbn1xh3cciIgrgSsHDLseuH6Q7FJgafH4otGvnZmZmZmZ2cTkQ5rNzMzMzMxsUvIe3lFSnJN7a9mgaqC37H+/10fE5t0c1zeAUwYMPgx4fMCwSyLi27szLjMzMzMzs4nCHd49TNIZwGMR8QiwcJTH9RrgMqAb+F1KHdozR3OcZmZmZmZmE4UPad7zzgCO2kvjOgf424hYGBHPuLNrZmZmZmb2a+7wJkj6S0nrJN0l6WpJn5J0qKQbJd0v6U5JR0g6Gfg94KuSVks6dIjyXibpFklrJK0qypKkr0p6SNKDks4usqdLWibpWkmPSrqqyH4Q+H3gr4thCyQ9VLxniqRAY10gAAAgAElEQVR/k/SIpOsk3Stp0RB1OU/SSkkru7vyV3ozMzMzMzMb73xI8wgkLQbeBRwP1AKrgPuBJcCHI+JxSa8EvhkRr5N0A/CjiLh2mGKvAr4SEddJaqD0w8M7KR0CfTwwG1ghaXmRPwE4GngWuBs4JSIul3Rq/7gkLSgr/yPA1og4StIxwOqhKhIRS4ppoWX6/vl7m5iZmZmZmY1z7vCO7BTg+ojoADok/TvQAJxM6T65/bnUTb4ktQDzI+I6gKJcis7r1RHRC7wg6Q5gMbADuC8ini5yq4EFwF3DjOZU4JKi/Ickrc1PrpmZmZmZ2eTgDu+LUwVsi4hRvShVmc6yx714uZmZmZmZmY3I5/CO7G7gbZIaJDUDbwXagPWSzgIozqk9vsjvBFqGKiwidgJPF1dzRlK9pCnAncDZkqolzQFOA+7bjTr/flH+UcCxL7IcMzMzMzOzCct7CkcQESuK83LXAi8ADwLbKV0h+VJJF1I6t/e7wJri/7ckfRw4MyJ+MUixfwj8i6QvUrql0FnAdcCrizIC+ExEPC/piBdR7W8CV0p6BHgUeLio87C6poqn3qiRYgAc+fdPpiuz6fQD0tna9r5cmcflf6vZ995cmQDbVx2Yzp4w5yPp7AOf+2Y6++Y3/0E623ro1HR21sqt6eycrTtSuafPXJAus7chHYXcaghA0zP5U8+revPZmrbekUOFZ36nOZ0dDe1z8+v4Abfmp6tmVz7bMbs2nW09oDGdnfJc58ihQm99rl2Y+quudJkvLE6drQJAdb5Y6rfl28XOafn2rrspv/FMeSG/PfQsmJvObj28KZWb/dMN6TJ7G6ens5XYfHT+a9DM1fn51VfBt6td8+rS2arkJtmb3xzpnFadzs5dsTOdjSn5baemM9+GdRyf/5zuS7YJAA1bkzO3gs+nDQvzbd3sB/NtXd2m/EVG+x5cly/3oHy71Dc9/7lX/1xPOktXdy5XnV9v2Se/Lk796a/S2d5NW9LZ6vn7prNx6v7prO5Zk87WvPr4kUNAX32+AWt6Pr9sO2bml1lvQ25Di6pczh3enIsj4qJiT+xy4P6IWA+8aWAwIu5mhNsSRcTjwOsGeenTxV95dhmwrOz5BWWPzy17/ARwTPG0A3hPRHQUV4q+BchvwWZmZmZmZpOAO7w5S4pDgxuAKyNi1VhXaARTgNsl1VL6LfIjEVHBvgczMzMzM7OJzx3ehIh494t5n6RvULrKc7lLIuLbu1+roRXnCQ96310zMzMzM7OXipdkh1fSUka+V262rHOBmyPi2YGvRcRHd7f8PUHSRUBrRFw81nUxMzMzMzPbW3yV5gRJw51lfS6w3yiO+yX5o4SZmZmZmdnumvSdKUl/CbwH2Ag8Bdw/4PXXAxdTmhcrgPMjolPSE8D3gP8P+HtJjwKXUTo/9hfAB4DXUzp0+CpJ7cCrI6J9kDo8AVwJvI3SFZ3PiohHJc0ErgAOoXSro/MiYm2xR/bQYviTkm4CzgCagMOK+tZRutpzJ/CWiNgi6Y+B84rXfg78YUS0jTB/ziveQ/WM0bkKppmZmZmZ2ViY1Ht4JS0G3gUcD7yZAee1SmoAlgJnR8SxlDq955dFNkfEiRHxXeD/AJ+NiOMo3Zror4pDolcC50TEwsE6u2U2RcSJwKXAp4phXwAeKMr8i2Ic/Y4C3hAR/feoOQZ4J7AY+DLQFhEnAD8F3ltkfhARiyPieOBnwB+NNI8iYklELIqIRdXNY3trFTMzMzMzsz1pUnd4KV0w6vqI6Cgu5PTvA14/HFgfEY8Vz68ETit7/XsAkqYB0yPijiFyGT8o/t8PLCgenwp8ByAibgNmSeq/seoNAzrQt0fEzojYSOmeuv3T8mBZecdIulPSg5TuE3x0hXU0MzMzMzObNCZ7h3d35e/sPbL+O4r3kjuUfOC4y+9I3lf2vK+svKXABcXe6i9Quo2SmZmZmZnZS9Jk7/DeDbxNUoOkZuCtA15fByyQ9LLi+R8CdwzIEBHbga2SXjNIbifQ8iLrdyelPbFIOp3SYc87XmRZFPV4rrj/7jm7UY6ZmZmZmdmEN6kvWhURKyTdAKwFXqB0+O/2stc7JL0fuKa4GvIKShemGsz7gMskTQF+Cby/GL60GD7kRauGcRFwhaS1lC5a9b4K3juYvwTupXSBrnupsCNev7mXl1/Rmso+/c4D0+XWdEQ6O2VjXyp34E860mXu2r+CHd2Rr+u0X3ans29+8x+MHCr85CdXp7Ov/Oz5I4cK7QfmV4f2E2akcnPW5JdDX43S2are/HJo26cund16ZP43vg2vqE1nD/jP/LowGrQmn33i7fnlQOQ/Iva/JV/s9kOHu/D9b+qc1pjOqjeX62nIL9sZjyULBba+PD9d2w/Jr7c9U9JRWo/Ir4uzfpqfD+vPaEpn59+eq8Nzb5ibLrMz1yRVbNr63GcOQE17vl1qn5lva7Ycld8ma9py2RmP59fbxgo+y3Yckl8P6rf1pLMNGzpHDhWe+Z18HZRfZMy9L1eH9W/PbzcHX5+frvZ98uX21eU/z6tmn5jObjiiPp1t2pBfx6o78wuie0pu26lty2+7zY9sTmfbjts/ne2cviCdrd2Vr+/8u/JdiZ1nvyqdnb5qQyq36ZR829w9Jd9+7bMq18cA2HlQBR98CZO6w1u4OCIuKjqqy4H7I+Jb/S9GxK3ACQPfFBELBjxfDfzWWhUR3we+P1wFysuKiJXA6cXjLZSuvjwwf9GA50spdawHK++/X4uISyldFGvY8szMzMzMzF4KXgod3iWSjqJ0PuuVEbFqrCtkZmZmZmZmo2/Sd3gj4t17a1ySrgMOHjD4sxFx096qQ1ldzgUWRcQFxX19WyPi4r1dDzMzMzMzs7Ey6Tu8e1NEvGOs62BmZmZmZmYlk/0qzZOOpPdKWitpjaTvSHqbpHslPSDpFkn5M83NzMzMzMwmMe/hnUAkHQ1cCJwcEZskzQQCeFVEhKQPAp8B/qyCMs8DzgNoqJs2CrU2MzMzMzMbG+7wTiyvA66JiE1QusqzpGOB70maB9QB6yspMCKWAEsApjbtV8EF/M3MzMzMzMY3H9I88X0d+OeIOBb4EKWrUZuZmZmZmb3kucM7sdwGnCVpFkBxSPM04Jni9feNVcXMzMzMzMzGGx/SPIFExMOSvgzcIakXeAC4CLhG0lZKHeKBt0UyMzMzMzN7SVKET9u0kqlT949Fiz6aym46Ln/k9Ix1XelsT1N1Klfd0Zcuc/shtels87O96WwoHUUVbGZdTfkDL+79u0vT2RO/eH46m61vw5b8cpj/Jz9PZ/sqmLkPLjssna1tzZc789GedHbrYWP72+GUDfkVrK41v8wqsfnI3LYLMO+nnelsd0u+3J0H5JZDy1P5Zdu2T378nTPy69fU9fm2pqch3yb01qWj1O/Mrzfqy2drduXWsR0L8ttNdUc6WpGtb8gXvO8P8jO3pzG/LjRsya8LXVNz62PdjnyZDc+1pbN9U/KfpzsPyn9PaNzQna9DXX576JmSz+7aNzdvm5/Jz9vqrnx7q578Nla/Ob/e9tXl27Dehvw22TUtn23+xfZ0tnPf5lSu/tnWdJltB09NZ6u688uhuzm/fk1duylf7j4t6eyOgxvTWZLNUiVtUiXr+M75+fYj24Y+/m9fo23DUyOGfUizmZmZmZmZTUru8JqZmZmZmdmk5A7vBCHpCUmzR8j8xd6qj5mZmZmZ2XjnDu/k4g6vmZmZmZlZwR3evUTSAkkPlT3/lKSLJC2TdImk1ZIekvSK4vVZkm6W9LCkyyk71VzSDyXdX7x2XjHsK0BjUc5VxbD3SLqvGPYvkvJXLjAzMzMzM5vg3OEdH6ZExELgI8AVxbC/Au6KiKOB64ADy/IfiIiTgEXAxyXNiog/B9ojYmFEnCPpSOBs4JSi7F7gnIEjlnSepJWSVnZ17Rq9KTQzMzMzM9vLfB/e8eFqgIhYLmmqpOnAacA7i+E/Lu6z2+/jkt5RPD4AOAzYPKDM1wMnASskATQCGwaOOCKWAEugdFuiPTZFZmZmZmZmY8wd3r2nh9/co15+g7qBHc0hO56STgfeALw6ItokLRtQ1n9HgSsj4n+9qNqamZmZmZlNcD6kee95AdinODe3Hnhr2WtnA0g6FdgeEduB5cC7i+FvBmYU2WnA1qKzewTwqrJyuiX139X5VuBMSfsUZcyUdNAoTZuZmZmZmdm44z28e0lEdEv6InAf8AzwaNnLHZIeAGqBDxTDvgBcLelh4B7gyWL4jcCHJf0MWAf8V1k5S4C1klYV5/FeCNwsqQroBj4K/Gp0ptDMzMzMzGx8UYRP2xxLxSHJn4qIlWNdl6kt82Pxoo+mss+8pjFd7gG3tKazz53SnMrNWNeTLnPz0fnfdaKC61g3PZvfdmat3DpyqNB+YEs6u+PA/LSt+vyl6ezLl56fys1fnl8OHTPyM7eqNx1lw0kaOVTYZ2VfOttXmy+3qnts29GexvzBOk3PdqWzOxbUpbPbDk9HOew7+e1hx+HT0tne+twya5+Tn18zHutOZ4c+GeW3tc7Lb7vNz+e3s8Zf7Uxntx8zPZ2t25nfKLun5Obvtpfl24Tq/Gpbkean821C95R8m7DjkHwdWp4cOdNvxqMdqdzmYwY702mIMtflZ+7zr6xPZ/e9rzOdbZ2fb2tqOvIbWvvM/DJTstjGzfl1ZurPtqWzz75+VjrbPjc/D3rzs5ZpP89nVcHndG1bvr6t83PtR9OzFWy7Tfn1oLOCdWbq+nwdKvncadiSL3fXvvlye5Jf3VuezC+vlqfz2/nGhfl2qem53Dx46KZ/pHXzUyMuNB/SbGZmZmZmZpOSD2keYxFx+ljXwczMzMzMbDLyHl4zMzMzMzOblNzhHUck3ZPIXC7pqOLxX4x+rczMzMzMzCYmd3jHkYg4OZH5YEQ8Ujx1h9fMzMzMzGwI7vCOI5Jai/+nS1om6VpJj0q6SpKK15ZJWiTpK0CjpNWSrtqNcZ4naaWklV3du/bQlJiZmZmZmY09d3jHrxOATwBHAYcAp5S/GBF/DrRHxMKIOOfFjiQilkTEoohYVFfbtFsVNjMzMzMzG0/c4R2/7ouIpyOiD1gNLBjj+piZmZmZmU0o7vCOX+V3cu7Ft5AyMzMzMzOriDu8E1u3pNqxroSZmZmZmdl45L2GE9sSYK2kVbtzHm8/9QY1W9tT2Y65dflyu3vz2Z5crrqrL11mTVs6Svs+kc7umqd0ds7WHfk6nDAjnVW+urx86fnp7GPnXprKvema/GrX2zA654hPf7Q6nW3dP5+dvbZz5FChuyVf7mio6slvD1Tl19v6HfkVbPpj+XLVlp+3ndPzv8sq2dRM+2WyoQHqN3aks1Vt3elsdUd+e6jblL+gYNTm18Wmp/PTVt2Rn2ea3ZjKNW7KL9v6bRWs4xWY8nxXOts9Nf+VqWlDvg51W/N1qH1+e278c+amy+xtyC+H/e7JfUcA6KvOlzvlhfy2M2XNU+kspx2cjvbU59qwum35baFvSv67UvucfHs7e00+W8n3per2fLZ+c7796JibaxMgvy5sX5Cftw1b89O1/fD8Z9muQ/Lfb+fdmo6ya7/8ttM2L78u7L8st+42bMgv283HNqez03+e33a6mnPzIDv17vCOIxHRXPxfBiwrG35B2ePTyx5/FvjsXqugmZmZmZnZBOJDms3MzMzMzGxS8h7eUSZpFlB+IEM1pYtQ9f/v9/qI2Lyb45gJNALPFOVTNo5jgQd3ZzxmZmZmZmYTiTu8o6zoXC7cG+OQdC6wqPwQ6H6SWiNiVOthZmZmZmY2nviQ5glE0g8l3S/pYUnnFcPeL+kxSfcBp5RlD5b0U0kPSvrSmFXazMzMzMxsjLjDO7F8ICJOAhYBH5c0H/gCpY7uqcBRZdlLgEsj4ljguaEKlHSepJWSVnb15K8EamZmZmZmNt65wzuxfFzSGuC/gAOAPwSWRcTGiOgCvleWPQW4unj8naEKjIglEbEoIhbV1YzObWPMzMzMzMzGgju8E4Sk04E3AK+OiOOBB4BHR3hbBXdpNTMzMzMzm1zc4Z04pgFbI6JN0hHAqyhdkfl3JM2SVAucVZa/G/ifxeNz9m5VzczMzMzMxp4ivBNwIpBUD/wQWACsA6YDFwEHA/8L2AasBroi4gJJBwP/F2gGrgc+ERHNw42j/uD9Y94XfusCz4OafXtduu59+Si99UrlooKfauq35dfxWSvzd2xqP3BaOrvl8Np0ds6ajnwd5uTLrdvZl87Wv9CWyt3446vSZS6+8Px0NnKrAVDZ+jX98a50tmZXTzq7+dgp+UqMgvrt+XW8c3p+5s58JL8ubjmyIZ2de8fGdLZn9rDN1m9Qb24d33xs/vSNnsb8/GrYnN/Gpj6Rn7fbD21MZxs35tfb9tn5GzU0PZffdrYfmtso971hfbrMvlnT09lKdO6bXxeqevLbmXor2CZn5tvxdJnTqkcOFVqe6kxn1Z1fx9v2y7cJHRW0SzX5TYfpj7ams9n2o2pHe7rMx/94bjp74E35bay6Lb+dV3Xksz3T6ysot3fk0Iuow/YjW1K56q78Ntb8RP4aNX31+Xax5oXt6Wwl2l82O52t21LBd8Z5uc+S7qb8l+yGLfn14Imz8+3H/B/nlsPaWy6hdctTIzYgvi3RBBERncCbB3lpGfDtQfLrgVeXDbpwdGpmZmZmZmY2PvmQZjMzMzMzM5uU3OE1MzMzMzOzSekl0+GVdIako0ZOjsq4n5A05AH5ku6psLzTJf1o92tmZmZmZmY2eb1kOrzAGcCod3glVXxedEScPBp1MTMzMzMzeymb0B1eSX8paZ2kuyRdLelTkg6VdKOk+yXdKekISScDvwd8VdJqSYcOUtY+ku4vHh8vKSQdWDz/haQpkhZIuk3SWkm3lr2+VNJlku4F/r64TdDNkh6WdDkw7NXDJLUW/0+XtEzStZIelXSVJBWvvakYtgp4Z9l7myRdIek+SQ9Iensx/E8lXVE8PlbSQ5LG9lKyZmZmZmZme9GE7fBKWgy8Czie0tWLFxUvLQE+FhEnAZ8CvhkR9wA3AJ+OiIUR8YuB5UXEBqBB0lTgNcBK4DWSDgI2REQb8HXgyog4DrgK+KeyIvYHTo6ITwJ/BdwVEUcD1wEHVjBpJwCfoLQ3+hDgFEkNwLeAtwEnAfuW5T8H3BYRrwBeS6lT3wRcArxM0jsoXcX5Q8U0/AZJ50laKWll7878ZdvNzMzMzMzGu4l8W6JTgOsjogPokPTvQANwMnBNsWMUIH9TMbinKPc04G+AN1HaO3tn8fqr+fXe1e8Af1/23msiov9mVKf15yLix5K2VlCH+yLiaQBJqyndd7cVWB8RjxfD/xU4r8i/Efg9SZ8qnjcAB0bEzySdC6wF/iUi7h5sZBGxhNKPBNQfvL9vymxmZmZmZpPGRO7wDqYK2BYRC1/k+5dT2rt7EHA98FkggB8n3rundo+W3wG+l5GXkYB3RcS6QV47jFJneb89VDczMzMzM7MJY8Ie0gzcDbxNUoOkZuCtQBuwXtJZACo5vsjvBFpGKPNO4D3A4xHRB2wB3gLcVbx+D/A/i8fn8Os9vwMtB95d1OHNwIwKp22gR4EFZece/0HZazcBHys71/eE4v80SodcnwbMknTmbtbBzMzMzMxsQpmwe3gjYoWkGygdsvsC8CCwnVJH9FJJFwK1wHeBNcX/b0n6OHDmEOfxPlF0HJcXg+4C9o+I/kOSPwZ8W9KngY3A+4eo3heAqyU9TKmT/ORuTmuHpPOAH0tqo9TR7u+8/zXwj8BaSVXAekqd/38AvhERj0n6I+B2ScuLc5UHVdMqZi2vS9Wpujt/9HPjlr50tnNa7jeY9jkV/FZTwYHarYdNT2erO/MF9zbk69BXM+w1zn7D/D/5eTr71DcOS2d7G5pSucUXnp8uc8WXLk1nN/TmD5h45c1/ks72TMmf4TDr4fw61vDOF9LZ0fDsU7PS2fk35aert7E6nd2eX72Y/otp6WzNzq50dtcBuevyzXisI13mM69pzI9/v/y229WSL7dpQ74N7W7OL9/GTT3pbPs+temsksV2HDU/XWbnjNH5utL+vvwZRzXX5LezvvymU9Hnw5TkulDVU8HnU11+nantyq+LfRUsspan8+tiVOW3s/Z5+e2spzE3H+q35a//OWttfjnsmpffxlqe6B05VFDk61C7pT2d7W3Of55GfX6DaNzQncpVd+TnQetBue80AL31+fWrfnp+mdVtzX+WdczIz6/e+vw63jk1V27HzPw8aNic33abf5ZfZzqm5dbbbFs7YTu8hYsj4qLi6sPLgfsjYj2lc29/Q3EO64i3JYqIA8oe/w2lc3n7n/8KeN0g7zl3wPPNlM6tTYmI5uL/MmBZ2fALyh7fCBwxyHvbgQ8NMvwDZY+fAl6WrY+ZmZmZmdlkMNE7vEskHUXpQk1XRsSqsa6QmZmZmZmZjQ8TusMbEe9+Me+T9A1KV2Mud0lEfHv3azXkOGcBtw7y0uuLPcJmZmZmZma2B41ph1fSRUBrRFy8N8uOiI/u6fFl6lGcc7w8Im4ZIrsQ2C8i/qN4/nvAURHxlb1VXzMzMzMzs8liQu/hHSuSaiIif5Z2ISI+P0JkIbAI+I8ifwNwQ+U1NDMzMzMzs71+WyJJn5P0mKS7gMOLYYdKulHS/ZLulHREMXyupOskrSn+Ti6Gf1LSQ8XfJ4Yre7jyh6jfUkmXSVpZlPXWYvi5km6QdBvFocmSPi1phaS1kr6QqMfS/tsDSVos6Z5iuu4rbiP0ReBsSaslnV2M85+L/AJJtxXjulXSgWVl/lNR1i/Lyp8naXlR1kOSXjPE9J5XTOvKnvY9dSthMzMzMzOzsbdX9/BKOonSfWwXFuNeBdwPLAE+HBGPS3ol8E1KV0P+J+COiHiHpGqguSjj/cArAQH3SrqDUud9sLIZpvyhLABeARxK6XY+/Vc4PhE4LiK2SHojcFiRE3CDpNOAXcPUo38+1AHfA84ubq80ldI9hD8PLOq/OrOkc8ve9nVKF+a6UtIHinlzRvHaPOBUSldxvgG4ltJ9gG+KiC8X827Q6+hHxJJi/tA054AKbuBjZmZmZmY2vu3tQ5pfA1wXEW0AxTmtDcDJwDWlW+AC0H+jptcB7wWIiF5gu6RTizJ2FWX8oCi3apCykdQ8TPlD+beI6AMel/RLfn07oP+MiC3F4zcWfw8Uz5spdYBbBqvHAIcDz0XEimLadhTZ4er0auCdxePvAH9f9toPi/o+ImluMWwFcIWk2uL11SNMs5mZmZmZ2aQyHs7hrQK2RcTCcVT+wD2d/c/Lj/kV8LcR8S/lwfJDrPeizvIqAETE8mKP8+8CSyV9LSL+zxjUzczMzMzMbEzs7XN4lwNnSGqU1AK8jdKhvOslnQWgkuOL/K3A+cXw6uI81zuLMqZIagLeUQwbrOz+vadDlT+UsyRVSToUOARYN0jmJuADxR5kJM2XtM9Q9RhgHTBP0uLivS2SaoCdlPYQD+YeSodKA5xTTPOQJB0EvBAR3wIup3Q4tpmZmZmZ2UvGXt3DGxGrJH0PWANsoHTYLZQ6cJdKuhCoBb5bZP4EWCLpj4Be4PyI+KmkpcB9xXsvj4gHAIYoe7jyh/JkUf5USuf+dgw83DgibpZ0JPDT4rVW4D3DTGP5e7sknQ18XVIj0A68Abgd+HNJq4G/HfC2jwHflvRpYCOl85iHczrwaUndRd3eO0K+tB87eRZvDHv09W+q6upLZ3vrqnNldo6c+XWZ+SwVTFcl86CScqt686dS91VQiarefB2yKpkHG3rzF0Xbp7opX3BfvhKqYB70NuTLra3Kr+OjoqeC9aCngvWrpoIFrHy5PVNy2zlAdUc+G8mfcHtrK/itt4JZ0Dslvx5UMg9USZtQn5+2vrpKGrE9r7eCuo4HlbR3fbUVlFudL7ivNpet6ahgnalke6hA7yitX5W0zRUts+QmWdFn/yhRXwWXXOnLt0t9U/JfmHoa821YbWu+DkpGo4L1dtQ+9ypYDJUss+xnWaWy5UYFvcNK2q9KvoOl29Dk6Pf6Ic0R8WXgy4O89KZBsi8Abx9k+NeAr2XLjoj1g5U/jFsi4sMDylgKLB0w7BLgkgrqcW7Z4xXAqwYZ9+IBz5cW+V8xyIW2ysssnjcX/68ErhykfDMzMzMzs5eEifXzqpmZmZmZmVnSeLho1ZiQ9DngrAGDrxm4x9TMzMzMzMwmppdsh3eYQ6vHjKR7IuLkPVzmAuDkiPi/e7JcMzMzMzOz8W7CH9IsKX/W/ODvHzed/j3d2S0sAN49CuWamZmZmZmNa+O6wytpgaRHJV0l6WeSri1uR/SEpL+TtIrSLYQOlXSjpPsl3SnpiOL9SyVdJmmlpMckvbUYfq6kGyTdBtxa3Kroq5IekvRgcQXl/jp8thi2RtJXimFDje+soow1kpYXw46WdJ+k1ZLWSjpsmOltLf6fLmlZMb3906/itSck/X1Rp/skvaxsWs8cWBbwFeA1xfj/dJBxnlfMn5U9Hfmr6JqZmZmZmY1342bv5jAOB/4oIu6WdAXwkWL45og4EUDSrZRuH/S4pFcC3+TXVzReALwCOBS4vb+DSOm+tMdFxBZJ7wIWAscDs4EVRYd1IaWrRL8yItokzSzeu2SI8X0e+B8R8Yz+H3t3HmZXWab7/3tXpebKTBKmQAAZZAwQUSY7CEdt21ZboO3GobF/GkWFRg82HuQoLUdbD3YrOGBHjsZWjm2D2trKD8VAFJEphJAQDNCQyBCmzFWpueo5f+xVsimqUs8mqaSquD/XVVetvfa93vWuce93r0maUmQ/CFwZEddKqgWyR6SPBY4A1gG3AScDvy3e2xIRR0l6D/Bl4M3bKecTwEURMWgmIhYW00PTHrMruMG6mZmZmZnZ6DYWGryPR8RtRff3gAuK7hRx66gAACAASURBVB8ASGoGTgKuK3tWbl3Z8P8eEX3Aw5IeBQ4r+t8UERuL7lOA70dEL/CMpF9TejzQnwDfjog2gKJxvL3x3QYskvTvwI+KfrcDn5S0L/CjiHg4Od13RcQTxTQup9Rw72/wfr/s/5eS5ZmZmZmZmb2sjIUG78Cjjv2v+8+/rQI2R8Tclzh8pYYcX0R8sDji+2fAPZKOj4j/K+nOot8Nkj4QETcnxtNZ1t3LC5dVDNLdU9QNSVVA/unhZmZmZmZm49Covoa3sJ+kE4vuc3j+KCcAEbEVWCPpbIDietxjyiJnS6qSdBBwIPDgIOO4FXiHpGpJM4DXAncBNwHvldRYlD1te+OTdFBE3BkRnwKeA2ZLOhB4NCKuAn4CHL3js4R3lP2/veheCxxfdL8FqCm6W4CJO2GcZmZmZmZmY8pYOML7IPDh4vrdB4CrgfMHZN4JXC3pUkoNvX8D7ivee4xS43USpetuO8pORe73Y+DEYpgA/j4ingZulDQXWCqpC7gBuGQ747uiuCmVgMVFv4uBd0vqBp4GPrfjs4SpklZQOgr810W/bwI/kXQfcCPPH8FeAfQW/RdFxNCnQKv4S+ibkAwCrXvXDB8qdE7NlVu7NX+5cXVXOsqmQ/KbRPPjfels05P5+rbNzB+cf3zJkPdAe5G+44fP9JuyOnepeV8F5xG8+pd/lw/35devNX/2zXT2iEc/NHyoXwVXtD+xYs98eATUdOfnV8fkfLmN63vS2RvO/qd09n23vuj+eUPacmBDOts+Mzcf2qfnf+vtPbJ1+NAfC87v6+o25evQsk9+v1TdlV9xt+2dL3fiY73pbFVtbjlEdX697W4Ymd/nW++bns42TszXt23PCj6jDtuazk78XmMq1zE5/wCLmrb8Z1lfbd3wocKUB9vS2W2z89u5evPztrYlv96uPyr3gdZbl18Palvy87ZtRn6ZbTw8tx4AVHXns1Mezi+z3oZ8fXua8tnsfOhuzi+H5ifz60HbrPy+pm5LvtzNBzels4oKvoDkZ0NayyHd6eyU/8pXYMK2/HRlP8/7kh9jY6HB2xMR7xrQb075i4hYA7xxiOF/FREfHJBfBCwqex3Ax4s/BmQ/T+lOx8OOLyLePsj4XzT8UCKiufi/BFhS1v8jA6JXRMTFA4Z9BnhNWa+Li/7dPH8DLzMzMzMzs5eNsXBKs5mZmZmZmVnFRvUR3ohYCxy5A8Ofu9Mqs5NImk7pdOeBTo+IDcMNHxFzdnqlzMzMzMzMxiEf4d3FImJDRMwd5G+DpN8NN7ykayQdXnRfMvI1NjMzMzMzG5vc4B1FIuKkROZ9EfFA8dINXjMzMzMzsyG4wTuKSGot/s+XtETS9ZJWS7pWxa2li/7zJH0eaJC0XNK1OzDOBZKWSlra0/5SH01sZmZmZmY2+rjBO3odC1wIHE7p+cEnl78ZEZ8A2ovTod/5UkcSEQsjYl5EzJvQkL9lupmZmZmZ2WjnBu/odVdEPBERfcByBjyKyczMzMzMzLbPDd7Rq7Osu5dRfkdtMzMzMzOz0cYN3rGtW1LN7q6EmZmZmZnZaOSjhmPbQmCFpGU7ch1vv+rOYPKazuGDwNb969Ll1rb2pbPTVrWlcq1z8tcbT3pwSzrbNXFqOovy0areSGc3vTL/O1RNa74Okx/tTWdb961O5aavzK0vAD2N+XVG+apyxKMfSmdXnf/1dPbIK/PlVnfkl+9IiAp+ulQFVX32uPzvaWdd9fF0tnrffB3qNuf3H03rchPXvC6/3nbMaE5n63K7LwB6GvLZ3vp8NqrzO6amdfl5u+nQ3D4BoPGp3HJo3StfZvusCna4FahkX9M1MZ+t25ivr347KZ3dMieXa3o6v2zrtuRnQl9Nfro698jv8zum5svtq67gM3JiPlu3Kbfebts7X9epN3eks7Uttems+vI78urO/PJt2zu/s+mrYF8zcU3+pqj1z+WWWdeU/Pyqfyq/c25al//c23Bkfkc+bVV7Ots5PT9tmw7JN+X2vD03H2ra8ttud1N+PZixLP+lddMrc5+91V258tzgHUUiorn4vwRYUtb/I2Xd88u6LwYu3mUVNDMzMzMzG0N8SrOZmZmZmZmNSz7CO8IkTQcWl/WqpnQTqv7//U6PiA07aRz942HAOHZoPGZmZmZmZmOJG7w7kaTDgH8DAjgrIh4pGpdzd7DcC4GFEdFWvL4BOCciNgPsjHGYmZmZmZmNNy/7U5ol7cxG/9uA6yPi2Ih4ZCeWeyHQ2P8iIt7U39g1MzMzMzOzwY3JBq+kOZJWS1ok6SFJ10o6Q9Jtkh6WdEKRa5L0LUl3SbpX0luL/udK+qmkm4HFkqokfb0o8yZJN0g6q8geL+nXku6R9AtJew1RpzdRapieJ+mWoo73l71/kaTLiu4lkr5Q1OshSacW/aslfVHS/ZJWSDpf0gXA3sAtkm4pcmsl7VF0f6zI318cCe6fP7+X9E1JqyT9UtKgt5KTtEDSUklLu7ryd9EzMzMzMzMb7cZkg7fwCuCfgMOKv3OAU4CLgEuKzCeBmyPiBOA04ApJ/c+zOY7Sacd/ArwdmAMcDrwbOBGgeMbtV4rc8cC3gM8OVpmIuAH4BvCliDgtUf8JRb0uBD5d9FtQ1GNuRBwNXBsRVwHrgNMGlivpeOC9wKuB1wDvl3Rs8fbBwNci4ghgM3DmEPVeGBHzImJebW3+UT9mZmZmZmaj3Vi+hndNRKwEkLQKWBwRIWklpUYjwOuBt0i6qHhdD+xXdN8UERuL7lOA6yKiD3i6/0gqcChwJHCTJCjdCOqpnVT/HxX/7ymr7xnANyKiB6CsfkM5BfhxRGwDkPQj4FTgp5Tmz/JBxmFmZmZmZvayMJYbvJ1l3X1lr/t4froEnBkRD5YPKOnVQOb8XQGrIuLEl1C/Hl54BH3g07z769vLyCyH8vnTC+Sfjm1mZmZmZjYOjOVTmjN+AZyv4vBs2em+A90GnFlcyzsLmF/0fxCYIemPpzhLOiI57meAmZKmS6oD3pwY5ibgA/030pI0rejfAkwcJH8r8DZJjcWp2n9R9DMzMzMzM3vZG8tHeDMuB74MrJBUBaxh8IbnD4HTgQeAx4FlwJaI6CpuXnWVpMmU5teXgVXDjTgiuiV9BrgLeBJYnajvNcAhRX27gW8CXwUWAjdKWld+HW9ELJO0qBgHwDURca+kOYlxvVhfUN3ek4tOqEsX2/RkRzrbMTN3IHrysmfSZW47bEY62/TMwMcWD626K9LZCW35cp89oSad3efevnS2uyn/+9YeKzqHDwHVbbn1BWD6qvz4e+uVzpJfDBx55YfS2fv/7uvp7AmXnJevxAioacvPhHV/2p3O/uS0r6WzF3z4/HS2uzG/LvRNyK8L3U25bNvM2nSZ+97cls62z8rvFzceWj18qNCwPr98Nxyb39dM/FV+3rbvk9/W912c2388fWL+vhHdEyvY0Cuw//+fqytA+4z8etMxJT9v+2rz2UhGm//Qni6zfa+BJ6ANbUJbBZ85jfnpmrF0azr76NmT8nXYI7+/2//Hufpu2zf/GT1hS/77T19dfp/QOTVfh00H59fbyWvy86v+2fw6tm12fluv25SrQ/0z+X0z1Tt/GwOo25zfLz19YuPwocLsGzaks+qdnM7WrPpDKldfe2C6zKjg0Kkq2I3Xbc3ta5T8yBuTDd6IWEvp2tr+1+cO9l5EtAMfGGT4RcCistd9ki6KiFZJ0yk1IFcW7y0HXpus12UDXl8FXDVIbn5Z93qK62uLa3c/VvyV579C6eZZ/a/nlHX/M/DPA/JreeH8+WKm/mZmZmZmZuPJmGzwjpCfSZoC1AKXR8TTu7tCZmZmZmZm9tKN+gZvccR18SBvnR4R+WP+wyg/6pqo09eAkwf0vjIivr2z6mNmZmZmZmY7ZtQ3eItG7dzdXY9yEfHhwfpLOgz4N0pXFZ4VEY/sjPFJuhBYGBFtxesbgHMiYvPOKN/MzMzMzGw8Gu93aR5W/x2Rd5K3AddHxLE7q7FbuBD449XuEfEmN3bNzMzMzMy2b0w2eCXNkbRa0iJJD0m6VtIZkm6T9LCkE4pck6RvSbpL0r2S3lr0P1fSTyXdDCwuHkf09aLMmyTdUNydGUnHS/q1pHsk/ULSXkPU6U2UGqbnSbqlqOP9Ze9fJOmyonuJpC8U9XpI0qlF/2pJX5R0v6QVks6XdAGwN3CLpFuK3FpJexTdHyvy9xdHgvvnz+8lfVPSKkm/lDTo7Y8lLZC0VNLS7u7Mo4nNzMzMzMzGhjHZ4C28Avgn4LDi7xzgFOAi4JIi80ng5og4ATgNuKJ4Xi3AcZROO/4T4O2U7pR8OPBu4I/P3aV0d+SzIuJ44FvAZwerTETcAHwD+FL5o4O2Y0JRrwuBTxf9FhT1mBsRRwPXFnd6XgecNrBcSccD7wVeDbwGeH/Zs4YPBr4WEUcAm4Ezh6j3woiYFxHzamryt403MzMzMzMb7Ub9NbzbsSYiVgJIWgUsjoiQtJLiMT/A64G3SLqoeF0P7Fd03xQRG4vuU4DrIqIPeLr/SCpwKKXH+9wkCaAaeGon1f9Hxf97yup7BvCN4vFElNVvKKcAP46IbQCSfgScCvyU0vxZPsg4zMzMzMzMXhbGcoO3/GnxfWWv+3h+ugScGREPlg8o6dVA5vxdAasi4sSXUL8eXngEfeCT3fvr28vILIfy+dMLDHpKs5mZmZmZ2Xg1lk9pzvgFcL6Kw7Nlp/sOdBtwZnEt7yxgftH/QWCGpD+e4izpiOS4nwFmSpouqQ54c2KYm4AP9N9IS9K0on8LMHGQ/K3A2yQ1Fqdq/0XRz8zMzMzM7GVvLB/hzbgc+DKwQlIVsIbBG54/BE4HHgAeB5YBWyKiq7h51VWSJlOaX18GVg034ojolvQZ4C7gSWB1or7XAIcU9e0Gvgl8FVgI3ChpXfl1vBGxTNKiYhwA10TEvZLmJMb1It3NVTx1UnMqO+XRnnS57XsOPLg9tK2zq1O5DUcOeu+wQU1bna/rhLa+dLZuU+fwocKTf5KbrwCzb+pOZze8siadnfSH3nS2e2JuOWw+qDZdZv3bn0lna6ryy+GJFXums9Udkc6ecMl56exdn7s6nR0JV2w8KJ394T/+t3T2vXd8NJ1tPSkdZd+bu9LZmi357ay3Kbc99DTkP/oeP6Nx+FA/5aPdTfl1cepD+e1hj7tz2y5AVXd+nzDx4fw8e/qkXHbGvfllu/kV+X1NJda8JV/utBX5BVyV343TNTmfnfJfuWX21Mn5e3I0PZVfv6q68/Ogc3L+mIoOyH9GzrgnX9+e+vxnZHabbH4sv+1uPWxKOtu6d37bbVifnwcTn8x/B4rq/PLdNju/jvVV0NromJ5bZt371aXLbNiQnwdte+Qr27g+X27d5vy8feKN09PZ2s359ZFTDk7FNh6WnweVfMde+9r8dj75v3K5SG42Y7LBGxFrKV1b2//63MHei4h24AODDL8IWFT2uk/SRRHRKmk6pQbkyuK95cBrk/W6bMDrq4CrBsnNL+teT3F9bXHt7seKv/L8VyjdPKv/9Zyy7n8G/nlAfi0vnD9fzNTfzMzMzMxsPBmTDd4R8jNJU4Ba4PKIeHp3V8jMzMzMzMxeulHf4C2OuC4e5K3TI2LDzhpP+VHXRJ2+Bpw8oPeVEfHtnVWfl0LSucC8iPjIIO+1RkT+XAIzMzMzM7MxbtQ3eItG7dzdXY9yEfHh3V0HMzMzMzMz277xfpfmcUXSf0i6R9IqSQuKfu+V9JCkuyg76izpAEm3S1op6X/ttkqbmZmZmZntJm7wji1/GxHHA/OACyTtA/wDpYbuKcDhZdkrgasj4ijgqaEKlLRA0lJJS3vbMo8mNjMzMzMzGxvc4B1bLpB0H3AHMBt4N7AkIp6LiC7gB2XZk4HvF93fHarAiFgYEfMiYl51Y/4W82ZmZmZmZqOdG7xjhKT5wBnAiRFxDHAvwz/bt4KHc5mZmZmZmY0vbvCOHZOBTRHRJukw4DVAA/AnkqZLqgHOLsvfBvxV0f3OXVtVMzMzMzOz3c8N3rHjRmCCpN8Dn6d0WvNTwGXA7ZQauL8vy/8d8GFJK4F9dm1VzczMzMzMdr9R/1giK4mITuBPB3lrCfCi5/9GxBrgxLJel45MzczMzMzMzEYnH+E1MzMzMzOzcckNXjMzMzMzMxuX3ODdTSRdJumiQfrPkXTOThzP2yQdPnzSzMzMzMxsfHGDd/SZAwza4JX0Uq65fhvgBq+ZmZmZmb3suMG7E0lqkvRzSfdJul/SOyStlbRH8f48SUvKBjlG0u2SHpb0/qLf54FTJS2X9FFJ50r6qaSbgcWSmiUtlrRM0kpJby0b/3skrSjG/11JJwFvAa4oyjtoF80KMzMzMzOz3c53ad653gisi4g/A5A0GfjCdvJHU3qebhNwr6SfA58ALoqINxdlnAscBxwdERuLo7x/ERFbi4b0HZJ+Suko7qXASRGxXtK0Iv9T4GcRcf1gFZC0AFgAUDNx6o5Ov5mZmZmZ2ajhI7w710rgv0n6gqRTI2LLMPmfRER7RKwHbgFOGCJ3U0RsLLoFfE7SCuBXlJ6xOwt4HXBdURZl+e2KiIURMS8i5lU3NmUGMTMzMzMzGxN8hHcnioiHJB0HvAn4X5IWAz08/8NC/cBBhnndb1tZ9zuBGcDxEdEtae0g5ZqZmZmZmb3s+QjvTiRpb6AtIr4HXEHpVOS1wPFF5MwBg7xVUr2k6cB84G6gBZi4ndFMBp4tGrunAfsX/W8Gzi7KQtK0ov9w5ZmZmZmZmY1LPsK7cx1F6QZRfUA3cB7QAPwfSZcDSwbkV1A6lXkP4PKIWCfpOaBX0n3AImDTgGGuBf5T0kpgKbAaICJWSfos8GtJvcC9wLnAvwHflHQBcFZEPLJzJ9nMzMzMzGx0coN3J4qIXwC/GOStQwbJXjZEGd2Ursctt6js/fXAiUMM+x3gOwP63YYfS2RmZmZmZi9DPqXZzMzMzMzMxiU3eEcZSa3F/zmSzinrP0/SVcMMO0fS/SNdRzMzMzMzs7HADd7Raw7wxwZvRCyNiAt2X3XMzMzMzMzGFjd4d7LiKOtqSYskPSTpWklnSLpN0sOSTpB0maSLyoa5X9KcAUV9HjhV0nJJH5U0X9LPivxlkr4r6faizPcPUo/fSJpb9vq3ko4Zmak2MzMzMzMbfdzgHRmvAP4JOKz4Owc4BbgIuCRZxieAWyNibkR8aZD3j6Z0c6sTgU8Vj0Qq938o3aUZSYcA9RFxX4XTYWZmZmZmNma5wTsy1kTEyojoA1YBiyMigJWUTlXeGX4SEe3FXZtvAU4Y8P51wJsl1QB/S9mdnstJWiBpqaSlvW3bdlLVzMzMzMzMdj8/lmhkdJZ195W97qM0z3t44Y8N9S9hHLG91xHRJukm4K3AXwLHD1pIxEJgIUDDnrMHlmlmZmZmZjZm+Qjv7rEWOA5A0nHAAYNkWoCJ2ynjrZLqJU0H5gN3D5K5BrgKuDsiNu1Ihc3MzMzMzMYaN3h3jx8C0yStAj4CPDRIZgXQK+k+SR8d4v1bgDuAyyNi3cBARNwDbAW+vdNqbmZmZmZmNkb4lOadLCLWAkeWvT53iPdeP8TwzcX/bko3pSq3pKx7RUS8Z3vjLm5kVQX8MlV5QW/y5OoJrb25ILB1Tm06W9uSO6t6y6x0kRXVddte+bpW9ebPAG+f1ZfOqoJbizU+m69DT0P+962qnlx967bkx7/u8enpLD1KR2u689mo4Ce+mrb8tF2x8aB8wSPg49MeSWdvWH9aOttbW5POVnXml8OElq58uVvb09mYkFzADfmPvqp8VYkKPlGbH8vPr6qe/LpY3V3Bfml6dTo7eW0F+9GZueVQ99TWdJm1e1aw/6iAKtjXtM/MZ2u3jswVQhPacstBffll2zE9v2Psq8nPg+krWtPZzYc1p7ONz/aks30T8vXtas5lq7rTRVY0v2q25deZSsrtrWAdb9icn7iuyRXs8JRfx5rXtqRyWw7Z3kmQL9Q1Mb891LTnl0PtxvwHROfh+c/Ttr3y3xmbn0hHqWnNbTvVnfllW8n3KvVWsC4+l1sXq5KfeT7CO05Jeg9wJ/DJ4uZZZmZmZmZmLys+wjsGRcRlicy/Av868rUxMzMzMzMbnXyEd4yTdJmki7bz/rmDPKPXzMzMzMxs3HODd/w7F3CD18zMzMzMXnbc4B2DJH1S0kOSfgscWvSbK+kOSSsk/VjSVElnAfOAayUtl9SwWytuZmZmZma2C7nBO8ZIOh74K2Au8CbgVcVb/wpcHBFHAyuBT0fE9cBS4J0RMTciXnS7U0kLJC2VtLSnbduumQgzMzMzM7NdwA3esedU4McR0RYRW4GfAk3AlIj4dZH5DvDaTGERsTAi5kXEvAmNTSNTYzMzMzMzs93ADV4zMzMzMzMbl9zgHXt+A7xNUoOkicCfA9uATZJOLTLvBvqP9rYA+adzm5mZmZmZjRN+Du8YExHLJP0AuA94Fri7eOtvgG9IagQeBd5b9F9U9G8HThzsOl4zMzMzM7PxSBGxu+tgo8TEKfvGsadckMpuOaAmXW7Ntvw6VtWdyzY+050uc+Phdels/ca+dFa96Sh1W/PhP7xZ6ey+N+WzNVt70lmqcuVWsh40bMjP26qe/DrTMbk6nVUFu7tnT+tKZ2f9Kj8fRkLD+vyyveXb16Szh//uXenslOub09nGp/Pztn1Gft7WJrezvpr8yU012/Lztrcuvy6uOzX/e/P0lfkV9+k35veN+/0gPx8ee2N+2vb7RW45bHxlftl2zBiZ7yr7/yz/G/Dmg/MPOuirYJfQ05jfjzc9nduPdjdUUOaz+XW8/pn8/Oqtz6/jtes2p7PbDp2Rzm45KL8g9vxtrg5PnTolXWbT0/nP/p76/PY49YGt6WxVS0c623bwtHS24cn8jU57G/PLYf3RjanctAc702XWbGhLZzceMzWd7clVFYDp9+e3naqu/HqzbXa+Es0PbUnlNh6Xnwd9lRw6rWA3XteS29et+NWVtG58fNgdnk9pNjMzMzMzs3HJDV4zMzMzMzMbl9zgHacknSvpq0X3ZZIu2t11MjMzMzMz25Xc4DUzMzMzM7NxyQ3eMUbSeyStkHSfpO9K+nNJd0q6V9KvJM3a3XU0MzMzMzMbDfxYojFE0hHApcBJEbFe0jRK9zx7TUSEpPcBfw/89wrKXAAsAKhryN950MzMzMzMbLRzg3dseR1wXUSsB4iIjZKOAn4gaS+gFlhTSYERsRBYCKXHEu3k+pqZmZmZme02PqV57PsK8NWIOAr4AFC/m+tjZmZmZmY2KrjBO7bcDJwtaTpAcUrzZODJ4v2/2V0VMzMzMzMzG218SvMYEhGrJH0W+LWkXuBe4DLgOkmbKDWID9iNVTQzMzMzMxs13OAdYyLiO8B3BvT+ySC5RcCiovuyTNnqgwltvbmKqCaXAyY+3pXOts3MlVu7qSNd5qTHqtPZrub8SQ9VyVkFMGFbBeEYmc1y65zadLZua+5y7mkP5JdDb0N+OfRNUDrbuL4nnX32uPx6+5PTvpbOvveOj6azI6G3Nj9dh//uXensAyd9L5097Zr3p7PtM/PrYl8Fm0PH9FxYffky6ytYv3rq8+t4VHB+VU9dfnuIjgrqUMG8jcb8Pky9uf1HTwUX4HRPzS+HSlR35qerkn1+1+T8MlMF5bbsm1txpj/QnS6zryZf1+5Jdels1+T8ClbVMymdfXZefn8XR7eks61PTkzl2vfM3+5k5rLOdLZ7Yn662vduSme3zcrP27ot+Z1jbVN+P941JT9tUx/KfWes3pZfxysx8Yn8MmuZnd8enj2+MZ2ddUd+vW2fmv8wmfjUs6ncpEfzO+dt++aztS0V7OyS1JfbHn1Ks5mZmZmZmY1LbvCamZmZmZnZuOQG7zgl6VxJXy26L5N00e6uk5mZmZmZ2a7kBq+ZmZmZmZmNS27wjjGS3iNphaT7JH1X0p9LulPSvZJ+JWnW7q6jmZmZmZnZaOC7NI8hko4ALgVOioj1xXN4A3hNRISk9wF/D/z3CspcACwAqKubMgK1NjMzMzMz2z3c4B1bXgdcFxHrASJio6SjgB9I2guoBdZUUmBELAQWAkyatG/+XvtmZmZmZmajnE9pHvu+Anw1Io4CPgBU8GRDMzMzMzOz8csN3rHlZuBsSdMBilOaJwNPFu//ze6qmJmZmZmZ2WjjU5rHkIhYJemzwK8l9QL3ApcB10naRKlBfMBurKKZmZmZmdmooQhftmkljTNmx2Fv/2gqW7s1v96oL5/ddGh1Ktf8RL7M6q58tm1G/qSHKY/0pLO99Upn1ZeOsuGVufkF0DUlPx+mPJTLRX6y2HJwPovydb3h7H9KZ8+66uPp7LTV3ensUyft3t8OqzrzC2LqQ/kVrG5zbzp7y7e+mc6e+pEPpLObD8qv4z1NuVz9+nSR9J6xKZ1tfXxSOjt5dX66KtmHVaK3Jr/eND+VXxe2HJCbtob1u//7x7a98/Og4dl8fVvm5OvQfWBHOrvfd3Pztrs5v35V8plTuzX/uVezpTOd3fqK5nwdWvLrovJRnjumJpVrfiI/w2pb89mW2fnPker2CradCj6np69oTWfb92pIZ6s78/XdckBuPvRVsP9qfCa/HNpm5r8HTl6T3x46puW3SSpYvDXt+WnbNjNXhy2vzG84+92YH/+WA3LbGEDrfrmZ8MSVX6Lz8ceHXRl8SrOZmZmZmZmNS27wmpmZmZmZ2bjkBq+ZmZmZmZmNS27wjiKSfpfIXCPp8KL7kpGvlZmZmZmZ2djkBu8oEhEnJTLvi4gHipdu8JqZmZmZmQ3BDd5RRFJr8X++pCWSrpe0WtK1klS8t0TSPEmfBxokLZd07Q6Mc4GkpZKW9nRs20lTYmZmZmZmtvu5wTt6HQtcCBwOHAicXP5mRHwCaI+IuRHxU0p7YAAAIABJREFUzpc6kohYGBHzImLehPrkMz3MzMzMzMzGADd4R6+7IuKJiOgDlgNzdnN9zMzMzMzMxhQ3eEev8ie29wL5J5KbmZmZmZmZG7xjXLekmt1dCTMzMzMzs9HIRw3HtoXACknLduQ63n7VncHkR7pS2bonNqfLbX3l9HR2nyVtqVz1tu50mT1T6tLZ6s787wf16zvS2dbZDensloOq09m9bu8cPlSoXZ+/KZnakuVW5+s65ZHJ6WxPY77c99360XS2et90lO7G/O+B+96c225GyoSW/Ph7G/PrePvM2nT21I98IJ299av/ks6e8D/OS2drW/tyuS096TK3tk9JZ+v2UTpL5KO9dfly+yr4VJ/0h9509ulX57eHWXfnyu2clC+zuruCGVaBqQ/m1hmAnvr8cqjZmp+2mvvynw/PLtiSyu33D/ll29uU/4ykglW8Y1Z+utpm5OfXc8flKzH54XSUKY/k5tm6P89//9jv3yr4PF/8XDqrjvw+P2ryO4WnXzcznW3dLx3lwB+1pLNTenLrY01rfjmE8uvMlMVPpLMov942zZiazm6aOy1f7mO5780A2/acmMod8B/5z8gtc/LfE/a6ZUM6+9wJuXnwdHuuPDd4R5GIaC7+LwGWlPX/SFn3/LLui4GLd1kFzczMzMzMxhCf0mxmZmZmZmbjko/wjjBJ04HFZb2qKd2Eqv9/v9MjIn+sf/vj6B8PA8axQ+MxMzMzMzMbS8ZEg1fSXGDviLhhF43vkoj43A4MPx/oiojfFY3LucnhzgXmlZ/CnFHJOMzMzMzMzF4uxsopzXOBN+3C8V2yg8PPB07aCfUwMzMzMzOzlyjV4JX0HkkrJN0n6buS5ki6uei3WNJ+RW6RpKsl3SHpUUnzJX1L0u8lLSorr1XSlyStKoafUfRfImle0b2HpLWSaoHPAO+QtFzSOyQ1FeXeJeleSW/dTt3rJX1b0soie1rR/1xJXy3L/ayo7+eBhmJc1xbTurro/r2k6yU1FsOslbRH0T2vqP8c4IPAR4syTh2iXmdLur+Yp78pe2tvSTdKeljS/y7LXy1paTHP/qGs/1pJ/7uYvrskvaLoP0PSDyXdXfydPEQ9FhTlLu3uzt/F18zMzMzMbLQbtsEr6QjgUuB1EXEM8HfAV4DvRMTRwLXAVWWDTAVOBD4K/BT4EnAEcFRxajJAE7A0Io4Afg18eqjxR0QX8CngBxExNyJ+AHwSuDkiTgBOA66Q1DREER8uFRNHAX8NfEdS/XbG9wmgvRhX/6N+DgW+HhGvBLYCH9rO8GuBbwBfKsq4dYjop4A3FPP0LWX95wLvAI6i1MifXfT/ZETMA44G/kTS0WXDbCmm76vAl4t+VxZ1eBVwJnDNEPVdGBHzImJeTc1Qs9DMzMzMzGzsyRzhfR1wXUSsB4iIjZQatP+3eP+7wCll+f+MiABWAs9ExMqI6ANWAXOKTB/wg6L7ewOGz3g98AlJyyk9vqceGOqJYKcU4yAiVgN/AA6pcHyPR8RtO1DfwdwGLJL0fp6/wRTA4ojYEhEdwAPA/kX/v5S0DLiX0g8Ih5cN8/2y/ycW3WcAXy3m0U+BSZKad0K9zczMzMzMxoSRuGlVZ/G/r6y7//VQ4+t/onwPzzfChzwKS+nR52dGxIMvtZIDxjXc+AY+8b7S+r64wIgPSno18GfAPZKOL94qn2e9wARJBwAXAa+KiE3F6eHl44tBuquA1xQNZzMzMzMzs5edzBHem4Gzi0ffIGka8Dvgr4r33wkMddru9sZ7VtF9DvDbonst0N/wO6ss3wJMLHv9C+B8SSrqdOx2xnVrUUckHULpSPCDxbjmSqoqThs+oWyYbkk1Za/3k9R/5HSo+p65nfq+iKSDIuLOiPgU8BwwezvxScA2YIukWcCfDnj/HWX/by+6fwmcXzY+38XZzMzMzMxeVoY9whsRqyR9Fvi1pF5Kp9SeD3xb0scpNdbeW+F4twEnSLoUeJbnG2xfBP5d0gLg52X5W3j+FOZ/BC6ndK3qCklVwBrgzUOM6+vA1ZJWUjoie25EdEq6rRjuAeD3wLKyYRYWZS+jdL3wg8CHJX2ryF9d5P4B+D+SLqd0anW//wSuL26mdf4Q1/FeIelgSkerFwP3McSjhSLiPkn3AquBxymdDl1uqqQVlI4O/3XR7wLga0X/CcBvKN1Ma2hV0Fufu3H342+blcoB7Hlnezq78YiGVK62JX9AfeIf8ge5m9e2prO9DTXDhwqNT3UOHyp0Ts7NA4DuidXDhwod0yfn6zAltx5MeyC/bCe0dKWz1R356dpyYH5+1W3uS2f7JiidrdmSX74joWprfjm07r9HOttXwTlAW/fPL7MT/sd56exd/3j18KHCXz56eir3yL/mr2qJCp5lsOed+XW8fUZ+5lZ15+vQsn++wtVd+e1h5rL89vDs8bk61G7JlzmhPZ+txJTVW9PZSrazCR357axzcn6ZTb984Alng4vq/PbYvmf+83TSHX9IZ6Nqz3R278Vb8uXW5KetbfZ2jz28gHpz83bWjbXpMnuacmUCdO2Zr2sln6dEvg6T1/aks5PyqwJ9FSyzjum571Zdk/P70IkP5tevjW84OJ3tq8nvl/a4e2M62/x4/jtFX0N+Psy6PTcf1N2bLrN2Rv67cMc++XV8/cm5D76exbn1OzWXIuI7wHcG9H7dILlzy7rXAkcO9l7x+mODDL+a0k2Z+l1a9N8IvGpA/APJuncwSIO8uM74nS8eAiLiYuBigOKuyz0R8a5BcrcyyPXAEfEQL5yOwcbx9kF6Lyr++jNvLus+dzvFXVHUubz89Tz/Q4KZmZmZmdnLzlh5Dq+ZmZmZmZlZRUbiplXDioidfrdgSW8AvjCg95qI+IsdKXfgkeqXUK9PAmcP6H1dRHx2R+rVLyLm7IxyzMzMzMzMxpvd0uAdiqQpwDkR8fUKh7uhGK7iGzMVdzz+WURcP6D/fOCi8tOKX4qiYZtq3Er6XUScNExmLTCv/zFRZf3nA10R8buXWFUzMzMzM7NxZbSd0jwF+NDAnpK22zCPiDdFxOYRq9UuMlxjdxjzgR0Z3szMzMzMbFwZbQ3ezwMHSVou6W5Jt0r6KaU7IyPpPyTdI2lVcSdniv5rJe0haY6k30v6ZpH5paSGIvP+osz7JP1QUmPZeM+QtFTSQ5JedERXUpOkb0m6S9K9xd2XByXp55KOLrrvlfSpovszkt5fdH+8qMsKSf9QNmxr8b9K0tclrZZ0k6QbJJU/pul8ScskrZR0WHFjrQ8CHy3m3amSzpZ0fzG9v9lOfRcU0760u2vbUDEzMzMzM7MxZ7Q1eD8BPFKcmvxx4Djg7yKi/07IfxsRxwPzgAv6nw08wMHA1yLiCGAzzz8f90cR8aqIOIbSY4j+v7Jh5lB6Du+fAd+QNPAe/Z8Ebo6IE4DTKD1SqGmIabgVOFXSZEqPQTq56H8q8BtJry/qeAKlxxAdL+m1A8p4e1Gnw4F3AycOeH99RBxH6fFIFxXXGX8D+FJEzC3uHv0p4A3F9L5liLoSEQsjYl5EzKupHWqSzMzMzMzMxp7R1uAd6K6IWFP2+gJJ9wF3ALMpNRwHWhMRy4vueyg1HAGOLI4Yr6T0OKIjyob594joi4iHgUeBwwaU+Xqefw7wEqAe2G+IOt8KvJZSQ/fnQHNxNPmAiHiwKOv1lJ5nvKwY18DpOIXSja36IuJpSs8hLvejQaZvoNuARcVR5fwD0MzMzMzMzMaJUXXTqkH88Rzb4qZMZwAnRkSbpCWUGp4DlT+tuRdoKLoXAW+LiPsknUvpmtd+A59aPPC1gDOLButw7qZ0BPpR4CZgD+D9lBqn/WX9Y0T8S6KsofRPYy9DLMOI+KCkV1M6an2PpOMjYsMOjNPMzMzMzGxMGW1HeFuAiUO8NxnYVDR2DwNeU2HZE4GnJNVQOsJb7uziutmDgAOBgQ3bX1C6blYAko4daiQR0QU8TulRRLdTOuJ7EdB/He0vgL+V1FyUtY+kmQOKuQ04s6jTLF7YOB/KC+adpIMi4s6I+BTwHKUj4mZmZmZmZi8bo+oIb0RskHSbpPuBduCZsrdvBD4o6feUGqR3VFj8/wTupNT4u5MXNqwfA+4CJgEfjIiOom3b73Lgy8AKSVXAGmB7jyu6FTg9Itol3QrsW/QjIn4p6ZXA7cU4WoF3Ac+WDf9D4HRKN+t6nNKpz1uGmb7/BK4vbqh1PqUbWB1M6YjyYuC+YYYvHdceeGx7CNUduRxA26y6dLaqO5dTb3789CUnCuiaOthJA0MUW5v/vai3Lp+tZNpaZuc34brNfTu9DurNl7ltduPwoUJU8FNc+0wNHyo0rcuvC91N+XJ7m2rS2ZEQE/IzrHZrfgXrmJ5fv3oquAVAbWt+vfnLR09PZ//9wMWp3DFNh6bLnLQ2P78q2Sc0PtuTzrbsm1+/arfk1/GKRL7cmtbcfOieVEGZLfntsRKt++dX3ObH8nXoG6FvV+rOrY/RMDL7pL6ZU/NhVbDMupIf/kD3zOZ8FXrz61jbrNxCq2TZ1j2Z33/01Fdy9VltvtyGfLmVzK/alvw+LCrYN1Z35+qgCr7btR4yOZ2d0JEvNz8HoHtqw/ChQlTnt52q7gq+2yX3H1Ut7ekyJ3RMyo+/Jz9vt/98nvJgLjaqGrwAEXHOEP07gT8d4r05Red64Miy/l8s676a0k2eBg577hBlLqF0vS4R0Q58YPja/3HY/0mpgU1ErGPA4oiIK4ErBxmuufjfJ+miiGgtbsx1F7CyeG9OWX4pxdHfiHgIOLqsuFuz9TUzMzMzMxuPRl2D1/7oZ5KmUPoZ7/Li5lVmZmZmZmaW5AbvSyTpDcAXBvReExF/sYPlrgXmRcT87WQuiYjP7ch4zMzMzMzMxjs3eF+iiPgFpRtQ7Q6XAG7wmpmZmZmZbcdou0vzmCdpTnHTrf7XF0m6TNISSVdKWi7pfkknFO9Pl/RLSaskXUPZ9b6S/kPSPcV7C4p+nwcainKuLfq9S9JdRb9/kVRd/C0qxrVS0kd37ZwwMzMzMzPbvdzg3bUaI2Iu8CHgW0W/TwO/jYgjgB8D+5Xl/zYijqf0XN8LJE2PiE8A7RExNyLeWdzx+R3AyUXZvZQeuzQX2CcijoyIo4BvD1YhSQskLZW0tLtr22ARMzMzMzOzMckN3l3r+wAR8RtgUnFTqtcC3yv6/xzYVJa/QNJ9lB7BNBs4eJAyTweOB+6WtLx4fSDwKHCgpK9IeiOwdbAKRcTCiJgXEfNqait4roiZmZmZmdko52t4d74eXvhDQvmDXQc+gGrIB1JJmg+cAZwYEW2Slgwo649R4DsR8T8GKeMY4A3AB4G/BP42UX8zMzMzM7NxwUd4d75ngJnFtbl1wJvL3nsHgKRTgC0RsQX4DXBO0f9Pgf6nuk8GNhWN3cOA15SV0y2p/6nyi4GzJM0sypgmaX9JewBVEfFD4FLguJGYWDMzMzMzs9HKR3h3sojolvQZ4C7gSWB12dsdku4Fanj+aOs/AN+XtAr4HfBY0f9G4IOSfg88SOm05n4LgRWSlhXX8V4K/FJSFdANfBhoB75d9AN40RHggXoaxIYjaoaLAVC3eciD0y8yob0vne1qqk7l2mfkf6vpqW9MZyd05qerq0nDhwqT/tCVzvbU55YBQMPG3nR2y4H5zX3yoz2p3Iaj8qfBT32oI53trckv3/bp+Wzzus50tm1mbTrb07Cbd6UVjL9vQn69VX7TpX59Plu7Jbd+ATzyr4eks8c0HZrK3ffxr6fLPO4z56WzTc/kZ1jr3vntfNPR+XJn/Ta/fA/99P3DhwrLrp6bzkZuN051W76uPSN0xc2k+zeks22vmDp8qD87IzkTyM8vgM49m1M59VXwWTYxvw/dfMTkdLamrYIdSNWUdLSvNl/fzqn5mVu/Ofd5Gsqvt12T8uOv7s4vs/YZ+X1+w4b8/ransYKVsQJtM/P7u9rW3HpTyTY289fPprOtr5yezjY/2Z3O9jbml1lvBet4dVd+O+urzX0f7pk9MV1mTUv+e+jjr89/r5rwdC6n7tz26AbvCIiIq4CryvsVpyR/LyIuHJDdALx+iKL+dIjyLwYuLnv9A+AHg0R9VNfMzMzMzF62fEqzmZmZmZmZjUs+wruLRMT83V0HMzMzMzOzlxMf4d3JJL1N0uG7aFynSlolabmkfSRdvyvGa2ZmZmZmNha4wbvzvQ3YJQ1e4J3AP0bE3Ih4MiLO2kXjNTMzMzMzG/Xc4E2Q9D8lPSjpt5K+L+kiSQdJulHSPZJulXSYpJOAtwBXFEddDxqivFdI+pWk+yQtK8qSpCsk3S9ppaT+RxjNl7RE0vWSVku6tsi+j9KzdS8v+s2RdH8xTKOkf5f0gKQfS7pT0rwh6rJA0lJJS3vbt43MDDQzMzMzM9sNfA3vMCS9CjgTOIbS44SWAfdQejTQByPiYUmvBr4eEa+T9FPgZxGxvdOLrwU+HxE/llRP6YeHtwNzi/HsAdwt6TdF/ljgCGAdcBtwckRcUzzP92cRcb2kOWXlf4jSM3wPl3QksHyoikTEwmJaaNhzdv6e+GZmZmZmZqOcG7zDOxn4SUR0UHqO7n8C9cBJwHV6/nlsdZnCJE0E9omIHwMU5VI0Xr8fEb3AM5J+DbwK2ArcFRFPFLnlwBzgt9sZzSnAlUX590takZ9cMzMzMzOz8cEN3pemCtgcEXN30fg6y7p78XIzMzMzMzMblq/hHd5twJ9LqpfUDLwZaAPWSDoboLim9pgi3wJMHKqwiGgBnpD0tmLYOkmNwK3AOyRVS5oBvBa4awfq/JdF+YcDR73EcszMzMzMzMYsHykcRkTcXVyXuwJ4BlgJbKF0h+SrJV1K6drefwPuK/5/U9IFwFkR8cggxb4b+BdJnwG6gbOBHwMnFmUE8PcR8bSkw15Ctb8OfEfSA8BqYFVR5+0T9NXkRjBj6fDF9Wt5xZDt/xeJ6lyupiV/uXFdS1862zkp/xtQ/ZZ8uc+8KnXGOwBTH+pNZ9tmJmcYMPWh7nS27rmOVG7r/vll++SpDeksGj7Sr/fI1nS2Y0ZzOrvvzW3p7ONnNKazI6GqK5/d647csgWoX9+Tzrb+VX792to+JZ2NCn6WnbQ2t+0c95nz0mUu+9TV6ewBN7wvnZ12d37Cqtry2S2vyG88v74xf5LStPb8Prfh2Vxu6kOdw4cKLfvm96GVWPeGmels7Zb8PMh+lgG0HJD/LFFfbj5M+a/8TqH5yXy2qjP/+aS+/Px6bm5Tvg49+XLrN+ezrXvlFprys4Da1grWmQrKbVpXwU6/AhPaKvj+Mas2nZ1++9Pp7LZXzkjlGp/N17Vrn8npbNOarelsVUt7Ott65Kx0tmWf/A5kxvL8Z3rLnNx3lfVH5z9HJj+cjjJldT7bOTlXByW/erjBm/PFiLisOBL7G+CeiFgDvHFgMCJuY5jHEkXEw8DrBnnr48VfeXYJsKTs9UfKus8t614LHFm87ADeFREdxZ2ifwX8YXt1MjMzMzMzG2/c4M1ZWJwaXA98JyKW7e4KDaMRuEVSDaVjZR+KiJH5OdDMzMzMzGyUcoM3ISLOeSnDSfoapbs8l7syIr6947UaWnGd8KDP3TUzMzMzM3u5cIN3BEXEhyvJS/pdRJw0TOYa4J8j4gFJl0TE53aokmZmZmZmZuOU79I8igzX2C0y74uIB4qXl4xwlczMzMzMzMYsN3hHEUmtxf/5kpZIul7SaknXSlLx3hJJ8yR9HmiQtFzStTswzgWSlkpa2tO2bSdNiZmZmZmZ2e7nBu/odSxwIaU7Ph/IgGuBI+ITQHtEzI2Id77UkUTEwoiYFxHzJjTmHwtgZmZmZmY22rnBO3rdFRFPREQfsByYs5vrY2ZmZmZmNqa4wTt6dZZ19+IbjJmZmZmZmVXEDd6xrbt41q6ZmZmZmZkN4KOGY9tCYIWkZTtyHW+/qm5oeipS2d6m2nS5Ww6sTmeb1vXlxl+jdJnt0/K/63ROyZdb25KOUt2Vz246JD+/qnrz5TY/mc9WtXWncvUbcssLYNve+Xnb25gvl/b8bz51bRUUO6suH85P2oiICvbkvXX59aunPp9tfbwhna3bJz/D9rwzv/H01ea29aZn8uvXATe8L51d86Zr0tnjlp6Xzjatq2DbqWC17a3PZ7sm5utQtzn3OVLVlV8OldS1Eq2zc3UFqJ6RL7d7Wn7n3LhXazrb89TkVC6q88uruz7/Gdk2J//ZP+WRzuFDha7cZAFQ3ZmftsmPVvDhS+6zZMsB+flVsy2/fvXWVrCNPZf/MOttzC+zrin5bNuM/Hxo2jO/gCNZbHdjfvyNT+bXg6rWjnQ2JuQ/I2tae/J16M2X29uQ/wIwoSP5HXt27jsgQKypYOecnwVEdhYkNxs3eEeRiGgu/i8BlpT1/0hZ9/yy7ouBi3dZBc3MzMzMzMYQn9JsZmZmZmZm45KP8I4wSdOBxWW9qindhKr/f7/TI2LDThpH/3gYMI4dGo+ZmZmZmdlY4gbvCCsal3MzWUm/i4iThslcA/xzRDwg6ZKI+Fwl4zAzMzMzM3u58CnNo8hwjd0i876IeKB4eckIV8nMzMzMzGzMcoN3FJHUWvyfL2mJpOslrZZ0rSQV7y2RNE/S54EGScslXbsD41wgaamkpT0d23bSlJiZmZmZme1+bvCOXscCFwKHAwcCJ5e/GRGfANojYu6OPJIoIhZGxLyImDehvmmHKmxmZmZmZjaauME7et0VEU9ERB+wHJizm+tjZmZmZmY2prjBO3qVP7G9F99gzMzMzMzMrCJu8I5t3ZJqdnclzMzMzMzMRiMfNRzbFgIrJC3bket4+6kPatoile1pqB4+VJj9H8+ks62vnJ7KdU7Ojz/60lGmre5JZ5vuXpvO1m2enc5uObC2gnLzE9e6V35zr+7IXc89aW1HusyuiQ3pbE9jfvnWbcr/bteTrwIbD83Xobspt92MlObHlM6uOzW/HkQFP4lOXp2vAxXMrvYZ+fo2Ppvbflv3zv9OOO3u/Ew4bul56eyyT12dzp5wSb7cbXvnl8P0FfkF0fJXW9PZDc80p3LqqUuXWb9nSzpbib2/25jOdkzN7xPaWvPZvnWT09nazuEzAL11+fW24Zn8frzxsfxnZNt++fuC7PObtnR2/VH5HfnTr86vY/v/fHMq17bHlHSZDevz86tldn6/FFX55Ru1+ezWOfn9rXrTUWo25pdv19Tcd6CJj+XXW3Xll8O2Q2eks1Twsdc1Mb9PaHo6P3OfmVefzk77fW4+NKzKb2PVnfnPkY7p+RlWnVy8Sn4NdoN3FImI5uL/EmBJWf+PlHXPL+u+GLh4l1XQzMzMzMxsDPEpzWZmZmZmZjYu+QjvCJM0HVhc1qua0k2o+v/3Oz0iNiTKuxBYGBFtZf0GjqN/PAwYR3o8ZmZmZmZmY50bvCOsaFzO3YlFXgh8D/hjg3cExmFmZmZmZjbm+ZTmUUxSk6SfS7pP0v2SPg3sDdwi6ZYi83pJt0taJuk6Sc1F/7WS/reklZLukvSK3TktZmZmZmZmu5obvKPbG4F1EXFMRBwJfBlYB5wWEadJ2gO4FDgjIo4DlgIfKxt+S0QcBXy1GPZFJC2QtFTS0u7ObSM6MWZmZmZmZruSG7yj20rgv0n6gqRTI2LLgPdfAxwO3CZpOfA3wP5l73+/7P+Jg40gIhZGxLyImFdTl3+EgJmZmZmZ2Wjna3hHsYh4SNJxwJuA/yVp4I2pBNwUEX89VBFDdJuZmZmZmY17PsI7iknaG2iLiO8BVwDHAS3AxCJyB3By//W5xTW/h5QV8Y6y/7fvmlqbmZmZmZmNDj7CO7odBVwhqQ/oBs6jdGryjZLWFdfxngt8X1JdMcylwENF91RJK4BOYKijwGZmZmZmZuOSInym63gkaS0wLyLWZ4dp2Gt2HPg3Hxs+CEz5r4GP9x1ab63S2YbnulO5Z15VN3yosNdt7elsy375civROTl/MkVPY77cxmfy22/Dxp589vGWVG7j3KnpMmtb+9JZ9eanq2Wf/O92vfXpKLUt+TrUb8xP20io6snXtaehgnWxLr/t9tWmo/RWUG7Dc/l5292UK3fD8fkyq9ry86tpXX666jbll9ldn7s6nT34e+fl6/CKrels848mDh8qtO+Rm2cT2vPzoJLPkUpMf6Azne1pqB4+VKhkn59dbwHaZ+ay01flP6NbZuena8p/5T6jAdpm5vfNzU90pbMbD89/Ttduya9jSu4WWmfnl9eed+bXr97a/DrTOTW/zJqfzNdBFXyWdOyR3+n31Oenrfnx3He2/8fencfpVdb3/3+9ZzKTWbMvQAiEVUxAgoYdFdCHdlGLClJFEVtNEZdW69ZKFbW2WPzp16pgI1UQKSIogrZVihBWBQLZCARQEmQLWcie2efz++M+A7fDTOZzhySz5P18POYxZ879Odf1ua+z3Pc155zrbJ2W/0CvqeD7R+ODq9Kx3WPzY990jq9Px1aiZtkf8jkcum8qrpK2bViV33c3Hpgvd8u+uf1s5X9+jdannxgw2Jc0m5mZmZmZ2YjkS5pHqIiYMdg5mJmZmZmZDSaf4TUzMzMzM7MRyR3enUzSaZJm7qa6Xi1pmaRFkqZJunZ31GtmZmZmZjYcuMO7850G7JYOL3AW8K8RMTsinoqI03dTvWZmZmZmZkOeO7wJkv5J0sOS7pB0laRPSDpI0i8l3SfpdkmHSToBeAulRwktknRQP+UdLOkmSYsl3V+UJUkXSXpA0lJJZxaxJ0uaL+laScslXVnEvh94B/ClYt4MSQ8UyzRI+rGkByVdJ+luSXP6yWWupAWSFnRt27prGtDMzMzMzGwQeNCqAUg6Gng7cCRQA9wP3AfMA86NiEclHQtcHBGnSroB+EVEbO/y4iuBCyPiOkl1lP7x8DZgdlHPJOBeSbcV8UcBs4Br/y7iAAAgAElEQVSngTuBEyPiUkkn9dQlaUZZ+ecB6yNipqTDgUX9JRIR84r3Qv3e0/2MKjMzMzMzGzHc4R3YicD1EdEKtEr6OVAHnABcIz3/6KfUg+EkNQPTIuI6gKJcis7rVRHRBTwr6VbgaGATcE9EPFnELQJmAHdsp5qTgG8U5T8gaUn+7ZqZmZmZmY0M7vDumCpgQ0TM3k31lT81vAuvNzMzMzMzswH5Ht6B3Qm8WVKdpCbgTcA2YIWkMwCKe2qPLOI3A839FRYRm4EnJZ1WLDtaUgNwO3CmpGpJk4HXAPe8hJzfUZQ/EzhiB8sxMzMzMzMbtnymcAARcW9xX+4S4FlgKbCR0gjJl0g6n9K9vT8CFhe/vyvpo8DpEfH7Pop9D/Afkr4IdABnANcBxxdlBPCpiFgl6bAdSPti4HJJDwLLgWVFzttV3Q7Nf+hOVdA2Jv+/kq7adChETSps0pKOdJFtE3NlAtRsy9/GXN2eayuAjkYNHFTYclj+vY1en39v9Y9vTsdGTXWuzDWd6TI7mvLbTPfofGx1e36dRXV+Paw7qisdO+neXHvtKtUd+TZY/fr89hWt+fc18b58bHcFnzyb989vC7Ubc+0w9Y78drDx4HxsV+rGlpKt++TLPeSHH0zHPvruS9KxR150Xjp2/WH5bWzv3+S2sdbx+W1m04Hp0Io0PV3BxphfZXTW5YNbpuZjq1uSca35z6fR6/P7WMPKAb9KPK92Q306thJjV1Sw3UzPr99Jy3KNu/o1+TK7FlZwXqmC7Wv84vX5Yre1pmO3vnxKOrZuddvAQYWq9vx3hc7m3IG04Zl8/bUrVqdjY2xTOrZl337Pb704h/Xt6djOxvw2VjNuTDp21IMrU3Edh+YfNtPRlM913O+SBzBgVFtdMi5ZXrrmPdtXI+KC4kzsbcB9EbEC+JPegRFxJwM8ligiHgVO7eOlTxY/5bHzgfllf3+4bPqcsumVwOHFn63AuyOitRgp+ibg8e3lZGZmZmZmNtK4w5szr7g0uA64PCLuH+yEBtAA3CKphtL/DM+LiPy/lszMzMzMzEYAd3gTIuJdO7KcpG9TGuW53Dci4vsvPav+RcRmSd8C5kTEhyVdIGlWRHx1V9ZrZmZmZmY2lLjDuwtFxIcGOwczMzMzM7M9lUdpHmYknS1piaTFkq6Q9GZJd0taKOkmSVMHO0czMzMzM7OhwGd4hxFJs4DzgRMiYq2kCZRGdD4uIkLS+4FPAX9fQZlzgbkAtQ3jd0HWZmZmZmZmg8Md3uHlVOCaiFgLEBHPSToCuFrS3kAtsKKSAiNiHjAPoGni9PxzJ8zMzMzMzIY4X9I8/H0T+FZEHAH8DaWRpM3MzMzMzPZ47vAOLzcDZ0iaCFBc0jwWeKp4/b2DlZiZmZmZmdlQ40uah5GIWCbpy8CtkrqAhcAFwDWS1lPqEB8wiCmamZmZmZkNGYrwbZtWUj91ehx81sdTsY3PdKfLbW9SPof1uXI3HFSdLrNmS34b76rL59pZwcXjDc/mc4h8CozeXEG5FVzP0fhkaypu0wH16TLr13amY7tr842w4eD8/+0an85vt6Pa8m1b1TG4x9GWifn9oeHZ/HqIUfn1sGl6fj00PdOVjq1uz6+zrJd9/oF07K2/nJ2OjfxqYOKS/Daz6czN6djq28emYxd/8uJ07Gvnzk3Htk7INUR1e74N2psrODBWYMyK9nTsmleOTscqv4lXdMyvX5trs+Yn8u/ruZfn31d1BcfF5j90pGM7G/M7T3Vr/pgQ1fnGrW7LldsyMX+sq+Rzt35dfqOp5Jg/bnn++LHpkOZ0LBV87HU05tfD+Ie2peI2z8h//xh//9p0LBX0i6K2Jh3b3ZCP3fCypnTshKUb8znU5rab9TPz9VfynWLdrAraqzYXt/I/v0bLM08MuIH5kmYzMzMzMzMbkdzhNTMzMzMzsxHJHV4zMzMzMzMbkdzh3ckknSZp5m6q69WSlklaJGmapGt3R71mZmZmZmbDgTu8O99pwG7p8AJnAf8aEbMj4qmIOH031WtmZmZmZjbkucObIOmfJD0s6Q5JV0n6hKSDJP1S0n2Sbpd0mKQTgLcAFxVnXQ/qp7yDJd0kabGk+4uyJOkiSQ9IWirpzCL2ZEnzJV0rabmkK4vY9wPvAL5UzJsh6YFimQZJP5b0oKTrJN0taU4/ucyVtEDSgq6WrbumAc3MzMzMzAaBn8M7AElHA28HjgRqgPuB+4B5wLkR8aikY4GLI+JUSTcAv4iI7V1efCVwYURcJ6mO0j8e3gbMLuqZBNwr6bYi/ihgFvA0cCdwYkRcKumknrokzSgr/zxgfUTMlHQ4sKi/RCJiXvFeqJ863c+oMjMzMzOzEcMd3oGdCFwfEa1Aq6SfA3XACcA10vOPfko9yE5SMzAtIq4DKMql6LxeFRFdwLOSbgWOBjYB90TEk0XcImAGcMd2qjkJ+EZR/gOSluTfrpmZmZmZ2cjgDu+OqQI2RMTs3VRfW9l0F15vZmZmZmZmA/I9vAO7E3izpDpJTcCbgG3ACklnABT31B5ZxG8GmvsrLCI2A09KOq1YdrSkBuB24ExJ1ZImA68B7nkJOb+jKH8mcMQOlmNmZmZmZjZs+UzhACLi3uK+3CXAs8BSYCOlEZIvkXQ+pXt7fwQsLn5/V9JHgdMj4vd9FPse4D8kfRHoAM4ArgOOL8oI4FMRsUrSYTuQ9sXA5ZIeBJYDy4qct6umJZi8uDVVQXdN/n8ldevytwarOxe3z+0t6TI3HdCQjq1f056PfeDJdGznjKnp2BWnNaZjpyzIt23N1mTjAtWtnam4xmfy7dUypSYdW4nmP3SlY9e/rDod2zIt1wYAzY8O7qF07Mp8G/zhT/JtEA35cvf9n3zsqmPzx48p92vgoB6R2x/uvyR/cc6Elvw+1t6cz3XzX25Kxzb9ZEw6dv1h+XxfO3duOvbWefPSscd96txU3Krj00Uy5ZA1+eAKxL+PT8fWbsi3bUdTflvYemB+39k6PVfu+OUd6TIn358/1nXV5Y91W/atTcdW8vn01GvzOdSty6+HKQvaBg4CVr0h37YHXJkOpaorv31NWJQ/fnSOqUvHbpucPzY3rspvt5PvXJuObd87d7wb8/sKBlrtyufasfe4dKw689ttx9j8/jBh6YBf2Z/3hz/N57v/DetScVUd+W1xyz75/XHiQ/l9Z+vUXLlVycOXO7w5X42IC4ozsbcB90XECuBPegdGxJ0M8FiiiHgUOLWPlz5Z/JTHzgfml/394bLpc8qmVwKHF3+2Au+OiNZipOibgMe3l5OZmZmZmdlI4w5vzrzi0uA64PKIuH+wExpAA3CLpBpAwHkRkT8VZ2ZmZmZmNgK4w5sQEe8aKEbSbGCfiPifsnnfpjTKc7lvRMT3d3KKfyQiNkv6FjCn/IywmZmZmZnZnsQd3p1nNjAHeL7DGxEfGrx0zMzMzMzM9mwjZpRmSWdLWiJpsaQrJM2QdHMx79eS9iviLpN0iaTfSnpM0smSvifpIUmXlZW3RdLXJS0rlp9czJ8vaU4xPUnSSkm1wBcpjbK8SNKZkhqLcu+RtFDSX2wn93Mk/UzS/xXlfVjSx4vlfitpQhH3AUn3Fu/xJ8U9xUg6Q9IDxfzb+ij/zyX9RtKkndjkZmZmZmZmQ9qI6PBKmgWcD5waEUcCfwt8k9L9tq8ArgT+vWyR8ZRGRP4YcAPwdWAWcERxaTJAI7AgImYBtwKf76/+4v7YzwFXR8TsiLga+Cxwc0QcA5wCXCRpe8PvHg68DTga+DKwLSKOAn4DnF3E/DQiji7e40PAXxfzPwe8sZj/ll5t81bgM8CfRcSLhsmTNFfSAkkL2tsrGPHOzMzMzMxsiBsRHV5KIx5f09Ohi4jnKHVo/6t4/QrgpLL4n0dEUHrE0LMRsTQiuik9vmdGEdMNXF1M/7DX8hlvAD4jaRGlUZbrgP22E39LRGyOiDWUHiH082L+0rKcDpd0u6SllB6LNKuYfydwmaQPAOXPHDkV+DTw5xGxvq9KI2JeRMyJiDm1tfnH4ZiZmZmZmQ11e+o9vD0PW+sum+75u7826XkoVScv/KNgew83E/D2iHi4wpx651We02XAaRGxWNI5wMkAEXGupGOBPwfuk/SqIv73wIHAocCCZB5mZmZmZmYjwkg5w3szcIakiQDFPa93AX9ZvH4WcHuFZVYBpxfT7wLuKKZXAj0dytPL4jcDzWV//wr4iCQVOR1VYf19aQaeKR43dFbPTEkHRcTdEfE5YA0wvXjpceDtwA+Ky77NzMzMzMz2GCOiwxsRyyjd93qrpMXA14CPAO+TtAR4D6X7eiuxFThG0gOULg3+YjH/q8AHJS0EygeBugWY2TNoFfAloAZYImlZ8fdL9U/A3ZQuYV5eNv8iSUuLXO8CFve8EBHLKXWOr5F00E7IwczMzMzMbFhQ6VZW603SlohoGuw8dqfR++8be30293+BaTcpX+76znTslmm1uTLPWpUus+H8ClbjLtofnpvVPHBQoXFVRzo2qvLroaMp//+t2s3dqbhN++fvilB+M6hIVVc+trt64JgeEx7clo5ddcLg3v8+amt+ux3zh/yKUFe+3HWzcvsuwJjH8ytt9avy223Nltz+EBVsB/Wr820wekM+9plTcvsYwJjl+f1s/KP540fLxAr23+78e/vtv30nFXfkV87L17+LvqpMvj+/n1e35Nt208H5Y35l22Muh666fKFt4/L72IT/fSRf7uwD0rG1a/ProXPc9u4m+2PqzG84LVNGp+Lq1rany1z/snyudevzx4Tm321Kx0Ztfj/vrs1vNx1N+XLrVuUHRW3dK/d52tGcz7Vmc/4zJ6rz36tGtVTwBaSCY1glbVvJ5/To9W0DBwFtE3L7AkBnff74seqEfNt2NeT2h1X/8g3aHn9ywIJHxBleMzMzMzMzs9721EGrBrQrzu5KeiPwlV6zV0TEW3d2XWZmZmZmZns6n+EtSPqopIckXbmr6oiIXxXP6S3/2eHOrqRXS1pW3Dc8TdK1OzNfMzMzMzOz4cxneF9wHvD6iHiyZ4akURGxi+483CnOAv41In5Y/H369oLNzMzMzMz2JD7DC0j6DqXn1f6vpI2SrpB0J3CFpDpJ3y9GQV4o6ZRimXMk/UzS/0laKenDkj5exPy2eDRSf/UdLOkmSYsl3S/pIJVcJOmBoq4zi9iTJc2XdK2k5ZKuLGLfD7wD+FIxb0YxSjOSGiT9WNKDkq6TdLekOf3kMlfSAkkLurbkBxUwMzMzMzMb6nyGF4iIcyX9CXAK8GHgzcBJEdEi6e9LIXGEpMOAGyUdWix6OHAUUAf8Dvh0RBwl6evA2cD/66fKK4ELI+I6SXWU/vHwNmA2cCSlxx3dK+m2Iv4oYBbwNKVHEp0YEZdKOgn4RURcK2lGWfnnAesjYqakw4FF23nv84B5UBqlOdVgZmZmZmZmw4DP8PbthohoKaZPAn4Izz/T9nGgp8N7S0Rsjog1wEbg58X8pcCMvgqW1AxMi4jrijJbI2JbUc9VEdEVEc8CtwJHF4vdExFPRkQ3pc5rn2WXOQn4UVH+A8CS7Bs3MzMzMzMbKdzh7Vv22t7yB1p1l/3dzc49e15eT9dOLtvMzMzMzGxEcod3YLdTGhyK4lLm/YCHd7SwiNgMPCnptKLM0ZIainrOlFQtaTLwGuCeHazmTkr39yJpJnDEjuZrZmZmZmY2XPlM4cAuBi6RtBToBM6JiDZJL6XM9wD/IemLQAdwBnAdcDywGAjgUxGxqrhveEdyvlzSg8ByYBmlS663q25NN4ddvClVwdYDxqSTqb3nkXRs86sOScXpn8ely9y6b206tr0p/z+gsb/flo6d9JvV6dhnXj81HavI33bdNi6/zdavzbXDXjesSJfZOnNaOrZrdH49RHX+fW3Zuzodu+r4xnTs5IVtAwftQqOfye23AE/+2eR0bGddPofmJyrYFsfk12/txvz67RiTy6F6W77M8Y/k121Ve3c6Vp2j07GjWvJt2zo+v41Xt+fLXXV8OpQjv3JeKm7xpy9Ol3nore/NJ1CBqnvybbD5wKZ07JZp+W189Pp8Dlum5T7P6jZ25evfmN9utx5/cDp2wyH5r5hTFuRz2LRf/sDUOiG/r1clm+y5w+rTZU7/v/yxecPL8tvX2lfmvwM1rM1vCx0N+e22uiO/3bbsm39v2WNYzbYK6p+U3xYb1uQfzrL28Py2OOW+/MCw9ava07GrTsh/Hx+f/Do+em1ruszO/RrSsdNvzLftmtm5Y11Ve24fd4e3EBEziskLes1vBd7XR/xlwGV9LP+i1/pY9lHg1D5e+mTxUx47H5hf9veHy6bPKZteSWkQLYBW4N0R0SrpIOAmSvcem5mZmZmZ7THc4R2ZGoBbJNUAAs6LiPy/i8zMzMzMzEYAd3h3IUnfBk7sNfsbEfF9SVsiIn+NRwWK+4T7fO6umZmZmZnZnsId3l0oIj402DmYmZmZmZntqTxK8yBTyUWSHpC0VNKZxfy9Jd0maVHx2quLEZwvK4v9WBF7kKRfSrpP0u09A11JOqOIXSzptsF8n2ZmZmZmZrubz/AOvrcBs4EjgUnAvUXn9F3AryLiy5KqKd2XOxuYFhGHA0jqGaZvHnBuRDwq6VhKozSfCnwOeGNEPFUW+0ckzQXmAtTV5Ed6MzMzMzMzG+rc4R18JwFXRUQX8KykW4GjgXuB7xUDT/0sIhZJegw4UNI3gf8GbpTUBJwAXFP2qKSe513cCVwm6cfAT/uqPCLmUeowM7Zhn/wY72ZmZmZmZkOcL2keoiLiNuA1wFOUOq1nR8R6SmeC5wPnApdSWocbImJ22c/LizLOBc4HpgP3SZo4CG/FzMzMzMxsULjDO/huB84s7s+dTKmTe4+k/YFnI+K7lDq2r5Q0CaiKiJ9Q6si+MiI2ASsknQHP3xN8ZDF9UETcHRGfA9ZQ6viamZmZmZntEXxJ8+C7DjgeWAwE8KmIWCXpvcAnJXUAW4CzgWnA9yX1/KPiH4rfZwGXSDofqAF+VJR3kaRDKD2L99fFPDMzMzMzsz2CO7yDpOcZvBERwCeLn/LXLwcu72PRV/ZR1grgT/qY/7aKcqoS3Q216dh0uS/bPx3bPja3SXbX5OvfOrU6HdtdwR7R+GxNOrarvs8xw/rUNr6CHJ7Ox1a352NHb+hOxXVPrOR97ZrDTUd9/kKVlqn57aajOX9L+4aDc/vNrlK7V/5uhdbJ+ffVMb4zHdv8RH79VnfkcxjVkl9nNZtzsZ2N6SLZvO/ogYMKXXX5cuv22pwv9+H8gIKbDsznMPZ3+dgph6xJx7b+fkoq7tBb35su85HX9vVx+NIdf8O56dhNB+SPNdum5/edtnX5z6jGJ5OBG9JFVqSqM7/vjnm8Kx3bOil/DK3qyufQOjkdyt6/ya2zJ16fX1+tU+vTsVX55qJpRVs6Nvu9CqC9KX+8rduQXw8ND69Nx7Ycv1cqbvRz+S81zc9WcLxtzh/I69bn23bb3hV8QORXAx0VfJ5Vt+U2si0z8oV25b8KU9WZP4bWrc1tX0oean1Js5mZmZmZmY1I7vCamZmZmZnZiOQO7wgl6RxJ3yqmL5D0icHOyczMzMzMbHdyh9fMzMzMzMxGJHd4hxlJZ0taImmxpCskvVnS3ZIWSrpJ0tTBztHMzMzMzGwo8CjNw4ikWZSev3tCRKyVNIHSo4yOi4iQ9H7gU8DfV1DmXGAuQF3t2F2QtZmZmZmZ2eBwh3d4ORW4JiLWAkTEc5KOAK6WtDdQC6yopMCImAfMAxjTNC0/xryZmZmZmdkQ50uah79vAt+KiCOAvwEqeNCXmZmZmZnZyOUO7/ByM3CGpIkAxSXNY4GnitffO1iJmZmZmZmZDTW+pHkYiYhlkr4M3CqpC1gIXABcI2k9pQ7xAYOYopmZmZmZ2ZDhDu8wExGXA5f3mn19H3GXAZcV0xfs6rzMzMzMzMyGGl/SbGZmZmZmZiOSO7xmZmZmZmY2IrnDO0JJOkfSt4rpCyR9YrBzMjMzMzMz253c4TUzMzMzM7MRyR3eYUbS2ZKWSFos6QpJb5Z0t6SFkm6SNHWwczQzMzMzMxsKPErzMCJpFnA+cEJErC2ewxvAcRERkt4PfAr4+wrKnAvMBairHbsLsjYzMzMzMxsc7vAOL6cC10TEWoCIeE7SEcDVkvYGaoEVlRQYEfOAeQBjmqbFTs7XzMzMzMxs0PiS5uHvm8C3IuII4G+AukHOx8zMzMzMbEhwh3d4uRk4Q9JEgOKS5rHAU8Xr7x2sxMzMzMzMzIYaX9I8jETEMklfBm6V1AUsBC4ArpG0nlKH+IBBTNHMzMzMzGzIUIRv27SSMU3T4pjZH0zFVnV0p8t9blZTOrbxmY5UXIxSusyOhvyFDF2j8+XWbs63wbpZ+f8tjVmZL3fNn7elY6fcMDod2/h0rtyu0fm23fi3m9OxldiyeGI6Vl359bvv/NZ07Iq31KZjdwV15t/XAde3pGOr27rSsU++rjkdO/7hfLmNT2xNx27ZvzEVN+aBdekyn37jlHz90/Ofp/vckW+Dmi352LZx+WNN7cbOdGyMyu/ro7bkjuNVnflj3aYDGtKxlfjN//eddOyhP8h9PgLUbMrvkw2r8ttNw+rcthDV6SIhnypbp+YLHv9I/vNp0/75z6f6dfn9YdTWfOym/XPH8ajg2shxj+XboG18TTq2kvfVsPzZdGzrQfnj3ba98vk2rModEyDfvtVt+ePH+pfl7/arX5cvt2lF/nuN2vJtsOHI/PeaUS35fNubco3bXcF37LEr89+Vqir4TtEyNbfOFs3/BlvWPzlgwr6k2czMzMzMzEYkd3jNzMzMzMxsRHKH18zMzMzMzEakEdnhlTRD0gN9zL9U0sydVMe5ks4eIGaOpH8vpk+WdEKFy18g6RPF9BclvX5n5G5mZmZmZrYn2KNGaY6I9+/EsgYc6SIiFgALij9PBrYAd2WX71XW5ypM8UUkjYqI/CglZmZmZmZmw9iIPMNbGCXpSkkPSbpWUoOk+ZLmAEi6RNICScskfaFnIUkXSnpQ0hJJX+2v8F5nX+dL+oqkeyQ9IunVxfyTJf1C0gzgXOBjkhZJenWv5T8g6V5JiyX9RNKLhqOUdJmk04uzxouKn6WSonj9IEm/lHSfpNslHVa23Hck3Q38Wx/lzi3aYUFHZ340VDMzMzMzs6FuJJ/hfRnw1xFxp6TvAef1ev2zEfGcpGrg15JeATwFvBU4LCJC0rgK6hsVEcdI+jPg88Dzlx9HxEpJ3wG2RMRXASS9rmzZn0bEd4v5/wz8NfDNviopzhrPLmIvAn5ZvDQPODciHpV0LHAxcGrx2r7ACRHxovHAI2JesSxjmqb5GVVmZmZmZjZijOQO7xMRcWcx/UPgo71ef4ekuZTaYG9gJvAg0Ar8p6RfAL+ooL6fFr/vA2ZUmOvhRUd3HNAE/GqgBSSdCbwSeIOkJuAE4Brp+UdRlT/U7pq+OrtmZmZmZmYj2Uju8PY+W/n835IOAD4BHB0R6yVdBtRFRKekY4DXAacDH+aFs6QD6Xm6eBeVt+tlwGkRsVjSOZTu9+2XpMOBC4DXRESXpCpgQ0TM7mcRX6tsZmZmZmZ7nJF8D+9+ko4vpt8F3FH22hhKncCNkqYCfwpQnCkdGxH/A3wMOHIn5rMZaO7ntWbgGUk1wFnbK6S4zPoq4OyIWAMQEZuAFZLOKGIkaWfmbmZmZmZmNuyM5DO8DwMfKu7ffRC4BHgzQHEmdSGwHHgC6Ln0uRm4XlIdIODjOzGfnwPXSvoL4CO9Xvsn4G5gTfG7v44xwF8A+wPf7bl8uTizexZwiaTzgRrgR8DiShKMatE+tjYVW7MlP9hz60QNHFQY90hHKm7z/vXpMrfuk/+/ztQ/eyId+7uH907HTliUvz16VEs+dq+f5tYXQNuY/HroGJM7NIzamr9SftQ1E9OxkU+VhuZ8cPv29qxeWibn23bCkgoS3gVapuTr33BIft+pquBGiPrV+e22sy6fb9WmlnRs0x9y5W47eHy6zNqN+fdVPTkdSuv46nSsKrkhpYJNcc0rRw8cVKjdkG+HyfdtS8VtPrApXeamA3bN/+cP/cEH07GPnH1JOvaND70pHfvELfulY6Mqt9101eY3hKZn8htYJceaCQ/mt5k1x+e/Uxz44+50bIyq4HOvKRerfPUV2To1v43Xr82XO2p6/rN38375z72te+fbtrs6X27tllwDt49NF0ndhvxKU3d+u22Z1phPooLtZu2R+bZtfDLflcvu6xsrON62Tsp/pxj/cH4/787uu8rFjcgOb0SsBA7r46WTy2LO6WfxY5J1XFA2XV7uWop7eCNiPjC/mH4EeEVZEbeXLXMJpQ759uooz/fyPmJXAH/Sx/xzes8zMzMzMzPbE4zkS5rNzMzMzMxsD+YO7wAkfbbsubc9P5/djfV/UdLrB44csJyVkibtjJzMzMzMzMyGgxF5SfPOFBFfBr48iPV/brDqNjMzMzMzG858hnc3kzRD0kOSvitpmaQbJdVLmi3pt5KWSLpO0vgi/jJJpxfTF0p6sIj5ajFvsqSfSLq3+DmxmD+xKHuZpEupaCgTMzMzMzOz4c8d3sFxCPDtiJgFbADeDvwA+HREvAJYCny+fAFJE4G3ArOKmH8uXvoG8PWIOLoo59Ji/ueBO4o6rgP6HAZS0lxJCyQt6Gj343rNzMzMzGzk8CXNg2NFRCwqpu8DDgLGRcStxbzLgWt6LbMRaAX+U9IvgF8U818PzNQLw3KPKZ4n/BrgbQAR8d+S1veVSETMA+YBNI/dNz8Wu5mZmZmZ2RDnDu/gaCub7gLGDbRARHRKOgZ4HXA68GHgVEpn6Y+LiNbyeCWfS2VmZmZmZjZS+ZLmoWEjsF7Sq4u/3wPcWh5QnLUdGxH/A3wMOLJ46UbgI11cbecAACAASURBVGVxs4vJ24B3FfP+FBi/y7I3MzMzMzMbgnyGd+h4L/AdSQ3AY8D7er3eDFwvqY7SAFQfL+Z/FPi2pCWU1udtwLnAF4CrJC0D7gL+sOvfgpmZmZmZ2dDhDu9uFhErgcPL/v5q2cvH9RF/Ttmfx/Tx+lrgzD7mrwPeUElu6g5qtnWmYtsm1KTLrdmcvzW4ZWpdKm5Ua77Mzvp0KCuenZiObfxDfvfprmBPa5mQv/BiVFu+HTYdmM+hcXUuTl35+rur8/V35zcvtu2Vz2H0c/lL/VvH5WOrOtKhu0TtpgrWQwVt2z423wZtE/I51GyqYBtvzT8+PLufbZuc3xijgu22Y0JXOnbblnzBVR359uqsy68z5dOloylf7qaDm1NxW6bl39e26bnPpko1PJE/OL/xoTelY3/18l8MHFQ4bN170rEdW3Nt2/xEfuVGBdf6VbfkY9WdPybUPZU/MLVM6k7HdjRUchzP5ds2Pl9m1+j8fj6qgratqmDf7a7N51CzNd+2o7bly61fl99/28bmyq3dXEmu+QZT5Lfb6q35D//O5tp0bN3aCm5LrCA0uz9EBWVWt+dja7bkt4NN++X6A9nPfV/SbGZmZmZmZiOSO7xmZmZmZmY2IrnDa2ZmZmZmZiOSO7xDiKS7EjGXSppZTP/jrs/KzMzMzMxseHKHdwiJiBMSMe+PiAeLP93hNTMzMzMz64c7vEOIpC3F75MlzZd0raTlkq6UpOK1+ZLmSLoQqJe0SNKVL6HOuZIWSFrQ3rF1J70TMzMzMzOzwecO79B1FPB3wEzgQODE8hcj4jNAS0TMjoizdrSSiJgXEXMiYk5tTeNLStjMzMzMzGwocYd36LonIp6MiG5gETBjkPMxMzMzMzMbVtzhHbrayqa7gOSjlc3MzMzMzAzc4R3uOiTVDHYSZmZmZmZmQ5HPGg5v84Alku5/Kffx9ugeJdrG7fz+s7rysZ31SsVVdUS6zLq1+dja3zakYyctaU3Hbt27Nh373MxcGwDs/Zt84zb/Ib+7165vT8W1Th6dLrOrLh1KVOfboPqwTelY3TEmHdtdm8+hfWw6dNBVdeRjK9l3Ow7M7w81i+vTsW1jd/7/ZaM6H7v5gO50bMPeW9Kx3U/nN5qOxvy22DK1gn2nJR3K1gPzG0PjqlwOo9fnj81t6ypYaRVoWJXP4Ylb9kvHHrbuPenY5SddkY498q7zUnHKb7Z0j6pgm8l9NJRy6Kpg33k2vx5aJuePCTWb8+WOXdmZinvikPy2uHVq/nM38quBmi0VHJwrKLejoYK23ZJv26r2CraF1bnYzdPz36vGPdI2cFAhavJtUP1c/pjfNnlSOnbisvwH9bbJ+W2s6cncDrzpgPwXtkqOCa0T832M7Peq7Oe5O7xDSEQ0Fb/nA/PL5n+4bPrksulPA5/ebQmamZmZmZkNI76k2czMzMzMzEYkn+HdxSRNBH5dNqua0iBUPb97vA74eUScMEB5lwJfi4gHJf1jRPxLH3X01EOvOgBeFxHrKn0fZmZmZmZmw407vLtY0bmcnQzfbme3KO/9ZX/+I/AvFdZhZmZmZma2R/AlzUOIpC3F75MlzZd0raTlkq6UpOK1+ZLmSLoQqJe0SNKVg5q4mZmZmZnZEOQO79B1FPB3wEzgQODE8hcj4jNAS0TMfikjNEuaK2mBpAWdbVtfUsJmZmZmZmZDiTu8Q9c9EfFkRHQDi4AZu6KSiJgXEXMiYs6o0Y27ogozMzMzM7NB4Q7v0FX+0LAufL+1mZmZmZlZRdzhHd46JOWf4mxmZmZmZrYHcYd3eJsHLPGgVWZmZmZmZi/my2SHkIhoKn7PB+aXzf9w2fTJZdOfBj69U5NQLqx54TPpIuunjstX39Gdiutqqk2X2TV6dDq2vTkdSlV770ccbyc2H8qobcmVALSPqR44qDB+eWs6tmbVxlRc6+Qp6TIbVufWLUB3Tb4Nmn/YkI7dOCMdSuRTYNzvKljBu8Cobfn628bnD/ub983/T3S/K/Lb4uq5ue0LYOKXIh2rjlw7tO3VlC+zO3/86HxmbDq2tm3gmB4tU/IbY3VLvtz6tfm23To9n0P96o5U3JZp+eN445Pp0Io0rM7vO1GV38Y7tuY/TI6867x07OJPXZyKO+WvPpAus25VfsDKqs78+3rylPx+lv3uAdB55JZ87FP5z4ct63IXzHWNa0+X2VHBd5Vxv8/tN1DZ59Oo1vw2vm52/pgQFZwya34qH1yzIXdwnLhwW7rMdbPz30Mn3fVsOjaezsfW7J3Pobs2316Nz+a3m40H5j7PptyXL/PpV+e/U0y5N/89tHtUfSquOvlZ6jO8ZmZmZmZmNiL5DO8uJmki8OuyWdWUBqHq+d3jdRGxbifV0VMPvep4SfWYmZmZmZkNJ8OiwytpNrBPRPzPbqrvHyPiX17C8icD7RFxV9G5nJ1c7hxgTvklzBmV1GFmZmZmZranGC6XNM8G/mw31vePL3H5k4ETdkIeZmZmZmZmtoNSHV5JZ0taImmxpCskzZB0czHv15L2K+Iuk3SJpN9KekzSyZK+J+khSZeVlbdF0tclLSuWn1zMny9pTjE9SdJKSbXAF4EzJS2SdKakxqLceyQtlPQX28m9TtL3JS0tYk8p5p8j6Vtlcb8o8r0QqC/qurJ4r8uL6YckXSupoVhmpaRJxfScIv8ZwLnAx4oyXt1PXmdIeqBo09vKXtpH0i8lPSrp38riL5G0oGizL5TNXynp34r3d4+kg4v5kyX9RNK9xc+J/eQxtyh3QWdbfuAKMzMzMzOzoW7ADq+kWcD5wKkRcSTwt8A3gcsj4hXAlcC/ly0yHjge+BhwA/B1YBZwRHFpMkAjsCAiZgG3Ap/vr/6IaAc+B1wdEbMj4mrgs8DNEXEMcApwkaTGfor4UKmYOAJ4J3C5pLrt1PcZoKWo66xi9suAiyPi5cAmoN8hFSNiJfAd4OtFGbf3E/o54I1Fm76lbP5s4EzgCEqd/OnF/M9GxBzgFcBrJb2ibJmNxfv7FvD/innfKHI4Gng7cGk/+c6LiDkRMWfU6P6a0MzMzMzMbPjJnOE9FbgmItYCRMRzlDq0/1W8fgVwUln8zyMigKXAsxGxNCK6gWXAjCKmG7i6mP5hr+Uz3gB8RtIiSo/vqQP26yf2pKIOImI58DhwaIX1PRERd76EfPtyJ3CZpA/wwgBTAL+OiI0R0Qo8COxfzH+HpPuBhZT+gTCzbJmryn4fX0y/HvhW0UY3AGMkVfCMADMzMzMzs+FtVwxa1fNEpO6y6Z6/+6uv58FfnbzQCe/3LCylJ7a9PSIe3tEke9U1UH29H0xWab4vLjDiXEnHAn8O3CfpVcVL5W3WBYySdADwCeDoiFhfXB5eXl/0MV0FHFd0nM3MzMzMzPY4mTO8NwNnFI++QdIE4C7gL4vXzwL6u2x3e/WeXky/C7ijmF4J9HT8Ti+L3wyUP+38V8BHJKnI6ajt1HV7kSOSDqV0Jvjhoq7ZkqqKy4aPKVumQ1L5E8j3k9Rz5rS/fN++nXxfRNJBEXF3RHwOWANM3074GGArsFHSVOBPe71+Ztnv3xTTNwIfKavPozibmZmZmdkeZcAzvBGxTNKXgVsldVG6pPYjwPclfZJSZ+19Fda7FThG0vnAal7osH0V+LGkucB/l8XfwguXMP8r8CVK96oukVQFrADe1E9dFwOXSFpK6YzsORHRJunOYrkHgYeA+8uWmVeUfT+l+4UfBj4k6XtF/CVF3BeA/5T0JUqXVvf4OXBtMZjWR/q5j/ciSYdQOlv9a2Ax/TxaKCIWS1oILAeeoHQ5dLnxkpZQOjv8zmLeR4FvF/NHAbdRGkyrX1ElOupzA3evP25aKg6gdkvvRwH3r3V89cBBQMvE/ADjkxfnT3Kvm5k/Ub9t73xsV83AMT3GP5pvr1HbutOx6w7P59s4eWoqrr0pvx6qOntfKNG/Ua352NaxuW0GoHFVvr2aHm9Jxz5z4uDe/67ufBuMXp9v24kPdqRjO5ryOez3hfw2HtX5cqM+t6OpO98G437Xnq+/WunYrtG75iEJ1a35bby6PR87fnl+W2idlDvW1G3MbwdsyIdWIvKbF121+fXb/ET+vSm/Gjjlrz6Qirvle99Nl3nCx7f71eCPrHllvg1CFexnj6RDqf7v/PG2oyFfbndtLm7KT/JtULM5/zny+Hn5DUFV+bZtujnfXrUb8u+toymfwzN/lf8e1rZ5dCquZk3+fU1Yms/19+fkvv8ANK/Ix3aNzrftqG35fCct3JiOXX/IuFTcxgPyX1qbV+ZzXf/y/A457pHcvlPVkdtvUpc0R8TlwOW9Zp/aR9w5ZdMrgcP7eq34++N9LL+c0qBMPc4v5j8HHN0r/G+SubfSR4e8uM/4rBcvARHxaeDTAMWoy50R8e4+4m6nj/uBI+IR/vh99FXH2/qYfVnx0xPzprLpc7ZT3EVFzuXlr+WFfySYmZmZmZntcYbLc3jNzMzMzMzMKrIrBq0aUETs9NGCJb0R+Eqv2Ssi4q0vpdzeZ6p3IK/PAmf0mn1NRHz5peTVIyJm7IxyzMzMzMzMRppB6fDuChHxK0qDWe00xeXMJ0TEf20nZjawT0T8Tz95fRnos3MraTSle5UnUbo3+YPAJyJiwQ7k+nfAvIjYVumyZmZmZmZmI5Evad6+GZRGZd6e2cCf7WD5RwFExOyIuHqg4AH8HVDB8AxmZmZmZmYj24jv8Eo6W9ISSYslXSHpzZLulrRQ0k3FY36Q9FpJi4qfhZKagQuBVxfzPtZH2bXAF4Ezi5gzJU2Q9LOizt9K6nPwKklTgB8CRxfLHtTr9XdKWirpAUlfKZt/iaQFkpZJ+kIx76PAPsAtkm6RtL+kRyVNKh67dLukN/STx9yivAWdrVt3pInNzMzMzMyGpBFzSXNfJM2iNNLzCRGxtniGcADHRURIej/wKeDvgU8AH4qIOyU1Aa3AZyhdYtznI48iol3S54A5EfHhos5vAgsj4jRJpwI/oI/HDUXE6qL+58svHiuMpH0o3Y/8KmA9cKOk0yLiZ8BnI+I5SdXAryW9IiL+XdLHgVOK0ZkpOsmXAPcAD0bEjf28h3mUHsNE48Tp+bHFzczMzMzMhriRfob3VEoDRK2F5x9vtC/wq+K5vJ8EZhWxdwJfK86WjouIzh2s8yTgiqK+m4GJksZUWMbRwPyIWFPkcSXwmuK1dxTPB15Y5D6zrwIi4lJgDKVn736i4ndhZmZmZmY2zI30Dm9fvgl8KyKOoPQs3zqAiLgQeD9QD9wp6bDBS7Fvkg6g1Hl9XUS8gtKAV3X9xDZQ6twD7PRRsc3MzMzMzIa6kd7hvRk4Q9JEgOKS5rHAU8Xr7+0JlHRQRCyNiK8A9wKHAZuB5gHq6B1zO3BWUebJwNqI2FRh3vcAry3uwa0G3gncSumM7VZgY3Hv8Z9uJ4+vUDoz/DnguxXWb2ZmZmZmNuyN6Ht4I2KZpC8Dt0rqonQZ8AXANZLWU+oQH1CE/52kU4BuYBnwv8V0l6TFwGUR8fU+qrkF+IykRZQeLXQB8D1JS4BtlHWqK8j7GUmfKcoW8N8RcT2ApIXAcuAJSpdh95gH/FLS00UORwMnRkSXpLdLel9EfH+79VZD+xilchz7+/b0+9l4UG06trMuV/+2ffK3G4+6qyMdO3ZFdTq2uzaXK0Db2Hy59Y/l8x39bP4pVNWtfV4M0Keuutz/wprX53Ptqs3/f627Jh9bs607HTt6Y1c6tmXvfHs1PpPPYVdonZhvr8bV+bs1umvy27gqaIKuxtHp2Ja98ushq705315NT+WPdR3J/Qag/tnWdOzqOY3p2NHr8zm0j82v38n357ebtnG5HEZvHNz9Bkqfe1lNz+SPH1HB6YTuUfn1ULcqN7jkCR8/N13mXV/7Tjr22M98MB075rGWdGx1W75tq9ZvSce2HDQxHdtVn1tpHU35jWbT/vmv2VN+kt8fWibkN7BxFXxfa1yVf2+1m/LHhNVHDXTu6AXT78ttNyvekm/bmm3574zTbs2/L3Xly22ZXJOOrUTU5NfZPtc/noprO3hqusxRG9vSsS375j/LnptVn4rrXJ7bF0Z0hxcgIi4HLu81+/o+4j7STxGnDlD+c5Q6l+VOS+Y2H5hf9vfJZdNXAVf1scw5/ZT1TUqXa/c4ruy1t2XyMTMzMzMzG0lG+iXNZmZmZmZmtoca8Wd4dxZJb6R0X2y5FRHx1sSy7wP+ttfsOyPiQzsrPzMzMzMzM/tju6zDK+muiDhhV5X/Ukg6h+LZuZLOBbZFxA+2t0xE/Ar41Y7UV9w7+6L7Z8vzyJYlaQ5wdkR8dEdyMTMzMzMz21Pssg7vUO3s9hYR+dEaXgJJAhQROzxKh6RREbEAWLDzMjMzMzMzMxuZdtk9vJK2FL9PlnSrpOslPSbpQklnSbpH0lJJBxVxb5Z0t6SFkm4qHruDpMmS/k/SMkmXSnpc0qTitXcX5SyS9B/FI3z6y+d9kh6RdA9wYtn8CyR9opieL+nrkhZIekjS0ZJ+KulRSf88wPv9uKQHip+/K+bNkPSwpB8ADwDTt5PHZEk/kXRv8XNiWX5XSLoTuKJoz1+Uvfa9Iu/HJH20rLx/Kuq+Q9JVPe+xj7znFu93QWdLbvRHMzMzMzOz4WB3DVp1JHAu8HLgPcChEXEMcCnQMzryHcBxEXEU8CPgU8X8zwM3R8Qs4FpgPwBJLwfOpPTondlAF8Xzb3uTtDfwBUodzJOAmdvJtT0i5gDfoTSa84eAw4Fzep7n20f5rwLeBxxLaXTkD0g6qnj5EODiIv/27eTxDeDrEXE08PaibXrMBF4fEe/so/rDgDcCxwCfl1QjqaeMIyk9q3dOf282IuZFxJyImDOqPj9cuJmZmZmZ2VC3uwatujcingGQ9HvgxmL+UuCUYnpf4Oqic1oLrCjmnwS8FSAiflk8PxfgdcCrgHtLVwtTD6zup/5jgfkRsabI4Wrg0H5ibyjLbVlZ3o8B04F1fSxzEnBdRGwtYn8KvLoo6/GI+G0ij9cDM4v3AjBGUlNPThHR34PJ/jsi2oA2SauBqZQ61NdHRCvQKunn/SxrZmZmZmY2Yu2uDm/5U4m7y/7uLsvhm8DXIuIGSScDFwxQpoDLI+IfdmKe9Mqtd9470l7Z64SrKJ3hbi2fWXSAt1dGeY5deORtMzMzMzMzYGg9h3cs8FQx/d6y+XcC7wCQ9AZgfDH/18DpkqYUr02QtH8/Zd8NvFbSREk1wBk7OffbgdMkNUhqpHRG+vYK87iRFy7vRtLsl5DPncCbJdUVZ4nf9BLKMjMzMzMzG5aG0tnAC4BrikuWbwYOKOZ/AbhK0nuA3wCrgM0RsVbS+cCNkqqADkr32z7eu+CIeEbSBcXyG4BFOzPxiLhf0mXAPcWsSyNioaQZFeTxUeDbkpZQWi+3UbrveUfyuVfSDcAS4FlKl2dvHGi5UVu7mLxgU66SFy69HlBVe206dtxTnam4Ccvzg113NOfrXzerJh074eFcrgBT792cjt10YP5e6prN+XxXHTs6HbvPXf1dQd9LV6TLrGnf4QHKt6u7Nv++umvy2+2obfl8qzry5e4KlbyvumeT6xboGJNvWyppggpix/z2RYf0fnVPGT9wELBh1th0mVVtXenYbTPyx5qGP+SPH+N+15Evd+WAh/rnrT6xz2Ep+tRVl/+6MOF/H0nFbT3+4HSZVZ35Y00lNu2Tf18tU/IbbnV+N6O6PR9b1dmcilvzynyux37mg+nYuy+8JB37qi/ky908Ix3KuOVNAwcVGp/N72cbDsptCw2r8p8NU3+T3x8fe3v+uMSh+UFGOxvy7VXJsbl9bH7fqToi3w5rOnPt0F2TPzZvnt7vmLYv0tGYj534YH77am/ON+6EB7alY7dNq0/Htr18v1Tc5un5XKfcn2+vujWtAwcV6p/Ord/fb83F7crHEjUVv+cD88vmn1w2/fxrEXE9pUGietsIvDEiOiUdDxxd3LNKRFwNXJ3Mp89n4UbEBQPl1vu1fsr/GvC1XvNWUhrwKpPHWkqDcPWbX++8+nitvK6vRsQFkhoodZ7v217+ZmZmZmZmI81QOsPbn/2AHxdncduBDwxyPsPFPEkzgTpK9zrfP9gJmZmZmZmZ7U5DvsMbEY8CRw0YWJB0N9D7Orz3RMTSl5pL8ViiX/fx0usioq/RmwdNRLyrZ1rSSknfLc4im5mZmZmZ7RGGfIe3UhFx7C4sex3wUgaTMjMzMzMzs91kKI3SbH2Q9G5J90haJOk/JH1I0kVlr58j6VvF9M8k3SdpmaS5g5e1mZmZmZnZ4HOHdwiT9HJKA1mdGBGzKT1ndwulxx71OBP4UTH9VxHxKmAO8NHiEuyB6pgraYGkBR2d+VHhzMzMzMzMhroRd0nzCPM64FXAvSo9BqgeWA08Juk44FHgMErP3YVSJ7enMzwdOATY7r3FETEPmAcwpnGfXfPcBzMzMzMzs0HgDu/QJkojLP/DH82U/gp4B7AcuC4iQtLJwOuB4yNim6T5lEZoNjMzMzMz2yP5kuah7dfA6ZKmAEiaIGl/4DrgL4B38sLlzGOB9UVn9zDguMFI2MzMzMzMbKhwh3cIi4gHgfOBGyUtAf4P2Dsi1gMPAftHxD1F+C+BUZIeAi4EfjsYOZuZmZmZmQ0VivBtm1YypnlaHP3KD6ViOxuq0+XWL3gsHdt9wD65uNp8/Z0N+Sv3qzu607E1z2xKx0ZD70dD9691akM+dmL+vTU825GOJXlYaJ1Uky6yu4IbKLpqlY4d93B+sLW2Sfn10FmXz6Ft7OD+73Diki3p2Er2ndbJ+fZqfGJrvtyp9enYmo0VbLfKrbO2ifnttm51Wzq2krZtH5vfIVrH58sd90h+f+hozrfDtqn52Kan2lNxa1+R377GPN6Vjq3E6PX57Uud+e9L6q4gtiv/ufPkKU2puLYJ+foPuL4lHfvcrPy+e9/nL0nHHvuZD6ZjN++XPzaPyr81OnJNy9R78ttM3ar8/vjMyWPTsVsrGHJl+k35fJ87rDYdq/xmy8aZnenYvefnPk/bx+S3g/bmCraZbfm2jap8uZMX5T8ja57ZkI7t2GtcOrZ1au6YW7cmdwwHWH9o/pgw4aF8G7Tslbsrc9Et32DL+icHXBE+w2tmZmZmZmYjkju8ZmZmZmZmNiK5wzvMSJoh6YFieo6kfx/snMzMzMzMzIYiP5ZoGIuIBcCCwc7DzMzMzMxsKPIZ3iGkOHv7kKTvSlom6UZJ9ZJeJWmxpMXAh8riT5b0i2L6AkmXS7pd0uOS3ibp3yQtlfRLSfkRR8zMzMzMzEYAd3iHnkOAb0fELGAD8Hbg+8BHIuLIAZY9CDgVeAvwQ+CWiDgCaAH+vK8FJM2VtEDSgvaO/OhpZmZmZmZmQ507vEPPiohYVEzfB8wAxkXEbcW8K7az7P9GRAewFKim9Gxeir9n9LVARMyLiDkRMae2pvGl5m5mZmZmZjZkuMM79JQ/9LELmFTpshHRDXTECw9Z7sb3a5uZmZmZ2R7GHd6hbwOwQdJJxd9nDWYyZmZmZmZmw4U7vMPD+4BvS1oEaLCTMTMzM/v/2bvzOD3r+t7/r/fsaxayASEQWSSymAABZS0oWutxQcFDhdqDWxSrtrbS+msVqT091eJpj0oFgwejR6pWRKVYAQuGVSEBEhKWABKQNWTPTGYms31+f9zXlNthkvncIZOZTN7PxyOP3Pd1v6/v9b3W+/7OtXzNzPYEeumqV9vbtewzK45+05+mshMf3Jgut+3wyelsT3OuPd+4tjddZveE6nR245x8dtKj/elszbZ8tuHFbcOHCr1N+SvVt+5fl842relJ5bYclH/4d+sz+XVWiZ6W/Drrmpz/e9G0pVvS2fZXtaSzI6GnKf+3y6l3PJ/O9k6fkM62zW5KZzum5eu7/83r0lm6c9ttz8xJ6SLXHdmYn/zEdJSZt3Wks72N+W28piO/n3Xu25DORgV/am19PLfv9E7IT79rav74VYltE/Pb4toT88u24dn8sbFpTf53WNeU7Hdkvsypy9rT2SfenT/WTX44HeXuL16ezh77dxems00v5r972/fP7Wd1bfllW785P/3NB+f387rN+TpUd6ejbJuU39ErOd5NeCK/HLqm5PZJVfCTovXZfLiqO79says43vZU8Hut/YB8tmFjftm2zcxtY1UVLNuuKfnsxN/k6zppVe649OsHv8GWrc8Nu+H6DK+ZmZmZmZmNS27wmpmZmZmZ2bjkBu8YJuksSUeUvV8saf5o1snMzMzMzGxP4Qbv2HYWcMSwqQRJ7pbIzMzMzMz2Km7w7maSPidplaQ7JH1P0qclfVjSEknLJf1IUpOkk4B3AJdKWibpkKKI90i6R9Kjkk4tyqyWdGlRxgOSPlIMP13S7ZKuAx4anTk2MzMzMzMbHT7rtxtJOh44G5gL1AL3AfcC10bElUXmfwIfjIivFQ3V6yPimuIzgJqIOEHSW4HPA2cCHwQ2R8TxkuqBOyXdVEz2WOCoiFi9nTotABYA1DXln1xqZmZmZmY21rnBu3udDPw0IrqALkn/Xgw/qmjoTgJagBt3UMa1xf/3ArOL128GXivpnOL9ROAwoBu4Z3uNXYCIWAgshFK3RBXPkZmZmZmZ2RjlBu/YsAg4KyKWS7oAOH0H2YFOWvt4af0J+ERE/E5DWdLpwNZdWVEzMzMzM7M9he/h3b3uBN4uqUFSC/C2Yngr8LykWuD8snxb8dlwbgQuLMZH0qslNe/CepuZmZmZme1xfIZ3N4qIJcV9uQ8Aa4AVwGbgc8DdwNri/4FG7veBKyV9Ejjn5SX+l29Surz5PpVu9F1L6QnPZmZmZmZmey1F+LbN3UlSS0S0S2oCbgMWRMR9o10vgNZJB8S80/40lW1+dH263GiqT2d7JjekcvWPrcmXedC0dJb+r5Q2uwAAIABJREFU/P5Q8/hz6WzX3APT2TXH55fXtOU96WxPS3U6O+m27d72/TvWvfngdJkNG/rS2b4GpbNUcAjbOiO/DLYemC942r39+UqMgLq2/PSjgkX74vzadHb6fflt8dnfy/+t9dCrN6WzPZMbU7n+uvzFTZtn55dBT0t+4dZ05Lev/rp8uRNX96az6svXoZJ1Nvs/ulK5LQfmjvcAVRXUtRKV7Ds1HfljWOfU/HbTOS2/PXac2p7KTfpZ/iKvKXe9kM6uO3nfdLZ9Vn67bVifX7/3fe7ydPaYJX+YzrYsmpjKrZub/x6Z/HB++6rdms9u3S9fh/YD8uuhp7WC75Ka/Drb/9Z0lC2zc/M2457OdJk9rfnjV9NTW9JZdeSOdQBPnTsznd3/1vzdiF3T878ZNx2aWw4VfT/V5Lev1mfzx9Cajty2eN+dX6Vt8zPDVsJneHe/hZKOABqAb4+Vxq6ZmZmZmdl44wbvbhYR5412HczMzMzMzPYGfmiVmZmZmZmZjUtu8I4iSfmbMMzMzMzMzKwibvCOIEk/kXSvpAclLSiGtUv635KWAydKequkR4rcVyVdX+QukfRtSbdLekrSuyX9o6QVkm4o64LoYklLJK2UtFAlNcWw04vMP0j6+9FaDmZmZmZmZqPBDd6R9YGIOA6YD3xS0hSgGbg7IuYCS4FvAH9Q5AY/TvgQ4A3AO4DvAr+MiKOBTuC/FZnLIuL4iDgKaATeFhG9wAXA5ZLOBN4C/O1QFZS0QNJSSUt7uvNPhTMzMzMzMxvr3OAdWZ8szuT+GpgFHAb0AT8qPp8DPBERA33AfG/Q+D+PiB5K/fVWAzcUw1dQ6ncX4AxJd0taQalxfCRARDwI/D/gekoN7+6hKhgRCyNifkTMr63Ld2NgZmZmZmY21vkpzSOkuJz4TODEiOiQtJhSV0RdEZHtiGobQET0S+qJlzpN7gdqJDUAXwfmR8TTki4ppjHgaGATMP2Vzo+ZmZmZmdmexmd4R85EYGPR2J0DvH6IzCrgYEmzi/fnVjiNgcbtOkktwDkDH0h6N7APcBrwNUmTKizbzMzMzMxsj+YG78i5gdJZ2IeBL1K6rPl3REQn8DHgBkn3Am3A5uwEImITcCWwErgRWAIgaWoxzQ9FxKPAZcBXXtHcmJmZmZmZ7WF8SfMIiYhtwB8M8VHLoPe/jIg5kgT8C6UHWRERlwwqr6Xs9SVlrz8LfHaI6by6LPPVTJ3VF9RvHPJW35fpOGyfVA6geflz6Wzb0RNTubqn69Jlbjq0MZ2t7onhQ4VW7Z/O9tfn/7akfBXobcqX27mP8gWf9qpUbNIj7fnp75dfD1FBVevasncIQG1rfnn1TO1JZ3sbatPZkdBfk19gXVPyyyBe25bOaknD8KHCxMfSUTpmtebr0JfbebZNzvcI17Apv0NOfCJ3/AR44XX16WzLM/k6bJmV/1qf8HRvOtuwPr+NqTdX364Kjkldgx/puIsccEv++BEV7Gc9TflsbVt+/fY+25ScfrpIOg+Zks42r8lvM11T88fFphf709ljlvxhOnv/8d9PZ0/5zkdSOeUXQUXbQceMkflJXr0tn+2enN8W69flj6NRnV+/Su6S3RPz21dNZ34/33xE/oLIvrr8+u2elF+2mw7P78B9+a8SqpJfURNX5zfy374lvx205JsDEBX8GE7wGd7R92FJy4AHKV0G/Y1Rro+ZmZmZmdm44DO8o0jSqcCHgB7gbOCYiOgY3VqZmZmZmZmNDz7DO7rOB/4hIuYBM4DzRrk+ZmZmZmZm44bP8O5ikpqBfwMOoNR37t8B64AvU1reS4ALgfcB/x34fUl/ABwCvKa4vPnbwEbgLKCZUv+9XwbqivG2AW+NiA2SPgwsKD57HHhf8WTonwI/iojvSPoIcFpEnL87loGZmZmZmdlY4DO8u95bgOciYm5EHEXpac2LgHMj4mhKjd4LI+KbwHXARUVD9DPA7RExLyL+uSjrKODdwPHA3wMdEXEM8Cvgj4vMtRFxfETMBR4GPlgMXwBcXFw2/RfAJ0Z0rs3MzMzMzMYYN3h3vRXAmyR9qWhszgZWF90DQens7WnJsn4ZEW0RsZZSd0X/XjaN2cXroyTdLmkFpUukjwSIiDXAxcAvgb+IiA1DTUDSAklLJS3t6dlayXyamZmZmZmNaW7w7mJFw/ZYSo3S/0npsuSdVf4w+f6y9/28dDn6IuDjxdnjvwXK+wY5GlgPbLf/nIhYGBHzI2J+bW3zK6iqmZmZmZnZ2OIG7y4maX9Klx5/F7gUOBGYLenQIvI+4NYhRm0D8h1OvqQVeF5SLaUzvAP1OIFSP8DHAJ+WlOtY1czMzMzMbJzwQ6t2vaOBSyX1U+pu6EJK/ev+UNLAQ6uuGGK8B4A+ScspnbXdmJze54C7gbXF/62S6oErgfdHxHOS/gK4StIbInZxT85mZmZmZmZjlBu8u1hE3AjcOMRHxwyRvaDsdQ/whkGRRWWfzy57vWjgs4i4HLh8iOnNLctfR+kBWWZmZmZmZnsN+YSfDWiZfEDMO+NPU9mGF7cNHyp0T6xLZ/saclfZb5uYvxp/8iP5h3E9+bb8fcyTH87vOw0b+9LZ6q7+dHbDEfXpbFVPvr41Hbnc5Ie2pMvcclj+iv3+6nSUrfvlt4X6jfll0PJCbzrb01xBhUdAd4vS2an3bU5n21+VX2cbX51fBpN+k98farbm94eOGbm/4TZsyk+/fb/8fDWuz29fEx7N7zsbjp6YL/e3XelsX31+3tSbn7fuibn10D4zP/2Jq3vS2UpsnZ7/u39PBftZJcfbiU/mjzVrjqtN5era0kUy4bf56W86pJLlla9D/ZCP1Rxa6zP5/TcquHHvjq99I5U79gsXpsvc9/b8jP327VPS2Z7W/PbVujodpfWZSraF3LYIsG1yvg77/jr3+3LTofnflhuPzx8/Gp/Mlzv5kfy22NOc3xgr+Q3U+kx+3rbMzq2z+k357avtoPx8Tb8333bomJGr68qf/x+2rn962IOz7+E1MzMzMzOzcckNXjMzMzMzMxuX3OAdQyTdlch8U9IRxeu/HvlamZmZmZmZ7Znc4B1DIuKkROZDEfFQ8dYNXjMzMzMzs+1wg3cMkdRe/H+6pMWSrpH0iKSrJan4bLGk+ZK+CDRKWibp6lcwzQWSlkpa2rst/3AnMzMzMzOzsc4N3rHrGODPgCOAg4GTyz+MiM8AnRExLyLO39mJRMTCiJgfEfNr6vNPKDYzMzMzMxvr3OAdu+6JiGcioh9YBswe5fqYmZmZmZntUdzgHbvKO6vqA/Kd35mZmZmZmZkbvHu4Hkn5nr/NzMzMzMz2Ij5ruGdbCDwg6b5Xch/vgKruoOnZzlS2tyXfzu6vUzpb3d2fyrU805sus31WY376nfm61nbk6gpAvlhWvzO/bGcu7ktnozpfh7pNueVbtSW3vQDUb2pKZ6OC5dVXnw9v3b+C7AH59dDy20hnR0JVTz77/KmT0tnOffPzNfmh/P7w3NvzFZ5xQ10625/8RgvltwPldzE2vyr/N+SOqfn10J2P8uJp+a/1fW/JHxReeHN+nR16VXcqt2FO/tj89JkVHMAqMHllPqsKDvnbJue3sacPy89b36Tcsp3+o/z0e1ry0296Ib8QGjbkd56OGfntdt3cfH2V/6nAsV+4MJW77+LL02Weef4H0tmG9fnj7aTH8+uh8YVtw4cKz56R/56u25SOMm1ZBSuiKrfttryQ376ar89vM41r8g9wrerMz1fXfvll29eQ/y6p6s1vN9PubUvltk3NH5vbe/N1rX8+N32AntbcF5/6c/PvBu8YEhEtxf+LgcVlwz9e9vr0std/BfzVbqugmZmZmZnZHsSXNJuZmZmZmdm45DO8I0zSFODmskHVlB5CNfD/gDdGxPpdNI2B6TBoGq9oOmZmZmZmZnuSvarBK+muiDhpmMypwBVAD3BiRORvUhxC0bicl6zfWcCjEfHQzkxD0iTgvIj4euU1NTMzMzMzG1/2qkuah2vsFs4H/iEi5mUauyrZVcvxLOCIVzD+JOBju6guZmZmZmZme7S9qsErqb34/3RJiyVdI+kRSVcXDdcPAf8d+DtJVxfZiyQtkfSApL8ths2WtErSd4CVwKztTO+9klZIWinpS4PrUbw+R9IiSScB7wAulbRM0iFFHb9SvF8p6YRinEskfbqsjJWSZgNfBA4p8pdK2k/SbWXjnzpEHRdIWippaU9v/sl0ZmZmZmZmY91edUnzIMcARwLPAXcCJ0fENyWdAlwfEddIejNwGHACpY5lrpN0GvDbYvj/iIhfD1W4pP2BLwHHARuBmySdFRE/GSofEXdJum5g2kUZAE0RMa+Y7lXAUTuYp88AR0XEvGL8vwBujIi/l1QNvOyZ6BGxkFL3Rkxonjm6fauYmZmZmZntQnvVGd5B7omIZyKiH1gGzB4i8+bi3/3AfcAcSg1dgKe219gtHA8sjoi1EdELXA2cthP1/B5ARNwGTCju081aArxf0iXA0RGR7wDLzMzMzMxsD7c3N3jLe+LuY+iz3eKl+3nnRcShEfF/i89eyfW/5WdSGyrIDrzv5XfX3ZBlFI3k04BngUWS/rjCepqZmZmZme2x9uYGb8aNwAcktQBImilpenLce4DfkzS1uJz4vcCtxWdrJL2meNjVu8rGaQNaB5VzbjHtU4DNEbEZeBI4thh+LPCqocaXdBCwJiKuBL45MI6ZmZmZmdneYG++h3dYEXGTpNcAvyrup20H/oiX92071LjPS/oM8EtKZ4p/FhE/LT7+DHA9sBZYCrQUw78PXCnpk8A5xbAuSfcDtcAHimE/Av5Y0oPA3cCjxTTXS7pT0krg55QeqHWRpJ6i7js8w9s9qYrV72zZUeS/HHhDvremzn2qhw8N1GGiUrmq3nSR1G/qT2cPvGFzOtvXUpfOvjivMZ191U+3DR8aqENj/m9WTU9uSWf7m3Lz9tiHZ6TLnPLAyNwiXteWX7+Tb+lKZ2s257Nb5lRyp8Gu11+b228Aml/IL6/p9+W3xa6p+f3hwO/njwm9zfntpv7ZYQ/NAHRPyE+/rj0//dqt+WzjuvxBrKo3X27f/fljQtc+6Sivujqf3Xj4cBculcz6Rf6Y1DUjfwytRE1HbpupVF99fhvbOiP/U6wn+b1T25b/jt5yUH76M36V/44M5Y9LfQ253x4ANQ/ny+1pymen3bMhlTvz/A8MHyr859VXpbNveu/709maja+ox8ztmroifxxXBbtO0zPtw4cKHbNy20LH1Pw+Nvmxkfnuj5r88bamM7/AOqfk98n+6ny2tzG3zOraetJlRlVtOrvqw/kvndYncsu2vy63j+9VDd6IaCn+XwwsLhv+8bLXFwwa5yvAV4YobkcPjxoY93sU9+AOGn4NcM0Qw++krFuiopH93Yj4s0G5Tkr3Fg81zfMGDfr2cPU0MzMzMzMbj3xJs5mZmZmZmY1Le9UZ3pEi6W6gftDg90XEildSbkSc/krGNzMzMzMz25uNaoNX0mxK/c4Oe3nwSCu67mmPiC9XOm5EvG7X12jXkHQBcFNEPDfadTEzMzMzM9udfEnzOFY8HfoCYP9RroqZmZmZmdluNxYavNWSrpT0oKSbJDUCSPqwpCWSlkv6kaSmYvh7JK0sht+2vUIlXSDpWkk3SHpM0j+WffYWSfcVZdxcNtoRkhZLeqJ4UjKSLip7/c+Sbilev0HSkM+tlFQtaVFRzxWSPlUMXyxpfvF6qqQny+r60+LzxyR9vhg+W9Ijkq6W9LCka8qWwxsl3V+Uf5Wk+mL4k5K+JOk+Sl0hzQeulrRsYNkOqusCSUslLe3b+kq6FjYzMzMzMxtbxkKD9zDgXyLiSGATcHYx/NqIOD4i5gIPAx8shl8M/H4x/B3DlD2PUj+2RwPnSpolaRpwJXB2UcZ7yvJzgN8HTgA+L6kWuB04tfh8PtBSDD8V2F6Dex4wMyKOioijgW8NuxRK0zwbeC3wnoGGMXA48PWIeA2wBfiYpAZgEXBuUX4NcGFZWesj4tiI+C6lbo/Oj4h5xdOdf0dELIyI+RExv7q5OVFNMzMzMzOzPcNYaPCujohlxet7gdnF66Mk3S5pBXA+cGQx/E5gkaQPA8N1KHVzRGyOiC7gIeAg4PXAbRGxGiAiyjte+1lEbIuIdcCLwIyiTsdJmgBsA35FqeF7KqXG8FCeAA6W9DVJb6HUUB3OLyJifdEovRY4pRj+dNFdEcB3i+GHU1pujxbDvw2cVlbWDxLTMzMzMzMzG9fGQoN3W9nrPl56kNYi4OPFGcy/BRoAIuKjwGeBWcC9kqbsRNnpfET0AKsp3Qt7F6VG7hnAoZTOPL9MRGwE5lLq6/ejwDeLj3p5aZk3DB5tO++3N3xHfG2ymZmZmZnt9cZCg3d7WoHni8uHzx8YKOmQiLg7Ii4G1lJq+Fbi18Bpkl5VlLdPYpzbgU9TuoT5dkqN2PsjYsjGp6SpQFVE/IhS4/zY4qMngeOK1+cMGu1NkvYp7rM9i9KZbIADJZ1YvD4PuANYBcyWdGgx/H3ArdupexulZWlmZmZmZrZXGcv98H4OuJtSo/ZuXmq0XSrpMEDAzcDySgqNiLWSFgDXSqqidOnym4YZ7Xbgb4BfRcRWSV1s/3JmgJnAt4ryAf6/4v8vA/9WTP9ng8a5B/gRcADw3YhYWnTbtAr4E0lXUbos+/KI6JL0fuCHkmqAJcAV26nLIuAKSZ3AiUPdxzugphOmrMicQIau6YO7Hd6+KcsyV3SXPH/6xFROfbl6AvQ2Kp1d9fHBJ963b/ov69LZqSu2DR8qdE6vTWfrN/ams8+9cUcXQwyqw7Tc8j3wxu50mVv3y89XJTqmDXdnw0vq2vLrrL8+X277/vnsSKjdmt8fqnry+0NPa36dtc3Kf53sd/PadLZ73/zf63obcuuhuie/vKIvHaWvLr9s22bll23Ls/n9nHwVaFyfn7mqCo65DRv7U7lNh7dUMP10tCJ99fm/+2+dkc/WbPeb9uWignU26Tc9qdxTH8utA4DpP8pnnzg79x0N0LAhP2NRwemXyavy+0PHjPxx6bdvz31HNqzP7wtveu/709lffC/zuJeSg6/9SDrbsjr//dRfwdd0Jdtt55vyx3H15gqO6vx6WH9cfsaqWpvS2Zqn8r8ZU9dn7kR28qr8iti6X25b6Ng3v83UdKSjtDyZ39En/Da3n1d15xbWqDZ4I+JJ4Kiy918ue305cPkQ47w7WfYiSo29gfdvK3v9c+Dng/KXDHpfXq+bgdqy968eZtrLeemsbvnwRyg9lGrAZ8tePxMRZw1RXG9E/NEQZd0MHDPE8NmD3v+IUkPazMzMzMxsrzKWL2k2MzMzMzMz22m77Qxv8XCpm4f46I0Rsf4VlPv7wJcGDV4dEe/a2TIT05wEnBcRX5d0NzD4+t73RcSK7Yw7GzgpIv51YNjgs9Flw5+k7Ay4mZmZmZmZ5e22Bm/RqJ03AuXeCNy4q8sdxiTgY5T6x31dhePOpvTwqX8dJrfLSaqJiApuBjMzMzMzM9tz+ZLmnfNF4BBJyyRdqpJLJa2UtELSucOMe2ox7qckVRfjLpH0gKSPAEg6XdJiSddIekTS1ZJUfPZFSQ8V+S8Xw2ZLuqUYdrOkA4vhiyRdUZyJ/seRXSxmZmZmZmZjx1h+SvNY9hngqIiYByDpbEpnr+cCU4Elkm6LiOe3M+6nBx6iVTyxeXNEHC+pHrhT0k1F9hjgSOA5St0UnSzpYeBdwJyIiOLyaoCvAd+OiG9L+gDwVUrdG0Hpyc8nRbz8eaPF9BcA1DVNfgWLxMzMzMzMbGzxGd5d4xTgexHRFxFrKPWJe3xy3DcDfyxpGaXul6YAhxWf3RMRz0REP7CM0uXQm4Eu4P9Kejcw8EDwE3npMun/V9RpwA+HauwCRMTCiJgfEfNr65uTVTYzMzMzMxv73OAdfQI+ERHzin+vioiBM7zlnbf2AQP34J4AXAO8DbghMY2tu7TGZmZmZmZmewA3eHdOG1Dei/btwLnF/bjTgNOAe5Lj3ghcKKkWQNKrJW33VKukFmBiRPwH8ClKl1ED3AX8YfH6/KJOZmZmZmZmey3fw7sTImK9pDslrQR+DvwlpUuKlwMB/GVEvLCd0R8A+iQtp9QV0VcoXap8X/FQqrW8dO/tUFqBn0pqoHR2+M+L4Z8AviXpoqKM9+/8HJqZmZmZme353ODdSRFx3qBBFxX/hhuvB3jDoMF/Xfwrt7j4NzDex8s+O2GIcp8aolwi4oLh6jRAvUHD+p5UtnZLd7ZYqto709nGta3Dh4C6tv50mS2PbkxnianpaPMLuWUFULcuf1V5f11uGQDUr+9KZztn1KazU5dHKlfdke/lqvXJIW8jH5L6c9MH2HBE04iUu21yfnk1rstvjyOhv1bp7OSHtqSznfvn7+uv7swvW3Xljx81bfks1KVSndPyX33Nz+WnX7+2Y/hQIaryF1htfk3+mDB5ef54t2Fe/kGF+yzLbze1G3Lztu7YScOHCi2rtw0f2gl99fn10LguX25V/nBHbXs+HMldXVX5/bFznwou9nt1/rts62/zx49Jq/JV2LpfdT5cgZ7W3DKb9Hj+eF+zMf/75+BrP5LOPvHub6Szr150YTpb3ZX/Loma/Db2l2den85eeuPbc9Ovy6+H5qfyx/yuKfntq+m5/PLqa0hHmbqigu/IrfnfYX21janclHX5dZttNwDUbc7PV19Dbp1lj7W+pNnMzMzMzMzGJZ/hHYakKcDNQ3z0xohYv4Pxjqb0tORy2yLidbuyfmZmZmZmZjY0N3iHUTRq5+3EeCt2ZryRIOlJYH5EVHBBlpmZmZmZ2Z7NlzSbmZmZmZnZuOQG7xgn6Y8k3SNpmaRvSPoTSZeWfX6BpMuK1z+RdK+kByUtGL1am5mZmZmZjT43eMcwSa8BzgVOjoh5QB/QDryrLHYu8P3i9Qci4jhgPvDJ4v7j4aaxQNJSSUt7evJPXzQzMzMzMxvrfA/v2PZG4DhgSamLXhqBF4EnJL0eeAyYA9xZ5D8paaAxPAs4DNjug7UAImIhsBCgdcIB+eeQm5mZmZmZjXFu8I5tAr4dEf/f7wyUPgD8d+AR4McREZJOB84EToyIDkmLgQp6/TIzMzMzMxtffEnz2HYzcI6k6QCS9pF0EPBj4J3Ae3npcuaJwMaisTsHeP1oVNjMzMzMzGyscIN3DIuIh4DPAjdJegD4BbBfRGwEHgYOioh7ivgNQI2kh4EvAr8ejTqbmZmZmZmNFb6keYyLiB8APxhi+NsGvd8G/MF2ypidmpggqpWKbpuSv1q6oYI7g7tbc9Of+HhXusy+1nxd69rzla3u7Etn+1esSmerph6bL7euOp3tq0tHqe7uT+WqunrTZSoq2BD6c9MHqOppSmert+XX2cbD8gus9dn8chgJfb25/Qagqi2/72ydMWFnqjOsqK3gq6eC7aa3Mbc/NK4fmfXV15TfZqIu//fmlme3pbPqyK/fSY+0pbO9E/LH0are3P7btC6/P3ZPHJmfK63Lnk9na2YN+xzI/1LJsZn87ktNV26ZtdzSnC5z0m+609neppZ0dp+H8+V2zKhNZzcfkl9g1fldh9bVuVzjCxUUWoGW1flt5tWLLkxnH73g8nR27qUfS2f7k78XAa644p35co/JLd+J99Wny1T+UEMlO2RVT/776X0X3pjO/uRvzkxnNx6W/w20Nfmontot+e+nCY/n94cXj29NZyc9njt+RHJ1+QyvmZmZmZmZjUtu8JqZmZmZmdm45AbvOCLpHZI+M9r1MDMzMzMzGwt8D+84EhHXAdeNdj3MzMzMzMzGAp/h3UNImi3pEUmLJD0q6WpJZ0q6U9Jjkk6QdIGky4r8IklflXSXpCcknTPa82BmZmZmZrY7ucG7ZzkU+N/AnOLfecApwKeBvx4iv1/x+dsodVX0MpIWSFoqaWlP99YRqbSZmZmZmdlocIN3z7I6IlZERD/wIHBzRASwApg9RP4nEdFf9Oc7Y6gCI2JhRMyPiPm1dfluDMzMzMzMzMY6N3j3LOWdXfWXve9n6Puxy/MV9PRnZmZmZma253OD18zMzMzMzMYlN3jNzMzMzMxsXFLpFlAzmNA6M46f/yepbCh/hXRN27bhQ4WufZtyZXb0pctsn1mXzvZX5+er9enudLbhibXp7HNvPSCd3eeR/LLddFh+OUx4sieVq+7uT5dZu6Ezne1vrE1noyq/zjr2b0hnazry8xYVbDcjobatN53tba5OZ3ua8n8TbXmqI51de2xLOjvxyfy8kfw+623KL4P6Tbl9AaC3IV/ultn5XgGnPpDfd7on5ved7gn5+nZMy28L0+/LbQvtB+T3x+6WkdnHJq7OH8fbDswfQ2u35o8flexn6+fltvG6Tfkypy3L72ObD66gN8v8IkAV/BRtm13BsbkmX/BB/5Erd83x+X1s6or8st0wJ79s+/KbInVt+ezyi76ezn782dels7f85Lh0dtu03HqYem/+mNCwMf+bsWN6/rjY8lx+/bbvn1+/zWvy5Xa3VvK9kzsuTF6VX17Pn5Q/1sy8LV9uf01u/S6/5Su0b3x62LDP8JqZmZmZmdm45AavmZmZmZmZjUtu8O5mkj4p6WFJz0q6bJjs6ZJOKnt/lqQjRr6WZmZmZmZmez43eHe/jwFvAv4mkT0dOKns/VmAG7xmZmZmZmYJbvDuRpKuAA4Gfg5MLhv+dkl3S7pf0n9KmiFpNvBR4FOSlkn6PeAdwKXF+0OKfzdIulfS7ZLmFOUtkvRVSXdJekLSObt9Zs3MzMzMzEZZBY/bs1cqIj4q6S3AGcDbyj66A3h9RISkDwF/GRF/UTSQ2yPiywCSrgOuj4hrivc3Ax+NiMckvQ74OvCGosz9gFOAOcB1wDVD1UnSAmABQH39xF07w2ZmZmZmZqOYxnnzAAAgAElEQVTIDd6x4QDgB5L2A+qA1cONIKmF0uXOP9RLXQTVl0V+EhH9wEOSZmyvnIhYCCyEUrdEO1d9MzMzMzOzsccN3rHha8A/RcR1kk4HLkmMUwVsioh52/m8vIPW0e0k1MzMzMzMbBT4Ht6xYSLwbPH6f5QNbwNah3ofEVuA1ZLeA6CSubuhrmZmZmZmZnsEN3jHhksoXZp8L7CubPi/A+8qHlJ1KvB94KLi4VaHAOcDH5S0HHgQeOdurreZmZmZmdmY5Uuad7OImF28XFT8IyJ+Cvx0iOyjwGsHDR7cLdFbhhjvgkHvW1J1qxbdrbWZKM1PbErlALpnpCYPQFVP7jbi3qbqdJl1bf3p7JaDKtglnslH+yfll0Hzi33pbPfEfH2VL5b69V2pXH9tfj30tdQPHyr0NlZQbgXZ/ur81f0NL3ams1tnNaezI6GS7aD5qfZ0tq65Lp3t3K8xnW0/MB1lwlP5bF1bbz6c1DEjvww6puX/hlzJ/tg1NV+Hhhe3DR8qdLfm11nzC/kK97Tktsfq5PEeoGHTyDxiomPf3HcewNb98sePmo78cam2PT9vkdzEelryZdZtye83lRxr6teno3RPymejJj9v9evy62HTIblsXf7nT0X7eVRw81kly6CS772PP/u6dPaymXens4dNODadjdrcvPXV5+erc2p+O1D+JyP9Nfk69Ffw83LLrHy4aV2+wlsP7U7lGtblj4uq4NDc25j/juxLViF7TPQZXjMzMzMzMxuX3OA1MzMzMzOzcWmvavBKmi1pZQX5CyTtn8hcVkGZ75H0sKRfSjpd0vXD5OdJemvZ+9MlnZSdnpmZmZmZ2d5qr2rw7oQLgB02eHfCB4EPR8QZyfw84K1l70+n1P+umZmZmZmZ7cDe2OCtkXR1cZb1GklNki6WtETSSkkLiy5+zgHmA1cXT0lulHS8pLskLZd0j6SBLoP2l3SDpMck/eP2JizpYuAU4P9KunTQZydI+lXxBOa7JB0uqQ74AnBuUYe/Aj4KfGrgyc2Spkn6UVH/JZJOLsq7RNJVkhZLekLSJ0dgWZqZmZmZmY1Ze+NTmg8HPhgRd0q6CvgYcFlEfAFA0v8D3hYR10j6OPDpiFhaND5/AJwbEUskTQAGHuM6DzgG2AaskvS1iHh68IQj4guS3lBW5ullHz8CnBoRvZLOBP5XRJxdNJLnR8THi/o1Au0R8eXi/b8C/xwRd0g6ELgReE1R5hzgDEp9966SdHlE9JTXSdICYAFAfWMFj0k0MzMzMzMb4/bGBu/TEXFn8fq7wCeB1ZL+EmgC9qHUp+2/DxrvcOD5iFgCEBFbACQB3BwRm4v3DwEHAS9r8A5jIvBtSYcBAWSfCX4mcERRD4AJkgb6wPlZRGwDtkl6EZjBoM50ImIhsBCgddIBI9Pvg5mZmZmZ2SjYGxu8gxt1AXyd0lnUpyVdAjRUWGZ5x4d97Nxy/TvglxHxLkmzgcXJ8aqA10fE73ScWjSAd0W9zMzMzMzM9kh74z28B0o6sXh9HnBH8XpdcWb0nLJsG6XLgQFWAftJOh5AUqukXdmAnAg8W7y+YDt1GOr9TcAnBt5ImrcL62RmZmZmZrbH2hsbvKuAP5H0MDAZuBy4ElhJ6f7XJWXZRcAVkpYB1cC5wNckLQd+QeVngnfkH4F/kHQ/v3sm9peULlleJulcSpdav2vgoVWULsmeL+mB4nLqj+7COpmZmZmZme2xFOHbNq2kddIBccypuYc5V/Xkt5uo0vCh/8rmcp1T8ifX97l/Yzq79sTJ6WzT2r50tuXRTens1kPyDw9rempLOrvpqHy59Ztz89bwXEe6zKivTmcr0Tkj/3enxuc7hw8VOmY2pbP9o32zgPL7WPMz+WXQPbkuX4X87kD9unwd+mvz203U5Q4gWw7MbzNTfvVCOtuz78R0tnZDft/ZdPQ+6eyEx9vS2fVzJ6Sz0+5cm85GQ+4RFJ0HtAwfKjStWpfOVmLbgfll2z4zvz80ru9NZ6u6+9PZqMlt489/oGv4UKHu163Dhwp9J29OZztebE5nZ9yRP/9S01XB74/q/LFx46tzdZi2LL9um55pT2dXfSC/Hv7yzOvT2SuueGc6252vAj0T8uvhsfddns7O+eaFyWB+2TbckZ+xzUf1DB8qTHgo+7gdXn5D5Q5Mvy//HVn39Pp0duuRM1K53ob8/ljdnZ+xhrX549K2yfWp3P13fJW2zc8Mu6PvjWd4zczMzMzMbC8w2uclxi1JdwOD/zzxvohYMRr1MTMzMzMz29u4wTtCIuJ1AJLOAh6NiId2VdmSFgHXR8Q1u6pMMzMzMzOz8caXNI+8s4AjRrsSZmZmZmZmexs3eHeCpM9JWiXpDknfk/RpSYdIukHSvZJulzRH0knAO4BLi6cqHzJEWXMk3VP2frakFcXriyUtkbRS0kLp5U+mkfSkpKnF6/mSFhevmyVdJekeSfdLGvKpBZIWSFoqaWlP99ZdsnzMzMzMzMzGAjd4K1T0w3s2MBf4A2B+8dFC4BMRcRzwaeDrEXEXcB1wUUTMi4jfDC4vIh4B6iS9qhh0LvCD4vVlEXF8RBwFNAJvq6CqfwPcEhEnAGdQanS/7JGJEbEwIuZHxPzauvwTFc3MzMzMzMY6N3grdzLw04joiog2Sv3iNgAnAT8s+uz9BrBfBWX+G6WGLvxug/cMSXcXZ3zfABxZQZlvBj5T1GdxUccDKxjfzMzMzMxsj+aHVu0aVcCmiJi3k+P/gFJj+VogIuIxSQ3A14H5EfG0pEsoNVoH6+WlP1yUfy7g7IhYtZN1MjMzMzMz26P5DG/l7gTeLqlBUguly4w7gNWS3gOgkrlFvg3YYY/XxaXOfcDneOns7kDjdV0xnXO2M/qTwHHF67PLht8IfGLgvl9Jx+Rmz8zMzMzMbHxwg7dCEbGE0n25DwA/B1YAm4HzgQ9KWg48CAw8JOr7wEXFg6Ne9tCqMj8A/ojS5c1ExCbgSmAlpcbrku2M97fAVyQtpdRoHvB3QC3wgKQHi/dmZmZmZmZ7DUXEaNdhjyOpJSLaJTUBtwELIuK+0a7XK9U66YCYd9qfprJVvfntRv357LOn1qZyM2/tTpfZMSNXJlC6EDypcV3f8KGB7OPr0tlNx81IZxs29qaza+fWpbPT79uWylWybBtf7Eln1Z+Osvng/Hzt81BHOttfV53Odk2pYBsbAS1PtqezLx4/IZ2d/Gh+P9t4eH49THosX24ly7a6J3msqeBrr5JjXVTwJ+RKtvH69bn9ESrbbqu25Y9h/fX5cvvqcwuic1r+rqp4eScFu0Tz8/ltsac1X9/ehnx9myo4NtZszWUf/XB+fzz0O/ntYO3cxnS2aU1+I++Ykd95+iv5Ss/PGlNWJvezqvy6ze4LAM+cUckBJB/tn5Tfvqo25xdu1OaPjXXr8/P2yIcuT+Vec8XH0mXue3d+P38u+TsUoKo7vyIifwhl8iP5fad+S34jf+qsXK758fwyaHohvx30NqWj1LXlyn3wZ/+HreufHnZF+B7enbNQ0hGULjv+9nho7JqZmZmZmY03bvDuhIg4r9JxJH0TaAKOGPTRVyLiW7uiXpL+AzivuBy6fPglQHtEfHlXTMfMzMzMzGxP4AbvbhIRH9oN03jrSE/DzMzMzMxsT+GHVo0ASc2SfiZpuaSVks6VtFjS/OLzD0p6VNI9kq6UdFkxfJGkyyX9WtITkk6XdJWkhyUtKiv/vZJWFGV/qWz4k5KmFq//ppjGHcDhu3cJmJmZmZmZjT43eEfGW4DnImJuRBwF3DDwgaT9KXU/9HrgZGDOoHEnAycCn6L0NOh/Bo4EjpY0rxj/S8AbgHnA8ZJ+5zZ0SccBf1h8/lbg+O1VVNICSUslLe3p3voKZtnMzMzMzGxscYN3ZKwA3iTpS5JOjYjNZZ+dANwaERsiogf44aBx/z1Kj85eAayJiBUR0U+pq6PZlBqviyNibUT0AlcDpw0q41TgxxHRERFbKDWchxQRCyNifkTMr61rfgWzbGZmZmZmNrb4Ht4REBGPSjqW0tnV/ynp5gpGH3gufn/Z64H3NUD++fJmZmZmZmZ7MZ/hHQHFZccdEfFd4FLg2LKPlwC/J2mypBrg7AqLv6cYf6qkauC9wK2DMrcBZ0lqlNQKvH2nZsTMzMzMzGwP5jO8I+No4FJJ/ZTOyF4IfBkgIp6V9L8oNVw3AI8Am7dX0GAR8bykzwC/pNT1+M8i4qeDMvdJ+gGwHHiRUiPbzMzMzMxsr6LS7aK2O0lqiYj24gzvj4GrIuLHo12vpmmzYs5Zn0pl67f0p8vtbs1fSNDboFyuJV0ks362Pp3dMG9yOjthdWc6W7M+/0Cwra/eJ51tWr0lnd04d1I6m10PDZvz20HjC9uGDxWiNr/NrJ3bkM5OfjR/R0DDmo50duORE9LZkVDVkz+ON7/Qnc5Wb80vrzWvb01nZ9zTns5undmYzlb15ZZDx7TqdJlNL/alsz1N+e229bdd6ezW/evT2abn8/tZ+6z8vjPhNxUcww5sSuWUP3xQv2Fk7uZRcpsB6Jxel85Wb6ug3Kn57XHK/ZtSud+8N3+876/N17WS7D4r8vtDX23uOwdg6or8d2/3xNp0tu2A3HpoeSF/TOioYN1uODq/bKMuv/NMfCh/bqt+U74OffnDEu1vzh/ztTL3XfLwR7+eLvOUT34knX3+5Py22PpEfhuP/KbAPo/kj3fqr2Sd5eq78bD8NjP5sd50dtuE/PLqnJrLPv6v/0TnmqeHXWm+pHl0XCJpGbASWA38ZJTrY2ZmZmZmNu74kuZREBGfHu06mJmZmZmZjXc+w2tmZmZmZmbj0rhs8Eq6axeWtUjSObuwvNmSVu6KOkg6XdL1u6puZmZmZmZm48m4bPBGxEmjXYexqHhIlpmZmZmZ2V5hXDZ4JbUX/+8n6TZJyyStlHTqjsaR9M+SHpR0s6RpQ2QulrSkKGuhJBXDD5X0n5KWS7pP0iHF8IuK/AOS/rasqGpJVxbTuklSY5GfJ+nXRf7Hkl72yGBJb5H0iKT7gHeXDW+WdJWkeyTdL+mdxfALJF0n6Rbg5iHKWyBpqaSlvV35p3CamZmZmZmNdeOywVvmPODGiJgHzAWW7SDbDCyNiCOBW4HPD5G5LCKOj4ijgEbgbcXwq4F/iYi5wEnA85LeDBwGnADMA46TdFqRP6zIHwlsAs4uhn8H+KuIeC2wYnAdJDUAVwJvB44D9i37+G+AWyLiBOAMSv0ANxefHQucExG/N3iGImJhRMyPiPk1Dc2DPzYzMzMzM9tjjfcG7xLg/ZIuAY6OiLYdZPuBHxSvvwucMkTmDEl3S1oBvAE4UlIrMHOgH92I6IqIDuDNxb/7gfuAOZQaugCrI2Kg8X0vMFvSRGBSRNxaDP82MNBAHjCnGPexKHWg/N2yz94MfKbo7mgx0AAcWHz2i4jYsIN5NzMzMzMzG3fG9T2dEXFbcVb1vwGLJP1TRHwnO3r5m+Ls6teB+RHxdNGIbtjB+AL+ISK+Maic2cC2skF9lM4Wv1ICzo6IVYOm9zrA1yqbmZmZmdleZ1yf4ZV0ELAmIq4Evknp0t7tqQIGnoR8HnDHoM8HGrfrJLUMZIuzxs9IOquYZr2kJuBG4ANFFkkzJU3f3sQjYjOwsew+4/dRurS63COUzgYfUrx/b9lnNwKfKLuv+JgdzKuZmZmZmdm4N67P8AKnAxdJ6gHagT/eQXYrcIKkzwIvAueWfxgRmyRdCawEXqB0ufSA9wHfkPQFoAd4T0TcJOk1wK+KNmg78EeUzuhuz/8ArigazE8A7x9Uhy5JC4CfSeoAbgdai4//Dvg/wAOSqoDVvHSPcUpVb9C0bkfVe0nL45vT5fY31qazba/K3Ufc25b/W822fVvS2Y1zlM7Wba1PZ5mez7Y8tD6d3Xr4lHS2pzk/bw0b+1O5lifzFw+0H5S/R7yqN4YPDdTh2dw2C9DwfEc6S3V+eTWu782XOwK6W6vT2dr1FSyDCjStyW0zAKH8sm1dlT/WtL96Yio3/dYX02V2z8yVCdD0bHc6q+78NlPbnj+G1q3Oz9vktU3pLH35/ax2cu541zk1/xOkdc2O7kjaeS+ePDWdbdiU38ZrOvLLa9Kj24YPFdbPm5TK7bMifwyt7chn22bljzXdrcNnBkz6TX5/6GnNbzc1nfn1sPH43Pptvj6/DCY/1pXOrj8uv583P5VfBsovAho25sOdU/PLoeGO/MYweVXuOHrKQx9Jl3nHV78xfKhw5GUfS2cnPJ3fbrsm5ZdXRct2Q36dbZiT224mP5afr766/Pd5Jceapgdzx8UnO3NljssGb0S0FP9/m9K9sNnx/nyIYReUvf4s8NkhMo9Ruqd38PCvAF8ZYlJHlWW+XPZ6GfD6YepwA6V7eQdnOoGX7f0RsQhYNEQdzMzMzMzMxrVxfUmzmZmZmZmZ7b3G5RneHZF0NzD4eqv3DZwVNjMzMzMzs/Fhr2vwRsTrRrsOZmZmZmZmNvJ8SfMYJenPJa0s/v2ZpNmSHpZ0paQHJd0kqbHIHiLpBkn3Srpd0pxi+HuK8ZdLum1058jMzMzMzGz3coN3DJJ0HKUnNL+O0kOsPgxMBg4D/iUijgQ2AWcXoywEPhERxwGfptRfMMDFwO9HxFzgHduZ1gJJSyUt7d3m7nrNzMzMzGz82Osuad5DnAL8OCK2Aki6FjgVWF08yRngXkp98rYAJwE/1EtdfQzco3wnsEjSvwHXDjWhiFhIqcFMy+QD8s8LNzMzMzMzG+Pc4N2zlHdK1Qc0UjpLvyki5g0OR8RHJb0O+G/AvZKOi4h8J69mZmZmZmZ7MF/SPDbdDpwlqUlSM/CuYtjLRMQWYLWk9wCoZG7x+pCIuDsiLgbWArN2T/XNzMzMzMxGnxu8Y1BE3AcsAu4B7ga+CWzcwSjnAx+UtBx4EHhnMfxSSSskrQTuApaPWKXNzMzMzMzGGF/SPEZFxD8B/zRo8FFln3+57PVq4C1DlPHuSqZZ1RvUb+pJZV84bZ90uVMf6Exnu1tzf4Op3Zq/3bhrSm0627hWw4cKUZXPTvjVU+lsx2sPSGerevLLYds++fpuPjyXbX4ufwjpq89Pv78mn+2Ykf+7XfNz+W0h8lWgY+roHkprO/PbwYa5k9PZ1me2DR8qdEzPr4dJNz+Tzm74/cPS2Zqu3HJof82UdJnNq7eks1XtXens1sOn5evw0AvpbEysoEv53r50tGe/Sfk6VOd2nqa1veky+1ob0tlKNK7vT2fVn9/PFPls1Ob3nal3rUnlfnPBjHSZM2/Nr4ee5up0tn5jfhlUdeezTb/N75Obj8hvt41P5uatcU3+AZ81m/PHhKrWpnS2a0p+PUAF36fT8+Uqv+uw+ajcb0uAzum57+ne5vw2c+RlH0tnH/z414cPFQ6+9iPpLH35+u53Rz7bPSG/zmrbcuVumZX/TVPJ7/HsdzRATUdyu03GfIbXzMzMzMzMxiU3eM3MzMzMzGxccoN3BEm6azvDF0k6ZyfLnCfprWXv3yHpM8XrsyQdsXO1NTMzMzMzG1/c4B1BEXHSCBQ7D/ivBm9EXBcRXyzengW4wWtmZmZmZoYbvCNKUnvxvyRdJmmVpP8EppdljpN0q6R7Jd0oab9i+GJJX5J0j6RHJZ0qqQ74AnCupGWSzpV0QVH2ScA7KD2ZeZmkQyTdVzadw8rfm5mZmZmZjXdu8O4e7wIOp3T29Y+BkwAk1QJfA86JiOOAq4C/LxuvJiJOAP4M+HxEdAMXAz+IiHkR8YOBYETcBVwHXFR89htgs6R5ReT9wLcGV0zSAklLJS3t7sk/edDMzMzMzGysc7dEu8dpwPciog94TtItxfDDKXU19AtJANXA82XjXVv8fy8weyem+03g/ZL+HDgXOGFwICIWAgsBJrTOzD8v3MzMzMzMbIxzg3d0CXgwIk7czucDnWD2sXPr6kfA54FbgHsjYv1OlGFmZmZmZrZH8iXNu8dtlO67rS7u0T2jGL4KmCbpRChd4izpyGHKagNaM59FRBdwI3A5Q1zObGZmZmZmNp65wbt7/Bh4DHgI+A7wK4DintxzgC9JWg4so7i/dwd+CRwx8NCqQZ99H7hI0v2SDimGXQ30AzftkjkxMzMzMzPbQ/iS5hEUES3F/wF8fDuZZZTu8R08/PSy1+so7uGNiA3A8YPii4rP7uTl3RKdAnyruH94h9TbT+2L7cPFAOh4Y0MqB1B1T0862/JsbpOs7u5Pl7l1v7p0tqYjfxvztgn5vxf1rduQL3fS7HS2qi9f3wmrK1hmBw+7uQBQs2Zzusz6SbXpLBXcTV6/OVdXgPVHNebL3ZSvRNO63nR2JNRt6E5n17+2KZ1tm1Wfzk5cXcEyUH7f6a9VOputQcuz+WNSVVtnOhs11eks+dmif2JzOtt5wPYuAHq5xt+2pbPqzR8/ajpz++S6o/LfIw0bR+bnyuSVW9LZzpn59VC9Nb+NVW/Ife8CxHNrUrnW1TPSZaqC75EpD+X387aZ+XVW25EvVx1d6WxfXX5Hm/xIbrut6szXNWryx7qap/L7Q9Nz+fmq6smv35bn8vPWX5Ovw4SH8t//3RNyudY1FUz/6fx8HXztR9LZJ979jXR2/sUXprOK/DrbPDu/jU1ZmVsOvU35MrdNyK+HpjX542JfQ7IOycm7wTuOSfoxcAjwhtGui5mZmZmZ2e7mBu84FhHvGu06mJmZmZmZjRbfw2tmZmZmZmbjkhu8u5CkJyVNHSbz17upLhdIumx3TMvMzMzMzGwscoN399stDV4zMzMzM7O9nRu8ZSTNlrSy7P2nJV0iabGkrxRdAa2UdELx+RRJN0l6UNI3KXtWmKSfSLq3+GxBMeyLQGNRztXFsD+SdE8x7BuShnzMZ9GH76Ji+iskfaoYvljS/OL1VElPlo02q/j8MUmf3065CyQtlbS0u6/jlSw+MzMzMzOzMcUN3rymiJgHfAy4qhj2eeCOiDiSUl+7B5blPxARxwHzgU9KmhIRnwE6I2JeRJwv6TXAucDJRdl9wPnbmf48YGZEHBURRwPfStT5BOBs4LXAewYaxuUiYmFEzI+I+XXV+e5KzMzMzMzMxjo/pTnvewARcZukCZImUeo/993F8J9J2liW/6Skgackz+L/Z+/Mw+woyr59/5JMMtk3ILKFBASRfQn7IiDixiagqICAKLIoIO6+vIC4oaDfCyggKjsooiICsu8EgQTIQlgU2URACCSTfZt5vj+qTqanp8851SeTTDI893Wda6a7f11d3bV0V9VTT8GGwNu5MD8IbAtMkATQH3izyvVfANaXdAFwC3BHQpzvNLO3AST9mbAm78SE8xzHcRzHcRzHcVZ5vMHbkSV0HPXOrgKeXwW66qrQkvYA9gZ2MrN5ku7LhbVUClxhZt+pFzEzmyFpS+DDwHHAp4DP5+Kcv0ZynB3HcRzHcRzHcXoabtLckf8Ca8S5uf2AfTPHDgWQtCvQYmYtwAPAZ+P+jwLDo3YoMCM2djcGdsyEs1hSU/z/buAQSWvEMEZIWq8oYtH7cy8z+xNwGrBNPPQSYZQY4JDcaR+KYfYHDgTGJz4Hx3Ecx3Ecx3GcVR4f4c1gZoslnQU8BvwHeDZzeIGkJ4EmwsgqwPeA30maBjwMvBL33wYcJ+kZ4DngkUw4lwBTJD0R5/GeBtwhqRewGDgReLkgemsDl0UdQGVU+FzgD9Ex1i25cx4D/gSsA1xtZjXNmVv796FlsxG1JO2RuX9Rkg6gdVDfZO28UU31RUD/6UuSwxz0n4XJ2pYxRQPxxQx9aUGytvfa70nWNs1tS9YO/EfeSr46r+8zKlm75t3J0mT6zkjPM2pLN0aYueHAZO2IafOTtW/slD6nvd9M1RctRxZuklZuANZ8ON053ZvblpnXX+hvr5CBqw+vL4qsNuGdZO3i4f2TdK0D0l99czZLLzdNc9LrpUWD059XU+J9Qbly1jYgPd8sHppej/de0JqkW+PxuclhzlszvW4ugxYuThenV80sGZz+vBauXnM1ww40rTksSdfaL71Omr96ej5YNDg93NUnpafvohL56/VD104Pd1j6u2TYs2n3tmDN9Hqxz/y0sgCUssFrLVEcjjj+9mTt737+4WRtW5kWRIl7s8SqMVUHsGBYCXFremTHnX58snbiWRclazc7/4RkbZ/0YkbL+mmJNn9U+jMYOSVd++bW/ZK1a45PuzEtSbu+N3hzmNn5wPnZfdEk+WozOyWnfRvYp0pQH60S/reAb2W2rwOuS4jXZNpHdbP7nyU4papwWtx/OXB5vXAdx3Ecx3Ecx3F6Km7S7DiO4ziO4ziO4/RIfIQ3ATPbY0VeT9KjQH7c/wgzm7oi4+E4juM4juM4jrMq4w3elRAz26G74+A4juM4juM4jrOq4ybNKzGSBkq6RdJkSU9JOlTSS9FjM5LGxfnFSDpT0hWSHpT0sqSDJP1U0lRJt2U8QzuO4ziO4ziO47wr8Abvys1HgNfMbEsz24zg/bkWGwB7AfsDVwP3mtnmwHzg40UnSDpW0kRJExcvnNOFUXccx3Ecx3Ecx+levMG7cjOVsJbuTyTtFtf+rcWtZrY4nteb9gbyVGBM0QlmdomZjTOzcU39BnVVvB3HcRzHcRzHcbodn8O7EmNm/5C0DfAx4AeS7gaW0N5RkV+JbWE8r03SYjOrLE7Vhqe14ziO4ziO4zjvMnyEdyVG0lrAPDO7GjiHsA7vS8C2UXJwN0XNcRzHcRzHcRxnpcdH/VZuNgfOkdQGLAaOB/oDv5X0feC+boyb4ziO4ziO4zjOSo3arV6ddzv9R61r7/3sqUnakc8sSg53wfD0fpWFQ5Wka2tK0wG0lejWmfX+JcnaAa+kB2zp0WXth+ani1vTy++c0XkL+OrMG5Vm/DHimcXJYS4Y3jtZa2VsT0o8276z25K1g2yBSMQAACAASURBVJ6vN2W+nVc/MjI9EsuBuWun39eGv5ubrC2Tb2e+L90HQK8S+XbQvxcma613WoQXD0ovu7PXSc+3vVqTpQx8I13cd1Z6OWttSi88c9fsm6wdMTW9PMxbJy0v9H9jXnKYc8YMTNaWoa1PeiafvmW6tnl6unbktPT07bU4razPGp2etk3zS5THl9PfT01vzEzW/nfvtZK1I55Kzzcz3zcgWduWWNT7z0ivbxcNTC+PMzdKlrL2g+l5Zkn/9Dj0WpKeF2atm16Pjpy2IFk7Z51+SbrmGel16PzV0uvx3gvTn4FKNKFmvjc9Dk+ddGGydtzpxydrLTEKTXPTb2z26BL5Kz3bMmpiWp6ZOOGXzJr1at0K102aHcdxHMdxHMdxnB6JN3gdx3Ecx3Ecx3GcHok3eFcSJKXbOjiO4ziO4ziO4zh18QbvCkLSXyQ9LmmapGPjvjmSfiZpMrCTpNMlTZD0lKRLJCnq7otr8T4m6R+Sdov7B0j6g6SnJd0g6VFJ4+KxfST9XdITkq6X5IvsOo7jOI7jOI7zrsIbvCuOz5vZtsA44CRJI4GBwKNmtqWZPQT8wsy2M7PNCN6Y982c38fMtgdOAc6I+04AZpjZJsD/EpcrkrQacBqwt5ltA0wE0rxROY7jOI7jOI7j9BB8WaIVx0mSPhH/XxfYEGgF/pTR7Cnpm8AAYAQwDbgpHvtz/Ps4MCb+vytwHoCZPSVpSty/I7AJMD4OEvcF/l4UqTjafCxA0+Dhjd+d4ziO4ziO4zjOSoY3eFcAkvYA9gZ2MrN5ku4DmoEFZtYaNc3AhcA4M/u3pDOjpkJlbY5W6qebgDvN7DP14mZmlwCXQFiWKPWeHMdxHMdxHMdxVnbcpHnFMJRgejxP0saEEdg8lcbt9Djf9pCEcMcDnwKQtAmwedz/CLCLpPfGYwMllVjhzXEcx3Ecx3EcZ9XHR3hXDLcBx0l6BniO0CDtgJnNlPRr4CngDWBCQrgXAldIehp4lmAC3WJmb0k6CvidpMoK3qcB/1jmO3Ecx3Ecx3Ecx1lF8AbvCsDMFgIfLTg0KKc7jdAwzZ+/R+b/6bTP4V0AHG5mCyRtANwFvBx19wDbdUH0HcdxHMdxHMdxVkm8wbtqMwC4V1ITYd7uCWa2qNHA+s5awtp3vJWknb79asnhDnp9cbJ24dCmJN2ad72ZHObMrcrENd3Kf+Crc5O1enhysnb2oUUW78W09lWydv7q6dp5a6ZN537P+AXJYbb265+sLUX6bTFjo/QqT61Dk7V9Z3bv9PdBr6Zr5647IFk7f3h6eWhuaUvWDnxlXrK2rX96mvVanBaH3ovS47r6pBJ5vERc/zuuub4osu5l/0rWNg0bkqztNz29TL7y0WHJ2tUnpdX5b+ycHtfFA5OlpRj59JJk7cBXS3wylaiX5q2eHu7A/6Y929WebEkO05p6J2vnrV2mHk/PM80z0svkgjX61RdFWtOlDHkp7dn2WpJe37f1Tk/b4c+lZ5o+c9Pz7YwN0+v8/m+np8OA6enavv9+O1nbb8ioJJ3a0tOh+Z3WZO2iIenloWVM+juyT/onI+NOPz5ZO/Gsi5K1O37juCSd9U7Pi/3/m54OVqIKnb9aWnugrU9aXL3BuwpjZrMJyxw5juM4juM4juM4Odxp1QpA0oHRqVR3XHsPSTt3x7Udx3Ecx3Ecx3G6E2/wrhgOJKyL2x3sAXiD13Ecx3Ecx3Gcdx3e4F0OSPqcpCmSJku6E9gfOEfSJEkbSHqvpLvi8Seiw6lqYX1L0tSoPTvu20rSI/EaN0gaHvefJOnpuP/3ksYAxwFfjdfebfnfveM4juM4juM4zsqBz+HtYiRtSvC0vLOZTZc0Avg5cLOZ/TFqHgXONrMbJDVTpeNB0keBA4Ad4hq+I+KhK4GvmNn9ks4CzgBOAb4NjDWzhZKGxaWOLgbmmNm5Va5xLHAsQHNTugMRx3Ecx3Ecx3GclR0f4e169gKuj8sHYWbvZA9KGgysbWY3xOMLzKyay9K9gcsqx83sHUlDgWFmdn/UXAHsHv+fAlwj6XAgyYWfmV1iZuPMbFzf3ume/BzHcRzHcRzHcVZ2vMHbs/g48EtgG2CCJB/BdxzHcRzHcRznXYs3eLuee4BPShoJEM2QZwODYelSQq9KOjAe7yep2tDqncDRleOSRphZCzAjMx/3COB+Sb2Adc3sXuBbwFBgUPbajuM4juM4juM47ya8wdvFmNk04IeERuhkwvzd3wPfkPRkdFB1BHCSpCnAw8B7qoR1G/BXYKKkScDX46EjCU6wpgBbAWcBvYGrJU0FngTON7OZwE3AJ9xpleM4juM4juM47zbc5HU5YGZXEObWZskvS7RXYlhnA2fn9k0CdiyQ71pw/j+ALVKu5TiO4ziO4ziO05OQmXV3HJyVhMFD17Gtdz0pSTtw6mvJ4drQQcna6eNG1BcBw5+Zkxzm21ukX58SxWHIy4uStX3mJvkQC9rps5O1b+80Klk7e10la9eYtDhJ19YnPcyFQ3ona2052Z4M/df8ZG3TtJeTtXN33bCR6HQZTXPS81fTW9V85HVGr7+ZrH390I2TtWVsi0b9vSVZq8WtSbrFI9Md9M0b1TdZ22dBW7JW6UlGv3cWpsfh6ZeSta0bjU7W9p6bXt+1Du6XpFs0LE0H0HthWtqWZc5a6enbND/9BbF4QHrdOOjV9Gfbsn7aM1vSP/36a92YXtdN3ys9z/SblZ5mLeulj79YiaGaXumPlt6L0tJ39cfT39Hz35Ne17Ssn35jTbPT82LLRslS+rak55u5701/uOvdkB7uywem6Ub/NT3MdzZePs928Ksl8niJ9O29MD0OTXPStY+cc3GSboufnZAcZp+56ddfUqJeHPJy2rOdcvd5zHnn33UD9hHelQBJmwNX5XYvNLMduiM+juM4juM4juM4PQFv8K4EmNlUwlzcpUg6SdIzwBNmdlj+HElHAePM7MsFx+aYWYlhTcdxHMdxHMdxnJ6HN3hXXk4A9jazV7siMEl9zKyEEZ3jOI7jOI7jOM6qjTd4V0IkXQysD9wq6XJgt7g9DzjWzKbk9GOBawnLEN2Y2b8H8H1gBrAxUGImh+M4juM4juM4zqqNL0u0EmJmxwGvAXsCY4AnzWwL4LvAlQWnnAdcZGabA6/njm0DnGxmhY1dScdKmihp4uJFc7vqFhzHcRzHcRzHcbodb/Cu/OxKdGhlZvcAIyUNyWl2AX4X/887v3rMzF6sFriZXWJm48xsXFPfgV0VZ8dxHMdxHMdxnG7HG7w9h2p+wX3Y1nEcx3Ecx3GcdyXe4F35eRA4DJbOyZ1uZrNymvHAp+P/nTw6O47jOI7jOI7jvBvxBu/Kz5nAtpKmAGcDRxZoTgZOlDQVWHsFxs1xHMdxHMdxHGelxb00r6SY2ZjM5oEFxy8HLo//vwjslDl8Wtx/H3Bf6jXbmsS8UWlZotfi96QGy8z39k3WNs1L07VsmD7feNDr6asxzVy/KVnbNGtRsratX3pRm77LqGRt/+mtyVqsd7K0+c0FSboy6bBghJK1VqJmmr3R4mRt07x+ydrmvusna9/ZuHur0t4L06/fb2b6MxjyQnOytuX96Xlx7F/Sy6QWp4fba/b8JN2SdQcnhzl9i/R827puel7sP61/snbov9LjsHijTZK1Zei1uNqsmc40z0hLs37T0+oZgDljlo+PibY+6c+2ZWz6GIGlB8ussenlbI3H0/JYy9j0d9nC96a/c2avm35jQ+9Lf0fOXju9DtOi9Lw49MX0umbh0LR35MLV0stu39npdcK896S/o0dOT38GTbPS8+3w59Lr2+bp6XlsSXNbsnbg82nPYcaGyUEy/J/p+WDWuul5ccmA9Gc7f1R6mg1/Jl1rvdPL5BY/OyFJN+VrFyaHuduXv5SsbRmbnsf7zUxLMy1Je1Y+wus4juM4juM4juP0SLzB6ziO4ziO4ziO4/RIvMHrOI7jOI7jOI7j9Ei8wbsKIOksSXt3dzwcx3Ecx3Ecx3FWJdxp1SqAmZ3e3XFwHMdxHMdxHMdZ1fAR3gaQNFDSLZImS3pK0qGSTpc0IW5fosDGkh7LnDcmLh2EpG0l3S/pcUm3S1qzxvUul3RI/P8lST+WNEnSREnbxPP/Jem4qOkl6UJJz0q6U9LfKucXhH1sDGfikgVzu/ZBOY7jOI7jOI7jdCPe4G2MjwCvmdmWZrYZcBvwCzPbLm73B/Y1s2eBvpLGxvMOBa6T1ARcABxiZtsClwI/LHH9V8xsK+BBwtJEhwA7At+Lxw8CxgCbAEfQccmiDpjZJWY2zszG9WlePss+OI7jOI7jOI7jdAfe4G2MqcCHJP1E0m5m1gLsKenROIK7F7Bp1P6B0NAl/r0OeB+wGXCnpEmEdXPXKXH9v2bi8aiZzTazt4CFkoYBuwLXm1mbmb0B3Nv4rTqO4ziO4ziO46ya+BzeBjCzf0jaBvgY8ANJdwMnAuPM7N+SzgQqK8lfB1wv6c/hVPunpM2BaWZWdeS1Dgvj37bM/5VtT1PHcRzHcRzHcRx8hLchJK0FzDOzq4FzgG3ioemSBhFMjAEws38BrcD/Ehq/AM8Bq0vaKYbXJKkyItwVjAcOjnN5RwF7dGHYjuM4juM4juM4qwQ+GtgYmwPnSGoDFgPHAwcCTwFvABNy+usIDeOxAGa2KDqROl/SUEI6/B8wrYvi9yfgg8DTwL+BJ4CWeif1WmIMeGtJ0gXUlh6Zwf9pTdZaYheM9VZymG9v2pSsXTIgWcqMTQYlawe+kfZcARYPSL+3QYvSE2Lwq+lxeHvztHsb9Fp6mM1vp2vLpO+w59O1iwema1PzIsCIZ9PvbXlQJq7zR/ZO1s5dp7m+KDL6tvRy3jKmb7K27+rp5bfPgiFJuqbZ6XEd+s9kKfZi+vPqvdCStQPeWJSsXTxo+bzW56yVHu6S/mkZcsno9Aq3NT0blGLoSwuStQtW65+s7Z2eZKW0r+2Wlg6DX0rPX31aFtYXRdZ4Ir3+mLFR+vNaMDJZSr8Z6fX4Kx9Jj++A19Ly7Zwl6RWu9SpRf81LltL89uJk7ZDn09P3X59M/65RehZj4INl6rs0bf930uvx1r7peaZpbnpcFw5JD3fklPRwWzZIz2P9/1uirCfe225f/lJymA/+4lfJ2h2/cVyydn7iu9+a0tLAG7wNYGa3A7fndk8kzMUt0p8LnJvbNwnYPfF6R2X+H5P5/3KC06pOxyR93czmSBoJPEaY7+s4juM4juM4jvOuwRu8PZebowOrvsD3o/Mqx3Ecx3Ecx3Gcdw3e4F2JkPRLYJfc7vPM7LKyYZnZHl0SKcdxHMdxHMdxnFUUb/DmkDTHzAZFx1Tnm9khNbSnAJeYWYmZFyDpKIJH5y9n95vZiY3E2XEcx3Ecx3Ecx+nMu8JLs6R0rwURM3utVmM3cgpQws2R4ziO4ziO4ziOs6JY5Ru8ksZIelbSNZKekfRHSQMkvSTpJ5KeAD4paQNJt0l6XNKDkjaO54+V9HdJUyX9IBfuU/H/3pLOlfSUpCmSviLpJGAt4F5J99aI30ckPSFpclyvN398P0mPSnpS0l1xGSEkfUDSpPh7UtJgSWtKeiDue0rSblG7T7yHJyRdH5dGQtLZkp6OcT43f+2oOVbSREkTFy+a23A6OI7jOI7jOI7jrGz0FJPm9wHHmNl4SZcCJ8T9b5vZNgCxsXmcmf1T0g7AhcBewHnARWZ2paRqJsXHAmOArcxsiaQRZvaOpFOBPc1setFJklYHfg3sbmYvShpRIHsI2NHMTNIXgG8CXwO+DpwY72kQsCDG43Yz+2EctR4gaTWCd+i9zWyupG8Bp8b5wJ8ANo5hDyuKo5ldAlwCMHjYOiWczDuO4ziO4ziO46zc9JQG77/NbHz8/2rgpPj/dQCxwbgzcL20dL2mfvHvLsDB8f+rgJ8UhL83cLGZLQEws3cS47Uj8ICZvVjjvHWA6yStSfCo/GLcPx74uaRrgD+b2auSJgCXSmoC/mJmkyR9ANgEGB/vrS/wd8K6uwuA30q6Gbg5Mc6O4ziO4ziO4zg9glXepDmSH5msbFdsdHsBM81sq8zv/TXOX5FcAPzCzDYHvgQ0A5jZ2cAXgP6ExuzGZvYAYe3e/wCXS/ocIODOzH1tYmbHxMb59sAfgX2B21b4nTmO4ziO4ziO43QjPaXBO1rSTvH/zxLMhJdiZrOAFyV9EkCBLePh8cCn4/+HVQn/TuBLkvrE8yumybOBwTXi9Qiwu6SxufOyDCU0YAGOrOyUtIGZTTWznwATgI0lrQf818x+DfwG2CZeYxdJ743nDZS0URzVHmpmfwO+CmyJ4ziO4ziO4zjOu4ieYtL8HHBinL/7NHAR8JWc5jDgIkmnAU3A74HJwMnAtXHu641Vwv8NsBEwRdJiwrzcXxDmvt4m6TUz2zN/kpm9JelY4M+SegFvAh/Kyc4kmFrPAO4Bxsb9p0jaE2gDpgG3Ehrm34hxmAN8Ll7jKOB3kipm2qcRGuM3SmomjAKfWuXeltK2eitzj2+pJwNA149M0gH0ak0fQG/ZIK0PZtHwtuQwhz6bfv0Rz7Qma5f0T+8vWjAi3VH4Gk/MSda+8/6BydpFw1RfFBn2/JIk3UuHpqfDoGf61RdFlJ4M9Jmbnr6rl3i2KmH38dLug9LFywG1pqftoFfSb6zv7PSEaBnblKxd8963k7UL1q7Vp9gRLUm7t3/v0zc5zGHPJkshrdgAsGBkepqZmpO1w56fn6x9faf0RQZGPrM4WfvqXmn13bp3pD+wXkuWT/98r4XpeXz4c+nxbZqTrl0wMr3srDFhQZJuxvvT03b+Ounvkea30q4P0G/GwmRt70Xp8W2an16HDXotWUq/mWnx7ff67OQwn/ti0ThHMYNeSs/jfVsWJWvf3C69Dl37gfR8W+YbqEy+mZ2YHxeWqBOa5qXnmT4L0rUD/pteL765dfo3UK/0YLESLbklA9LeOy1j079Zd/zGccnaR865OFm79Y9OqC8C2hLvv6c0eJeY2eG5fWOyG3Ee7UfyJ8b9O2V2nRb3vwRsFv9fQmgwnpo79wKCSXJVzOxWQmM1u+9y4PL4/40UNLTNLN9gB7gi/vLae4DtCvTb14qb4ziO4ziO4zhOT6anmDQ7juM4juM4juM4TgdW+RHe7EhsdyLpUdo9P1c4wsymdkd8HMdxHMdxHMdx3u28q0Z4Jb0U161tWCPpJEnPxOWClmJmO+S8QG/VFY1dSWdJ2ntZw3Ecx3Ecx3Ecx3m3scqP8HYDJwB7m9mr2Z2S+lTW6e1KzOz0rg7TcRzHcRzHcRzn3cBKP8IraYykZyVdLukfkq6RtLek8ZL+KWl7SSMk/UXSFEmPSNoinjtS0h2Spkn6DcFbcSXcwyU9JmmSpF9JquuSTNLFwPrArZK+KulMSVdJGg9cJalZ0mWSpkp6MnpZRtJRMX53xhHkL0s6NWoeqbJcUeWal0s6JP5/tqSn432em3k+98R9d0sanTnvfEkPS3qhEkZB+MdKmihp4pKWeanJ4jiO4ziO4ziOs9Kz0jd4I+8FfgZsHH+fBXYFvg58F/ge8KSZbRG3r4znnQE8ZGabAjcAlcbg+4FDgV3MbCuglepr8C7FzI4DXgP2NLP/F3dvQhjx/QxwYpDZ5sBngCviskAQ5hkfRPCm/ENgnpltDfwd+Fy9a0saCXwC2DTe5w/ioQuAK+K+a4DzM6etGZ/TvsDZVe7pEjMbZ2bj+gxNXxbAcRzHcRzHcRxnZWdVMWl+sTIfVtI04G4zM0lTCcsPrQccDGGJnjiyOwTYndDIxMxuiWvdAnwQ2BaYIAmgP2GN3Eb4q5lVFj7clbhMkZk9K+llwvq9APea2WxgtqQW4Ka4fyqwRcJ1WoAFwG8l3QzcHPfvRLxH4Crgp5lz/mJmbcDTkkaVvzXHcRzHcRzHcZxVl1WlwZtdDbwts91GuIcSSzQDwbT5CjP7ThfEbW6irt491MTMlkjantBYPwT4MrBXiWumrTbtOI7jOI7jOI7TQ1hVTJrr8SDRJFnSHsB0M5sFPEAwf0bSR4HhUX83cIikNeKxEZLW6+J4bEQwoX6uC8JF0iBgqJn9DfgqsGU89DDw6fj/YTEOjuM4juM4juM473pWlRHeepwJXCppCjAPODLu/x7wu2gG/TDwCoCZPS3pNOAOSb0II8QnAi8vYzwuBC6KptZLgKPMbGE0m14WDBgM3BjnBAs4NR77CnCZpG8AbwFHN3qRtjl9mP9QzVWbljJsbmtyuH1npjuvXjS4b5LOeqc/06bUMXigtV96uH3mtaWH25we7uz10udSL+mfHu7A19Pju2hQWl/Y2rekX3/BUEvWtjUlS5m/RnocZrx/ULK236z05zX0+WTpcqH/W+lGLksGLp9+zjmj09P3re2r+unrxPRd0u9NiW+0Pm8kB8nCoen5y+q6Pmyn94J07Zx1StRLC5vriyJtadUtAHNHpX8utA5Iez+8tVV6BJqnp+evUliJ59UnPR1mjU4Pd9HQZCltffon6Yb9Y359UeSdTdPCBOj/Wvq7f966A5O1w56bk6xduFp6fLH0fDNvVNqLZ/HgYclhDn4hvb4d8kr6t1Jrc3p5HPb8omTtkgHplVhriff0wuH9krV9Z6el2fzV0p/tgGkL64sifeall/PW5vQ4rDk+/WO0rTk9Heavlp4Q/aen6fqV+G6fv3r69bf+0QnJ2ie/e2GSbvv730rSrfQNXjN7ieDwqbJ9VJVjBxac+zawT5VwrwOuK9g/pk58xmT+PzN3bAEFDU4zuxy4vEoYHY4VMBJ4x8xeB7YvCPtlCkybs88pbqd/6TuO4ziO4ziO4/QAeopJc49E0qXAAOCh7o6L4ziO4ziO4zjOqsZKP8LbHcQlgO4uOPTBOGq8PK75S2CX3O7zzOzzy+N6juM4juM4juM4PR1v8BYQG7VbLY+wJY0BbjazzbL7zezEOuftAXzdzPZdHvFyHMdxHMdxHMfpabhJs+M4juM4juM4jtMj8QZvSSSNkfSMpF9LmibpDkn947GtJD0iaYqkGyQNj/u3lTRZ0mSCN+hKWL0lnSNpQjznS4lx2E7Sk5I2kDRQ0qWSHov7DoiaByRtlTnnIUlbFoR1rKSJkiYumVfCnbHjOI7jOI7jOM5Kjjd4G2ND4JdmtikwEzg47r8S+JaZbQFMBc6I+y8DvmJm+QbnMUCLmW0HbAd8UdLYWheWtDNwMXCAmf0L+B/gHjPbHtgTOEfSQOC3wFHxnI2AZjObnA/PzC4xs3FmNq7PgPQlBBzHcRzHcRzHcVZ2vMHbGC+a2aT4/+PAGElDgWFmdn/cfwWwu6Rhcf8Dcf9VmXD2AT4naRLwKGEJog1rXPf9wCXAfmb2SiaMb8cw7gOagdHA9cC+kpqAz1N76SPHcRzHcRzHcZwehzutaozsCtatQIlV0Dsgwsjv7Yn61wkN2q2B1zJhHGxmz3UKXLoTOAD4FLBtg3F0HMdxHMdxHMdZJfER3i7CzFqAGZJ2i7uOAO43s5nATEm7xv2HZU67HTg+jsIiaaNojlyNmcDHgR9Hr82VML4iSTGMrTP63wDnAxPMbEbjd+c4juM4juM4jrPqITPr7jisUuSXFZL0dWCQmZ0ZnURdDAwAXgCONrMZkrYFLgUMuAP4mJltJqkX8ANgP8JI7VvAgbHxnL/uHsRliSSNBm4lmCpPAf4P2JnQgfFidukiSc8Cp5jZbQn39hbwcm73asD0lGfTg7Xdff2erO3u6/dkbXdfvydru/v6PVnb3dfvydruvv6qpu3u6/dkbXdfvydru/v6K1q7npmtXvdMM/NfD/0BawH/AHotQxgT3+3a7r5+T9Z29/V7sra7r9+Ttd19/Z6s7e7r92Rtd19/VdN29/V7sra7r9+Ttd19/ZVFm/+5SXMPRdLnCI6w/sfM2ro7Po7jOI7jOI7jOCsad1pVA0kjgbsLDn3QzN5eTtfcnI6enAEWmtkOZcIxsysJyyQ5juM4juM4juO8K/EGbw1io3arFXzNqSv6mnW4xLXdfv2erO3u6/dkbXdfvydru/v6PVnb3dfvydruvv6qpu3u6/dkbXdfvydru/v6K4u2A+60ynEcx3Ecx3Ecx+mR+Bxex3Ecx3Ecx3Ecp0fiDV7HcRzHcRzHcRynR+INXseJSBpeQnvk8oxLd1HmGaxq9OR7W1XoyWlQsv7osc/BScfzzKpHo+kgqV/KPsdxlg8+h9dxIpKeMLNtulq7KtFT7wva7y1+ZBwMjCHjuM/Mzio4J1lbMi5jzezFevsaCLefmS2st6+7eDfkr67WOj0XzzOrHo2mQ9F52X2SegM/MbOvd1FUHWeVR9Lm0ZnvMuNemp1CJO0KbGhml0laHRiU/RiXdFCt883szzXCHmBm8+pcfxdgkpnNlXQ4sA1wnpm9nNMVvXhagJfNbEmtaxRdthFtShwknVorMDP7eSa8ZG3mHAGHAeub2VmSRgPvMbPHat5FZ8o8g3wcms1sQW7famY2PbcvKW0z+pPN7Lx6+1KiGP/eSEifx4F6DcEy2jL8iXDfWf4IbJsXlqzw/14Qbod9yzsv1qEwf6XUCRntcGBdM5tSQ3MycBkwG/gNsDXwbTO7o0DbVXVIQ/VHGerFtdH0KvMMJI0ws3dy+4o6cBp6rtXSd3nm29TGhqQRdcJ9p9bxoiCXRZv4Lt3bzO7K7TvSzK6ooi96di3A42Y2qZFnEJ/vx+nccfjznGaamW1cK/yM/vvA9zLv2CGE98jRBdqrgC+bWUvcXg+41Mw+mHKtfHC5sGu+zyS9B1gb6C9p68z5Q4ABlXDMrDV+d9WPQNfnw2Umpt8oOqbvKwW6/sBoM3uuSjiNfP/0Bu4ysz1Lxrnmu0TS48ClwLVmNiMhvG2AXQEDxpvZE1XiWrMsZLQDgK8RntcXJW0IvM/Mbs7pGcwBDwAAIABJREFUdjGz8fX2Za5fppwVfeu3AFPN7M2UMJaRC+PAw+XANZUy3Aje4HU6IekMYBzwPsJHYxNwNbBLRrZfjSAM6NTglbQz4eNzEDBa0pbAl8zshIIwLgK2jJqvxfOuBD6Q011IeMFMIbxINgOmAUMlHV/0gVsn3o1oU+IwuETYZbTZOLQBewFnET70/wRsVzIckzSbGs/CzIZUOTRB0hfN7BEASQcDPwY2yulS07bCkUC+cXtUwb56VO5pHTP7SOI5dbVlnpekjYFNCXkj+yIZAjRXCaJuhZ/6URVZ3nmxFh2eU2qdIOk+YH/CO+tx4E1J482s2sfR583sPEkfBoYDRxDWNy+qD7qqDmmo/pC0PiEv70Qow38HvmpmL5SNK42nV5lncJOkj5rZrBj/TYA/xHMaCjMxfZdbvi3R2HickHYCRgMz4v/DgFeAsWWuS+N5psy79PRYF3896n9D6LwrbPAS3v3jgJvi9r6ENDxO0vXA8bQ/g6I4rl+w/yZgATCVkMc7nxjS4DlJo4saSgX0AR6VdDShofUL4IIq2oei9lRCPfkNwrunEfJpVu999mHC+2od4Ge0P7dZwHdzYT0p6a/A9cDcpRfsPICQzYdF8StKg0rj5SfAGvFcheA7vtNTdRn9V4AzgP/Snr4GbJHT7QecC/QFxkraCjjLzPbPyCpl932E75e/xu39gMIO/Jh32iQNrdcgKvkuORQ4mvBtM5HwPXyHFZjGSjod+CTt376XSbrezH6Qk9YtCxkui3HcKW7/h5A3bs7pLqBzR3fRvkbK2THx+vfG7T1inMZKOsvMrqoIJf0U+AEwH7iNkP5fNbOr84Gm5jEz2y029D8PPC7pMeAyM7szIe4dMTP/+a/DD5gUM9+TmX1TuiDcR4F1c+E+VUX7RPx7OnBMdl9O92dg08z2JoSRsvUJva5l4tcp/BRtV8ZhGZ5t5Xlln+3kRsOJ/38fOIHwAhpC+NA5q8a5mwMTgHOAawgV3jrLkLafIbwcZhBeepXfvcDdy/CMLgE2TzynjLbu8wIOILzE3o5/K7/zgZ1rhL0hofPgeeBa4EO540fG5zI7/q38/goctCLyYNn8FbeT6oTKceALhFGdmnVS5RihIfmJfNnIabuk/C5D/fEIoUHeJ/4OBx5dnnFdlnAJoxP3ExpP2xIasVstY5il0nc55c2LYnk5Ajio8qui/TXwscz2R4FfNXDNRvNMmXepCI3df8bfZ+pc5wGCRVdle1BM7/7A0w0+26S0jNeeDdxNps6vof8g4eP6NeC9dcLeFVgMvE6wfmo0n+TrsLrvM4K/nMMSwr6s4HfpsubtTPjPA+/vKl1OPzJB9zgwNJdvp9bIC4Mz24OBB2qEfSOh0+m3hPfp+cD5BbrSdU1Mv/0JDc5XgO8BI3Ka54DmzHZ/4LmCsJLrNWBiNs7x/8mZ/3cidLL8Gzg18zuTGt9/ZcoZcDswKrM9Ku4bQa7OIdbrwCdiOgytFo8G8lhvwvSy/wDPAM9S8tvGR3idIhaZmUkKb0tpYDWhpFHAj4C1zOyjsbd/JzP7bZHezP4drG+X0lol6NmSvkP4+NhNUi/CSHOejcxsWib8pyVtbGYv5K6TQu8S2g0biYOkZkKP2aZkRvTM7PMZzfm1LmxmJxXsXhxNVSpptjr1ew+LyD6D/c1sy8z2RZImE17sRfGaKumHhJG02cDuZvZqgbSStocDu9dI24cJHyerEXrGl55PGHEoS+XedgWOkvQiYaSj0rO4RcE5ZbR1n5eZ3QjcKGknM/t7asTN7J+STgMmEl7kWytkru+a2Z8tmCdeIelgM/tTrbDK5K8G82ItOpWxxDqhj6Q1gU8B/5Nwnccl3UEYcfuOpMFULw9dVYeUqT+y2gGW6SUHrpb0jUbiugzplfwMzOwWSU2E0fLBhA6FfyxLmCSk7wrIt82Ejqi9slIKrJWAHc3si5nwbo2jG2VpNM+UeZcOB7YH/kUYZVxPkix+RRawBh2nbywmfPDOl5T3DzCc8C7MvsseKAjzVkn7WH1rif+tczx77d0JdeFZhM7WCyQdY2avFWiPiGF/jjDq9DdJR5vZ5NTrZcinWd33mZm1SfoqoSO4KlZgjl2PEmkA8F8zeyYh2FRdhX8TzFzrsdjMWnL5tlo+HAUsymwvivuq8WeKy2qeUu8SSVsQRnk/RrCau4bwXXAPsFVG+hohDSrTuvoRGmd5UssCwCIFE/DKd90GdCybfQkdUn3oaNUyCzikRrjJ5Yxg8v3fzPabcd87khbntJU25ceB6wvSOktSHss8/48DdwL7mdkTktYiWEOlpHmHyDlOlj9I+hUwTNIXCaYEv6mivZzQC1mpOP4BXEfo3cnz72iKZfGD6WRCT00RhwKfJZgmvqEwJ/WcAt00SRcBv8+c97SCCWi+MHYlzzcYh6sIPVMfJryoD6PzM3i8gficD9wArBEbnYdQrlIrYq6kwwj3ZYQR17nVxJJ+C2xA+KDYCLhZ0gVm9suctJK2x9RKWwtzoF6m3Zynq/joctKWeV7HSXrGzGbC0o+Wn2U7PiqUrPDvlvRzYPe4fT9hlDn7MVImfzWSF8uQWid8j9Cr/JCZTVAwA/5njXCPIXyMvGBm8ySNJDzDIrqrDqlwq6Rv055vDiV8kI+ATvPx6sW10fSq+wwkXUDHj9OhhEbUlyUVNSLLPNezCOk7vkb6Ltd8W7Kx8VrsgKqY6h1G+OBdUZR5lz4CnG1ml8aP558A44Gdq+ivIZj/3hi39wOujR3fT1dEkr4Qr7sOwSpsR0J9tBedeQS4ITYGF1PdfPF+hfm1G5rZXQpzGKt1CpwLfNLMno7xOYjQCCmam3gwsKuFOYe/k3QDwaR7qwJtWZLeZ8Bdkr5O+D7KmisvLd+S1iGYolamjz0InFyl47hsGgBMlHQd8BcyDSfrbDKdqqvwAnCfpFty+vy81GmSPgv0VjBTPYnQsV3ElcBjMa0ADiR8bxZiZleozvzgSEpdAyydwzuT8D37bWt3/viowtztbL3YEu/vzrj9IYpNsJPKQuQMgqXcupKuIeSLozL3fD9wv6TLrX3OeC+Chcasag8gnpfKfZJuJphSQ/i2vC/WBzNz2pslPUuwujheYeBlAcWk5rELCO2P75rZ/IyuUgcn416anUIkfQjYh1AYb7cq9vKSJpjZdpKeNLOt475JZtbpRSJpNYKJ4d4x3DsIlfnbVcLu9OIzs9k5TX+CGWll/tV4wtyxBYSRkzkl7rkhj5ll4lB5TpKmmNkW8WPlQTPbMTWeNeK0McHESwST3zI9tJUwsvc1hpBeuxCdMACnmNlLVc49heCso9IbORT4uZkdU/pmOoabnSPbl9B7PrfKC6JWONl72xLYLR56sFZPf6q2zPPKlpda++L++wkv3OuzFX48doR1nEPzJ+Ap2ufnHQFsaWY1ncytKPJlLFcn9CJ8iHSqE1TCKUc8luzEravqkGWoP16sITUzWzofryvru1x86oarOkuxWc4J0vKK6/JC0kYEs+ZRZrZZ7Gja3zrPwas4DTqD0LFkBBPBs6yks6BlyDNJ5SZqO83Vk7R7jVFAJG1He4N4vJlNLNBMJcyxfMTMtorvnx8V1TUxjx9AMF+t+tGp0MF+LMFcdIPYKLrYCpxLSeptZq25fSOrfU8UnN/XzBbVV3Y6L1+H/cTMvpXTFO0rKuf58n0nYcpKpU4/nGAK/aEqcUlOg6i/rEocPt+ILqM/o2i/mX0vpxtAGBxZ+m0JfN9yzi4z+m1of/c+YGZPFumidun8YDMbq+L5waWQtL7lfCko56CvgXoxqSxk9CMJHRkipPP0As21wHEEK48JhClV55nZOTldaf8s8V16MO2dMOOBP1WLe6wbWyzMFR5IMEt/o0CXnMcSOzLqYyXsn/337vgRRgbXze07tor2PmAk7fNYdgTu74I4fJFQcP8VtzekgXmbJa/Z0Hyqktd4LP59gODEZTXCKFSRdnVCBf43Qs/1PcA9VbRXpexbXveVOb8/wYtgLc1BhB7VFoLpzWxgVmL4IvT0nt3ovRF6xJ8i9PSeRXAe8ZUq5yRrS8ZlMjA8sz2CKnOZSobbaR5n0b4G8leydnnkr6LzaoVFaLj8Engmbg8HJizr8+2qe1vWcpYQfpekV8J1hgNbdEE4GxHmkz0Vt7cATlvWeyupvZ9g+lt3Xmzm+MCVPc9Q8N4s2pc73htYi+CYazThYzOvmRD/TgL6xf+nVQnvAaBXQlwnETo1687xjMc+DnyTMG3kdOD0Krpm4ERCh8ullV9XpFmVuqmh+edl6u+yabAifoSOrGUNY0j8O6LoV+O8ovnBRf4gytQ1RWn7+DLeX1JZiNptCn4bAH2K8gihk/dnhEGBWj4uSvlnqaRLvXQgOMg8Dbgkbm8I7LuMz2s/wvzoF+P2VtSY11/r5ybNThFfAT4t6ctmdm/cdxzBgU+eUwkT3jeQNJ7wgVE4dyD26HTqFbLiXsMTCR8fj0bNPyWtkQnrD2b2qdjDWRRm0RzLrkQNxuESBfPV/yU8t0FUmRNLMC27jvBSP47gmOitKtpNc5HrTcESNymos+liB6zKPECleWAE+CnBLLf0CLSFGu8vsUf522XPjxwD7GBmc2O8f0IwAyvy8FlX2+Dz+hnwdwWvpyKUmR9mBdXyFbXnEc+XtKuZPRTD2IVgXlREmfxVRpuM2j0U70i41w4eiiXtRBhpWl0dl6sYQu35jztYWHP5SQAzmyGpb+7a3V2HVOIxgFCPjjazY1Ww9EQDcU1Kr0aegep4OW3wuf6a4Dn3V1EzJY5adBpdTb23BrQDzOwxdZxzVrh8ksp5Se5y6pWbqGkmfICuFt85Wc/ta9cIO+txtzWeZ+Q87gKvShpGMEm8U9IMwhSUIiomr7dS2+R1oZktqqSBpD5UqVslXRzvb09CWhxCFS++pE0lKoWCV/QTCN8+WZ8Sgykw01Ww5jqe9ukm9xEcnWXN+99WWNrod3H7M4R55dVISgNJ3zSzn1Z7V+XfUWWsHaJ+J4IVUj1v+/dWuX7WBPtagmfwIk/URhUP1BTPDy7y21C3rlEDqynEkduie8vHN7UsQLqn+6aYvw4EfmFmixV98FQh2T+LpC8RphQtIDzPSn1QlA6XEdKtYh1Szat0GfP9MwltgfsALCyNVtYbPuBzeJ1i/kMwubhe0h8tmEUUzjy3MJfwAwQX8iJ4pas27y2b6ZsJntyqzXuq9+I7Jf7dN+F+UinjoWY8wVlXqTiYWWUu9P1Ur7grjDSz3yqsOVuZqzEhK1BwlvFdwnI0s2i/h0UUd1DUQwTHSBAqok0IH4wQXO4/XXRS5Ew6V0xF91jKIUbuhdOLsGRGtXkhNYPK/M2awrVSPe1TtKWfl5ldqTA/qLJu4EEW56JlaCRvHwdcqWBODsHDdTWTq7r5q0FtLfLP7lrCSOwn4vanCR97O8TtRp1ypDhx6+o6pNE1VVM+EsrGNTW9GnkGQ81slsL8wSvN7IzcB38jYSY3Nll++Xa6glOYSp45hOA0r4j/R2g8/RXAzCYrOFEqS6N5pl65AfgSIS3WIuSv7HI4v6hxnZMJHS41TYPNrHLtM2NDZihhvmERL8Zf3/irxv2SKu+zDxEalDdV0e5sYVrQFDP7nqSfAbdW0b7XzD4p6QALcz2vJXxgN0LlOV4br/djOna+zrZi0/aLCCNvF8btI+K+L2Q0nyc0Av5f3B5Pdd8DZdKg8r6dSI3O2QxlOqAA/o+08pBd57qZYCrboZyb2b7xb9lGTer84JS65n2E+msYHZfgnE2wPixiXOb/ZsL7v2i95NSyAOH7+BiLzv8UnMKeRbBq+DPty+z9CniJYDn2gMJ0wKpzeCnnb+TrwGZWYEpdwAZmdqikzwBY8J9RrY67jFCGPhm3D4/78ub7ZRyd1WZZhpr91zN/tLttb44Z8Hrg2ZzmoFq/xOv0Ah6ucuynhIbcs7EA3AD8MHO8Yp6abLZbpM3uI1ROp9b65c5tJA7DCBXxz6nhOj9qH4l/byeMUGxNNPEu0P64q55B9vpkTGcIL+tHaoRdiW/N5awIIxPXESrZunmGjks0/JowB2iNRu8tpuVkQgP9TII52ClVrl1GW+p5Rc0a1DAbzOjeQxhV24+CJTVy+fRrtJv4fS2fbxvMX0naMvmrRv7otIwBsF5K/s7oDyN8fL1KGDl/DvhUTlOq/JYsO2W0NZeeaDCuqenVSB02FViT8LG1XT4dGwzzVoKpXuXcQ4BbV1S+jZr1gbuAeYROh4eAMVW0j9ZLs+WcZ5LKTdxfagoGYTmzPgm6mkupNfIjfBN8kfDN8cf4v+qkwSOERn0/4Pkq2jJTicrWYaOLfinpUy3NSjyvUmlAmO97A/BkLMdTq+Sliql0Nn/XMq1OKg+10qbKsf0JVmPnUsc0ljDa/0PCVLiJ8f/mAl2ZumanZUyfZTV/LjLJrphi11yGrlYZBsYQlnGaTrB4+QvV67rbSDRVJ3Qw9M882w2qpW9R/Kvs+y3BKdwUgon0BYR5/aWfp4/wOkVMBLDgSOBoSSfS2Ty20uu1BmFk4p64vSch06e4Ct8wnl/EtwnmpFMJPdV/o6On6L6xN2/n3AggMe5F169p9mvBzfrgTmdVp5E4/I3wgk5ZdPwHcaTua4RCPoT20ZP8tb6jtOUJ6j6DzOHh8ZqVfYPivmqk9rAOIXxU7pO9BarkGUv3npp0b2b282iWWXGmc7RVcYZRRkuJ5yVpf4JZ81oEN//rEXrhNy3QfoHQeL2HMLpwgcKC75dmZJV8+z7CR82NUXs41c38kvNXCW2Z/AXpHor7SbqE8KJe+t6yjqZwZPZfE0fQK07cDrTOVgVly2+Zeyujrbf0RCNxTU2vRuqwipfTah6zGwnzRIJFysaS/kMYATm8QFfm3kppLZgD763gaKWX5Rwk5kj1kry88kyyZ28zu0DSZgTrk+y74coq95bqcfdx4DRJ7yM0on5vOedWkv7PzE6RdBPF5p7757bbCJ2av64Styw3K5jzngM8EcOvtppEmalEZeuwW2g3vW0GxhI62PJ1eaukDczsXzHc9cktJaWwtNUPCNNQbiOYkX/VzK6mmLppkONqwshtve+PMtYOkFgeKvkz0ovwXIfmdVF7NuFdVlnK6WRJO5vZd4v0ZjaP0Bleb6mhunWNogk48NnKaGXuWp2mKSk42Mre2zgKrGiVZtZdIcnTfazjziC3OgNVloqy4EjzgKJjBXwHeFjSo3SsD4qmap1BDa/SOVLN979CSNOFhBHhOwhzkEvjXpqdZUJhrcsjzez1uL0mcLmZfbhAW/EQV5kD8AbwHStYNzR+dCyw6IUxvnT6xUoNSbsSRnE+RTSjyWDWcV3bpWa/hIYWMQ6LCJPrv9PgvSfHIXNOGa+cVxDmNFSWrhkBnFsl3MLlCSqVaCPPQNLRhFHNe6N2d+BMy3kdzOhLeWBMRfXneSbdm6QhFkwxi8yMOnzIlNFmzkl+XgrzZfYC7rLgtXtP4HAr8Ggt6TlCL/7bcXskwTLifQXaB4CPVz7WYwfOLWbWybysZP6qqW20jCnRQ3F8XhcTPvBaM4LC5WckXWVmR9Tal1p+y9xbg+VsH0K52YTwMt+F0LFyb9m4ZvRJadtIHVaPZQkzpbHZlfk2p20lNJ6+Y/HDqFp9rTorDqyAPJNUbqL2DGAPQv76G2GptYfMrJqvjTOqBPq9ov3xmR5MMKsebWYbZo5ta2aPK0x7Kgqzw/IoCj4HziR0APaBpf4Kak7/iQ2AZuu4/Fopuuo7ITZ8TjCzL+T2f5BgpfRCDHc9OpfzSRa8LX+CYFJ7KsE7cXa+ZdE1q6ZBTveQme1adCynW5/QKNyZMC3mRYK36MI52lXKw0n596Ta57mKYEb8IsHPx0MFYU4BtoqdIJVvwCct5wOgWmdKhXynSua8qnWNpP3M7CZV8cBc5Z1+b2ZzCcHE+FzLeRaWlB08WmrWbWbfLAgzydO9EldnUAP+RiQ9RrB26dBJUuM7sK5X6ahbj9AJWVl2cjwhz+Q9ynfwih33bWdm5adU2TIMt/uvZ/2AP8S/UwnmAx1+Vc55JrfdK7+vwbg8QlhLrLI9iALzZ8L8htQw65r9kjEzLvpVOadMHL5KMNNak/oe755M2ZdJs2bavfVtDPy5kWeQ068FfItgWvRpYPcuSNt1CL3Rb8bfn4B16uSFIwgfQH0IvbGPlr034Ob490XCR0fl9yI587Yy2kaeF+1mrJOJHhupbpL4MGGphcp236KyEI89R/TWGbf7EebVL2v+StKWzV8l8kwp0zA6e1LtDTxdRZtUfsvcWwPlbCTB5HZfYLUautS4JqdtmXCjNsnjbckwTyaMvoowSvcEsM+y3ltJ7RTCVJo7aZ/+UPWZdXeeKRHuVMJ7eXLcHgXc2YXhb0+wVnkeuGkZw3qW0CBfI5aJkYR52EXa3rGePYkq044y2jJTiZY5HajiWTrWx1vEX7+C4xVz1d8AH4n/1zUNTk0DgsXLb6gznQgYG/9WlpVZuq9KuLuk7Cv5DKfQ0Yx/BMXm1x+Iv8pUqf3i71rg/1VJg88SOjfqeff+ZMq+LsgvVc26E89PNQ8+stavStjJdSChs3Zg/P/wWN7WW8Z7ewJYO7O9e7XyVe/nJs1OlpPj3zLORu6WdDvtZgmHEuZBLSVn6tEJM3uiYHezZdZptLAO5ICCc38bTWnG0NHUcam5lqSNzexZghOuTnHJXb9wxKhO/OvGIcMiwijC/9De02YUO7DqJWm4mc2I9zGC6o7mFpjZAklI6mdmz0YzJ+K5ZZ5B5ZykRe0b6GG9jDRnBRUGWGatWeBqSd8oe29WwhlGGW0mHknPKzJT0iDCnLJrJL1JdacRzxMWur+R8JwPAKYoei22jqaGVwKPSbohbh8IXF4l3DL5q6a2kfyVObequWVmhP0mSScQOkqyZlX5EYTSTtzqld8y99ZgObvbwjqjtxTsKxXXDGXStmwdluTxtmSYnzez8yR9mNDIOSJe544CbZfl2xxLzOybkg4FHpT0OarUa6pjerq880w8L9VMeb6ZtUlaImkIoZNx3YLwSpkfx2dwIKEj8PcEa56ZOU01T/OVMPOen1vMrJrjqTw3EUa6UqYH1Z1KtAzpkPUe34vgVbeTM04Fr9mV0Toj5LGLraMF1M2SniXkq+MVnO1VtZBKSYMcRxM6w5tofw5G5+lEfwK2sbg6QeSPVF/54QLCfRfuU8HUhixWPM3hx8CTceS0YjHVaWUGi1YCkn5mZlnHUTdJKjLvvpFg6vs4naeO5PkOYT55vX1IOpnwHTObYJK/DfBta/ekXNHlzbrHUd2sO2/xAIB1tnhIWp3BOq8JPCjur7Um+q2SjiWUt6rv3shFwJYKXrpPJcy/vZLQIZG/t1Tz/S8RVubYj/BMfwx8rEZ8q+INXmcpFs2SrYrZSpVzvhzNbyomk5eY2Q052c9qBUFxg2CupG0qL5loBtKpAEu6ijAxfhLtpo5GKGQVTiUsZl8Ujw7Xz1cIKSTGocLXCB4jUzzeZZeugdBA/GEVbb3lCZKfQYaTaV/Ufk/FRe0LdOfGvwcRnCtVKqzPEJa2yLO6mV2W2b5cUrU5eFBnvhol762oMVGtgVFGS/rzgtBonU8Y8T+M8MI7q4r2X/FX4cb4t9N8czP7ocJyB7vFXbXmHJfJX/W0jeSvquaWtJed/NIU38ic3qmjyMx+DPxY0o8t3QSxXvktc2/JWjWwbEyJuqZM2patw5I83pYMs3LvHyN4fp4mVfXu2ZX5tlMczOw6SdMInXKjq2j3iY3jTxBMFw8idF5V6r7lkmeWRrR+uckyMb4bfk0oT3MIHXF5Kp2K5xYcK+IlwgfrGDO7XNJoSRuZWdZnQKXz/MTcNQ4n0xDONDDvlXQOoQGW/bguamyuU9BgrkazxWWzatBQHUbHengJoeOq0zQtQtrMpn1Ju88Snkel4xcz+3ZsCLSYWaukudSea/kS9dMgy3ZWMBWmgkoux6P0ZeP2ozpFDW7M7HcK/jO2i7u+ZWZv1AhnoKT1rX2q01jCCHWedczsIzXCQdJHCXXR2pLOzxwaQnXv8amddtl32mJCGnaayhT5LeEbocNUngKOB65Qx9UZjqomjp1lVxFGzSXpLeBzFr1B56jMYc6+T6sN0iwxM5N0APDL2OlZ7d7q1aHhQsFPxEmE57gA2NvMGloS0efwOktR+xzbTocI82iGVDlvFMGkxgimGW92QVy2IzRwXovXfw9wqOXm7El6BtjEujgjx57Vb9G5B73o4yM5Dgpzng+0OBc5Qb8J7S/ae6zz0jVF53yAuDyBmS1KuU6VcCaY2XaSJhHWNV0oaZqZdXKsFPUTcz2s1fbdTegJzTorOLpKI7LUfLU691NpYNxL+FjMNjBuM7ONG9Fmzkl6Xgpzke4ysz3zYaxoyuSvRvJiwvWnAlsSzKa2jHXJ1WZWbbS/TNgpTtyWWx1SjzgiUFk25j+w1LfBbELH4S+XJa4l07ZMuI+Z2fYK88VPIPhieCxfDkuGeRmhkT+WkB96A/eZWeGI0vLIt4rzTTPbQ4EDikZNJT1lYX3S3wB/NLPbJE22OnMtu4pGy42kMcAQM5tS5XhvQofDYQlxuIgwSriXmb0/lrc7zGy7Au2TZrZ1bt/S+dHqOP8xj1V57/4EuDs/glYlrl8lNPRvpv4oVUMojJ6bVZl/LulpM9skYV+qVUSpNIj6y4BzapSBAwgjxvvTcf79bIJDrIdz+g8Q3o/HEXwsZPU3mVnWmV1pFNb/HUPHZ1Ho3FLSRwhWPNk50l8ys9tzukuAC8xsao3rbglsReiEzjo3mw3ca9FiJHfOFAvLZJ1HqLtuqJLvP0X4hpgl6X8Jo5bfL+rUkfSome2Q318j3kMAzGxWHd3DwP9YnD8uaQ/gR2a2c63zEq5/P2G09mjCINhhAjksAAAgAElEQVSbBJP8zQu0NetQdbY02YTgOG1GvMfCudm18BFeZylmVsZDMbC08J5DWHu14kH2G2b2xyr6JDOs2KuzMcHrLFRf3/cpQmO4lgfB7PVTXybXEOaDfJxQmR9JcN9eRJk4zAUmxRd8PY93xBdTrY+5IqdKlYp8EO0eg7PnpD6DpEXtM6T2sGbXGjTCHNVaaw2WMSuudW9l1qVsZA3LpOcVe+7bJA21Gk5WVNLEsBHq5a9GtGU+2Eg3tywyiWshzOXp1MGmcublyeW35MdoTa2ZnQecJ+l04P9yH0BFI3Cl4lombcuES7rH2zJhHkP4wHzBwtqNI6hdJ3RZvpW0l5ndA6yn4EglSzVTv2TT067MMxmSyk0m3P3p6MG1sMEb66b1JPVN6Czdwcy2kfRkPHeGpGrrikrSLmY2Pm7sQjDnrFx3z7h/6fsjc2K1Ds1HgBsk9SKMlNXqmC8zlahsmo0jdOAOjtsthPnreXPaJyTtaGaPRN0OtK/hXgmrjFUElEsDCPXgpNiJvJD2Z7ZFPP9G4EZJu+c7B2OadcDa17aeb8GrcVb/STp6b6/s/zhhFDn7DdjJuknSpQQz12nUNr+uhHGbwuoQlc7oZ82syGR5V8LqIy9Q8AxiWJOByZKurfLdWcTjCgMaY4HvKDiMLDKfP83M/qDg3G8vgkXFRXRcQ7tCksWDpB8BP7V253zDga+Z2WlV4jrQMs7SzOw+BSde2TD3MrN7qrx7q3U8HEqwXDjGzN6QNJpQ7oqoV4emWpok4yO8TlUkrUHHSumVAs1k4EOVj86Yae8q6ulWgrfIsoUsNhy3Iiy9kq0QOjUGqr1Mihqbkh43s20rvXZx34Qqvddl4nBklfsqbUodw3uRdvOY0YTeLxGcdLySbyyWeQa58+qOGqf2sDZCygdI6r1J+oqZXUACZbS582o+L4X5uFsTHOQsnSeVjatKejhdGSibvyRdSJhz+2mCuf8cgrONo3O6WwjeHCsv6T0IHRFjCV4+r8rpp9JuXr5V7Dz7keW8VkZtUvktWX+U0VZGBnYlLLdwLsGJSqcPoDJ1TRmWR7gl68VdCOk+V2Gpim2A86zE9JpliOf3zOwMhdGvPGZVvErHRnnF9HQAYeT0jZxmeeWZpHITtfnlXT5DWGe1cHkXSVcC7yd0ZmTrpp/ndI8SzFknxEbX6oTRxQ4jWlG7LcG5WcXkciYF0y1U4BW78i4uCPNFgrnvVKvzIRsbN9tbwlSiBuqwKcCJZvb/2zvz+Puqef8/X99m0mAIV0oydJNKg4qQ+SKJlEsRxZUxxKXbpWRIXbmX/Cikq5RL4pYpQ5qLZg3URWYRIcnQ4PX747325+yzzz7n7H0+Z/p8v+v5eJzH53P2WWftdc7Za+211vv9fr3PTc93BD7kXjXh7xEb+MU8agNCZPCOVP/mault0uY3SOWrGzrFh/tJpVzd79A3w0TT8pKOJjynHk+IZz2X8A6py07QY/3uc+5W8cHpO1iXTtjPOcAf6sYatVANTxsvxabdHxRqxfdz8qaQ9DBHqMbljswMhxHX7kmqsQSn99R5PtgVj4e69w/5vT5PiEGVQwy2tv3sUpnW46JK2VUkPYTYfPhKv02DJmPoMCRdaHuH4SWzhTdTg1rkCCUUZssWlpso7dxWeC4dN6yXKLlhVco8jsg3WhfzUbe7d0j/T9LDNjS/mRQd9Ia0I/lLIt6hjkZtULiLPcUN3MWaUixoJX0U+LztL6fnTyNck6q0+Q7K5xm6uPKQHVal3HbqI40/YELRdNe76Wf7u6R13L0b+nzbH1pk2fJnGfZ9fY7ea7mr3e64V27psAYuoHCHnbsFLy2vL9uvTP8eLel0+rtbrgz8o+1fA6Sx43hiV/wcOjfugoEibhUOadJW2n22NmWLa/oZwEdtf0nSO/uUPaRBfaPQuF6FF8OL6N2AqvbfxnXSLXZyADEZrhU7GTe2D05/h+b7rtuQVXeocbVPT+SaadFvIGIRy+ldPgFcTiyY6yg0A5ZRoxNQ4gOEiNx6kt5F3N/7WZSuJhSwHwDck1jwPjO1A7WMHU38jFA1bvLd/oBOqqFhtL1H3lksdgFsnyepLs5zYNxoopXHGu1+g6H6LGoek1uUbxvr+qi0sL/S9tslHQn0Eym7UNKmHh460zY+eFfgpem4iHvHR+nEVpdpGkNL6l+XlZ7fRHde2ROIjbxfSDqGEOk8XJFSq3bO7OZhTyul+9zfABTpjFarFlInNd+5RF8svptzCM+78rkbjYuS9nbHYHMO8Jg0T/oacDFh9d2zVH7QGGpJvyMMYQO/7xL9xoce8oI3U8c7CNeXrhyhfcqerl6V5n4D2FA3rDaTj1Tu7DT5LSyvg2KI29xM3qmI4TqAGAjXIga+kdvgdu5ibdne9stK5/qKQvyiStsbalu2pjMR3kJS2RJbKLnWKScOoukEpOlne5lL8ZEON7CXEWlWFlO2Dev0WcTWsTeRcqHMi2uOzQOtry9J96OkQqkadzrg/sViN3FjOvY7SXW7x43d8VuMIW0+W5uybSZAbca7xrSsd6ji7Qh1lsVOPujBYidjpTKx78Hdls22G7KTumaa9puCdeiEt9QqwhY45duVdBcP0JqwfaKkS4lUNyK0KXrUuhOnEovcy4Cf17z+UELgah26v9tbiDR+dVwPnKUQ6St7ELyvpmybUKK2Y9jZqf9+ChZEFc9SEuJyJ0vAT9KxQqX5fPfGbd4T+K4i9+lQT4uWv0ETViVCFFame7Pjj8Riusovifv5LnRnuLiF+vlSITz6Z0n/QCwI79unLccTi95f0cf1GJrPFUvsS8yXbgVQxIJfSP2Ct41q+DCKVd0exObHex2W4PvSLcbY/aZmLuAnEhlTCmvsS+jk5C2zdfre9yas7IVuRLl9bdm/dC45QlL2JbwcjlB4gZYZNIZCCH79O/2zdlRpbLzJC95MHbfbvknSMknLbJ8p6b/qCtp+k6TdiPxbUK/SXDBULbLl5AO1iyFufDOx/cX0783EwNCXlm24Hjhf0kB3sRH4paR/p2Mx35Oa1Ai0vKG2YZgl1vYX0rE/2z658t7d6U/TCUjTz7aSJBUL6GR57xf31KZsG4YuYiU9n4iH2ShdLwV3oyY2e05odX2lycbziBjL8jVTnbifJemLdNJB7JaO3ZWYSHfhjmvWIWmSuzYhplHXhqb9t81na1O28QSo5VjTmJb1NlG8bVvnLYqUUi8kLATLiNQp06CxdkXbDVkmdM206DfQML1Lqe4dCMvWmsAGCqv7y0tW5QUcaXyu7VdXiYHKuO7Eju5gu1/8epUfpceqDB+T/zc9uk7bp2zbe2QRvnVw5fgj0jmeAKCI1d+dzqbIcZJOtl325jhkwGeopcVv0KSuIib3v4dZg1P5trGuX0xzwP8gNj9MzAfrOJYYD5qknSIZKA6mO1b9UPfqZIhua+2d9F/stVENH4bTe/9MaWPMkR2ldm6jPi7gPRXbh6eF5ZPSoXe4PpTsaOAMIna9bHgoFr6NBECrzexusnYg5p/FhmXX5m2TMVTSsRXL8VjIMbyZHiR9g3D7OIwY/G8k5Oz7Krgli23ZvW3ghFx91CIVcb59KXafS+XbxBA3joVUuH3t725X1iNdH7fQNo556OdqiyIWojzYnwO8vfo7tPkORmhDo/gjtY8Pahpj2eizpRvYhsAx6dDLgZ/ZPqDm3I3LNqG0iN2R7lQuaxGucU8sld0Q2Ijoh+UJ6i3Albb7pUeYGW2vL0nXAZu7XlykXE7EIrfYWDsfOKV6ralexK3cjjoRt0b9t+X4MZF+1masmVS9aqh427LO+xD94mLb5yrETnZyf7GzmdJ0cj2pa6ZpvymVvy/dlva+cXKKuNDnAqc5xQUqKao2OVefOocq46ZyqxMT5apFqzaOusX593eNR031WDredgyrFdqqOXYdsIVT3l2F2+kVrqQJSuP+g21/QxHXuJL7KD9PitRX/5Xe36FferkHE/epqiBp3wWUwpNl9ZoFafF649jMVP4UYnO8WCS9kPi+n1Mp9wZiw7krV73tHqOOGsbQNmxf3znOgPcU+g7F3zWJmNjHDH1zdz1d36WkD9t+RZs6BtRdVlt/LPBGwnvhcIXg3Os8RCNmWL1DytXGP9eWzQveTJVkNfkrsXNT5Ag90RGTUC37cuDtqfzfYWBQ/2lEqqFT3Z3QfDFtvcolyfNkGaiVQW9Zb50IQD9hgdZtULOE361JE7G/T/sGmc59MvDatGNZ93oR77MHoYBdsBaxUH5kn/eNdfGQfp+XE25gEMJRH3NNzEibsg3PveQWsZNE4Y64+7j6gVqKuKX3TGQMmQQTHO8a1yvpVUQu2z/QsZL1jPlt26oJuGq3oc1iq+nkelI06Tfq5LatpZ+VSikVSvl+p0WmXJL0XeBBhEW2r3tquodcS2x+HErMP75nuyfcQ/Xq9TcTlqtjioVlKlu3ydp4ojzkszUS2kqLp2eXNtHXAT5XXjwpwmX+Bbi77Y3TQvJo90nZNykUasOfJhYvC1kqbL+5T/nziA2g/yRcVV9C6Lu8rVLuSmIO+GnbP+ypqLvsh4hx+wt0b6z1S0t0he0thx1LxwvXcoBz3T9X/diQ9C3b27d8T5EC7ltEntqbgGtsP6hlPWO51qdZd2X8KW8CrQGsXMxxJW1m++omdWaX5kwPlcXoMJeCNwKbuYH6ISGE9TzgMEkXEwPfF8s3pgJF/Ok7iZiP0wl5+tfbropcDY0hlnSe7R3Vm2d4UBqDZZLWdcq3lixH/fpL4zhmdSf8RtJv6Z/wuzGKvMUfpzs1wj5OwkcjfgdtGeYK1jbep3j/wIVt28/mEJf4cHoMpE3ZJjjcxH4C7JCsWkX+6uuqi92az7PwEuP7zcZC299AHeGyPxOxdWdQE1s3wm/bVsQNhvTfNm2YQj9ro5kwqXoPAB7UYMxvMy5OxFW7JScQi62nUlps9Sm7se3dSs/frsi/DUzummnabxJHDvisC662NfxMoYpvSasQMXqLiQuFyMjQhAfZ3l3Ss2x/QtJJdHvClLkeuBfd19ctwEMIN9kXquNR80ANCQsZYQxrK7R1M3CNpK+n+p8MXKQk9pR+u1cR94Rvp2PfV2TLmDb3cMTR7++Om/PFA8qvYfsMSUr3uEMUscXVdGXPJH6nz0j6O7Go/oxrMoAAaxDX9lNKx+ri5Av+ImlH2+cBKBSW/1JXMG32DHVLTptw7wb+wfbTFDm9d7B9bE3ZwkD0QNuHKrxU7mP7onTOVovdxBfU3AV8EJO0bJ5f/KOWngFDKMLIFjaBiJC59QnX7CemuhstdiFbeDMlRpmsKRQin+MB4hY171mJuNm+DPinPvVe4Ugn8mxCzOINwDl1u8zpZlPeresXQzysXeUF7osIFcsiZnB34F2upD9p2wZNLuF3o9QIDepZ+A5GaENTl+K1gFudrKTpeliteg2Ne/FQfDa1SzXQuGzLtuxL7Ih/M9X5OMIl8uOLqXfeKf0Gew8q50XG7qhiXex3rPTaoseQNn1nkf1sLOPdqPUm68+uTcb8FnVOxFW7DeqkCyncB1dJbe6ZqEq6EHhTZXL9XrdwwUzva3XNEJuFfSn3G0l7OPJ99rjXDjnPPQktgScRY9PXiPCeHg+vcaOOResc4JXArwhrf93Y3JMmsDgm6RrbD1Mos9+XMXrUlMawZxGbaLsQKZzKdf+P7Qsq7xs65qliXZe0MnBZ2/v4YlGyRqYNqw8Qm9Wftb1xn/IXEP38s8Q97RfAe1xx166858FELu89bfcoQI/Q5i0IvZC1iev2d8CLHXHGo9b5FSLH8kG2t0i/x+V19xFJHya8HJ9g+x9Tf/1a9Rptce5lhLjWBen5QBfwIXW1dqcuvbfNor+VZ8CQ8xZ94ArSJpA7Ft++9/KB2M6P/Bj5QQgzXEHEOH6geAwovwbh0noK4d50VJ9yV6e/HyMWxRDucNVyGxGDQLn+B4z4WS6rPN8UeHV6bFp5bd1R2tDnM/QcG6Htlw/7PKN8BxO6Zr4FrFl6viZwwSLqW7dhucvS32sJi8N6hCLgPYgd7br3NC7bss3XletJ9V7Xp+wGdY9J/04T+u37Xl9EbsTNB7y+I5G7E8KbYKMBZb9KKD0+ID0OAr7ap+xYxpA2fWfUfjbO8W7UeonYt/9jyJjfss6rKs+XVY9N4dq8KP09B9gsXWPX9ym7JfAd4Mfpcfmga3eS10y/flMa7yY+po/xN3hp+jyPJSy4NxKCWXVlv1ceB9O4+L30/+WV7+CTY2xjdZ6wwxjrPoLYaL+WsAB/nthon/bvsDOxcNyMyH1+KbDLgPLbEvfx9YkF4ueIxVpd2Q0JK+ClhC7HAX3KfaDm8Q7gWUPavhahDzOO7+Hi8vWU/r9i0HVRKbuouR0187pp10N45exRfBZi4792bAYuTX+vrH6HI5z3g+nvt8ufIZ3/ylHqzC7NmS6Ste0a25sMLRwcQ+zoDVXSk/QZYqfmdOCDwNlOuQFr+KKkawmXlFekHf8e12fCAlu2jt6Zjo2yq9al1OfI/9YvB9wZRE61tm24XtJb6U743Xj3fQBnq0FqhAa0lqYfwRK7ukuxZ7b/pBDnGJXybzGwqelvm1QD40xLUOYmwhJQcAvdOfvKfKn0/+rEQuI66vNizztd15ekswgLycrEBOhGSee7ogKsEHvbhkhfchyhyvpJOiJWVZ5PWNALi+I56Vgd4xpD2vSdUVNAjHO8G7XeOsXbxdZZ5/785QbnGCcfSVaZtxIWuzXpdcks+B6xONmYiDO8mbD29cuF24+RrpmG/eamZHHZqOLOC9SK/tXmRy+Vby08MwJrE/GfAEU6uDskbWn7ikrZA4DzJP2Q+G42Al6p0CApLN2rSnoBEULSE1/tPvGgQ6j+Zv+S3C6rdXfFfqujL1AtV7Zev4WII7+K0I74su1RXFgXhVtkqUjlC3fnP9H5/XpQCKKtAnyGiEEfNPdZHdiEbmX+HxHpDh9v+3WVuldLZR4ArKyU29W9KXzacKuke9Bxr92e+E7quD3Nn4uy96KBuvQQzlBkQfmc02qvDkkbATe4WxDt3rZ/nIq8cBFtuKfDU+RAANt3SOqnYVIodd+gSKf0S1L4Xk2bB+Zzt/3qdOhsSf8GrCHpyYTnxxcYgbzgzXThyBV7naQNXB9XUWWV6uR0AMcCz3cfwR9JT7b99dSOtyjieG9Obfoz8Kyasiu7lNPW9m2SRk0b08a/v3zTa9OGfQiRr+JGey6VhN8jUrj+FRO0Qma+KzVCA1rHONjeMf0dmN6j5L53q6StikW4pK3pE2vTkKaTxuKztUk1MM60BKiTdusHwLclnZra9Sz6TJbd65q7FTHoL0Wq19fatv8o6aXA8bYPVrjnV3k2cS0XOS1/Kanv9eZQDN5fzUTcxjWGtOk7o8YSjXO8G6leD3E3l3SKI761TZ1t0ttNBNsfS/+ezfD0HOW8sr9YzGlHLNuk3zyD2Ag8gcHxvAVFmpJHE95NhbDg7vTf+B03WxMbW8WEdmdiXNxPkcLnCFhw9/wD8GBiUQThIVNsiheKu/sRcZXV/L4wOB50ENXf7Iul/1cnxqq6lIDbVMrtTu9i4DUO5eiFRa76qElPAqV44n5UNz1ULxxWLl91wX+R7esGnH/v0viyOfBod0KfPkzMl3YkNgSqnEosRi+ldK9eJG8gNr82lnQ+ETNel48YwgL9eWA9Se9K5d66yPO/PLXhDkmFkGydEWHg5qJbxLnW0GbR/850zz2AyGu8Fv31WRrlc6dmE4jw/GxNXvBm6liXEFe4iO5csXXxQ1+R9C/0Kun1pP9wfV6wMocTKrg9dTiEtG6tKfsbSbvYPg0gxdU0EdCqo00cSXmQb9yGtOCbxE75WXXtG2F3c9GxNAMoLLGvA06W9EtiAL8PYdEZlaaTxuKzbZf+licg/TYF2pRtQrFI+2F6FJzatALbl0nabnjJuaR6fa2sSJmyB+F23I/bbFtScdO966CTaIiIW4VxjSFt+s6o/Wyc492k6i0Wi63qtH0KEeoyVSTtZfuT6pMD3vU50gfmlW3BqNfM0H6TNhu+JelRtn/Tr1JJR9l+TbHQkPQKYEen+FZFLtB+wlHjZn1gq8IDKHl2fIlwcb6UsKpj+++S/p8jpq9vjKYjxvo8SZe4JuZwRLp+s3TdLiDpU8B5NW2pevD8l3qFnfZmSH72CfMc4npal1C4H8Z721Q+aLGb2J+OdX5dwsuiWFzdlVCvvlNS3YJ2XH1ygXSvfRzhWSRiU6U237DtE9Pv+cRUdlfbixJ7s303hWDqg6kXQiuY1EYoxOK10aK/pWdAo3zuDi/QjzKaWFcXecGbqaPNrlThJnhg6ZhZfALrpmX3A06U9MH0/OeM7r7RJtVM+abXuA2SHkIE9D+AbjeOURdQBeX0FKsTO+OjDLYjpdtpiCDcnxQKl4WgRd+byJi5M51/qItWQZuyDetrnW+5MhFfRlhB6iwIS4Hq9XUoEW97XrouHgh8v+Z9n0ku++sk98F9GHwDPBZ4pbtF3I4jrAZVxjWGtOk7o/azcY53k6q32IAaWqfmQ4m82Dyp8xjot5l2gaSHe0he2QaMes007TcMWuwmqmEB6xKWmWLDec10bBqsR7d17nbCNfMvNYucRu6eiRMkvZbuvMlHj3jfGfabPZj4HF2oO03UMmITdeX0WqEmvZGGqElPmD8ShoSvADsxfE72NttPlHS4RxAmqqF8viMIJfKz0vHHAu9Om53fqHnvuPpkIbZXx0Mk1brCSzrB9guJ+OvqsVHb8VJiE2B9Qitne+ACOmkSCya1EYrtS4ct+jVaOMQJ6V5em89d0lVD6mwt5JYXvJkebJ+tmuTnfcr25LUsU3ZTbnLqNs1M5/8hsL365LWtuMgMo81u+8JNr2UbTiYk1T/GGBeXtrtc1iS9l5gQtWWSFt67Qu3NpO9NpCFNN0pWSuevjcurs4a3KdsGRU7Guniuuo2Pu5XK3kF4U0zdEjYmqtaRk+nEaOGI6VpI9yLpQNuH2X6vIn7nj8SN921DxpU7i8Vuqvc8SbWKrGMcQyZu4R3zeDfRehvWOTAMYhrYPib9+w3b55dfU6gv17Ej8GJFXGbfvLINGOmaadpvWral4D3A5WmMKhYah4xYV1tOpBPqAeGGfFJa5FTdqpu6ewJ8iIgd/VB6/kIi1dxLR2hj129W2rQpwoh+BdQt/sr36DsIsbM90vMLgBsIobRyuVtoHxe+GI4mPLEeSHfqwOKzVQ0Z91WksNpF0v/Qq4PSNvRn4Z7oSIv0ZUL3BeDfbBcbvW9aaFhnYbQy8BJJ17O4Pgkd9/f1CFfhb6bnjyd+q7q5SpemhiKed+uacm3Yn3BL/pbtxydDwbtryk1qIxQ1y518SZ/jg7iNSLd0EJ3fvXyN7Zz+vir9LevejBQSlNMSZXrQGJOfq4Uc+iTKTvD833HDlBnlelWTkH4SKMRXLnb7BOUjy9c3qPsG2/eVdFzNy3ZF5KP0vo2Bn9v+myKN0+ZE3Nof0ut3d40LfU09l9neStIBpcML1vC687cp2wZF3HK53t2AO2z/a03ZbQnlzgfQ2aQc9UY+U9peX6XfbF8iLVmtFavmff9FqAKXRdz+SghdtZqIzXqsacM81KuUTmKcdU6Duvb0a2PaEO7BkYN0UeecZVlJIqxJt9MJ5/i27V81qWscSNqGjtX5fNt9J9Oqcfd0Td72uvt1m3t45X0zu24lXeiWqa9GPM+Hbb+iQbnnEvGVOwIX073gdZ8N3EH1XU7ovFxbsYiXK72s8p7avlgq36pPVur+GrC37RvS8/sC/237qaUyBxL35zWI/NjFd3AboUVwICOiTpqtK4Dt0hzoGtvVxfVGtn9U3lwsjo167lLdGxL3z+cRsbaDcie3qfd64JEeks+97n4yah/MFt5MHeNMfi6gEJlYyCnWhx+3qLdp2VHVUIfRxjpbbsMXJL2SEDcYGPPchor7x0pEnMWirJAT4FcAtvuqOPbhFGAbSQ8CPkLEu54EPD3V1+q7a2MNH6PlvFpvNZb0fEXMfB2fJNzgr2bxqo9LjaLvbAAcI+kBhOXhHCJHalW5tWBcIm7lNiwFJtXWqrr2GkRKmLqYvKaujXPxvUragbDi3Evd4QNr0d+zaeRJ9JQYSf3ZtiV92SGU11hXYJykBe5Qi5Gau3sC3Clp48JCpXABH5uHlaRd6LhLn+VOLGO5zP5EWMUtRDjGVsBbbH+txakGxXGOjSaL3VTus8BnJb3V9jv6lZP0MNvX1C3CKsfOJ6z2/0K3pbtsmesau8t9URG68mDbxylUktds8jkGcP9isZv4NXEvKp//MOAwSYctZnHbh58r1Iz/F/i6pN8DdWPPKZRi3xOfZfEW5uL7PQI4Qp3cyYdTMzZK+jqhvl0YI9YlclI/tVqWEO4cmss9qtGjC++b5FGwbJTPkhe8mTr+5gh6B0CRbHtUV4DC9fjvkv4fMeGsL2g/R/1jJ4oynyvKtjl/QyY1ASu3Ye/0902V10eJeS6zc+n/O4BfO4mOtGSUtES1svMFpQXpZ9VHGCaVqxOHgVDZvUPSs4m8zUelneDWTe1z/C7EpKkJbcr2b0j3d1bEc63dp/hvbI8kwz+HtL2+ivHjYFhYaL2M6D//RX+X0LP61DPKJlDTMWQaaYmGMSmXrYV6JT2TEKtZlYg53BI41EnUsMUEfl7cy1YlJsYr0x3H+0f6K7KOi0ldMz3frfq4ltMriHSZpG3dSTUzrzR194TYMDwzWZUgvGXabrwWVDd/3pPacWLRLoVQ2L9V3reP7fdLeiqRd/2FhJtmmwXvvPSZLgYtdhMnEAv8U+hNIbiwMHMnFQ2Ey/npDjXyt6b3DVpUV1PXrcLg1HVNOEO96dLq4oexfWBa4FU9Ds4Z9eS2n53+PUQRYrA2kdYTgHTNPwxYu+Dh2aYAACAASURBVDJ3Xosxbo5UrLx3EnmU67hXsdhN7f/9AGPZrUSM9pl0G3+q8b77Ah9XqD+LEFMbycMuL3gzdZytMeW9qtBEZGKU2IlBtJkktHHZHnUHfZwxzwuM0eLQ2m2dsLgVMUwbEAOSiFQQPwWKz1xMKB9KTBAKcY5nEgno+3G7QtRjbzrXxyojtPOJ0M4aPkHLefk7u53wWNi3T9mDJX2MiK0q3xhGjXmeJW2vr8JD5N+JicuawOXEBHaQcuy4RNwW2tCANp9tlH7WhGlYeA8hPIDOArB9hSIP5GLqnBnJBfZsSf89A8vtpK6Zcs7ehwPHEylwJOk3hJvm1QC2/7vy3u2APSX9hJiULiYWcpL81fZfJSFpteQG+9A+Ze8BbEYsdHcFdqB/apVhVH+HpwNbOtRkkfQJYoyqLnhVKn98snjORR+YAqunuV+bhdm/O/K/7khYdd9LLIL7ZSholbquCbZfndr7mHSob7q0Ph4HFzJ6RodqW3pc9Ym51M7EXGtnOtfYLYwWn96DOrmTT2Z47uQ7VUppmhbK/eb6jfK5J2+4LdKCF9uj9tu84M3U0jjvVbrR/G3AsR+XXipEJu6U9Bc6N9IFkYnC3TXFTmxajZ0Y4bOcP7zIwrnbuMYu3PQauuk0pSs107QZxbW6WMRL+ijwedtfTs+fRkwuinJvT8fPIdxvbknPDyFST/TjJYQow7tSnMpGdAQM2rA2oXg51Bpe+v3GZTmv8mZ6d6/7ufe8hMg1uQodl+ZRc0jOlOr1VXZV6nOsEOZ5DvH9f4lQWL2wOu5UztPYFX1c/bdN3xk1hGHMY82o9d5u++bKXH0Uy9NIbR03kv7L9uuADyqlvSrj+nR8Y2HUa6ZFvwE4BniD7TNTuZ2I0JBy3s4yde6H80hTd0+At9o+WdJaxOb5sMVTX/r8ZuvQUVPu56lzaZrXbAQcmBZjbUNUluoCeTU6C7NyPuRbCI+dOgqX82cAH7X9JUnvHHCOVqnrmpI2lpvca9t4HIwF26cCp6br6g0VV+IjiQX3YhmYO7nCQUQasLOJa/UxhHt6D7Y/oUid9JB0qDZbR1roHkwKGUh1HzrKwjeLVmUGklwv17ddqxSoFkIfLc/7Pdv/WHq+DLimfCwdXwd4Eb1pfiaR67aWPt/BSOJUaij4Mo9IusoR+zXs2HXA5sWCRdJqwJW2++3Ol9+7LhFX01q5svhNJJ3hIQJsbcqOgqQrbW+edq/fQUzA3ma7ZwIm6bom381SpM34kSarjyYEUnYHbrS9Y8Pz9BVxG2f/nTSTamubeiUdS3gbvIUQW3stsIrt/SrlZj42N0HS1u6k3uihj2VlprTsN60FmyRtQceqda7tvrlu54H0261NbCLeVvP65bYfIekw4CrbJ43rXpu8j94DlFWt32L705Vyy4Atgett/0HSPYD7FfcydeJc700snAAusn1jqY7NCsv8UkId8cEdbDdahEn6IvAL4MnEhvBfiO+j9rqV9EbCnfjJwGGE2+tJto8aob3n2d5RvWnT+iqBq6HA1CSou5bHOZeU9AzCdbrsqt3PK+6ehHUbYvH/29JrD7N9Tfp/JyLn8o+J7/X+hOfJOZX6TiH0S4osAS8EtnDzsMYFsoU304Mi79kuxPVxKXCjpAtsv75U5j7A/Qi350fQ2Xlci4hz7Ff3UHGHRNPYiS8D3yKs0VMV9NFk4ieW8g7ULxWup59Mz/ekPl/s8cBFkgrXoF3pDGY99Lkez3eDpOUVlilc9R+imlhid8cQtyk7Cm12ry+QtKntalqOJYtaCgVJ2oyYgD+OiNP6GQNcmtXAFX1C/XciTKqtI9b7GmIn/2+EeNxXqY+tm9nY3AYnAbl5XNhWadtvEtcrvEjKaT36uiUqxJVeRseq9UlJHxll4TAtGvx2v1Dk8X4ycHjaZB1J+Kbm3J9K96hikfpml1Sti0m+w+X5stL7bgJuKlV1giIe+D+IcAEBR0l6k0MciqW42E0UmxA3STqDyK28maTNgV1s19379gD+CXhv2iC4L93aJ124feq6vhQbqW6XNq2Nx8G4WSZpXdu/hwVD1VjWd5KOJub0jyc8PZ/LgBC0tMDtN68vYrkhLNBPKazHkh5CzPerm6wb296t9PztaVOhNXnBm6ljbYer5UuJWJODFbm4yjwVeDERr1Ce/P+R3tgVgH7iDo92jbKdI3bi2XQWx/1iJ1YfYeEzLsrxE03ddJZnnk+4nnyeWGyck451Yftdkr5Cx4LwEtuDRKiaXI9N+GdicV0Vp1ls2VFoMwHbnhB3WGzOz3mirVDQe4jr6QOEpbbH9alCE1f0pdR/J9XWUep9hu2DiEUvAJJ2p9uNFmY7NrdGkXP3EGBD4ros+tliBQXHySgCW/sAbycWsCY2igYJNu1LWKhuBZB0OOEaObcL3ga0Wjy1xRF6dVqfl8uT/EGI6FPbFlZdhdLwNwhhp7lG0v3o9B2gI9hku7D4fZT43o9Jx6+UdBLQs+C1/WdKrsTpO76hWq50/o0Ib4Svp+drSHqA7R8v7pM1w0MEpibMkcCFkooxeHfgXWOq+1HJG+1K22+XdCTwlRHrKrvkr+KSq7Tt/5NUp83yF0k72j4PFsbpv4x0cmeX5kyFZB15CmF1O8j2xeli75lgS9rN9ikN672SbnGHlYDL+03cFQHvD7b9DUl3AVZyivsslXk9IVDzRcaY5qcNLd10BsY8S/rcKK4asyb9lofbfmPD8j3pA9wnZ1yb67HhuZ9mu++ALWlv259oW7ZlG+5CTMCucqT9ui/wcNco3GpMOT/nEUkbjuNzSDqlsgvc5r2N+++smVRbW45hjdxp52FsboOka4HXE14kCylrkiVurmjTbyTtbvvkYcdKr11FLLr+mp6vTmwyPbyufGYwTV1LJV1GLAIeXjq2DPjOvH/3aVPkecB36fQduxL/ro7b78J3IukK21uOoQ2XEIuz29LzVYk8ztsOfueiz9s0S8VEkbQpHYGsb47LI0zSRbYfKelbhJbG74CrXRMe1KCucs7vjxOeP2WPwJVs71N5zxaEV2Ch0vw74MUeIcwiW3gzdRxKuKmdnxYXDwS+36fs+YqYrn+w/bTU6XawfWyf8k3EHZD0MiLY/e7AxoT79NH0KiTeRrgAHUTHhXEcaX7a0MZN50J6d3sXji3FxS6A7TvTInYoap8+oM312KStw3Yn9ye5WLcp27INjXevl4eF7QD+W/VCQW2VLRfT39v031kzqbYOrVchQvd04H6SPlB671qEFb3KPIzNbbi5QX+fF9r0mwPptb7XHSs4Dvi2ukNO+t3PM8NpY1U6Xb2hXEvhmtwVeGh1M7+G30ramPSdSHouA6y2LVnZpfhtR2rNVcdU9yCaZqmYKGmBO4mwpy8kV+3/IFzyTVjqF8srgFcRGhAQnicfqhZKC9stFBoe2P7jqCfMC95MD2nn9+TS8+sJcZI6jkuPwr3t/4BPU3+DPAy4PLl7FOIO/RJ1v4pIffHt1Ibvqz6f1wHAg1wKjJ8BQ910NGLM8xLjckmnEdfOrcVB96bPaZU+oOX1OA7mIZ/qikLZI2B14ncdRQV7Ma5Kjd3s5oBJtbVJvb8ELiHi6S8tHb+FsIxWmYexuQ1nSvoPYiOqbJG+rP9bZsbQfjPCBgUQ+gSKmNRiA7Mr5ESlWMHMWLnN9psUsfTFd983Dc6ccT2xcT1swfsqQiF8E0m/AH5EWPbGwW8k7WL7NABJzwImPva4YZaKJcy1wJ22T0kGra1okE6oD4X1fSXg47b3pDsksocU7rUbSfxQKTuA+4hmDSIveDM9KILHP0wzK8I9HbnSDgSwfYekO2vKDRV3qPC3tENXtGll6ie1P6B/OpdpcRfbF6k7TUd1QtEv5vkW+sQ8L0FWJ0Q4ylaGuvQ5rdIHtLwex0GbxVOOCVkEToJBJc6XNCgn8yRo0n/nhUm1dWi9aaf9O5JOdLPUXPMwNrehUEjfpnTMjCmP5jhp2G/ablCU67+MksBShTNoFpO63KPoMOvb/tmAYsUk/5NESrVzbV9bLWR7e0mH234zpXtm6djcIekooo/8mdCZqOaKryqy70qI2Z1JaFbcCjxJoQg/khBRif2AEyV9kNiI/hmhEj8ttre9oHtg+yuSjpji+SdFkdJraD5k1WS1KB9ziuVOHoEbSlrVNarqFU4lcmZfyvANlYHkBW+mjjZWhFsV8vrF4mV7+iR0L134p9Ucq3K2QiV3DYXy3iuBL9Sdnxhoz2TwQDtJhrrpOOI8P6EWMc9LDaccyg34jEKwaZ3kur4Pg11kpm2ByxbeKVGJf1pGKDT2DXUYVNUimjFJN7txM6m2tqn3+33caauuyvMwNjfG9uNn3YamNOk3pQ2KkzxA5E3t49/zmJdIG7dfBvrG2Loj2HQsIdR4VOprlwPn2H5/qfiTiRztZZ5Wc2xeuCT9vZT+ol1ltkmP04jraC/gSmA/SSfbHnmBaPuHwPaS1kzP/zRqXSPSNEvFUmNoRglFnP9dgHsqUgCWPRjv16fe64mNutPo9gisWnzXt/1Pi/wMQF7wZuppY0V4AzF4bSzpfCL9R5da5Iid4S2EWuRVwMuJXcGP1ZT7X0Z3rxgXbdx0zpD0Pjrq0yMn0Z43JK1PKHkWsbjnAvvb/nm5nNunD5i2Be78CZXN9FKOf7qD6Dv71hWUtAawgUvKjiUWMyGcpJvduJlUW9vUW7aArk4ogtYJt8zD2DwUSXvZ/qRq0o/BWFKQTYLG/WbQYjfRNqY6e7V0c5mkbW1fPKiQ7TMlnUN4uD2esEg+DHi/pFcQm/oPVHcGgrtRusfMmzu5O+KOdwX+avvO9HwlYLWat6wPbFUsRhV6Hl8i5kOXAouyiKqUL3Yxrq8jUs5SAX2yVCxBmmSUeDnwOuAfiN+xmKz9Efhgn3p/mB7LGJwJ4wJJD7d91YjtXyCrNGd6UKSMeTVwsiNZ+HOBfW0/rabs7oSg0P0JP/vtCBeIy0pl9qfTGco7Xn8kdox6OoSk9VxKuJ6OPbRusqsQJnhIenpdgxv8WClNlNag46ZzM9DjpqMxJtGeNyR9ncjLWc73uKftJ5fKrAR8o401pc312LC+ewPvpoHQWpuymckh6ZmEK9WqtjeStCWxUbTLkLc2qbtx/501k2rrYutNLonV/IkzH5ubIOnlto9Jk+8ebL992m2aJqpR2B5n+eUdhbr3g4icq7dCfdq45O57V0Kk8lzgPHfSD60NrEvonLyl9LZbXFL5ndfvXqHg+6TSQnZN4Gu2H1Updy2RjeD29Hw1QoV6EzVUsx7Qhtp8sbZrN4ImRfot/+5KRpGlitpllHiNh+TrlnSC7RdK2r/i3dCv/HeJ/lWblrHNJlBe8GZ6UKjgfoRIcP970m6/a9RildLDJP/+dxCT0rfZrvPvH9oZSmWvIxbOn0nPDyAWOZtWyu1ELB5/THSE+wN7O+V/mwbJvbbsprMz4abzAGKRdkSpbI8Ef92xpUjTz5Zu/M9patXucz3u5RHz66UF9HFEiqMtFPHhl7sm9UObspn2JO+PVxIiLUWO0KOdUqKUyl1KxA+d5U46i6vG8Tu06b+zZlJtbTmGlSfcy9L7XmF7i0qdOzHjsXmcSDrQ9mGzbgc07zcN62q74F3UwmR5Qw3Txkn6T8L1/G+E1fYc4ELbjXOKzut33+Le/1ZCtPLUdOiZxJhzJCHQNbK3SmkuWvxdE/iK7ceMWmfL828LfJyOtfJmYB/3xtsvt0h6FXCi7T+k5+sCz7f9oVKZ7wJPItTHd6ISIuFKGqdh/avN+JVdmjMLVFy6qsICu1GvptbEv/8Jtr9JuEb0WDLdq+IL0RE+kizI9wa+R6g2VzkSeEph+VUIHH2KuLFMizZuOmNLoj2H3CRpLzopFZ5PiFhV+RNwVbIIl2M3amP7HKrMT0puU8vGsHPaWGitZdlMe44nRHSKjbAXEB4Cu1fK3W775opb+7h2ayfqZjdmJtXWNvUeWfr/DmJBu0dNnfMwNo+T3QkL3DzQtN80oScmN01U709pjljy2qrT3Fhhsf0T1eSVryn3egBFRoIXExup96He9bfv6Rbf4olwq6StimtE0tbUzGtsvyNtIhdhT/vZLuKAFxuaUZzvz5L+gZh73HeRdbbhWOCVts8FSNfEccDmA9+1fPEy2/+veGL79wqdlnK6oaMJ4bsH0u3+DDVp6+oMbRUaawrkBW+mTLEz9VAizuRU4mJ6IdBPObWJf//jgG8Su3lV6lR8sX2DpNOJtEV/B97iehGCVcpuzrb/T9Iqfdo6KdajWz3udkJR+C+Sqqpy+wHHJ7cXCIvl3lNo4zTYh5iA/Sfxu14A1AlZfY6a37wfkt4NHFHZNTzA9r+P2M7GQmsty2bas1nFa+PMtANc5RpJLwBWkvRgInffBWNqQ5v+O2sm1dbG9bYIR5iHsXmczJNYU9N+Q53rYOXYmyuvvYNYkP2Q7vzJT4BeC8yKjhrmlZf0akK0amtik+jjhGV+eeB1wMmSfkn0k/sA/1xXMC1wL6l7bZF8Ub35Yut0XybFncViF8D2eZLmVe1/UqwkSU6uw4oQtq5cyLY/AHxA0odtv6JfRS1clRtvAuUFb2aBIlZJIaywVWFJk3QIsdtfxx6Ef/97bf8h+fe/qVLvwelvUxVfJH2DiPfdjNhpPlbSObbfWCl6iaSP0a2MN4nBdBAnAt+WVHbTOSlZJBcmIZKWEcnZx5JEew75tRvEVNr+hCK2bxNisLrOg6Xpn2Z7IXVT2jV8OjDqgneo0NqIZTPtuUzS9ra/BSBpO+r772uIXN9/I6yEXyVCKMZBo/47J0yqrY3rTRtAB9Nxpz2PiKeuenPMw9g8TubJuta030BsqFZj5V5cHKuJxdsD2HjImJzp0DSv/OqEl9ylbpbWq4552nQpcyVxP39oen4dvYaPiWK7uB+cIumLwOpNw6bGxNnJ+PMpYqx4HnBWEQLi+cznPW5OBz6dvgcIMavT6woOWuwmxp7+LMfwZnpQxM9ubvtv6flqwJW2Hzr4nUPr7UogXRx3jYqepF1t/2/p+crAgaVBrVznq+gkaj8X+FDR9mkhaRs6O7rnl9x0quUusb1N3WtLHUk/AH5N/AaFKEfPDSctVo8hLAgCNgJebvsrfeq9Eti2dD2uAVxi+2GLaOvKxM1ZDBHTaVM20w5J3yO+25+mQxsQk6U7qBF+mWA7GvXfeWBSbW0xhn2diD8sL2R3sv2kSrm5GJvHheYofrJJv5H0fMLVeUe6LYlrEdaoWtdkhbDiK1wRjczUI+ki248sYgnTJtGFdWNXsnjdm+75z0+r5Qac6+7zaGGvi6OsOzahcw8U/OwTMjeJdpxZnLI4REdJ3bbnLp/3uElGnZfTCXv4OvAxJ/XulnU1Gm/bjMt5wZvpQdJBxC5vIa++K/BpL1KwI7koFwmkFzqA7SP7lN+QiIv5RlrkrFyO30w3j+O9CKGDaSPpPcBvgU/THb86dzexUZC0AeG29Wjg6cAf3CtccS2ws+0fpOcbA1+yvUmfOt9MWJyOS4deApzm0QV66m6QNxMqhFVl8MZlM+1RH0GKEh9kgGWtiUdBZrxIutr2ZpVjXQJiS3FsHoakf7P97lm3A4b3mxRXuiGxmdij/EtsYNdaGdPGx6lENoFy/uTc12qQ9EbgwURY12FEaM9Jrgh0JpfmQ4hN4b+nw1Pb1JsEku5DpJb8JLG5Uk45eXS/e/qY23DcgJdte59JtyG1o6ry7tSAaaVFWq5oumHSZhMoL3gztSQ3jELd7hzbl4+hzp6J0oCyLwP+Bbi77Y1T3N7R1V1pSecBT1gq7leSflRz2Lbb5kKcOxR5eB9DxGxvAfyOsPIeVil3se1tS89FpA/Ylj5I+idC2Q/g67a/uoh2fgnYgRBlgxBIu5SYHB5q+4RRymbao5SioN8xSY8b9H7bZ0+yfZleFHnELwI+kw49F3hkNdxkCY7NRwDvJMRvTifEZl5v+5MD3zgDhvWbyvG7An+x/XeFcNgmhHptraeKpGsID5yr6CzMcl+rIGm1ktfRk4GnEAu+r7omr3zygNquxvV/ySJpb8I9fhu6XepvAf57WtbVeUCRSaRgdULp/nvTWnDPEkmfsb2HpKuo2aAeZVNnEh4CecGbmRqSPgIc5QYJpCVdQagyf9sD0pBIOh74RyLOsmwxrVOUzkwQSX8HLgbebfvUAeU+DGxITJhNKIv+FPgG1LsgKfLhPjKVv2gx1lVJXwVeZPvXpbqPJ1SlzylvyrQpm2lP9aaW3MevdCX9WHqtTdx3ZkJIuoXIJ1oshgolf4jNu7VSuSU1NiulUZH0bGKy+gaij28x5K1Tp2W/uZTYiFyXSIdzMXBbP+t7dUMyU0/Jhbl2o6Gm/JnAk/tZ1pcyknazfcqM29BUW2Ba7VmN2PzYaRbnnyaS7usQmm2UoqthnWMPIcmiVZlpsiPw4mTl7EkgXeFvtm9TSkOSbugLuzOlm8wuhCrwMjoq03OLQqX0FUS6D4CzgGOWk7jQRxC/8QskvQX4PnC27WMr5VYn3LoK691vgDUIt+Ue1W5JexDKi2cR18xRkt5k+7MjtvP+xQI2cWM69jtJ1d+hTdlMQxRpnv4NWEPSH+m4wt1G5Fyuln8Gkc5gIe5bUt+478zksD1wnF2qYzOd+dAziNzD1TRYM6dtvyneZvvPkvYlYqiPSBvK/ThX0mHERkXZpXlFEN1pw6oK5fhH1YW+FBu36qR7vJ4QMfoS3d/rXG4AtcH2KWmMfhhxfy+OT9Od938IbYHd0vM9idCxJ/V9x2S5C5HubbnH9g3p79CFraS7D6mrcE8ee/qzvODNTJOntSh7tqTixv5k4JXAF0qvb63ItfZTOrkIlwIfJtIWFHnJXpiOvXRmLRoTtr8j6YfEouQxwF7EovbYSrmBat2SDqy4QR9EiFbdmF6/F2ENHnXBe5ZCxfHk9Hy3dOyuwB8WUTbTkPT7HibpMNsHNnjLkcDjq3HfRPL6zJSRtDm94oPFRtVSHZu/mPQF/gK8Io0zf51xm7oYod9ARI3sQCwA9k3HVhpQvrCqbF8+NSktUWaB/YjvdB16Uy6WN26LzZ6fpseqVFK1LHUkHU0s8B5PpAJ6Lv1TWU6K+7pb1PSdkp43rZNX3HlXIjI6rBDxu8nrZ5DWxlqlp5fSEfPqKUrKwzsJXZvs0pyZKpK2oBMbfK7t7/Qpt4y4OS/ExRBqb0V+r9cSltKNiPRFC29ljmNiJX2n6iJXd2wpIukSYDUiP+q5xO87iitL1V2vKoizDPhO1b29Rf0CnkNHPfZ84BTXDIZtymbaI+mxdcdtn1Mp1zruOzMZJH2ciG+9hm7xnX3S60tybIYF68PNtu+UdBdgLdu/mnW7qjTtN6WybySUtw+X9EDgdbZfO+FmrhBI2rfGi2mFQtKVDmXw4u+aRJz4Y4a+eXxtaKQtMMHzl9157yDSNC537uuDUOTwvgE4gRjv9yQ2It4204Yl8oI3MzUk7Q+8jM7O57OBj7iiZtiyzoHJq+cNSZcBu9v+YXr+QOCz4w7OnwWS7mX7NwNe39v2JxrU0xW7Iek/iAn2p9Kh5xHxam8eoY0rAd+w/fhxls2MhqSy18bqRJz2pU4pHEqugk+mJu7b9iun2NwMIOm7dbGiNeWW1NgMIGkzYFO63TKPn12L6hnWb0ascy/bnyy54HaxPLjeTgpJj6LX4+H4SpmvE/f+P6Tn6wL/Y/upU2zqRJD0bdvbSfoWsUF8E3CN7QdNsQ2FtkCRAWQlarQFMpOjjUEnbVrvCWxk+x2KDB/3sT0xz4Ds0pyZJvsSKoW3Akg6HLiQktub+qi8FVTjfZfahAp4E3CmpOuJHbANiTQ7S55Bi93E/sDQBS+V39/2m9LCp7CyfsT253vf1qDisNz8XdLaHpKUvk3ZzGjY7nIFlHR/4L9Kh8qv18V9Z6bPhZI2tf3dQYWW2tisSCuyE7Hg/TIRgnMeIVI3VzToN+XX7gX8K73xldXF8V3T36UQbz03SDoB2Bi4gs5iy/ReN/cqFrsAtn8vab3ptHLifFHSOsARhMsqhGvz1GigLfAw29dMqz0rKLdK2pOIpzYh7nlrn7IfIjyEngC8g1D2PgWYmNdWXvBmpoko5d9N/1f9+HdOf1+V/hZpX/ZiwEJ4qWD7DEWKpYemQ9c5pTZYAWiqALNQrmJlHVeKgz8BV6Ud97J6bJ2LX5uymcXzc0LZFxge752ZCccTi95fMVx8cCnxXCKd2uW2X6JQZJ+7lER96Oo3FU4kxHt2JuJO9yY2jLqwfUz6+/YJtXF5ZRtg0wZhLndK2sD2T2HBBXbJz2kS7yXCGB5DGDHOJbRJ5okTgCXvSTfnvAB4f3qYCAF7QZ+y2zlUzi+HhQ2gica25wVvZpocB3xbUmGd25VeQaOfAEh6srslyd+c3IHfMpWWjpk6FcfEgyTVpuJZDml6cy8EoiZlZf0czRfPbcpmWiLpKDrXxTJgS6BHDVbS6oSHSNVKtdznOJxDjiXE9rrytC4HFLlq75C0FkmRfdaNqqNpv0ncw/axkvZ35NI9W9LFNXV+YNA58yZfX64G7kPELg7iIOA8SWcTm0SPAf5lwm2bFp8gLHTFNfQCYmNsj5m1qJf5klxfDrH9Y+BZDYvfngwahS7PvZjw/SQveDNTw/b7JJ1FxzX1JbYv71Nckh5t+/z05FHEjX2pUqfiCMk6woqxqBKApIcQu7/3tr1ZUnzdxfY7AWy/u/K+sVpZbX9C0hrABravG1fZzEhcUvr/DuBTRZ+vcAJwLfBUQvlyT+B7k29epobf2D5t1o2YAJckt8yPEm6ZfyKsVfNI034DUKRPu0GROuaXQF1qkMIV9dGEW/en0/PdgYHu6ys49wS+K+kiutMN7VIuZPt0SVvRUb9+ne3fTq+ZE2WzSlz/mZLm7ZpZXqzpc8uwuV2F8KA/cAAAFTpJREFUDwCfB9aT9C7Cw+bfJ9q+LFqVmSZJqOH+dIs71Fl0tgY+DqxNLJR+D+xTV3YpIekAuiXZDdxMCI4Myo0490jayPaP+h2T9EHbr0473G8i8g8/Ir12te3N+tS7d93xJgJYfep7JuGCtartjSRtSSSo32UxZTOjkdyYHpKeXueanNSFkFlJBXQVQgV8+2rZzGSR9CEiFcsX6J7gLzebdpIeQCg0XznjpvSlSb9J5XYmXEzvT+hlrAUcYvsLfcp/C9ixUJjNfW0wkh5XdzxZ06tl70fodpTnPz3K2ksNSZ8EPmj7W+n5dsCrbL9oti3roEr2h8z4GWFutwmRb1fAGbYnuomdLbyZqaGQLH8xkae12Gmpze9n+1JgC0lrp+fLi2jQ1kTMz2lEJ98ZuBLYT9LJto+YZeMWySn0xsh8lvjM2H51OnYX2xeFSN8CfeX7k5V1VWAT4nq5zvZti2jnIYSq6Vmp/isUatmLLZtpiaSdCHe4HxP94f4KNe/qJLCYzP8hKen+ClheBF+WGmsQC92nlI4tWS8VSZvYvjZZ36qvbTWPm6wt+g2EhfY821cDj1ekXnov3Xnty6xLLIqLPJhrpmOZGuoWtnUkkc7nUUnnBSzZBW9JZHQV4AJJP03PNyQ8cuaJxcwZMs0YOrdL40/BjXSybyDp7p5A/t2CvODNTJM9gI2bLFYkrQbsRpL6LzqQ7aWeyHt9YCvbf4IFZdAvAY8lXMqW3II37dI9DFi7Equ8FqV4yxK/lbQxndiN5zIg/knS04FjiI0SARtJerntr4zY5Ntt31wZlPvFjrQpm2nPkcBTCnfx5BL1KdImSYmPJO+QtxKbRWsCc5Hbb0VjORQSewMRS3kk3W6PRbjJyKl+JkjTfgOweUUd+HeSHlFTruA9wOWSziS+g8cSG3+ZEpLOs72jIh1Oz3Xj3jQ4uwIPXc5EKnceXmQ6SHo0cIXtWyXtRWy+v7/QhckeClOhydzuUjpejhsQ3psivIZ+SuRvnwh5wZuZJlcTF/WNDcqeSnL1peQ2txywHt2f53Yi3uEvkpbq53woceNbh+5Y5VuIvMtVXgV8BNhE0i+AHxEq3P14H/B42z8ASAPql4BRF7zXSHoBsJJCMfu1wAVjKJtpzyrl2Gjb/5dcKLuwXaS4OBvIFvYZIml9wjX20enQucD+tn8+u1aNju1COOjpwCsJjQkzn0qzBY36TWKZpHVt/x4WLCx95362j5P0FWC7dOjNtn9VvK6c3gUA2zumv03TOF1PWEKX6n2+h2IxOSd8mPAK3AI4gEiLdDydVHaZyVM3t9uzXMD2RgCSPgp83vaX0/OnEZtCEyPH8GamhqRtiIXs1QwQd0hl+/r9L2UkvRV4NvE9QCwQTyN27D9ie89+7513JO1gu7HIi6S7Asts3zKk3MW2ty09F3BR+VjLdt6FUMx8CrGz+FXgHbb/upiymfZI+jhhMS/Sv+wJrFRVX656fBTHlwOPjyVHEo87ie6UcXvafvLsWrV4JH0G+CORxgdCaXZt2/OkNAs07zep7IuAf6Ojfr878C7bJ1TLNjx3joUcAUmnEGmvzqB7/pPVr8dAcV1KehvwC4cyeb5Wp4SkZcBzbX+mydxO0lW2Hz7s2FjbmBe8mWkh6RrCNbUrnUUfcYePAEfZvmp6LZwOaeFfWEfOt33JoPJLBQ1R6JP0hkHvt/2+PvV+mIgJ+gxhedmdcH35RnrfkowdzCwsZF9FR7n9XOBDVbc/SafT8fhYyOVt+8gpNTWTkHSF7S2HHVtqSPpuRWm29tg80LTflMpvSsc1+5u2R1bQLQTkRn3/iorGLL6Y6SYJJp0OvIRww78R+M4kF1CZbiRdYnubhmW/Soxb5U27x9p+6sTalxe8mWlRtdQNKftd4EGES8Tf6MTFbD7BJmYWwTCFvhSvDOECvS1h2Yawcl9ku9atWdJxA07rOqvGkHZuQ1g8HkC3tbDn2mpTNjN+JJ1ie7fl1eNjKSLpDCKneiE28nwixdwTZ9eqxbMUlGabUvSbCdWdrWYTYJK/2YqApPsQXhkX2z5X0gbATraPn3HTVhgkvQf4LZHSrJxCskeIKoVWHExsTkCIt719kqJVecGbmRqS3kcsXk+j26WnLi3RhnV1zFnMSKZEsaFRtgD0sQadAzyjcHeRdDfgS7Yf21vrRNp5HbEwr3oa9Fxbbcpmxo866YiWW4+PpUYam48CdiA8Li4AXmP7ZzNt2IhUlGYfSniPLCjNzqOFdxiTtMLmBe9kyJbzzFJH0o+oyXdsu6/uRpr/uRBynSRZtCozTYrBvKyW16WCKWkt238kBI8yS4um6sv3pjtFwG3pWC3DXKVH4De2TxterHXZzPgpbp47Ai9ON9Ts8TFbDgX2roggvRdo5WkxR8yN0uwYmaQlI6d3mQzZ+jQCI6hlZybHpvQK/x1dV1DSwwlRsbun578l7itXT6px2cKbmRtSjMvutncu7RSV88F40E5RZrYo8tN+BHgUITX/I0LM5ieVcgcRKao+T/y+zwI+bfuwPvW2SmbeoJ1PJNwwq+IhPbHAbcpmxk9JiCR7fMwJdZaobJ2aLxZjhU2igHsCD7R9aHINvY/ti8bayEwX2XKeWeq0Ef6TdAFwkO0z0/OdgHfbftSk2pctvJl5Yv9iwC+ky/uRUyPMJbsCXwbOBJYRMRxPknSp7SuKQrbfldJePIbY1HiJ7csH1Ds0mXlLXgJsQrgwFm7KBuoWsW3KZsbPSulv9viYH1qlucnMBA0v0pcPEWPdEwhr/i3AKYTuQmZyLOY3y2Tmgc0qISBnJj2eOu5aLHYBbJ+V1J0nRr5JZeaJNgP+CURi8cz8sE16nEb8lnsBVwL7STrZ9hGlsncSkypTio3tQ1NX6aZsa/uhEyibGQFJawAbuJRXtMRf0t9ysvoCk3PyzoIjgQsldaW5mWF7VkiG9Js3L6Lq7ZJXxeUAtn8vadVF1JepIGld4P62rywdXsxvlsnMA5dJ2r4i/NcvC8n1ijSd5fR210+yccsmWXkm05I2/vV5N3T+WB/YyvYbbR8AbA2sR6jwvbgoJGl/wuXlnun1T0p6zYB6X0WksyqSmb8O2G8R7bwgpekYd9lMSyQ9E7iCSCeBpC0lLcRM294+/d3I9gPT3+KRF7szIKmePgf4dXo8xyPmdM2MRoN+87VFVH+7pJXobDDei+GbkpkhSDpL0lrJI+Iy4KNJyBNY9G+WycwDWxNzph9L+jFwIbCtpKskXVkpuw9wL8J75BRiPviSSTYuW3gz80SbRWwOPp8/1qMU5wrcTghN/UVS+fi+hBXhVgBJhxMD41HVChXJzLex/SQ1SGbekO2BK/oJIJXdNVuWzbTnEOCRwFkAtq+QVBvOkKwiDwZWL47ZPmfyTcxUceRxHTmXa2bRHELDfjMCHyD0FdaT9C7gucC/j6nuFZm1bf9R0kuB420fXLMIyGSWMv/UouzGwP0Jw+vKwBOJMIqJCVHmBW9makjayPaPBhw7fwbNyoyPE4FvSzo1PX8mcFJaqJYnxyJcmgvupM9mh+2/S/pX4DPFAnkMDBuUz6DjLt+mbKY9t9u+uRKf3bOZlSaJ+xNeBFcQGxEXUlJ4z2RWIBr1m1GwfaKkS4kJqIBdbX9vHHWv4Kws6b6EYONBs25MJjNuWopIngi8EbiaKXmQ5AVvZpqcQu/i4LOEGwS2X92irpwaYc6w/Y4kRvXodGg/20X8xp6loscRC+PPp+e7AscOqPobkt5Ig2TmDds5bFBemEW2KZsZiWskvQBYSdKDgdcSeV2r7E+I5nzL9uMlbQK8e4rtzGTmiab9pjXJ5fZG4FOlY6vYvn0c9a/AHAp8FTjP9sUpq8H3Z9ymTGZW/Mb2F6Z5wpyWKDNx0uT0YcARRHqZgrWAN9l+WM17Hg1cYftWSXsRC+X35zQkyweStiJytQGcO0ileZRk5otsW+P0EDmVxOKQdBfC2vGUdOirwDts/61S7mLb20q6gnCH/5uka+rGjkxmeadpvxmx7h8Troa/Jzb01gF+RcRrv8z2pYs9RyaTWbGZRcrHbOHNTIOHAjsTN85nlo7fArysz3s+DGwhaQvgAOBjRJLqx02wnZkpIGl74Brbl6Xna0nazva3+7ylcTLzzJLjGbYPouTiJ2l34ORKuZ9LWgf4X+Drkn4P5M2vzIpK034zCl8HPmv7q6nepwC7EZ45HwK2G8M5VjgkrU7oVzyMbh2CfWbWqExmdkw95WO28GamhqQdbF/YsOxlKTXC24Bf2D42W9OWD1K6i62cBp8kTHVJv9+2TTLzcbXP9iPGXTbTS12fHtbPJT0OWBs43XYObciscIzSb1rUfZXth1eOXWl7c0lX2N5ysedYEUlpvK4l7l+HEmE+37O9/0wblsnMAEnXTTvlY7bwZqbJTZLOIJR7N5O0ObCL7XfWlL1F0oFEbq7HpkXRKtNsbGZiyKWdtiRMNWgsapPMfBw8cUJlMwlJTwOeDtxP0gdKL60F3FEpuxLhEbAJgO2zp9bQTGaOaNNvFsENkt4M/E96/jzg16kf5vREo/Mg27tLepbtT0g6ifBWymRWRC6QtGlS/J8KOQ9vZpp8FDiQSFdDSrr+z33KPo/w69/X9q8Iddb/mEYjMxPnekmvlbRKeuzP4ITjlyU3aGBoMvNF00YMa1ThrAy/JH7DvwKXlh6nAU8tF7R9J3CdpA2m3chMZs5o3G8WwQuI++3/pscG6dhKhMJwZjQK0a8/SNqM8FJZb4btyWRmSZHy8TpJV/bJ1TtWsktzZmqUhGcW3ECzi9SKh6T1iFyPTyBiNs4AXmf7xj7lv0fEgf80HdoAuI6waCzkxM0sPSStbHuoZUrSOcAjgIvoVureZYLNy2Tmkqb9JjM/pNRqpxB5Ro8D1gTeZjvrUWRWOCRtWHd8ksK02aU5M01+K2ljkuKupOcCN5QLSDrP9o6SbqFbmVfE4matqbU2MxHSwrafZb+ONsnMM0uL70tqosC9OiF8VyDg8Ek2LJOZY5r2m9ZIuhfwr/SKK+Wc14vA9sfSv2cDE8kwkMksFWaRcSUveDPT5FXAR4BNJP0C+BHd+VmxvWP6e7fpNy8zDSQ9hFDhbhLLPZOBMTM1tin9vzqwO3D3mnIrV2N3Ja0xyYZlMnNM034zCicSOc93BvYD9gZ+M6a6V1gkrUaoXT+A0tzb9qGzalMmsyKRXZozU0PSG9K/axDx47cCNwOX2r5iZg3LTBVJZxP5mI8pubZfbXuz2bYsMw9IutT21un/VxApqR4I/LBU7G7A+bb3mkETM5m5o9xvxlFPocycjl1se9vFt3LFRdLppPkOcGdx3PaRM2tUJrMCkS28mWmyTXqcRrgk7gVcCewn6WTbR8yycZmpcRfbF0kqH8vxaCsgksppVJYR40P5vnQS8BXgMOAtpeO3ZMGwzIpKg36zGApxpRskPYMQyhqX9XhFZn3bOTwnk5kRecGbmSbrE/lX/wQg6WDgS8BjiV3PvOBdMRgay51ZYShbN+4AfkxJCdb2zYRV5PnTbVYmM9cM7DeL5J2S1gYOAI4iUh69fkx1r8hcIOnhtq+adUMymRWR7NKcmRqSrgUebvv29Hw14Du2NykrN2eWbyQ9kIjlfhTwe1Isd47VzWQymczyhKSriM3dlYEHEyn4/kZHiLNwG1/X9u9n1tBMZjknW3gz0+RE4NuSTk3PnwmcJOmuwNSST2dmQymGG+DLwJl0Yrl3A943i3ZlZoekewAHAzsSk8LzgENt3zTThmUyc8wk+42kjYDX0CuulFOAjcbOw4sAkZ5vq6GlMpnMSGQLb2aqSNoGeHR6er7tS2bZnsz0SC7sEDl1twVOJXa5nwlclAWIVjwkfR04B/hkOrQnsJPtJ82uVZnMfDPJfiPpO8CxwFXA34vjVZX0zHjJXm6ZzGTJC95MJjNVJJ0DPMP2Len53YAv2X7sbFuWmTZ16tySrrL98Fm1KZOZdybZbyR92/Z2i60n0w5Jl9nOFt5MZkIsm3UDMpnMCse9gdtKz29LxzIrHl+T9M+SlqXHHsBXZ92oTGbOmWS/eb+kgyXtIGmr4jGmujOZTGYmZAtvJpOZKpIOIhRFP58O7Qp82vZhs2tVZhZIugW4Kx3XySKmG0LQZa2ZNCyTmWMm2W8kHQa8kMh7XdRv208Ytc7McLJLcyYzWfKCN5PJTJ1kMXhMenqO7ctn2Z5MJpPJgKQfAJvavm1o4czYkHT3nFs8k5kcWaU5k8lMHduXAZfNuh2Z2SNpc3oVYT83swZlMkuACfabq4F1gBvHUFemIXmxm8lMlrzgzWQymcxMkPRxYHPgGkruk0Be8GYyfZhwv1kHuFbSxUS+2Kg8pyXKZDJLmOzSnMlkMpmZIOm7tjeddTsymaXEJPuNpMfVHc9piTKZzFImW3gzmUwmMysulLSp7e/OuiGZzBJiYv0mL2wzmczySLbwZjKZTGYmJGvSacCvCPdJEYqwm8+0YZnMHDOJfiPpPNs7JgXo8sSwqDsrpmcymSVLXvBmMplMZiYkRdg3AFfRiUXE9k9m1qhMZs7J/SaTyWTakV2aM5lMJjMrfmP7tFk3IpNZYuR+k8lkMi3IFt5MJpPJzARJHyJUYb9AtyJsVmnOZPqQ+00mk8m0I1t4M5lMJjMr1iAm7E8pHctpiTKZweR+k8lkMi3IFt5MJpPJZDKZTCaTySyXLJt1AzKZTCazYiJpfUmfl3Rjepwiaf1ZtyuTmWdyv8lkMpl25AVvJpPJZGbFcUR6lX9Ijy+kY5lMpj+532QymUwLsktzJpPJZGaCpCtsbznsWCaT6ZD7TSaTybQjW3gzmUwmMytukrSXpJXSYy/gplk3KpOZc3K/yWQymRZkC28mk8lkZoKkDYGjgB0IldkLgNfY/tlMG5bJzDG532QymUw78oI3k8lkMjNB0ieA19n+fXp+d+C9tveZbcsymfkl95tMJpNpR3ZpzmQymcys2LyYtAPY/h3wiBm2J5NZCuR+k8lkMi3IC95MJpPJzIplktYtniRL1cozbE8msxTI/SaTyWRakAfITCaTycyKI4ELJZ2cnu8OvGuG7clklgK532QymUwLcgxvJpPJZGaGpE2BJ6Sn37T93Vm2J5NZCuR+k8lkMs3JC95MJpPJZDKZTCaTySyX5BjeTCaTyWQymUwmk8ksl+QFbyaTyWQymUwmk8lklkvygjeTyWQymUwmk8lkMsslecGbyWQymUwmk8lkMpnlkv8P812DE4DFfdAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(20,15))\n", - "plt.imshow(cos)\n", - "plt.yticks(range(75), labels_str);\n", - "plt.xticks(range(75), labels_str, rotation=90);" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "deserialize\n", - "--- s: from_config p: deserialize\n", - "--- s: model_from_json p: from_config\n", - "--- s: get_word_index p: get_config\n", - "--- s: from_config p: in_test_phase\n", - "--- s: glorot_normal p: model_from_config\n", - "--- s: _has_nchw_support p: _postprocess_conv3d_output\n", - "--- s: dot p: _prepare_name\n", - "\n", - "set_model\n", - "--- s: add p: __init__\n", - "--- s: update_sub p: set_params\n", - "--- s: __init__ p: on_epoch_end\n", - "--- s: trainable_weights p: on_train_end\n", - "--- s: call p: on_train_begin\n", - "--- s: update p: predict\n", - "--- s: updates p: __enter__\n", - "\n", - "get_monitor_value\n", - "--- s: __init__ p: on_train_begin\n", - "--- s: noised p: on_epoch_end\n", - "--- s: from_config p: __init__\n", - "--- s: save_img p: on_train_end\n", - "--- s: image_dim_ordering p: get_config\n", - "--- s: call p: on_batch_end\n", - "--- s: __init__ p: validate_file\n", - "\n", - "is_indexed_slices\n", - "--- s: sigmoid p: deserialize\n", - "--- s: model_from_json p: from_config\n", - "--- s: __init__ p: stop_gradient\n", - "--- s: __init__ p: _prepare_name\n", - "--- s: __init__ p: get_config\n", - "--- s: _to_tensor p: is_sparse\n", - "--- s: _has_nchw_support p: in_test_phase\n", - "\n", - "from_config\n", - "--- s: from_config p: from_config\n", - "--- s: deserialize p: get_config\n", - "--- s: model_from_json p: update_add\n", - "--- s: image_dim_ordering p: count_params\n", - "--- s: dot p: call\n", - "--- s: _node_key p: _pooling_function\n", - "--- s: glorot_normal p: lecun_normal\n", - "\n", - "__init__\n", - "--- s: __call__ p: __init__\n", - "--- s: get_config p: __call__\n", - "--- s: __init__ p: get_config\n", - "--- s: __init__ p: call\n", - "--- s: predict_classes p: random_uniform\n", - "--- s: noised p: get_losses_for\n", - "--- s: arange p: on_train_begin\n", - "\n", - "__call__\n", - "--- s: get_config p: __call__\n", - "--- s: noised p: call\n", - "--- s: __init__ p: __init__\n", - "--- s: _to_tensor p: random_normal\n", - "--- s: arange p: random_uniform\n", - "--- s: __init__ p: compute_mask\n", - "--- s: __init__ p: backward\n", - "\n", - "get_config\n", - "--- s: __call__ p: get_config\n", - "--- s: noised p: __init__\n", - "--- s: __init__ p: __call__\n", - "--- s: arange p: trainable_weights\n", - "--- s: get_config p: from_config\n", - "--- s: add p: losses\n", - "--- s: __init__ p: compute_output_shape\n", - "\n", - "glorot_normal\n", - "--- s: deserialize p: glorot_uniform\n", - "--- s: dot p: lecun_normal\n", - "--- s: from_config p: he_uniform\n", - "--- s: arange p: lecun_uniform\n", - "--- s: bias_initializer p: he_normal\n", - "--- s: __init__ p: gradients\n", - "--- s: preprocess_input p: cumprod\n", - "\n", - "call\n", - "--- s: call p: call\n", - "--- s: call p: __call__\n", - "--- s: call p: _merge_function\n", - "--- s: infer_outputs p: non_trainable_weights\n", - "--- s: _merge_function p: compute_mask\n", - "--- s: compute_mask p: _pooling_function\n", - "--- s: __init__ p: bias_initializer\n", - "\n", - "update\n", - "--- s: decode_predictions p: __init__\n", - "--- s: preprocess_input p: get_config\n", - "--- s: bias_initializer p: get\n", - "--- s: __init__ p: __call__\n", - "--- s: __init__ p: call\n", - "--- s: _merge_function p: preprocess_input\n", - "--- s: __init__ p: get_losses_for\n", - "\n", - "__init__\n", - "--- s: min p: __init__\n", - "--- s: __init__ p: __call__\n", - "--- s: __init__ p: forward\n", - "--- s: add p: get_losses_for\n", - "--- s: eval p: on_train_begin\n", - "--- s: __init__ p: normalize\n", - "--- s: set_model p: batch_set_value\n", - "\n", - "add\n", - "--- s: update_sub p: __init__\n", - "--- s: set_model p: get\n", - "--- s: identity p: on_train_begin\n", - "--- s: ctc_cost p: on_batch_begin\n", - "--- s: __init__ p: on_epoch_end\n", - "--- s: __call__ p: get_losses_for\n", - "--- s: _to_tensor p: __iter__\n", - "\n", - "get_word_index\n", - "--- s: deserialize p: get_word_index\n", - "--- s: model_from_json p: print_tensor\n", - "--- s: _has_nchw_support p: deserialize\n", - "--- s: glorot_normal p: on_train_end\n", - "--- s: from_config p: call\n", - "--- s: __init__ p: relu\n", - "--- s: is_indexed_slices p: set_params\n", - "\n", - "decode_predictions\n", - "--- s: preprocess_input p: decode_predictions\n", - "--- s: update p: preprocess_input\n", - "--- s: add p: call\n", - "--- s: multiply p: _contain_seqence_axis\n", - "--- s: subtract p: random_uniform_variable\n", - "--- s: bias_initializer p: average\n", - "--- s: __init__ p: prod\n", - "\n", - "preprocess_input\n", - "--- s: decode_predictions p: preprocess_input\n", - "--- s: update p: decode_predictions\n", - "--- s: add p: transform\n", - "--- s: multiply p: MobileNetV2\n", - "--- s: subtract p: permute_dimensions\n", - "--- s: bias_initializer p: _preprocess_conv3d_input\n", - "--- s: __init__ p: Xception\n", - "\n", - "__init__\n", - "--- s: __init__ p: __init__\n", - "--- s: __init__ p: on_train_begin\n", - "--- s: __init__ p: is_all_none\n", - "--- s: __init__ p: function\n", - "--- s: decode_predictions p: get_losses_for\n", - "--- s: preprocess_input p: get_config\n", - "--- s: save_img p: on_train_end\n", - "\n", - "_merge_function\n", - "--- s: dot p: _merge_function\n", - "--- s: multiply p: compute_output_shape\n", - "--- s: subtract p: call\n", - "--- s: add p: binary_crossentropy\n", - "--- s: bias_initializer p: infer_outputs\n", - "--- s: call p: step\n", - "--- s: call p: __init__\n", - "\n", - "_merge_function\n", - "--- s: call p: call\n", - "--- s: call p: __call__\n", - "--- s: softmax p: _merge_function\n", - "--- s: compute_mask p: compute_mask\n", - "--- s: call p: _pooling_function\n", - "--- s: call p: infer_outputs\n", - "--- s: call p: get_losses_for\n", - "\n", - "add\n", - "--- s: subtract p: maximum\n", - "--- s: multiply p: minimum\n", - "--- s: dot p: average\n", - "--- s: preprocess_input p: preprocess_input\n", - "--- s: decode_predictions p: call\n", - "--- s: bias_initializer p: function\n", - "--- s: __init__ p: decode_predictions\n", - "\n", - "subtract\n", - "--- s: subtract p: maximum\n", - "--- s: multiply p: minimum\n", - "--- s: dot p: average\n", - "--- s: preprocess_input p: preprocess_input\n", - "--- s: decode_predictions p: concatenate\n", - "--- s: bias_initializer p: function\n", - "--- s: __init__ p: call\n", - "\n", - "multiply\n", - "--- s: subtract p: maximum\n", - "--- s: multiply p: minimum\n", - "--- s: dot p: average\n", - "--- s: preprocess_input p: preprocess_input\n", - "--- s: decode_predictions p: call\n", - "--- s: bias_initializer p: function\n", - "--- s: __init__ p: decode_predictions\n", - "\n", - "dot\n", - "--- s: subtract p: call\n", - "--- s: add p: function\n", - "--- s: multiply p: __init__\n", - "--- s: decode_predictions p: decode_predictions\n", - "--- s: preprocess_input p: maximum\n", - "--- s: arange p: reverse\n", - "--- s: glorot_normal p: average\n", - "\n", - "call\n", - "--- s: call p: call\n", - "--- s: call p: __call__\n", - "--- s: _merge_function p: _merge_function\n", - "--- s: call p: _pooling_function\n", - "--- s: compute_mask p: compute_mask\n", - "--- s: call p: bias_initializer\n", - "--- s: call p: print_tensor\n", - "\n", - "call\n", - "--- s: _merge_function p: call\n", - "--- s: call p: __call__\n", - "--- s: softmax p: _merge_function\n", - "--- s: compute_mask p: _pooling_function\n", - "--- s: call p: compute_mask\n", - "--- s: call p: get_losses_for\n", - "--- s: call p: infer_outputs\n", - "\n", - "__init__\n", - "--- s: __init__ p: __init__\n", - "--- s: __init__ p: is_all_none\n", - "--- s: __init__ p: on_train_begin\n", - "--- s: __init__ p: get_losses_for\n", - "--- s: save_img p: zeros_like\n", - "--- s: preprocess_input p: binary_crossentropy\n", - "--- s: decode_predictions p: function\n", - "\n", - "compute_output_shape\n", - "--- s: compute_output_shape p: compute_output_shape\n", - "--- s: infer_outputs p: _merge_function\n", - "--- s: argmax p: __init__\n", - "--- s: compute_mask p: _get_noise_shape\n", - "--- s: batch_flatten p: slice\n", - "--- s: __init__ p: range_less_than\n", - "--- s: __init__ p: step\n", - "\n", - "trainable_weights\n", - "--- s: updates p: non_trainable_weights\n", - "--- s: _node_key p: trainable_weights\n", - "--- s: from_config p: get_weights\n", - "--- s: losses p: _check_trainable_weights_consistency\n", - "--- s: set_model p: trainable\n", - "--- s: call p: weights\n", - "--- s: __init__ p: get_updates_for\n", - "\n", - "updates\n", - "--- s: trainable_weights p: updates\n", - "--- s: _node_key p: get_updates_for\n", - "--- s: losses p: get_config\n", - "--- s: __init__ p: losses\n", - "--- s: from_config p: stateful\n", - "--- s: __init__ p: state_updates\n", - "--- s: get_config p: get_weights\n", - "\n", - "get_config\n", - "--- s: get_config p: get_config\n", - "--- s: get_config p: get\n", - "--- s: _node_key p: trainable_weights\n", - "--- s: model_from_json p: from_config\n", - "--- s: from_config p: losses\n", - "--- s: losses p: pow\n", - "--- s: call p: backward\n", - "\n", - "__init__\n", - "--- s: __init__ p: __init__\n", - "--- s: __init__ p: compute_output_shape\n", - "--- s: __init__ p: get_config\n", - "--- s: __init__ p: binary_crossentropy\n", - "--- s: get_config p: is_all_none\n", - "--- s: save_img p: cell\n", - "--- s: get_config p: get_losses_for\n", - "\n", - "__init__\n", - "--- s: __init__ p: __init__\n", - "--- s: save_img p: is_all_none\n", - "--- s: __init__ p: get_losses_for\n", - "--- s: __init__ p: binary_crossentropy\n", - "--- s: __init__ p: compute_output_shape\n", - "--- s: __init__ p: on_train_begin\n", - "--- s: preprocess_input p: function\n", - "\n", - "step\n", - "--- s: compute_mask p: step\n", - "--- s: call p: get_losses_for\n", - "--- s: call p: concatenate\n", - "--- s: from_config p: _merge_function\n", - "--- s: losses p: reverse\n", - "--- s: add p: infer_outputs\n", - "--- s: subtract p: _preprocess_conv2d_depthwise_kernel\n", - "\n", - "get_config\n", - "--- s: get_config p: get_config\n", - "--- s: get_config p: compute_output_shape\n", - "--- s: __init__ p: trainable_weights\n", - "--- s: call p: get\n", - "--- s: compute_output_shape p: from_config\n", - "--- s: _node_key p: l2_normalize\n", - "--- s: infer_outputs p: _pooling_function\n", - "\n", - "call\n", - "--- s: call p: call\n", - "--- s: call p: _pooling_function\n", - "--- s: infer_outputs p: __call__\n", - "--- s: call p: compute_mask\n", - "--- s: _merge_function p: _merge_function\n", - "--- s: get_config p: bias_initializer\n", - "--- s: call p: function\n", - "\n", - "get_config\n", - "--- s: get_config p: get_config\n", - "--- s: get_config p: trainable_weights\n", - "--- s: __init__ p: get\n", - "--- s: __init__ p: __init__\n", - "--- s: _node_key p: from_config\n", - "--- s: get_config p: l2_normalize\n", - "--- s: noised p: pow\n", - "\n", - "compute_mask\n", - "--- s: call p: call\n", - "--- s: call p: compute_mask\n", - "--- s: step p: __call__\n", - "--- s: infer_outputs p: _merge_function\n", - "--- s: call p: infer_outputs\n", - "--- s: _merge_function p: states\n", - "--- s: __init__ p: int_or_none\n", - "\n", - "from_config\n", - "--- s: from_config p: from_config\n", - "--- s: deserialize p: get_config\n", - "--- s: step p: deserialize\n", - "--- s: _node_key p: update_add\n", - "--- s: model_from_json p: call\n", - "--- s: trainable_weights p: non_trainable_weights\n", - "--- s: get_config p: stack\n", - "\n", - "losses\n", - "--- s: call p: get_losses_for\n", - "--- s: call p: losses\n", - "--- s: step p: get_config\n", - "--- s: compute_mask p: cell\n", - "--- s: updates p: in_top_k\n", - "--- s: call p: __call__\n", - "--- s: get_config p: build\n", - "\n", - "call\n", - "--- s: call p: call\n", - "--- s: compute_mask p: __call__\n", - "--- s: step p: compute_mask\n", - "--- s: losses p: _pooling_function\n", - "--- s: call p: _merge_function\n", - "--- s: __init__ p: get_losses_for\n", - "--- s: infer_outputs p: function\n", - "\n", - "call\n", - "--- s: call p: call\n", - "--- s: compute_mask p: compute_mask\n", - "--- s: step p: __call__\n", - "--- s: losses p: _merge_function\n", - "--- s: call p: get_losses_for\n", - "--- s: __init__ p: _pooling_function\n", - "--- s: infer_outputs p: function\n", - "\n", - "bias_initializer\n", - "--- s: decode_predictions p: bias_initializer\n", - "--- s: preprocess_input p: call\n", - "--- s: update p: non_trainable_weights\n", - "--- s: add p: _preprocess_conv2d_kernel\n", - "--- s: multiply p: _preprocess_conv2d_input\n", - "--- s: subtract p: prod\n", - "--- s: dot p: average\n", - "\n", - "noised\n", - "--- s: __init__ p: __call__\n", - "--- s: __call__ p: noised\n", - "--- s: gather p: l2_normalize\n", - "--- s: get_config p: random_normal\n", - "--- s: bias_initializer p: gradients\n", - "--- s: arange p: dropout\n", - "--- s: __init__ p: _get_noise_shape\n", - "\n", - "__init__\n", - "--- s: noised p: __init__\n", - "--- s: __init__ p: AtrousConvolution2D\n", - "--- s: __call__ p: get_config\n", - "--- s: call p: is_all_none\n", - "--- s: call p: on_train_begin\n", - "--- s: __init__ p: random_normal\n", - "--- s: __init__ p: embedding_kwargs_preprocessor\n", - "\n", - "__init__\n", - "--- s: __init__ p: __init__\n", - "--- s: __init__ p: binary_crossentropy\n", - "--- s: __init__ p: get_losses_for\n", - "--- s: __init__ p: is_all_none\n", - "--- s: compute_mask p: on_train_begin\n", - "--- s: __init__ p: compute_mask\n", - "--- s: infer_outputs p: function\n", - "\n", - "compute_output_shape\n", - "--- s: compute_output_shape p: compute_output_shape\n", - "--- s: argmax p: _merge_function\n", - "--- s: infer_outputs p: __init__\n", - "--- s: batch_flatten p: binary_crossentropy\n", - "--- s: compute_mask p: argmin\n", - "--- s: flatten p: get_config\n", - "--- s: softmax p: build\n", - "\n", - "cast_to_floatx\n", - "--- s: get_value p: batch_get_value\n", - "--- s: eval p: update_add\n", - "--- s: _to_tensor p: batch_set_value\n", - "--- s: sigmoid p: reshape\n", - "--- s: batch_flatten p: permute_dimensions\n", - "--- s: ndim p: print_tensor\n", - "--- s: eval p: is_tensor\n", - "\n", - "image_dim_ordering\n", - "--- s: is_placeholder p: _preprocess_padding\n", - "--- s: from_config p: batch_get_value\n", - "--- s: get_value p: set_floatx\n", - "--- s: is_indexed_slices p: he_uniform\n", - "--- s: get_config p: _preprocess_border_mode\n", - "--- s: dot p: lecun_normal\n", - "--- s: get_config p: to_dense\n", - "\n", - "eval\n", - "--- s: get_value p: is_tensor\n", - "--- s: eval p: batch_get_value\n", - "--- s: is_placeholder p: __call__\n", - "--- s: cast_to_floatx p: get_value\n", - "--- s: gather p: stop_gradient\n", - "--- s: _to_tensor p: count_params\n", - "--- s: batch_flatten p: batch_set_value\n", - "\n", - "ndim\n", - "--- s: get_value p: count_params\n", - "--- s: cast_to_floatx p: __call__\n", - "--- s: eval p: update_add\n", - "--- s: __init__ p: is_keras_tensor\n", - "--- s: argmax p: reshape\n", - "--- s: compute_output_shape p: int_shape\n", - "--- s: softmax p: pow\n", - "\n", - "gather\n", - "--- s: noised p: __init__\n", - "--- s: eval p: _get_noise_shape\n", - "--- s: __init__ p: ctc_create_skip_idxs\n", - "--- s: predict_classes p: gather\n", - "--- s: __call__ p: one_hot\n", - "--- s: batch_flatten p: elu\n", - "--- s: compute_output_shape p: compute_output_shape\n", - "\n", - "argmax\n", - "--- s: softmax p: argmin\n", - "--- s: compute_output_shape p: argmax\n", - "--- s: batch_flatten p: _merge_function\n", - "--- s: flatten p: concatenate\n", - "--- s: compute_output_shape p: compute_output_shape\n", - "--- s: compute_mask p: binary_crossentropy\n", - "--- s: _merge_function p: cumprod\n", - "\n", - "softmax\n", - "--- s: argmax p: argmin\n", - "--- s: call p: argmax\n", - "--- s: _merge_function p: cumprod\n", - "--- s: flatten p: softmax\n", - "--- s: predict_classes p: expand_dims\n", - "--- s: compute_output_shape p: stack\n", - "--- s: sum p: concatenate\n", - "\n", - "__init__\n", - "--- s: ones p: __init__\n", - "--- s: eval p: compute_output_shape\n", - "--- s: __call__ p: get_losses_for\n", - "--- s: ndim p: cell\n", - "--- s: identity p: binary_crossentropy\n", - "--- s: get_value p: get_config\n", - "--- s: compute_output_shape p: build\n", - "\n", - "infer_outputs\n", - "--- s: compute_output_shape p: call\n", - "--- s: compute_mask p: infer_outputs\n", - "--- s: compute_output_shape p: _merge_function\n", - "--- s: call p: binary_crossentropy\n", - "--- s: call p: compute_mask\n", - "--- s: call p: compute_output_shape\n", - "--- s: call p: moving_average_update\n", - "\n", - "_has_nchw_support\n", - "--- s: model_from_json p: clear_session\n", - "--- s: get_word_index p: get_uid\n", - "--- s: deserialize p: argmin\n", - "--- s: predict_classes p: validate_file\n", - "--- s: is_indexed_slices p: squeeze\n", - "--- s: glorot_normal p: on_train_end\n", - "--- s: _node_key p: in_test_phase\n", - "\n", - "_to_tensor\n", - "--- s: cast_to_floatx p: preprocess_input\n", - "--- s: identity p: int_shape\n", - "--- s: __call__ p: zeros_like\n", - "--- s: ones p: ones_like\n", - "--- s: eval p: is_tensor\n", - "--- s: get_value p: transform\n", - "--- s: is_placeholder p: not_equal\n", - "\n", - "eval\n", - "--- s: get_value p: eval\n", - "--- s: cast_to_floatx p: get_value\n", - "--- s: eval p: int_shape\n", - "--- s: is_placeholder p: batch_get_value\n", - "--- s: _to_tensor p: is_tensor\n", - "--- s: sigmoid p: minimum\n", - "--- s: identity p: reset_states\n", - "\n", - "min\n", - "--- s: sum p: prod\n", - "--- s: sigmoid p: any\n", - "--- s: __init__ p: logsumexp\n", - "--- s: foldr p: all\n", - "--- s: eval p: sum\n", - "--- s: argmax p: max\n", - "--- s: softmax p: std\n", - "\n", - "flatten\n", - "--- s: batch_flatten p: argmin\n", - "--- s: softmax p: compute_output_shape\n", - "--- s: sigmoid p: flatten\n", - "--- s: compute_output_shape p: is_keras_tensor\n", - "--- s: argmax p: _normalize_device_name\n", - "--- s: predict_classes p: argmax\n", - "--- s: cast_to_floatx p: identity\n", - "\n", - "batch_flatten\n", - "--- s: flatten p: batch_get_value\n", - "--- s: foldr p: reverse\n", - "--- s: sigmoid p: ones_like\n", - "--- s: argmax p: stack\n", - "--- s: compute_output_shape p: softsign\n", - "--- s: cast_to_floatx p: identity\n", - "--- s: predict_classes p: flatten\n", - "\n", - "get_value\n", - "--- s: eval p: eval\n", - "--- s: eval p: get_value\n", - "--- s: is_placeholder p: update_add\n", - "--- s: cast_to_floatx p: permute_dimensions\n", - "--- s: identity p: reverse\n", - "--- s: ndim p: cumprod\n", - "--- s: _to_tensor p: get_variable_shape\n", - "\n", - "sigmoid\n", - "--- s: min p: softsign\n", - "--- s: cast_to_floatx p: is_tensor\n", - "--- s: foldr p: update_add\n", - "--- s: batch_flatten p: softplus\n", - "--- s: flatten p: permute_dimensions\n", - "--- s: eval p: tanh\n", - "--- s: _to_tensor p: print_tensor\n", - "\n", - "is_placeholder\n", - "--- s: get_value p: is_placeholder\n", - "--- s: eval p: print_tensor\n", - "--- s: eval p: int_shape\n", - "--- s: _to_tensor p: in_test_phase\n", - "--- s: identity p: batch_get_value\n", - "--- s: image_dim_ordering p: softsign\n", - "--- s: cast_to_floatx p: clear_session\n", - "\n", - "ones\n", - "--- s: __init__ p: zeros\n", - "--- s: _to_tensor p: eye\n", - "--- s: __call__ p: zeros_like\n", - "--- s: identity p: ones_like\n", - "--- s: eval p: constant\n", - "--- s: foldr p: prod\n", - "--- s: ndim p: ones\n", - "\n", - "identity\n", - "--- s: _to_tensor p: in_test_phase\n", - "--- s: get_value p: ones_like\n", - "--- s: update_sub p: int_shape\n", - "--- s: sum p: identity\n", - "--- s: is_placeholder p: zeros_like\n", - "--- s: add p: update_add\n", - "--- s: eval p: is_placeholder\n", - "\n", - "update_sub\n", - "--- s: add p: update_add\n", - "--- s: identity p: is_tensor\n", - "--- s: _to_tensor p: update_sub\n", - "--- s: set_model p: in_test_phase\n", - "--- s: sigmoid p: in_top_k\n", - "--- s: ctc_cost p: _postprocess_conv3d_output\n", - "--- s: get_value p: flatten\n", - "\n", - "sum\n", - "--- s: min p: prod\n", - "--- s: identity p: std\n", - "--- s: softmax p: logsumexp\n", - "--- s: save_img p: sum\n", - "--- s: _to_tensor p: max\n", - "--- s: sigmoid p: min\n", - "--- s: argmax p: any\n", - "\n", - "arange\n", - "--- s: __call__ p: stop_gradient\n", - "--- s: dot p: eye\n", - "--- s: noised p: random_uniform\n", - "--- s: _to_tensor p: random_normal\n", - "--- s: glorot_normal p: gradients\n", - "--- s: predict_classes p: random_uniform_variable\n", - "--- s: get_config p: deserialize\n", - "\n", - "ctc_cost\n", - "--- s: add p: is_tensor\n", - "--- s: compute_mask p: mean_absolute_percentage_error\n", - "--- s: call p: kullback_leibler_divergence\n", - "--- s: call p: backward\n", - "--- s: update_sub p: expand_dims\n", - "--- s: step p: argmax\n", - "--- s: _merge_function p: batch_flatten\n", - "\n", - "foldr\n", - "--- s: batch_flatten p: foldl\n", - "--- s: sigmoid p: map_fn\n", - "--- s: min p: __init__\n", - "--- s: __init__ p: elu\n", - "--- s: flatten p: prod\n", - "--- s: ones p: foldr\n", - "--- s: argmax p: to_dense\n", - "\n", - "save_img\n", - "--- s: __init__ p: __init__\n", - "--- s: __init__ p: preprocess_input\n", - "--- s: __init__ p: max\n", - "--- s: __init__ p: clip\n", - "--- s: _to_tensor p: zeros_like\n", - "--- s: sum p: all\n", - "--- s: __init__ p: identity\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "predict_classes\n", - "--- s: softmax p: argmax\n", - "--- s: flatten p: predict_proba\n", - "--- s: batch_flatten p: compute_output_shape\n", - "--- s: compute_output_shape p: argmin\n", - "--- s: __call__ p: losses\n", - "--- s: gather p: cell\n", - "--- s: _to_tensor p: one_hot\n", - "\n", - "model_from_json\n", - "--- s: deserialize p: get\n", - "--- s: get_word_index p: deserialize\n", - "--- s: from_config p: on_epoch_end\n", - "--- s: _has_nchw_support p: model_from_yaml\n", - "--- s: from_config p: model_from_config\n", - "--- s: get_config p: from_config\n", - "--- s: add p: forward\n", - "\n", - "_node_key\n", - "--- s: updates p: _make_node_key\n", - "--- s: trainable_weights p: from_config\n", - "--- s: from_config p: is_keras_tensor\n", - "--- s: __init__ p: raise_duplicate_arg_error\n", - "--- s: get_config p: get_output_shape_at\n", - "--- s: from_config p: get_uid\n", - "--- s: __init__ p: count_params\n", - "\n" - ] - } - ], - "source": [ - "score_sim = 0\n", - "for i in range(75):\n", - " print(label_df.loc[i][0])\n", - " rnk = 7\n", - " ranked = np.argsort(cos[i])[::-1][:rnk+1]\n", - " r = preds[i]\n", - " match = False\n", - " \n", - " for j in range(rnk):\n", - " if (label_df.loc[ranked[0]][0]==label_df.loc[ranked[j+1]][0]) & (match == False):\n", - " score_sim +=1\n", - " match==True\n", - " sim_pred = label_df.loc[ranked[j+1]][0]\n", - " pred_pred = vocab_label_df.loc[r[j]][0]\n", - " print(\"--- s: {} p: {}\".format(sim_pred, pred_pred))\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8533333333333334" - ] - }, - "execution_count": 149, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score_sim/75" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/notebook/Inspect Predictions - MLM.ipynb b/notebook/Inspect Predictions - MLM.ipynb index 2a89e16..cadaab3 100644 --- a/notebook/Inspect Predictions - MLM.ipynb +++ b/notebook/Inspect Predictions - MLM.ipynb @@ -24,11 +24,11 @@ "metadata": {}, "outputs": [], "source": [ - "path = \"../large-corpus/\"\n", - "prefix = \"sparse_tmp_\"\n", + "#path = \"../sparse/\"\n", + "#prefix = \"sparse_tmp_\"\n", "\n", - "#path = \"../../bert-cmp/bert/\"\n", - "#prefix=\"\"" + "path = \"../../bert-cmp/bert/\"\n", + "prefix=\"\"" ] }, { @@ -83,16 +83,16 @@ " \n", " \n", " 0\n", - " 91\n", - " 91\n", - " 1\n", + " 24\n", + " 24\n", + " 22\n", " 2\n", - " 91\n", - " 62\n", - " 8\n", - " 422\n", - " 93\n", - " 8\n", + " 236\n", + " 24\n", + " 229\n", + " 37\n", + " 24\n", + " 241\n", " ...\n", " 0\n", " 0\n", @@ -107,64 +107,64 @@ " \n", " \n", " 1\n", - " 60\n", - " 60\n", - " 10\n", + " 24\n", + " 426\n", + " 25\n", " 2\n", - " 20\n", - " 22\n", - " 86\n", - " 20\n", - " 22\n", - " 198\n", + " 752\n", + " 24\n", + " 603\n", + " 564\n", + " 24\n", + " 199\n", " ...\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", + " 1142\n", + " 52\n", + " 1142\n", + " 769\n", + " 24\n", + " 24\n", + " 24\n", + " 654\n", + " 24\n", + " 3\n", " \n", " \n", " 2\n", - " 8\n", - " 8\n", - " 11\n", + " 24\n", + " 97\n", + " 3\n", " 2\n", - " 25\n", - " 80\n", - " 7\n", - " 8\n", - " 65\n", + " 460\n", + " 6\n", + " 4\n", + " 318\n", + " 52\n", " 24\n", " ...\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", - " 0\n", + " 24\n", + " 236\n", + " 29\n", + " 1142\n", + " 135\n", + " 24\n", + " 256\n", + " 24\n", + " 37\n", + " 3\n", " \n", " \n", " 3\n", - " 20\n", - " 20\n", - " 8\n", + " 24\n", + " 47\n", + " 7\n", " 2\n", - " 11\n", - " 22\n", - " 101\n", - " 309\n", - " 8\n", - " 20\n", + " 56\n", + " 57\n", + " 58\n", + " 106\n", + " 236\n", + " 24\n", " ...\n", " 0\n", " 0\n", @@ -179,16 +179,16 @@ " \n", " \n", " 4\n", - " 8\n", - " 8\n", - " 7\n", + " 24\n", + " 57\n", + " 18\n", " 2\n", - " 25\n", - " 20\n", - " 22\n", - " 511\n", - " 8\n", - " 20\n", + " 52\n", + " 24\n", + " 37\n", + " 52\n", + " 24\n", + " 52\n", " ...\n", " 0\n", " 0\n", @@ -203,16 +203,16 @@ " \n", " \n", " 5\n", - " 296\n", - " 489\n", - " 4\n", + " 24\n", + " 24\n", + " 22\n", " 2\n", - " 31\n", - " 32\n", - " 33\n", - " 4\n", - " 37\n", - " 20\n", + " 5\n", + " 43\n", + " 24\n", + " 152\n", + " 318\n", + " 10\n", " ...\n", " 0\n", " 0\n", @@ -227,16 +227,16 @@ " \n", " \n", " 6\n", - " 14\n", - " 14\n", - " 17\n", + " 24\n", + " 24\n", + " 32\n", " 2\n", - " 20\n", - " 22\n", - " 129\n", - " 8\n", - " 27\n", - " 27\n", + " 37\n", + " 24\n", + " 80\n", + " 37\n", + " 318\n", + " 75\n", " ...\n", " 0\n", " 0\n", @@ -251,16 +251,16 @@ " \n", " \n", " 7\n", - " 20\n", - " 20\n", - " 1\n", + " 24\n", + " 113\n", + " 3\n", " 2\n", + " 112\n", + " 24\n", " 4\n", - " 22\n", - " 612\n", - " 613\n", - " 8\n", - " 8\n", + " 24\n", + " 619\n", + " 24\n", " ...\n", " 0\n", " 0\n", @@ -275,16 +275,16 @@ " \n", " \n", " 8\n", - " 22\n", - " 22\n", - " 19\n", - " 2\n", + " 24\n", + " 406\n", " 6\n", - " 22\n", - " 606\n", - " 271\n", - " 8\n", - " 37\n", + " 2\n", + " 56\n", + " 57\n", + " 58\n", + " 41\n", + " 58\n", + " 4\n", " ...\n", " 0\n", " 0\n", @@ -299,16 +299,16 @@ " \n", " \n", " 9\n", - " 14\n", - " 14\n", - " 29\n", + " 24\n", + " 44\n", + " 4\n", " 2\n", - " 11\n", - " 8\n", - " 243\n", - " 20\n", - " 22\n", - " 542\n", + " 5\n", + " 43\n", + " 24\n", + " 4\n", + " 24\n", + " 10\n", " ...\n", " 0\n", " 0\n", @@ -327,29 +327,29 @@ "" ], "text/plain": [ - " masked_lm_predictions label_ids masked_lm_positions 0 1 2 3 4 \\\n", - "0 91 91 1 2 91 62 8 422 \n", - "1 60 60 10 2 20 22 86 20 \n", - "2 8 8 11 2 25 80 7 8 \n", - "3 20 20 8 2 11 22 101 309 \n", - "4 8 8 7 2 25 20 22 511 \n", - "5 296 489 4 2 31 32 33 4 \n", - "6 14 14 17 2 20 22 129 8 \n", - "7 20 20 1 2 4 22 612 613 \n", - "8 22 22 19 2 6 22 606 271 \n", - "9 14 14 29 2 11 8 243 20 \n", + " masked_lm_predictions label_ids masked_lm_positions 0 1 2 3 \\\n", + "0 24 24 22 2 236 24 229 \n", + "1 24 426 25 2 752 24 603 \n", + "2 24 97 3 2 460 6 4 \n", + "3 24 47 7 2 56 57 58 \n", + "4 24 57 18 2 52 24 37 \n", + "5 24 24 22 2 5 43 24 \n", + "6 24 24 32 2 37 24 80 \n", + "7 24 113 3 2 112 24 4 \n", + "8 24 406 6 2 56 57 58 \n", + "9 24 44 4 2 5 43 24 \n", "\n", - " 5 6 ... 54 55 56 57 58 59 60 61 62 63 \n", - "0 93 8 ... 0 0 0 0 0 0 0 0 0 0 \n", - "1 22 198 ... 0 0 0 0 0 0 0 0 0 0 \n", - "2 65 24 ... 0 0 0 0 0 0 0 0 0 0 \n", - "3 8 20 ... 0 0 0 0 0 0 0 0 0 0 \n", - "4 8 20 ... 0 0 0 0 0 0 0 0 0 0 \n", - "5 37 20 ... 0 0 0 0 0 0 0 0 0 0 \n", - "6 27 27 ... 0 0 0 0 0 0 0 0 0 0 \n", - "7 8 8 ... 0 0 0 0 0 0 0 0 0 0 \n", - "8 8 37 ... 0 0 0 0 0 0 0 0 0 0 \n", - "9 22 542 ... 0 0 0 0 0 0 0 0 0 0 \n", + " 4 5 6 ... 54 55 56 57 58 59 60 61 62 63 \n", + "0 37 24 241 ... 0 0 0 0 0 0 0 0 0 0 \n", + "1 564 24 199 ... 1142 52 1142 769 24 24 24 654 24 3 \n", + "2 318 52 24 ... 24 236 29 1142 135 24 256 24 37 3 \n", + "3 106 236 24 ... 0 0 0 0 0 0 0 0 0 0 \n", + "4 52 24 52 ... 0 0 0 0 0 0 0 0 0 0 \n", + "5 152 318 10 ... 0 0 0 0 0 0 0 0 0 0 \n", + "6 37 318 75 ... 0 0 0 0 0 0 0 0 0 0 \n", + "7 24 619 24 ... 0 0 0 0 0 0 0 0 0 0 \n", + "8 41 58 4 ... 0 0 0 0 0 0 0 0 0 0 \n", + "9 4 24 10 ... 0 0 0 0 0 0 0 0 0 0 \n", "\n", "[10 rows x 67 columns]" ] @@ -360,43 +360,47 @@ } ], "source": [ - "results_df = pd.read_csv(path+'pretraining_output/eval_results_masked_lm.txt')\n", + "results_df = pd.read_csv(path+'pretraining_output-100k-2/eval_results_masked_lm.txt')\n", "results_df.head(10)" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(3823, 1)" + "(1156, 1)" ] }, - "execution_count": 5, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "vocab_df = pd.read_csv(path+'global_vocab.csv', header=None)\n", + "vocab_file = \"global_vocab.csv\"\n", + "vocab_file = \"sparse_tmp_vocab-code.txt\"\n", + "#vocab_file = \"vocab-code.txt\"\n", + "\n", + "vocab_df = pd.read_csv(path+vocab_file, header=None)\n", "vocab_df.shape" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(1146, 1)" + "(1851, 1)" ] }, - "execution_count": 6, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -408,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 21, "metadata": { "scrolled": true }, @@ -416,1010 +420,10 @@ { "data": { "text/plain": [ - "{nan,\n", - " 'xfit',\n", - " 'categorical',\n", - " 'squaredhinge',\n", - " 'sim',\n", - " 'denominator',\n", - " 't0',\n", - " 'sig',\n", - " 'km2',\n", - " 'coordinate',\n", - " 'warning',\n", - " 'logfile',\n", - " 'socket',\n", - " 'getatime',\n", - " 'cd',\n", - " 'yhat',\n", - " 'pt',\n", - " 'valids',\n", - " 'transpose3d',\n", - " 'multiclassclassifier',\n", - " 'keep',\n", - " 'kfunc',\n", - " 'uniface',\n", - " 'linearsvr',\n", - " 'ser',\n", - " 'cases',\n", - " 'pool1d',\n", - " 'estimator2',\n", - " 'isomap',\n", - " 'xred',\n", - " 'categories',\n", - " 'jobs',\n", - " 'parametrize',\n", - " 'plsca',\n", - " 'izip',\n", - " 'summed',\n", - " '1row',\n", - " 'pickler',\n", - " 'sofar',\n", - " 'concentration',\n", - " 'tanhshrink',\n", - " 'logisticregression',\n", - " 'prewarm',\n", - " 'ica',\n", - " 'hasobject',\n", - " 'eexist',\n", - " 'impl',\n", - " 'patch',\n", - " 'nr',\n", - " '10',\n", - " 'direction',\n", - " 'encoder',\n", - " 'combining',\n", - " 'ln',\n", - " 'builtinfunctiontype',\n", - " 'sv',\n", - " 'scalar',\n", - " 'resolution',\n", - " 'clean',\n", - " 'emit',\n", - " 'yeo',\n", - " 'standardmsg',\n", - " 'pickled',\n", - " 'extents',\n", - " 'marginal',\n", - " 'engine',\n", - " 'nk',\n", - " 'estimator0',\n", - " 'qr',\n", - " 'inplace',\n", - " 'urlopen',\n", - " 'myx',\n", - " 'iterkeys',\n", - " 'replicate',\n", - " 'tell',\n", - " 'refit',\n", - " 'protocol',\n", - " 'inert',\n", - " 'percent10',\n", - " 'xbz',\n", - " 'mkdtemp',\n", - " 'intc',\n", - " 'sha256hash',\n", - " 'iteration',\n", - " 'fu',\n", - " 'labels2',\n", - " 'dst',\n", - " 'based',\n", - " 'blankline',\n", - " 'compressobj',\n", - " 'instancetype',\n", - " 'fc',\n", - " 'nearestneighbors',\n", - " 'lw',\n", - " 'sc',\n", - " 'spacing',\n", - " 'reducers',\n", - " 'curloc',\n", - " 'need',\n", - " 'cancelled',\n", - " 'islower',\n", - " 'bysvd',\n", - " 'wrong',\n", - " 'rescaled',\n", - " 'rkf',\n", - " 'subimports',\n", - " 'optima',\n", - " 'classtype',\n", - " 'executable',\n", - " 'velocities',\n", - " 'own',\n", - " 'triplet',\n", - " 'fa',\n", - " 'hx',\n", - " 'server',\n", - " 'treeclassifier',\n", - " 'isnone',\n", - " 'analyzer',\n", - " 'capsys',\n", - " 'tb',\n", - " 'omp',\n", - " 'macro',\n", - " 'plscanonical',\n", - " 'linkage',\n", - " 'halftensor',\n", - " 'alphak',\n", - " 'sel',\n", - " 'clabel',\n", - " 'rec',\n", - " 'outqueue',\n", - " 'validate',\n", - " 'point',\n", - " 'v2',\n", - " 'linear',\n", - " 'de',\n", - " 'xi',\n", - " 'assume',\n", - " 'site',\n", - " 'dest',\n", - " 'amg',\n", - " 'checked',\n", - " 'iinfo',\n", - " 'descr',\n", - " 'compressed',\n", - " 'inheritable',\n", - " 'instances',\n", - " 'inheriting',\n", - " 'agc',\n", - " 'wa',\n", - " 'tree',\n", - " 'tolil',\n", - " 'dbscan',\n", - " 'chain',\n", - " 'addons',\n", - " 'criteria',\n", - " 'cancel',\n", - " 'inject',\n", - " 'solve',\n", - " 'scores',\n", - " 'concrete',\n", - " 'ya',\n", - " 'matvec',\n", - " 'reindexed',\n", - " 'deprecated',\n", - " 'reconstructed',\n", - " 'url',\n", - " 'aglc2',\n", - " 'estimator7',\n", - " 'pad3d',\n", - " 'leave',\n", - " 'issubdtype',\n", - " 'fork',\n", - " 'nonlinearity',\n", - " 'continuous',\n", - " 'can',\n", - " 'lkk',\n", - " 'weights1',\n", - " 'small32',\n", - " 'np',\n", - " 'sa',\n", - " 'learn',\n", - " 'proba2',\n", - " '20newsgroups',\n", - " 'measure',\n", - " 'xmax',\n", - " 'positives',\n", - " 'ypred',\n", - " 'ss',\n", - " 'triangular',\n", - " 'balanced',\n", - " 'corrcoef',\n", - " 'residues',\n", - " 'x3',\n", - " 'bynipals',\n", - " 'pointer',\n", - " 'tracker',\n", - " 'hlines',\n", - " 'values3',\n", - " 'strerror',\n", - " 'regions',\n", - " 'rtol',\n", - " 'system',\n", - " 'pinvh',\n", - " 'lr2',\n", - " 'embedded',\n", - " 'fdopen',\n", - " 'existing',\n", - " 'maj',\n", - " 'factory',\n", - " 'skeleton',\n", - " 'points',\n", - " 'contour',\n", - " 't1p',\n", - " 'failed',\n", - " 'inttensor',\n", - " 'buffered',\n", - " 'uint16',\n", - " 'ecut',\n", - " 'w0',\n", - " 'signals',\n", - " 'xfail',\n", - " 'aic',\n", - " 'importorskip',\n", - " 'coefs2',\n", - " 'waiters',\n", - " 'smaller',\n", - " 'dct',\n", - " 'decomp',\n", - " 'stress',\n", - " 'loadtxt',\n", - " 'ev',\n", - " 'reachability',\n", - " 'getmaskarray',\n", - " 'around',\n", - " 'i2',\n", - " 'ae',\n", - " 'alpha1',\n", - " 'uint32',\n", - " 'a1',\n", - " 'rdonly',\n", - " 'centers',\n", - " 'estimator',\n", - " 'hidden',\n", - " 'boost',\n", - " 'latent',\n", - " 'preparation',\n", - " 'permutations',\n", - " 'notempty',\n", - " 'kwstring',\n", - " 'core3',\n", - " 'extractfile',\n", - " 'kpca2',\n", - " 'basestring',\n", - " 'combi',\n", - " 'marray',\n", - " 'tid',\n", - " 'ensemble',\n", - " 'radiusneighborsclassifier',\n", - " 'check2',\n", - " 'inversed',\n", - " 'uncovered',\n", - " 'annotate',\n", - " 'pollin',\n", - " 'bf',\n", - " 'im',\n", - " 'spawning',\n", - " 'python',\n", - " 'wlock',\n", - " 'ngrams',\n", - " 'ct',\n", - " 'reassignment',\n", - " 'ha',\n", - " 'squaredloss',\n", - " 'window',\n", - " 'joincancelled',\n", - " 'finished',\n", - " 'strdata',\n", - " 'sr',\n", - " 'parastr',\n", - " 'nesterovs',\n", - " 'rs',\n", - " 'nn2',\n", - " 'cont',\n", - " 'oneclasssvm',\n", - " 'pval',\n", - " 'home',\n", - " 'kwds',\n", - " 'regressor',\n", - " 'dists',\n", - " 'aa',\n", - " 'sq',\n", - " 'topics',\n", - " 'fileexistserror',\n", - " 'parallel',\n", - " 'space',\n", - " 'deci',\n", - " 'sgd',\n", - " 'id1',\n", - " 'kmeans',\n", - " 'c1',\n", - " 'pipeline',\n", - " 'leak',\n", - " 'iters',\n", - " 'hardshrink',\n", - " 'swap',\n", - " 'inds',\n", - " 'rbm',\n", - " 'ests',\n", - " 'scalers',\n", - " 'yf',\n", - " 'localoutlierfactor',\n", - " 'mark',\n", - " 'head',\n", - " 'perp',\n", - " 'entered',\n", - " 'exiting',\n", - " 'isfinite',\n", - " 'ytyt',\n", - " 'mses',\n", - " 'gap',\n", - " 'multivariate',\n", - " 'series',\n", - " 'plus',\n", - " 'ann',\n", - " 'getlogger',\n", - " 'bootstrap',\n", - " 'exit',\n", - " 'remainder',\n", - " '2classes',\n", - " 'enet',\n", - " 'createprocess',\n", - " 'dist',\n", - " 'gcv',\n", - " 'ind1',\n", - " 'train2',\n", - " 'warned',\n", - " 'warns',\n", - " 'diag',\n", - " 'yy',\n", - " 'ncores',\n", - " 'integer',\n", - " 'coef0',\n", - " 'fullname',\n", - " 'linearoperator',\n", - " 'csc',\n", - " 'gs',\n", - " 'ml',\n", - " 'formatted',\n", - " 'degree',\n", - " 'indcond',\n", - " 'bp',\n", - " 'basename',\n", - " 'basetype',\n", - " 'getrlimit',\n", - " 'binned',\n", - " 'score1',\n", - " 't21',\n", - " 'algo',\n", - " 'isscalar',\n", - " 'u3',\n", - " 'setdiag',\n", - " 'precomputed',\n", - " 'want',\n", - " 'bincount',\n", - " 'chi',\n", - " 'newline',\n", - " 'wacquire',\n", - " 'sums',\n", - " 'ovo',\n", - " 'patches',\n", - " 'construct',\n", - " 'rrelease',\n", - " 'scorers',\n", - " 'oflag',\n", - " 'ex',\n", - " 'context',\n", - " 'approx',\n", - " 'whichmodule',\n", - " 'rvs',\n", - " 'p0',\n", - " 'unbalanced',\n", - " 'mainthread',\n", - " '20',\n", - " 'saved',\n", - " 'threads',\n", - " 'resolve',\n", - " 'dicts',\n", - " 'setitems',\n", - " 'title',\n", - " 'idx2',\n", - " 'indptr',\n", - " 'eliminate',\n", - " 'decompressobj',\n", - " 'neighbors',\n", - " 'dm2',\n", - " 'extended',\n", - " 'tranform',\n", - " 'enforce',\n", - " 'vt',\n", - " 'expm1',\n", - " 'cut',\n", - " 'xp',\n", - " 'reduceat',\n", - " 'stage',\n", - " 'smallest',\n", - " 'impurity',\n", - " 'errstate',\n", - " 'treeestimator',\n", - " 'refinements',\n", - " 'cumulative',\n", - " 'tokenize',\n", - " 'significant',\n", - " 'intp',\n", - " 'trueinputtype',\n", - " 'detach',\n", - " 'setflags',\n", - " 'reach',\n", - " 'labelspreading',\n", - " 'numerator',\n", - " 'expected2',\n", - " 'method',\n", - " 'gbr',\n", - " 'getnnz',\n", - " 'lfw',\n", - " 'ctol',\n", - " 'objclass',\n", - " 'visibledeprecationwarning',\n", - " 'contains',\n", - " 'steps2',\n", - " 'rhandle',\n", - " 'statistics',\n", - " 'locally',\n", - " 'encoding',\n", - " 'expected1',\n", - " 'ratios',\n", - " '4d',\n", - " 'informative',\n", - " 'pckg',\n", - " 'rstrip',\n", - " 'catch',\n", - " 'whitening',\n", - " 'picklingerror',\n", - " 'largest',\n", - " 'vectorizers',\n", - " 'steps3',\n", - " 'closed',\n", - " 'padded',\n", - " 'xx',\n", - " 'excepthook',\n", - " 'formatargspec',\n", - " 'plssvd',\n", - " 'yk',\n", - " 'quick',\n", - " 'score2',\n", - " 'fileno',\n", - " 'vect',\n", - " 'multiarray',\n", - " 'p2top',\n", - " 'ppf',\n", - " 'fun',\n", - " 'pp',\n", - " 'classifier',\n", - " 'nbrs1',\n", - " 'scoring',\n", - " 'fw',\n", - " 'dispatched',\n", - " 'findall',\n", - " 'bbox',\n", - " 'x5',\n", - " 'bufferedwriter',\n", - " 'ties',\n", - " 'debug',\n", - " 'request',\n", - " 'acceptable',\n", - " 'prior',\n", - " 'blobs',\n", - " 'popitem',\n", - " 'shortlist',\n", - " 'extent',\n", - " 'deflated',\n", - " 'param1',\n", - " 'closest',\n", - " 'yc',\n", - " 'pmf',\n", - " 'stochastic',\n", - " 'int16',\n", - " 'h3',\n", - " 'false',\n", - " 'vars',\n", - " 'joint',\n", - " 'allocate',\n", - " 'errors3',\n", - " 'spintercept',\n", - " 'dens',\n", - " 'covs',\n", - " 'dupl',\n", - " 'track',\n", - " 'constrained',\n", - " 'mismatch',\n", - " 'temp',\n", - " 'rgr',\n", - " 'gwtx',\n", - " 'hit',\n", - " 'leaf',\n", - " 'ari',\n", - " 'lars2',\n", - " 'univariate',\n", - " 'bins',\n", - " 'imnew',\n", - " 'wi',\n", - " 'kargs',\n", - " 'annotation',\n", - " 'external',\n", - " 'configure',\n", - " 'fixture',\n", - " 'finfo',\n", - " 'circ',\n", - " 'rotations',\n", - " 'lplo',\n", - " 'sts',\n", - " 'precs',\n", - " 'trywait',\n", - " 'theory',\n", - " 'suff',\n", - " 'subtrees',\n", - " 'unpackbits',\n", - " 'circles',\n", - " 'annotations',\n", - " 'loaded',\n", - " 'rint',\n", - " 'eclf2',\n", - " 'multilabels',\n", - " 'liblinear',\n", - " 'kw',\n", - " 'tvar',\n", - " 'splitlines',\n", - " 'ndimension',\n", - " 'friedman1',\n", - " 'dtheta',\n", - " 'msle2',\n", - " 'war',\n", - " 'exaggeration',\n", - " 'tolerance',\n", - " 'ufunc',\n", - " 'frame',\n", - " 'matrices',\n", - " 'dirichlet',\n", - " 'numeric',\n", - " 'd12',\n", - " 'test0',\n", - " 'transformers',\n", - " 'presort',\n", - " 'frombytes',\n", - " 'removablehandle',\n", - " 'eclf1',\n", - " 'sqr',\n", - " 'rgb',\n", - " 'cvs',\n", - " 'rr',\n", - " 'cf',\n", - " 'unweighted',\n", - " 'obs',\n", - " 'partitions',\n", - " 'iso',\n", - " 'kern',\n", - " 'interpreter',\n", - " 'alldata',\n", - " 'curve',\n", - " 'unlabeled',\n", - " 'accuracy',\n", - " 'setstate',\n", - " 'supported',\n", - " 'blockingioerror',\n", - " 'alphas',\n", - " 'memo',\n", - " 'pinv',\n", - " 'mat',\n", - " 'iterating',\n", - " 'disp',\n", - " 'xy',\n", - " 'other',\n", - " 'decompressor',\n", - " 'nbrs',\n", - " 'rounded',\n", - " 'solver',\n", - " 'gram',\n", - " 'physiological',\n", - " 'x7',\n", - " 'ii',\n", - " 'rotate',\n", - " 'itr',\n", - " 'traceback',\n", - " 'memmappingexecutor',\n", - " 'startptr',\n", - " 'unnormalized',\n", - " 'x0',\n", - " 'number',\n", - " 'cellvars',\n", - " 'multimetric',\n", - " 'putpalette',\n", - " 'vi',\n", - " 'indicators',\n", - " 'estimator3',\n", - " 'fnc',\n", - " 'hashes',\n", - " 'duplicate',\n", - " 'printoptions',\n", - " 'models',\n", - " 'trilinear3d',\n", - " 'sigmas',\n", - " 'gs4',\n", - " 'transformed2',\n", - " 'recurse',\n", - " 'lad',\n", - " 'partition',\n", - " 'seek',\n", - " 'smacof',\n", - " 'optional',\n", - " 'fds',\n", - " 'textiowrapper',\n", - " 'br',\n", - " 'newx',\n", - " 'license',\n", - " 'now',\n", - " 'ransac',\n", - " 'methodcaller',\n", - " 'ri',\n", - " 'getsourcefile',\n", - " 'xtr',\n", - " 'inertia',\n", - " 'optimization',\n", - " 'latents',\n", - " 'estimate',\n", - " 'expanded',\n", - " 'reweighted',\n", - " 'readinto',\n", - " 'tail',\n", - " 'axis1',\n", - " 'textdoc',\n", - " 'qualname',\n", - " 'cvargs',\n", - " 'mins',\n", - " 'view',\n", - " 'yi',\n", - " 'covariance',\n", - " 'nfds',\n", - " 'cox',\n", - " 'directed',\n", - " 'rlimit',\n", - " 'quotient',\n", - " 'notprecomputed',\n", - " 'nesting',\n", - " 'ypyp',\n", - " 'wnohang',\n", - " 'myy',\n", - " 'resized',\n", - " 'selected',\n", - " 'been',\n", - " 'oparg',\n", - " 'micro',\n", - " 'pca',\n", - " 'proportion',\n", - " 'centering',\n", - " 'nosuchprocess',\n", - " 'region',\n", - " 'wrapper',\n", - " 'regression',\n", - " 'generate',\n", - " 'alg',\n", - " 'unregister',\n", - " 'area',\n", - " 'connected',\n", - " 'bigger',\n", - " 'lof',\n", - " '1col',\n", - " 'these',\n", - " 'ih',\n", - " 'skips',\n", - " 'nanmax',\n", - " 'fmt',\n", - " 'paired',\n", - " 'traced',\n", - " 'unwrap',\n", - " 'affinity',\n", - " 'hardtanh',\n", - " 'floating',\n", - " 'must',\n", - " 'provides',\n", - " 'importer',\n", - " 'rst',\n", - " 'ut',\n", - " 'lambdas',\n", - " 'xgz',\n", - " 'subclusters',\n", - " 'reconstruction',\n", - " 'maybe',\n", - " 'valid',\n", - " 'fdel',\n", - " 'mds',\n", - " 'getvalue',\n", - " 'bidirectional',\n", - " 'wexitstatus',\n", - " 'exec',\n", - " 'soft',\n", - " 'binarize',\n", - " 'calledprocesserror',\n", - " 'yb',\n", - " 'lmost',\n", - " 'eigen',\n", - " 'clusterer',\n", - " 'mgrid',\n", - " 'mostfrequent',\n", - " 'macros',\n", - " 'marked',\n", - " 'cal',\n", - " 'contamination',\n", - " 'mono',\n", - " 'h0',\n", - " 'none',\n", - " 'ranking',\n", - " 'exporter',\n", - " 'sp',\n", - " 'data1',\n", - " 'submit',\n", - " 'quoted',\n", - " 'eigvalsh',\n", - " 'estimators',\n", - " 'openml',\n", - " 'dirname',\n", - " 'execv',\n", - " 'labelpropagation',\n", - " 'pvalues',\n", - " 'sync',\n", - " 'getfilesystemencoding',\n", - " 'require',\n", - " 'convnd',\n", - " 'work',\n", - " 'data2cats',\n", - " 'tracked',\n", - " 'gbrt',\n", - " 'loadings',\n", - " 'cosine',\n", - " 'sysconf',\n", - " 'void',\n", - " 'spmatrix',\n", - " 'variablefunctions',\n", - " 'nanmin',\n", - " 'project',\n", - " 'tri',\n", - " 'trigger',\n", - " 'critical',\n", - " 'masked',\n", - " 'target1',\n", - " 'semaphore',\n", - " 'compresslevel',\n", - " 'us',\n", - " 'multi2',\n", - " 'pls',\n", - " 'wraps',\n", - " 'indexed',\n", - " 'ridge',\n", - " 'perplexity2',\n", - " 'argsort',\n", - " 'counts',\n", - " 'mycv',\n", - " 'product',\n", - " 'buggy',\n", - " 'warm',\n", - " 'xb',\n", - " 'converters',\n", - " 'str3',\n", - " 'starts',\n", - " 'pk',\n", - " 'fmin',\n", - " 'rss',\n", - " 'before',\n", - " 'funcname',\n", - " 'bufferedreader',\n", - " 'cholesky',\n", - " 'spherical2',\n", - " 'flexible',\n", - " 'ds',\n", - " 'mv',\n", - " 'pkgs',\n", - " 'xboston',\n", - " 'conversors',\n", - " 'started',\n", - " 'ddnorm',\n", - " 'changed',\n", - " 'ascontiguousarray',\n", - " 'stds',\n", - " 'uadd',\n", - " 'sampled',\n", - " 'cm',\n", - " 'ellipsis',\n", - " 'remap',\n", - " 'messages',\n", - " 'conn',\n", - " 'rfe',\n", - " 'unicode',\n", - " 'prnt',\n", - " 'tracerwarning',\n", - " 'children',\n", - " 'iprint',\n", - " 'psi',\n", - " 'nanvar',\n", - " 'setformatter',\n", - " 'dt',\n", - " 's3',\n", - " 'of',\n", - " 'progress',\n", - " 'qt',\n", - " 'mcm',\n", - " 'vecs',\n", - " 'sys',\n", - " 'breadth',\n", - " 'mk',\n", - " 'uint64',\n", - " 'a0',\n", - " 'absexp',\n", - " 'setdiff1d',\n", - " 'score',\n", - " 'py27',\n", - " 'pairwise',\n", - " 'log1p',\n", - " 'zo',\n", - " 'selu',\n", - " 'calculated',\n", - " 'pqd',\n", - " 'bagging',\n", - " 'ng',\n", - " 'wishart',\n", - " 'than',\n", - " 'deflation',\n", - " 'invert',\n", - " 'fromfile',\n", - " 'geta1',\n", - " 'getter',\n", - " 'radiusneighborsregressor',\n", - " 'comb',\n", - " 'weakset',\n", - " 'delay',\n", - " 'regex',\n", - " 'builder',\n", - " 'bilinear2d',\n", - " 'asgd',\n", - " 'model1',\n", - " 'management',\n", - " 'jit',\n", - " 'kneighborsclassifier',\n", - " 'pipe',\n", - " 'functiondoc',\n", - " 'wifsignaled',\n", - " 'change',\n", - " 'writelines',\n", - " 'views',\n", - " 'chains',\n", - " 'formatter',\n", - " 'take',\n", - " 'percentiles',\n", - " 'inqueue',\n", - " 'test2',\n", - " 'tostring',\n", - " 'depths',\n", - " 'ewa',\n", - " 'means2',\n", - " 'averaging',\n", - " 'confidences',\n", - " 'damp',\n", - " 'timedwait',\n", - " 'ax',\n", - " 'contexts',\n", - " 'regul',\n", - " 'dico',\n", - " 'coefs',\n", - " 'fobj',\n", - " 'lnotab',\n", - " 'tpr',\n", - " 'every',\n", - " 'token',\n", - " 'ncut',\n", - " 'cutoffs',\n", - " 'bsr',\n", - " 'pdp',\n", - " 'density',\n", - " 'c6',\n", - " 'triu',\n", - " 'tuu',\n", - " 'registry',\n", - " 'complete',\n", - " 'plot',\n", - " 'todia',\n", - " 'ind2',\n", - " 'absolute',\n", - " 'sor',\n", - " 'readlines',\n", - " 'hex',\n", - " 'buffers',\n", - " 'lno',\n", - " 'wminkowski',\n", - " 'rand',\n", - " 'standard',\n", - " 'frequency',\n", - " 'mcc',\n", - " 'subplot',\n", - " 'ss2',\n", - " 'wl',\n", - " 'decisions',\n", - " 'c2',\n", - " 'lstrip',\n", - " 'large',\n", - " 'discrete',\n", - " 'cmin',\n", - " 'normx',\n", - " 'many',\n", - " 'codes',\n", - " 'enoent',\n", - " 'rp',\n", - " 'ymax',\n", - " 'violation',\n", - " 'ssbn',\n", - " 'stationary',\n", - " 'gold',\n", - " 'invalid',\n", - " 'candidates',\n", - " 'weights2',\n", - " 'errors',\n", - " 'softshrink',\n", - " 'wrap',\n", - " 'multilabel',\n", - " 'bgmm2',\n", - " 'mock',\n", - " 'cached',\n", - " 'ss4',\n", - " 'str4',\n", - " 'pixel',\n", - " 'boston',\n", - " 'sgh',\n", - " 'b110',\n", - " 'v0',\n", - " 'kpca',\n", - " 'fraction',\n", - " 'tsne',\n", - " 'opcode',\n", - " 'symmetric',\n", - " 'i64',\n", - " 'orig',\n", - " 'ele',\n", - " 'chdtrc',\n", - " 'least',\n", - " 'microseconds',\n", - " 'frac',\n", - " 'sampled2',\n", - " 'memmaped',\n", - " 'adaptive',\n", - " 'locs',\n", - " 'sharedmem',\n", - " 'unpickler',\n", - " 'stream',\n", - " 'helper',\n", - " 'accept',\n", - " 'recv',\n", - " 'em',\n", - " 'etimedout',\n", - " 'spintercept2',\n", - " 'repr',\n", - " 'itemgetter',\n", - " 'decompress',\n", - " 'rcond',\n", - " 'reader',\n", - " 'ent',\n", - " 'calibrated',\n", - " '3classes',\n", - " 'bgmm',\n", - " 'memmappingpool',\n", - " 'separator',\n", - " 'marr',\n", - " 'linearsvc',\n", - " 'attrname',\n", - " 'tk',\n", - " 'firstlineno',\n", - " 'diffusion',\n", - " 'projection',\n", - " 'nsec',\n", - " '3264',\n", - " 'src',\n", - " 'amount',\n", - " 'vertices',\n", - " 'kill',\n", - " 'bt1',\n", - " 'reduced',\n", - " 'whiten',\n", - " 'y7',\n", - " 'anorm',\n", - " 'logsigmoid',\n", - " 'timeout',\n", - " 'seekable',\n", - " 'kneighborsregressor',\n", - " 'u4',\n", - " 'unstructured',\n", - " ...}" + "set()" ] }, - "execution_count": 7, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1430,1484 +434,1213 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3823" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(vocab_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "accuracy = 0" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "per_token_acc = {}; per_token_count = {}" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "for i in range(len(results_df)):\n", - " snippet = [results_df[str(_)][i] for _ in range(64)]\n", - " msk_idx = results_df.iloc[i]['masked_lm_positions']\n", - " masked_tk = snippet[msk_idx]\n", - " prediction = vocab_df.loc[results_df.iloc[i]['masked_lm_predictions']][0]\n", - " label = vocab_df.loc[results_df.iloc[i]['label_ids']][0]\n", - " if per_token_acc.get(label, None) == None:\n", - " per_token_acc[label] = 0\n", - " per_token_count[label] = 0\n", - " per_token_acc[label] += int(prediction == label)\n", - " per_token_count[label] += 1\n", - " accuracy += int(prediction == label)\n", - " #print(\"Predicted --\", prediction)\n", - " #print(\"Label --\", label)\n", - " #print()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "total_per_token_accuracy = {}\n", - "per_token_freq = {}\n", - "for k,v in per_token_acc.items():\n", - " if per_token_count[k] > 0:\n", - " total_per_token_accuracy[k] = v / per_token_count[k]\n", - " per_token_freq[k] = per_token_count[k] / len(results_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import Counter\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('warning', 1.0),\n", - " ('log2', 1.0),\n", - " ('store', 1.0),\n", - " ('parametrize', 1.0),\n", - " ('not', 1.0),\n", - " ('condition', 1.0),\n", - " ('anisotropic', 1.0),\n", - " ('patch', 1.0),\n", - " ('cand', 1.0),\n", - " ('randomstate', 1.0),\n", - " ('union1d', 1.0),\n", - " ('bounds', 1.0),\n", - " ('pickled', 1.0),\n", - " ('marginal', 1.0),\n", - " ('unsupportedoperation', 1.0),\n", - " ('qr', 1.0),\n", - " ('urlopen', 1.0),\n", - " ('refit', 1.0),\n", - " ('stopping', 1.0),\n", - " ('try', 1.0),\n", - " ('spacing', 1.0),\n", - " ('convert', 1.0),\n", - " ('analyzer', 1.0),\n", - " ('quantiles', 1.0),\n", - " ('spca', 1.0),\n", - " ('validate', 1.0),\n", - " ('point', 1.0),\n", - " ('assume', 1.0),\n", - " ('checked', 1.0),\n", - " ('descr', 1.0),\n", - " ('exists', 1.0),\n", - " ('covariances', 1.0),\n", - " ('tn', 1.0),\n", - " ('fork', 1.0),\n", - " ('incr', 1.0),\n", - " ('np', 1.0),\n", - " ('20newsgroups', 1.0),\n", - " ('chol', 1.0),\n", - " ('bynipals', 1.0),\n", - " ('folder', 1.0),\n", - " ('eclf', 1.0),\n", - " ('divide', 1.0),\n", - " ('endswith', 1.0),\n", - " ('subcluster', 1.0),\n", - " ('uncovered', 1.0),\n", - " ('colors', 1.0),\n", - " ('im', 1.0),\n", - " ('decrement', 1.0),\n", - " ('strdata', 1.0),\n", - " ('pooling', 1.0),\n", - " ('alias', 1.0),\n", - " ('returncode', 1.0),\n", - " ('invalidoperation', 1.0),\n", - " ('stderr', 1.0),\n", - " ('warnings', 1.0),\n", - " ('mark', 1.0),\n", - " ('likelihood', 1.0),\n", - " ('gap', 1.0),\n", - " ('multivariate', 1.0),\n", - " ('degree', 1.0),\n", - " ('splitter', 1.0),\n", - " ('wakeup', 1.0),\n", - " ('subset', 1.0),\n", - " ('errstate', 1.0),\n", - " ('both', 1.0),\n", - " ('send', 1.0),\n", - " ('ds', 1.0),\n", - " ('einsum', 1.0),\n", - " ('fval', 1.0),\n", - " ('picklingerror', 1.0),\n", - " ('catch', 1.0),\n", - " ('duration', 1.0),\n", - " ('closed', 1.0),\n", - " ('fprime', 1.0),\n", - " ('multiarray', 1.0),\n", - " ('proto', 1.0),\n", - " ('similarity', 1.0),\n", - " ('ranks', 1.0),\n", - " ('allclose', 1.0),\n", - " ('stdout', 1.0),\n", - " ('intc', 1.0),\n", - " ('topic', 1.0),\n", - " ('linalg', 1.0),\n", - " ('temp', 1.0),\n", - " ('isfinite', 1.0),\n", - " ('terminate', 1.0),\n", - " ('configure', 1.0),\n", - " ('finfo', 1.0),\n", - " ('processes', 1.0),\n", - " ('fdescr', 1.0),\n", - " ('usub', 1.0),\n", - " ('maxsize', 1.0),\n", - " ('oob', 1.0),\n", - " ('find', 1.0),\n", - " ('raises', 1.0),\n", - " ('dirichlet', 1.0),\n", - " ('newaxis', 1.0),\n", - " ('extract', 1.0),\n", - " ('failing', 1.0),\n", - " ('lstsq', 1.0),\n", - " ('decrease', 1.0),\n", - " ('nbrs', 1.0),\n", - " ('xs', 1.0),\n", - " ('duplicate', 1.0),\n", - " ('maxima', 1.0),\n", - " ('iteration', 1.0),\n", - " ('enet', 1.0),\n", - " ('lshift', 1.0),\n", - " ('correct', 1.0),\n", - " ('ransac', 1.0),\n", - " ('duplicatehandle', 1.0),\n", - " ('estimate', 1.0),\n", - " ('dual', 1.0),\n", - " ('mmap', 1.0),\n", - " ('rmtree', 1.0),\n", - " ('region', 1.0),\n", - " ('skips', 1.0),\n", - " ('atleast', 1.0),\n", - " ('rst', 1.0),\n", - " ('cloned', 1.0),\n", - " ('missing', 1.0),\n", - " ('contamination', 1.0),\n", - " ('mlp', 1.0),\n", - " ('critical', 1.0),\n", - " ('warm', 1.0),\n", - " ('xb', 1.0),\n", - " ('logical', 1.0),\n", - " ('fpr', 1.0),\n", - " ('getcol', 1.0),\n", - " ('dt', 1.0),\n", - " ('of', 1.0),\n", - " ('breadth', 1.0),\n", - " ('cov', 1.0),\n", - " ('selection', 1.0),\n", - " ('distributions', 1.0),\n", - " ('1d', 1.0),\n", - " ('management', 1.0),\n", - " ('winexe', 1.0),\n", - " ('importances', 1.0),\n", - " ('change', 1.0),\n", - " ('take', 1.0),\n", - " ('dest', 1.0),\n", - " ('ind2', 1.0),\n", - " ('multinomial', 1.0),\n", - " ('kwarg', 1.0),\n", - " ('log10', 1.0),\n", - " ('boolop', 1.0),\n", - " ('centered', 1.0),\n", - " ('invalid', 1.0),\n", - " ('multilabel', 1.0),\n", - " ('cached', 1.0),\n", - " ('original', 1.0),\n", - " ('v0', 1.0),\n", - " ('fraction', 1.0),\n", - " ('em', 1.0),\n", - " ('repr', 1.0),\n", - " ('singular', 1.0),\n", - " ('reader', 1.0),\n", - " ('bgmm', 1.0),\n", - " ('predected', 1.0),\n", - " ('importfrom', 1.0),\n", - " ('acquire', 1.0),\n", - " ('reconstruct', 1.0),\n", - " ('interp', 1.0),\n", - " ('nonrobust', 1.0),\n", - " ('xbar', 1.0),\n", - " ('flag', 1.0),\n", - " ('strip', 1.0),\n", - " ('freedom', 1.0),\n", - " ('explained', 1.0),\n", - " ('case', 1.0),\n", - " ('issubdtype', 1.0),\n", - " ('fdst', 1.0),\n", - " ('squared', 1.0),\n", - " ('linspace', 1.0),\n", - " ('lower', 1.0),\n", - " ('less', 1.0),\n", - " ('inliers', 1.0),\n", - " ('regr', 1.0),\n", - " ('logdet', 1.0),\n", - " ('k1', 1.0),\n", - " ('calls', 1.0),\n", - " ('testing', 1.0),\n", - " ('getcurrentprocess', 1.0),\n", - " ('book', 1.0),\n", - " ('power', 1.0),\n", - " ('combinations', 1.0),\n", - " ('sigterm', 1.0),\n", - " ('category', 1.0),\n", - " ('like', 1.0),\n", - " ('binarizer', 1.0),\n", - " ('hess', 1.0),\n", - " ('withitem', 1.0),\n", - " ('cg', 1.0),\n", - " ('pred2', 1.0),\n", - " ('kwonlyargs', 1.0),\n", - " ('kneighbors', 1.0),\n", - " ('learning', 1.0),\n", - " ('bitor', 1.0),\n", - " ('table', 1.0),\n", - " ('inlier', 1.0),\n", - " ('improvement', 1.0),\n", - " ('prev', 1.0),\n", - " ('monkeypatch', 1.0),\n", - " ('filterwarnings', 1.0),\n", - " ('concentration', 1.0),\n", - " ('early', 1.0),\n", - " ('items', 1.0),\n", - " ('scaling', 1.0),\n", - " ('delegate', 1.0),\n", - " ('fileobj', 1.0),\n", - " ('intersect1d', 1.0),\n", - " ('extslice', 1.0),\n", - " ('methodtype', 1.0),\n", - " ('none', 1.0),\n", - " ('fitted', 1.0),\n", - " ('staged', 1.0),\n", - " ('unaryop', 1.0),\n", - " ('sprase', 1.0),\n", - " ('low', 1.0),\n", - " ('common', 1.0),\n", - " ('bitand', 1.0),\n", - " ('asfortranarray', 1.0),\n", - " ('sem', 1.0),\n", - " ('dist2', 1.0),\n", - " ('terminal', 1.0),\n", - " ('probabilities', 1.0),\n", - " ('predecessor', 1.0),\n", - " ('libsvm', 1.0),\n", - " ('aug', 1.0),\n", - " ('kernels', 1.0),\n", - " ('flush', 1.0),\n", - " ('shrinkage', 1.0),\n", - " ('raw', 1.0),\n", - " ('event', 1.0),\n", - " ('errno', 1.0),\n", - " ('named', 1.0),\n", - " ('sibling', 1.0),\n", - " ('subscript', 0.9998137802607077),\n", - " ('binop', 0.999507874015748),\n", - " ('compare', 0.9992619926199262),\n", - " ('comprehension', 0.9968602825745683),\n", - " ('attribute', 0.9966392202991093),\n", - " ('functiondef', 0.9957924263674615),\n", - " ('arg', 0.992467043314501),\n", - " ('keyword', 0.9913961225192153),\n", - " ('index', 0.990979381443299),\n", - " ('assign', 0.9901851438768682),\n", - " ('call', 0.9891446850909854),\n", - " ('if', 0.9861775651249336),\n", - " ('lambda', 0.9851851851851852),\n", - " ('with', 0.9787234042553191),\n", - " ('ct', 0.9782608695652174),\n", - " ('format', 0.9752321981424149),\n", - " ('arguments', 0.9745293466223699),\n", - " ('flat', 0.9736842105263158),\n", - " ('solver', 0.972972972972973),\n", - " ('name', 0.9674563417518959),\n", - " ('and', 0.9649890590809628),\n", - " ('transformers', 0.9591836734693877),\n", - " ('list', 0.956581352833638),\n", - " ('mod', 0.9549019607843138),\n", - " ('listcomp', 0.9527186761229315),\n", - " ('raise', 0.9475862068965517),\n", - " ('fit', 0.9453924914675768),\n", - " ('transformer', 0.9411764705882353),\n", - " ('num', 0.9401052631578948),\n", - " ('self', 0.9384236453201971),\n", - " ('work', 0.9333333333333333),\n", - " ('join', 0.9333333333333333),\n", - " ('array', 0.9316888045540797),\n", - " ('for', 0.9310344827586207),\n", - " ('dot', 0.9298245614035088),\n", - " ('split', 0.9294117647058824),\n", - " ('transform', 0.9288537549407114),\n", - " ('round', 0.9285714285714286),\n", - " ('nn', 0.925),\n", - " ('tuple', 0.9237429237429238),\n", - " ('slice', 0.9234421364985164),\n", - " ('feature', 0.92),\n", - " ('startswith', 0.92),\n", - " ('shape', 0.9187772925764193),\n", - " ('leaf', 0.9166666666666666),\n", - " ('partial', 0.9152542372881356),\n", - " ('mult', 0.9150507848568791),\n", - " ('toarray', 0.9139784946236559),\n", - " ('matrix', 0.9122807017543859),\n", - " ('imputer', 0.9090909090909091),\n", - " ('splits', 0.9090909090909091),\n", - " ('tree', 0.9090909090909091),\n", - " ('int', 0.9090909090909091),\n", - " ('children', 0.9090909090909091),\n", - " ('expr', 0.909017059301381),\n", - " ('issparse', 0.9069767441860465),\n", - " ('sqrt', 0.9041916167664671),\n", - " ('augassign', 0.902542372881356),\n", - " ('n', 0.902200488997555),\n", - " ('classdef', 0.9019607843137255),\n", - " ('factory', 0.9016393442622951),\n", - " ('hstack', 0.9016393442622951),\n", - " ('jobs', 0.9014084507042254),\n", - " ('yield', 0.9),\n", - " ('get', 0.8983050847457628),\n", - " ('kind', 0.8947368421052632),\n", - " ('inverse', 0.8947368421052632),\n", - " ('types', 0.8918918918918919),\n", - " ('random', 0.8903225806451613),\n", - " ('init', 0.8857142857142857),\n", - " ('grid', 0.8823529411764706),\n", - " ('str', 0.875526791089705),\n", - " ('ignore', 0.875),\n", - " ('radius', 0.875),\n", - " ('rep', 0.875),\n", - " ('globals', 0.875),\n", - " ('ravel', 0.8726114649681529),\n", - " ('eq', 0.8717948717948718),\n", - " ('variance', 0.8666666666666667),\n", - " ('categories', 0.8666666666666667),\n", - " ('argsort', 0.8666666666666667),\n", - " ('t', 0.8625429553264605),\n", - " ('where', 0.8611111111111112),\n", - " ('abs', 0.8596491228070176),\n", - " ('proba', 0.8586956521739131),\n", - " ('recurrent', 0.8571428571428571),\n", - " ('bins', 0.8571428571428571),\n", - " ('selector', 0.8571428571428571),\n", - " ('precision', 0.8571428571428571),\n", - " ('cluster', 0.8571428571428571),\n", - " ('percentile', 0.8571428571428571),\n", - " ('thread', 0.8571428571428571),\n", - " ('apply', 0.8541666666666666),\n", - " ('string', 0.8529411764705882),\n", - " ('assert', 0.8518518518518519),\n", - " ('pow', 0.8517110266159695),\n", - " ('add', 0.849609375),\n", - " ('predict', 0.8492647058823529),\n", - " ('warn', 0.8470588235294118),\n", - " ('lars', 0.8461538461538461),\n", - " ('svd', 0.8461538461538461),\n", - " ('class', 0.8441558441558441),\n", - " ('indptr', 0.84375),\n", - " ('make', 0.84375),\n", - " ('decision', 0.84375),\n", - " ('initial', 0.84),\n", - " ('diag', 0.8392857142857143),\n", - " ('state', 0.8389261744966443),\n", - " ('excepthandler', 0.8363636363636363),\n", - " ('x', 0.8357705286839145),\n", - " ('activation', 0.8333333333333334),\n", - " ('formatted', 0.8333333333333334),\n", - " ('statistics', 0.8333333333333334),\n", - " ('presort', 0.8333333333333334),\n", - " ('print', 0.8333333333333334),\n", - " ('permutation', 0.8333333333333334),\n", - " ('pls', 0.8333333333333334),\n", - " ('release', 0.8333333333333334),\n", - " ('parent', 0.8333333333333334),\n", - " ('clusters', 0.8333333333333334),\n", - " ('along', 0.8333333333333334),\n", - " ('dict', 0.8327402135231317),\n", - " ('ifexp', 0.8311688311688312),\n", - " ('is', 0.8285714285714286),\n", - " ('ndarray', 0.8260869565217391),\n", - " ('log', 0.8258064516129032),\n", - " ('target', 0.8258064516129032),\n", - " ('generatorexp', 0.8255813953488372),\n", - " ('label', 0.8235294117647058),\n", - " ('sub', 0.8210526315789474),\n", - " ('path', 0.8205128205128205),\n", - " ('estimators', 0.8191489361702128),\n", - " ('platform', 0.8181818181818182),\n", - " ('cumsum', 0.8181818181818182),\n", - " ('div', 0.8171701112877583),\n", - " ('max', 0.8171428571428572),\n", - " ('backend', 0.810126582278481),\n", - " ('samples', 0.8072289156626506),\n", - " ('version', 0.8064516129032258),\n", - " ('inf', 0.8055555555555556),\n", - " ('bias', 0.8026315789473685),\n", - " ('y', 0.8014705882352942),\n", - " ('write', 0.8),\n", - " ('tocsr', 0.8),\n", - " ('integral', 0.8),\n", - " ('degrees', 0.8),\n", - " ('impurity', 0.8),\n", - " ('rows', 0.8),\n", - " ('predictions', 0.8),\n", - " ('functions', 0.8),\n", - " ('nonzero', 0.8),\n", - " ('pending', 0.8),\n", - " ('invert', 0.8),\n", - " ('uses', 0.8),\n", - " ('0', 0.8),\n", - " ('build', 0.8),\n", - " ('tsne', 0.8),\n", - " ('sigma', 0.8),\n", - " ('iter', 0.7941176470588235),\n", - " ('coef', 0.7922077922077922),\n", - " ('sum', 0.785876993166287),\n", - " ('interval', 0.7857142857142857),\n", - " ('effective', 0.7857142857142857),\n", - " ('dictcomp', 0.7857142857142857),\n", - " ('df', 0.7857142857142857),\n", - " ('out', 0.7833333333333333),\n", - " ('return', 0.7821782178217822),\n", - " ('beta', 0.7804878048780488),\n", - " ('unique', 0.7796610169491526),\n", - " ('astype', 0.7794117647058824),\n", - " ('intercept', 0.7792207792207793),\n", - " ('classification', 0.7777777777777778),\n", - " ('searchsorted', 0.7777777777777778),\n", - " ('uadd', 0.7777777777777778),\n", - " ('root', 0.7777777777777778),\n", - " ('left', 0.7777777777777778),\n", - " ('append', 0.7771084337349398),\n", - " ('units', 0.7755102040816326),\n", - " ('v', 0.775),\n", - " ('check', 0.775),\n", - " ('method', 0.7727272727272727),\n", - " ('float64', 0.7727272727272727),\n", - " ('steps', 0.7719298245614035),\n", - " ('reshape', 0.7709923664122137),\n", - " ('vstack', 0.7708333333333334),\n", - " ('squeeze', 0.7692307692307693),\n", - " ('normal', 0.7692307692307693),\n", - " ('pop', 0.7692307692307693),\n", - " ('features', 0.7647058823529411),\n", - " ('dtype', 0.7644230769230769),\n", - " ('isnot', 0.7621359223300971),\n", - " ('classes', 0.7610619469026548),\n", - " ('components', 0.7596153846153846),\n", - " ('isnan', 0.7586206896551724),\n", - " ('normalized', 0.75),\n", - " ('notin', 0.75),\n", - " ('tolist', 0.75),\n", - " ('fan', 0.75),\n", - " ('remainder', 0.75),\n", - " ('range', 0.75),\n", - " ('nb', 0.75),\n", - " ('rate', 0.75),\n", - " ('precisions', 0.75),\n", - " ('depth', 0.75),\n", - " ('authkey', 0.75),\n", - " ('alive', 0.75),\n", - " ('constant', 0.75),\n", - " ('fetch', 0.75),\n", - " ('subclass', 0.75),\n", - " ('rank', 0.75),\n", - " ('text', 0.75),\n", - " ('z0', 0.75),\n", - " ('kernel', 0.7486631016042781),\n", - " ('arange', 0.7479674796747967),\n", - " ('score', 0.7452229299363057),\n", - " ('msg', 0.7435897435897436),\n", - " ('data', 0.7393617021276596),\n", - " ('start', 0.7391304347826086),\n", - " ('axis', 0.7352941176470589),\n", - " ('float32', 0.734375),\n", - " ('face', 0.7333333333333333),\n", - " ('flags', 0.7333333333333333),\n", - " ('expand', 0.7333333333333333),\n", - " ('argmax', 0.7333333333333333),\n", - " ('or', 0.7312775330396476),\n", - " ('support', 0.7307692307692307),\n", - " ('randn', 0.7230769230769231),\n", - " ('sample', 0.7222222222222222),\n", - " ('average', 0.7222222222222222),\n", - " ('randint', 0.7205882352941176),\n", - " ('noteq', 0.7202797202797203),\n", - " ('ones', 0.7176470588235294),\n", - " ('cos', 0.7142857142857143),\n", - " ('isclose', 0.7142857142857143),\n", - " ('approx', 0.7142857142857143),\n", - " ('prior', 0.7142857142857143),\n", - " ('equal', 0.7142857142857143),\n", - " ('close', 0.7142857142857143),\n", - " ('any', 0.7142857142857143),\n", - " ('sign', 0.7142857142857143),\n", - " ('l1', 0.7142857142857143),\n", - " ('modes', 0.7142857142857143),\n", - " ('inertia', 0.7142857142857143),\n", - " ('args', 0.7142857142857143),\n", - " ('nameconstant', 0.7100822154911294),\n", - " ('std', 0.7090909090909091),\n", - " ('affinity', 0.7083333333333334),\n", - " ('clf', 0.7083333333333334),\n", - " ('lt', 0.7061224489795919),\n", - " ('function', 0.7058823529411765),\n", - " ('dims', 0.7037037037037037),\n", - " ('bincount', 0.7037037037037037),\n", - " ('covar', 0.7),\n", - " ('decode', 0.7),\n", - " ('conv', 0.7),\n", - " ('eigen', 0.7),\n", - " ('whiten', 0.7),\n", - " ('graph', 0.7),\n", - " ('pred', 0.6956521739130435),\n", - " ('trans', 0.6956521739130435),\n", - " ('priors', 0.6923076923076923),\n", - " ('sin', 0.6923076923076923),\n", - " ('i', 0.689873417721519),\n", - " ('params', 0.6891891891891891),\n", - " ('in', 0.6877828054298643),\n", - " ('zeros', 0.6861702127659575),\n", - " ('weight', 0.6859504132231405),\n", - " ('info', 0.6851851851851852),\n", - " ('results', 0.6842105263157895),\n", - " ('train', 0.6796116504854369),\n", - " ('writer', 0.6774193548387096),\n", - " ('exp', 0.6774193548387096),\n", - " ('pi', 0.6774193548387096),\n", - " ('theta', 0.6756756756756757),\n", - " ('csr', 0.6756756756756757),\n", - " ('keys', 0.675),\n", - " ('mean', 0.6695278969957081),\n", - " ('exc', 0.6666666666666666),\n", - " ('grads', 0.6666666666666666),\n", - " ('linear', 0.6666666666666666),\n", - " ('setter', 0.6666666666666666),\n", - " ('ipca', 0.6666666666666666),\n", - " ('break', 0.6666666666666666),\n", - " ('time', 0.6666666666666666),\n", - " ('getvalue', 0.6666666666666666),\n", - " ('multiply', 0.6666666666666666),\n", - " ('zero', 0.6666666666666666),\n", - " ('tostring', 0.6666666666666666),\n", - " ('mode', 0.6666666666666666),\n", - " ('hastie', 0.6666666666666666),\n", - " ('r', 0.6666666666666666),\n", - " ('integer', 0.6666666666666666),\n", - " ('positional', 0.6666666666666666),\n", - " ('read', 0.6666666666666666),\n", - " ('id', 0.6666666666666666),\n", - " ('cause', 0.6666666666666666),\n", - " ('traceback', 0.6666666666666666),\n", - " ('in1d', 0.6666666666666666),\n", - " ('parallel', 0.6666666666666666),\n", - " ('criterion', 0.6666666666666666),\n", - " ('copy', 0.6626506024096386),\n", - " ('count', 0.6610169491525424),\n", - " ('scores', 0.66),\n", - " ('length', 0.66),\n", - " ('min', 0.6578947368421053),\n", - " ('norm', 0.6557377049180327),\n", - " ('verbose', 0.6557377049180327),\n", - " ('base', 0.6521739130434783),\n", - " ('cv', 0.6511627906976745),\n", - " ('k', 0.6503496503496503),\n", - " ('scale', 0.6470588235294118),\n", - " ('seen', 0.6470588235294118),\n", - " ('replace', 0.6470588235294118),\n", - " ('indices', 0.6440677966101694),\n", - " ('int64', 0.6428571428571429),\n", - " ('repeat', 0.6410256410256411),\n", - " ('means', 0.6363636363636364),\n", - " ('size', 0.6324503311258278),\n", - " ('intp', 0.631578947368421),\n", - " ('values', 0.6310679611650486),\n", - " ('output', 0.6267605633802817),\n", - " ('10', 0.625),\n", - " ('iterator', 0.625),\n", - " ('cholesky', 0.625),\n", - " ('first', 0.625),\n", - " ('all', 0.625),\n", - " ('rand', 0.6226415094339622),\n", - " ('starred', 0.6222222222222222),\n", - " ('gt', 0.6192660550458715),\n", - " ('step', 0.6190476190476191),\n", - " ('labels', 0.6172839506172839),\n", - " ('hidden', 0.6153846153846154),\n", - " ('ordering', 0.6153846153846154),\n", - " ('2', 0.6129032258064516),\n", - " ('a', 0.6119402985074627),\n", - " ('node', 0.6086956521739131),\n", - " ('outputs', 0.6060606060606061),\n", - " ('resize', 0.6),\n", - " ('nearestneighbors', 0.6),\n", - " ('around', 0.6),\n", - " ('rng', 0.6),\n", - " ('nind', 0.6),\n", - " ('process', 0.6),\n", - " ('nodes', 0.6),\n", - " ('inv', 0.6),\n", - " ('decisiontreeregressor', 0.6),\n", - " ('query', 0.6),\n", - " ('kwonlydefaults', 0.6),\n", - " ('non', 0.6),\n", - " ('floordiv', 0.59375),\n", - " ('transpose', 0.5925925925925926),\n", - " ('xt', 0.5925925925925926),\n", - " ('asarray', 0.5915492957746479),\n", - " ('empty', 0.5901639344262295),\n", - " ('queue', 0.5882352941176471),\n", - " ('lock', 0.5833333333333334),\n", - " ('rfecv', 0.5833333333333334),\n", - " ('linearsvc', 0.5833333333333334),\n", - " ('true', 0.5777777777777777),\n", - " ('exception', 0.5714285714285714),\n", - " ('file', 0.5714285714285714),\n", - " ('compute', 0.5714285714285714),\n", - " ('groups', 0.5714285714285714),\n", - " ('sorted', 0.5714285714285714),\n", - " ('pos', 0.5714285714285714),\n", - " ('semlock', 0.5714285714285714),\n", - " ('metric', 0.5681818181818182),\n", - " ('future', 0.5625),\n", - " ('full', 0.5588235294117647),\n", - " ('p', 0.5576923076923077),\n", - " ('contiguous', 0.5555555555555556),\n", - " ('incorrect', 0.5555555555555556),\n", - " ('dispatch', 0.5555555555555556),\n", - " ('distances', 0.5555555555555556),\n", - " ('type', 0.5522388059701493),\n", - " ('batch', 0.5520833333333334),\n", - " ('continue', 0.55),\n", - " ('weights', 0.5492957746478874),\n", - " ('c', 0.5480769230769231),\n", - " ('ceil', 0.5454545454545454),\n", - " ('res', 0.5454545454545454),\n", - " ('embedding', 0.5454545454545454),\n", - " ('svc', 0.5428571428571428),\n", - " ('uniform', 0.5423728813559322),\n", - " ('set', 0.5373134328358209),\n", - " ('neighbors', 0.5357142857142857),\n", - " ('save', 0.5333333333333333),\n", - " ('f', 0.5324675324675324),\n", - " ('names', 0.5306122448979592),\n", - " ('alphas', 0.5294117647058824),\n", - " ('bool', 0.5294117647058824),\n", - " ('stop', 0.5294117647058824),\n", - " ('code', 0.5294117647058824),\n", - " ('ndim', 0.5283018867924528),\n", - " ('strides', 0.5277777777777778),\n", - " ('kwargs', 0.5238095238095238),\n", - " ('while', 0.5185185185185185),\n", - " ('group', 0.5185185185185185),\n", - " ('s', 0.5151515151515151),\n", - " ('estimator', 0.5098039215686274),\n", - " ('mask', 0.5094339622641509),\n", - " ('modules', 0.5),\n", - " ('sequence', 0.5),\n", - " ('norms', 0.5),\n", - " ('descent', 0.5),\n", - " ('current', 0.5),\n", - " ('converged', 0.5),\n", - " ('patches', 0.5),\n", - " ('references', 0.5),\n", - " ('core', 0.5),\n", - " ('classifier', 0.5),\n", - " ('computation', 0.5),\n", - " ('gram', 0.5),\n", - " ('only', 0.5),\n", - " ('valid', 0.5),\n", - " ('compile', 0.5),\n", - " ('doc', 0.5),\n", - " ('running', 0.5),\n", - " ('attr', 0.5),\n", - " ('cols', 0.5),\n", - " ('iterable', 0.5),\n", - " ('workers', 0.5),\n", - " ('logspace', 0.5),\n", - " ('eye', 0.5),\n", - " ('cumprod', 0.5),\n", - " ('scaler', 0.5),\n", - " ('concatenate', 0.48214285714285715),\n", - " ('value', 0.47619047619047616),\n", - " ('delete', 0.47619047619047616),\n", - " ('ensemble', 0.47368421052631576),\n", - " ('lambdas', 0.47368421052631576),\n", - " ('parameter', 0.47368421052631576),\n", - " ('col', 0.47368421052631576),\n", - " ('normalize', 0.47368421052631576),\n", - " ('diff', 0.47058823529411764),\n", - " ('new', 0.46938775510204084),\n", - " ('centers', 0.4666666666666667),\n", - " ('pass', 0.4666666666666667),\n", - " ('legacy', 0.4666666666666667),\n", - " ('sleep', 0.4666666666666667),\n", - " ('global', 0.46153846153846156),\n", - " ('covariance', 0.46153846153846156),\n", - " ('extend', 0.46153846153846156),\n", - " ('w', 0.45588235294117646),\n", - " ('tol', 0.45454545454545453),\n", - " ('dstack', 0.45454545454545453),\n", - " ('alpha', 0.4533333333333333),\n", - " ('lte', 0.4523809523809524),\n", - " ('dense', 0.45161290322580644),\n", - " ('end', 0.45),\n", - " ('score2', 0.4444444444444444),\n", - " ('lassolars', 0.4444444444444444),\n", - " ('1', 0.4444444444444444),\n", - " ('precompute', 0.4444444444444444),\n", - " ('epsilon', 0.4375),\n", - " ('this', 0.4375),\n", - " ('parameters', 0.4375),\n", - " ('func', 0.43103448275862066),\n", - " ('elements', 0.42857142857142855),\n", - " ('clf1', 0.42857142857142855),\n", - " ('cell', 0.42857142857142855),\n", - " ('ids', 0.42857142857142855),\n", - " ('2d', 0.42105263157894735),\n", - " ('b', 0.42105263157894735),\n", - " ('idx', 0.41935483870967744),\n", - " ('eps', 0.41935483870967744),\n", - " ('d', 0.41935483870967744),\n", - " ('initializer', 0.41935483870967744),\n", - " ('total', 0.4166666666666667),\n", - " ('pre', 0.4166666666666667),\n", - " ('row', 0.4166666666666667),\n", - " ('int32', 0.4146341463414634),\n", - " ('best', 0.41379310344827586),\n", - " ('input', 0.4112903225806452),\n", - " ('sparse', 0.4090909090909091),\n", - " ('sentinel', 0.4),\n", - " ('pipeline', 0.4),\n", - " ('search', 0.4),\n", - " ('float', 0.4),\n", - " ('shuffle', 0.4),\n", - " ('density', 0.4),\n", - " ('filename', 0.4),\n", - " ('fill', 0.4),\n", - " ('offset', 0.4),\n", - " ('tile', 0.391304347826087),\n", - " ('default', 0.3888888888888889),\n", - " ('center', 0.38461538461538464),\n", - " ('variable', 0.38461538461538464),\n", - " ('tpr', 0.38461538461538464),\n", - " ('ratio', 0.38461538461538464),\n", - " ('last', 0.38461538461538464),\n", - " ('from', 0.38095238095238093),\n", - " ('avg', 0.375),\n", - " ('est', 0.375),\n", - " ('ret', 0.375),\n", - " ('det', 0.375),\n", - " ('layer', 0.3728813559322034),\n", - " ('var', 0.3695652173913043),\n", - " ('prob', 0.36363636363636365),\n", - " ('h', 0.36363636363636365),\n", - " ('item', 0.36),\n", - " ('handle', 0.35714285714285715),\n", - " ('keras', 0.35714285714285715),\n", - " ('select', 0.35714285714285715),\n", - " ('test', 0.3561643835616438),\n", - " ('loss', 0.35384615384615387),\n", - " ('u', 0.35),\n", - " ('grad', 0.34146341463414637),\n", - " ('algorithm', 0.3333333333333333),\n", - " ('l', 0.3333333333333333),\n", - " ('csc', 0.3333333333333333),\n", - " ('boolean', 0.3333333333333333),\n", - " ('context', 0.3333333333333333),\n", - " ('reduce', 0.3333333333333333),\n", - " ('significant', 0.3333333333333333),\n", - " ('message', 0.3333333333333333),\n", - " ('q', 0.3333333333333333),\n", - " ('no', 0.3333333333333333),\n", - " ('schedule', 0.3333333333333333),\n", - " ('by', 0.3333333333333333),\n", - " ('executor', 0.3333333333333333),\n", - " ('centroids', 0.3333333333333333),\n", - " ('backward', 0.3333333333333333),\n", - " ('fp', 0.3333333333333333),\n", - " ('r2', 0.3333333333333333),\n", - " ('iteritems', 0.3333333333333333),\n", - " ('bytes', 0.3333333333333333),\n", - " ('errors', 0.3333333333333333),\n", - " ('isinf', 0.3333333333333333),\n", - " ('location', 0.3333333333333333),\n", - " ('threshold', 0.32),\n", - " ('g', 0.3125),\n", - " ('binomial', 0.3125),\n", - " ('square', 0.3125),\n", - " ('open', 0.3125),\n", - " ('line', 0.3125),\n", - " ('dim', 0.3125),\n", - " ('gte', 0.3108108108108108),\n", - " ('median', 0.3076923076923077),\n", - " ('val', 0.3055555555555556),\n", - " ('old', 0.3),\n", - " ('dist', 0.3),\n", - " ('preprocess', 0.3),\n", - " ('maximum', 0.29411764705882354),\n", - " ('double', 0.29411764705882354),\n", - " ('error', 0.2916666666666667),\n", - " ('sizes', 0.2894736842105263),\n", - " ('param', 0.2894736842105263),\n", - " ('plscanonical', 0.2857142857142857),\n", - " ('ref', 0.2857142857142857),\n", - " ('lr', 0.2857142857142857),\n", - " ('keep', 0.2857142857142857),\n", - " ('cache', 0.2857142857142857),\n", - " ('config', 0.28),\n", - " ('sort', 0.2777777777777778),\n", - " ('pool', 0.27586206896551724),\n", - " ('dec', 0.2727272727272727),\n", - " ('seed', 0.2727272727272727),\n", - " ('pipe', 0.2727272727272727),\n", - " ('db', 0.2727272727272727),\n", - " ('vocabulary', 0.2727272727272727),\n", - " ('e', 0.26666666666666666),\n", - " ('encode', 0.25),\n", - " ('ind', 0.25),\n", - " ('scope', 0.25),\n", - " ('ellipsis', 0.25),\n", - " ('fileno', 0.25),\n", - " ('outer', 0.25),\n", - " ('alone', 0.25),\n", - " ('hash', 0.25),\n", - " ('reg', 0.25),\n", - " ('to', 0.23529411764705882),\n", - " ('m', 0.23076923076923078),\n", - " ('active', 0.2222222222222222),\n", - " ('argmin', 0.2222222222222222),\n", - " ('put', 0.2222222222222222),\n", - " ('key', 0.21739130434782608),\n", - " ('j', 0.21428571428571427),\n", - " ('coefs', 0.21428571428571427),\n", - " ('cls', 0.20588235294117646),\n", - " ('gamma', 0.2),\n", - " ('cancelled', 0.2),\n", - " ('include', 0.2),\n", - " ('clip', 0.2),\n", - " ('xy', 0.2),\n", - " ('dump', 0.2),\n", - " ('iris', 0.2),\n", - " ('counts', 0.2),\n", - " ('ascontiguousarray', 0.2),\n", - " ('gradient', 0.2),\n", - " ('compress', 0.2),\n", - " ('pointwise', 0.2),\n", - " ('scorer', 0.2),\n", - " ('lasso', 0.2),\n", - " ('normalizer', 0.1875),\n", - " ('source', 0.18181818181818182),\n", - " ('pca', 0.18181818181818182),\n", - " ('buffer', 0.18181818181818182),\n", - " ('result', 0.175),\n", - " ('model', 0.1724137931034483),\n", - " ('optimizer', 0.16666666666666666),\n", - " ('kmeans', 0.16666666666666666),\n", - " ('noise', 0.16666666666666666),\n", - " ('binary', 0.16666666666666666),\n", - " ('use', 0.16666666666666666),\n", - " ('expected', 0.16666666666666666),\n", - " ('x2', 0.16666666666666666),\n", - " ('module', 0.16666666666666666),\n", - " ('km', 0.15384615384615385),\n", - " ('top', 0.15),\n", - " ('negative', 0.14285714285714285),\n", - " ('multi', 0.14285714285714285),\n", - " ('map', 0.14285714285714285),\n", - " ('simplefilter', 0.14285714285714285),\n", - " ('validation', 0.14285714285714285),\n", - " ('filters', 0.14285714285714285),\n", - " ('dataframe', 0.14285714285714285),\n", - " ('cast', 0.12903225806451613),\n", - " ('setdiff1d', 0.125),\n", - " ('reset', 0.125),\n", - " ('reduced', 0.125),\n", - " ('skip', 0.125),\n", - " ('column', 0.125),\n", - " ('layers', 0.11764705882352941),\n", - " ('metrics', 0.11538461538461539),\n", - " ('pl', 0.1111111111111111),\n", - " ('logaddexp', 0.1111111111111111),\n", - " ('on', 0.1),\n", - " ('kneighborsclassifier', 0.1),\n", - " ('log1p', 0.09090909090909091),\n", - " ('y2', 0.08695652173913043),\n", - " ('categorical', 0.08333333333333333),\n", - " ('reachability', 0.08333333333333333),\n", - " ('z', 0.08333333333333333),\n", - " ('inbound', 0.07692307692307693),\n", - " ('reducers', 0.0625),\n", - " ('fn', 0.0625),\n", - " ('import', 0.05),\n", - " ('dropout', 0.041666666666666664),\n", - " ('training', 0.037037037037037035),\n", - " ('regularizer', 0.03571428571428571),\n", - " ('padding', 0.028037383177570093),\n", - " ('tensor', 0.02564102564102564),\n", - " (nan, 0.0),\n", - " ('box', 0.0),\n", - " ('yr', 0.0),\n", - " ('dilation', 0.0),\n", - " ('sig', 0.0),\n", - " ('frompyfunc', 0.0),\n", - " ('coordinate', 0.0),\n", - " ('preference', 0.0),\n", - " ('discovery', 0.0),\n", - " ('reduction', 0.0),\n", - " ('k2', 0.0),\n", - " ('freq', 0.0),\n", - " ('qid', 0.0),\n", - " ('clust2', 0.0),\n", - " ('sandbox', 0.0),\n", - " ('additional', 0.0),\n", - " ('multiclassclassifier', 0.0),\n", - " ('stateful', 0.0),\n", - " ('maxs', 0.0),\n", - " ('cases', 0.0),\n", - " ('rejection', 0.0),\n", - " ('bytedata', 0.0),\n", - " ('pool1d', 0.0),\n", - " ('dimensions', 0.0),\n", - " ('oh', 0.0),\n", - " ('dd', 0.0),\n", - " ('pickler', 0.0),\n", - " ('gp', 0.0),\n", - " ('kwstring', 0.0),\n", - " ('image', 0.0),\n", - " ('mul', 0.0),\n", - " ('embeddings', 0.0),\n", - " ('ln', 0.0),\n", - " ('minimum', 0.0),\n", - " ('engine', 0.0),\n", - " ('nk', 0.0),\n", - " ('fs', 0.0),\n", - " ('population', 0.0),\n", - " ('dx', 0.0),\n", - " ('proceed', 0.0),\n", - " ('inplace', 0.0),\n", - " ('plsregression', 0.0),\n", - " ('filenames', 0.0),\n", - " ('inert', 0.0),\n", - " ('match', 0.0),\n", - " ('iterations', 0.0),\n", - " ('labels2', 0.0),\n", - " ('delta', 0.0),\n", - " ('patternbroadcast', 0.0),\n", - " ('dst', 0.0),\n", - " ('based', 0.0),\n", - " ('pvalue', 0.0),\n", - " ('fc', 0.0),\n", - " ('order', 0.0),\n", - " ('mp', 0.0),\n", - " ('stride', 0.0),\n", - " ('islower', 0.0),\n", - " ('stacklevel', 0.0),\n", - " ('needs', 0.0),\n", - " ('rkf', 0.0),\n", - " ('decompress', 0.0),\n", - " ('debug', 0.0),\n", - " ('executable', 0.0),\n", - " ('cs', 0.0),\n", - " ('triplet', 0.0),\n", - " ('rho', 0.0),\n", - " ('stack', 0.0),\n", - " ('shapes', 0.0),\n", - " ('lml', 0.0),\n", - " ('constraint', 0.0),\n", - " ('linkage', 0.0),\n", - " ('variables', 0.0),\n", - " ('alphak', 0.0),\n", - " ('ft', 0.0),\n", - " ('resp', 0.0),\n", - " ('rec', 0.0),\n", - " ('xw', 0.0),\n", - " ('broadcast', 0.0),\n", - " ('ser', 0.0),\n", - " ('field', 0.0),\n", - " ('varargs', 0.0),\n", - " ('xi', 0.0),\n", - " ('linearsvr', 0.0),\n", - " ('successful', 0.0),\n", - " ('eigvalsh', 0.0),\n", - " ('poisson', 0.0),\n", - " ('obj', 0.0),\n", - " ('shift', 0.0),\n", - " ('dbscan', 0.0),\n", - " ('criteria', 0.0),\n", - " ('narrow', 0.0),\n", - " ('solve', 0.0),\n", - " ('done', 0.0),\n", - " ('reconstructed', 0.0),\n", - " ('url', 0.0),\n", - " ('wlock', 0.0),\n", - " ('cpu', 0.0),\n", - " ('interpolate', 0.0),\n", - " ('can', 0.0),\n", - " ('inputfeaturetype', 0.0),\n", - " ('logprob', 0.0),\n", - " ('seq', 0.0),\n", - " ('measure', 0.0),\n", - " ('yt', 0.0),\n", - " ('corrcoef', 0.0),\n", - " ('pointer', 0.0),\n", - " ('as', 0.0),\n", - " ('one', 0.0),\n", - " ('int16', 0.0),\n", - " ('rtol', 0.0),\n", - " ('methodname', 0.0),\n", - " ('pinvh', 0.0),\n", - " ('embedded', 0.0),\n", - " ('conv1d', 0.0),\n", - " ('skeleton', 0.0),\n", - " ('high', 0.0),\n", - " ('nnet', 0.0),\n", - " ('prelu', 0.0),\n", - " ('network', 0.0)]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "c = Counter(total_per_token_accuracy)\n", - "c.most_common(1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, + "execution_count": 22, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACGgAAALICAYAAAApXFQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xu4HlV9L/Dvz4T7JUhAC4IGW1BRjIQA5XhtEVBQNKUi1npHsRUvbaliRUqlePTYWrVHafWgEbQgWIlarNJq0XoHhCIQBbShBOViEEiAIJd1/phJeNnsnWzCHkLi5/M8+8l+37VmZs2sed8tru+sVa21AAAAAAAAAAAwnIet7QYAAAAAAAAAAKzvBDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAPUVW1qKqevbbbsUJVfauqdn8QjvOQOu9RVfWsqlq8Bts9uaq+PUSbHkqq6o+q6tqqWlZVM9d2e5ha+hcAAAAeGAENAADgIa0frP9VVW0z5v0LqqpV1awx7x/Xv7/3OPvarqo+VlU/6wcYf1pV86vq8X35rH7bZf3Poqo6epz23DZSZ1lV/d+q+ouR18ur6q6R15dM/ZV5cFXV85Msba1d0L9+RVWdX1U3V9Xiqvo/VTV9pP7WVXVmVd1SVVdW1R+M2d8f9O/fUlULqmrrB/mUHlSttYuS3Nhfx/VSVW2Q5P1J9m+tbd5aW7K22zSRqtq3qn5UVbdW1X9U1WNWUXdWX+fWfptnjyn/k6q6pv8sfLyqNhopO76qflhVd1bVcZNs21eqav81PrmB6N/79u8E+3tJVf3TVJ0LSVVt1F/7m/u++NPV1P27/u/8L6vqI/29u6L8yKo6r6pur6r5Y7Yd+78BllXVOwc8NQAA4NeQgAYAALAu+O8kL1nxoqp2S7Lp2EpVVUlenuSG/t/RsplJvt1v9/QkWySZk+TrSfYbs6utWmubJ/n9JO+sqrHlz+8HKFf8HNlae/eK10len+Q7I+VPXPNTv/9GgxJT6PVJThl5vWmStyTZJsneSfZNctRI+YeT/CrJI5O8NMmJVfXEvn1PTPKPSV7Wl9+a5CMDtPmh5tNJjljbjRjQI5NsnGTcQNJA9+X91oe9PpfknUm2TnJeks+sYpNTk1yQZGaSdyT5bFVt2+/rgCRHp7v/H5PksUn+amTbK5K8NclZk2zbZknmpvteeqjRv/ft3/EclORLD+AUuK/jkuycrg9+J8lbq+o5E9Q9Ot1n6ElJdkn3d/6YkfKfJfnrJB9fxfG2Gvn7ffwDbDsAAMC9CGgAAADrglNy78DFK5KcPE69pyfZLsmbkhxWVRuOlP1JkpuTvKy19pPWubG19onW2t+Pd9DW2nnpBiOfMhUn8UBU1V5V9Z2qurGqft7P2rHhSHmrqjdU1eVJLu/f27+qflxVN/VPEX+9qg4f2ebVVbWwf8r4KxM9Zd4f53czMmjcWjuxtfafrbVftdauThc+eGpff7MkhyR5Z2ttWWvtm0m+kC6QkXSBjS+21r7RWluWbiD196pqi3GO/YSq+u+qesnYsr788VX1b1V1Q3+uh46Uza+qf+jLl/bn/5iR8v9VVef21+fcqvpfI2VbV9UnRp7CXjDmuH9WVdf1ffGqkfcPrKpL++NdXVWjoZVzkuy7uifwJ1Ld7DBnVNWn+v3/sKp2qaq39225anTmhaqaUVUn9W28uqr+uqqm9WW/WVVfq6olVfWLqvp0VW01su2iqjqqqi7qr89nqmrjVbRtlyQ/7l/eWFVf698f775cVZ/NrKovVPek/Perm4Him2tyvVbh95Jc0lo7o7W2PN3g7+zqZ9IZ57zmJPnL1tptrbV/TvLDdPd30n0XndRau6S19sskxyd55YrtW2ufbK39a5Klk2zbvkm+1Vq7fZy2zO8/x/9a3ZP936qq36iqD/T36I9qZAmiqjq6qn7S3yuXVtW8kbITq+qfR16/t6q+WlU1XqP07/j9O87+HpYu8PflccqeVd1sQ28d+e54Yf+dcVl/vf5idF8jfbikqk6vkZmG+u+Ca/rP5zeqD8D1ZfOr6sNVdVbf/9+rqt9c3YWrqg/23yM3VzdD0tNHyqZVN1PUinvq/KrasS974kifXzt6HlPkFUmOb639srW2MMnHMnE/PD/Jh1prN7TWrk/yoSSvXlHYWvtca21BkofsDDAAAMD6TUADAABYF3w3yZbVDdZPS3JYkk+NU+8VSb6Y5PT+9ehyEs9OcmZr7e7JHrSqfjvdU7hXrFGrp9Zd6UIm2yTZJ91A7h+PqfPCdLNZ7FrdU+SfTfL2dE+G/zjJaADhBUn+It1g5rZJ/jPdk+Tj2TnJ3a21xato3zNyz5P1uyS5s7V22Uj5fyVZMYD4xP51kqS19pN0s23sMrrDqpqT5CtJ3thau0/bqguC/FuSf0ryiHT3xUeqateRai9NN6i6TZIL0wVJ0g90npVu8G5muqUbzqpuppWkCwVt2rf1EUn+bmSfv5FkRpJHJXlNkg9X1cP7spOSHNFa2yLdvfO1kfO8OskdSR439lzuh+f3bXt4uqf+v5Luv+0fleRd6WYmWWF+kjuT/FaS3ZPsn2RFQKeS/O8k2yd5QpId0w1kjzo0yXOS7JTkyVnFwHTf1yv6d6vW2u+OFI/el6vrsw8nWZ4uaPXqjAysjqe6wNJEP0dPsNnY+++WJD8Zaf/Yuj9trY0GLCa8l/vfHzlyH91fB2bVs20cmm42gG2S3J7kO0l+0L/+bLr7eIWfpAutzUg368Onqmq7vuzPkuxWVa/sB+Ffk+QVrbU23kH1773KVtW/e/X7+8UE5b+RbhaSRyU5Nl3Q4A+T7JGur95ZVTv1dd+Y7to+M93n9Jfprt8K/5ruu/kR6e6BT4851mHp+v3h6f6GnTBBm0admy6QuHW6Pjyj7glm/Wm6mawOTLJlur67tbpg3b+nC6Vsn+775qvj7bwPnEzYpxNs8/B098vYfljVzFQ15vcdqmrGqk58jCv7MM0naszyagAAAA+UgAYAALCuWDGLxn5JFia5erSwqjZN8qIk/9RauyPdYOXorBvbJLlmpP7B/aDQ0qo6e8yxflFVt6Ub/PxIkgVjyheMGVh67RSc3yq11s5vrX23tXZna21RuoH4Z46p9r/7p4ZvSzeIdkn/tPCd6YII14zUfX1ff2Ff/u4kT6nxZ9HYKquYAaCqXp1uSvm/6d/aPN1sJaNuSreszIrym1ZRnnSDlV9I8vLW2r9McOjnJVnUz4JyZ2vtgiT/nO4+WOGsfqaO29MtX7BP/9T3QUkub62d0m97apIfJXl+P4j93CSv75/YvqO1NrrkxB1J3tW//6Uky3JP6OKOdAPVW/bb/mBMm5emu55r6j9ba1/p++yMdOGa9/T3/GlJZlXVVlX1yHT3wFtaa7e01q5LFzI5LElaa1e01v6ttXZ7/5T5+3Pf++lDrbWftdZuSBd8WtOZZEbvywn7rA9fHZLk2L7NFyf55Kp23FrbahU/75lgs8ncf5OtO7Z8xe/j7WsyDsyql8c4s/8uWJ7kzCTLW2snt9buSreMx8oZNPoZJH7WWru7tfaZdDNc7NWX3ZpuRpv3pwu7vXE1AaxV0b/3WN3yJnckOWHk87pNkg+21pa21i5JcmmS2X3d1yd5R2ttcf/9dVyS369+KZnW2sf77VaUzR4TQjiztfb9/rvi05nE57e19qnW2pK+7/42yUa557vt8CTHtNZ+3Dr/1Vpbkq7Pr2mt/W1rbXnfpu9NsP/3rKpPJ2jW5v2/Y/thoj74cpI3V9W2VfUb6WbUSsZZFm0cv0iyZ7qlVPbojzE2+AIAAPCACGgAAADrilOS/EG6p/jHW95kXrrZAlYMjn06yXOratv+9ZJ0T+EmSVprX+gHhP4kyehSKEk3aLZ5uqfMn5VkgzHlLxwzsPSx+3sy1S29saz/We108NUtZfEv/ZT2N6cLVIx9sveqkd+3H33dPxk/OgD7mCQfHHly+YZ0Txo/apzD/zITDIZV1QvTzcTw3JGnxpele8J61Ja5J+SxuvKkG5z8dmvtnPGOO3IOe495Avul6Z5SX2H0GixLd57b9z9XjtnflenOf8ckN7RuSYPxLOkHPVe4NfcMIh6SbpD9yuqWVNlnzLZbJLnPk+JV9fSR++GSseUjrh35/bYkv+gH51e8Tt+Wx6S7b38+cm3+Md3T9qmqR1bVadUtfXJzukH6sffTaKBn9Bzvr9H7clV9tm2S6WPqj+2jqTCZ+2+ydceWr/h9skuarFRVuyW5qbV21Sqqje3/sa9X9lFVvbyqLhy5zk/KSB/3g+g/Tfe5Pz1rTv/eY3UBmyXjfF4n6sPHJDlz5DouTDeT0iOrW27kPdUtN3JzkkX9NqOf4fv9+a1uWaOF1S2bcmO62VdW7HPHdDORjDXR+1NlWf/v2H6YqA9OSDe70IVJvp0uYHlH7n2dx9W6JbnO6wMq1yY5Msn+Nc7yWwAAAGtKQAMAAFgntNauTPLf6QbAPjdOlVekG4D6n6q6Jt3sAhukC3Uk3ZTrL6yqSf13UGvtrtba+9NNxz92KZEHrLX2+tba5v3PuyexyYnpZnjYubW2ZbrlSWpMndHlCX6eZIcVL6qqRl+nGyQ9YkzQZJPW2rfHOfYV/S7uFd6oquekm6L/+a21H44UXZZkelXtPPLe7NyzBMoluecp8VTVY9M9qT26JMrrkzy6qkaXFhnrqiRfH3MOm7fW/mikzo4jx9k83dT9P+t/xs4W8uh0M7NclWTrqrrfM1201s5trb0gXRBiQUYGvvvrt2G65WbGbvefI/fDqqbun6yr0i2Bsc3ItdlyZN/vTne/7NbfT3+Y+95PU2X0vlxVn12fLmS140j9R69qxyOhlvF+Jgo+jb3/Nkvym7nn/hxb97FjBmgnvJf736/tZxa4v1Y3uD9p/Uw4H0s3wDyzD6NdnJE+rqo3pPvc/SzJWx/A4fRvd5zfSBcCHDtrzpq6Kl3wbfRabty6pZL+IMkL0i3dNSPJrBXNWNODVbfUzVvTLaPz8P6euWlkn1elu47jtfOxkzzGX6yqT8fbpg/K/Tz37Ydxg2yttdtaa0e21h7VWntsunDm+e1+LG82urv+X///KQAAMGX8BwYAALAueU2S322t3TL6Zj/wvW+6qdaf0v/MTvLe3LPMyfuTPDzJKVX1m9XZIquf9v09Sd5aVRtP3WmskS3SLRuyrKoen+SPVlP/rCS7VdUL+ynx35B7zyzxD0neXlVPTJKqmlFVLxpnP2mt/SrJv2dkCYyq+t10s5Qc0lr7/pj6t6QL0byrqjarqqemG0w8pa/y6XRLiTy9Hzx9V5LPtdZGn4hemuQ5SZ5RVRMtZfAvSXapqpdV1Qb9z55V9YSROgdW1dOqasMkxyf5bj9DwZf6bf+gqqZX1YuT7JrkX1prP0/yr0k+UlUP7/f7jAnasFJVbVhVL62qGf0SBjcnGR0UfGaSr/VLEgyqP4ezk/xtVW1ZVQ/r7/sVfbhFuifTb+o/P38+dJt6E/ZZP7PA55IcV1WbVtWu6YJXExoJtYz3M1Hw6cwkT6qqQ/rP9bFJLmqt/Wic/V+W7kn8v6yqjatqXpInp1u2I+lm83lNVe3aB3qOSTJ/xfb9+W2c7v9/md7vY9oE7Tow3ed2KmyWbnD5+r4dr0o3g8aKdu2S5K/TBXNelu47bk2XsBn1a9W/Yzw3yZf72Yqmwj8kOaEP26S6JTte0JdtkS6AtSTd0h2TCfmtzhbpAjTXp7tXj829Z634f0mOr6qd+7+fT66qmen6fLuqektVbVRVW1TV3uMdoLX27lX16SradnKSY/rv48cneW0m6IeqelRVbd+38beTvDPJX46UT+/vi2lJpvX9Pr0v27uqHtd/X85MtzTYOa21scvgAAAArDEBDQAAYJ3RWvtJa+28cYpeluTC1trZrbVrVvykG1x5clU9qV9+47fTzYjxzXQBgAvTDUqtKuxwVrolPl478t4Xxzz5e+YUnN7qHJXuqeml6Z6M/8yqKvfn+6Ik/yfdIN6uSc5LN6iX1tqZ6QIsp1U3Rf7F6QYYJ/KP6a7zCu9M9+T2l0auw7+OlP9xkk2SXJfk1CR/1Fq7pD/2JelmyPh0X75FxpmlpLV2Y5L90i1Vc/w45UuT7J/ksHSzAFzTn9NGI9X+Kd3g3A1J9kg3IJ3+CfjnpVvGZkm6J8efN7JMy8vSTYv/o76Nb1nFtRn1siSL+mv6+nTLO6zw0nSDrg+Wl6ebsePSdPfwZ3PPMj9/lWROuifkz8r4s9JMuUn02ZHpZsK5Jt0A7CcGaMP16ZaiOSHdddm7b0+SlcsPjfbTYUnm9nXfk+T3+32ktfbldJ+x/0jyP+mW7PjLkW0/lm7ZipckeUf/++jnaMUxt0r3GR1vBps1OcdLk/xtku+kW9phtyTf6o81Pd2SNu9trf1Xa+3ydDPynFJVG02wy8ke99etf0cdlCmaAaX3wSRfSHJ2VS1N8t3+XJIusHBluhl/Lu3LHqivJPlyupmMrkz3t3J0OZr3p5sR6Ox04bOTkmzS9/l+SZ6frl8vT/I7U9CeUX+ZbhmVK5N8Pcn7+r5JVT26//uzYjaW30z3ObolySeTHN1aO3tkX8ek+xwene7vwW39e0k3E8iX0/2dvTjd38uXTPG5AAAAv+Zq6oL9AAAAPFRVt7TL4iQvba39xxru41tJjmytXTCljRtIVc1Psri1dszq6j4IbXlykn9sre2zttuyLqmqVyY5vLX2tLXdliFV1aHpggGHru22PJjWl/7tQy/XJHlsa+3mtd0eAAAAHrqmr+0GAAAAMIyqOiDJ99I9IfznSSoP4Enr1tpTp6hpv3ZaaxclEc5gIjcm+bu13QjW2NZJ3imcAQAAwOpY4gQAAGD9tU+6aeF/kW76+Re21m5bu01iXVZVfzFmeZ/xlrfhfuqXZ/rO2m6H/l0zrbXrWmsnru12rE5VPX2C/l22ttsGAADw68ISJwAAAAAAAAAAAzODBgAAAAAAAADAwKavrQNvs802bdasWWvr8AAAAAAAAAAAD9j555//i9batqurt9YCGrNmzcp55523tg4PAAAAAAAAAPCAVdWVk6lniRMAAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYNPXdgMAAAAAAAAAgAfujjvuyOLFi7N8+fK13ZT10sYbb5wddtghG2ywwRptL6ABAAAAAAAAAOuBxYsXZ4sttsisWbNSVWu7OeuV1lqWLFmSxYsXZ6eddlqjfVjiBAAAAAAAAADWA8uXL8/MmTOFMwZQVZk5c+YDmp1EQAMAAAAAAAAA1hPCGcN5oNdWQAMAAAAAAAAAYGDT13YDAAAAAAAAAICpN+vos6Z0f4vec9Ck6y5YsCDz5s3LwoUL8/jHP35K27GuMoMGAAAAAAAAADClTj311DztaU/LqaeeOtgx7rrrrsH2PQQBDQAAAAAAAABgyixbtizf/OY3c9JJJ+W0005b+f573/ve7Lbbbpk9e3aOPvroJMkVV1yRZz/72Zk9e3bmzJmTn/zkJznnnHPyvOc9b+V2Rx55ZObPn58kmTVrVt72trdlzpw5OeOMM/Kxj30se+65Z2bPnp1DDjkkt956a5Lk2muvzbx58zJ79uzMnj073/72t3PsscfmAx/4wMr9vuMd78gHP/jBB+GKdCxxAgAAAAAAAABMmc9//vN5znOek1122SUzZ87M+eefn+uuuy6f//zn873vfS+bbrppbrjhhiTJS1/60hx99NGZN29eli9fnrvvvjtXXXXVKvc/c+bM/OAHP0iSLFmyJK997WuTJMccc0xOOumkvPGNb8yb3vSmPPOZz8yZZ56Zu+66K8uWLcv222+f3/u938tb3vKW3H333TnttNPy/e9/f9iLMUJAAwAAAAAAAACYMqeeemre/OY3J0kOO+ywnHrqqWmt5VWvelU23XTTJMnWW2+dpUuX5uqrr868efOSJBtvvPGk9v/iF7945e8XX3xxjjnmmNx4441ZtmxZDjjggCTJ1772tZx88slJkmnTpmXGjBmZMWNGZs6cmQsuuCDXXnttdt9998ycOXPKznt1BDQAAAAAAAAAgClxww035Gtf+1p++MMfpqpy1113paryohe9aNL7mD59eu6+++6Vr5cvX36v8s0222zl76985SuzYMGCzJ49O/Pnz88555yzyn0ffvjhmT9/fq655pq8+tWvnnSbpsLDHtSjAQAAAAAAAADrrc9+9rN52cteliuvvDKLFi3KVVddlZ122ikzZszIJz7xidx6661JuiDHFltskR122CELFixIktx+++259dZb85jHPCaXXnppbr/99tx444356le/OuHxli5dmu222y533HFHPv3pT698f999982JJ56YJLnrrrty0003JUnmzZuXL3/5yzn33HNXzrbxYDGDBgAAAAAAAACshxa956AH/Zinnnpq3va2t93rvUMOOSQLFy7MwQcfnLlz52bDDTfMgQcemHe/+9055ZRTcsQRR+TYY4/NBhtskDPOOCOPfexjc+ihh+ZJT3pSdtppp+y+++4THu/444/P3nvvnW233TZ77713li5dmiT54Ac/mNe97nU56aSTMm3atJx44onZZ599suGGG+Z3fud3stVWW2XatGmDXouxqrX2oB5whblz57bzzjtvrRwbAAAAAAAAANY3CxcuzBOe8IS13YyHtLvvvjtz5szJGWeckZ133vl+bz/eNa6q81trc1e3rSVOAAAAAAAAAID13qWXXprf+q3fyr777rtG4YwHyhInAAAAAAAAAMB6b9ddd81Pf/rTtXZ8M2gAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAA1ttQKOqPl5V11XVxROUV1V9qKquqKqLqmrO1DcTAAAAAAAAAGDdNX0SdeYn+b9JTp6g/LlJdu5/9k5yYv8vAAAAAAAAALC2HDdjivd302qrTJs2LbvtttvK1wsWLMisWbOmth3rqNUGNFpr36iqWauo8oIkJ7fWWpLvVtVWVbVda+3nU9RGAAAAAAAAAGAdsMkmm+TCCy+csPzOO+/M9OmTmUti/TMVZ/2oJFeNvF7cv3efgEZVvS7J65Lk0Y9+9BQcmjU16+iz1nYTAAAAAAAAAJgCi95z0NpuwirNnz8/n/vc57Js2bLcdddd+frXv573ve99Of3003P77bdn3rx5+au/+qskyQknnJBPfvKTecQjHpEdd9wxe+yxR4466qg861nPyt/8zd9k7ty5+cUvfpG5c+dm0aJFueuuu3L00UfnnHPOye233543vOENOeKII3LOOefkuOOOyzbbbJOLL744e+yxRz71qU+lqnLuuefmzW9+c2655ZZstNFG+epXv5qDDjooH/rQh/KUpzwlSfK0pz0tH/7whzN79uwpuw4PaiyltfbRJB9Nkrlz57YH89gAAAAAAAAAwLBuu+22lSGHnXbaKWeeeWaS5Ac/+EEuuuiibL311jn77LNz+eWX5/vf/35aazn44IPzjW98I5tttllOO+20XHjhhbnzzjszZ86c7LHHHqs83kknnZQZM2bk3HPPze23356nPvWp2X///ZMkF1xwQS655JJsv/32eepTn5pvfetb2WuvvfLiF784n/nMZ7Lnnnvm5ptvziabbJLXvOY1mT9/fj7wgQ/ksssuy/Lly6c0nJFMTUDj6iQ7jrzeoX8PAAAAAAAAAPg1MtESJ/vtt1+23nrrJMnZZ5+ds88+O7vvvnuSZNmyZbn88suzdOnSzJs3L5tuummS5OCDD17t8c4+++xcdNFF+exnP5skuemmm3L55Zdnww03zF577ZUddtghSfKUpzwlixYtyowZM7Lddttlzz33TJJsueWWSZIXvehFOf744/O+970vH//4x/PKV77ygV2IcUxFQOMLSY6sqtOS7J3kptbafZY3AQAAAAAAAAB+PW222WYrf2+t5e1vf3uOOOKIe9X5wAc+MOH206dPz913350kWb58+b329fd///c54IAD7lX/nHPOyUYbbbTy9bRp03LnnXdOuP9NN900++23Xz7/+c/n9NNPz/nnnz+5E7sfHra6ClV1apLvJHlcVS2uqtdU1eur6vV9lS8l+WmSK5J8LMkfT3krAQAAAAAAAID1wgEHHJCPf/zjWbZsWZLk6quvznXXXZdnPOMZWbBgQW677bYsXbo0X/ziF1duM2vWrJWhiRWzZazY14knnpg77rgjSXLZZZfllltumfDYj3vc4/Lzn/885557bpJk6dKlK4Mbhx9+eN70pjdlzz33zMMf/vCpPelMYgaN1tpLVlPekrxhyloEAAAAAAAAADxwx920tlswrv333z8LFy7MPvvskyTZfPPN86lPfSpz5szJi1/84syePTuPeMQjVi5DkiRHHXVUDj300Hz0ox/NQQcdtPL9ww8/PIsWLcqcOXPSWsu2226bBQsWTHjsDTfcMJ/5zGfyxje+Mbfddls22WST/Pu//3s233zz7LHHHtlyyy3zqle9apDzri5f8eCbO3duO++889bKsUlmHX3W2m4CAAAAAAAAAFNg0Xu6wMLChQvzhCc8YS23Zuocd9xx2XzzzXPUUUc9KMf72c9+lmc961n50Y9+lIc9bPwFSca7xlV1fmtt7ur2v9olTgAAAAAAAAAA1mcnn3xy9t5775xwwgkThjMeqNUucQIAAAAAAAAA8GA77rjjHrRjvfzlL8/LX/7yQY9hBg0AAAAAAAAAWE+01tZ2E9ZbD/TaCmgAAAAAAAAAwHpg4403zpIlS4Q0BtBay5IlS7Lxxhuv8T4scQIAAAAAAAAA64EddtghixcvzvXXX7+2m7Je2njjjbPDDjus8fYCGgAAAAAAAACwHthggw2y0047re1mMAFLnAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGBLzBGxAAAgAElEQVQCGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGNikAhpV9Zyq+nFVXVFVR49T/uiq+o+quqCqLqqqA6e+qQAAAAAAAAAA66bVBjSqalqSDyd5bpJdk7ykqnYdU+2YJKe31nZPcliSj0x1QwEAAAAAAAAA1lWTmUFjryRXtNZ+2lr7VZLTkrxgTJ2WZMv+9xlJfjZ1TQQAAAAAAAAAWLdNJqDxqCRXjbxe3L836rgkf1hVi5N8Kckbx9tRVb2uqs6rqvOuv/76NWguAAAAAAAAAMC6ZzIBjcl4SZL5rbUdkhyY5JSqus++W2sfba3Nba3N3Xbbbafo0AAAAAAAAAAAD22TCWhcnWTHkdc79O+Nek2S05OktfadJBsn2WYqGggAAAAAAAAAsK6bTEDj3CQ7V9VOVbVhksOSfGFMnf9Jsm+SVNUT0gU0rGECAAAAAAAAAJBJBDRaa3cmOTLJV5IsTHJ6a+2SqnpXVR3cV/uzJK+tqv9KcmqSV7bW2lCNBgAAAAAAAABYl0yfTKXW2peSfGnMe8eO/H5pkqdObdMAAAAAAAAAANYPk1niBAAAAAAAAACAB0BAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYJMKaFTVc6rqx1V1RVUdPUGdQ6vq0qq6pKr+aWqbCQAAAAAAAACw7pq+ugpVNS3Jh5Psl2RxknOr6guttUtH6uyc5O1Jntpa+2VVPWKoBgMAAAAAAAAArGsmM4PGXkmuaK39tLX2qySnJXnBmDqvTfLh1tovk6S1dt3UNhMAAAAAAAAAYN01mYDGo5JcNfJ6cf/eqF2S7FJV36qq71bVc8bbUVW9rqrOq6rzrr/++jVrMQAAAAAAAADAOmYyAY3JmJ5k5yTPSvKSJB+rqq3GVmqtfbS1Nre1NnfbbbedokMDAAAAAAAAADy0TSagcXWSHUde79C/N2pxki+01u5orf13ksvSBTYAAAAAAAAAAH7tTSagcW6Snatqp6raMMlhSb4wps6CdLNnpKq2SbfkyU+nsJ0AAAAAAAAAAOus1QY0Wmt3JjkyyVeSLExyemvtkqp6V1Ud3Ff7SpIlVXVpkv9I8uettSVDNRoAAAAAAAAAYF0yfTKVWmtfSvKlMe8dO/J7S/Kn/Q8AAAAAAAAAACMms8QJAAAAAAAAAAAPgIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAP+fvXsPt+2q64P//eXCJdzEEm9cQuANaIpQINytioKCQlABIaKvRRCqguGlpcWCgsHKg76UR1GQyEWs3AJoCRIFBYECAgnIpUGpMRUBraJiiFoI4K9/zLlz9tk5l73mnoOdg5/P8+TJWWuv9TvjrD3XnGOM+Z1jAgAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIMJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAGAAAAAAAAAMBgAhoAAAAAAAAAAIPtKqBRVfepqg9X1SVV9cQjvO6BVdVVdcZ6TQQAAAAAAAAAOLYdNaBRVccn+cUk901yepKzqur0Q7zueknOTvKutRsJAAAAAAAAAHAs280KGndOckl3X9rdVyR5eZIHHOJ1T0vyjCSfXrF9AAAAAAAAAADHvN0ENG6c5KPbHn9sfu5KVXWHJDft7tcdqVBVPaqqLqqqiz7xiU9s3FgAAAAAAAAAgGPRbgIaR1RVxyX5L0n+3dFe293ndvcZ3X3GySefvNe/GgAAAAAAAADgmLCbgMbHk9x02+ObzM9tuV6S2yR5c1X9aZK7Jjm/qs5Yq5EAAAAAAAAAAMey3QQ0LkxyWlWdWlXXSPLQJOdv/bC7L+vuG3X3zbv75knemeTM7r5oSIsBAAAAAAAAAI4xRw1odPfnkjwmyeuT/GGS87r74qo6p6rOHN1AAAAAAAAAAIBj3Qm7eVF3X5Dkgh3P/cRhXvuNe28WAAAAAAAAAMAXj93c4gQAAAAAAAAAgD0Q0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGGxXAY2quk9VfbiqLqmqJx7i54+vqg9V1Qeq6o1Vdcr6TQUAAAAAAAAAODYdNaBRVccn+cUk901yepKzqur0HS/7gyRndPdtk7wqyc+s3VAAAAAAAAAAgGPVblbQuHOSS7r70u6+IsnLkzxg+wu6+/e6+x/nh+9McpN1mwkAAAAAAAAAcOzaTUDjxkk+uu3xx+bnDucRSX7rUD+oqkdV1UVVddEnPvGJ3bcSAAAAAAAAAOAYtpuAxq5V1fcmOSPJzx7q5919bnef0d1nnHzyyWv+1QAAAAAAAAAAV1sn7OI1H09y022PbzI/d5CquleSJyX5hu7+zDrNAwAAAAAAAAA49u1mBY0Lk5xWVadW1TWSPDTJ+dtfUFW3T/K8JGd291+t30wAAAAAAAAAgGPXUQMa3f25JI9J8vokf5jkvO6+uKrOqaoz55f9bJLrJnllVb2vqs4/TDkAAAAAAAAAgH92dnOLk3T3BUku2PHcT2z7871WbhcAAAAAAAAAwBeN3dziBAAAAAAAAACAPRDQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYTEADAAAAAAAAAGAwAQ0AAAAAAAAAgMEENAAAAAAAAAAABhPQAAAAAAAAAAAYbFcBjaq6T1V9uKouqaonHuLn16yqV8w/f1dV3XzthgIAAAAAAAAAHKtOONoLqur4JL+Y5N5JPpbkwqo6v7s/tO1lj0jyye7+f6rqoUmekeQhIxoMAAAAAAAAsNOfXut7Vqt180+/dLVaAFt2s4LGnZNc0t2XdvcVSV6e5AE7XvOAJC+e//yqJN9cVbVeMwEAAAAAAAAAjl1HXUEjyY2TfHTb448lucvhXtPdn6uqy5L8iyR/vUYj4epA6hLYL/Y/AADL6UsBAAAce4zl+GK1m4DGaqrqUUkeNT/8+6r68Bfy72eRG2W9oM0xXWuXS8Lssl332121Y/wzO8ZrrV1Prf2td0zXsv/5Z1dr7Xpq7W89tfa3nlr7W0+t/a2n1myD5T13UU9falCtteuptb/11Nrfemrtbz219reeWvtbT639rafWTP//mKi1q3p+l5vXqmes9Lex1Cm7edFuAhofT3LTbY9vMj93qNd8rKpOSHKDJH+zs1B3n5vk3N00jKuHqrqou89Q6wtfa+16au1vPbX2t55a+1tPrf2tp9b+1lNrf+uptb/11Nrfemrtbz219reeWvtbT639rafW/tZTa3/rqbW/9dTa33pq7W89tfa3nloca47bxWsuTHJaVZ1aVddI8tAk5+94zflJvn/+84OSvKm7e71mAgAAAAAAAAAcu466gkZ3f66qHpPk9UmOT/LC7r64qs5JclF3n5/kBUn+a1VdkuRvM4U4AAAAAAAAAADI7m5xku6+IMkFO577iW1//nSSB6/bNK4m1rwljVr7W0+t/a2n1v7WU2t/66m1v/XU2t96au1vPbX2t55a+1tPrf2tp9b+1lNrf+uptb/11Nrfemrtbz219reeWvtbT639rafW/tZTi2NKuRMJAAAAAAAAAMBYx+13AwAAAAAAAAAAvtgJaAAAAAAAAAAADCagAQAAAAAAAAAwmIAG7FFVXXM3zzFOVZ1SVfea/3ztqrrefrdpp6o6rqquv9/tuLqqquOr6v/b73YcTlU9eDfPfaFV1WOr6ob73Y6dquoZu3lul7WOr6qX7L1V/7xU1am7eW6DeteuqlvvrVXrmfep373f7TiUqrpOVR03//lWVXVmVZ243+1Kkqr60kM8t/F2MX8vf2+dVl2l9vX3ehy/uv4O1mpXTW66QnvuMf//i77fOm+zf7Tf7TiaqrphVd12v9uxxThnmar6uqp6+Pznk/dy/F2pPSP32Xse4xymz3KnvdRcS1Vdo6puW1VfW1XX2GOtq2Nf6u4r11zt8xqhqk7a7zZ8IXyxzj1cnfv/x4I1tv+qemZV/cs12rOmqjp+YO1Vvk8rff5n7+Y5DlZVXzGPu+5fVV+xx1pX+/nnq5MVx79X+7Hc1a3/P9Jex6xV9V9389zC2ntt2z128xyspbp7v9vA1UhVPf4QT1+W5D3d/b4N6hyf5JFJbpLkt7v77dt+9uTu/qkFbfvyJD+d5Ku6+75VdXqSu3X3CxbUulWS5yb58u6+zbzjPnNhu97b3Xc42nMb1Lt7kpsnOXpyd30AACAASURBVGHrue7+1YW1fiTJS7r77+bHN0xyVnc/Z2G9Gyc5ZUfb3rrB+w+1fV2pu//Lgjb9YJJHJfnS7r5lVZ2W5Je6+5s3rPPBJIfdIXb3xgf3qnppkn+b5PNJLkxy/SQ/190/ux/tqqpnH6XWj+621o66e9outtV5d3ffeUkbvgBtW+17XlXfdYinL0vywe7+qw1r/VSShyZ5b5IXJnl9LzywH2ZbuyzJRUl+qrv/ZoNah/q8PrDkezS/921Jvqm7r1jy/h21HpzpuHR5VT05yR0y/fveu7DeDZOcluRaW88t3MZOSvLvktysu39w3pfdurt/c2G7DvU7eE9333FBrfsn+f+TXKO7T62qf5XknO4+c4MaI/axF3X3GZu+7zC1Vtsuquo9Sf51khsmeXum/f8V3f2whW1bs1/w9iT37e5PzY9PT3Jed99mQa03Jvmu7r5sSVsOUe9OmfZj10tSSf4uyQ9093sW1Nrz7+AI22wl6YXb7GrbRlV9sLu/dtP37WxPd99xL/3WQ9RcrY8917tmkgfmqt+BcxbUek2Sx3b3ny1py1zj8hx5X7bxBH5VvTnJmZn+fe9J8ldJ3t7dR+w3H6HeqUkem6t+ZrveZ2+rtWb/57QkT09yeg4+Zt5iQa01+yxr9wuekuSMTMfwW1XVVyV5ZXcvmthbsS+72j57jTHOjnrvTXL/7v74/PgbkvzCJvu4qjriNrnweP7tSX4pyZ9k2vefmuTR3f1bC2rtuS+1rdZqfcaq+oPuvv2m7ztMrdU+r7neG3eO6Q/13C5r3T3J85Nct7tvVlW3m9v2wwtqnZzkB3PVfewPbFBjxPa69vfyjCRPyoH9z8b9nxHzDyv3/1frY8z19ry/HrRtrLn9PzLJwzP9G1+U5GV7Oa7MJ2p/KMnXz0+9JdN83mc3rHNpklcneVF3f2hpe7bVW+37tPLnf6h+2eL9eFX9TpIH75gzfnl3f+uGdV6c5OwddZ65yX5xR72fP8TTlyW5qLtfs2GtRyb5iSRvyrQf+4ZMx98XLmjXKvPPc61K8rAkt+juc6rqZkm+orvfvaDWmudLbpLk2Um+LtP++79n+t1+bNNac701x797HsvtqHetJD+cA//WtyV5bnd/ekGt1fr/a7TrMPPOV+ruX1/QrjdnpTHrzn1ZTecRP9jdp29aa3TbDvfcLmsd6j2XJflId39uw1qvzZH7VBuPKbh6OOHoL+GfmTPm/147P75fkg8k+bdV9cru/pld1nlekpOSvDvJz1fVW7btFL8ryZJJ2l/JNAB40vz4fyZ5RZKNOxxJfjnJE+Z2prs/MHfAd92umlK3N05y7aq6faaOXjJ13Bclo2tKC94yyfsyDQSSaee76ERMkh/s7l/cetDdn5w7lBsHNGq6+v0hST60o22bDDi3ksW3TnKnJOfPj++faVtZ4keS3DnJu5Kku/+4qr5sQZ37bauXJFvJzUUn1Gand/enquphSX4ryRMzdRQ2GdSt2a6LFrzniFbaLra8vap+IdP3+h+2ntzDBPme21ZV903ybUluvGOQeP0kG3WmtnlEkrsl2bqS8RszbRenVtU53b3r1HB3P7mqfjzJt2SaKPmFqjovyQu6+082bNdvZfqcXjo/fmimfdn/zrT/vf/RClTVD2UaSNyyqj6w7UfXyzQYW+rSTNvH+Tl429g41JXkx7v7lVX1dUnulen7+Nwkd9m00DzYPztTGPF9Se6a5PeTfNOCdr0o03Zwt/nxx5O8MslGk+1V9dVJ/mWSG+wYlF0/206Ibeipmfazb06S7n5fbX41wIh97O9W1b/PVfcZf7ug1mrbRZLq7n+sqkckeU53/0xV7TrkelCh9fsFP53ktfNJlFvPdZb+Dv4+yQfnib3tn/+isF+m/twPd/d/T5L5d/GiJEuCXWv8Du539JfsS7u2vLeq7tTdF+6hPZ+tqnNz1WNcksW/yz33sXd4TeaweJLPLKyx5YZJLq6qd+fgbXbXkxndfb0kqaqnJfmLTPuyrQnWr1zYrhvM/cVHJvnV7n7KjmPopv5bpu/Ta5P805ICI8Y5mb7PT0nyrCT3zNRvWbqi5577LNusuf9Pku9McvtM4dl095/XwqsrV+5nr7nPXmOMs92jk/y3OcRwh0xBnm/bsMYz5/9fK9N8xvszbbe3zTQGutth3ne0mvfs7kuSpKpumeR1mf7Nm3pq9t6X2rJKn3H2xqp6YJJf797z1VurfF7ziYmTktxoPsm3ff9z44Vte1aSb808/9Dd76+qrz/yWw7rNZlOWP1uDnwvNzVie137e/mSTMfzD2bhsSQD5h+ybv9/tT7GivvrEdvGatt/dz8/yfNrWg3o4Uk+UFMA/Je7e8lKTc9NcmIOzFF+3/zcIzesc7tMfYHn13S1/gszBQ0+taBNybrfpz1//lV1VpLvyTRndP62H10vyZJtf8uNtkIVc9s+uXA+9baHqLOX8N+1knx1pmNbMgWp/leS21XVPbv7cRvUekKS22+Fd6vqXyR5R6ZtZFNrzT8n0zb/T5nmjs5JcnmmkNGSFcR+JeudL3lRpv711orB3zs/d+8FtZJ1x797Hsvt8KuZPvdnz4+/J9PYbslqyav1/1dq19ZY6MuS3D1TQCmZxmDvSLJxQCMrjFmr6seS/KdMY8xP5UAf74ok5y5o05ptu1umz+rkOvgC4+snWbpK03MyjW0+kOnfepskF2ear/2h7n7DBrUuTfIVSX5tfnxWkr/MNPbnGCagwU43SXKH7v775MoE4OsypZnfk2S3AY07byXr5xOuz6mqX8+086gjvvPwbtTd580783T356pq6YD4pO5+9xRYvdKmJ1u/Ncm/yfSZbT9JeHmmg80SZ2QaCKy1tM3xVVVb9eZE4tKlRr8jUxJ08cC1u39ybsdbM21nl8+Pn5ppO1viM919xdbvsqpOyBEShUdo20fm9997R/r8iTVd1fXEBW07saYrAr4j01Vgn62qjdq2Zru6+8Wb/N27tOftYpt/Nf//J+f/V6bf5ZKT3ck6bfvzTBMhZ2baB265PMnSW7KckORruvsvkyvT7r+a6UTAW3PgxPWudHdX1f/OdFLic5kGLa+qqt/p7v+wQal77UgEf3ArJVxV37vLGi/NNIHx9By8bV6+cNJsy5/M/x2XA0GvpbaOG9+e5Nzufl1NK5EscXamAfQ7u/ueczjipxfWumV3P2SefMk8iF1yvLx1phPLX5KDT1BdnulqvyU+292X7WjOvu3LtnnI/P8f2fZcJ9n4auysu13UPLh7WKZAVrJ8QLdqv2D+d52Y5A2Zvkvf2d3/c2G5X8+ygf3hfH4rnJEk3f22qloahNvz72Brm52LfXkOTJa9uzdc7WjNdm1zlyQPq6qPZJqgWrKyx/0ynZD+1hx8jNuLNfrY292ku++zxzZt+fGV6iTTqiC32/b4uVX1/kxX6G3qhKr6yiTfnQMTq3vx6e4+1JWHmxgxzrl2d79xHpt8JMlTa7qqbslntkafZcua+/9kuiqwt/r8VXWdPdRas5+95j57z2Oc7br7wqr60UzHpk9n+v1+YsMa90ySec7hDt39wfnxbTKFI5a4fCtsMLs003dgiT33pbZZq8+YTOGYxyf5fFX9nxw4lixZzn+tz+vRSR6X5Ksyn+iYfSrJLyyolyTp7o/u+Jj2Mpf0H5e2Y27LiO31UN/LvTTzE919/tFfdniD5h/W7P+v2cdYZX89aNtYc/vfmlf86vm/v84UInl8VT26ux+6Ybk77ehPvWnuT21knlv85SS/XNMqTC9N8qyqelWSp+3YN+3Gqt+nFT7/d2QKBt8oB0I8ybSP3Uuo95+q6mY9r0hQVadk2bHpuKq6YXd/cq7zpdnbOafbJrlHd39+rvfcTMG4r8sUGtvE3+TgY9Hl83NLrDL/PLvL3G/9g+TKUMvS+fo1z5ec3N0v2vb4V6pqk0DMTmuOf9ccyyXJbfrgFRt+r6qWrsCzZv9/z+3q7q1brbwh03zSX8yPvzJToGeJPY9Zu/vpSZ5eVU/v7h9b2I4hbct0vuy6mfZd2+edP5XkQQtr/nmSR3T3xUlS0+o25yT5D5nGZZsENO7RB68g9tqaVhW72t4unt0R0GCnL8vByfHPZlqi+P9U1SYDjSs7FT0t2fOoqtpaUuy6C9v2D3PSdetgd9dMafcl/rqmKzq2aj0oU2d31+bB5our6oHd/eqF7djpf2RKw23UliP47SSvqKrnzY8fPT+3xKWZku1rTBB+eaZ05JYr5ueWeEtVbaUv753p6v3XHuU9R1JVdY+eb8tT03KES6/ue16SP800YH3rPNhZmuBfrV01Lcv6H3PVJaaXBCHW3C5+M9N3cmvk2pn+3Y+f27fpagl7blt3vz/J+6vqJb3h8mNHcNOtcMbsr+bn/raqNl3K8+wk/2+miZHnJ3nCPHlwXJI/ztTp263jq+rOPS+pWNPtBrYGTrv6t88Tz3+f6QqFjxz1Dbu0Ldx1Unf/4x7LfXzeJ947yTNqWtp26Xf809396apKVV2zu/+olt9b/IqqunYOHJdumQXbbk9Lfr6mqu7W3b+/sC07XVxV35NpGzktyY9mmiRaYrV9WXeveU/PNbeLxyX5sSS/0d0XV9UtcmDFnE2t0i+oqy4xfYNMoafHVNXSK6hflek7sDVxdnySa+6hmW+Zfwcvm9v6kCRvrnlZyN5sNaXVfgc13ev8ZzNd9VxJnl1VT+juVy0ot+a2sdHSw4fS3X+d5OVV9Yfz8W4Ne+5j7/COqvrarRMUe9Hdb5n7Yqd19+/WdJuApROE/1DTVZUvz/RvPSvbruTa0E8meX2St80nqm+R6Ri+1M/VFLJ/Q7YdRzb5Dg0a53xmq39SVY/JdNX/0nHhnvss26y5/0+S8+Z6X1LTyoU/kOmk0RKr9LPn/fO39MJbbR3CKmOcuupSvSdlGt+/YD42Lbki8tbb9xfd/T+q6msW1EmSi6rqgiTnze18cJILa16hrDdbHnrNvtQqfcbkwKpAK1nl8+run8u0H3tsdz/7qG/YnY/Ofc6eT7qeneQPF9b6zar6tu6+YIV2rbm9/lKu+r3cyy2NnlJVz0/yxhx8LFmyLPpq8w8r9/9X62Nk3XmRZN1tY7Xtv6qelSng+6YkP90HbsfwjKr68IKSn6+qW/a8+ufcB9r4xPJ8nPv2TKt63DxTiOElmW6tcEGSW21Y8lDHuaXfpz1//vPcykeybAWVI3lSkrdV1VsyjXP+daZ54009M8nvV9Ur5zoPSvKf99CuG2bqI2595tfJdFuRz294biJJLknyrppuj9FJHpBp5Zcl84xrzj9/dt5ut47lJ2f5akVrni/5m5rCzi+bH5+V5YGWZN3x758l+Yueb/Ux94WWnktIphUp79rd75zr3SXLV346VP//+VeDdt10K5wx+8skN1tY65xMY9a3rzBmfdK8nZ3a3U+rqpsm+cpecIufHW1bPJ7u7rdk+o7/yorz2bfaCmfMf8eHquqru/vS2jz0d52qukV3X5okNa3Et5cgEFcT1atdqM8Xg5qWyv/OTEv9JdPVt+dn6mydu9tJnar6tSS/1t2/veP5R2a6b9aJC9p2h0zLO90m0wmLk5M8qLs3TgvPO+pzMy1d9MlMS6V9b3f/6YJaX5Lpyq/t90w8pxfch7Gqfi/TKgLvzsGD4EXLdc2ToI9OsnU/vN9J8vytkym7rLF1UufGmZYN3DlAX3Lf0CdlSjX+xvzUdyQ5r7s3vvJ8/jc+ItMtHirJ67t76SRoquqOmZa6u8H81N8l+YENTwwdqf4JS070r9mumhK0r0jy7zPdV/P7M10hs/GVQFX16qy3Xbw00xXKr8n0u9y69c0fzzV/8vDvHtO2qjqvu7+7Dn2v8/RmVypv1XxOpg7x9uUaP5Zp6cXf7PmqmV3Wemqm+6xepfNYVV/T3bse+M8nN16YaSBcmSbaH5lp+bVv7+7zNqi19r0h75ZpecY17tt6UpL7ZLq/4R/XlLL+2t5sabmtWr+RaRLocZlWevlkkhO7e9NluVNV35JpguT0TCfV7pHk4b1sqditAf6e7o+9rdZJc9uu3M9muhJpyb0519yX/UiSl/TB97o9q7uX3MZrte1ie829BorW6hdU1fcf6ee94ArHqnpnpquct1Zdu26SN3T33TetNb9/a1vf2tduraK0dTXvxpP4VXX9+b1Lr3hOTVfx3bvnVTPm79bv9sFX++2Lmm7JcFp3v2hu13W7+39t8P4R94ZfpY+97bh7QpLTMp34+EyWrRSyVXPN+0bfPMnPZdpXd6bbeD1uwb/z+CQ/2t3P2rQNR6j59ExLhP9JDkz0Lv0OXTNTP+XmOfhYcs6CWnfKdELiS5I8LdNysT/T3e9aWGutPsuI/f+9c/DY5HcW1lmzn/22JN/U3Vcc9cULLBnj1HSV82HNE6WbtuNlmcJSW8v/PizTvvGsBbVedIQf9yZ9qh19qeRAX2rjk7nz9vXkHNxn/Dfd/eYFtbZu0bTnCfI1P6+53nUyrVh4s+5+1LzPvnV3b3wrl6q6UaZ99r0yfS/fkGnfu+sV/qrq8hzol1wn03fys8nyVUfW2F7r4GW4t1/ocNzcrmde9V27qvtrmVZIuDgHH0uWjCXWnH84MckP5cD825uTPK+7d32hw6A+xmr767nemvuyQ23/Z/d8y4cNaz0809zdVUKpVXWDTedBq+qbM90+4dK5badkGhu+6YhvvGqdSzOd9H1Bd79jx89+ftPfQ00XX3xm2+PK1H9c8pmt+flv7YeS6cLIE5P8w5L9z4723XV++M6eAtxL6pyeA6vfvqm7l65EkJpuh/HkHAjIf32mlUpfluSp3f2EDWo95Ug/32Secc3555qC3g/JdPuDF2cKtfz4Jn3YbbXWPF9yylzrbpm2tXdkOl7uaW5vpbmRi5LcfasvW9OKI2/v7o1uC7PtGHBiphVo/2x+fEqSP+qDV6/YpO6e+v+HaVcyzR8valdNq9qflgOBm4ckuaS7H7tprTXVtCrOP2Uam3zNPJf3hk1/lyPUdDvIB++YZ3x5d298gUxVvSLTbahePj/1kEwrIX1fpjDJrv+9VXWfTPMs24+Xj9rLmJWrBwENrmKe8NqaXH97d4+4b+RG5k7QXTOdoLh1ph3RhzcZhB2m7nWSHLfHiftXZ+oAbZ3c+L4kt+vu71pQ65CTVEsmp9Yy4qTOXPeOmZanS5K3dvcfLKxzdk9X2RzxuQV1b5BMKwIseO/jj/Tz3nwliFXata3Ge7r7jlX1gT5wK6ILl3SEDrd9LDzZ99ZMk+pbt765XpLXdfei+6Ou0baq+qqe7h14ymFqbZyqnQf3D8w0mZpMJ3Ve3RsekOeTOhd39/9l77zjJauq7P9dBCUHR8zkAREZVII2ggIqowiIShJBtAUDIqKjGAYJAooERxEFBQmSlCAqgiA5NhkaWgRGwYiBn45Ak0Rx/f7Y5766VV3vvbrnnscrodbnw6ep6le7z6u6de4+e6+91mpN1zBJ3BLX2BWE/2IRb0hJ1xEH1rOd7DEk/dT2GpnxWjU1x4m5IUE6OD+3+aGYephB3OOyiyMp1ixCBvQmalNILjcJ3QqFrrPZtl/e89wt7rZQGTTWSbbfNdlzA8YqSSi6niBvjT0FHGz7VRmx5if8OItMUI/z/s/zXIN4CzFvI9iZjeB1iGLv4sR7VhGBGtt4SJpj+z9qj+cDbq0/N0CM3inxLuTsjanYuA7RrFpV0guAM2yvP8lL6zGmJMdLsVvl2OPddytk3n9nk3yja/eSOU0+y6mApOttv7JgvF8QUratG/GSzicm8HrvJY0bfpK2sX3GZM81jNn6XlKL9Ry6J7uLkEzboHCefSLwEmL4op6bNT6XjHPWeQC4yXYjX/F0b7rIDQjKk8RbiO7m7RXEgEhjUmlJlL7+S+WMQ14gP43Ye3ayvUYiuczKyTNUU2+b6LknGyWu11rz8cX0GXaw3dT2qYp7l+1cZcDeWCXrD98imlf1+tsTtndpEGMqcoxi+3WKN5R7GYw1q1ah+555RWasSn2vutbuSvEakdckbWD7qp7nsr/jks4FtnQiHirIm+fYXjsn3lQg1ZW2BGbYzrELRdLF7iEq93tugtcvYftBhaXJPHALm9v0nlf58Q22f58bqxRK158VFrmvJ/bsi91gwKoWo0i/RNLBtj/VNjfvE7dkbaRf/eFWNxycmKJ7wN7ACbZ/W3vu/baPns51pbhvJ9RxIPov35/o5yeIsypwFKG0v4akNQnbz8bWkOpYU47V7zI/y0/aPkTjDJ44j9Q+T02xRZ1xYUJpp+p/XQ0cSVg6LuI07NQg3jMJ8iwEaaeUatcI04gRQWOEeZCKJM+le0oqq0CVbgK9eICYUGrk3527GY4T6wlCrvozVVO0ujlkxCrdoGjtc66pmfpflD5S5s5kwJa6zvp9biWvlRRvprs9+Cb7+d4iSeXdml0kSdfFF4AX2N5UwU5fz/axGbGutT1D0k+ArxKeaGfaXrlprBTvGXQkI7OJUwpJzDWrBCMlHre1KQylZGg52zlym/WkMatRO9VQQaUKlZ2SLUo2k3Sd7Ve1Td7T61o3NWuxZhAkmYpUtATwEudNA7cqjvSJl30f6hNrHeC/mffayLmXlNzL5hB7RnUfn5/YM16aEavrXpJizXHelEIxQtE497jbct779NpiE9SSrib2n5vT47UJj+Ys6d3UCL6f8JuvGsHObB7eBuxm+8r0eAPgyMxr9lDCB7k+dXKbG0x9jrcnVsjZGxVkg1cAN9eus+xroy3GadiOIedzTHFLkqe67iUK3+ibM6+LkgWqLxPNptPobpxnqbdJ+gExTdP4DNEnVjYZsk+sfvtZ7vmrZM7yFkIt8gWE7Vw1pdboXqLuqdZ54Mzp1oJ5dt8JUjdUqEuxTiVyqUrWe3PgNuLzOMP2IQ3jXQy83QWINineM4hzmGn3ni1ETMq+lO5GZI6CQMnrv1K9WMn2/pKWA57nPNWLIgXy9Lrj6V97aPx+pXg32l6n0NpKvv9Fc/ZSUPlhh+OBQ91iCr4Wq1j9od810OK6KHaWS68vsl/X4rWqZdTirAjszrz3zByC8C6ERceLgNlEY/ga59nlFvtulvyOp9e+D3gzcaZblqjpfcJ5qpuHAAcCjxKW02sCH7N98oQvHDx+4/pnur8tQqiObARj6jtLEAMnAw0BSTrH9uaSfklHYaiCba/UcF0Tfl45uXGqZexFTJu3rWUUqz8XPuO0roFXtRWCbJv1vRknbsnayIXAEbbPTo+3JNQ9cmtmfa0+MnsT9wH/D/iwkwpuyz3oZXRIFVe6nB1pNhRWSHsSqlVtP8vriOHwG1IeugxBEG66l21h+0cqS2q/CXhbdR0oiDPfL/m9yIGkbYj9ea6kzxLqOwfm1gxGGB4sMPmPjPB0gqTdgX0JT6onYExeOrfYuzMhi1XJVm9ETEGsKGl/2yc1iHWxpK2As6pmTAvcTkg+XiBpOwert7H5U8KjqrG1Ja1PJN6NoXI+53ukPzfPWcc4uJiQ5KvYfQsT0nyNpcxLXGeStgfeSVxLZ9f+anFCPqokPkdM4g6EqtCZiiRr1Q78+wHnZq7hhLSGvdLj/yUK+Y2bmsCBionDjxPSdUsQ8rGNIWkjYnrlV8TnuKykdztvguJE4HqFbQSE9c0JOetKa9sCOIyQflxR0ssJ+6EmhYhnKPyiX60+hDPnefC+HTgYeA7xnmXL4hLenLcrpuzbKlX8kM6UbCsWru3LUxK7iu2LFBNv80/2uglQ0jf6baSmZlrr71MBMwdHEUlxhYf6PDchasWRZyumkerFkRdmrgvK+mOfQhzE5pDvi1rhBMrtZecDpym8PiEsvc6f4OfngaTPEOSThSU9WD0NPE7IB2bB9m/V7SnZyEtZ0q4E034lBdmgwuIE6z4X9wBXp/tmqwlqwtrnDEm/J96z5xHkhVy8yPabWry+jicqcgaA7askNbYXS6/dM+WfFYnraDecOskhYAyAx21bUkVQyvYfVRkZz2of7UtOzV0b0Ritr3V+IHd68XKV840+hlSgArB9W2paNyZoEDZGEN65FUxHJroplgLulHQD7S0TZ0n6D9tzMteCpE2JJscLJX219ldLAFnfSwrmLITdygxCxeEVkjYGGpOpbS8OIOkA4A/AScTeuAPw/JyFlcyza+eT1hLTRGNuLXcsrvYlzjivJT6TRgQNIn+ak/ai+r0pZ+ptI8qdTU4C7gTeSHw/d6Bh/jlF1/+RJNWLtK65wPfoDHk0wd/TvlrdS5YhP9erW48sROTcbSaeH08N6mptK9Pw+66Y3H01sIy6iYRL0PBsknL2RSmYs6fa0X7M2zhs1NRMeC6Rv1Z4PD2XixnA7NR4bWX/QcH6A/CEpJVt3w2gsFZrlGfX0PosV6Hw3lORBw+lXS2jwg+Is9aPaH+W24PYa661vbFCASDHqvh5xPdmYUmvoPv7tEiDOMW+43XYPkZBuPkBQWz5gHusUxrgP21/UtLbiOvj7YQiSmOCRk9Naj6CLJmjqvIB4iz3AuK+Xb3/DwJfGzSI7c3TnytmrKEfJlJoy82NW9cypqj+XPKMU6Jfcj5hT7lYqov02o1m2+i0rY3U8EHgFIVth4DfAjvlrovIXavfcSFgRULFp/HAD3AvoWhzhqQzbR9KZp9J0h6EXXFVbz5Z0tG2j8iIVbL+vIjt63s+y9xc9quE7f1zJH2eIPF8tmkQ29VZ/jT3KEwp7JtysBdwVSKkiCDKvD8nUOE8b2/bZyiGj15P9DuOAhqr644wXBgRNEboxR7EVHFjL7xxsADBQP8TgGJy9kRi87iCKHoMig8A/0UcyB6l3U3lHylB3g64UtJOTDDxNAl2Bb6dDpwQCc2EktETYC9gXff4nAONCBq2/5D+/HU6+LyS+P1usP3HzLUt5Jr0ku2HUtM1qP8k8wAAIABJREFUByWus1lE8fPZdCfxc4kJrkboaYB1/RX5hY2SRZJn2z49NROx/Q+FEkxjuOPb+wDQVk74S8SB8y6gmij9DhkHC9ufl3QeHZbwTGda3yTsR1z7l6X4s1MBpwk+SBRjlyKaTHWYTsLcBIcAWzhDvrAPFqKbiCUi+c5BseaoYuLk/cCzgJWJ4ss3iCQyBx8kfFtfSBx8LgB2y4xVrKkJqH4Atv1PxUR2ExQpjvTBHsB/S2rtj014RJ89+Y8NhGJ7GfAp4jrbNT2+EPhWkwC2DwIOknSQ7c9krqMXJQhFpwLnAQcBdcnauW4hFQvcnf6bj05DPQu2b0hF2TFJYrebFGzdCK7h8kTc+Q6xV28HXKY0ldV0ysBhDdTaHkjSKsRnujrd09g5B/TT0++4VNpz30uQBnKwTEXOSOv5q8LuYWCUJqdOEXnq0wR5fA6x9/7Ymb7RFCxQuZC1Qw0Tem03xAbAe1o26H4P3Ai8hbjPVZhLfoOuJKHr77b/Imk+SfPZvlTSV1rEe4u7J7mPknQrsE9GrGJ5tmoS00AriWmiyFtvlP+dUJN5NOUdTXEWeTl1PxR7z4B/t72NpC1tfzuRsK6c9FXdmIrr/1VOqhcwtmc/IzNWvwL53jmB3GOjJ+k7wFXj/Pgg2JdoGC0r6RSCKPmehjGeQVzzC9Cd9zxI/K5NUM/Z63lEm5z9WOI66LKRykTRYQeg1B4LYS32AGXqD3sCl0qqe7DPzIxV4ixXoeTeA3H999Yycpvgj9n+6uQ/NnCsxyQh6Zm275SUo3j6RuL7/CKgThSfS+R/g6Lkd5wekocIVa3ZwAxJMzJJ7dU1tRmhMvVAT/7YBPWa1D8IwseWTYM4LDkOl7R7TtO3H1IjeAPi7HWl7R9krKt0TgxlahnF6s99zjjVxdDmjFP1S/4h6TEyaj+29wT2lPRD242vqQlQbNgqEfNmSFosPW5kD9EnXpfNZaoV5OTFVbzfKJQzj5J0BjHYmoOdiVzv4bSug4FrCIJjU5SsP/85kWWrWurWxPeiMWyfolCqqCx+3tpyjdcrLGWuTWvbiqi7rDrxy/qu7fx0LcxIT33U+fbTJfO86vWbAcfYPldSznDICEOGEUFjhF78ljg0lcKyFTkj4b703P9JalTEd5pKKgSlmKdJup1ohPSVthoAdxA3vJWJJu4DxGG4MUmA8OquyxH/hWiiZEEhP7gPcAkdRY79bR+XEe5hSWu5W8o8SymEAteZw3vt14RCSwk8lzgk/rXneRHJeA76FUly/dwfVngNV4nQDDLfw0T8eR/zSlzmyM8u6Jrkpu3/TUl3FtL1VUqe6+99Dr+NGPMOZZyrFBK7ORP+/fCnQskxwALumcxWTJrloGRzdDeioHQdgO2fN2329WBh2zvUn0jksxyUbGreI+kjBGsZ4jB3T5MAU1EcSXFL3jP3Vfg9X0z3NHZOM6XYXmb7nwTx5xsK39sXOdlwZeAcSYvafljSjsTk3OHO8/lsTSiqFbG3z/j3J4pbNdGLFDWICboViHvJWpKwfWJmrBKN4ApVc7S3Uf0KGk5fFZ46OT6t6ctEg2ImmXme7cMUKhAPEiSZfWxfmBOLID8v524Zz1zichFy6hSRp3ZPe+7Ynq983+hiBapE8t6Xjs/85cSUbO7eWFKxZdO2ARySvLdKOrUliauOkjnL/WlPvIKYyruPmopDBh6WtAPwXeL62L5FvJJ59leIs87ZKdatkrKsD4hp1OsUVnsQDaNTE+m1sR2CM+SHJ0DJ96y6Xu+XtAbwR+JeMDCm6PovpnoxBQXyOlah4fvVs7YLJd1MFMgF7NG0QJ72w8slnZCZ09VjTUXO/oDt80oEcvlhh5J+2FdL+hWhmneW7d6ay0CQNB9Rg1qFboJwrpJS67NcDUXrIvSvZeR+JocrlI4uoPssl1N3+Z2kpQhliQsl/ZWoyzVC2ve/LWmrXnJXwzjFvuMJvWfos8Z5vgnOkXQnce3umvbsHNULbOeSkcaLd0Rqnq9Ad22w0XlO0pHAv9OxhPygpE1s5w7VkO67vaT2nHNm61pGyfrzVJxxStZ+CpMzoOCwlUJZ4niCGHNMaqJ/2hnWQ/1g+2ZJuWoEN6YYjwEzJe1GPkFPdDfzK+XxHJSsP+9GkIhWk3Qv8Esaqg6mul2F++jsGUh6lvOHkXYAjpN0GUGk/Tfy1Sgh3vP7iP1n9VTnylHEKpbnAfemWvYmwMEKy8/snuEIwwO5tVPECE8lSDqWOOicS3fikusbfSRBfDgjPbU10ZzfEzinKTtWIfNXFZIuc0cJoOm61rZ9U+3xksCWOcme+numY3siabbxYrX2Oe+JdxfwaielitQUm2W7McNd0rpEobEuZf4O2zdmxCp2naXm3hHASwj2/PzAw00bJ2lNx6eGfO/fnWr7nU3Xll67NtF0Argit0iSEs8jgDWAnwLLAFvbzlELmUVMf3UxOHMOxpKOIwqClTzjDsD8mWSPokif6cXExOxWwEeIwskHM2ItSrBel7P9fsUU9Itz9iBJhxPfnx+QeUBUzf6AmIavsDhwte3G0tySfkYcqls3RyVdZ/tVSl6YikmkmzMbrSisCc4A3mv70fRcGz/HTYD/JH7Hn+Q2NRPp5Kt0Ev+LCHb1feO/asJ4rYsQklZzTDL1fW9yCnGSTgZWI+zBqgaAc77nhfeyy4iJ1AWI/ew+4h7XeCJVoaL0MuIefAKhxLGt7Q2bxhpmpGvsJELdBuDPwE62b8+IdRJBTp1N515iZ0jSp3jL93u+ULE1G5J+QaGpE0k32V5b0hyniZ3qudYLbbeuNxHFli4ZT9s/yYi1F7AtMZENQU49LRUjm8SZir2spG/0SsR79mqC3PtLYIec61XS94j9sGpSvwt4me15rNUmiXOV7Q0kzaW7idNKmlgho7qK7eNTU2Ex27/MiFNMQaZwzrIo0Sip7EiWBE5xptKfpBWIQnRli3QVkRv8KiNWsTy7NzdLz93qbrWPJvHWpWN1eXXOmbAWq+S1UfI924VQT/oPIjdYjJAX/uZErxsnVsnfcQeiTrAWsW9sDXzW9hkTvrB/rHn87vs9N2Csau+pZNH/CHwmt/mqkIWe7QLk2bR3fZKQLa+//42L9wq1kg9Sq0sRfuyNCTiSvkjUL86ifeO8KCTNoY/0u+0c6XckvRJ4B5EX/IywUsuxeMi6b48Tq36WM1E72MP2/8uIVbQuUriWcRCRW9xN91muTfMKxaT4ksD5th+f7OfHibEUMVSWRVKV9BXbH5X0I/oQWJxnCVMcqSn5gO0nFErESzhD3VjSi4izdJVjXElcs7/LXFeR81wioLzEqcmUyFS3235J5rr2JSzSVwd+TBCGr7Kdo4rSupYxhTn20gThrH5fatwE1jiE28xYJYcTiqLKWyW9kbgPfxY4qUVdsK6YMx9BqHiWm9l8Fkda17uJ87RIili2v5wRq3X9uU/MRYkB47kZr/0lndxibDl0rrMcZdEq9luJWtdc4LW2f5EZZxdC6eVFJAUl4JrMnLFYnpfuHW8C5jiGIJ8P/IcLEZRGmD6MCBojdCElQfPAaeIyI54If72qQX018D1nXHhpU1uXmNiBmEa60Q0Yp5JeZ/sSdfv2jSHnBiXpp7bXaPq6CeLVfc6vdEOf855Ys4CNqsNSKiZcZvvVE7+yb6xnEsns2KQCcUNuPK1Q8jqTdCNx0D+D8F/cCVi1yXUxlVBMNz2Xbjb6bzJjLUC8/6KFlLyk2bZfPvlPDhTrmQSLtvqOXwkcmXNdlEZKXvai1ogHDnCPL92AsU4jGsA72V4jxZ6V8z5KOr7P000PiEsCS1PQ/qBkc1TSIQRxbSdgd4JM8jPbe2Wu7RZi4nkXYBvbd5cszg0DShUhFN6U75d0aZ+/zirESbrLGcS+cWKJOKCM7WXk30sqAtAuhDrXvpJuy2zQ3eyQC98HuNf2sbkkIEnfJgpl96fHSwNfyi3QlkTKC/ayfWl6vBHwhcy84A5g9ZycbqqRPsd5YHv/jFhX215/8p8cKNYs4n55JqFudi/wxSbfrz6FwS7kFM/S9/JdxH79OUIF7nm2r28aK8Vbi84EbxY5teRepo5v9AZ02xMsATxhu5H9Vio6b+2wa8ouUNXizZOXlczV2iDdm9YhSKmrSnoBIc/d+Dsh6So6CjJbkBRkbDe2/iiZswwzSubZks4kZOS/RtiN7gGsY/sdmWsrecYpeW2UfM8+Tme/rQrJ9wM32Z7dMFax3zHFW42O6sXFziQR9uY66XOdY3v1nHgloW7y7PGETHQWeVbSBYR6wyeIps67Cdn7xoMwiknsBekm1T1he5eMWMXy9alGurd/KOf37InzbGIv2sH2/BmvP4yQej+rbQ4qaX3bV0/23ICxitZFCtcyfkHk7Fkkilqc+Ymm+2pt4vTEbEVSVRq+S2SReeBMVTGFRc0nmFdZIucsvSBhyVknoXwjp54n6UJCAbqyC9+R+C5t0jRWilfkPCfpHGC3Kg9LedrXbPfaBA8abw6x/9+SGvLPBU7O+T1L1jJKonAT+Ee1hwsRarY3ZcYqNpyQ4h0CHEgoyJxP3NM/5jyC3m2210ykg8tsf79NXbCnN1FZBn2vyT4r6XTb26pDauxCTm0qxV2LjmXQVTnn6RSndf25FqtLwYQgzhZTMGkDBalxZSK/XpUgyx9h++sZseYQ/cdrbb885dxfGPS+1BOrZF22GKl6hOHCiKAxwpQjJVKvJG4q1zt/svg24OUOSfPqcHBLk5udpM+lBk7JG9TRxKZfQmK3KCSdSEz8/JB4/7ckiu63QTPFin6NqtzmVUkorCfWqTfl2jZuSxUcJe1OFOL+REeSzA2v2QkTAOeRig4kyAU/bvraf0VIWoJ439s0T6rrrMjU4TBB0hK2H1S31NwYcggfqXm1M90FpW/lHvxrzfP1iYPAp4DPNdl/JmhqZk8EKCaoDycO0yaKhR+z3Vgat2QRojTSPfNQ241ly/vEOq5+r03NzbObNkjTa+cQ19i3CdLBDS0IGpcTBYOZRPHsPuBW9/iSDhhrnnvQsBCK+u1buXuZwlf1I7azbB2mEqmpVmEhYHPgjiZ5Xu3+uyGFpk4UE+d3EJZ4BxBTh4c4eaU2jHUAYalxEoxN/j8/s6F5FEHCfZ3tlyRS0QW2120Qo/i9pBRSkXhF+pAaCaW6f2TEvNH2OoXWdw2wp5OKW7rXHWa7lI1fNiTNJqyBbq7lP7n7bGsFmZLXmaZuGrLodGsppKbo4cAbiN/xgrSuxkohJc44PfGKqgsphhJeTHyubUjtpxIEparxsTlxjl6BICod0iBWkd+xVINU0meA/yb80R+pniZsqY6x/enxXjtBzOpetKLtAyQtRzuyX0nybPX+12sGNzS5z9ViFcul/tVQv34bvm4J4G3EYM3KxFTw6a6p2jaINRdYlGimVepHuWe5oaxx9SJ97xe1/WDm639AKKNl1WJ7Yv2QsIzLIuT1ideapJrenxPdY4nacl23ElaavaqzOddsSVJXUVJvqfNcOkuvC1T7/bqE5cMD0FzJRNL1tl+psODamMjZ78i595WsZaR4perFxZrAfWIvC3zF9lYZry02nJDizU6/39uIPOq/CAJ/Tv3heMIqZUWidjY/QdRorUaZapiLNd1nJT3f9h9UduDtI4Qt+VkwpqBxjAtaIudA5RVMXggsT/d3KcdGBEkfJVTWKhWfJYH/sb1zRqwbbK+bzsGvsv03Sbc7U0GsFHrzEw0RqXqEdlhg8h8Z4ekATZEsnKRtgUMJ2UcBR0ja0/aZmUtdCqgKb0s2fbGDnDEfcJ7t0zPX0IvWnulTVSAkJAzr9geVT/DA/nSSnkckQAtLekVaE8TU4SI5i1JBiVHgkVSEm61g5v6BFh5cPQXHMfk7guXbFHsQE4dZEskJEzHOTccTswn2AP5b0t8Ib+XG15mmiCVcEqkRdhzpepf0AGGR0fhQDTwuaWE6Xs8rU2vUDbieT9o+RNIR9H/PsmwBCuBU4qB0E/2l5nIk5t5KFEmOab88IK3J9tWSXg+cTshUDgwX9OWs4VTg60TBEaLo+B1iMrUpHrX9T0n/SEXM+4BlcxemeSd1LiNTfpkgoMxuc5+r4V5JR9r+UGoCn0uQbnKwP0H+uTqRM1YCfp4Zaztiwn5n239MTYVDM2PNJ2lpJ3/t1Egclpz7Hkl70z11leu1/WzgZ5Kup5u4MO1Swu6xmVNMWza166juvyaaV/9Z/yfIuP/aviGtZz6iGJpNHATe0lPYOioVk3OmsV+VmmC3pHX+NeVWTdB7L6lQSd1nyZUqps4vJ5rcV+e8Z6kw9mtJb6Cz165K3EdyCdYXSfoEMZH9cO3fyiGi7Er4sC9JvF//B7wnc12l8bhtS6ryn0VbxPpbuvZ/LunDhILMYg1jFMtZbG+Q/iydHxxPrHOb9HjH9NzAhMupyLNt/5lonpdAiTNOHSWuDQAUylDfJqYgBSwr6d2ZBd8XAWvZfijF3pfIW15LXIMDEzQo9Ds65PHvkrRcmwapw3bqIEkHuZzy5JEksh9BQpxLWMQ0JkEkzE1EkncBr0nv34KZsar89w+SNiNsW/sSvQbAE5JWtn03jBG2n5jkNX2hIGR/AXiB7U0lrQ6sZ/vYzLUVg/pLv/++YYxqsvM3xD64v+1rWqxJwEvbkgMkrUdYNC3T83suQTT8msSaqunpU4kG2BPADcASkg63nXM+WQq4U9INtM/ZlwZuT/l/Pf/Jzf8flbSBu0mqjzYJkPbF5SU9wy1VQmr4h+2jCsVatydnvyTl7Dn4i8LyqbLF3h5ocy8udZ7LUoOaADcq7G+OIe63DxHDMDkoVssoXC9+zPZjkpD0TIe1Yymlj98RNuA5uFGhIFzKEqOqg2xGkFsfiK08CzsDLwfusf2IwsZ9Zm6wEvtsjdz0Z+Y9Z56XubRdgBm2H07rPJi4/gcmaExR/bn64N5M1HtvV+aHmX6n7QjLszF7JSCLoGH7Kz2PHyCulxz8Lu0/PwAulPRXoBHRRtKOtk/uyTHq62syMD1GqpZUEYgqUvXRTdY1wnBiWIrFI0w/qkL9YYXj7kUko/fBWGP+IkLauSkOAm5RyAOJKIw0Liakm+UniQZfCWzaNsBUFQidLEMkLZYeP5QR5o1EkfhFhBRlhbnEDSIHpxAF7c2pSYxmxnoXUTD4MPAxoqHZhnFcsuD4WxJjPBe2ZwJVwt5FCNA404MDxCxxne2R/ty8QKypwrGEDOuVAAoP9eNpeHhKCec3iOn6ZSWdQkxFvqfheiqJwGyP7qmA7c3TnysWDLsF8GVJVxDf9fOdMaFcw1iBILHTN6bjez4QNDXT3YvYPqn2+GRJe2bEgbJFCICjiCL2kenxu9JzObLEb2qxji7Y3lvSIZK+QRR6v+hMb3KH1/oZtcf3EB7NObH+SO0elwq/J+bEAr4EXKOYSBLhDf/5zFhFUCuQX0lM/lYFliuAXOuV/dqv7EnDIkQeMzBq99++ljU5i5C0DnEfKkEcfFjSDsB3iWLG9tQK5Q3xd8UERtWEX4ZO0XEgTNG9BFJjjvhuH5rIpVfa/lhGrCuIJt/ShHrADURhKKdpvV36c7fac1lEFIdVwssSOQ9nTshOEU6X9E1gKUnvI/aLXFLdHsR38SNE8/Z1xBlgYJS8zibLozPzAoBlbNfVGk9QTHU1QbE8e7zCbIXMAm3rM04Peq+NjQmbvBx8CfhP23cBpCL5d4icoymeQzch++/Ac20/mvaiJmh9/ddQskH6yt4nJF3sDGUzypD96qjIs+8tQJ49MJHgPk40OJYAmn4vK+wJXCqpIriuQH6D6AQiL6hsIP+XODtNO0GD7qGefwDnEISbJlhbYY31G+K679p7m+6ziTB4LqES2wbPIAhSC9D9ez5I5O1NMFV1kdXT2XUHosn3aeKMmPMd6GsxnIm9C8aCqAeemL6fAH8lb2+8B7ha0tl074sDN8F68CNJHyLUXupN6pzcoBipi8jDjiDssgzMokWDmkLnOduXJ8JZRcjLVs9O8T6U/vcbks4HlrB9W2a4YrUMytaLWzeBK/TkevMRJIabM9e1BIWGExLOkXQnQbzaNZ0zG1s11daxOrHf7k+oKS004SsmRsl9tuQ5U3TvEZVaXRN8iiAS303sqyVwk8IybkXgM5IWp2HNoIa3Et+lIvboklYh+oar0z0InHM2rwbw9ks9yCWJfkATVEMNrfsvU0SqHmGIMLI4GWFKoR4JxDT1kCUZnl7/fLoTvj9mxvkiwW4sMfVWDCrsJyVpDYJ8Ux2C/wzsZPv2jFhb5TbR+sQqKTG6h+3DJ3uuQbxLgU1aNpOrWMcS8rrn0n2oa3xITIWILat1KZRNznUzWejVEiu7r/yY7cYJvKSD3ePd2++56YD62wzkyuLOATYi2PciZAj/3HJ9ra1XSkIhOXhJYhqTDosb2f5BZrwFCQLbdoTS0IXO9CxOBdDvAcc7U5pS0jm2N0+TE/NM3eYk7on1/Vc6DdLtiKL5oSlo1j1F0gq0K0KMyQ9O9tyAsZbr97wbTK+p265JRHHvetJBJ2ciIzVdjiKaJWtIWpNQFTiwQYypkrh/KdFggvheFZFUzYWknxGy9ucR66pUDYDpz39KQ91TjPMDyxBTm1/LiFXMskZh17dbD3HwSOdNcK1A2BWsT/yuVwMftf2rjFg7EPvXWsTk+dbAZxMJqmmss4lm6A9tPzLZzw8Y8/mE1cxriOv3N7YbF1vVkcvfHVg4TRVly0K3xXgTNRVaNBWKQtIm1CzLbF84jWuZMIdrksuOlw/Q2f9zVV8uJhqu9enWmTkN7xJ5tqSq0bU+UbQ8LT3eBviZ7Q9mrKvYGSfFW4doUC9PRyHBmXvjPBY8/Z4bMNbehEpapUK5BXA2QQI52gXl9Buua8N+z9u+vEGMhYji8SXEGaeuknm+82TkryMI1DekvXYZwi6rjfXo8+jY5d7Qov6zvu2rJ3tuwFgLEUSP1wP3E02YL7uBZ30tViWjXbfRnLb70nhQvvT7RwiVqBUJ9Y0S569vA19zUiVrA0nLO0N+fpxYResikm4nmqynEr/v5blnuVJQkHkvsr3xpD88WLz5gK1tn66WJFWFwtE8cBpay4j3y/7hsq7Z1xN5wT3Ed2B5Ii+4NGdtwwjNq579GsK+L1c9G5W1P9gAWMX28enetJjtfp/xZHGK1Yt74m5IagI7QwWmlutBEOp+lXN/myokYt4DDrWbRYhaV+P7uQrYcvbE67fP5uaMxc6Z6Yz4boIgBkFmOME9KhGTxKjXfzaih+CRU/9Je3alYHK/QsHkhTl1S0nnAds4b5C4X7yrCDLil4l8fSYwnxvav6qQleBUQKEwNdv2wwolpbUIW5ciecwI04cRQWOELqQv+350kqC2BapDiWn1qkC1HeH13PiQoj6THP2eGzBWsWS7JHqbx5IWIN6vLD8pSbOAvarEXyH5+gXbjSbPa/E2Y15bkv0z4lxre4aknwBfJQ7rZ9peOSNWP9/QrMZJem1JUkWxQ6JiavHNRNNkWaI4+AnbFzSIcbTt96dDRZ9lNbeYGef9z0poS0PSVwhf5e/QaZ4/BpwMjYv4JQtB9QlqEYW93AnqYuh3eGjzXUqvX5CYWJgJvNb2szPjLE7Yh8wkJgKOA76bW8AphZ57SZVQVQefge4pJZtNPXFvJg489UmdM3u/rwPGqprdIvb/FQlP94E9GBV+oePBthurOCi8bvckrFuqovZPba/RNFZpqJA3bcH1VAXylQhZ9bG/omH+M1WklpJQtwfsP4A/5RbSFBLEG7nbsuZy53mwFyMOlobC9/j1xOd4se07JnnJeHE2JO63mxFNq+8C5+Q0rlK8uwmC8amEAsxs21mTOoqp7g8RhZudHbKsczI/y0UID+XlUm61CjEFdE6DGBNOtOY2FaYCqXFS388GLuppHAvNWqyBp/7HyWFrobLsEqvv9Sp0n3EGbnb3xFqemG5dj85060dy7gEl82xJ1wIbuEP2XpBQo5mREat0I+wu4n4+h9okXk7BUdJxKcbJ6akdgPlz8owUbx2C3AJhs9RICU9TZCXbFpL2IBQkXkC3bcWDhM95DqGxH9lvb2day0rahZDNv4S4N21IkC2Py4jV77uUS9w/nXifTklPvRNYyvY2479q3FiXEQpRF6bGzgzgYNt9SThPJtRH+p1oBDSeLJZ0lO1dC63rTuDfiUnzh6GVXUEx693SdZGUu38KuJXIqZYDTrb9mgYxiufsChLi252GOtpC0o221ykRa5gh6ZlEnRHiHN3ULreoGlbpayOdlzZxj3q2MwlFGsf+IOeemXKWdYg8fVWFqs8Zttef5KX9YpUmqA5NzUBTZMksaRuCeDJX0meJHOHAnDpXjQRRJzVmE9cSmeJTwG1k7rO1WMXOmSneWsSgG0S+fkvD1++e1lOi/lNs2LN2fb0QeBlwMd3fpdzrrBoEHnvPq+cyYv0Q2L3Nd1HSVyf6+5zfUzHs8zKiz3oC8C1g22HIGUdohxFBY4QupMPOxwhJpzE5JbeQ75K0FZ2ixpW2vz/Rz/d5/UKEHOillJvuWKi3UNzvuScLqvlJEVJiQMdPypkSRv0SldzkRSFHvwgxufgtouByve3Gnl6SNieK7MvSkRjdz/aPGsTYniiGbJBiVVgCeMJ5sqzFC44lIWk3otm9AvAB27OmcS270kn27q791eJE8XLHaVlYDSWL+IULQcUmqEuiXwGpReOqUs7YiJiiOJ1gtpdQptmQaNQtRdhlHWD7Fw1eX5Lsty1xH3pQMWW5VlpPkwNKdZ0uRBQObiWurzWBG22v13RdKW59UgeS/LILTOqkg9mHnKmIUgoqOHUo6Q22L+p57t22v50Rq+5NW8lRZu0XpVGyQD7skPQyYnoL4ApnKtJI2onI0So1iW2Az7vb3mjQWK2Jg6ULtFOFVHCW7GgcAAAgAElEQVR8HfA+4E05TYAUZw8i11sWuBO4nPg8757whf1jbUhMPV9t+2AFce2jmQWS04jz0k4OBZ9FgFk5+88wQ9IHgM8R1+k/ySvqVUWjtwPPo9M4354gT+XY1RRDagLvQdggzSbU0mblniUKral4np1IEOtV5BrF1OG1tkv5nWejahQVivVMwnporKhN5NlFJJQz1rO27ZtUQPWiFrO3oQZhOXMj8HGH5dugsXa3PbCn+QDxipD9Uqy7gFdXtSjFpOasJtespPUIVY+PEk2TCksAb8usi/zMPQM0/Z4bMNZaRD1kDeCnhOLX1rk5S0lUOXUi3qxFkn6f7nxW3STcMTiP0HUBoSr0CWrWu26mUvSk1UUkLVDiPN1yDT8EXgFcSLcacW5TrYi6cUmyTS3mGswrlz+wBaa6FSTngRsoSGoK1LBKordupPbq2XcBa5a4d0uaTVyzN9dqBrlk15JDePWaQUVOza0x1tUjK1R5wYGD9HQk/cX2vyls+eaxxMipi6S4t9leM9U9DySUVvax/aqMWEWVuno+TxPDYPPbbmzlVPKcWRIl6j8qOOypbrWXfsFyr7NZRO5/JkHsvZewU258zlFYdb+CUPzNshKcit+zRlDaB7jX9rEakmGfEdphRNAYoQuSrsu5SU4l1D3dcS+MyXLPJcgLX8+IWWyCoiRU2E9K0vcJ37mqibAjsLY7flpNYlVJVfXnYsB5zmOW9vq5Pws4zA0mm9LBfEXCY+zTtb+aS6iOtDq4pt8Pt5DbSslLP+Zxk+SlLn8two/5NqDy9s1R9uh3UHwAmOMBfSIVHqFL0+f9b3qY/ldA4ULQUE5QKyYO7weqPXU34Fm235MR6ztE0eC8Qofq+QlG+0yCaHASMbX2GkIVaNUBYkwF2a9+2DwAOIz8w+ZZwL6256THaxDEtaY+yFW8YvLL48TPJe/07v9LA19qsv/XYp0HfJiYgFlL0tbEtMKmGbGuAG4nCrSLEUTEv+W8/5J+Qfiwl/CmHSEDKXd8Hx2v3LcROWNWE0rS6gTZAFpY1pQgDk5VUaMkJC1MSItWk9Tn2N69ZczFiHvAJ4AX2Z6/9ULbredG2+uowASXpBcRDboxQjuxT/6u3IrzIOnnRFO/la1bijXPlGy/5waMtSChCvTa9NRlhJrS3zNizSEsNK9NzcjViNxiwsbKBPFa3+emIs+WNJNQyryUyIFeC3zO9gkNYkyJGoSCVLo9807R5fqdDxVSHnuiC1miSDoA+B1BWBahMrcyce7f1fZGA8R4ne1Lxmsg5rz3kna2fWzPc1+0/enxXjNJvFmEgtXj6fEzgMvcQA00NUw2Iprv36j91VzgR7Z/nrGukwllxWvT41cR5PudMmJtA/yEICFuBbyKUB3JUtArCQ2hxUYFlbMraG29O1V1kRR3Xzr3ucsJBZlGyhUqLNc+Xh7aoqlW2Y31xmukblyCbNMTb19i71gd+DFh3XpVk7OhpkZBspgaVklIOoSY7G6tnp3iFbM/kHS97VfWmpuLAtfkECFKomTNIL3/TxD7NUResAjwR+J62WKAGMUtMVLcW2y/QtJBRM351H410QFjFbPlTPE+Xnu4ELA5cEfmd7PfIPCzS5yhnopI38PHbD+RHs8PPNOZFqmS1gXuIAb5DiDqvIdWuVrDWMVI1SWhUBA+n6RQDdxHCyLcCMODBSb/kRGeZrhUYUtyFt3FkUYHRPWf6gCay6XZPhw4PDHEvuLuSeVrGq7reYSM0sKSXkF3g26RJrFKQkkuCjhDfSSjWhzQ30tMvZ1FfB5Xpudy8Gj68xGFJNxfgOdnxlqzKlpCJHrp8xgYqTH+a0lvAB61/U9JqwKrEfK4WUhN0ZOAZ6XHfyamI2/PCPeJ2v8vRBRdmhJHFu95fNY4zzfBzoTsctUo2oiYAl1R0v4eYCo4FQYeIIqpSHoO8TsuJmkxT6OUf4VSRQ3II2JMgMslfZPuCerLqu/+NBbkdgf2pjONcSFB0mgM29uXWlTCz4nr9VB3K8ecKem147ymFx+gQ/a7ic7+/yDQWMY5oVKa2oyQgz5X0oGZsV5ckTMAbP9U0ksyYwGcSPxuB6TH7yT2thz55TpRbD5gbbrlsJugd///a9P9v4bdgKOB1STdC/ySkDLPQTXxMDs93sf2dyb4+YnwW2J/HGH6sDNR8HoYQCGTew3RBG+MRMjIImX0xGnt2d1bAC9BKC0JhfT7K4niwdcIO5gsS5IU70vENMxihFXEPnQrpzWJ1Zo4W8PjiYjiFHtlamenhjieKKhW+/OO6blNMuOVxN101P3aYlFJKzlN90taEVg0M9ZRwILAkenxu9JzOcpOj9l+TBKSnumQ8G2jKtH6PjcVeXZqZJ5HNIABPuXm/t/VGeGwpv/+JJhJnOEWpDZFSufcMzA0r2VrBJtGK1OH5/rykp7hDG/5PnhLT5P8aIXawack/feAMTYkJgz7NW2y3ntgK0mP2T4FQNLXqU2eD4pa3vkL4DrFxL6BLYlBhYGRiumXSzqhOs8pJrsXc0OrRHUmlBcEZkn6TXq8PKHwlIO9bZ+RiFwbE9+to+h8T6cT3wR+Raj7XaEYWJhWe0kYa5yvQ9gMHE98HifTITk2QUXq+4PCzvf3pDrQoJjCushxhKrKtunxu4jftxF5MO0/d0larkSNZgqIwKsTCiQb0KlZfmPCV/THvzmmifeofe/b2NNuTRAObrE9U9Jz6SiADQTbM1v8++NhaaJ+XTXLF0vPTTdM7BmVetXRhCJZLh4BZissddraH5ye6m9LKayj3wsc0ySApoagWrJm8AZ3D3zNqRFSBlXxOYogyq5E1MsqVEOyuXnUven93wQ4WKF0Nl9OINunSLqJjlLXW91Cqcv2l+qPJR1GkCZzcIOk99XIm1sRxL1Jh8n+laCWykI1XEwQgqoaxsLABYRCSg7+L9VDHiLOFW3w5l5yWaonDUzQmKI9Yzuirruz7T9KWo5QpBnhXxwjgsYIvagOgvVJJtOZGhwItts0j8fD1rb3T2z515F3eH0j8B5CwrauPPAgIV89Xfg4Men5pT5/1/j9hzH24V6ZCWw/nCNpKeAQOsnatzJjzSdpaXf7uefuR1cAr0lFjQuIKfHtyG/SHQ38l5MNgKSNiOS9cZJg+6aep66WdH3DGFNhrbIA8BLbfwJIh80Tie/SFXSKr5NC0hbEd+kFBHtzeYK1+tLCa85BkaLGFKAqqPbKI76CzO97CaRGZtaEWy8U03gHA88hDk7ZPrcJa47XfBx0j6uR/UpKORc7bAK3SfoW3Z7pbeSN13C31PKlaSoiB/V7+j+Ac4DvZcZqvf/3EEZ+TJB35iPkB7ei+/4+KJYmmsp3EznC8pJkZ0nN3UOQrop4046QBVGz6qNjNTMtkLSj7ZN7rt0x5FwbPYRSSfp/5BNKS+JYYPtqGqYArgEOqXKWlihBnK2wH0FCWVbSKURj6D2ZsZaxXZ+yPEEhLzwM+AzRiLyO9gXyjxF74z3E93F54P2Z61q3p0F9icL/PAe/S2ecHwAXSvorYWmXi2LnnJJ5tjp2bj/s89xAqM42UzBBtq7LWa0cSx/L1iHAPcRZ8Gy65ZJzcoNHFDZ7Z6bHWxM2RDCBBVYdtvdNf5ZsIG4FnC3pn4Qt5/3OsEOlk3feTbdlxA/7/OygOEjSB4lr4gZgCUmH225S2N68xb8/HkqSvYvC9leBuof6ryW1JpoWwNtIdgUAtn8vKbf+eGAa6vg4HevdrPvvFNRFVra9Ve3x5xRWDTlYGrg91aKy5NorSFqFaDr2Nuhym7ffJuqx1bX2zvTctuO+oj9ak2168FgaAvuHpCWIz3TZnECSvkDksnVlrY/b/mxGuC8CtyTS8ZgaVs66CmOT1NAcI/dJ+hyQpaABnJ3+K4FliPvlgwSxax+iMdwEVQO6JEG1ZM1gfkmvtH09jKkJVGqDA511Uo3sCJW3RN2WyAkOs32/pOcDezYJkHLpCvfRUWpB0rNcTsV5EaIWlIN3AsdJuoy4D/wb01TbnSpoHGUhOt+PJlioXuO1/ZDCMjQXxylUKW8giH5X1AfgGmIT5t27Nu3z3EQoTmpPxPr/qT3+DXnv/QhDhhFBY4QxpEmCo2yfPt1rGQetD6+J7f1tSVvZzm0uFYft96U/ix14E1O+iJdvwmGElPBriGL5lQRBJgdfAq6R1OXnnhlLth+RtDPhL3xIi4MrwKIVOQPA9mUK6a3mC+tOIqup8yUzY11ISPzVD3Xftf3GjHDL9jQ67kvP/Z+kptLQBxLM+IscsnUbE5Ofw4CSRY1iKPk9LwmV9W09BNiiDZs9rekIOtPJ8/x9ToPI9hGSXk1YpdQnK3MS29aHzRpmEnvsHunxFeTvsQA3S5rhbvnlG3MC1Yli6kwd5lqllNj/qyLsiwlZ+h8SBap3ET6RObiW8Kg8TjEVfzBwNXkM/t+k/56R/hvhycfxxNTt99PjtxJNu+lClUeUJDAXI5SWgJJcPvG7btm7ZzvfquAPpMmaNAG2FnC4M5StShBna7EuSBNcM4j9Zw/nS9j+Jf1uVbFxe0KpbhjwTWLKfg4dZYPGSPeOB4FVCKUEgDudb4P2hKSVbd+d4q9EZjPeHevH/VLDY0mCfJOL+n1ORPM895zTOs9Wx+Lt2en8UFeQfGHOojSvSkVFxM1t0M2StLoz7aN68IDt8wrEKY2KbDAf7e8FOwCHEwoyJnKYHVP+8uFBAoxHGKzQpEHUc+bdhSA7XU2cvRo3TqZoQGF1hxLrDoR8+6cJEs/ABI2c+84AKEn2Loq0lq3oOTMB+0/Lgjp43LYlVWfEXCUmiHPIVbZ/CmycruXDgB9lxCpdF3lU0ga2r4KxfffRSV4zHvZusY5eHE8MmnyZUH2ZSbtrttRQQT+yzcdyFqRIYm9L5M1jiL3iIRoqONewqe2xgUCHstabgcYEDZdRwyoGSbsSCigrSaoPlyxO3Aey4LJKLRV55MLqCYVCX5Nm66GEasM8k/UtULJmsAvRoF6MyMkeBHZJ++NBTQIVJmeQ6vX3EeoqPycII03txW4i8h0BywF/Tf+/FPEerpizNnWUsSAILcuQeY+zPUfS54nG/FzgtR4Cu8rCaK0sVMPDktZyUpCWtDb59zhsb6iwwluXIJGcq1CxGpioV9vPVu6zn83q/6px11OM1K6CLgUjDCeUNxg4wlMVyvQBfjIg6RzgXuLwuhaxcV/vPK/n5xGFshfY3lThLb6eezxTnyxoHO/XCrlFbUlHEYW3M+hmyufIxZ5OJBnVzfedwJK2mzLbq3il/NxvIW6gXyZknm6XNMeZHlypmXMzHbbjjsDateJtk1iVn6aIJPSXhMXGVRmxZtt+ec9zub59RxJJbdUg3YrwMd6T8IkfmECgjgf7rcAr0pTBsHjTXgPs2VPUOMz2etO8rn8jihqVjOdVxHUxrc0YFfRtlXS17RyZ2d44fT1uK+Qc3CWdRPh0z6bTzHEO2WOYIekOgsBQSdkuB9xF7EV2A89VSacS18TY1CHRIM2S0yu4/18BbGZ7bnq8OHCu7UFtb+qxliPkvld0qHUtB6xg+4qctY0w/VDYRlVE1Stt3zKd6ymNfvfa6bz/StrP9n4Kv+0q9xn70xlevinubUQhaE3gBEK9bVvbfb1hJ4nVjzj7VWdM7ivkSk8Fznay0smFQjb+CMJ+zkQBaHfbv20TtwRyc80nIdbriSZRXY1jZp1kPZ2Q9FKicQXt7nOt82xJe9CxeLuXzndzLnC07a9nrOtO+qhU5OayKWdZmTgr/Y3OvtEkV6mkvbcliuytLFuf6lBMQY6LJiSJnjNv9WctVB5xRwVtqSTdDryc2Le/ZvvyYTizKqZF3wTMsf3zRPb+D9sXTOe6ACSdT8jv937P+6m+PmmQ9AmC7LcJ0Xh8L3CqMxQS+92XWtRYitZFJL2cUJJYkvhO/R/wHttZalGpBvpK4jt1Q25TX9JNtteu19yq5zLjnUx8J+tDBbvZ3iknXin0/H4rAEvYzlK3TLnsuhUpNZHpbrTdRg1rwueeLCRSzNLEd7Guxjq3KTkvxTvd9rY9jfMxNMwLxsgjdKsxLQ5cbXtgAlUiDe1CEP7fSfd9bmhyjPR5VNZLQwHVbKlsr6qwTD8jp14o6Rjg+7Z/nB5vSticfCBzbcvXHv4D+JPtLHVFSccSuexMwtbkcOCInDx7WCHpBtvrKoYUNibOEnfYXm2Sl/aLtS7wXULtSMDzgO0870DFoPE2IAaKX0MQd2YTNaCBbYtL72cpZmnVqRGeghgpaIzQi4vSgec0uhv6peSi2qDkpPLx6b+90uP/JX7n6ZqurLxfn0NMPl6SHm9MFGlzpw4XIibw6kWMXE/ZknL5xfzciYLjZ4gk7XbFBF2b4ux7CYnA6j26Mj3XGLazWLzj4AnVfENTIpnLsNuNsPmoGlcnAt9zMPaaqjvcn1jaVwCnJGZ0q0ZFQexKKOZ0FTWmdUWB7xLvV6XusQOx/zSVWSyNkr6tN0o6jZigqxfHG+09OQSMAbAOMUU3FAzVkkWIHryp3cq60HrqsAfPAh52TAAtI2lF27/MiPNcoO7l/nh6LgefIabDX0dMTcwlpqDXbRpIZdVoRmgIhcXb7alQMBTFsgrp2ngf8yr45OQZ90jam25C6T1t19gCcxUT2T+lu0HXdq/9h21L2pIo4B+rUE3LQX36qiLO5sY6jLDU+2K6V36XILnmqAvtD7zb3ZYYh5GZfxbGeZLeT0wT1+/nOWfDixV+zGe1vQfbvjgVvCpyzV3OV+OYCtxJTPctAEECrHL4hmidZ7tj8bYP8JV0P9+bGHjInQYurVJRImfpbRq3smwtjZK5gaRVCZW159peQ9KawFtsD6wu2oSAMUCskmfeOkraUn0D+BVwK3BFOks/2Gp1BWD7EWq1Gdt/IJSjhgEvsl3yPFEEtg+TtAk1uwLbF07ysvFQ0nq3aF3E9mzgZQp7DWxnX6+SdiFsHS4hcqAjJO1v+7iMcH9TqGL9XNKHCeLfYrlrI8iysyR1DRVUZ+PJzsKqKW72g/OHMG6WtK7tG2z/KjNGhVOIHKiys5tJkG8GhqZADasEEhHgAUL9rQQqNdESllKnErWLEs3WfQglml67dGiYY0j6iu2PJrJ3v/rPwNZDGsdGU0nJ0MNhsVrSlmqGkwJ5inWepENyF+ayylhzgF3SGeeXiWw2DO9/EUhllYVs3yBpNbrPck0Vveu4LK3pIODHth+f+Mf7rukB4AFJx/ZeG5LenVmfLq06NcJTECMFjRG6kKYfepE99TCsqLH+xtjx6qNQMA3ruoAo0P4hPX4+cILzbCyQtL7tqyd7bsBYQ8lsH2ZIWpAgCVTT3JcB38xJOiS9iZAzv5w4jL0GeL/tnzSMMz8hu1nEZkMhmfcokWDsQEx4nOJpVoOoo0RRoyQk/dT2Gj3PZau+lIKka23PkPQTwgP298CZtlfOiHV8n6ed2YSsitqfYl7WcU5R+wzgI9U+O92Q9Hzbf+hh74+h8KExCyo4dVh4gmIvgrxZt7E4zXYjGc8U62bba/XkBbm/YzE1mhHyIOmHhAJBTkN0yiBpFkH87J1GHdh2T9JJtt+VCnEr0CFbXgF8rmoyPNlQZxq713poC0LxLkvmW9LlhN3ETCKfug+4dbrvmRVSXvU6gnjzJmdIjKrgBG9plDwbKuRZFyUarI9BvixryRy7NCTtThTi/kR8zxurQdRiFcuzJd1me800YXYAQQLax/arJnlpv1hfZKRS0Qglc4O0L+5JXPNVzjLP+WLAWCsRU54ziEbRNcDHbGcR/iStwbz5ejF/bEnX235lw9fMB2ztmpVvajTM78xJ2acDJB1NTP/mergPPSTtBPw3HWXRbYDP2z5p/FeNG6vIft3baO1FTsNV0l3Aq6u1KBQ9ZzlPQWxd4A5iQvkA4vc8pKoTZsTrewauMNlZWFOguJni3gn8O/BrgmiTfS9P8TYlLDIALsyo4xVXwxqhOSTtbfuAljHWtn2TpL5qgG5giSDp/baP1jiqWCXJmLmo7tu1esuiwDWZefFPiLN0pey9A2ElktUzGaEZVEBZSMkWVeMoyTtfQX4pYH3ibLguMXx1je3GFl8Kpd7biZx9MULB82+2t86IVVR1aoSnJkYKGiN0wVM3/TBseDgdSirfyhkE63e6sWxP0/BPBIM8F0cQ01GTPTcIWjHbpwqS1iEO1SvQPY3aaD0lWcw1HAUsSPgDA7wrPbdL00C2z1dI985IT33UGV7ntp+Q9E9JS7ql7F1qSlSWKP+k4RTAVGG8osYQscgvkPQOoCoSbg00OqBPEYr5ttqeWXJhxNTJacBm1IrambGeDfxM0vV0NxVyvuOtUe35w0DEmADfpNzUYbEJCtufV3jwviY9NdP5NhZ/T3talRcsQ+xrOSipRjNCHpYGbk/f87oi3LR8z2tYpABRZ+1EbHo3MYVRFWihR273yURVAEwFjbXcsR7aDzi3RejtCCnhnW3/UWE/1Ei9Z7wCUIUWhaCFCQLKdkRunZsHlZzgLYqSZ0PbudNy/VAsx54C7EGQEFuRlacgz65IYZsBx9g+V9LAigs9qEgdQ6NSoXGmSCsMQf5fMjdYxPb11dkmIZdocCrwdSI/A3gH8B06n/HASA2ijQiCxo+BTQkrxyyChua1pVqHaAY3gsNq4pN0zl7YNvnv2dMFGwDvSUS9LOuhqYD6e7E/ANwIfLwJucj2iZJupLN3vd0ZllSF9+vqXtlrF1Q9l4O/EI38CnPTc41hu9q3HiLIs63Q9gycS8AYAEUbvg7VqWzlKU+NGtbQYZzvN7Qg9RbGJZIWtf2wpB2J9//wJtexk4VDEyLGBKiGqX5m+4wJf3L6cLqkbwJLSXofoRB4TJMA1YACUTddns6AzuWUU29pBT09rCxKKAttSKg5bdHn73IV33Eo7d8DLEso3byaOCvmrvHjhE0KBKF9YKuUHpRWnRrhKYihKPyMMFyY6qmHIcF/AWcDK0u6GliGaJJONy5OjNBq498OuKhpEEnrETejZXqKVEsQ0045GDp5y4RTiAmiOeQ306AjEX5Y6xV1sK67p68vUXiSDgxJq9m+Ux1f5d+nP5dTyCXnTKo9BMyRdCHdjatG8o8lyR6FUbIBMBV4HzH9ULG+5yNIYx9gGg+dts9J//sAza1uuiDpRQTJo1JFuBLYw/bvMkOWLGrvl/m6KcG/QBEC218lVFUq/FpS7jXyuG1LqogQi7Zc282UsbH4KnHQf46kzxM5wWczY1UT3H+QtBmxbz9rgp8foTwaT0o8SThH0pudfHMz8Q3gYsJP+cba8xVRY7qLQCWth3B4pP9P7fFvaN7s61cAGgtJRiFI0umEl/v5wNeAy23n5qFfAq5RKDxBmuDNjFUUkhYhzk3L2X5/Kj6+uJYzNIlV0je9dY49hfgtBYj/U5Bn35sK5JsAB0t6JhkSu6nIeJRragRDgiqfGNZzQMnc4M+SVqZDKt2afFuMRXrUAk6WlGsjuzXwMuAW2zMlPZfOeScHdVuqvxNk4VxbqmG28h1WbDrdCxgHXwF+R5CLRJCKVibOA8cRJKGB4QLWuyX36xrh9dvE+fn+9Hhp5rVyGhS/AK5TKMwZ2JKQqv+v9G9OSmCbooGm1piqdZUYnpiic/7WtvdXqGG9jqhfHkUGqW4YUZjMOxU4irAeehnRwP0WcS7pq4YxESRtTqjQLE/053KuizdL+jRh1zqUBA2XsaWaaEBhWPB0sLJ4FbCDpGxlIdv7prPEeSXPEomccSdBDD6KGN5qbHOSsDRxzr+bIHssL0mJ3DvoeipS0Q8Ie6qPEN/31xHX8QgjjGFkcTJCF8abenCGjM+wQ9ICRHIg2ntdFUOa8qumga+w/f2Jfn6cGBsSn+MHiUJ+hbnAj2z/vO06hwWSrrK9weQ/+eRD0s3ANrbvTo9XIiwjBlYwkXR0KohfSncCWiVCORYPfZOBnOmDdMh/BdCK7FEaaYrlI7a/PJ3r+FeCOhLH65Hk4MiUOE7kn1PpEJ92BHawvUnm2orZr4zQHApJ1eOJe8i3iO/8p21fkBHrE8AqRIPoIGKC4lTbR5RbcR4UHpivJ/bXi23fkRlnc4KUtCwdNZrP2T671FpH+NeEOhYPfyOaTW0sHo6yvWvhJbaGClkPTVDUBmC6yWuS3khYxj0x6Q8PFm91OhO8l+RM8E4FJJ1GNEl3sr1GImzMcgNbSHV80y8lzid13/Tzba+Wsa7WOfZUQdKxxBnzXLqVunJk6Yvl2emzexMwx/bPFVaa/5F5L7/R9jqT/+QIFUrmBul6P5oYyPgr8Esiz27cUJR0cIrxXWLP3Y4oTB8KzQgM6tjI3kQ0J+YCd+R8x1O8bYk9oj4pfkDOgIKeJla+JSBpifSe9yUQTTepRX0sCJXsivv93ZO4rqJ1ERWwP1PHFu9+omnYFx7ABkEFbRlKYljXNVWorgFJBxH381ObXhcj5EMdm459gHvTENHNOfmnpF8Abyc+x6zmnKRDiQGwxYBH6n/FkAz7SFoR+IPtx9LjhYHnuoECg6SPENaGKxEKBGN/xZDcy/U0sLJQQVvm0mcJSfO1GJbojfW/wBdtH5eu14OBdWy/ukGMnwFvIJSTNqJHEWu6c6kRhgsjgsYIXVDYVVRTDy+rph5ym2rDitS83Yx5bTGmW/q0KCQtb/vXkhYDsP3QdK+pNCS9npA0u5juImiuXPX6xIR9L4s5x2v79URTs2pwr0CwOC/NiLUw8CFCatREge+oKsmdLpQke5SGMjyKnyxIegs133RnTKKWhqRrCYnjSsHnHcDuzvMmn93bvOn3XIN4JYvaM1KMlwDPIFSFHh6GwyuApOfQrWD1mwl+/ElBVexMDckPEOoEJ+U2wtIExX8S++tPMiYoRhhhQozT3M+Svx6hORSqX3Wyca71EJIOICbDTyL2jB2A50uuR+0AACAASURBVNveJyPWFwif9Po06sdtN1bLkbQgUSis7uWXA98YFsJ3KVTFs3rxv2kDTFPgm14yxy4NFfQBH9Y8W9IXgT8zRGoEkr460d8PAXl8Gdu59nxVjF77loVJSnyQTQKqExd67bIanYElHUlYj76DmCx+CJjtTOtDSbfZXlMxKX4AMSm+T9OzSZrUXM/21TnreLpB0jm2N0/XRqtrYiog6RqCbHBmempr4L8SmT/7vFlgXUX3a4Uq1Ebutj+7vGr8DRijahCdTx9lkZw9W6Foefhkz40w9pmNi8z3/xwil9qEIK09Clw/XcSkpxskXU58n2YSZ4D7gFubfC9rsS4FXl+iqSzph7a3bBtnKqCwkXq1k5qBpGcAV9teNyPWUA4oAEiaRdTrzyQsPO4lmvwvntaFDSlKnyUkrUooZzw3DRWsCbzFdmM7R4Wl6obAig7FouWAFWxf0SBGL6moOv8ODalohOHBiKAxQhdKTz0MKyT9GHiMHluMnMJZSSjUMw4GnkNs2q1Yrwq7mpPoyKf+GXi37Z8WWO5QQNLJwGrA7XQ+S9t+b2a8O4GPEdOCY1ORzvCRThODHycmsu8HbgC+nEOqUEhpP0hYukD4sS9pe9uMWEW98RJ5ZDnbd+W8fqog6cuE51xvwlfCDiEbKRFdl85nuT1wo+3PTN+qOkXQnueyppAkXUw0Tiqyx/ZE4yRHxrwo0gHxHYQE5DrATsCqQ/D+v4WQrX0BcdBfnrj/vnQ61wVdBfLDCULR90eTOvNC0idtHyLpCPpL7E5rc+jphNTUH0/+elfbG03Tur4HHEtMBBeZ8HiqY5xJ2dx7U79p1Nypt28ROUbVeHkX8ITtXZrGGmakYuPriULqWgpbhe/kEGDV3zc9dxq+WI5dEmkI4GDbnygYc+jybA2hGsF4zdEKQ0Bq+V/CouM04Kyq6dowRkX+eTFxlvghcY/bgmjQ7ZgRs6RKxckEWe1KotayhO3bmsapxSs2KT7KW5sjEVt2oLtB8Xzb103zuuqqjwauJeo39wJr275qGpdXDJJ2IghPXfZn7rYkmixG1SBakY5VLrQbQponbxqG75fK2EWUXlNFcqpPTrdq0KmgGtYIzSHpeUQt9gbbV6Z9cSNn2MJLWpe4Zi+npeLaMGOc4a1pUzuaKqTP8w5gKeJzXYIYDJjWe+awovRZIpGn9gS+WRsq+KntNTJiHUX0l15n+yVpqOOCpxqpaIThwYigMUIXSk89DCv6NSKHAQqJsy2cKaveJ94sYK9qmkzSRsAX3ECWadgh6a6SjFRJ1zWdypkgVj9SxVK2t8mI9TPbq0/23ICxrqLjjbcFyRvPedOoWxDTTM+wvaKklwP7e5o8SOtIjHTonvyxM2xhSkLSbcDLq+ZcKubfMt17kspKHC9PqFRUhbNZhBrHbzPXtgwh3bgC3apHjYlY6kwDj90HhqSodCshb39RKkZvDOxoO9druxgkHQ+8kCjuvYxQHbnMGXKNpYmIwwRJW9j+UekJuhGaY5ym/jDIX7+BuOfOIAruxw9T03UYkXLZr9O5N20P7JaTy6b777q2/5YeL0wQJBsT4UoSR4YZCsWjzxKk3guA9YH32L4sI1aRafgUq1iOXRqSrrG9XqFYQ5tnDzskLWL7kcl/8smDpFcSdZa3Aj8Dvmv75Iw4VwCb2Z6bHi8OnGv7tRO/sm+skt/LjQn1pNcQpMhbCBWlrMl6FZwUl3QYYd94lkdF0IFQskHxdIC6FUfG0Ia4pkL2ZyUaRJK2J+61GxAkrAqLA/+c7kEMFbCLmEoo1DRWoXtA6illvzJCM0i6gOi5tB4cHeYai8L++Agn9VtJWxJ21NM+vFUSktYB9iJIYgumpz3ddd6nC9QZOK+rPmapaqljZZStIDnCCE2wwOQ/MsLTDEsQzOzLCNmuVlMPQ4zzJP3nELKM/1SKnJGwqGtSv7Yvk7RowfjDgFmSVs89rPbBpQofv7PoZjHnqC6s0UOguFQhM5mDmyXNsH0tgKRXEVLtOVjY9sWS5PCK20+hmtOYoEHYwbyS2DOwPTtNtQwDLuvz3LAc1pcCKsLDktO5kBoqNZYP0E1qeUd63ORz3Z9Q66lLsh4GZCnbEBOCVwIXUVO2ycQjClnF2ZIOIaTz52sZswT+bvsvkuZT+CdeKukr072ohJ2BlxMHzXWAZwMnZMY6hIJExGFCImfMT0wxFZueHiELj6Sp4Lr8dTVZP233AdsXARdJWpIgGlwk6bfAMYSl4FPKHqMQ3klMyh5OfHZXp+dycApwcSKdQZBlcolTT0ha2fbdMDbR2/b+NFSQJOBOouExg8gJ9rD958yQ1fuzGXCM7XMlNZadTSiZY5fGbElnEySsuoJbjv3ifgxpnq1QauxV42s8QVoaktYjlIoWA5aT9DLgA7Y/NL0rA9vXA9cr7Jb+h9h/GhM0gOcCj9ceP56ey0Gx72XKXa8g1D02Bj4IvJTYv3OwLTEpfpjt+9Ok+J6ZsT5AqCw8Iekxhqh5NcR4VdWgALD913SGmlaUJO4Xxjq1/1+IqKtOaHExGVKNq/W9rdD07izi3PxsQvWxwlxgGGrGvwV+OqTkjF2APYAXAbOJnKpSKBvhXwCSrrK9gea10WxzL3mBM6b7x8Ew11g+CJwiqbI0/C2hPPhUwylEjtJFuBmhG5JeZ/uSRCqaB5nnJYA/K5Qenf6drYl7Vg7+nup6VaxlGH2mI0whRgSNEXpxLDHxcARp6kFS9tTDEONa4PsK2ca/MzwH9BslnQb8gG5yQO4N6h6FVGklg7gjHa/mpwpmEIXQXxLvWfVZ5rJUq2mhajK88gnLUV0oSapYmyCj/CY9Xg64S9Icmv++f0vX/s8lfZiYTFosc11/t/1A1PDHMCyJy0O1/18I2JyQnJtuHETsrZcS19drgWm110j4FIUkjoE1XZNutv1/ktooVCxi+1MtXl/HuwgFiA8Thdplga0KxW6D+yUtRhBRTpF0H7XGzjTjvcxbVLqGyBWaojQRcahg+wlJ60/3OkZgB6IhdGR6fA2wY1JM+PC0rQqQ9G/EPrQjMV18CjGN+G76+IM/3WH7V0ART2XbBye1ojcQud0Btn+SGW5PghRwD3EvX54gfDxlYP//9u493vK6rvf46w0YeGFQC295QzOQVAg0SCkRI/GWlxCPl1QsLfEomlqeMjESzZOUt5N3CURMSA0FBA2Ri0jc5GIipzqEeS9UBBRw4HP++P4Ws2bYM8Nea838fnut1/Px2I+9f7+1928+M3v2Xt/1/X0uVUlOqjZX+8QZXPKbSd5Lq4Z/S5KtmTxBcpZr7FnbBriKtV87FC35e7kGuc5OG7WxNy1B4yTg8cBZQO8JGsDbgMcBnwKoqouTLLuzxKwlWQU8jTUjtz5JS76ZxFG0RI9PdsdPZfLE2Zn9XKaNOLwj7Tn3TFrHou9NGBddB5RPjB1/m8k327djiXEdk8a2IIZ6g2KWifszU7ceifu2KYpgBqcr7LmS1iFziP4IOCmtzf3QxkUcTEtcO6eqHpNkJ+BNPcekZaiqvbr3287wsifNsHB0sHssXTL7nt1eF1V17Ua+ZKX6r1GXEG3QrwOfp3XzvmXk09j7Se9/vRR4H7BTkm8CV9DWfZN4B22dfrckh9GKfV434bWkjXLEiW6lexE2XvXwk6raqd+oZqu7mf8UBtb+bqyib1xNWg3QtaH8c9rGP8AZwJ/XBDNvhyptlMKtdC8gJ7neIUucrqo6dBnXuJS2sLgdbUbw17vj+wFfq8nGkiz59xwL8Db/fTPD2XhJPgicCryWdpP75cDtquoPlnutTa3bcDylqvYeQCz3pP2ehdaq9zt9xgMzb3F8MW0W53gHjdO7mzyTxPZG4OyqOmmSr18JkvwpbXP9O7Qbt9sBH1lis2+z636njTaVdh1tKlXVklnv67nG6HMfDdyD2SUiDk5aS+ifZzbV05oj3c20HWmJs0eM/+5PN36pt+AGataVsmmzo/eg3WQ6b5rn325dMRqzd3l1o1PmSZIjgXdV1XkzuNbM5qYnuYw1a2zoEpeB1cxRO+GhrrO7dcEutBF9uyS5O60L0L59xgVrxlVmYG2Ju/2HfwSOraovzeB6u9EKa6CNEfnyhNeZ5c/l39CKCm6gdTs6A/hSVf1kkthmKY7rWLYkz6GNvNyN1u1lf+B1VXVcz3FN1LJ8U+t+Jke2oHXUeEnfv3tmZYnOAbc8xACK3TLDcRGzljWt9y+idaa5Icm/1AQj9jQ/up+pO9KeM6cqHE3ydga6x5LWOfIQ2o15gNNp4/qu7i+q2UvyWFqHzFMZ2PdgSJK8ilsnZtB9PHFSXfe6fH/ansFdaaMwl3UvZ53r7UTrchTg1KEmQGk+2EFDa5l11cOADbL9XVXNtPKuuzn6crgl8eaOVfWjWf4ZfauqK7vWtaMNqjOr6uIpLjmLrgtPmuLPX9KkCSfruxzt5tD4bLz3A5NsZr+MNmfvBuCjwCm0m/tDdAdaB4BeJTm12rzFTy1xrk+zbD1+OPClJKMNvGcAh00R28HAnySZxYvXmc8HnpGtgM/SRt98DPjYEJIzOtdX1fVJSLJ1VX0tyY4b/7K1PLl7X8CPgd8ce2yaTPkhmmX1tCaQNr7ojbR59SfTnt9eWVWTtJKfpffR2r0/Cnh4krOAd1fV9SZnrNfMKmXTWky/nla1E+CdSQ6tqg9NcK2X0pLoLumO75Lkd6vqbzfypSvNHsBzklxJSzibuFPdjKvh95vw6za5LuF+qXXGJElFQ11nX19VNydZ3XWG+B6tI9kQ/GeSRwKV5Ha0NeQQNlUfMMu9h2od7ibpcrfudWb2c1lVrwRIsi3wAuAI2g2jraeNcwYGOa5jyKrqI10HiNENiqcO5AbFCUmeMMDE/cNZ87t/NfAftNfAc2HGnQM2hVmOi5i1byS5M+3m+eeS/IDWjUQLKq012i9V1dc3+sm3zSqGu8fyIeArrBmp/Du09cFtLvZZIQ4EdqLtsY+SxIbyPRiSUffuHWlFYMfT1hhPBs6d4rrHAz+krY2/NU2AAFX1NdqoT2mTs4OG1jLkqodZSvJ3wAOAzzCg9ndJ7k1rGT9qj34mbdbzNya83jG0Lig3AefRFm1vr6q/mkG4g5DkYFpl5WjR8zTgfVU1Sev9pa4/mK4Ls5LkcpaYjTdNEki3OVtVdc30Ec7GWCcTaCMttqdlar+rp3i2oSWJnEZrCz3KFF5FGy3Sa6eiJCfQxt3sS6uU+gmtu8dEVT9JdmbNDerPV5uhO018dwUexNqzzk+f4Do/O3Z4y3zgqhpE+9kkD6NVq/028I2q+o2eQxpV/R8IvIL2Pf0BrYL3CRNc60ja89oPu+O7AIdPWg0vLWVUXZnkabSkyT+kVRj3XUF9LK2a4yPdqWcDd66qudnAn7VZVsp2659HjpLfuueDs6tquQlnS8Y1XrE/L2bdqW4RJBkfm7YN7bXJt6rq5VNcc1Dr7CR/C/wJbVzHq2gJ7hfNuthgEkl+jjbi6jdoa+3P0tYdvSS9JnlbVb0iyadZOnHnt3oIa5NIG535a7T9pP+g7WWcWVWf7zMuaJ1VgEfSOift1nVn+uy8/c5eBLOsOp9RPH84+pAZVgMPVdp4oFuZ4Y3miXTJ2f80SfefzSnJo2mdMk+uqhv7jkf9SXJpTdhhdiVZz2umQXZCmkaSyyd5TbmokpwBPHH02qZL7j2xqiYaS5jkKwNO0pM2yA4aWsvAqx5m6Yru7We6t6E4AjiGNZn2z+3OTdoudueq+lHXnvIztPa4FwBzk6AB/C6tIuY6gCRvoXWAmUmCBgPpujBjM5uNlzYu5UPAtt3x1cALq+qCWVx/SuOdTFbT5jKu7isY4PdpN7jvRfs5HG3iXMPs/r9O4wBaRepbq+qHXYvj10x6sS4hY6qkjJGu6vlg2s/iRcCewNm0iq7lxjX0+cDfo405uQq4W8+xAFBVT+s+fEOS0+g2lSa83MNGyRndtX+QZK42x7tkrN+ldUoYTygyCWXzGb3GeSJwXFVd3QqVeveQWnvM2WlJZvJ7co7NslL2Ktpz7sg13blJbJkko4r4rlPdkF5TzMo9gX8Z2zxbBTwYKz/Xq6o+Pn6c5KPAWZNca8Dr7FW016tfoK0HVo26yQzAzVW11szpJDsw+c/6tD7cvX9rT3/+5rQN8NfABT2/5lqK88TnxAA7OYzimXU18FCdOPbxNsAOtBFjfY/reAnw6ll03NyUJikw0dy6MMkjajZjBGda7DljP0myV1WdBZDkUbRisHlzdpKdpy1MWyB3B8aT1G7szk3q7CQPrapLpwtL2vxM0NBalqh6+BDtiX2u1ADmEK7H9lV1xNjx3yV5xRTXu13X2vWptPnRP00yb21zwtotr29iTdXC8i+2nq4LE0c3TIck+QCzmY33QeCgqjoTIMletKSi3md/D626s6reDrw9yeuBt3XJU39G61Yx9Szqac249fisHUzb8Dqnqh7TzQN80yQXytLzgXtfDyU5iJYksz1wHPCiIb64m8Gm0hZJ7lJtBNeoM0rv//4z9mFaO8TH0Z4/nsMw2qsvkhOSfI22+fOSrlL2+p5jgrYRt2dVnQOQZA/g/J5jGrqDgf+V5EYm3HAfq279N+CfkxxPW+s9BZj0pvLJwMeSvLc7/n0mT1wbsnfT1ikj1y5xThv2ICZPuBzqOvuDtD2DdwIPBL6c5Ixurdu3Tyd5fHVjPZM8mLau6qWqbiyZZtd1/326TpBzc7OuqgabhDLgcR26jZLsVG3M4pLPP93Yn81utLfYVQPvNpbQ+AbWTmaYC+tW/Hffj4N6CucWA0zckTZmZmMEmX2x5yz9AXBUku264x8Az+8xnk1lT+CitJHKNzDd93MRHAWc23XrhXbf6u+muN5ewAv899dKNG8b4prekKseZqbbqP8jbl3dus96v2jzuCrJc2kzhgGexXTVPu+lJdpcDJzRtSn+0VQRDs8RtM328Sf1D05xvaF1XdgUZjkb76bRpjFAVZ2VZN7+vWZt/6o6tNtk34dWUfdu2gs0Le36qro+CUm27jbnJm0fONT5wPcBXlFVF/UdyCZ2OPClJMd1x88ADusxnk3hF6rqGUmeUlVHduPG5i7Zdciq6rVdq+Orq+qmJD+m3YzvxVjy5+1o1R1f747vh7NNN2Y7WpLTDt1z531pXR2WY7Rp/+/d28jxU8T1x7SkjJd0x58DPjDF9Ybqli4hAFV1cxL3EDaga78/nhD/Hdr/l0kMcp1dVad1NyMfATyGtvn+S7TRIn17Ey1J44m0ivajaL9D+vZ8bv3v84IlzmkTKeeJr3Svoo22PXyJx4o1ozX7Mutq4BWhqi7sEo57MdTEHek2eNwMrzXrYs+ZSLIFsGNV7dJ14WOUQDuH9us7gJWkqg5L8hlawjfAgVX15Sku+fgZhCX1ImP7LdLCSPJZ4GPAq2kbSs+njX2YdPNsVnHdj1aJ9Ku0F5lnAy+rqv+c4Z+x1bwlHHQvxvbqDs+c8kl97s1yNl6StwG3pyUVFfBMWpXy0eAL4qWMZtQneTNwaVUdkzmcWz9LXQLWgbQRMfvQsu5vV1VPmOBar2KJ+cAj8zYneIiS7MyaTdTPD7FTyDSSnFtVv9LdvDqIdnPu3Kp6QM+hLYwkZ9Gqks8EvjiqZuwxnvtt6PGhdXwakiTvpiWT7lNVD05yF+CzVfWInkNbCEk+QRtj8e7u1EHAY6rqqb0FtUCGus5OcipwR1oHuDOBs6rqe33EspQkT6UVY2wL/HZV/d8eY3kW8Gzaa9XxZM1taeNYlj2uT9LwJPlTWjfE8cKhj1XVm/uLavbGupJB60a5O3DXqprlzeblxPO+qnpxN4ZzZDyxtO/EHWm9uqKtB1XVEV0h6Z2q6ooJrnMqrXhxvNjzwCGsMZKcX1UP7zsOSRoqEzS0kJJcUFW7J7lk1O4oyXl9b/YmOZJWQT3e+v2ty51bn+S5VXX0Oi+ebjEPNyC7f5v1qqrvb65YVpokRwB/NYubouu8EF5X+YL41pKcAHyT1m5wN1oL/nOrapdeA1shkjyaVlF9clXduLHPX+Lrj2Hp+cD/CoMegaUVIsnvAR+ntaA/ArgT8GdV9d4NfqFmJskOtGqMX6O1G72BlsD5yl4D07IlubCqdhtPZExy8STPmd2a5VYvfidZq3Tzk99A64KyFWvaqM5VIlaSuwHvoCXVFW083iuGdDN+aJKcuu6G+FLnbuO1BrnOTvI3tJtyNwBfBM4AvlRVvc0UT/JO1v75fiytY85/AFTVy3sIa5SgtwPwZuC1Yw9dA1wyb4UT0qaS5OkbenzCca0z1RUOjaqBz5jHwqEkh3DrbpQfr6ob1vtFm0GSA2j7A+NjZP/CgiENVfez9HBah4lfTHIv4LiqetQE19rkxZ6TSvKXwH/TimSvG513z16SGtuTalH9tHv/7a796beADd7w30weNkrOgLZgSTJJVf0du/fzPIfxAtZUwd+XVlEf4M7A12kbYVrazGbjVdVjZh3cAjiA1v7urVX1wyT3BF7Tc0wrRlVNO6v73iwxH7iqnjttbFLniKq6idbBYa5u1q4UVXVFkutp7aVvpLXgf3C/UWlCP02yJd3NgK667OYNf8l6vXrs422A36bdXJjEB4FX0tajN014jcHrEjH+R99xrARJtgHuAPxc1+ll1KlrFfDzk1xzqOvsUbJbkm1pYzqOAO4BbN1jWOevc3xBL1Gso+uQdCXtpomkyT15A49NOq51prpkgHlPCDgJ+BPg/qy5p/BaWmJ6n15XVcc6RlYryNOAX6b7nVFV3+rWVZM4FHj+usWewLKKPTeRZ9J+Rx+0znn3SSQJEzS0uN6YZDvaHMt30jbOhlBVuUWSu6yzqFr2z+moSneeK8GrageAJO8HPllVJ3XHj6e1k9T6zWw2XvdzdAjw692p04FDq+rqWf0Z86aqfszYBlJVfRv4dn8RLZyFnA+szeqKJCfTqkQ+X7ar2+yS/DutUucY2o30l1XVpDf11a930NqF3y3JYcD+wOsmuVBVrXvD9otJzp0wrqur6jMTfu2KkeQXaTc47l5VD0nyMOC3quqNPYc2RL9PG8V2L9a+Qfcj4F2TXHCo6+wk/5NWJb47rXr6Q6w9vmOzq6oj+/zz1yfJNSzRuYc1CfKrNnNI0opUVQcCJNl63W4NG+uuqpk6mpbw+hUmT5jdFEbJsk8E3l9VJyZxraIhu7GqKskoCf2OG/uCDZhVseemsDMtOWMv2nroTOA9vUYkSQPiiBMtnK4K7+VV9Td9x7KuJM+jZaMf1516BnBYVX14wuttD7yItbPbWe7IlCFLcmlVPXRj57RpJPk47cX5aFP0d4BdqmqDLUilvizKfGD1J8kdgCfRqs53Bz4N/H1VndVrYAskycG0TaD7AF+j3dQ8o6r+vdfANJEkO9HGFQQ4taoum/A64zdwtqC1FX57Ve04wbX+EtiSlnB5y42ieWulneR0Wpev946NmPlKVT2k38iGK8nLquqdM7rWINfZSV5N22C/YCgjOpIcW1UHJLmUpUcZ9V3dLWkGkpwIPGX0uyfJPWjdEHfvN7LFkOSsqtqr7zjW5RhZrTTdWupBtP+zb6Z1uzhmkjVkkouBvdcp9jx9CPviSY6lJSt/pDv1bGC7qjqgv6gkaThM0NBCSnJuVf1K33EsJcnOtJZ80CpvvzrFtc6m2zxjrP1yVX18qiAHJMkptL/j0d2p5wC/XlWP6y+qxZHkoqradWPnpCFZhPnAGoauzf3bgedU1ZZ9x7NoktwJOJBW6XdvvweLrRvtNhqP91Na5f+hkyRPJTmt+3D0YnpUDb/Per5kRUpyXlU9IsmXxxI0XOdtQFcB+UrgvlX14iQPos0XP2GCa7nOvo2S3LOqvt3NYb+VbtRIb5Lcd6nzVfX1zR2LtJIleRHwBFpHrfsAnwJeXVWf7TWwBZHkscCzgFNZO0G11xEzXYL8fsClVfWv3RjZh/r/QkOV5C3APwG/SXsdcQrwG1X1xxNca6bFnrOU5KtVtfPGzknSonLEiRbVF5O8i9Z+/LrRySFUvXUJGRMnZazjDpMs7laYZ9Fa/46q4c/ozmnz+EmSvUY3N5I8ilatIA3WgswHVo+SPJo2b3U/4Hxa1xZtJkkOp3XQuBNwNvB6em6/r0H4Y+DkqvpRkj+jVVj+eMJrfWGJc/NY+fDfSR5I93dLsj+OZduYD9GS4x/ZHX+TtmG+7AQNXGffZt3IwN4TMTbgxLGPtwF2AC4HfqmfcKSVqaren+RngH+kdYr9/ao6u9+oFsqBwE7A7Vgz4qQYG+HaB8fIagXat9uv/9zoRPcadtl7+FV1VJLzWVPs+fRpij1n7MIke1bVOQBJ9qDtj0iSsIOGFtRY1du4eax6eyNwdlWd1Hcsmk9JdqW1Xd6OlvX9feAFVXVxr4FJUk+S/AfwZeBY4FNVdd2Gv0Kz1t1EPrOqvtt3LBqOJJdU1cOS7AX8BfBW4PVVtccE13rV2OE2tLFGl83TGEGAJA8A3kdLNvgBcAWtI9BQb4L3Lsn5VfXwdbqOXDxJm3XX2bddkmtYOklq1N1m1WYOaYO6bm4HVdXv9R2LtBIk+cPxQ+B5wCW0NTdV9dd9xLVoklw+yWg4SU2SlwAHAQ8Axsdvbgt8saqe20tgm0iSy4AdgVHHsPvSElRX09ZnjqCTtNBM0JDmWLdRdUda68GfMtANqmkk+UVa6/L7M9YVaN6SbYYuySqAqvpR37FIUp+SrPJ3Yb+SbEGbb7tDVf1F11r+HlV1bs+hqUejG+ZJ3kxrgX3M+E30Ka+9NXBKVe09daADsM6NMIDbA1vQdR70Rtj6dSMmH0vbZN+t60Dy0WnGa7rOnk9JLh3CfHhpJUhyyIYer6o/31yxLLIkRwB/NaDqfGlFSbIdcBfgzcBrxx66pqq+309Um876Rs+NmPQtiL2BrgAADsdJREFUadE54kQLK8kTaS1Ftxmdq6pD+4to9qpq2yR3BR7E2N9zzhwHvAf4AHBTz7EsjCU27kfnATfuJS20VUmOBB7VHZ8JHFxV3+gxpkXzf2htl/ehdUq4Bvg48Ig+g1LvvpnkvcC+wFu6pIotZnTtOwD3ntG1hmDb7v2OtJ+b42mJ3r8DmOi0HmkL4fcAJwP3SfIR2nPBC5Z5HdfZc2ad7+kWwO7At3oKR1pxTMAYjD2Bi5JcQSsEGxWBWQUv3QZVdTVwNQsymtsEDEnaMBM0tJCSvIe2kfoY2o39/ZnDzcYkvwccTNswvoj2YmpU1TUvVlfVu/sOYgGtu3H/qe74yczhz5IkLcMRwDHAM7rj53bn9u0tosWzR1e5Pmp7/YNuXrkW2wHAfsBbq+qHSe4JvGaSCyW5lDXjFLYEtgfmJtF7dCMsyRnAblV1TXf8BuDEHkMbtKqqJK8B9qa97gotQe+/l3kp19nzZ1vW/M5YDXyaljgoaRmSfA54RlX9sDu+C/D3VfW4fiNbGPv1HYAkSdK8cMSJFtLYDOrR+zsBn6mqX+s7tlnqNo8fAZxTVbsm2Ql4U1U9vefQZqbbKP4e8ElaBj8A89gaboi6jfsnjm3cbwucWFW/3m9kktSPJBdV1a4bO6dNJ8k/A48EzusSNbYHPjuLURYS3Kpd72rgu1W1uq94NpUklwMPq6obuuOtgUucP79+XQeld1XVeTO4luvsOZHkEcCfsPZYTqvOpWVazzp7JuPKJEmSpM3JDhpaVD/p3v84yb2Aq4B79hjPpnJ9VV2fhCRbV9XXkszbhurzu/fjFZAFPKCHWBbR3YEbx45v7M5J0qK6KslzgY92x8+irTO0+byDlrh5tySH0Tqlva7fkDRPFqhd71HAuUk+2R0/Ffi7/sJZEfYAnpPkSuA6pmv/7jp7fhwNvBr4Cm0El6TJ3JTkvlX1dbglYdLKQ0mSJK04JmhoUZ2Q5M7A/wYu6M59oMd4NpVvdH/PfwQ+l+QHwFxtKFfVDn3HsOCW2rg/ssd4JKlvLwTeCfwNbcP4bOAFfQa0aKrqI0kuoI10C/DUqrqs57CkFaeqDkvyGWDUZfDAqvpynzGtALNss2+CzPz4r6r6dN9BSHPgT4GzkpxOW+P9GvDifkOSJEmSls8RJ1pISW4PvIT2Yq6AM4F3V9X1vQa2CSV5NLAdcHJV3bixz19JkjwE2BnYZnSuqo7qL6LFkmQ31mzcn+HGvaRF1rW3f0VV/aA7vivw1qp6Yb+RLZYkW9IqzW9JSB9VW0rSSuE6ez4keSyto9aprD2W8xO9BSWtUEl+DtizOzynqv67z3gkSZKkSZigoYWU5FjgGlqrUYBnA9tV1QH9RaVJJDkE2JuWoHES8HjgrKrav8+4FkmSvYAHVdURSbYH7lRVV/QdlyT1Yak52M7G3rySvAw4BPgucBPTjRiQpM0qyaqq+lGX4HcrVfX9zR2TppPkaGAn4F9YM+KkTN6UbpskO3Uje3db6vGqunBzxyRJkiRNwwQNLaQkX62qnTd2TsOX5FJgF+DLVbVLkrsDR1fVvj2HthC6BJmHAztW1S8muRdwXFU9qufQJKkXSS4G9l6ng8bpVfXQfiNbHEn+Ddijqq7qOxZJWq4kJ1TVk5JcQev2eMtDtJv6D+gpNE0oyeVVtWPfcUgrVZL3VdWLk5zG0r8X9+kpNEmSJGkiW238U6S5dGGSPavqHIAkewDn9xyTJnN9Vd2cZHWSVcD3gPv0HdQCeRrwy8CFAFX1rSTb9huSJPXqcOBLSY7rjp8BHNZjPIvoP4Gr+w5CkiZRVU/q3u/QdyyambOT7FxVX+07EGklqqoXdx8+ATgI2IuxccV9xSVJkiRNygQNLardaZsko1nk9wUu77ox2AJ7hUgS4JIkdwbeD1wAXAt8qdfAFsuNVVVJCiDJHfsOSJL6VFVHJTkfGFXyPd0bMpvd/wO+kORE4IbRyar66/5CkqTbZn0t/Eds5b8i7Qlc1HVFuQFHb0mTOhL4EfCO7vjZwFGA44olSZK0opigoUW1X98BaHpdYsCvVNUPgfckORlYVVWX9B3bAjk2yXuBOyd5EfBC4AM9xyRJveoSMkzK6M/Xu7ef6d4kaSU5fAOPFWsSALVyuP8gzcZD1hlNfFoS19ySJElacVJVG/8sSRqoJEcC76qq8/qOZVEl2Rf4TVol2ClV9bmeQ5IkSZIkSXMkydG0/Z/xccUvrarn9RuZJEmStDwmaEha0ZJ8DfgF4ErgOmwXu1kleUtV/fHGzkmStKkl2Q74X8BTgbvRKs2/BxwP/GXXcUuSVowkDwF2BrYZnauqo/qLSJL6k+QyYEdapzToxhUDq3EfSJIkSSuICRqSVrQk91vqfFVdubljWURJLqyq3dY5d4kbI5KkzS3JKcDngSOr6jvduXsALwD2qarf7DE8SVqWJIcAe9MSNE4CHg+cVVX79xmXJPVlffs/I+4DSZIkaaUwQUOStGxJXgIcBDwQ+Lexh7YFvlhVz+0lMEnSwkpyeVXtuNzHJGmIklwK7AJ8uap2SXJ34Oiq2rfn0CRJkiRJ0hS26jsASdKKdAzwGeDNwGvHzl9TVd/vJyRJ0oK7Mskf0TpofBegu6H5AuA/+wxMkibwk6q6OcnqJKtoI5vu03dQkiRJkiRpOiZoSJKWraquTnIt8Mu2EZUkDcQzaUmDp3eJGQV8F/gUcECfgUnSBM5Pcmfg/cAFwLXAl/oNSZIkSZIkTcsRJ5KkiSU5HnhZVX2971gkSUqyE3Bv4Jyqunbs/H5VdXJ/kUnS5JLcH1hVVZf0HIokSZIkSZqSCRqSpIklOQP4ZeBc4LrR+ar6rd6CkiQtpCQvB14KXAbsChxcVcd3j11YVbv1GZ8kLUeSTwF/DxxfVddt7PMlSZIkSdLK4IgTSdI0/qzvACRJ6rwI2L2qru2qzf8hyf2r6u1Aeo1MkpbvcNropjcnOY+WrHFCVV3fb1iSJEmSJGkadtCQJE0lyd2BR3SH51bV9/qMR5K0mJL8S1X90tjxnYB/AL4K7FNVu/YWnCRNKMmWwD60JLT9qmpVzyFJkiRJkqQpbNF3AJKklSvJAbTxJs8ADgD+Ocn+/UYlSVpQ301ySxJGVV0LPAn4OeChvUUlSRNKcnvgt4E/oCVEH9lvRJIkSZIkaVp20JAkTSzJxcC+o64ZSbYH/qmqduk3MknSoklyb2B1VX1nicceVVVf7CEsSZpIkmOBXwFOBj4GnF5VN/cblSRJkiRJmtZWfQcgSVrRtlhnpMlV2J1JktSDqvrGBh4zOUPSSvNB4FlVdVPfgUiSJEmSpNkxQUOSNI2Tk5wCfLQ7fiZwUo/xSJIkSSteVZ2S5JFJ7s/Y3k1VHdVbUJIkSZIkaWqOOJEkTSXJ04G9usMzq+qTfcYjSZIkrXRJPgw8ELgIGHXRqKp6eX9RSZIkSZKkadlBQ5I0rbNpm8Y3A+f1HIskSZI0Dx4O7FxW1UiSJEmSNFe26DsASdLKleT3gHOBpwH7A+ckeWG/UUmSJEkr3leAe/QdhCRJkiRJmi1HnEiSJpbkcuCRVXVVd/yzwNlVtWO/kUmSJEkrV5LTgF1pydA3jM5X1W/1FpQkSZIkSZqaI04kSdO4Crhm7Pia7pwkSZKkyb2h7wAkSZIkSdLs2UFDkjSxJEcBDwWOBwp4CnBJ90ZV/XV/0UmSJEmSJEmSJEnDYQcNSdI0/r17Gzm+e79tD7FIkiRJK1qSs6pqryTX0BKgb3kIqKpa1VNokiRJkiRpBuygIUmaWpJVtA3jazb6yZIkSZIkSZIkSdIC2qLvACRJK1eShye5lDbS5NIkFyfZve+4JEmSJEmSJEmSpKGxg4YkaWJJLgFeWlVndsd7AX9bVQ/rNzJJkiRJkiRJkiRpWOygIUmaxk2j5AyAqjoLWN1jPJIkSZIkSZIkSdIg2UFDkjSxJG8Dbg98FCjgmcD1wNEAVXVhf9FJkiRJkiRJkiRJw2GChiRpYklO28DDVVX7bLZgJEmSJEmSJEmSpAEzQUOSJEmSJEmSJEmSJGkT26rvACRJK1eS1y91vqoO3dyxSJIkSZIkSZIkSUNmgoYkaRrXjX28DfAk4LKeYpEkSZIkSZIkSZIGyxEnkqSZSbI1cEpV7d13LJIkSZIkSZIkSdKQbNF3AJKkuXIH4N59ByFJkiRJkiRJkiQNjSNOJEkTS3IpMGrFtCWwPXBofxFJkiRJkiRJkiRJw+SIE0nSxJLcb+xwNfDdqlrdVzySJEmSJEmSJEnSUDniRJI0ja2A71TVlcCDgIOS3LnnmCRJkiRJkiRJkqTBMUFDkjSNjwM3JfkF4H3AfYBj+g1JkiRJkiRJkiRJGh4TNCRJ07i5G2nydOCdVfUa4J49xyRJkiRJkiRJkiQNjgkakqRp/DTJs4DnASd0527XYzySJEmSJEmSJEnSIJmgIUmaxoHArwKHVdUVSXYAPtxzTJIkSZIkSZIkSdLgpKr6jkGSJEmSJEmSJEmSJGmubdV3AJKklSvJo4A3APejPacEqKp6QJ9xSZIkSZIkSZIkSUNjBw1J0sSSfA14JXABcNPofFVd1VtQkiRJkiRJkiRJ0gDZQUOSNI2rq+ozfQchSZIkSZIkSZIkDZ0dNCRJE0vyl8CWwCeAG0bnq+rC3oKSJEmSJEmSJEmSBsgEDUnSxJKc1n04ejIJUFW1T08hSZIkSZIkSZIkSYPkiBNJ0jS+sMQ5M/8kSZIkSZIkSZKkdZigIUmaxrVjH28DPAm4rKdYJEmSJEmSJEmSpMFyxIkkaWaSbA2cUlV79x2LJEmSJEmSJEmSNCRb9B2AJGmu3AG4d99BSJIkSZIkSZIkSUPjiBNJ0sSSXAqMWjFtCWwPHNpfRJIkSZIkSZIkSdIwOeJEkjSxJPcbO1wNfLeqVvcVjyRJkiRJkiRJkjRUJmhIkiRJkiRJkiRJkiRtYlv0HYAkSZIkSZIkSZIkSdK8M0FDkiRJkiRJkiRJkiRpEzNBQ5IkSZIkSZIkSZIkaRMzQUOSJEmSJEmSJEmSJGkT+/8E+jOETckvBQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
0[PAD]
1[UNK]
2[CLS]
3[SEP]
4[MASK]
5[cls]
6if
7unaryop
8not
9call
10name
11raise
12str
13for
14layer
15attribute
16input
17layers
18assign
19tensor
20keyword
21batch
22shape
23dtype
24sparse
25name
26expr
27append
28newly
29created
......
1126deserialize
1127deserialized
1128opened
1129yaml
1130nbytes
1131dset
1132sublayer
1133kernels
1134gates
1135hsplit
1136t
1137correlation
1138gen
1139enqueuer
1140kwarg
1141lp
1142attribute
1143intermediate
1144insecure
1145weighted
1146modes
1147accuracy
1148categorical
1149suffix
1150lengths
1151ref
1152cw
1153batches
1154score
1155existing
\n", + "

1156 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " 0\n", + "0 [PAD]\n", + "1 [UNK]\n", + "2 [CLS]\n", + "3 [SEP]\n", + "4 [MASK]\n", + "5 [cls]\n", + "6 if\n", + "7 unaryop\n", + "8 not\n", + "9 call\n", + "10 name\n", + "11 raise\n", + "12 str\n", + "13 for\n", + "14 layer\n", + "15 attribute\n", + "16 input\n", + "17 layers\n", + "18 assign\n", + "19 tensor\n", + "20 keyword\n", + "21 batch\n", + "22 shape\n", + "23 dtype\n", + "24 sparse\n", + "25 name\n", + "26 expr\n", + "27 append\n", + "28 newly\n", + "29 created\n", + "... ...\n", + "1126 deserialize\n", + "1127 deserialized\n", + "1128 opened\n", + "1129 yaml\n", + "1130 nbytes\n", + "1131 dset\n", + "1132 sublayer\n", + "1133 kernels\n", + "1134 gates\n", + "1135 hsplit\n", + "1136 t\n", + "1137 correlation\n", + "1138 gen\n", + "1139 enqueuer\n", + "1140 kwarg\n", + "1141 lp\n", + "1142 attribute\n", + "1143 intermediate\n", + "1144 insecure\n", + "1145 weighted\n", + "1146 modes\n", + "1147 accuracy\n", + "1148 categorical\n", + "1149 suffix\n", + "1150 lengths\n", + "1151 ref\n", + "1152 cw\n", + "1153 batches\n", + "1154 score\n", + "1155 existing\n", + "\n", + "[1156 rows x 1 columns]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "plt.figure(figsize=(30,10))\n", - "labels, values = zip(*c.most_common(100))\n", - "\n", - "indexes = np.arange(len(labels))\n", - "width = 1\n", - "\n", - "freqs = [per_token_freq[l] for l in labels]\n", - "\n", - "mean_freq = np.mean(list(per_token_freq.values()))\n", - "mean_acc = (accuracy / len(results_df))\n", - "\n", - "plt.bar(indexes, values, width, label='Accuracy')\n", - "plt.bar(indexes, freqs, width, label='Frequency')\n", - "plt.xticks(indexes , labels, rotation=90)\n", - "plt.title('MAGRET - large (200k epochs) - mean_freq = {:.3f} / max_freq = {:.2f} / mean_acc = {:.3f}'.format(mean_freq, np.max(freqs), mean_acc))\n", - "plt.legend()\n", - "plt.tight_layout()\n", - "plt.savefig('MAGRET-lg-200k_epochs_top100.pdf')\n", - "plt.show()" + "vocab_df" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": true - }, "outputs": [ { "data": { "text/plain": [ - "[2,\n", - " 31,\n", - " 32,\n", - " 33,\n", - " 296,\n", - " 33,\n", - " 63,\n", - " 33,\n", - " 192,\n", - " 258,\n", - " 33,\n", - " 76,\n", - " 33,\n", - " 259,\n", - " 260,\n", - " 10,\n", - " 10,\n", - " 24,\n", - " 10,\n", - " 37,\n", - " 20,\n", - " 22,\n", - " 335,\n", - " 20,\n", - " 8,\n", - " 8,\n", - " 4,\n", - " 11,\n", - " 22,\n", - " 8,\n", - " 8,\n", - " 22,\n", - " 8,\n", - " 20,\n", - " 8,\n", - " 8,\n", - " 11,\n", - " 22,\n", - " 63,\n", - " 8,\n", - " 8,\n", - " 11,\n", - " 22,\n", - " 192,\n", - " 258,\n", - " 8,\n", - " 8,\n", - " 11,\n", - " 22,\n", - " 76,\n", - " 8,\n", - " 8,\n", - " 11,\n", - " 22,\n", - " 259,\n", - " 260,\n", - " 8,\n", - " 8,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0,\n", - " 0]" + "1156" ] }, - "execution_count": 21, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pred = list(results_df.loc[10][3:])\n", - "pred" + "len(vocab_df)" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ - "pred_str = [vocab_df.loc[i][0] for i in pred]" + "accuracy = 0" ] }, { "cell_type": "code", - "execution_count": 23, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['[CLS]',\n", - " 'functiondef',\n", - " 'arguments',\n", - " 'arg',\n", - " 'self',\n", - " 'arg',\n", - " 'size',\n", - " 'arg',\n", - " 'scale',\n", - " 'factor',\n", - " 'arg',\n", - " 'mode',\n", - " 'arg',\n", - " 'align',\n", - " 'corners',\n", - " 'nameconstant',\n", - " 'nameconstant',\n", - " 'str',\n", - " 'nameconstant',\n", - " 'expr',\n", - " 'call',\n", - " 'attribute',\n", - " 'init',\n", - " 'call',\n", - " 'name',\n", - " 'name',\n", - " '[MASK]',\n", - " 'assign',\n", - " 'attribute',\n", - " 'name',\n", - " 'name',\n", - " 'attribute',\n", - " 'name',\n", - " 'call',\n", - " 'name',\n", - " 'name',\n", - " 'assign',\n", - " 'attribute',\n", - " 'size',\n", - " 'name',\n", - " 'name',\n", - " 'assign',\n", - " 'attribute',\n", - " 'scale',\n", - " 'factor',\n", - " 'name',\n", - " 'name',\n", - " 'assign',\n", - " 'attribute',\n", - " 'mode',\n", - " 'name',\n", - " 'name',\n", - " 'assign',\n", - " 'attribute',\n", - " 'align',\n", - " 'corners',\n", - " 'name',\n", - " 'name',\n", - " '[PAD]',\n", - " '[PAD]',\n", - " '[PAD]',\n", - " '[PAD]',\n", - " '[PAD]',\n", - " '[PAD]']" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": 25, + "metadata": {}, + "outputs": [], "source": [ - "pred_str" + "per_token_acc = {}; per_token_count = {}" ] }, { "cell_type": "code", - "execution_count": 24, - "metadata": { - "scrolled": true - }, + "execution_count": 26, + "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "[('name', 0.2610899182561308),\n", - " ('call', 0.0865985467756585),\n", - " ('num', 0.08628519527702089),\n", - " ('attribute', 0.08107629427792916),\n", - " ('keyword', 0.039586739327883744),\n", - " ('str', 0.030172570390554043),\n", - " ('binop', 0.02768392370572207),\n", - " ('subscript', 0.02438692098092643),\n", - " ('index', 0.02114441416893733),\n", - " ('assign', 0.020358764759309717),\n", - " ('list', 0.019872842870118073),\n", - " ('tuple', 0.013637602179836512),\n", - " ('compare', 0.012306993642143505),\n", - " ('expr', 0.011180744777475023),\n", - " ('nameconstant', 0.010495004541326068),\n", - " ('arg', 0.009645776566757493),\n", - " ('unaryop', 0.009000908265213442),\n", - " ('if', 0.008542234332425068),\n", - " ('slice', 0.00765213442325159),\n", - " ('add', 0.006975476839237057),\n", - " ('shape', 0.005199818346957311),\n", - " ('return', 0.005045413260672116),\n", - " ('mult', 0.0049182561307901905),\n", - " ('usub', 0.004654859218891917),\n", - " ('arguments', 0.004100817438692098),\n", - " ('x', 0.004037238873751135),\n", - " ('fit', 0.003991825613079019),\n", - " ('sub', 0.00388283378746594),\n", - " ('eq', 0.0037193460490463214),\n", - " ('extslice', 0.003474114441416894),\n", - " ('raise', 0.0032924613987284287),\n", - " ('functiondef', 0.0032379654859218893),\n", - " ('comprehension', 0.002892824704813806),\n", - " ('div', 0.0028564940962761127),\n", - " ('boolop', 0.0026521344232515896),\n", - " ('y', 0.0024704813805631245),\n", - " ('array', 0.002393278837420527),\n", - " ('mod', 0.002316076294277929),\n", - " ('and', 0.002075386012715713),\n", - " ('sum', 0.0019936421435059037),\n", - " ('listcomp', 0.0019209809264305177),\n", - " ('n', 0.001857402361489555),\n", - " ('self', 0.00184377838328792),\n", - " ('not', 0.0017075386012715714),\n", - " ('data', 0.0017075386012715714),\n", - " ('format', 0.001466848319709355),\n", - " ('for', 0.0014486830154405086),\n", - " ('size', 0.001371480472297911),\n", - " ('t', 0.001321525885558583),\n", - " ('noteq', 0.001298819255222525),\n", - " ('dict', 0.0012761126248864668),\n", - " ('is', 0.0012715712988192551),\n", - " ('predict', 0.0012352406902815622),\n", - " ('pow', 0.0011943687556766577),\n", - " ('transform', 0.0011489554950045414),\n", - " ('lt', 0.0011126248864668483),\n", - " ('augassign', 0.0010717529518619437),\n", - " ('mean', 0.0010581289736603088),\n", - " ('dot', 0.0010354223433242506),\n", - " ('or', 0.001030881017257039),\n", - " ('in', 0.0010036330608537694),\n", - " ('gt', 0.0009900090826521345),\n", - " ('dtype', 0.0009445958219800181),\n", - " ('isnot', 0.000935513169845595),\n", - " ('assert', 0.0008583106267029973),\n", - " ('zeros', 0.0008537693006357857),\n", - " ('kernel', 0.000849227974568574),\n", - " ('max', 0.0007947320617620345),\n", - " ('generatorexp', 0.0007811080835603997),\n", - " ('alias', 0.0007674841053587647),\n", - " ('sqrt', 0.0007584014532243415),\n", - " ('append', 0.0007538601271571298),\n", - " ('newaxis', 0.0007220708446866485),\n", - " ('i', 0.0007175295186194368),\n", - " ('ravel', 0.0007129881925522253),\n", - " ('score', 0.0007129881925522253),\n", - " ('notin', 0.0007084468664850137),\n", - " ('log', 0.000703905540417802),\n", - " ('random', 0.000703905540417802),\n", - " ('target', 0.000703905540417802),\n", - " ('ifexp', 0.0006993642143505904),\n", - " ('coef', 0.0006993642143505904),\n", - " ('float64', 0.0006993642143505904),\n", - " ('items', 0.0006811989100817438),\n", - " ('state', 0.0006766575840145323),\n", - " ('k', 0.0006494096276112625),\n", - " ('output', 0.0006448683015440508),\n", - " ('init', 0.0006357856494096276),\n", - " ('astype', 0.0006176203451407811),\n", - " ('starred', 0.0006130790190735695),\n", - " ('lambda', 0.0006130790190735695),\n", - " ('reshape', 0.000594913714804723),\n", - " ('input', 0.0005631244323342416),\n", - " ('arange', 0.00055858310626703),\n", - " ('weight', 0.0005495004541326067),\n", - " ('clf', 0.0005449591280653951),\n", - " ('get', 0.0005358764759309718),\n", - " ('unique', 0.0005358764759309718),\n", - " ('abs', 0.0005177111716621253),\n", - " ('classes', 0.0005131698455949137)]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresults_df\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0msnippet\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mresults_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmsk_idx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresults_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'masked_lm_positions'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mmasked_tk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msnippet\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmsk_idx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprediction\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvocab_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mresults_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'masked_lm_predictions'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1498\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0mmaybe_callable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1500\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1501\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1502\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_is_scalar_access\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m_getitem_axis\u001b[0;34m(self, key, axis)\u001b[0m\n\u001b[1;32m 2230\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2232\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2233\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2234\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_convert_to_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_setter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m_get_loc\u001b[0;34m(self, key, axis)\u001b[0m\n\u001b[1;32m 144\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 145\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 146\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ixs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_slice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_ixs\u001b[0;34m(self, i, axis)\u001b[0m\n\u001b[1;32m 2849\u001b[0m \u001b[0mcopy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2850\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2851\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfast_xs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2852\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_scalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2853\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnew_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mfast_xs\u001b[0;34m(self, loc)\u001b[0m\n\u001b[1;32m 874\u001b[0m \u001b[0msingle\u001b[0m \u001b[0mblock\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 875\u001b[0m \"\"\"\n\u001b[0;32m--> 876\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblocks\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 877\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblocks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 878\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] } ], "source": [ - "d = Counter(per_token_freq)\n", - "d.most_common(100)" + "for i in range(len(results_df)):\n", + " snippet = [results_df[str(_)][i] for _ in range(64)]\n", + " msk_idx = results_df.iloc[i]['masked_lm_positions']\n", + " masked_tk = snippet[msk_idx]\n", + " prediction = vocab_df.loc[results_df.iloc[i]['masked_lm_predictions']][0]\n", + " label = vocab_df.loc[results_df.iloc[i]['label_ids']][0]\n", + " if per_token_acc.get(label, None) == None:\n", + " per_token_acc[label] = 0\n", + " per_token_count[label] = 0\n", + " per_token_acc[label] += int(prediction == label)\n", + " per_token_count[label] += 1\n", + " accuracy += int(prediction == label)\n", + " #print(\"Predicted --\", prediction)\n", + " #print(\"Label --\", label)\n", + " #print()" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "total_per_token_accuracy = {}\n", + "per_token_freq = {}\n", + "for k,v in per_token_acc.items():\n", + " if per_token_count[k] > 0:\n", + " total_per_token_accuracy[k] = v / per_token_count[k]\n", + " per_token_freq[k] = per_token_count[k] / len(results_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import Counter\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAALICAYAAADyhJW9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XucH3V9L/7X2wTkHiSgVVCDLRTxEolcar1R8QqKUhShVEXFS0+x2lOtsSB6RDl4bD3aVqn6Q3NEC4otEYtV2lpq1aoEtShQAW0sQUEEwUQI5fL5/TGT8GXZTTbDbnaTPJ+Pxz6y3+/Md+Yz35nvbvY173lPtdYCAAAAAAAb6n4zPQAAAAAAADZNAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAkKpaXlVPn+lxrFFVX62q/TbCembVdo+qqoOrasWA1z22qr42HWOaTarq96rquqpaVVXzZ3o8TC37FwBg0yFgBoBeHzb+d1XtOub5b1dVq6oFY55/e//8QeMs68FV9ZGq+nEfkPywqpZU1T799AX9a1f1X8uravE447l1ZJ5VVfWXVfUnI49XV9WdI48vnfp3ZuOqquclWdla+3b/+GVVdXFV/aKqVlTV/6mquSPz71JV51bVL6vqR1X1O2OW9zv987+sqqVVtctG3qSNqrV2SZKb+vdxs1RVWyV5b5JnttZ2aK3dMNNjmkhVHVJV/1FVt1TVP1fVw9cx74J+nlv61zx9zPQ/rKpr+8/CR6vq/iPTTqmq71bVHVX19kmO7YtV9czBGzdN7N97798JlndMVf31VG0LSVXdv3/vf9Hvi/+5nnn/b/97/udV9cH+2F0z/YSqWlZVt1XVkjGvHft/gFVV9dZp3DQAmFYCZgC4p/9McsyaB1X1mCTbjZ2pqirJS5Pc2P87Om1+kq/1r3tykh2TLEryL0meMWZRO7fWdkjywiRvraqx05/XByxrvk5orZ265nGS1yb5t5Hpjxq+6RtuNOidQq9NcubI4+2SvCHJrkkOSnJIkjeOTP9Akv9O8qAkxyY5vaoe1Y/vUUk+lOQl/fRbknxwGsY823wyyWtmehDT6EFJtkky7gmVaTouN1h/supvk7w1yS5JliX51DpeclaSbyeZn+TEJJ+pqt36ZT0ryeJ0x//Dkzwiyf8aee1VSf44yfmTHNv2SfZP93NptrF/771/x3NYks/fh03g3t6eZK90++C3kvxxVT17gnkXp/sMPTrJ3ul+z580Mv3HSd6Z5KPrWN/OI7+/T7mPYweAGSNgBoB7OjP3DIxfluTj48z35CQPTvIHSY6uqq1Hpv1hkl8keUlr7Qetc1Nr7WOttb8Yb6WttWXpwpTHTcVG3BdVdWBV/VtV3VRVP+mrprcemd6q6ver6sokV/bPPbOqvl9VN/dVXP9SVcePvOYVVXV5X+X1xYmq/Pr1PC0joVdr7fTW2r+21v67tXZNuvD0if382yc5MslbW2urWmtfSXJeukA56QLnz7XWvtxaW5UuCPrtqtpxnHU/sqr+s6qOGTutn75PVf1DVd3Yb+tRI9OWVNVf9dNX9tv/8JHpv1lVF/Xvz0VV9Zsj03apqo+NVMEtHbPeP6qqn/b74uUjzx9aVZf167umqkZD9wuTHLK+CsiJVFedf05VfaJf/nerau+qeks/lqtHK1+ral5VndGP8ZqqemdVzemn/WpVfamqbqiqn1XVJ6tq55HXLq+qN1bVJf3786mq2mYdY9s7yff7hzdV1Zf658c7Lte1z+ZX1XnVVSp+s7oK4K8Meb/W4beTXNpaO6e1tjpdeLWw+isZxtmuRUne1lq7tbX2N0m+m+74TrqfRWe01i5trf08ySlJjlvz+tba/2ut/X2SlZMc2yFJvtpau22csSzpP8d/X11l5Ver6leq6n39MfofNdLCpqoWV9UP+mPlsqo6YmTa6VX1NyOP311V/1RVNd6g7N/x9+84y7tfuhOWXxhn2sHVXe3xxyM/O17Q/8y4on+//mR0WSP78Iaq+nSNXOnR/yy4tv98frn6E3j9tCVV9YGqOr/f/9+oql9d3xtXVe/vf478ororVJ48Mm1OdVfqrDmmLq6qh/bTHjWyz68b3Y4p8rIkp7TWft5auzzJRzLxfnhekj9vrd3YWrs+yZ8necWaia21v22tLU0yayvwAWCqCJgB4J6+nmSn6sLGOUmOTvKJceZ7WZLPJfl0/3i0HcHTk5zbWrtrsiutqt9IVwV11aBRT60704XkuyZ5Qrog6n+MmecF6aqJ962uiu8zSd6SrjLv+0lGA9TnJ/mTdGHMbkn+NV0l33j2SnJXa21dvYefkrsrG/dOckdr7YqR6f+eZE0A8qj+cZKktfaDdNXOe48usKoWJflikte11u41tuqC7H9I8tdJHpjuuPhgVe07Mtux6UKhXZN8J10Qnj6oOT9d+DA/3aX/59fdfWXPTFel/ah+2f93ZJm/kmRekt2TvDLJB6rqAf20M5K8prW2Y7pj50sj23lNktuT/PrYbdkAz+vH9oB0VZdfTPd/x92TvCNdZfgaS5LckeTXkuyX5JlJ1pxgqCT/O8lDkjwyyUPTBXGjjkry7CR7Jnls1hGs9ft6zf7dubX2tJHJo8fl+vbZB5KsTnei6BUZCYbGU90Jl4m+Fk/wsrHH3y+T/GBk/GPn/WFrbTQgnvBY7r9/UA3vT3xo1l3tfFS6asxdk9yW5N+SfKt//Jl0x/EaP0h30m1euqrbT1TVg/tpf5TkMVV1XB8ivjLJy1prbbyV2r/3mLau/Xtgv7yfTTD9V9JVge+e5OR0QenvJnl8un311qras5/3dene26em+5z+PN37t8bfp/vZ/MB0x8Anx6zr6HT7/QHpfoe9a4Ixjboo3QnVXdLtw3Pq7hNL/zPdlUSHJtkp3b67pboTg/+YLlR/SLqfN/803sL7wHzCfTrBax6Q7ngZux/WdWVQjfl+j6qat64NH+NH/cmAj9WY9lwAsCkRMAPAva2pYn5GksuTXDM6saq2S/KiJH/dWrs9XdgyWvW8a5JrR+Y/vP+jdmVVXTBmXT+rqlvThTcfTLJ0zPSlY/4wftUUbN86tdYubq19vbV2R2ttebog8aljZvvffdXWrelCgEv7aq070gWp147M+9p+/sv76acmeVyNX8W8c9ZRgVlVr0h3SfKf9k/tkK5afNTN6dqSrJl+8zqmJ13Ycl6Sl7bW/m6CVT83yfK+Cv2Ovj/036Q7DtY4v6+Uvi3d5e9P6KvuDktyZWvtzP61ZyX5jyTP60O45yR5bV8xd3trbbRlwe1J3tE///kkq3J3aHx7uqBtp/613xoz5pXp3s+h/rW19sV+n52T7uTAaf0xf3aSBVW1c1U9KN0x8IbW2i9baz9NF5IfnSSttataa//QWrutr/J7b+59PP15a+3HrbUb0524GVrJP3pcTrjP+pNHRyY5uR/z95L8v3UtuLW28zq+TpvgZZM5/iY779jpa74fb1mTcWjW3V7h3P5nweok5yZZ3Vr7eGvtznRtINZWMPcVvD9urd3VWvtUugrjA/tpt6S7ouC96U7WvW49J5DWxf692/raY9ye5F0jn9ddk7y/tbaytXZpksuSLOznfW2SE1trK/qfX29P8sLqW5G01j7av27NtIVjQtRzW2vf7H9WfDKT+Py21j7RWruh33d/luT+uftn2/FJTmqtfb91/r11fbifm+Ta1tqftdZW92P6xgTLP21d+3SCYe3Q/zt2P0y0D76Q5PVVtVtV/Uq6K5qScdpqjeNnSQ5I14rj8f06xgb3ALDJEDADwL2dmeR30lVRjtce44h01Zpr/rj/ZJLnVN9LM93lsGuq99JaO6//g/YPk4y20ki6P/p3SFfld3CSrcZMf8GYP4w/sqEbU13rhjU3EVrv5cTVtUL4u/6S6F+kC4THVlZdPfL9Q0Yf95WJowHSw5O8f6Ry7MZ0lV67j7P6n2eCP+ar6gXpKmGfM1K1typdhduonXJ3SL2+6UkXrnyttXbheOsd2YaDxlTAHZuuSnCN0fdgVbrtfEj/9aMxy/tRuu1/aJIbW3dJ/Hhu6EObNW7J3SHIkelCwh9V15LjCWNeu2OSe1XqVdWTa3I3hbxu5Ptbk/ysDxfXPE4/loenO25/MvLefChdtWOq6kFVdXZ1rTN+kS5kHHs8jZ6QGN3GDTV6XK5rn+2WZO6Y+cfuo6kwmeNvsvOOnb7m+8m2xFirut7yN7fWrl7HbGP3/9jHa/dRVb20qr4z8j4/OiP7uA8Bf5juc//pDGf/3m19JwhuGOfzOtE+fHiSc0fex8vTXcnyoOraVZxWXbuKXyRZ3r9m9DO8wZ/f6triXF5d242b0lW/r1nmQ9NVgo810fNTZVX/79j9MNE+eFe6qzu+k+6+C0vTBfvXTTD/Wq1r6bSsD9ivS3JCkmfWOO2bAGBTIGAGgDFaaz9Kd7O/Q9PdwGmsl6X7A/q/quradNWdW6ULpZPukt0XVNcjczLru7O19t50l3OPbUVxn7XWXtvuvonQqZN4yenpKmz3aq3tlK69xdh+qaOXt/8kyR5rHlRVjT5OF/K8ZkxQvm1r7WvjrPuqfhH3CJ+ru8nSR9Ld9PC7I5OuSDK3qvYaeW5h7m6hcWnurtJLVT0iXaXcaEuN1yZ5WFWNtqYY6+ok/zJmG3Zorf3eyDwPHVnPDuku/f5x/zW2Wvth6Srjr06yS430JJ6s1tpFrbXnpwtyl2YkuOvfv61zdy/b0df9a5vam0Jena6Fwq4j781OI8s+Nd3x8pj+ePrd3Pt4miqjx+W69tn16U4SPXRk/oeta8Ejofx4XxOduBl7/G2f5Fcz/s3rLk3yiDEB04THcv/9dX1l54ZaXzg5af2VCB9JF5DN70+mfS8j+7iqfj/d5+7H6W5EOJT9263nV9KdxBx71cJQV6c7cTf6Xm7TulY7v5Pk+elaP81LsmDNMIaurLpWKX+crg3LA/pj5uaRZV6d7n0cb5yPmOQ6/mRd+3S81/Qn+n6Se++HcU/Eta6X9gmttd1ba49Id3L54rYB7bFGF9f/6+9zADZJfoEBwPhemeRpreupuVYf3B2S7lLdx/VfC5O8O3e3yXhvul6UZ1Z3g7PqQ4X1XTZ8Wro71k94g7ONZMd0bSdWVXezqt9bz/znp+ux+oL+kurfzz0re/8qyVuqvzFUdTeEe9E4y0lr7b/T9dhc20Khqp6Wrkr8yNbaN8fM/8t0JwHeUVXbV9UT04UhZ/azfDJdK4on9+HPO5L8bbtnH9SV6fr/PqWqJroU/u+S7F1VL6mqrfqvA6rqkSPzHFpVT6ruRoWnJPl6XyH6+f61v1NVc6vqxUn2TfJ3rbWfpOtv+sGqekC/3KdMMIa1qmrrqjq2qub1l8D/IsloqPHUJF9q49zAbar123BBkj+rqp2qu2HYr1bVmn24Y7rKwJv7z8+bpntMvQn3WV/Z+bdJ3l5V21XXt/dl61rYSCg/3tdEJ27OTfLoqjqy/1yfnOSS1tp/jLP8K9JVQr6tqrap7kZ5j03X9iHprqZ4ZVXt25+QOCld7+skSb9926T7//3cfhlzJhjX+vovb4jt04Vj1/fjeHm6CuY149o7yTvTnVh4SbqfcVNxM9Mtav+O8ZwkX+ivFpkKf5XkXf3JglTX8uH5/bQd051AuiFd64fJnKRcnx3TnQC4Pt2xenLuWTX8/yU5par26n9/Pra6XtR/l+TBVfWGqrp/Ve1YVQeNt4LW2qnr2qfrGNvHk5zU/zzeJ8mrMsF+qKrdq+oh/Rh/I91NZN82Mn1uf1zMSTKn3+9z+2kHVdWv9z8v56drLXVha21sGxUA2CQImAFgHK21H7TWlo0z6SVJvtNau6C1du2ar3R/HD62qh7dt2/4jXQVyV9JF2B+J90f1esKa89P1yJitM/y58ZUXp07BZu3Pm9MV7W2Ml1l4qfWNXO/vS9K8n/ShRD7JlmWLpRIa+3cdAH82dVdYv29dAHJRD6U7n1e463pKuc+P/I+/P3I9P+RZNskP01388Dfa12P0fT/vjZd0PzTdPvgXlXirbWb0vXcfk5VnTLO9JXpblx3dLoqzGv7bbr/yGx/nS5cuDFdT83f7V+7pnfoH/Xvzx8nee5Im4+XpLus+j/6Mb5hHe/NqJckWd6/p69N1x5gjWPThUYby0vTVUxflu4Y/kzubhPzv5IsSleheH7Gvypgyk1in52Q7kqEa9MFSB+bhjFcn66VybvSvS8H9eNJsrZ9zeh+Ojpdj/Gfpzvh9MJ+GWmtfSHdZ+yfk/xXupYPbxt57UfStT04Jl0P8Ftzz8/RmnXunO4zOt4VBEO28bIkf5auj/x1SR6T5Kv9uuama4ny7tb10b0y3RURZ1bV/SdY5GTXu6Xt31Hr67+8od6frg/9BVW1Mt3NbtcEtx/vx3JNus/316dgfV9M17/4in7Zq3PPdibvTXdFxgXpTp6dkWTbfp8/I90NSK9N1+v7t6ZgPKPelq4Nx4+S/EuS9/T7JlX1sP73z5pq+F9N9zn6Zboe34tba6P3WTgp3edwcbrfB7f2zyVdJfYX0v2e/V6635fHTPG2AMBGU1N34hsAIKmuNciKJMe21v554DK+muSE1t24a9arqiVJVrTWTlrfvBthLI9N8qHW2tiezKxDVR2X5PjW2pNmeizTqaqOShdsHjXTY9mYNpf924f21yZ5RGtt7A1OAQBmxNyZHgAAsOmrqmcl+Ua6Cq03peulObjSrbX2xCka2hantXZJEuEyE7kpybr6jTO77ZLkrcJlAGA20SIDAJgKT0h3WfHP0l2+/ILW2q0zOyQ2ZTXxTbr+fv2vZiJ9e59/m+lx2L/DtNZ+2lo7fabHsT7V9b2f9A32AIBNmxYZAAAAAAAMooIZAAAAAIBBZqwH86677toWLFgwU6sHAAAAAGACF1988c9aa7utb74ZC5gXLFiQZcuWzdTqAQAAAACYQFX9aDLzaZEBAAAAAMAgAmYAAAAAAAYRMAMAAAAAMMiM9WAGAAAAAFif22+/PStWrMjq1atneiibpW222SZ77LFHttpqq0GvFzADAAAAALPWihUrsuOOO2bBggWpqpkezmaltZYbbrghK1asyJ577jloGVpkAAAAAACz1urVqzN//nzh8jSoqsyfP/8+VYcLmAEAAACAWU24PH3u63srYAYAAAAAYBA9mAEAAACATcaCxedP6fKWn3bYpOddunRpjjjiiFx++eXZZ599pnQcmyoVzAAAAAAAk3DWWWflSU96Us4666xpW8edd945bcueDgJmAAAAAID1WLVqVb7yla/kjDPOyNlnn732+Xe/+915zGMek4ULF2bx4sVJkquuuipPf/rTs3DhwixatCg/+MEPcuGFF+a5z33u2tedcMIJWbJkSZJkwYIFefOb35xFixblnHPOyUc+8pEccMABWbhwYY488sjccsstSZLrrrsuRxxxRBYuXJiFCxfma1/7Wk4++eS8733vW7vcE088Me9///s3wjvS0SIDAAAAAGA9PvvZz+bZz3529t5778yfPz8XX3xxfvrTn+azn/1svvGNb2S77bbLjTfemCQ59thjs3jx4hxxxBFZvXp17rrrrlx99dXrXP78+fPzrW99K0lyww035FWvelWS5KSTTsoZZ5yR173udfmDP/iDPPWpT825556bO++8M6tWrcpDHvKQ/PZv/3be8IY35K677srZZ5+db37zm9P7ZowQMAMAAAAArMdZZ52V17/+9UmSo48+OmeddVZaa3n5y1+e7bbbLkmyyy67ZOXKlbnmmmtyxBFHJEm22WabSS3/xS9+8drvv/e97+Wkk07KTTfdlFWrVuVZz3pWkuRLX/pSPv7xjydJ5syZk3nz5mXevHmZP39+vv3tb+e6667Lfvvtl/nz50/Zdq+PgBkAAAAAYB1uvPHGfOlLX8p3v/vdVFXuvPPOVFVe9KIXTXoZc+fOzV133bX28erVq+8xffvtt1/7/XHHHZelS5dm4cKFWbJkSS688MJ1Lvv444/PkiVLcu211+YVr3jFpMc0FfRgBgAAAABYh8985jN5yUtekh/96EdZvnx5rr766uy5556ZN29ePvaxj63tkXzjjTdmxx13zB577JGlS5cmSW677bbccsstefjDH57LLrsst912W2666ab80z/904TrW7lyZR784Afn9ttvzyc/+cm1zx9yyCE5/fTTk3Q3A7z55puTJEcccUS+8IUv5KKLLlpb7byxqGAGAAAAADYZy087bKOv86yzzsqb3/zmezx35JFH5vLLL8/hhx+e/fffP1tvvXUOPfTQnHrqqTnzzDPzmte8JieffHK22mqrnHPOOXnEIx6Ro446Ko9+9KOz5557Zr/99ptwfaecckoOOuig7LbbbjnooIOycuXKJMn73//+vPrVr84ZZ5yROXPm5PTTT88TnvCEbL311vmt3/qt7LzzzpkzZ860vhdjVWtto65wjf33378tW7ZsRtYNAAAAAGwaLr/88jzykY+c6WHManfddVcWLVqUc845J3vttdcGv36897iqLm6t7b++12qRAQAAAACwibrsssvya7/2aznkkEMGhcv3lRYZAAAAAACbqH333Tc//OEPZ2z9KpgBAAAAABhEwAwAAAAAwCACZgAAAAAABhEwAwAAAAAwiJv8AQAAAACbjrfPm+Ll3bzeWebMmZPHPOYxax8vXbo0CxYsmNpxbKLWGzBX1UeTPDfJT1trjx5neiV5f5JDk9yS5LjW2remeqAAAAAAADNh2223zXe+850Jp99xxx2ZO3fLrOWdTIuMJUmevY7pz0myV//16iSn3/dhAQAAAADMXkuWLMnhhx+epz3taTnkkEOSJO95z3tywAEH5LGPfWze9ra3rZ33Xe96V/bee+886UlPyjHHHJM//dM/TZIcfPDBWbZsWZLkZz/72dqq6DvvvDNvetOb1i7rQx/6UJLkwgsvzMEHH5wXvvCF2WeffXLsscemtZYkueiii/Kbv/mbWbhwYQ488MCsXLkyT3nKU+4RjD/pSU/Kv//7v0/p+7DeWL219uWqWrCOWZ6f5OOt25KvV9XOVfXg1tpPpmiMAAAAAAAz5tZbb83jHve4JMmee+6Zc889N0nyrW99K5dcckl22WWXXHDBBbnyyivzzW9+M621HH744fnyl7+c7bffPmeffXa+853v5I477siiRYvy+Mc/fp3rO+OMMzJv3rxcdNFFue222/LEJz4xz3zmM5Mk3/72t3PppZfmIQ95SJ74xCfmq1/9ag488MC8+MUvzqc+9akccMAB+cUvfpFtt902r3zlK7NkyZK8733vyxVXXJHVq1dn4cKFU/reTEXd9u5Jrh55vKJ/7l4Bc1W9Ol2Vcx72sIdNwarZEixYfP5GWc/y0w7bKOuZbkPer9m67Ru6LbN1O2arzelY2Ri29PfL53HzYD8CTGw2/ozc0v//wYaZjccwbE4mapHxjGc8I7vsskuS5IILLsgFF1yQ/fbbL0myatWqXHnllVm5cmWOOOKIbLfddkmSww8/fL3ru+CCC3LJJZfkM5/5TJLk5ptvzpVXXpmtt946Bx54YPbYY48kyeMe97gsX7488+bNy4Mf/OAccMABSZKddtopSfKiF70op5xySt7znvfkox/9aI477rj79kaMY6M2BmmtfTjJh5Nk//33bxtz3QAAAAAAU2n77bdf+31rLW95y1vymte85h7zvO9975vw9XPnzs1dd92VJFm9evU9lvUXf/EXedaznnWP+S+88MLc//73X/t4zpw5ueOOOyZc/nbbbZdnPOMZ+exnP5tPf/rTufjiiye3YRtgKgLma5I8dOTxHv1zbGKcHQeYeRvjqg0/uwEAAKbes571rLz1rW/Nsccemx122CHXXHNNttpqqzzlKU/Jcccdl7e85S2544478rnPfW5tCL1gwYJcfPHFOfDAA9dWK69Z1umnn56nPe1p2WqrrXLFFVdk9913n3Ddv/7rv56f/OQnueiii3LAAQdk5cqV2XbbbTN37twcf/zxed7znpcnP/nJecADHjDl2z0VAfN5SU6oqrOTHJTkZv2XAQAAAIBp8fabZ3oE43rmM5+Zyy+/PE94whOSJDvssEM+8YlPZNGiRXnxi1+chQsX5oEPfODaNhZJ8sY3vjFHHXVUPvzhD+eww+4uBjr++OOzfPnyLFq0KK217Lbbblm6dOmE6956663zqU99Kq973ety6623Ztttt80//uM/ZocddsjjH//47LTTTnn5y18+Ldu93oC5qs5KcnCSXatqRZK3JdkqSVprf5Xk80kOTXJVkluSTM9IgU3axuqlDQAAADDVVq1ada/njjvuuHv1NH7961+f17/+9fea98QTT8yJJ56YJHn729++9vl99tknl1xyydrH73znO5Mk97vf/XLqqafm1FNPvcdyDj744Bx88MFrH//lX/7l2u8POOCAfP3rX7/Xun/84x/nrrvuWnuTwKm23oC5tXbMeqa3JL8/ZSNik7I5tdVwWToAAAAAm5OPf/zjOfHEE/Pe974397vf/aZlHRv1Jn8MtzkFuQAAAACwpRqtYJ5uL33pS/PSl750WtcxPbE1AAAAAMAU6ZooMB3u63urghnYbKj0BwAAYDr4e3NmbbPNNrnhhhsyf/78VNVMD2ez0lrLDTfckG222WbwMgTMAAAAAMCstccee2TFihW5/vrrZ3oom6Vtttkme+yxx+DXC5gBAAAAgFlrq622yp577jnTw2ACejADAAAAADCIgBkAAAAAgEEEzAAAAAAADKIHMwCT5s7JwPps6M8JPyMAAGDTpoIZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBA9mGfAkB6mAAAAAACzjQpmAAAAAAAGUcEMAGwxhlxFtPy0w6ZhJAAAAJsHFcwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYxE3+YCNycykAAAAANicCZgBgkzXkxB0AAABTR8AMADDFNjT4drUKAACwqdKDGQAAAACAQQTMAAAAAAAMokUGAEwT/YEBAADY3AmYAZhVhoSy+tcCAADajtqUAAAgAElEQVTAzNAiAwAAAACAQQTMAAAAAAAMokXGZkzvTwAAAABgOgmYAQA2QU4kAwAAs4EWGQAAAAAADCJgBgAAAABgEAEzAAAAAACD6MEMAMwKegpvmYbs9+WnHTYNIwEAAIYQMAMAAPewocH/bA39ncAAAJh+WmQAAAAAADCIgBkAAAAAgEG0yIBZTk9SAAAAAGYrATOwRdObEQAAAGA4LTIAAAAAABhEBTPANFMlDQAAAGyuVDADAAAAADCICmaAzYQbQgIAAAAbmwpmAAAAAAAGETADAAAAADCIgBkAAAAAgEH0YAYG9e5dftph0zASAAAAADYlKpgBAAAAABhEBTMAAABsIFcBAkBHwAwAAGx0wjkAgM2DgBkAYIYNCdoAAABmAz2YAQAAAAAYRAUzAAAAADBltMLasqhgBgAAAABgEAEzAAAAAACDCJgBAAAAABhED2YAAABgk6fnK8DMUMEMAAAAAMAgAmYAAAAAAAbRIgMAAACAWUGrE9j0qGAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGmTvTA2DLM+SOsAAAAADA7CNgBgAAgC3YhhYBLT/tsGkaCQCbIgEzAFskV1MAAADAfacHMwAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgAmYAAAAAAAZxkz8AADZ7G3pjz+WnHTZNIwEAgM2LCmYAAAAAAAZRwQwAAAAAbHJcpTY7qGAGAAAAAGAQATMAAAAAAIMImAEAAAAAGEQPZgAA2IxtaG9CtlxDjhW9LAEAFcwAAAAAAAyighlgA6kEA2Cm+B0EAMBso4IZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYZO5MDwAAAACAjWvB4vM3+DXLTztsGkYCbOoEzABMqyH/cQUAAAA2DVpkAAAAAAAwiApmAACYAi41BgBgSyRgBgAAAJikDT2h6GQisLnTIgMAAAAAgEFUMAMAwAxxI1QAADZ1AmYAAAA2K07ebB42xn50rADcd1pkAAAAAAAwiIAZAAAAAIBBtMgAYJPn0kYAAACYGSqYAQAAAAAYRAUzAGxhVHwDsCnxewsAZjcVzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCACZgAAAAAABplUwFxVz66q71fVVVW1eJzpD6uqf66qb1fVJVV16NQPFQAAAACA2WS9AXNVzUnygSTPSbJvkmOqat8xs52U5NOttf2SHJ3kg1M9UAAAAAAAZpe5k5jnwCRXtdZ+mCRVdXaS5ye5bGSelmSn/vt5SX48lYMEADYtCxafP9NDAAAAYCOYTIuM3ZNcPfJ4Rf/cqLcn+d2qWpHk80leN96CqurVVbWsqpZdf/31A4YLAAAAAMBsMVU3+TsmyZLW2h5JDk1yZlXda9mttQ+31vZvre2/2267TdGqAQAAAACYCZMJmK9J8tCRx3v0z416ZZJPJ0lr7d+SbJNk16kYIAAAAAAAs9NkAuaLkuxVVXtW1dbpbuJ33ph5/ivJIUlSVY9MFzDrgQEAAAAAsBlb703+Wmt3VNUJSb6YZE6Sj7bWLq2qdyRZ1lo7L8kfJflIVf1huhv+Hddaa9M5cAAAAIDZbsjNj5efdtg0jARgeqw3YE6S1trn0928b/S5k0e+vyzJE6d2aAAAAAAAzGZTdZM/AAAAAAC2MAJmAAAAAAAGmVSLDACALdWQvokAAABbChXMAAAAAAAMooIZYBZSMQkAAABsCgTMAAAAAMCMUmi16RIwAwAAALDJGhJMLj/tsGkYCWyZBMwAAACwEajOA2Bz5CZ/AAAAAAAMooIZAAAAYBZR7Q5sSgTMAAAAADDF9IZmS6FFBgAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgejADAADMcvp4AgCzlYAZAABgMzQklAYA2FACZgAAAABgs+eKoOmhBzMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADDI3JkeAAAAALB5W7D4/JkeAgDTRMAMAADARiNoBIDNi4AZAAAAADZBQ07aLT/tsGkYCVsyATMAAAAwaarQARjlJn8AAAAAAAwiYAYAAAAAYBAtMgAAGJdLoAEAgPVRwQwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBB3OQPAACgN+TmlstPO2waRgIAsGlQwQwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAwyd6YHAAAAs82CxefP9BAAAGCToIIZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYZO5MDwDYNC1YfP5MDwEAAACAGSZgBgAAAAAmpMiMdREwAwAA94k/OgEAtlx6MAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADDI3JkeAAAAADA1Fiw+f6aHAMAWRsAMAABwH2xooLf8tMOmaSQAABufgBkAAIBBVMsCbHr87Gaq6cEMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGGTuTA8AAABgMhYsPn+mhwAAwBgqmAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADCIgBkAAAAAgEEEzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCBzZ3oAAAAAAMx+Cxafv8GvWX7aYdMwEmA2UcEMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIHNnegAAALAhFiw+f6aHAAAA9FQwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAyiBzMAAAAA08K9E2Dzp4IZAAAAAIBBVDADAAAAsEVRWQ1TRwUzAAAAAACDqGAGAADYiFTNAQCbExXMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADDIpALmqnp2VX2/qq6qqsUTzHNUVV1WVZdW1V9P7TABAAAAAJht5q5vhqqak+QDSZ6RZEWSi6rqvNbaZSPz7JXkLUme2Fr7eVU9cLoGDAAAAADA7DCZCuYDk1zVWvtha+2/k5yd5Plj5nlVkg+01n6eJK21n07tMAEAAAAAmG0mEzDvnuTqkccr+udG7Z1k76r6alV9vaqePd6CqurVVbWsqpZdf/31w0YMAAAAAMCsMFU3+ZubZK8kByc5JslHqmrnsTO11j7cWtu/tbb/brvtNkWrBgAAAABgJkwmYL4myUNHHu/RPzdqRZLzWmu3t9b+M8kV6QJnAAAAAAA2U5MJmC9KsldV7VlVWyc5Osl5Y+ZZmq56OVW1a7qWGT+cwnECAAAAADDLrDdgbq3dkeSEJF9McnmST7fWLq2qd1TV4f1sX0xyQ1VdluSfk7yptXbDdA0aAAAAAICZN3cyM7XWPp/k82OeO3nk+5bkf/ZfAAAAAABsAabqJn8AAAAAAGxhBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADCIgBkAAAAAgEEEzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADCIgBkAAAAAgEEEzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADCIgBkAAAAAgEEEzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYRMAMAAAAAMAgAmYAAAAAAAYRMAMAAAAAMIiAGQAAAACAQQTMAAAAAAAMImAGAAAAAGAQATMAAAAAAIMImAEAAAAAGETADAAAAADAIAJmAAAAAAAGETADAAAAADCIgBkAAAAAgEEEzAAAAAAADCJgBgAAAABgEAEzAAAAAACDCJgBAAAAABhEwAwAAAAAwCACZgAAAAAABhEwAwAAAAAwiIAZAAAAAIBBBMwAAAAAAAwiYAYAAAAAYBABMwAAAAAAgwiYAQAAAAAYZO5MDwAAAAAASBYsPn+mhwAbTAUzAAAAAACDCJgBAAAAABhEwAwAAAAAwCCTCpir6tlV9f2quqqqFq9jviOrqlXV/lM3RAAAAAAAZqP1BsxVNSfJB5I8J8m+SY6pqn3HmW/HJK9P8o2pHiQAAAAAALPPZCqYD0xyVWvth621/05ydpLnjzPfKUnenWT1FI4PAAAAAIBZajIB8+5Jrh55vKJ/bq2qWpTkoa2189e1oKp6dVUtq6pl119//QYPFgAAAACA2eM+3+Svqu6X5L1J/mh987bWPtxa27+1tv9uu+12X1cNAAAAAMAMmkzAfE2Sh4483qN/bo0dkzw6yYVVtTzJbyQ5z43+AAAAAAA2b5MJmC9KsldV7VlVWyc5Osl5aya21m5ure3aWlvQWluQ5OtJDm+tLZuWEQMAAAAAMCusN2Burd2R5IQkX0xyeZJPt9Yurap3VNXh0z1AAAAAAABmp7mTmam19vkknx/z3MkTzHvwfR8WAAAAAACz3X2+yR8AAAAAAFsmATP/P3v3HS5ZUe19/LdmCAMSRMBEHBX0cgUlCspVQBABARWUrHIRzGJCUVQQVEQwIChIFoSLICpJQXIUHcIQlStJxawvwlyQ6Hr/WLWn9+nesc45wxG+n+c5z0x37+q9u3uH2quqVgEAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIMt8T/YGPB3dM2PH3mVWfPiUSdgSAAAAAAAAAMhHD2YAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJClU4DZzF5vZreb2R1mtnfF6x8xs9vM7CYzu8jMVpj4TQUAAAAAAAAATCWtAWYzmy7pm5I2k7SKpB3MbJWhxW6QtJa7rybp+5K+PNEbCgAAAAAAAACYWrr0YF5H0h3ufpe7PyrpVElblxdw90vc/aH08BpJy07sZgIAAAAAAAAAppouAeZlJP2u9Pje9Fyd3ST9pOoFM9vDzK41s2v/+te/dt9KAAAAAAAAAMCUM6GT/JnZzpLWknRw1evufpS7r+Xuay299NITuWoAAAAAAAAAwDw2X4dlfi9pudLjZdNzY5jZxpL2kfQad39kYjYPAAAAAAAAADBVdenBPEvSSmY208wWkLS9pLPKC5jZ6pK+LWkrd//LxG8mAAAAAAAAAGCqaQ0wu/vjkt4v6XxJv5R0mrvfamb7m9lWabGDJS0i6XQzm21mZ9W8HQAAAAAAAADgKaJLigy5+48l/Xjouc+W/r/xBG8XAAAAAAAAAGCKm9BJ/gAAAAAAAAAATx8EmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZ5nuyNwDd3DNjx95lVnz4lEnYEgAAAAAAAAAIBJifwvoGpQlIAwAAAAAAAOiDFBkAAAAAAAAAgCwEmAEAAAAAAAAAWUiRgbnI8wwAAAAAAACgD3owAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAECW+Z7sDcC/t3tm7Ni7zIoPnzIJWwIAAAAAAABgXqMHMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyzPdkbwCefu6ZsWOv5Vd8+JRJ2hIAAAAAAAAA40GAGVNe34C0RFAaAAAAAAAAmBdIkQEAAAAAAAAAyEIPZjwl0esZAAAAAAAAmHz0YAYAAAAAAAAAZKEHM5Dk9HqeF+hZDQAAAAAAgKmKHswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACykIMZmOL65oYmZzMAAAAAAADmFQLMwFPMvJqskEA2AAAAAAAACDADyDIvAtkEsQEAAAAAAKY2AswApqx51Ru7LwLfAAAAAAAAgQAzAPREXmwAAAAAAIDQKcBsZq+XdKik6ZKOcfcvDb2+oKQTJa0p6e+StnP3eyZ2UwHg39NU7Yk9VRGQBwAAAADg30drgNnMpkv6pqRNJN0raZaZneXut5UW203Sfe7+IjPbXtJBkrabjA0GADy1EZDHZKIBAwAAAAAmVpcezOtIusPd75IkMztV0taSygHmrSXtl/7/fUmHm5m5u0/gtgIAAIwLDRgAAADAUwcdSKaGLgHmZST9rvT4XkmvqFvG3R83s/slLSnpb+WFzGwPSXukh/9nZrfnbPRT3FIa+t4mePl5VYbtYrum0jpyyrBdbNdklmG72K7JLPNUWUdOGbaL7ZrMMmwX2zWZZZ4q68gpw3axXZNZhu16ym/XGyZ9HXZQj3d56lmh01Lu3vgnaVtF3uXi8S6SDh9a5hZJy5Ye3ylpqbb35q/y+752MpefV2XYLrZrKq2D7WK7ploZtovt+nffrqfzZ2e72K6pVobtYrum0jrYLrZrqpVhu9iuyVwHf4O/aWr3e0nLlR4vm56rXMbM5pO0uGKyPwAAAAAAAADAU1SXAPMsSSuZ2UwzW0DS9pLOGlrmLElvT//fVtLFnsL/AAAAAAAAAICnptYczB45ld8v6XxJ0yUd5+63mtn+iu7jZ0k6VtJJZnaHpP+nCEIjz1GTvPy8KsN2Tb115JR5qqwjpwzbNfXWkVOG7Zp668gpw3Y9PdeRU4btmnrryCnDdk29deSUYbuenuvIKcN2Tb115JRhu6beOnLKPJ23K2cdSIyOxgAAAAAAAACAHF1SZAAAAAAAAAAAMIIAMwAAAAAAAAAgCwFmAMA8YWarVDy3wZOwKZjHzOwDZrbEk70dT0VmtuCTvQ3/bszsoC7PAQCAZma2ZsVzb3gytgXAk4sAM540ZjbNzF6ZUW4BM1vNzFY1swU6LL9nl+eGXp9R8dxS/ba0dbvmyQ2umS1kZi/uuOw0M3trxjre0uW5eaX4HnO3wcwWntgtmvdy9vt54DQz+4SFhczsMEkHNhUws5ldnqtY5rlmtpWZbWlmzx3HNs9zZvaq9O9TKXD4HEmzzOw0M3u9mVlbATObPg+2a0oyswXNbEcz+5SZfbb4q1n8Z6nMSTnr6fJcrr7Hr5lNN7OTJ2r9DTapeG6ziV7JVLs2zmtT8TrUd59P16vlJnerJv9YLL1n32NyXL9hqlcu1n0LO7/vpNfTczwZx7yZLWFmq03mOp5uinpY23MVy7Teoxb7Q5e67ESbxH3laDN7aWk9O0j6TMN2TLlrw1Q3L76zrusYz76be183jvVNyjUI9ZjkbwpIwayPSlre3Xc3s5Ukvdjdzxla7iNN7+PuX21YxzMlvU3SipLmK5X5YM3yK0s6QtJz3P2l6WK0lbt/vmLZ8WzXDe6+elP5oeW3kHSkpDslmaSZkt7l7j9pKHO9u6/RZ71mdrOk3d39mvR4G0kHuvvKDWVeqdHv98Se23WTu1de+Pv8JqUyW0o6RNIC7j7TzF4uaX9336qhzLXuvlbd6z0+y8hzpdfOljR88rlf0rWSvu3uD9eUe7Ok9VPZK939hzXL3SxpNUnX1W1DTblXSjpG0iLuvryZvUyxf723Ytk5FZ9hLnevvJilwNpOkl7g7vub2fKSnuvuv2jZtumKIF15//ptw/I5+/0MSe9V6TuWdETD7/EWSee5+xwz+7SkNSR93t2vr1n+GZIOkrSmpEUlnSzpIHf/V8/PcZ27jzpgMGcAACAASURBVPSWKL3+TkmflXSx4jzxGsV+f1xDmW/UvSaNniszj8dOZYrP13QMNcnYV86W9D+SznT3BzuuY0lJ+0l6lQb7yv7u/veGMibpdZJ2lbSWpNMkHevud9Ysf5ekMyQd7+63tWzPs5ped/f/N7R81vGbyk6XtIVGz/dN17q+x9Z5inPidZKeKK3jKxXL3iLpi5IOkLRXxWf5QcN29T13z5C0m6T/lDQ3wOPu/93j/duO3yslbeTuj9YtU1HmOYrv4PnuvpnFaIn13P3YoeXeo/gdXqCoRxQWlXSVu+/csp6bVb3fmCQfvn73/X7T66+SNNvdHzSznRXn1UPd/TcNZS5y99e2PVd67U5J10i6QtIV7n5r3XuXyqym0X2+dt9KZXKuQ8tIWmFoPZe3rKdz/SvzN7nZ3Vdt2oYnabtyrkO9jsnM3/AUSe9WnLtmSVpMsQ8fXLFs1j1EZj39BZIOlbSepH8pGuc+7O531Szfq46TynT+HS0a2ZuuQ5X3aKnspZK2Uuxb10n6i+Ic9pGh5a509/UrrnnFOWvkWmdmjfWOls+/vqSV3P14M1taUZ++u2H5pSXtrtHjpPKaksq8ueLp+yXd7O5/qSmzlqR9NDi3VJ6zS8vnHI+d7lGL98mt45Xe54vu/qkOy12qDvtKaflOcYmhMi+Q9H1JO0r6L0XM4Q3ufn/N8r3PK2mZk9x9l7bnSq/1iWf0qkdWlN9Co3Wj/WuW7VRnGSrT6zvL/B07raN0n1Jbz+i5jrZ6Ya9rXZ9rUKnMnpKOlzRHEQtYXdLe7v7TPp8PpRM5nlTHK07466XHv5d0uqThE8Ci41jHjxU3EzcrKlVtjlbcqH5bktz9pnSwVh3IxXa9WNLaks5Kj7eU1Bg0k3RRqhT+wL1Ta8dXJG3o7ndIkpm9UNK5kkYCzBatpztKmmlmZ5VeWlRS40UilTsuXZSfL2lJSRvVLWzRc+yFkmZrEAxwSSM3EuUbXDO7aWi7rmrYpj6/SWE/SetIujSVmW3trYQXmtnHJH1P0txgU9WF1cw2k7S5pGWGAnSLSXq8YR13SVpaEdSSpO0UJ/SVFZ9zpKJgZt+S9KJSmXeZ2cbu/r6K9z9P0n2SFjGzB8pvo5oKdfI1SZsq7cPufqOZvbpqQXdfNG3XAZL+KOmk9P47SXpezftL0rcUx+BGkvZXfO4zFMdOJTP7gKR9Jf1Zg+PXFUH04WXHs9+fmLbnsPR4x/S56nrffMbdT083FBtLOlhRAXhFzfKPSfqnpIUUFbC764LLZvYSRUVt8aGbicVUqrzV2EvS6kWwMwVDr5ZUG2BO77mKYr+X4jPfptQ7tELO8di1zGNmdpRGjyulck03nZ33lZJDFMfggWY2S9Kpks6pC34mp0q6XNI26fFOiu9u47oC7u5m9idJf1KcH5aQ9H0zu8DdP15R5GWStpd0jJlNU/x+p7r7AxXLXqf4nCZpecXxb5KeKem3ihu98rbkHr+SdLakh9X9eir1P7aWdffXd3zvdyu2+5mK626ZSxoJAlr06l9G0kJmtrris0txfDWN4DhJ0q8U58n903p/WfH+4zl+75J0VTp/la9BtQF8SSco6lL7pMf/q9gfh2/WTlHUFw6UtHfp+TltN49JUdcoeovvlP49orzQOK6NxXu9zKKB86OKG50TFQ1lY1gE/BeWtJRFCpry77hMwzpWUZyn/0vSwRajnG5y9zdVLWxmxynOIbdq7HmlMsCcex2yGH20neLcW65L1QaYu9a/xrHPS9L1Zra2u89qWW6821W+6e6yXZ2vQ32PydJv+IKMusQq7v6Ame2kOGb2Vpyjq27uc+9tetXTk1MkfVNSsZ9vr6hT1tVZOtdxMo/5a9O/r1J1/aPJ4uk7fqekE91936F7CkmSu6+f/u3zPY80ZJbfUjXfs5ntq2g8frHifDy/pO8qPl+dMxUNXReq1JjaYjfFPfMl6fEGiv1rppnt7+5Vo3lOVhwrjddtM1tP0islLW1jGz8Wk9Q2qqrrPerfzeynGj0/SpK8ohNQRV3QJO1iZoukMrX1QnXcV0q6xiXK23yXmW0v6UeKOtfr3P2fFZ9jPPcoUpzDyu83XdFppU6funqveuTQdhypOF9vqLhmb6vmGMgJ6lZnGc931vl3zFjHNDP7lKSVraKRsKq+Ns56Yd97rj7XoMJ/u/uhZrap4v5kF0VdjwBzTwSYp4YXuvt26eCWuz9kNjp82N0/N451zKhrqayxsLv/YmgzKitIxXaZ2eWS1nD3OenxfooLa5N3SfqIpMfN7GG1BwDnFBfu5C7FTXuVqxWBg6U0trI0R1LThVXufrOZfUFxYpkj6dXufm9DkbUUJ7MuQfLcG9zOv0nJY+5+/1CZtm3cLv1bDty6osfXsD8oKshbKU7chTmSPtywjle6ezmgeraZzXL3tc2srifVRpL+o/iOzew7ipvdEe6+l6S9zOxMd9+6YTuqyv5u6Ptqq/Bu5e4vKz0+wsxuVPSgrfKK1HPhhrS++6w91cueilbn2t6hJdn7vaSXuns5T/IlZtZ0k1N8N1tIOsrdzzWzpgDrLMXNxNpp+440s23cvSrI9mJJb9Bo0GyOordLk79r7HlhTnquyWqS1nf3x6W5lcUr3P3dNcvnHI9dy7xBcTO7qcYeV1302VckSe5+maTLUkV9I8X3e5yi0lfnee5+QOnx581su7qFLXoGvE3S3xSV773c/bEUOP61pJEAc7qWHK0Yevkaxbnza2b2fUkHlK8F7j4zredoST909x+nx5tJemPD5+h7/EoR/O07xLTvsXW1ma3q7je3vbG7XynpSovRJ7W9X4ZsKukdkpaVVL4RmCOpqUfUi9z9LWa2tbt/J1Xwr6hYbjzH753pb5q6B5+WcvfTzOyTkuTuj5vZyLk79aa6X9IOHd932CZDPXn2tuiNs/fQcrnXRkl6PDXGbC3pcHc/1sx2q1n2XZI+pAiwXadB0PQBSYc3rOMJRYPfE4pgy1/SX511h/bfNrnXoTcqzl+P9FhX1/pX7j4vRUBxZzO7R9Ho0dj7cRzbdcjQdn2ypWyf61DfY3I8dYn5zWx+xe95eDrXV34Pufc2GfV0Kb6vcvDxu2Y2MuqjpE8dp/cx7+7fkeZ2PBmpf7R8lvnM7HmS3qpBkGpCuPuGmUXfpOj1d316nz+YWds5fGF3/0TP9cynuB/4szS3N+iJiuP0cg0aAMv+6u4jwdwKC0haJK2jvO0PKIKGTbreo26h6A1/kpqD+WVvknSZIthVHPDbq1sdse++0ikuIc0dSVA+tp+lCMT/3MxUcY7MOq+ka/unFA1xRScDk/SopKMaPkufeEZuPVKK+9rVLEYif87MvqKKzm8lneosSe65uPPvmLGO7RXfyfBx0mQ89cK+91ydr0ElxZtvLukkd7+14ftCAwLMU8OjZraQ0gk6tXiOVK4rWi/HaGm9PMnMdle0Ws1974aA5t/SdhTbtK3ixNPkOYoTfeHR9FzTNvftuXCtmf1YMbTaFa38s4qWMC8N1/QYTvobSetZ9BBZJ5W5vajE1TGzYxU9T1ZT9Ko9x8wOc/dv1hS5RdJz1f4dzb3BtRhu9yd3f8RiorPVzOxEd/9HTdGc3+RWM9tR0nSLoTEfVFxEmravcx4kd79R0o1mdoq7P9a1nKJn8fKehu1bpIlYJL1WNyz6DkWLcjFMeLn0XNP29QouS/qdxZBWTxemPVXRO2/Ig6mF9FTFb7ODSr3uKjyWAnnF77i02ntB/k4RFGlV3u+7LD/kejNb1wdDTl+hQQ+bKr83s28r8pkeZJEvsim3/27uXrzfHyVtbWaVw9rc/UxJZ5rZeu5e14t4jFIr+h2Kyu2Ziu95a7XfEC+hCKgW58RF0nN1co7HTmXc/W+STjWzX6ZjrI/O+0pZugZtqWhgWkPSd1qK/NSit8pp6fG2ks5vWP5Zkt7sQ8P83f1fVjMRjA1SUeyqGD77FUUvpP9SjMqpGgq9rrvPrai6+0/M7MsN29X3+JWkn5jZ67zfsLm+x9b6kt5hZncrrtm1AS0b9AS5zyqGDntFGoMU2PhOauA5o8fnKM7z/7DIt/gnSc+ueP/ex2+pbNFoXfTM+r8OxR60GKlQHFvrKuM46MDM7FXuflV68EpVnPNK18YfSnrQ3Z9Iy0+X1JZXd0666dxZ0qtTI8z8VQu6+6GSDjWzD7j7YVXL1HhA0ZPvq5KO7tAg9TMzW8VbUtWUtiv3OnSX4rP2CTB3qn+NY5+XIgi8hOLcI0UQq66ulrtdH9Wg95zS/59lZi9399k1xTtfh/oek+7+GzO7V9LDqRGyj29LukfSjZIuN7MVFPtcLes/BLpvPV2Kc/feGpzvt5P0Y0tD4yvuiTrXcTxGvN0iadMicNxD3/qHFCNIzleki5tlkaLg1z3X28hiiP1HFEPs97D2IfaPpsaxYn98RofVnGNmmxfBvI6WK4LLyV/Sc//PzOruRfY1s2MkXaSx98Fjro8+aHA/IR0DC7v7Qx23q9M9qkf6p2vM7JXu/teO61hFkQbr9ZI+loL3+3bc1/ruK53iEkmvifxyrw3ufqBilN2B7t7W8FaWU1fvW4+UYnSmJD1kZs9XdGppGg3Xuc4yjutp59+x7zrc/XbFOfEmb0hTOlQmu16o/r9j72uQpOssjSyQ9EmLxrGuoxRRQg7mKcDMNpH0acXF46eKoUTvcPdLh5Z7e9P7NF1kzOx9kr6gqBD7oIhX9UotcikdpRgmdJ+kuyXtNBwcGCqzj6J1tMiL+0ZJ30sXhboyffMGHl/3XunzjOTssuj5s6/65WP9kCJXT3EiW1zSV929sheRmV0i6eWK4TDliktTruPZih4uKyqCJWdK+k9337xm+arfZGd3v6dhHQsrWqtfl546X5E/rnbou43mCr1C0pEtZV6lSMcxnNusbv/aXKN5yt6rSOWxu7t/vaLMZYqer8WQo7UVAZr7pbHftY3mnLPyv16fH3kpRX6+jdOyP5W0Z9PNt5mtmMoUuWivkvShut8lBbO2UwzpOkERmPu0u5/esI5jFS2/52rs/lU1BKkut2xTvr2iB8L8aT2/TY9XkPQrr+m5lvav1yvy3v3aoofEqj0Db5XM7OPu/mWryVFY1aBmMTyzljf0lDKzXRXniUsV39WrJe1Xd17NPB57lel7w53KdN5XSmVOUzTAnacYoneZN+TFTmXmSHqGBpWvaRoEZmuPsT4scjBfosjTfPXQa9+o2QfOV5yzvpue2knRs23TmnWsqB7HbyrzpvT+0xQB17aRNzKzX2pwbEnRWHa7ogfGSOA4VYZHVF2Dc66LpbLPVPTWLlIBXaa4PtblTXynIqXPqorz1yKKYeTfrlm+V87mVOalip5dRT7Ev0l6mzfkCbaYwf4bkl6qCOwtLekt3r+BplFaz3GSFk9P/UMxrLIu7/w1kjYuguQpaP5Td6+d4NiiQXxHSbPc/QqLBtgNvHlOh/dJOtlTA7VFuowd3P1bNctvrbjGr6No1L1a0uXuflHN8q9RpI76k1oaPNLyva9DqdwZitQ4w0GgprRAvepffff5VGZPSe9UpAQxRf326KagfsZ2naKoE56V1vEGRcPoipJOd/eRAEdmXX1ZRaqeIm3BFYp6TmXvXzO7SNE4OK4GGzObzxs6d6Q63l6KeThWT8/d4u4vrVm+Vz09LVObC1gVddacOo6ZXSHptd4vh/yuijr0JepQ/5hXzOx7ih6yb0t1kIUlXe3uL69Z/mOSVlIE5A+U9N+STmk5Toq6xCPqfj39luIaWtSbt1U0ru+lSO810gPbzL4r6SUaSvNTdy2ySJVxrDrMyVIq0+tanLmONRUjHc6V9H53X7FhnVnM7HWKe8dyXGJXd7+ksWC/dZSvEQso7j8ebLg2vMTdf2U1+cEbrsE558he9chU5jOK8+prFWl4XNIx7l450WH6HIdpbJ1lW3dv6sXd9zvrFF8aKvNmxVw5z1Yci5XHo41v/q2ce5ve91wV79F2DZqmuGbf5e7/SA0AyzT9JqhGgHmKSDvxuooD+RqPHmwT+f53SVqn6/ua2Ux3v9ui9XmaxwQXM71hooZUbg2Veni4+w01yxV5Ay9R5M4q58I7z91f0mU7uzCz2xVDV8bkY3X3F7eUW0jRan97h3WM5EaU5raE15UpJnn4uKR/uvth1m2Cg7m/Scty0xUTqH2sbfuHyp2mGK5SXFh3lPRMr05jUJT5lWII4PCEVCOB2XQCXzctW/zOt3tzvtfa77i0rr49bJ40FnmoikaUi929sZd0XeC0KWDac3sqg1ml9VRWxKznZBs9t+nv7r5kuom8r2KbJvTGy8xMkW/rQ4obvdnqNvlip+Mxp0zfG+70eu99xSLf2IWeellOFWa2iHfrvVou8yxFQ0ERPLpc0ue8W37druu4W9Er/uYiuNGhTNYxNtlSQO8WDXqs7yLpZe5eNYnS3LpB23Ol105X5GzeUaWcze5eO/O5mV0taZ/iZtZihM8Xm4Kyabn5FEF8U1xT+oyq6SUFs4oRSU3LzR4OxlQ9NwHbU7WeLvWJl0jaTHHee7a7L1Sz3B2Knoxj8pdO9H5rNR0pms73fetffff5VOYmxQRMD6bHz5D0s7oAe+Z2XS5p86HGiHMVAc7rvCFFSZ/rkJldoEg3VKQR2FkRcNmkZvkzFWkPLtDYnOhNQf/FNfY83CWIX6RJm7vfTsaxksPMnq2xDWRNk+aeKOk/FA0FXXPIFw1LRW7nn7v7n2qW6934nsvSpN9Dv8mNPjat1HCZTRSdWkzS+e5+wURtT2kdJqmY9FuKhuEzmq7HZnZ7233f0PI/VwSuz+pa/6p5nwXqGhty15E+/3sV56TGiWnT8jMlfUCjEyk2dYKa1LjE0LpMUada10fTTRXLHOXRi74qyO3u3ph/vec5slyPLOYA2L9rPdJipMOMDvWD7DpLl+8sLdfrd0zX+i173JeWR90U3GsmN0xle9/blMp2vX9aUvEblifW7jIR+U6SXuDu+1s07rfeB2IUKTKmjmUUOYvmUwyJrBzWKkkWQ+o/oWiRKld4mk6ud0jqOsRHih5KaxSV6eT7qkmkn4KZt6bAcO3swiVVeQNdYydBqlpPr54XSe98rGa2paKFeAFJM83s5YoTU+XFODO4+ZhFXqS3aZCLaGQYbF0roaW0QHWVVnd/wmJikr765gqVpPu9+xCZf5nZN9NFpXPvMne/zCLPWpG7+RdeM1t0Lou8znv62F5gX/HqnvHZs38rGleKNBmVN/Sl9UyXtGhGQ8HyNds1cmNUBAnqyjToO9lGH3+2GGa2q8Y2QrVKFdCqG6+mc2Qx+eJC7n5W+u1rJ180sy9K+vLQvvJRd/90w3aVZyg+2qJBrmmG4t55nr1HegEz28jdL1b0Htp6aD2116BS+a00CCBc6g0zU2d63KJnZufer+kGYE+LoW3eFqC2jBnsFT2lbukaXE7v95u0jyw3tJ4u18tOLGNWckWOvm1Kjz9nMbqmzhmKFCpltXUDdc/ZXPYML/WUcvdLrWWotZndKelgdz+y9Nw57t5r+G6bjO/4QTNbo/idLXqfjUx8lF4bHnkz9yW1jwqYbmZW7JPpXFyb298GPYXvVPweb5P084b375q/dFyaAskNZfrWv/ru81L8BuUGuCfUck3K2K5na+zw5ccUPbz+aWaVw5qHb6LNrPUmWtGQUO5peYJFQ26dH6hmMscGxymC+G9Nj3dRXPtqg/jqOQTaIl3DgRq9F6ocOZfKHKDoGVykrFlM0Qt615rlt1KkZnq+Ig3D8ooGs/+sWj7JySEvRZ3wr4rrw8pmtrK7V01uWQR+mlIsTZTOQ+zTOedCj97DrUFly+yRml4r9vVH07b9osP1+GrrkeYnrafXnCwWE06+w1OvSjNbWzHnRG1Avu86Uhm3mET0GjNbwt1HOmEM+ZGip/TZ6jDk3wYjic+teG7Cpd/uRyloWRksdfc90r8jvdOb5JwjS/XIZwzFQarev6lhsimWMzJa2MwaRwsPbWPrd1Y6torz6PIWjX+/8fqevH9uCy6n9Rf3GpX3zS3Fe9/bmNlnhx4X21EXyO49EbkG94EbKTpEzFHDfSDqEWCeAqzn7NyKHJTfU+SmfLektysqJU0elDQ7BV5qhx1a5gyfKZh5u5Xy6jbxQd7Az0r6usdMn59R3Lg25eU5XtHzouhNu3N6rrLnRVKZj7UI3NYEaPdTDB29NC0z22J4RqWKG0IpUjdcqwg63VVRbFfF7/cFj97iM1U9MUXuDNuSdIPFbLCna2xPiqabhb65QqUIQh+s2GfL+1ddBfEiM9tG0g+6BmnM7K2K2V8vVdzYHWZme7n797uU72g1L+XA9piAr64HWNbs32mff4viomWSjjez071maFA6tppm4K5TnmBzhqSZiiH5TTdG52rQGl1bxvIn2+jjCMUw6Rdo7CQmRWNU7fEoqRyMn6GoYLRNwNd38sXN3H3uxFBp+c0Vw9HqlGcoXlLtMxT3zh1nQ+kFzKwpvcCrFamDtlRFKhk1BBXM7EuKStfJ6ak9LXLT9smN1+Ykxc38pir1fm0qYGarKib7KX/+t7v7LTVFcmawv0vSpWb2E3VPQ3KAYiKvOzW4VriiIjtRTlDHWclL/mlm63tMFKh0rqma+T139u9OOZuH3JXqA+UellXX0OH1bJiuV+/y6DG2TEuZHCeo33f8IUmnm9kfFMfVczWYSHcMd18//ZtzzT9P0vcs8sVK0Yh/XsPyB0q6wbuPWrghNQ6crYb8peNloxNGSYO61OerggIWuSsPU/QaXUARqKsdNqyO+/yQ4xX1yHIKuMrffBwNBSdrUFeV4rx8SmpcqatT5NxE/83Mdpb0P+nxDmrodJEahjqP6EtygvjvU9QfXmJmv1caAt2w/PGKwNHXJG2oqFM3zQEhxX3vLyxSUjxHMRFmU+7yAxS9/y5099XNbMOWbcoaWWZmBynOC8P3gSMBZnc/O/33e8PBKIs0bxNpP8V5ZDkzO1lpiH3Vgqmu+i8zW9y7pVP5iKQ9VB2Marw2Zt4PrKu4D75bHdL8KG9OlgMlnWcxZ9IyisnCKhsv+q7DIsXHh9z9b6kOebTi+rOSmX3MG9LsKfKoN87jlNZRjC5eKgUKy6OLJ/R6OlSPmKZID9QpuJq+sxU1trG+LoVU73Nkev9jFCnA2lKXFB3Enq1I33BxeryhIvVU3TXyRI3tVLejos7TNFq473f2LUVc5SbFb/lSxTlmcTN7j5c6t5Te+1qL1Dg/UrdrfZ/75kJOXuxyoH+GIoVU0/HYayLypO99IGqQImMKMLPbvMfs3GZ2nbuvaZFYfbX03Cx3r21hsY7DDi3y8r1RMQtyubfKHEmn+lAezKGylyuG0f1CY4OZTUNwbvKYdXV9RUXuEEmfdfdX1Czfe7ipZeRlNbNr3H1dGzss7Ka6ikgKHtyrCH6bYnbVFyp6c7/H3Tdo2obJYtX5wNyb81/2yhWayvQasmSDnGuPKy6OXXKu3ShpE0+9li16Hl7oDUP1+krr2KDoDWAxTOoyd1+1ocw1Gjv79/ySrnD3dWuWv10xHPfh9HghSbO9YeiemR2hqNz1aSgYfo81JL3X3d85UWWs/2QbvZnZEe7+ngl4n1+4+zoNr/9cUTmclSoYSytypVZWlCyGTK/t7o+kxwtJutbdawP4pfPdoYoevz+0hmHslpfnuXN6ARs7qVR5mJtLrQHTmyS93FOuZoveSzc03Kz1Vnw3pe+t8dhKZXqlV2i7ftSUyUlDcrsid2fnvJx9WcYQc4vROd/RIKfwfYqA/E1Dy2XVDWyQs3k1RUBoEcU1/siKZU9y910sGn9X1GD4c5HmpLaXlo1NObWN4ibtR+5e2TsuV+Z3XOS2lyYpdYdF6ql3aZB66QJF/sfKAHLapvdobAqDI+u2LacukcNiIqUnFHUpKepSCysaJtZ39y0rylybljtdccP9Nkkr112bUrDgRLXs8xXl1tBgn7zCa1LAjYeZraXBCL2rfDApbt3yI8OKzezmljrLCoqgxnqKc/3Vkj7oNZ1DrDSiz91nWsuIvlTmZ5L2GgriH+LurRNIWfch0MW90NzPWzzXUu61ignP71PkVa2dLNoGKSJulLS6xwi8thQRZ6t5dNvI95auD6sV9Yku0jV4Dx90BtlG0oHuXjX5bTbrMcTe8tKpzKgIlI88N/R67/sB6zGvQVq+95wsqdwGis//N8U+U5nqpGId0xTz5FSuY2g/v1rSju5+T3qPi1o++46K3Ng/VUMnIItRdsXo4t9rUCd8QJFz/vCmz97H0DXlccWEbEd7y8hUi57bL1SksSuub163j2WeI3unLrGYHO7t7v7H9Ph5kk7w+vk/RmI/bfGgvt+Zmf1AMUfGrenxKorOGh9XdPB6eWnZrLk8Mu+be+fFrniPBRUpeDaoef2rinhUeSLydbxhNHDf+0DUowfz1NBrdm4NegT90cy2kPQHDSbDqeQdhx36+Gb4rExk36K4OGyhOEmea2a1Sd4l/d169LyQ8noTSLo1XZCnWwzD+6CiEl5nq6GL+1HppvMTZvap8oJmdpq7v9Wqe+qoLkCTTsiHKip6rujp/WGv7h1dvFdTy3md1/ct4D2HLLn7oukitJKae7+VTRu6iP5d7b1V+vqK4ng8XVGx2lYxOWaTvrN//0HxmYvK84KKilyTGYrPWw7YN/YwHebu11v07uusrYy7f9LMltFgcsfi+aphnVlygstp3yoUrfyL1yxe+IZigtJnm9kXlCZfbFj+ZEVP/KJStqsGOT3r9JqhOB3bG3e94U76pBdYJP37YkVv5DMV+/2WGkym2eSZGuz3bd9vjpzer33TK/SewT7zmnKL4vua0LQ+QzrPSl7yS0lfVtywPTMt/0ZFj5e5cusG7n5M+u9lah51IElrWqTFebui90/R8CGpNUWObby3EQAAIABJREFUpfV92cyuV9xIN9aLMnX6ji2ln7HR4bMrW8Ow2VypoeeI9NfFEYqUXMUkgLuk50YaE1Pj0U3u/rUJ2NQ2Gw81Ctxcajyo7Tnq7neY2fQUUD/eogfSmACzjU03dqKikVuKQNjGGtrnK9ZxvbqlgMuWAsp9Uh/81My219ib6PNb1vEbRUNRV/upx4i+5N2STrSUq1wpiN9UIAUMtlHqmWjtQ6AfSQ0rvzaz9yvqUYvULFus49WKa/3+iolKDzOz3dz9DzVF/mGRbupySSeb2V80tiddlbsUIxWKeUx2kPRnRY/ApjLzqyb9RI2dJB1nkZbh+YpRURM5IqYIlp+iCLS1fW4pL53K1RpNu1T1XFnv+wGPNFUv02CeoCu8YRLYFEjfqek9h1mMvHmrouFuNcVIp4+6+7lVy/dcxzQzW8zdH1DUG39bvIdFLt8mqyrO8RtpbA/5MfuLD0YXf8AbJmacCJn3p1LU51dx79xDsvc5Mm1f39QlyxXB5eTPig5adXqPFs74zlb20uhFd7/NIjXNXTaaEi/39yjfN0vRuN923/xGST9WzMNVTBC+cWogbBvpUlhY0rLDT9pg5JApGkuKkXDTJf2fxo5wHdb3PhA1CDBPDScqDs5Os3MruvkvLumjil4IiykOoloWQ4Kqgpl1lcQ9zGz3iuWbcl9eZv1z5P7eYkjnJpIOShXMpkrCfys+89c06HlRlzvt6+7+obreBFW9CEo+oBgC+4gimH2+ood1nYcshmwVw7O21SCAOLzuYnKjvrkhT1HMTPum9Hj7tG21AUCL4U67qUcOU0krufuFQ+/z9rZGitTYMbyeyhsDi15teyouDrMVQfOrNeh9VeU8i5l9i8aF7RQXqAnj7ida9IYqKl1v7tDw8yXF8OFLpMHs3w3L369owLhAsW9sohiy+Y20DSOt8DkX/qGb6WmKHKl1N1FZZSzSJGyvGL47tyeBKoZ1zmPXaVDBeEzRyl87s7wkufvJZnadYh80SW/0hjxk7n6QRQ+iYp89wN3bKq27aTBD8UMpUDXy21pm3vWkc3oBH+RQu1yRc39OeryfxqZYqXKgRvf72olGMh1lMUzz04pes4uovSGzb3qFPSV9yiLHadcZ7HNyfBff1y0a24OoT6CnzUcU39MLzewqpVnJW8qcKekfisBZW0OXFJ+hc15sM3umokfpihrbCFXV2+hIDdLilG+0uqTFmZufz90vtBhC3BjQylT1HVcNaR1OP1NoTT/TR26DtWL0RblR/OLUE2mEx9D3HRT1rsk23czW8TSpjkUO0+nptbo0Rw9ZDGOdbdED+o+qrkcWqUeGG9R2VrcGtalod43eRD9oZu9SzXnM+uedf8zd7x8KSNQ2jKag74vd/WUWOY6VgmJtzlTUj65Tt0DrnoogwwcV9fMNFeeaJodIektRr0sNQBdrMOH0sK0VdfkPKwKBiyuC001e5e5rlR6fbdET+sMNZR5S7L8XqSGNYZm735yCICcpRpK82pvno8lxiKKu/SUzm6VIN3CO1/Qu9kinsoCkohd17YgNi0kNl1GkWltdGpOOYeGW7ep9P2DRO3d3Dc6937WYOK4ykFrUyYfcrxipdmbFa1IE+ddx938q7uvPU6RaqKxPWb95hT6nSEf4TcWkhqdbpEDcUM3pkKS4Rr3AO46g8ph0/qUazW9el4aiN8voNJXcomjAaUupUOh9jlReepSLKvbJCxuWX1ORF3zMaOHiWl517c74zm61GAF7ammbbkuxlrrjstd+n3nfvFb6O0uDa/BNkt5tkTLyyxXbVa7jTFfUvUbOxV5KMWY9O7L1vQ9EPVJkTAHWc3ZuG02o/izF0LOmtAdLlh7OUFxsnuXun61Zfpuh5d8k6Q9NlR0bzYn1X4ohcrU5scxsYUWP2Zvd/dcWQ0pW9fpJrzozszXd/TrrOZN35rqKk34x5PAaRYX095LW9DRMcJzrGEnRYe1D9U5X5DDdUaUcpu6+Z0OZyxU5mj6mCOgcI+kRd68NVJjZkYoK4YZp+W0VDQyVQb10oVhbMdzu5Rb5Pb/oDbO4p3LlWaOvcPcfNi3fVdErwMb2fJ3LW2YOtuh1t4uiArKw4lipDLJaTbqa0rpGAvkWvWSrggdNx/y+pTLFUKozvGEIpo0d+l8uU3kzYRnDOueFdC46z8fmdj/AJ3BCtZ7b02sym9LvUARCipQEWyqOq9qefCkg+zmVjhPFpEZN6QXG/I6p8nmTt8y4ns7X5QbF2qGgfaUgxbbuflrrwmPLFZ+/fMO2n5dyxFWUGamENl0fLCZqK8zN8e3uH28oc6ukb2v0Oj+R16G3KBpDl0vb9ArF8Mja/d46ztxdWr7XNcViKO81Gv3ctQ2W1iMtTt9ja7zSsfGESjO/K3rTPTK0XHb6mZ7b8zx3/6P1H/59vSLQdmd6/AJJ3/ealCJm9jVFD8vvaezQ94n+ftdWTBC3iOI7e0DRq/pWSVtUnQ/SZ/+zIv/yhxVBwG95TeqDVMfZotSgtqikc9391VXLP9WkY/IKRSB3bq88dz+jZvljFQ0/eyvOKx+UNL+7v7thHdcOBVm7bFffc9Faio4gK2gwQXZlYKZUpujlXn5uSW9Je9CHRZq5LYqgTzq2znX3/2go0ymN4VCZYxUjT3ZVBHQPlXSYu39zHJtft67pigDS7pJeX9cAa5Ee4juKuqMprkVvr6oPp8/8DkWgqdygOEeRWqBtkuFtVLrOt90PWHQIWM9TT2yLkU0/q9tfzOwoRcND0TNzG8VQ/iUVnQRqO3aZ2cLu/lDT9qTlLlB0Hio3iO/k7pXzCpnZixS/wcqKxqF7FamgGjs3mNmPFOlUOo2gSnXQDRQB5h9L2kzSlU33gX1ZpBf8pgYB2e0lfcBrUmSWyl2i6KjxC01SY73lp0d5kwZppy5v2ifrrtmFqmt33+/MInVfMZGgFA0T31I0mi3sFZNgj2e/7ypdgzcv1m8xSuRcRTzoOq9IEzL0fT2umIywdm4dq+nI5g0TVVrkhb7X3R9J57LVJJ3YdP+AGu7O35P8p7jA9Vn+hi7PdXif63osO01xYDYtc6Niduri8dKSbpzg72ppxeRiRyluQo6TdFzD8tMlndzj/c9WBHMq/yboM8xR3DQN/82R9EBDuYMUFfwVFRXqjyt6xT1L0VhQu68ogkVSVMKvadk+UwSXf53+dujwmW4a+ncRRYWvbvlZ6d/ZkhZM/7+1ZR0fkLTERO5Ppfc+J/17t6K3Y/F3t+KC2lT2nYrgyX2K4T7/lHTxBG/fNqW/nRQ95b/RUmZtxVCfG9L23Vz8Ph3XOU3SYi3L/ETSIpPxm4zz+yr2w/XTb7KFpJ9P0Htfmf4dPo5rj19JR6V/L6n4q91XFD3BFy09XlRRaZ3o72sfxfl7v/Q3W9Ina5Zdo+lvgrfr2owya/XZ72uO34sy1vuLltdnTfTvVrGO3vu94lq6ao919LqmSLp+kj9z1bF1cfE3Cesb+Tw1z+2b/k5RXEcPUQwl/V9J353sfaHD53itYoj1penvHkkbNizf69w1Adu3uKTFeyy/kKLXbJdlb1eqd6THCyp6Wj6pv0nm93SGYiKxaT3KzO65joUVQ55nKQKBX5A0o6XMlxT1yOWU6qiqqaeWyvQ9F92uSPUxU1EnXkHSCi1lnqOYnPG89HgVSbtVLNf7Ol8qu2nFsfW6Dp+n8z6clv+QUkex9HhxScdOwj62kCLtwxmKOvFhDcteV/4MikBo472mpG0meptr1nNzeb9VNA7f3LD8NZKmlx7Pp+gxOl3SbTVl1lOM6PttevwyRWNX3TpGjsW241PRQ771uaHXL1WkMztfHe5p03c1TekePh03F0zw7zFSL1OHmIGk11T9NSzf6xyZft8PZ36m5ypGPWwp6bkdyzxb0Xt5ecVEqhP+nfX8DL33+4x1/ErRSFk8XlDSr9L/K+NZKl1Hqv4qlr85HeOz0+OXKPJON23X7PR5X6S4vhws6ccT+f0+Xf5IkTE19J2de5qZLeFjE6o3/pZDvXuKnKR9fv+V1J77cl7kyD1T0fPiQrXnQ5LH0M4VzGwB7zY06JD075tVnUNtDDP7uEfOx8NU3cO0Kt1BzgzxUlTwpJjIp2x71Q8fzslhuoQi396dipa/FczMPJ19axQzsD+UevP+XdLzGpa/12Lo9I8kXWBm90lqS+7/HEmzUs+r4xTJ/Zu2qTN3f0P6d2ZG8T016I29YdEbu25hi5zeB2p06Fnt8G8f6llkZv8jqa1X/HcVN3i3qGE469D7nqLInfiE4mZyMTM71N0PrinSe1jnPNI3t3tn7r5++rfzcezue6R/e+UqV+zz5fPWo+m5ETaOlEDu/gUz+4kGuQl39foJrKpmfJ/7VprYHJAXmtnHNNprsmlEwcnqt9/3On6ludfcQtcc31eY2YGKG7vaSXbGKWe/X1/SOyzSaHVJ0dX3mnKSRbqtczT2czeOCumqOLYU+YNHRi1MxDqk/sO5fXzpZ/psV5FvsJLXp3q5StGj/rWKFCnnK24i696n77mrFzPb2d2/a0PpgaxDWiArTUInaaa1T0J3oiItVdG77I2SThjfJ3jSHKHowXpYGl1wvLvf3lKmV955j56Y+0jaJ/VkfYY3TMCWbJf+fV/5rdSc5qbvueiv7n5WzWt1TlBMNrpPevy/iuvLseWFcq7zJYtJeqki8L2VYtKo2onxpKx9WO7+9aHH96slFVhfZnaa4n7gPEmHKybvarquzl/e/9z9fy1SDDS5yGJCrvKEo/unzzO8PXXnu9bUVorf/edDx/2xDcsvoegsU2zHMxSBrCcsUmpV+bqigeEsxQbdaJH3u07veYUUKTWGR5pUPVe2b8t7Dvunx4SWj1ukufmLorFoIv3EzPZWpG9wpTQnRf2qro7g/Ud99TpHpt93R/VMCZV6zH5W0bhtaX37u/txNctvpahPP1/x/a6gGAVbO1G4en5nFpOr7qfReXKazsM5+31fJyuOxSLlxpaSTkmjCurSa1yv2AfvU3y/z1TKQ67qa8vD7v6wmcnMFvQY6dY4KlPSv9z9cYvR0od7pIqZ8Ml8nw4IME8NCykqU68rPeeqz9GXk1D9KxodLl+VN1DSmIt4MbzzT5I+0bKOSc+RqxjS0bYdw+6SdJVFrqpykGLkhqW4cJnZV7wih1rFexe5efpMypIlM/hZ5DD9jLrnML1G0pfc/bg0vOYgxc3oKxvKnJMCxgcrLgKuSJVRyd2LPNL7peFOi6slh5i7fzoFDl6nqCwcniq/x3oa5pvLaoZXl9bdFATqexE7XlHZ+5oipciu6t8Q06XB56/ufnbP910lBWh2UvRO3lvRI6UuwFz0hJhq+uZ278xq0qgU2gJn1i+vXVUgpG7IbDHE8pCa1xt5xwmsJjvQNCQnSNF3v8+phPbO8S2pmIV63dJzEx2Qz9nvN+u5jr55sR9VnD/20aAO0vYb5vi0u59mZusrvtNDFDeWvSY2bbCpYjj3spLKdYc5ilFVdTo3EuUoAmBmdoAiJ+VJiv1yJzU38p6o6JFZBOF3TGUr64UW837sqw5BoEzFhHs5Ab39NDoJXW19qWeD2pTmMV/Ghen32SH9/3eSjlb0lK/Ks9kr73xGw3NufbXvuWhfMztGkb6jS+ccSVoqnSc+mZZ93MxGOquM8zr/GXc/3SL1Stdz0X7qOZFiTmeFDMcqRjG2duhJrk2/SdE5Zye13x8dq2gQLjrR7KKoJ4+kzBtHBx25+1ctJkQs0gW0HfdfVnSguFSaO8/EF1MQrDa3rvebHK5qXqF3VC1oZusp7sOWHmqIW0yDPPV123SZRYqBlTzmKFi4pcy16Z7uaEV95//U0ACZqVenKTO70t3Xr2hkaDx/ZZ4jrzSzw9UvJdReklb3lEbDIjXp1YoOUVUOUNQHL3T31c1sQ0WKlCZ9O5odq0gbNSYdUous/b4Pdz8gXYOLFDfv9pjgVqqf9PICST8sGkbNbDNFjuTh76KQ05HtMYv5Jt6mCHpLg/RL6IEczP+mzGwVDW5ML/aWhOoWk73NnZ05Pe1ePztz7nZNSo7c0vt/XpGqo3Pg2sbmlZ2r6GFUU2Y4h9pMxTCJ2hxqpbLTFGkDukxq0pmZVU5e0hCcyl3P8oohRzPdff/0eEWvySmcyizoY/O3zlAEbiY8N6/FLNC7KnI1XaK4QF/gDflPO7znJRVPzz05esPkXSn4t6tiuOJGitbV+d1985rlr3P3Nc3sZndftfxcwzqGK1R/UqQwqMyZmMq8VlGZ6nzzZZEn9uWKYd2Hp0rpSO7voTILKYZ1tfWammdscnO7362xOVXLvOnmzjLy2lnk+y3OqZf3CYSkQOBy7n5T1zI93nt+Se/RIOB0qaRv11TWc95/miJf4lU9y/Xa7/sev6nMlMrxXdquydzvqyaenJtXuKrBNpW7SzHpUWMPvvEysxvSTdqBis9/SvHcBK9nm6bzbsXy+yhuCsuNRN9z9wMneLtG5mOoeq702m0+lOew6rnSa2cogkBFA9cukl7mLfMmzAtmdo27r1v+vduuW08lKZCxs+I3+YOid9j6imN/gwl4/9kec2XspDjX7a1Ie9BUL1hYMbfM8u6+RwqGvtjdz6lZfroiTVrdZHtVZb6rGPZ8qwajVdyb56a4VHEvdIG7r2Fm60o6yN1fM7Rc1XV+bqeblut873NRzj5sZldq0FlhS6XOCl4zt06uPo3iqf7/Po2dA+JbTfcCxf7V9lyunMYCiwjxsooOWeukp2e5e9tE2d9XNEAermhQ2FPSWu6+fc3y35H0IR87IrlyTiWL+YQ2UDT2HFl6aY6ks9391w3btbukPRQ9UV+YjscjvSEfbansiop0eRNajzSzGT40EqLquQlaV69zZN09Ycu94NWSNvA0WtpisstL3b2yc5alPPUWk+uu7tFjvHFepb7M7OfektO6ptzz1GO/nxfK98xNz9WUfY1SRzZvGM2eYmvvVqSu/Z8U+3mrux80zs1/2qEH8xSQgr+7qeOs7Om121Q/jKDKjzSYKb7TybsULHZFsPhHLcvvpgiATMjs6DV69byQmgPJDT4s6dJ0c2yK4SV1rWRZPTwyrF36/wzF0NbrFT2R6rZrSUXPiFcp/Y6KQEjTEKxPKirrGykmcZqj6AG/dkOZnykNz0oVyUcsUlk09gzuw2IG6Lcphhoeo5hA8rEUiPq1Iid1Fk+9MusCRy1l+/bGfqTYZjN7v2IiyEVa1pHTa2NXxc3X/CrdfKl+ZIQUlda7FbP5Xm7R46G2h5plDOucFzyG9P6g9PiP6j7jdNt75/TMKmyryMl3g7v///bOO0yyqlz3v3eAIyCImFAkgwlxJAqGo6BiOgiKgCImDEfBQz56zaDiURRUMJCUERFQUI+IAQMiaZCMIOleREVRwQBIkDD43j++VdPV3VW7Qu+q6q7+fs8zz8zeXbvX6p6qvdf6wvvuLmk1Jip92nEFMfdlIRJAtm9q9+Kygd6+vP5S4FZJ59tuFSCcCUcS760vluPXl3NvreObl8X255mo/O2Wnt73fXx+oY9qWQ2+AnSg73smKktbGk9WXHcDIaUzaAbWtTCFrtu5YajVsneXAGCjdXZXmiqvWnCZpK1s/wJA0pZUVxqub7vZ/PnDkq6Y6aSnIumTwMGE7NYZhMnOfrar7pNXK1qalymBk72JyrGxpyTInkRUn7+8fOYBvqHWXXeNtukrbN+taM/fFPhsxXNluZJQfAWReH5AUqfqpEXE86cRXLmZMI1qGWB2tF9f3+n5NoUt3MGItgX7E/eu9SWdT/i6TEvwNj/n1cIEtgP93Iv6eQ+vYPtMSXIYgh0k6VKiTb8W1CYpTvt9x7LA4Y2EY0kcPKTDMP+U9BwXM/Ty/vxnh2t6obnjaC2mt9hPW9PZtqQflODVaVO/XsE7CHO4xxPv+R8zuQNrKgvdZMBs++8KCaZpODpsz5b0Fbcxb63gnUTA8MLyvf6fpLZdkJLObASfbf926rmaWMz0PWKrczOi13tk2Z8d6S4NpjWRfL+BCdkHE1rMVUH52xXmducAJ0q6lepndmO8ZzG5WLCq0OwsSZ8i1oWV0myabpj8+/L3YyU9ttU1Q+aPkj7A5O6IrgLf7lJWpcTW9oalBTorZ3C5PzLAPDs4gRA8fzFNruw1j7GG7Zd0+2JJXyREzhtyF++QtK3tqgflWsDRJdt5KXHTPNd2bZuQfgJtCpfenV1cQMtN4+u2X1wxzhllkdeopriuKgNP79ICPWN7r+ZjRevH1ztc9nXi/6GxMdyNaPl5YcU1W5bKjsvLuLeVTOw01KMu5QxZFdhx6sKqBKK2q2mMGbVZd/kQ24f43exNBK+fD7yx6oJWC7suFnv9bL4eQbSNQbS9L6C0bLbhIHps6xwX+tikQ1T1d61rJ2kvIih5C5G8akgWVVXmrVLuRW8l3I8PVLin180WUyotflYqMerkTIVT/Lftrtut+nnfAz1p+/WjdXwcXbYBz0bcv6bw3US75VkMVqd9F6J6+1Dbt5cKnHfVPAb00M7dwF3Kz8yQ1xKBjcOJe8T55Vw7NgMWS2rcr9YCrpd0Fa11bwcdBGrwItvvlvRKQnpmR2INUxVg3ouQYLmP6L75ETXqb89yjvWUjj6VjjJPlnlr5kjg6YpusAOIhP0JROdaK44m/i9+yUTiuVOH3vq2X61oN8b2PdJk3YAWrEoEWi9iclt6u4T1YkkbukMHZ4MSOFqe+DmfRDxPr3dF1015ju5DVLNeQXTMLSYKPNrRz72o+T18Mt29h3suVuiDXpPiZxL7i7vK8QpEkLVKYm8P4PiShIUIAFeuiXuhkSyQdCwtWuwrLr1M0ha2L+40hqRDHPKN29hu1+Lfip49lQivm08xvSitSm7rPtv3Nz6CkpalhZa1ouBtReBRZa/cvKd7fHc/UjVD3jdCj/fIskZ/N9BVgJmJ5Puvy58GnRITOxAFf/sRe/NViBhQWySdAKxP3Isa61DTPuHT2Ls2/5ztpNn2J6rcW/ms1C3n1g+7EvuhRjfYOeVcbWh4BTpjTwaYZwcb2N5Z0g62j1dUw55b8xiLJT3N9lVdvv75wFMam3pFG8/VVRfYPrC8dgXgbcSC6rN00IbqhhaZtaljV23eHt0ILpfX3laVuW1iMyayhE+XVJUl7KfCY6bcTWcdy8fZbl6kHizp1W1fHTxQqg4a//ePpr1ZVrMu5WFMLBQ66VL2RJnPa2wf1OrrtutKyAzMHK5B02L1LqLasi0zXOz1tPlqmlOD5Ylqlarf7QO275iyb+zKUHAM6GmTXjbXV6o3Xbt9iLbiTqYvzSxbNrS7MGFkNAgelLS+i/55SSx0q/HWLW8nFr1LJN1LFx0r9Pe+75V+KtSGUgE6BHrVFP5O+TNQBly93cys/H8sVWY79HBJ1wUHhXcAXx1UEKiJxr7kP4BTWzxfWrFh+bNs+bMDsUmcDxIZBzPd62RpR1kblpQKzR2I9eqXFR2ILbF9BHBE06nfKfRCq7i/7AUa68j1aUowtaGTP8hUtiKSV12ZApbA0RccEhSV+5kmejaB7edeVK55v6RDys9wZ5dzay5W2Ib6P5M9JcWB5W0vXUfavkshl1LFtYTu6/pEVfEdxF6q7sT4Vrbf1jS3Hyo6JtqxJbCbpN8R+62q99fLFOZr7yUq9bulH0+lE4lCoe2I+/Ibgb90uOZsSe8jgrrbAnsCrbwq3k7Iha1OrFEbRQ13ElrRddCvn0G/9HOP7Npg2v11SWO7uVq5nbfKVDYnCtq6ii+4B88U929GPhTK736fAQ8zrAKdsScDzLODXl3Z+6FXd+YbiIqWRrXomuVcWxStC88mMuiXA/9NfYHy5szaNHF/qjNrD6qp7a5UX1TenPvIEvZT4dETCpPCBguIDVWnDOuPJb2m6XU7EZURVRxBZAgfI+lj5ZoPtHqh7eOJyoOedCl7xf21T/bDwNusJT2RSL5MdfVt9R5uXuw1J1H+QWi8VdHT5qvMYVLmWtKhVL9f5m1rMr1v0i3pGSXZdZSkM+isa/d7KiRK2vAR4v/sPNsXl8BvW22+GfAuov2uWUaoMmHSK7ZXVu/tyT2/7/ugnwq1YVWADppWxpNfafXCkhh8UY8VXbOdWfn/WJ4rRwKr2d5I0kJge9stE6TussVa0j62Dyd8JZ5egky4Zo+JJr4n6Trid7pHSXB3knU7kVhv/op5kuCcUgXYHCjppgrwToXJ3euA5yqqYNsaGSnkyRYRAaAvEbJF7yEqU9txICFxsqakE4m9wZuqJuXejch6TZJA710x/ZjA9oykLYgul4Zp5x3Am21fWnHZ30swt2OxQp9z6icpfrekTRtFP5I2p/P98TQmJBxvnvHE29Nri33bLtcWnEEk3VaS9A8m9qadDOi+qpBpaKz/d+wiOf7Ist7cxxOyGZ2qrN9DSHFeRewrfmD72KkvKvf6wyV9iOjIa5YLrMXkb1j7Rs2sUrpng+nyXn8/0/d2LdeeChnSQ4h4j+iugOJXwGPpIXku6T+YXu3etlJaPernDxpJn7W9r6TTaRG7cb2SjMMq0Bl70uRvFlAyJd8CnkZs1FYiXIiPrnGMtVudn7rJaPoAr0Jk7S8qx1sCF7nCMEShubuEaJc9mxBJr9XkrVRE7EmTNjShldR2AyLpJcAxZU4itBD/03bbwJnC5K/rLGGb77Gs7SX9Xt/i+13ERBBjCaEd9l+Otqx219xJuLM3Nl0LmMjGtn2QlSqNFxC/rzM7VQhP2YAcSzGCcQ3mUk1jnENsbLptn+xnjIGZZDWN8UtC63iSq2/VRkLSXrZ7qh7o9jPf4XusShg8bNDm6ysSD+EXEe+VHxEa37WbdMw2JJ1NbCp2J/RYbwV+6QrDCUUnyOfdRctlef2XiVbe7zNZXqClodqwKQmYxmb7+gHc71u2J7tCGqaO9/0gUOi8O4AkAAAgAElEQVSTH088WyE2o2+yXbesyMApAa2GpnCl8aTCiOr5rjBWmUu0+X98Y4dE0cAp96N3EUabDZOwX9neaIbft2HwdpntWrUxK8Z8BHBHSSyvSCTi/lzx+vNsP6fd18cRSW8kArabE74fDe4EvuIKg+0SeHkt8Ww/V2HkvLXbG7f9siQXXkwEpz4InFD1fpB0JhEwvZ1YG1wIfKxRJdfmmr6NyLqlaU38IBH4rAzqqA8T2D7ndSXwTtvnluPnEOZ4VSZ/ZxPPxouJvdA57r5Ltdt5NZtRr0OHpHgJsn2DicDt44BXd1jfzvg+1Q3lvtLsg3AO8GG3qEqdct1jmBycq/LAOM12L50kPaMJQ8gfEQVBfwS+aXv9imsaicLKc01fu9L2wvI+/CghF/gh92EYVzGnA2kdMKyUiejh+0+9RzZ32H7FNftFSbqeeAZfRVOis93aU9INhCZ01x24CqmxjYl9cPOeoOU+WNJRRDB9GyI5uBMRy2lbDCPpG8T+9A0lWb0ise6uxXSzVyRtZvtShVHfNNy9tF03Y+1MPN/Os72nokDnU57ctZZ0QQaYZwFlk/4qQo6hUUXgum6yPc6lnQYb0PmDXKpbnk0EgHcGbq1z4S/pFKJ688Ry6rVES8Mu7a8CSY8ighMQrW6VjvaKdqW9PWEG0GleLSs8ag5MTtvgaZY4pU/ZgLyDqHiu3ID0McbAHy7DQNKltjfr8ZqHEjpdA80oq+hvlsNlCAOcj9juVC097+h1k16uuY7Qtu+m5bKxAJ+GK1ryFBV/b2O6CUhb09h+UEgC7cHEZu3nRHCrrZ5lH2NcxUR78sYl8fU/tueEbnErNPgK0FmFpK8CTyGMtZoTg7MiSdIrZb22E5PbuUeyXpsyr4ttbyHp8qYA8xUz3RRKOpnYoK/OZH3JQXQGNDZ4Z9i+s1Qbbgoc7AoZNEkvILQYz2TypnuQhtMjRdIBTYeNSsnGv2v9fDUFmw4Hfm77f5vfZ22uuZHowPmZJ/TbK5MUCqmZZwAXNr2HlwY4R01Zg65CvD9rTZi1+n12k9RR+KNsQRjxvZ3oNHhEjfPqNSm+M1FosBahn74lUTBV9fk9Bvhc3cHxmSJpe6JrdnWigGBt4FrbTx3xvLYjEgprErIVDyMC5d+tuKbV/rHtZ7jxNUkfJwpuTur0me/j52i+hy1PSH5cO4C1al+V0oqO8g2ZnFyoWt/3lOhUaPs+u8c59bQPbrp3N/5eCfih7X9v9fpyzSW2N5+ylvilJ3uuJEklKZExOziN2KRcSmeNsoEyk2BduRn/O6FBujmxuKxbS3oj2xs2HZ8lqbKdSBNmXN9TmHG9T9LhHSraHgVco6ga7pglJFrZDi8B1lUJ458TqG4h7ApJexBV2+tpshbQyoSRT6frFzI92FT3xquxuXkZoVt0tdRZOLEX5logeSqlegLgdEl7EjIkze+tqiqK4+jBkX0GNJslLgFucUUVfqlWeR/T318jT3oMgf3c1D1g+yZJnTYevbRcNhurrVSO76q+AojnybnAT6lfE7mZI4mE6BfL8evLubfWOMZQ2pOHgaT/AT7pyWazB9huKT80RjSMbxYwYYYzlxlWO3ev/FWhc9vQvN2JGjSobe9akmk/InSNB80HbZ9aKudeSBgldzLa3Z0wZF6Oicox06SDO4Y0zNyeRAQYTyPWYS8nqtum0QiAlCreaVJz7ap4gUsl/RhYF3ivpJXpLEVyO9EFd4SiM/J1XfxMXRmRzZQSOFyaGO02UT/gNejZCnm2k4mf+dXAz1XkT1oFaMtn5N/Ln4cT68G691y96BDDxOf34UTVZDdG2b1KOPaFQkbov5m+Xm0nsfhRojDppyXYug1t3sctPltdSWT0Q9P79Q7id9wWhcnma4F1NVlmcWWgas8xcLlA9y7J1y9rlMR+1x22pbhjayLA/APCj+Y82stkAhwo6Ut0SHQqpDEALlFUC3+n6vXN9HEPanST3iNpdeBvRFdBFf3o5w+cEss5iAkJksZnqzZjeYXv0VuYLilSa9JjPpAVzLMADak9qBtmsABFUmNxcy5R1VdbJVvTGF8jsum/KMdbEm1lb6i45krCBXkhUWX8ZWAX222rtWeQJey6wqNbFKY6qwIfJ3S0GtzZISiJpOOIn/tqmjZeA8gQLyK0rtYlftfLEL+Hnip1O4yxFZGtfwrwb2WMu+tcuA2SsnhurjSCps9Y1UNytmaU1WNL2DjRpiKk1o6CkrQ7AWgkJ/5KtK21NSiqo2qxy7lNe//V/Z7UkNqTh0G/FWrjQo9JklnLbFqvNaNo5TyGSELeBvwG2G0Q9+KSHFnTA5AF6adyTtL1tudk4mmmKKTD/sPFFK4Ef79v+7nVV/Y0xgKiLXs54CFEAcbjXSHbNWWt8ibCCHdV22tUXPNJIjD9BmAvorDi6jqTcJI+QQTkG12QuwKX2H5vXWP0g6L1vR1uFQSVtIQoPPg4oalbuwyRepSc6vPzOxRZK/UoT9e07v4lsInD7HA2rLvXIPZCzVKR+9j+Q4vXrk3sy6btH4Er2xWQaAhygS3GrJTkm8H37bnDVtE993Tg8nLtasDXbG9bcc3XiERn5X677Jfb0XJ/3m9sRqGf/Tki2feFcu2xtj9U8XNsS/yONiSK5J5NyLn9vGLeA0fRAbof0z+/vZigdxrjVOA6IinzEUKn/VrbgzYXHDuygnl2sFjS0zwL2oNc2jts91NpdAzwPdu1m6xoonV/OeL3dVM5Xpu4GVTRbMb1BXcw44K+soT9VHh0he07iEz1rn1cvpUnV3wPircQG5Abbd8j6ZHUbzryeeA1ROXu5sQm5Ik1jzEwbK8LIGkXosWy2Tzjox0un5UZZeAvrmjLG0c00VGwvqZ3FNRtcHgMsL/ts8rYWxMVGM+quOZ7kl5me6prdt08KGl9278uc1uPmiumbb+y/POgsgFfhdC9nosso6jCvg+gfJ4fMuI5DZypSRJJHZMks5xZs15rUAKAm9t+oUJOaUEj4FjjGD8nKpiXJTZ4typafPevcxz6q5xbLGlDdzbHGkdWA5oDi/eXc3XyZqZr4V9ABC7acVTjH7a/Utbw76x4PcTabmOajMiooQp/Ci8DNm7sUxQSEJcDIw0w266sRG3Do4jgz3OBvSX9i/C++WCN8+o1yNvz53eIBQlLbB/Zw+tvL4nRc4ATJd1KmByOmkXASYQMJURV9SLidz6J8rv9HfDMXgawfQ9NHSAOuchaP4uaLMm3gDC767QX6muo8ncvHbb/LAmFJaX6+VZCkqSKLbpJdNrueW/cT2ymrAvOdHTNfasUAS5fYgpVvJHwffkmcCORvKiUFR0Sd9j+4YDH2MD2zpJ2sH28pJOovytkXpAB5tnBUNqDukXh/H617Sf3eOkuwGckfQs4znanwG8vbNf5JW1pOGa/Hvh3VThmz6CCuxFgXY4Ifj6KMGwcNRcMY+NVHsS3ABsq2hoHNc4Nkpax/SCwSNLINwZ98AHbpyjaG59PhxbCshA6ih4d2YdEVy1hY8ZJwA/po6OgDx7aCC4D2P55CSBVsQ8hA3Q/EWyovUWz8C5CoujGcrwOA3Cyb9BH0m+2cSJwZlP1yu5Ut1uOC/0kSWYzs2q9Bkufv+8GTrF9d8cL+mOVkhR9K7FJP3BKgq0udiEq5w61fXupnHtXh2u2Aq6YTf8nQ+SrwEWl2wPgFdS/9tyHCS38bVS08Ksu8BST8lIl2qlz7mjCMPNYWNre/0HqlwJ7OBPyAKtUvXBYlKKMA5moSj2P8L9oW51XPh83EoGvNYh7asu9zRDp5/M7LHqVp/slcA9RNbkb8V5Zqc1rh8mjbTdXwX5F0r6tXjiDPe0w2I7ozm1IvPygXTX5DOmnAOwShczLsURC9S4iqVZFT4nO0rFxMGE2egbRbbyf7a91c30nyrrgC4QnFKW4oZvCpC8T/yfbEl4Tl0s6x20MIYfIWZI+RSQ+mj+/bfXd+6DReX97KY74M5H4SHokJTJmAcNqD+oFSacBe7nCLbfNdQ8jKm13Jx5mi4CT666m6XFOPZtx9THGW2lR4eH22l5DQSH18V3iJjlIbbNDCM24a5ioYrTba1b3M8Y5hCbjl4if509E286cMh5Qfy2EVxF6YFsR/4cdjSqHQbctYeOIpBfa/umUc2+0fXyNY/wvofV6Qjn1OmCzpsrekaHQKjuAaL27nXDp/ozteysvnMdIeglxDwP4ie1B6A3OKjQEKZVhMhvXa7C09f+vwDeYbKZYS9KrPINeBBwPvN/2xRqgybCkxzBZA7HtWnS2/p8MC4VOb8O06Rzbl9f8/RsGklcAW9q+T9LVrtnsrHTBfJPYQzyX6FLbrouKu17G2BX4BHAWsZZ6LvBe21+va4w+5/UTolK2EVzajdinvLDimhuJDs7zyrUXeQAyGeNCSUBNxW4jT6dZaqwu6UzK3rqc2hXY3fYLRjer3pG0N2FI/W3is/gKQr6hqjOin3F6lviZcv06wMPcQRJK0rVEQLarRKeKnJ2kVxLB9v2J+3edMnOHEoHxb7uHgF8pNNyC0Ph+B1HR3WvRYa1oQkao8XM0fr+1xVlKLOdbTEiqrgR8yPZRlRcm08gAc9KSEszbhDALad6sdAwYlkz86wndzGuBDYAj6n5o9EIJMj+DuDFdbPvPNX//q5io8Ni4UeFhe8cOlw4USTcQD62BauQqtHgXlgzpQCibyFsI/eX9iGqCL9q+YVBjDoLSpnQzkR3elMheX1S1qFCPTt7DQql9eTVhGrMSkfi4z/ZONY6xKvBhoqoJolXrINu3VVwjYnO6ru2PSloTeJztlsZPM5jbKcA/mNCyfC3wcNs7t79q/iLpEDeZQrY7N27M5iTJOKEJjf9JtAue9PH9dyaqSc+zvWcJBn7K9qvq+P5N42wPHAasTrQlrwVcV3cwM+keDVELX2HE9h3gJuCVtv85gDEeR6zXIdZete4H+kEttN0lXWX7aRXXLPAAJAnnO2qSQQOa9xcrA+fb7sawcmCUvdDnCNkLE9Jse/daEDZqSgfMMxtdN6U774IBFED1XAAm6cypAftW56Z8vVe98l/Z3qh0gX7T9hl1J99L5fpDCdP2e+micr0kMB5KBKbPJZ75t9Y1p35RGC9OxbY/MvTJJB3JAHPSEvVocleu2Z5YhG5AtO0db/tWhVnANbbXGcRcO1EeLh8CfkbcXJ9HtJ4dV+MYQ6nw6GNeF9juSXurz3F+COzsOW7gNAzUh3mGwtxgA0JLrRsn76GgaPf/VLctYeNECeQeQGhFQmS5T664ZChIOpJIJj3f9lNKkPrHtrfocGmv41zjKfrurc4lwWythhoUkk6w/XpJ+xPyKY0kyTnAh6uSJEnvKDS992Sy8dNRgwjQDRKFodbzgZ+WTp9tgNfZrvTNSIZD2RusQvhI1FItq8larBAtyXdQ2qDrvEf2EzgaBpI+TRT0nFJO7QQ8w/Z/V1zzREJebbUSqFoIbG/74IFPeI5S2t43ZHJ3xFenvKZvY/WkexqFWY2ut9IVd3FVUmUm49BFAViZw4pEh8PWsFS/+WHEPa9jFW+33Tel6+gVRJHRMwiZkO/ZbimX2C+SHgE8YcqcqmI5nwE2I+6/5xNrtgtGvZaQdEDT4fJE1fe1rqFjtqxT22L70zMdY76RGsxJO17WqtoKqNLBfBXRIn1O80mH6dsoNwfvIhyA/wZLK6wXA7UFmIE/KPSavgP8RNJtRDBw1FyuEKk/ncFq5N5DaCBO1eLdu64BJD0bOIgwdlx676qrQmtYuD/zjBcPdFL9M5+1L1clFoW/Jioj1pakXtrQ2iHps7b3lXQ6rasSqzpJtrS9qUKfHNu3Sfq3mc6pBZdJ2sr2L8qctwQuGcA4c5qmaqj1NN0U8vzRzGoobCZpdcIwZhvKvaF8rZPBTtI7xxMdBUeU49eWc7vU8c0lPZpoZ16Hyc/fuuWQHrD9N0kLSoXmWZI+W/MYSZ9UBSZmwEw8VrqiKXD0qJJ0bQ4cPX7Q43fB24gK8UanxzLA3ZLeTvuKw2OJ/c3RxIuuLOv9DDC3oFRAbk0EmH8AvJSQF5kUYPbMjNUHhqQjqr5e535rSCwCLtRk/fgvD2Cce23fKwmF0fJ1ktp1Xr6d+ByuTmgvN9Ytd1Jtatqq+2Ztoou7ZaGZ7fcodJjvsP2gpHuAHXr/8Srn1Kp6ezEhbdcS2/uVa1cmvH4WAY9lxKbUtg9rPlbIf9QlM9cwTzTT16dZidsHGWBO2rEtMLV196Utzi3F9hslra2iTVoqapa1faftMwc52Q78jXg4NLiznKuNpnbfgxQ6QasQov2jZgUi8PeipnOmKcBZE98tfwbJlwlpjEuZ0HmeF9QtaVIjLxn1BEbIL4BP2D6u3OsOIQKGdZiXNTaZh/Zx7QMK/TTD0sBQbW20TdVmyxGmJjeV47UJPchkMsM0hZxNHEWYf67H5MRDY8M2pxKDc4CNpnQPnCWpzs6S04iq6J8y2Ofv7ZJWIqqmTpR0K00ybcn4MaT1TavAEURS5vNDGL8S2yv3WmkIrGj7omimWsqSAU1xHNgJeDpwue3dJa3GhOb1XGBH4P1EccOc7wCy/WlJP2eiu2l316wfX+i6AMxhZHe4pA8Bn3UY236QkDPsZPL3USKAO6n7pt2LSzfrnoQM1H8S96YnUa+pac8GrZL+i9D03wz4LVGMd26Nc6qLFYnA+Yyx/WFYKke5j+3by/GqRNIg6ZEMMCeTaNaealFttbjDtW8jbpKPILSr1iA2mSNpPWtqebiByJKeRmxsdwAG4X4ODKzCoy9s7z6kcY4vVZJPLKeut/1A1TV9cIftH9b8PZOZMZ8zuy8EnifpQ7Y/UrLp69TxjT3hpL2xpzg3S9qH6k6SIwiX9MdI+hixqfpAHfMqDLzabJxoVENJ+gDw5yKftDWwUNJXGwvZccP2EcARko60vceo5zMPGHRHwYpTu9oGxA6EVuR+hJb8KkBqLCYzoilwtJdH6AfTjn4qDYG/SlqfiWTyTnTuhpvP3Gv7X5KWKAzpbwXWHPWkeuAfwE+IhPXWjEEnkO3LCI+GQY7RTwHYTmVd/xxCsulQQo6mSr6i1+6bRUSyq1GUcjNwKvUGmHup3m6wPPBp4FLbsyZhNUVKaRng0dS/NljYvCYvHaCb1DzGvCA1mJNJzER7SqE//AzgQtublHOVJhWDRK0F4ZfSyFiNM5LWINp6nl1OnUtk5/5Q8zhbE+24vyUWPWsCb5wqlzLDMT5BPFS+zWQZjoEuTpL2ND3wRSxK1iWSC2NvyKQhaB2rtW7v5Y37a8V1TyY2pgLOtH1tXXNK+qM8HzcnkhA/ICpCn+oBGGUl8w+Fg/2TCHM0iKqo64mKxhnLFkk6GFhs+wczmmiSjBh1ocM7bHrRiW26Zj3gGCJAdRvwG2C3WdzxNjIUZd5fInwzXlP+vgu4YliFODNF0t7AHkT3z83NXyLu8dkVVBONdbakjxN+OSd1WntL+ikh8/Fx4FFEAmML2y27GiVdYnvz5u+r+k3+hmbQOmg02URxCXBL3QFwhQfE1i4eIaWr5OxRxbHmMlnBnEyiqdpqydRFioppT8Xl99m+v9GuJWlZRljhOB8CyF2wiGjR3rkcv66c27bmcQ4DXmT7elhqPnIy0WJTF43MceN7Nlqt2zoBJ4Nl6kNX0qZEB8R8YGBax5J2JTRU15XULD2zMtCNrML/I6pdli3fby3PMYfxMeRftpdI2hH4nO3PNd47SVIDg5Yr2gd4n6T7gAfowo2+HxSu91PXjXcQ1dgH2L6xzvGS+UW3OrwjoJ9Kw5uJ9fxZROfoPwjN+6z4n4JtS3pGqU48StIZwMNsD6ybtW6yK2io3CzpaGKvfIikhwALOlzTa/fN/UVer9GBsD5NxVN1MIvlO3tmSImzw4ALJJ1ajncGPjaEcceODDAn7ZhUgViCxZ2ChWdLeh+wgqRtiUDToHV5O1Juqq2MsuZDYPLRthc1HX9F0r4DGGe5RnAZwPb/lbRczWP8vMW5bMGYRdi+rLRmzwcGqXW8mGh1fRST9b/upIO8j6S9gAOBWwit1EYiZj4YL85mHiiJgzcALy/n6r5HJvOUQW++bK/c+VW18FngD0RiXES14fpEG/VxRHAwSfplturw9mMUfhpwO/HZ+OOA5zcOXCZpC9sX2/7tqCfTLxlcHgq7EEnbQ23fLulxhKFmW2w3ewUcX/XaUlF/FBHsXVPSiUSn8ZtmMukO85s18p2zFdtflXQJE4VrO9qu08ti3pASGckkJL0XeB9hDndP05ceAI6x/d6Ka7cANiYM5US4e/7Jdp16Qj0jqTkwvjzwKmCJ7XePaEpDQ9KZRIXDyeXUroSRQq262JKOI4JrjYX6bsAyrtFhXtIBTYfLE1qw19Y5RtIbTTrnENn9TYFH2n7xiKY0NCTtBrya+JmPp2gd2z618sLexlgP+KPte8vxCsBqVZsjSTcQ1dW1GpkmM0PShsA7gAtsnyxpXWAX24eMeGpJ0hVFBmiqCVltMlhljGktwpKuKLIBtbYPJ/MPSRfZfoakS4FtiKTttbafPOKpLUXS8yiVhrbvr3jdr2xvNLyZzW0kXQdsQATu72aiCyOT70nftOm6gQ5dPkUWZ2tCb12EPM5fBzXPJBkmGWBOWlJ0hz5JmLY1NhOu2kxIuozQ3b2qHO8K7Gt71lU0NhaZo57HoCmaRZ8Dnkk8ABcDe9n+fc3jPAR4JxNuwOcCX7Rda7tPizF/ZHvrQY2RVDNF53wJocH9rUZAdNwZtNZxyaQ/q7HJLBIc51fpPJeOjW1nkzlHkiRzG7U2Ibug7k4wSRcAnwG+WU7tBOxve6tGoLnO8ZL5haQvEkU0c1KHtxlJxxByS1eNei5zgSkarktJzepkFEg6Hvi87YtHPZckqZsMMCctkfQ2YG962EyUartvElWyzyVagbcrus4jo4i0N1hAGC0dbruTvtmcpzzA9p0iWH9o3VW/kh5KaMg9WI6XAR5i+57qK2c05qrAxbY3GNQYSTJKWgVU2lXxNVWTP5Uw+/o+k80wPz3IuSatkXSK7V002QF7KVk9lcwF+jEh63Oc9YDDmUiK/4LQtLwZ2Mz2eXWOl8wfSlv6Go0CC0nrMMd0eJuRdA1Rkfsb4lmfFblJMkfIivpknEkN5qQdezOxmdimsZmousD2jZJeQ2iI3USYvv1z8FPtyKXERkWE1MdvgbeMckJDZGEjuAxg+++S2rrgzoAzgRcS1SAQEis/Jtyta2FKgGYZ4NGkmclIkXQ67Q2Zjp4vlcwD5C+Strf9XQBJOwDtWugaGqk3lT//Vv4ko2Wf8vd2I51FksyMfkzIeqaY+L28zZczuJz0TTF6+wHwtHL829HOaMa8dNQTSJKkb8ZeSjCZv2SAOWlH15uJFpVZjyACgBdKmg0VWv+H0DL7h6QPEpqpA6usnWUskLTqlArmQXzul7fdCC5j+y5JK9Y8RnOAZglwS8oAjJwbiUB/Q+P71YSm4ROBY4HXj2he48I7gBMlfZ5IkP2e6AyZhu0PNx9LWnGQHQRJd9j+U/k723CTuUw/JmQ9I2kRrSv902shqYOlRm+jnshMyWdKksxd8vObjDMZYE7a0ctmYrZXZn3A9imSnkM4gx4KHAnMOm3oAXAYcIGkhvHYzsDHBjDO3ZI2tX0ZLDVWrLV6PR/Gs5JnTdEDPl3Sxba3kHT1yGY1Jtj+NbCVpJXK8V0dLkHSM4EvAysBa0l6OvB223sOdLJJS/o1gEmS2YTtV5Z/HlR03lcBzhjAUM2m0MsDrwT+OIBxkvnJlsBukrItPUmSJEkGQGowJx3p1tF4tiLpctubFOPCq2yf1Dg36rkNA0kbEoF1gJ/ZvmYAY2wBfJ3YCAp4LPBq25fWPVYye5B0LfBi2zeV47UI48WnzKfP2KAoRpavAtahKSFsu600jKQLCWOs7zZ+/+k2nyRJvxRPhattP3kEYy8AzrNdm9xWMn9Jo7ckSZIkGSxZwZx0xPbZo57DDLlZ0tHAtsAhJWizYMRzGholoFx7UHnKGBcXne6GjMr1th8Y5JjJrOAA4DxJvyYSC+sCexbTx+NHOrPx4DRC0/pSmgz7OmH79+FntJQHa55XkiTzBNsPSrpe0lqNZOIQeQLwmCGPmYwptn9XuhmfYHuRpEcT3T5JkiRJktRABpiT+cAuwEuAQ23fLulxwLtGPKexougt7w+sbfttkp4g6Um2v9fp2mRuUirLbicCAI3KtuubjP0+O5KJjRdr2H5Jj9f8XtKzAEtajjCZu7b+qSVJMo9YFbha0kWEtAAAtrevc5ApkjIGbgHeXecYyfxF0oHA5kQxxCJgOeBrwLNHOa8kSZIkGRcywJyMPcXo6ttNx38C/jS6GY0li4gqy2eW45uBU5msp5iMEbb/JekLRYbhl6Oez5iyWNLTbF/VwzXvAA4HHk98Dn8MvHMQk0uSZN6wPJP9NgQcUvcgtlcuZsRPKGNCaw3zJOmHVwKbAJcB2P6jpJVHO6UkSZIkGR8ywJwkSR2sb/vVknaFCOprSo9+MpacKelVwLedgv6D4DnAmyT9hpDIqDQkKlqpr7e92xDnmCTJ+LPsVLk0SSvUPYiktxJdF2sAVwBbARcw4SORJDPhftuWZIAi55UkSZIkSU1kgDlJkjq4v2w2G4v29elBMzaZs7ydkEZZIuleJgKgDxvttMaGl/by4qKV+lrgMwOaT5Ik8whJewB7AutJurLpSysD5w9gyH2ALYBf2N6meDv8zwDGSeYnpxRPlodLehvwZuDYEc8pSZIkScaGDDAnSVIHBwJnAGtKOpHQs3vTSGeUDJw27cxJffRTFX6epM8D32CyVupltc0qSZL5wknAD4GPA+9pOn+n7b8PYLx7bd8rCUkPsX2dpCd1vixJOmP7UEnbAv8gdJg/ZPsnI55WkiRJkowNyq7mJCtLNCkAAAaKSURBVEnqQNIjiXZWEdVHfx3xlJIB06adebHtF4x0YmOCpKuIILOIAP66hJHiUyuuOavFadvOFvMkSWY1kv4X2B3Yl5DFuA1YzvbLRjqxJEmSJEmSpCMZYE6SpBYkLQTWoakzwva3216QzHlKALTRzrxxo53Z9o4jntpYImlTYE/bbx31XJIkSQaJpOcBqwBn2L5/1PNJ5j6SdiTMKR9DJG5T1itJkiRJaiQlMpIkmTGSjgMWAlcD/yqnDWSAebzJduYhYvsySVtWvaZ0EhxIGAQaOA/4iO2/DWGKSZIktTDVVDBJauCTwMttXzvqiSRJkiTJOJIB5iRJ6mAr2xuOehLJ0PmDpIcD3wF+Iuk24HcjntPYIGn/psMFwGbAHztc9nXgHOBV5Xg3Qo/5hbVPMEmSJEnmDrdkcDlJkiRJBkdKZCRJMmMkfRk4zPY1o55LMhqynbk+JJ1g+/WSbgc+U04vAX4LfMv2vRXX/sr2RlPOXWX7aQObcJIkSZLMciQdDjyWSIrf1zifcm5JkiRJUg9ZwZwkSR18FbhA0p+JRXtD127haKeVDItsZ66VzSStDtwEfG7K11YE2gaYgR9Leg1wSjneCfhR/VNMkiRJkjnFw4B7gBc1nUs5tyRJkiSpiaxgTpJkxki6AdgfuIoJDWZsp1xCkvSIpL2BPYB1mSyJ0UjcrFdx7Z3AQ5n4HC4A7i7/TjOjJEmSJEmSJEmSpHYywJwkyYyRdIHtZ456HkkyTkg60vYeo55HkiRJksx1JD0ROBJYzfZGkhYC29s+eMRTS5IkSZKxIAPMSZLMGElfBB4OnE7q2iXJSCmb5nVoksHKz2KSJEkyn5F0NvAu4Gjbm5Rz03wLkiRJkiTpj9RgTpKkDlYgAsupa5ckI0TSccBC4GomZDLys5gkSZLMd1a0fZGk5nNLRjWZJEmSJBk3MsCcJMmMsb37qOeQJAkAW9necNSTSJIkSZJZxl8lrU8kXZG0E/Cn0U4pSZIkScaHDDAnSTJjJC0PvAV4KrB847ztN49sUkkyP7lA0oa2rxn1RJIkSZJkFvFO4BjgyZJuBn4D7DbaKSVJkiTJ+JAazEmSzBhJpwLXAa8FPkIs2K+1vc9IJ5Yk8wxJzwO+C/yZkK0RYNsLRzqxJEmSJBkhkvYv/1wBWADcDdwBXGr7ipFNLEmSJEnGhAwwJ0kyYyRdbnsTSVfaXihpOeBc21uNem5JMp+QdAOwP3AVExrM2P7dyCaVJEmSJCNG0knA5kQSVsB2wJWEKe6ptj85utklSZIkydwnJTKSJKmDB8rft0vaiKiefMwI55Mk85W/2P7uqCeRJEmSJLOMNYBNbd8FIOlA4PvAc4FLgQwwJ0mSJMkMyABzkiR1cIykVYEPEJUhKwEfHO2UkmRecnmp0jqdkMgAwPa3RzelJEmSJBk5j6HpuUgUR6xm+5+S7mtzTZIkSZIkXZIB5iRJ6uAE4FVEm+Hx5dxqI5tNksxfViA20C9qOmcgA8xJkiTJfOZE4EJJp5XjlwMnSXookMa4SZIkSTJDUoM5SZIZI+kMilEK8GDjvO3DRjapJEmSJEmSJClI2hx4djk83/Ylo5xPkiRJkowTGWBOkmTGSPqV7Y1GPY8kme9IWgP4HBMb6HOBfWz/YXSzSpIkSZIkSZIkScaZBaOeQJIkY8FiSU8b9SSSJGERoYO+evlzejmXJEmSJEmSJEmSJAMhK5iTJJkxkq4BNgB+Q+i/CrDthSOdWJLMMyRdYXvjTueSJEmSJEmSJEmSpC7S5C9Jkjp46agnkCQJAH+T9Drg5HK8K/C3Ec4nSZIkSZIkSZIkGXOygjlJkiRJxgRJaxMazM8EDCwG9rL9+5FOLEmSJEmSJEmSJBlbMsCcJEmSJGOCpOOBfW3fVo4fARxq+82jnVmSJEmSJEmSJEkyrqTJX5IkSZKMDwsbwWUA238HNhnhfJIkSZIkSZIkSZIxJwPMSZIkSTI+LJC0auOgVDCn30KSJEmSJEmSJEkyMHLTmSRJkiTjw2HABZJOLcc7Ax8b4XySJEmSJEmSJEmSMSc1mJMkSZJkjJC0IfD8cvgz29eMcj5JkiRJkiRJkiTJeJMB5iRJkiRJkiRJkiRJkiRJkqQvUoM5SZIkSZIkSZIkSZIkSZIk6YsMMCdJkiRJkiRJkiRJkiRJkiR9kQHmJEmSJEmSJEmSJEmSJEmSpC8ywJwkSZIkSZIkSZIkSZIkSZL0xf8H6wW5gYCn/2cAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "[('keyword', 1.0),\n", + " ('float16', 0.0),\n", + " ('gradients', 0.0),\n", + " ('decode', 0.0),\n", + " ('yaml', 0.0),\n", + " ('list', 0.0),\n", + " ('batches', 0.0),\n", + " ('filewriter', 0.0),\n", + " ('upsampling1d', 0.0),\n", + " ('indexedslices', 0.0),\n", + " ('check', 0.0),\n", + " ('fieldnames', 0.0),\n", + " ('last', 0.0),\n", + " ('tuple', 0.0),\n", + " ('b', 0.0),\n", + " ('devices', 0.0),\n", + " ('chunk', 0.0),\n", + " ('when', 0.0),\n", + " ('msg', 0.0),\n", + " ('extslice', 0.0),\n", + " ('conv1d', 0.0),\n", + " ('states', 0.0),\n", + " ('pass', 0.0),\n", + " ('elements', 0.0),\n", + " ('gt', 0.0),\n", + " ('ordering', 0.0),\n", + " ('add', 0.0),\n", + " ('attribute', 0.0),\n", + " ('expand', 0.0),\n", + " ('eq', 0.0),\n", + " ('[PAD]', 0.0),\n", + " ('nw', 0.0),\n", + " ('tensorsharedvariable', 0.0),\n", + " ('seen', 0.0),\n", + " ('history', 0.0),\n", + " ('phases', 0.0),\n", + " ('dictcomp', 0.0),\n", + " ('next', 0.0),\n", + " ('step', 0.0),\n", + " ('t', 0.0),\n", + " ('nodes', 0.0),\n", + " ('mult', 0.0),\n", + " ('old', 0.0),\n", + " ('dict', 0.0),\n", + " ('import', 0.0),\n", + " ('devs', 0.0),\n", + " ('preprocess', 0.0),\n", + " ('graph', 0.0),\n", + " ('self', 0.0),\n", + " ('at', 0.0),\n", + " ('rnn', 0.0),\n", + " ('stack', 0.0),\n", + " ('select', 0.0),\n", + " ('preprocessor', 0.0),\n", + " ('model', 0.0),\n", + " ('tmp', 0.0),\n", + " ('minval', 0.0),\n", + " ('to', 0.0),\n", + " ('where', 0.0),\n", + " ('writer', 0.0),\n", + " ('collected', 0.0),\n", + " ('constructor', 0.0),\n", + " ('zeros', 0.0),\n", + " ('metrics', 0.0),\n", + " ('rate', 0.0),\n", + " ('dim', 0.0),\n", + " ('constraints', 0.0),\n", + " ('minimum', 0.0),\n", + " ('constants', 0.0),\n", + " ('prelu', 0.0),\n", + " ('prime', 0.0),\n", + " ('placeholder', 0.0),\n", + " ('gain', 0.0),\n", + " ('pooling3d', 0.0),\n", + " ('running', 0.0),\n", + " ('reduce', 0.0),\n", + " ('sqrt', 0.0),\n", + " ('gens', 0.0),\n", + " ('argument', 0.0),\n", + " ('regularizer', 0.0),\n", + " ('required', 0.0),\n", + " ('metadata', 0.0),\n", + " ('threshold', 0.0),\n", + " ('uniform', 0.0),\n", + " ('amsgrad', 0.0),\n", + " ('true', 0.0),\n", + " ('training', 0.0),\n", + " ('filepath', 0.0),\n", + " ('session', 0.0),\n", + " ('pooling1d', 0.0),\n", + " ('neg', 0.0),\n", + " ('listcomp', 0.0),\n", + " ('cache', 0.0),\n", + " ('1', 0.0),\n", + " ('cell', 0.0),\n", + " ('total', 0.0),\n", + " ('bool', 0.0),\n", + " ('converted', 0.0),\n", + " ('slice', 0.0),\n", + " ('return', 0.0),\n", + " ('support', 0.0),\n", + " ('iterations', 0.0),\n", + " ('decay', 0.0),\n", + " ('sub', 0.0),\n", + " ('order', 0.0),\n", + " ('abs', 0.0),\n", + " ('kernel', 0.0),\n", + " ('functiondef', 0.0),\n", + " ('cpu', 0.0),\n", + " ('probs', 0.0),\n", + " ('setattr', 0.0),\n", + " ('close', 0.0),\n", + " ('open', 0.0),\n", + " ('ident', 0.0),\n", + " ('count', 0.0),\n", + " ('update', 0.0),\n", + " ('constraint', 0.0),\n", + " ('densenet169', 0.0),\n", + " ('input', 0.0),\n", + " ('cells', 0.0),\n", + " ('params', 0.0),\n", + " ('generatorexp', 0.0),\n", + " ('dropout', 0.0),\n", + " ('noteq', 0.0),\n", + " ('continue', 0.0),\n", + " ('inferreddimension', 0.0),\n", + " ('flush', 0.0),\n", + " ('target', 0.0),\n", + " ('gradient', 0.0),\n", + " ('spatialdropout1d', 0.0),\n", + " ('func', 0.0),\n", + " ('classdef', 0.0),\n", + " ('train', 0.0),\n", + " ('signature', 0.0),\n", + " ('uid', 0.0),\n", + " ('2', 0.0),\n", + " ('condition', 0.0),\n", + " ('child', 0.0),\n", + " ('arguments', 0.0),\n", + " ('file', 0.0),\n", + " ('sigmoid', 0.0),\n", + " ('truncated', 0.0),\n", + " ('inputs', 0.0),\n", + " ('pool2d', 0.0),\n", + " ('identity', 0.0),\n", + " ('setdefault', 0.0),\n", + " ('channels', 0.0),\n", + " ('id', 0.0),\n", + " ('desired', 0.0),\n", + " ('conv2d', 0.0),\n", + " ('resnet50', 0.0),\n", + " ('learning', 0.0),\n", + " ('exp', 0.0),\n", + " ('deconv2d', 0.0),\n", + " ('spatial', 0.0),\n", + " ('bar', 0.0),\n", + " ('message', 0.0),\n", + " ('tolist', 0.0),\n", + " ('cloned', 0.0),\n", + " ('cooldown', 0.0),\n", + " ('ctype', 0.0),\n", + " ('svd', 0.0),\n", + " ('validation', 0.0),\n", + " ('arange', 0.0),\n", + " ('scope', 0.0),\n", + " ('weight', 0.0),\n", + " ('feature', 0.0),\n", + " ('tuples', 0.0),\n", + " ('init', 0.0),\n", + " ('arg', 0.0),\n", + " ('restore', 0.0),\n", + " ('nesterov', 0.0),\n", + " ('hasher', 0.0),\n", + " ('permute', 0.0),\n", + " ('1d', 0.0),\n", + " ('argmax', 0.0),\n", + " ('default', 0.0),\n", + " ('exc', 0.0),\n", + " ('dimensions', 0.0),\n", + " ('separable', 0.0),\n", + " ('reshape', 0.0),\n", + " ('moving', 0.0),\n", + " ('name', 0.0),\n", + " ('obj', 0.0),\n", + " ('module', 0.0),\n", + " ('new', 0.0),\n", + " ('far', 0.0),\n", + " ('expects', 0.0),\n", + " ('accumulators', 0.0),\n", + " ('inceptionv3', 0.0),\n", + " ('ndim', 0.0),\n", + " ('function', 0.0),\n", + " ('densenet121', 0.0),\n", + " ('callbacks', 0.0),\n", + " ('assert', 0.0),\n", + " ('l1l2', 0.0),\n", + " ('std', 0.0),\n", + " ('types', 0.0),\n", + " ('as', 0.0),\n", + " ('pool', 0.0),\n", + " ('subclassed', 0.0),\n", + " ('astype', 0.0),\n", + " ('upper', 0.0),\n", + " ('range', 0.0),\n", + " ('hash', 0.0),\n", + " ('dump', 0.0),\n", + " ('dims', 0.0),\n", + " ('info', 0.0),\n", + " ('use', 0.0),\n", + " ('increment', 0.0),\n", + " ('for', 0.0),\n", + " ('inceptionresnetv2', 0.0),\n", + " ('th', 0.0),\n", + " ('outputs', 0.0),\n", + " ('shared', 0.0),\n", + " ('phase', 0.0),\n", + " ('stopped', 0.0),\n", + " ('binop', 0.0),\n", + " ('axes', 0.0),\n", + " ('sharedvar', 0.0),\n", + " ('cls', 0.0),\n", + " ('dtype', 0.0),\n", + " ('setter', 0.0),\n", + " ('or', 0.0),\n", + " ('eye', 0.0),\n", + " ('scale', 0.0),\n", + " ('vgg16', 0.0),\n", + " ('workers', 0.0),\n", + " ('pattern', 0.0),\n", + " ('logits', 0.0),\n", + " ('softsign', 0.0),\n", + " ('filename', 0.0),\n", + " ('alloc', 0.0),\n", + " ('hot', 0.0),\n", + " ('done', 0.0),\n", + " ('ins', 0.0),\n", + " ('withitem', 0.0),\n", + " ('end', 0.0),\n", + " ('on', 0.0),\n", + " ('reverse', 0.0),\n", + " ('recurrent', 0.0),\n", + " ('level', 0.0),\n", + " ('float64', 0.0),\n", + " ('second', 0.0),\n", + " ('logs', 0.0),\n", + " ('notin', 0.0),\n", + " ('items', 0.0),\n", + " ('exists', 0.0),\n", + " ('sparsetype', 0.0),\n", + " ('startswith', 0.0),\n", + " ('keepdims', 0.0),\n", + " ('lte', 0.0),\n", + " ('predict', 0.0),\n", + " ('isnot', 0.0),\n", + " ('lt', 0.0),\n", + " ('trainable', 0.0),\n", + " ('flags', 0.0),\n", + " ('max', 0.0),\n", + " ('squared', 0.0),\n", + " ('forward', 0.0),\n", + " ('split', 0.0),\n", + " ('stop', 0.0),\n", + " ('flatten', 0.0),\n", + " ('assign', 0.0),\n", + " ('theta', 0.0),\n", + " ('dynamic', 0.0),\n", + " ('full', 0.0),\n", + " ('layers', 0.0),\n", + " ('lr', 0.0),\n", + " ('seed', 0.0),\n", + " ('compute', 0.0),\n", + " ('times', 0.0),\n", + " ('totals', 0.0),\n", + " ('process', 0.0),\n", + " ('biases', 0.0),\n", + " ('bias', 0.0),\n", + " ('weights', 0.0),\n", + " ('vhats', 0.0),\n", + " ('ms', 0.0),\n", + " ('dimshuffle', 0.0),\n", + " ('k', 0.0),\n", + " ('img', 0.0),\n", + " ('x', 0.0),\n", + " ('fill', 0.0),\n", + " ('normal', 0.0),\n", + " ('make', 0.0),\n", + " ('expr', 0.0),\n", + " ('task', 0.0),\n", + " ('repeat', 0.0),\n", + " ('unfinished', 0.0),\n", + " ('binary', 0.0),\n", + " ('schedule', 0.0),\n", + " ('device', 0.0),\n", + " ('type', 0.0),\n", + " ('in', 0.0),\n", + " ('time', 0.0),\n", + " ('create', 0.0),\n", + " ('targets', 0.0),\n", + " ('isinf', 0.0),\n", + " ('fpath', 0.0),\n", + " ('str', 0.0),\n", + " ('classes', 0.0),\n", + " ('class', 0.0),\n", + " ('freq', 0.0),\n", + " ('foldl', 0.0),\n", + " ('nn', 0.0),\n", + " ('elems', 0.0),\n", + " ('group', 0.0),\n", + " ('equal', 0.0),\n", + " ('readline', 0.0),\n", + " ('built', 0.0),\n", + " ('proba', 0.0),\n", + " ('period', 0.0),\n", + " ('alt', 0.0),\n", + " ('distribution', 0.0),\n", + " ('binomial', 0.0),\n", + " ('moves', 0.0),\n", + " ('available', 0.0),\n", + " ('user', 0.0),\n", + " ('foldr', 0.0),\n", + " ('methods', 0.0),\n", + " ('prefix', 0.0),\n", + " ('tf', 0.0),\n", + " ('squeeze', 0.0),\n", + " ('var', 0.0),\n", + " ('conv', 0.0),\n", + " ('hstack', 0.0),\n", + " ('initializer', 0.0),\n", + " ('lambda', 0.0),\n", + " ('rng', 0.0),\n", + " ('zeropadding3d', 0.0),\n", + " ('state', 0.0),\n", + " ('sample', 0.0),\n", + " ('randint', 0.0),\n", + " ('wait', 0.0),\n", + " ('predictions', 0.0),\n", + " ('theano', 0.0),\n", + " ('idx', 0.0),\n", + " ('deepcopy', 0.0),\n", + " ('sequences', 0.0),\n", + " ('csv', 0.0),\n", + " ('int', 0.0),\n", + " ('append', 0.0),\n", + " ('lower', 0.0),\n", + " ('include', 0.0),\n", + " ('legacy', 0.0),\n", + " ('verbose', 0.0),\n", + " ('steps', 0.0),\n", + " ('images', 0.0),\n", + " ('epoch', 0.0),\n", + " ('fn', 0.0),\n", + " ('pow', 0.0),\n", + " ('compare', 0.0),\n", + " ('simple', 0.0),\n", + " ('receptive', 0.0),\n", + " ('keys', 0.0),\n", + " ('iterable', 0.0),\n", + " ('beta', 0.0),\n", + " ('classification', 0.0),\n", + " ('gpus', 0.0),\n", + " ('tensorlike', 0.0),\n", + " ('dir', 0.0),\n", + " ('prod', 0.0),\n", + " ('so', 0.0),\n", + " ('by', 0.0),\n", + " ('custom', 0.0),\n", + " ('cols', 0.0),\n", + " ('all', 0.0),\n", + " ('splice', 0.0),\n", + " ('subtensor', 0.0),\n", + " ('any', 0.0),\n", + " ('inf', 0.0),\n", + " ('baseline', 0.0),\n", + " ('save', 0.0),\n", + " ('summary', 0.0),\n", + " ('noise', 0.0),\n", + " ('value', 0.0),\n", + " ('nameconstant', 0.0),\n", + " ('usub', 0.0),\n", + " ('nnet', 0.0),\n", + " ('greater', 0.0),\n", + " ('op', 0.0),\n", + " ('pooling', 0.0),\n", + " ('dense', 0.0),\n", + " ('gte', 0.0),\n", + " ('vgg19', 0.0),\n", + " ('line', 0.0),\n", + " ('args', 0.0),\n", + " ('write', 0.0),\n", + " ('nasnetmobile', 0.0),\n", + " ('high', 0.0),\n", + " ('f', 0.0),\n", + " ('load', 0.0),\n", + " ('subscript', 0.0),\n", + " ('decrement', 0.0),\n", + " ('ndarray', 0.0),\n", + " ('begin', 0.0),\n", + " ('m', 0.0),\n", + " ('sess', 0.0),\n", + " ('norm', 0.0),\n", + " ('clipvalue', 0.0),\n", + " ('p', 0.0),\n", + " ('loss', 0.0),\n", + " ('copy', 0.0),\n", + " ('pad', 0.0),\n", + " ('reference', 0.0),\n", + " ('pop', 0.0),\n", + " ('a', 0.0),\n", + " ('filter', 0.0),\n", + " ('current', 0.0),\n", + " ('maximum', 0.0),\n", + " ('optimizer', 0.0),\n", + " ('v', 0.0),\n", + " ('length', 0.0),\n", + " ('rank', 0.0),\n", + " ('post', 0.0),\n", + " ('random', 0.0),\n", + " ('epochs', 0.0),\n", + " ('regularization', 0.0),\n", + " ('requestexception', 0.0),\n", + " ('build', 0.0),\n", + " ('g', 0.0),\n", + " ('root', 0.0),\n", + " ('string', 0.0),\n", + " ('activation', 0.0),\n", + " ('raise', 0.0),\n", + " ('softmax', 0.0),\n", + " ('slope', 0.0),\n", + " ('stateful', 0.0),\n", + " ('pv', 0.0),\n", + " ('argmin', 0.0),\n", + " ('cast', 0.0),\n", + " ('loads', 0.0),\n", + " ('first', 0.0),\n", + " ('d', 0.0),\n", + " ('positions', 0.0),\n", + " ('moments', 0.0),\n", + " ('intersection', 0.0),\n", + " ('crossentropy', 0.0),\n", + " ('object', 0.0),\n", + " ('square', 0.0),\n", + " ('closure', 0.0),\n", + " ('[MASK]', 0.0),\n", + " ('s', 0.0),\n", + " ('extra', 0.0),\n", + " ('objects', 0.0),\n", + " ('relu', 0.0),\n", + " ('like', 0.0),\n", + " ('py', 0.0),\n", + " ('reraise', 0.0),\n", + " ('nonzero', 0.0),\n", + " ('floordiv', 0.0),\n", + " ('clip', 0.0),\n", + " ('embedding', 0.0),\n", + " ('gather', 0.0),\n", + " ('low', 0.0),\n", + " ('momentum', 0.0),\n", + " ('float32', 0.0),\n", + " ('is', 0.0),\n", + " ('retain', 0.0),\n", + " ('units', 0.0),\n", + " ('axis', 0.0),\n", + " ('functions', 0.0),\n", + " ('acc', 0.0),\n", + " ('extend', 0.0),\n", + " ('mobilenet', 0.0),\n", + " ('carry', 0.0),\n", + " ('unaryop', 0.0),\n", + " ('clear', 0.0),\n", + " ('if', 0.0),\n", + " ('2d', 0.0),\n", + " ('repeats', 0.0),\n", + " ('non', 0.0),\n", + " ('upsampling3d', 0.0),\n", + " ('pool3d', 0.0),\n", + " ('with', 0.0),\n", + " ('[SEP]', 0.0),\n", + " ('go', 0.0),\n", + " ('run', 0.0),\n", + " ('factor', 0.0),\n", + " ('mobilenetv2', 0.0),\n", + " ('updates', 0.0),\n", + " ('idxs', 0.0),\n", + " ('best', 0.0),\n", + " ('switch', 0.0),\n", + " ('keras', 0.0),\n", + " ('kwd', 0.0),\n", + " ('log', 0.0),\n", + " ('rows', 0.0),\n", + " ('delete', 0.0),\n", + " ('w', 0.0),\n", + " ('prob', 0.0),\n", + " ('indices', 0.0),\n", + " ('element', 0.0),\n", + " ('e', 0.0),\n", + " ('conversions', 0.0),\n", + " ('grad', 0.0),\n", + " ('symbolic', 0.0),\n", + " ('l2', 0.0),\n", + " ('standardize', 0.0),\n", + " ('batch', 0.0),\n", + " ('lookup', 0.0),\n", + " ('normalization', 0.0),\n", + " ('map', 0.0),\n", + " ('format', 0.0),\n", + " ('z', 0.0),\n", + " ('cntk', 0.0),\n", + " ('hsplit', 0.0),\n", + " ('vs', 0.0),\n", + " ('epsilon', 0.0),\n", + " ('floatx', 0.0),\n", + " ('histogram', 0.0),\n", + " ('seq', 0.0),\n", + " ('spec', 0.0),\n", + " ('result', 0.0),\n", + " ('constant', 0.0),\n", + " ('l1', 0.0),\n", + " ('normalized', 0.0),\n", + " ('progbar', 0.0),\n", + " ('warn', 0.0),\n", + " ('shuffle', 0.0),\n", + " ('matrix', 0.0),\n", + " ('mask', 0.0),\n", + " ('allowed', 0.0),\n", + " ('origin', 0.0),\n", + " ('maxval', 0.0),\n", + " ('nb', 0.0),\n", + " ('updated', 0.0),\n", + " ('apply', 0.0),\n", + " ('join', 0.0),\n", + " ('softplus', 0.0),\n", + " ('comprehension', 0.0),\n", + " ('asarray', 0.0),\n", + " ('multiprocessing', 0.0),\n", + " ('round', 0.0),\n", + " ('item', 0.0),\n", + " ('backend', 0.0),\n", + " ('inbound', 0.0),\n", + " ('py2', 0.0),\n", + " ('from', 0.0),\n", + " ('global', 0.0),\n", + " ('neq', 0.0),\n", + " ('gates', 0.0),\n", + " ('tensorvariable', 0.0),\n", + " ('algorithm', 0.0),\n", + " ('nasnetlarge', 0.0),\n", + " ('intermediate', 0.0),\n", + " ('queue', 0.0),\n", + " ('timesteps', 0.0),\n", + " ('tensor', 0.0),\n", + " ('alpha', 0.0),\n", + " ('serialize', 0.0),\n", + " ('fields', 0.0),\n", + " ('top', 0.0),\n", + " ('negative', 0.0),\n", + " ('grads', 0.0),\n", + " ('transpose', 0.0),\n", + " ('gaussiandropout', 0.0),\n", + " ('disconnected', 0.0),\n", + " ('delta', 0.0),\n", + " ('[UNK]', 0.0),\n", + " ('explicitly', 0.0),\n", + " ('ones', 0.0),\n", + " ('network', 0.0),\n", + " ('volumes', 0.0),\n", + " ('callback', 0.0),\n", + " ('seqs', 0.0),\n", + " ('eval', 0.0),\n", + " ('call', 0.0),\n", + " ('convert', 0.0),\n", + " ('[cls]', 0.0),\n", + " ('dot', 0.0),\n", + " ('opt', 0.0),\n", + " ('key', 0.0),\n", + " ('json', 0.0),\n", + " ('async', 0.0),\n", + " ('embeddings', 0.0),\n", + " ('starred', 0.0),\n", + " ('num', 0.0),\n", + " ('print', 0.0),\n", + " ('y', 0.0),\n", + " ('preds', 0.0),\n", + " ('data', 0.0),\n", + " ('cudnn', 0.0),\n", + " ('upsampling2d', 0.0),\n", + " ('config', 0.0),\n", + " ('image', 0.0),\n", + " ('mode', 0.0),\n", + " ('uses', 0.0),\n", + " ('min', 0.0),\n", + " ('val', 0.0),\n", + " ('masking', 0.0),\n", + " ('normalize', 0.0),\n", + " ('send', 0.0),\n", + " ('shapes', 0.0),\n", + " ('merged', 0.0),\n", + " ('output', 0.0),\n", + " ('padding', 0.0),\n", + " ('spatialdropoutnd', 0.0),\n", + " ('backwards', 0.0),\n", + " ('const', 0.0),\n", + " ('filters', 0.0),\n", + " ('strip', 0.0),\n", + " ('parameter', 0.0),\n", + " ('dilation', 0.0),\n", + " ('patience', 0.0),\n", + " ('cropping2d', 0.0),\n", + " ('mean', 0.0),\n", + " ('pooling2d', 0.0),\n", + " ('unpack', 0.0),\n", + " ('losses', 0.0),\n", + " ('generator', 0.0),\n", + " ('fan', 0.0),\n", + " ('size', 0.0),\n", + " ('backup', 0.0),\n", + " ('sparse', 0.0),\n", + " ('batchnorm', 0.0),\n", + " ('elu', 0.0),\n", + " ('[CLS]', 0.0),\n", + " ('counter', 0.0),\n", + " ('less', 0.0),\n", + " ('isnan', 0.0),\n", + " ('evaluate', 0.0),\n", + " ('tasks', 0.0),\n", + " ('cumprod', 0.0),\n", + " ('ts', 0.0),\n", + " ('and', 0.0),\n", + " ('limit', 0.0),\n", + " ('put', 0.0),\n", + " ('feed', 0.0),\n", + " ('override', 0.0),\n", + " ('rho', 0.0),\n", + " ('shape', 0.0),\n", + " ('header', 0.0),\n", + " ('alias', 0.0),\n", + " ('3d', 0.0),\n", + " ('field', 0.0),\n", + " ('cropping3d', 0.0),\n", + " ('norms', 0.0),\n", + " ('div', 0.0),\n", + " ('supports', 0.0),\n", + " ('reset', 0.0),\n", + " ('path', 0.0),\n", + " ('error', 0.0),\n", + " ('atleast', 0.0),\n", + " ('normed', 0.0),\n", + " ('try', 0.0),\n", + " ('strides', 0.0),\n", + " ('importfrom', 0.0),\n", + " ('execute', 0.0),\n", + " ('ifexp', 0.0),\n", + " ('names', 0.0),\n", + " ('boolop', 0.0),\n", + " ('original', 0.0),\n", + " ('generic', 0.0),\n", + " ('pred', 0.0),\n", + " ('logsumexp', 0.0),\n", + " ('yield', 0.0),\n", + " ('index', 0.0),\n", + " ('created', 0.0),\n", + " ('tensors', 0.0),\n", + " ('gamma', 0.0),\n", + " ('xception', 0.0),\n", + " ('concatenate', 0.0),\n", + " ('unroll', 0.0),\n", + " ('diff', 0.0),\n", + " ('c', 0.0),\n", + " ('slices', 0.0),\n", + " ('insecure', 0.0),\n", + " ('variable', 0.0),\n", + " ('sequence', 0.0),\n", + " ('initial', 0.0),\n", + " ('concat', 0.0),\n", + " ('allow', 0.0),\n", + " ('monitor', 0.0),\n", + " ('not', 0.0),\n", + " ('get', 0.0),\n", + " ('sum', 0.0),\n", + " ('excepthandler', 0.0),\n", + " ('densenet201', 0.0),\n", + " ('backward', 0.0),\n", + " ('label', 0.0),\n", + " ('u', 0.0),\n", + " ('stddev', 0.0),\n", + " ('while', 0.0),\n", + " ('linalg', 0.0),\n", + " ('out', 0.0),\n", + " ('temporal', 0.0),\n", + " ('sk', 0.0),\n", + " ('zero', 0.0),\n", + " ('clipnorm', 0.0),\n", + " ('set', 0.0),\n", + " ('pos', 0.0),\n", + " ('ops', 0.0),\n", + " ('gaussiannoise', 0.0),\n", + " ('sparsetensor', 0.0),\n", + " ('attrs', 0.0),\n", + " ('headers', 0.0),\n", + " ('mod', 0.0),\n", + " ('conv3d', 0.0),\n", + " ('dumps', 0.0),\n", + " ('kwargs', 0.0),\n", + " ('augassign', 0.0),\n", + " ('instance', 0.0),\n", + " ('overwrite', 0.0),\n", + " ('layer', 0.0),\n", + " ('only', 0.0),\n", + " ('res', 0.0),\n", + " ('saver', 0.0),\n", + " ('values', 0.0),\n", + " ('cumsum', 0.0)]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c = Counter(total_per_token_accuracy)\n", + "c.most_common(1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACGgAAALICAYAAAApXFQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xu0XVV9N/zvT27hGiSgFYMEFRWURkKAx2q9vCogKDZFResjQkXw8f62VLGiohRfKvZ5wGppZYAR9QkCatR6o2rRege8oBALaGMJXrgokABBCPP9Y63EzTEn55CcRUj8fMbYI3vvOdeac6+59j5jZH3XnNVaCwAAAAAAAAAAw3nA+u4AAAAAAAAAAMDGTkADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAACwgaiqA6tq4X3QzpFV9bWh21lbVXVRVR29Ftt9rKqeNUSf7i+q6sFV9dWqWlpV/7C++8PUMr4AAACwYRPQAAAAGEdVLa6q26tqWVX9pqo+U1W7jJTPr6rf9uUrHz/oy2ZVVRt5f3FVHT+y7eg2d4+0s6yqXjxOl05OcsrIPk6qqh9W1V1VdeJq+v8XVfWzqrq1qhZW1Q4jZTtU1Sf6sp9V1V9MwSG7v/v7JH+3vjsxsGOS3JBku9baX6/vzoynqraoqrOr6paq+mVV/dUE9f/fvt4t/XZbjJTNqqp/r6rbqurHVfWMkbLHVdUXquqGqmqT7NsTquoba//pBrXRjW9VvbSqLu3rLqmqd1XVpiPly8Y8VlTVP07Q/r9U1TFT+Zn+0K3pe7aauu+uqqv6INGPq+qIMeWbVNXfVdXP+zrfq6rt+7J/HjPed1TV0qE/HwAAwH1FQAMAAGDNntNa2ybJQ5L8KsnYC4Pvaq1tM/KYPaZ8+3775yV5S1U9M0lGt0ny3yvb6R8fGduJqto3yfTW2rdG3r46yRuSfGY19R+b5F+SvCTJg5PcluSfRqq8L8lv+7IXJzmj32aj1Vr7TpLtqmru+u7LgHZNckVrbbVhhNEL3+vZiUl2T9ffpyV5Q1UdtLqKVXVgkuOTPL2v//Akbx+psiDJ95LMSPLmJBdU1U592Z1JzkvysnvRt0OSfPZe1L8vbXTjm2SrJK9PsmOS/dON83ErC8f8Vv5RktuTnD9B+8/K/XcMN1Rr+p6NdWuS5ySZnuSlSU6vqj8ZKX97kj9J8oQk26X7O7U8SVprrxgz5gsy8XgDAABsMAQ0AAAAJqG1tjzJBUn2XMvtL0lyeZLHr2UXnpXkK2P2+cHW2ueSrO7u4hcn+XRr7auttWVJ3pLkz6tq26raOslhSd7SWlvWWvtakk+lu0j2e6rq1Kr6WlVNX03ZA6rq+Kr6SVXdWFXnrZypY2QWkWP6O6V/UVXHjWy7RVWd1pf9vH8+OjPCc6vq+/2d9T8Zc4F316r6en/39YVVtWO/zbSq+nDfl5uq6uKqevDIdheluwC/VvrP88qRu8NPqqpHVNU3+n6eV1Wbj9R/dv8Zburr/PFI2crjtrSqrqiqeSNlR/bH/N3Vzd7yXzXB8ixVNT/dxdA39HeeP6OqTqyqC/pjckuSI9c0Zv1+XlLdrCo3VtWbq5v9Zdy75dfSS5Oc1Fr7TWttUZIzkxy5hrpntdYub639JslJK+tW1aOSzEnyttba7a21jyX5YbrzO621/2ytnZXuuzdZB2c1F/dHzuejquqaflxeUVX7VtVl/Ri/d6T+I6rqy/1xvKGqPjIyS8AjqurXVTWnf71zVV1fVU8dr1Mb6/i21s5orf1Ha+23rbVrk3wkyRPH2e9hSa5L8h/jNdx/x25qrS1ZTdmJVXV+f7yWVjcD0aOq6k1VdV0/rgeM1J9eVWf1v13XVjfrwyZ92bjj25cvrqrj+nPj5qr6aFVNW9NBq6oHVtW/9ufCb/rnM0fKd6iqD1T3e/mbGlnyqtb8e7lOJvqejdVae1tr7cettbtba99ON15PWPkZ0wVyXt5a+1nr/Kj/Gzu23ZV/qz44VZ8FAABgfRPQAAAAmISq2irJ4Um+NVHdcbb/H0kel27Wi7WxV5L/vBf1H5vkBytftNZ+km7GjEf1j7taa1eO1P9Bv81onx9QVWcm+eMkB7TWbl5NO69J8mdJnpJk5yS/STc7x6inpbub/oAkbxy5GPzmJP8jXWhldpL9kpzQt71fknOS/E2S7ZM8OcnikX3+RZKjkjwoyeb53R33L0131/Yu6e70fkW6O+5XWtS3tS4OTLJP3/c3JHl/kv/Zt/m4JC/qP8PeSc5Ocmzfl39J8qn6XQjlJ0n+tO/v25N8uKoeMtLO/unGfMck70pyVlXVeJ1qrR2Z7uL2ylldvtgXPTdduGj7vnzcMauqPZOckS6ss3Pf75kZRx8EuGm8xzjbPDDdjDQ/GHn7986/EY9dTd0HV9WMvuynrbWlY8rXajaY/vg/ON1MAePZP935fHiS09Kdx8/o23xBVT1l5e6S/H/pjuMe6c6PE5NV38c3phvzrZJ8IMkHW2sXjdfoRjy+Yz054wdqXprknPFmEOkdnNXMKjTiOUk+lOSB6cb5C+n+f+yhSd6R7nu60vwkdyV5ZJK90/2GHd2XjTu+I16Q5KAku6X7HT1yDf1K348PpJt55GHpfrveO1L+oXQzjjw23W/f/0km9Xu5Sh/6GG9M/3Wcfq3196yqtkyyb343pnulO6bPq275myur6lXjbH5YkuuTfHWidgAAADYUAhoAAABrtrC/EHlzkmcmOXVM+XFjLnCNvdP3hqq6Pck30y0xsjBrZ/usfqaM8WzT93nUzUm27ctuGadspc3STS2/Q7rlV24bp51XJHlza21Ja+2OdBcon1f3XGrh7a21W1trP0x38fFF/fsvTvKO1tp1rbXr04UUVs7i8bIkZ7fW/q2/C/va1tqPR/b5gdbala2129MtYbFyZpI70110fmRrbUVr7dLW2uhnXZruWK6Ld7XWbmmtXZ7kR0kubK39tA+wfC7dhdwkOSbJv7TWvt335YNJ7kgX7Ehr7fzW2s/7z/fRJFelC6ms9LPW2pmttRXp7iBfGR64t77ZWlvYt3N71jxmz0vyr/3MK3ekm3nl7vF23Fo7pbW2/XiPcTbbpv939Pwce/6NrT+2bvK7c3m883xtHJzk8xMEAE5qrS1vrV2YbimHBf05fG26mQL2TpLW2tX9+XtHf37/73ShifTlZ6YLbH073di+eS37vKGP7ypV9ZdJ5iZ592rKdk13/CaaTWGiJWr+o7X2hdbaXemWztgpySmttTuTnJtkVlVtX93MOwcneX3/+3VdukDEC5OJx7f3nv47/uskn84EMyi11m5srX2stXZbH4Y4eeU++/DQs5K8op+Z5M7W2spZlSb6vRxt49lrGNNnj9O1dfme/XO6MMcX+tcz04XSHpUuuPK8JCdWv/zXGJMJ5AAAAGxQ7i9rkwIAANxf/Vlr7Yv9tPbPTfKVqtqztfbLvvzdrbUT1rD9jklaktelm/Vhs3QzWdxbv8m9u+i8LMl2Y97bLl1A4e41lK30yPSzWrTW1tTfXZN8oqpGL/KuyD2DBNeMPP9Zujuok+7O85+NKdu5f75L1nyR9Zcjz2/L7y4Kf6jf9tx+uYEPp7tYfWdfvm2S8e78/1y6GS2S5NjW2kfGaftXI89vX83rP+qf75rkpVX1mpHyzdN/xqo6IslfJZnVl22T7nz5vc/YWrutnzxjm9x714x5vaYx23m0fmvt1qq6cS3aXJNl/b/bJVk+8ny8ANLYc3nl86WrKZtoXxM5OMn/naDOROO/TZL0F/hPT3dObZvuJpnfjNnXmemWFzqmD0ysjQ19fJMkVfVn6WakeEZr7YbVVHlJkq+11v5rDfvYPsljknxjDU2NHa8b+hDUytdJN4Y7p/u9/sXIxDUPSH/8Jjm+Y3+nds4a9LOp/J90s248sH972/7vzy5Jft26ZX7Gmuj3cl2t1fesqk5NN6vQ00ZCFiuP8Tv6QNFlVXVuuu/ev41s+7AkT03y8nXuPQAAwP2IGTQAAAAmoZ8B4ePpLnQ+aS22/d/pLla+ci27cFm6O44n6/KMLOVRVQ9PskWSK/vHplW1+0j92bnnsgKL0i0h8rmqevQa2rkmybPG3IU9rZ9NYKVdRp4/LMnP++c/T3cxeXVl1yR5xASf8ff0d5W/vbW2Z5I/SfLsJEeMVNkj91x6YXTbZ7Vu6Yht1hDOuDeuSXLymGOzVWttQT8bwJlJXp1kRj8bwY/SLZsw1cbefb6mMftFRsarv2A8Y7wdV9XfVtWy8R6r7Ux3gfkXuedSM2PPv1GXr6bur1prN/ZlD6+qbceUj7evcVXVZulmK/i3iepO0jvTHfu9WmvbpVsGZ9X4VtU26ZZIOSvdDAI7rGU7G/r4pqoOSvd9eE7rZtpZnSMy8ewZByb58kjgYl1ck27Gmx1HjuN2rbWVy3qscXzX0l8neXSS/ft9Prl/v/r+7NCHUFbX10n9XlbV59Ywpp8bZ7N7/T2rqrenm/HjgHbPWYwu6/8dPW9XN0PGS5J8vbX20wk/FAAAwAZEQAMAAGASqvPcdHc1L1rL3ZyS5A1VNW0ttv1sxkyfX1Wb9ft6QLrAxbT+Tusk+UiS51TVn1bV1knekeTjrbWlrbVbk3w8yTuqauuqemK62UE+NLr/1tqCJH+b5ItVNd7Fv39OcnIfOEhV7dQfp1Fvqaqtquqx6UIfH+3fX5DkhH6bHZO8Nd2MF0l30fqoqnp6VT2gqh5aVY+Z6CBV1dOqaq/+ONySbsmT0ZkEnpJuGZL7wplJXlFV+/fnz9ZVdUh/kXPrdBclr+/7fVS6O83vC2saswuSPLuqnlRVm6c7b8b9v4PW2jtHQi2/91hDH85JN/YP7Mf15Unmr6Huy6pqz/7i9Akr67bWrkzy/SRv68//eUn+OMnH+s9W/Xdk8/71tKraYpx2npTksjEXk9fFtulmHri5qh6a5G/GlJ+e5JLW2tFJPpNuXKbCBjW+VfX/pPu9Oqy19p1x6vxJkoemW5JkTQ5OdyzXWWvtF0kuTPIPVbVd/zv0iKpa+Ts80fiujW3TzTBxUx/YeduY/nwuyT/1x3WzqloZ4Jj07+WYINrYx7PG2WaN37OxqupN6WaMekYfpBrd10/SLQX05qraoqr2SLdszL+O2c0RGf83AQAAYIMloAEAALBmn+7vFL8lyclJXtpaG71r+A1j7kBe3dT8K30m3RT493rK9tbad9NdCNx/5O0z013Me1GSN/fPX9LXvzzJK9Jd+Lwu3YW/0dk7Xplky75sQZL/NeZzrWz3g+ku4n65qmatpmunp1ui4cKqWprkW0n2H1PnK0muTvKldEvCXNi//3dJLkl3R/UPk3y3fy/9hdqj0k33f3O/j10zsT9KdxH6lnRBmq+kD55U1b5Jlo13EXiqtdYuSTfW70037lcnObIvuyLJPyT5ZrolF/ZK8vX7ol9Zw5j158Cr0i3z8Yu+30sG6MPbkvwk3bI2X0lyamvt80m3tEH/XXpY36fPJ3lXkn9P8t/9Nm8b2dcLk8zt+3pKkue11q7vy3ZN971YeW7fnuQ/x+nTIZnaZSLenmROuvP3M+lCUUmSPjBxUJL/1b/1V0nmVNWLp6DdDWp8k7wlyfQkn13DTA4vTR8wG6/Bqqp0M2h8fgo/xxHpwj1XpDtWFyR5SF827viug9PS/S7fkG7cxn6Wl6QLnf043W/365N1+r28N8b9nlXVi6tq9O/HO9PNiHT1yJj+7Uj5i/r+3Zju2L2ltfallYVV9YQkMzNxIAcAAGCDU79bAhIAAID7s6o6IMkrW2t/tr77Mhl9oOO/kmzWWrtr/fYmqaqPJTmrtTaVF+E3elW1OMnRrbUvru++DKmqrkh30fmK9d2X+9LGMr5VtV+S97bW9lvffQEAAIDxbLq+OwAAAMDk9DNPXDhhRVartXbY+u4D90/9ch/n/KGFMzZCb5u4CgAAAKw/ljgBAACADciYJXVGH3+6vvu2oWqt/ba1dsr67kdifNdWa+07rbWxS6Pc71TV344zvvf7vgMAALDuLHECAAAAAAAAADAwM2gAAAAAAAAAAAxs0/XV8I477thmzZq1vpoHAAAAAAAAAFhnl1566Q2ttZ0mqrfeAhqzZs3KJZdcsr6aBwAAAAAAAABYZ1X1s8nUs8QJAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMLBN13cHAAAAAAAAAIB1d+edd2bJkiVZvnz5+u7KRmnatGmZOXNmNttss7XaXkADAAAAAAAAADYCS5YsybbbbptZs2alqtZ3dzYqrbXceOONWbJkSXbbbbe12oclTgAAAAAAAABgI7B8+fLMmDFDOGMAVZUZM2as0+wkAhoAAAAAAAAAsJEQzhjOuh5bAQ0AAAAAAAAAgIFtur47AAAAAAAAAABMvVnHf2ZK97f4lEMmXXfhwoWZN29eFi1alMc85jFT2o8NlRk0AAAAAAAAAIAptWDBgjzpSU/KggULBmtjxYoVg+17CAIaAAAAAAAAAMCUWbZsWb72ta/lrLPOyrnnnrvq/b//+7/PXnvtldmzZ+f4449Pklx99dV5xjOekdmzZ2fOnDn5yU9+kosuuijPfvazV2336le/OvPnz0+SzJo1K2984xszZ86cnH/++TnzzDOz7777Zvbs2TnssMNy2223JUl+9atfZd68eZk9e3Zmz56db3zjG3nrW9+a0047bdV+3/zmN+f000+/D45IxxInAAAAAAAAAMCU+eQnP5mDDjooj3rUozJjxoxceumlue666/LJT34y3/72t7PVVlvl17/+dZLkxS9+cY4//vjMmzcvy5cvz913351rrrlmjfufMWNGvvvd7yZJbrzxxrz85S9Pkpxwwgk566yz8prXvCavfe1r85SnPCWf+MQnsmLFiixbtiw777xz/vzP/zyvf/3rc/fdd+fcc8/Nd77znWEPxggBDQAAAAAAAABgyixYsCCve93rkiQvfOELs2DBgrTWctRRR2WrrbZKkuywww5ZunRprr322sybNy9JMm3atEnt//DDD1/1/Ec/+lFOOOGE3HTTTVm2bFkOPPDAJMmXv/zlnHPOOUmSTTbZJNOnT8/06dMzY8aMfO9738uvfvWr7L333pkxY8aUfe6JCGgAAAAAAAAAAFPi17/+db785S/nhz/8YaoqK1asSFXl+c9//qT3semmm+buu+9e9Xr58uX3KN96661XPT/yyCOzcOHCzJ49O/Pnz89FF120xn0fffTRmT9/fn75y1/mL//yLyfdp6nwgPu0NQAAAAAAAABgo3XBBRfkJS95SX72s59l8eLFueaaa7Lbbrtl+vTp+cAHPpDbbrstSRfk2HbbbTNz5swsXLgwSXLHHXfktttuy6677porrrgid9xxR2666aZ86UtfGre9pUuX5iEPeUjuvPPOfOQjH1n1/tOf/vScccYZSZIVK1bk5ptvTpLMmzcvn//853PxxRevmm3jvmIGDQAAAAAAAADYCC0+5ZD7vM0FCxbkjW984z3eO+yww7Jo0aIceuihmTt3bjbffPMcfPDBeec735kPfehDOfbYY/PWt741m222Wc4///w8/OEPzwte8II87nGPy2677Za999573PZOOumk7L///tlpp52y//77Z+nSpUmS008/Pcccc0zOOuusbLLJJjnjjDPyhCc8IZtvvnme9rSnZfvtt88mm2wy6LEYq1pr92mDK82dO7ddcskl66VtAAAAAAAAANjYLFq0KHvsscf67sb92t133505c+bk/PPPz+67736vt1/dMa6qS1trcyfa1hInAAAAAAAAAMBG74orrsgjH/nIPP3pT1+rcMa6ssQJAAAAAAAAALDR23PPPfPTn/50vbVvBg0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYBMGNKrq7Kq6rqp+NE55VdV7qurqqrqsquZMfTcBAAAAAAAAADZcm06izvwk701yzjjlz0qye//YP8kZ/b8AAAAAAAAAwPpy4vQp3t/NE1bZZJNNstdee616vXDhwsyaNWtq+7GBmjCg0Vr7alXNWkOV5yY5p7XWknyrqravqoe01n4xRX0EAAAAAAAAADYAW265Zb7//e+PW37XXXdl000nM5fExmcqPvVDk1wz8npJ/97vBTSq6pgkxyTJwx72sClomrU16/jPTNm+Fp9yyJTtCwAAAAAAAICNy/z58/Pxj388y5Yty4oVK/KVr3wlp556as4777zccccdmTdvXt7+9rcnSU4++eR88IMfzIMe9KDssssu2WeffXLcccflqU99at797ndn7ty5ueGGGzJ37twsXrw4K1asyPHHH5+LLrood9xxR171qlfl2GOPzUUXXZQTTzwxO+64Y370ox9ln332yYc//OFUVS6++OK87nWvy6233potttgiX/rSl3LIIYfkPe95Tx7/+McnSZ70pCflfe97X2bPnj1lx+E+jaW01t6f5P1JMnfu3HZftg0AAAAAAAAADOv2229fFXLYbbfd8olPfCJJ8t3vfjeXXXZZdthhh1x44YW56qqr8p3vfCettRx66KH56le/mq233jrnnntuvv/97+euu+7KnDlzss8++6yxvbPOOivTp0/PxRdfnDvuuCNPfOITc8ABByRJvve97+Xyyy/PzjvvnCc+8Yn5+te/nv322y+HH354PvrRj2bffffNLbfcki233DIve9nLMn/+/Jx22mm58sors3z58ikNZyRTE9C4NskuI69n9u8BAAAAAAAAAH9Axlvi5JnPfGZ22GGHJMmFF16YCy+8MHvvvXeSZNmyZbnqqquydOnSzJs3L1tttVWS5NBDD52wvQsvvDCXXXZZLrjggiTJzTffnKuuuiqbb7559ttvv8ycOTNJ8vjHPz6LFy/O9OnT85CHPCT77rtvkmS77bZLkjz/+c/PSSedlFNPPTVnn312jjzyyHU7EKsxFQGNTyV5dVWdm2T/JDe31n5veRMAAAAAAAAA4A/T1ltvvep5ay1vetObcuyxx96jzmmnnTbu9ptuumnuvvvuJMny5cvvsa9//Md/zIEHHniP+hdddFG22GKLVa832WST3HXXXePuf6uttsozn/nMfPKTn8x5552XSy+9dHIf7F54wEQVqmpBkm8meXRVLamql1XVK6rqFX2Vzyb5aZKrk5yZ5JVT3ksAAAAAAAAAYKNw4IEH5uyzz86yZcuSJNdee22uu+66PPnJT87ChQtz++23Z+nSpfn0pz+9aptZs2atCk2snC1j5b7OOOOM3HnnnUmSK6+8Mrfeeuu4bT/60Y/OL37xi1x88cVJkqVLl64Kbhx99NF57Wtfm3333TcPfOADp/ZDZxIzaLTWXjRBeUvyqinrEQAAAAAAAACw7k68eX33YLUOOOCALFq0KE94whOSJNtss00+/OEPZ86cOTn88MMze/bsPOhBD1q1DEmSHHfccXnBC16Q97///TnkkENWvX/00Udn8eLFmTNnTlpr2WmnnbJw4cJx2958883z0Y9+NK95zWty++23Z8stt8wXv/jFbLPNNtlnn32y3Xbb5aijjhrkc1eXr7jvzZ07t11yySXrpW2SWcd/Zsr2tfiUQyauBAAAAAAAAMCgFi1alD322GN9d2PKnHjiidlmm21y3HHH3Sft/fznP89Tn/rU/PjHP84DHrD6BUlWd4yr6tLW2tyJ9j/hEicAAAAAAAAAABuzc845J/vvv39OPvnkccMZ62rCJU4AAAAAAAAAAO5rJ5544n3W1hFHHJEjjjhi0DbMoAEAAAAAAAAAG4nW2vruwkZrXY+tgAYAAAAAAAAAbASmTZuWG2+8UUhjAK213HjjjZk2bdpa78MSJwAAAAAAAACwEZg5c2aWLFmS66+/fn13ZaM0bdq0zJw5c623F9AAAAAAAAAAgI3AZpttlt122219d4NxWOIEAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAACtVcCxAAAgAElEQVQAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAY2qYBGVR1UVf9ZVVdX1fGrKX9YVf17VX2vqi6rqoOnvqsAAAAAAAAAABumCQMaVbVJkvcleVaSPZO8qKr2HFPthCTntdb2TvLCJP801R0FAAAAAAAAANhQTWYGjf2SXN1a+2lr7bdJzk3y3DF1WpLt+ufTk/x86roIAAAAAAAAALBhm0xA46FJrhl5vaR/b9SJSf5nVS1J8tkkr1ndjqrqmKq6pKouuf7669eiuwAAAAAAAAAAG57JBDQm40VJ5rfWZiY5OMmHqur39t1ae39rbW5rbe5OO+00RU0DAAAAAAAAANy/TSagcW2SXUZez+zfG/WyJOclSWvtm0mmJdlxKjoIAAAAAAAAALChm0xA4+Iku1fVblW1eZIXJvnUmDr/neTpSVJVe6QLaFjDBAAAAAAAAAAgkwhotNbuSvLqJF9IsijJea21y6vqHVV1aF/tr5O8vKp+kGRBkiNba22oTgMAAAAAAAAAbEg2nUyl1tpnk3x2zHtvHXl+RZInTm3XAAAAAAAAAAA2DpNZ4gQAAAAAAAAAgHUgoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAAAAAAAADAwAQ0AAAAAAAAAAAGJqABAAAAAAAAADAwAQ0AAAAAAAAAgIEJaAAAAAAAAAAADExAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgU0qoFFVB1XVf1bV1VV1/Dh1XlBVV1TV5VX1f6e2mwAAAAAAAAAAG65NJ6pQVZskeV+SZyZZkuTiqvpUa+2KkTq7J3lTkie21n5TVQ8aqsMAAAAAAAAAABuaycygsV+Sq1trP22t/TbJuUmeO6bOy5O8r7X2myRprV03td0EAAAAAAAAANhwTSag8dAk14y8XtK/N+pRSR5VVV+vqm9V1UGr21FVHVNVl1TVJddff/3a9RgAAAAAAAAAYAMzmYDGZGyaZPckT03yoiRnVtX2Yyu11t7fWpvbWpu70047TVHTAAAAAAAAAAD3b5MJaFybZJeR1zP790YtSfKp1tqdrbX/SnJlusAGAAAAAAAAAMAfvMkENC5OsntV7VZVmyd5YZJPjamzMN3sGamqHdMtefLTKewnAAAAAAAAAMAGa8KARmvtriSvTvKFJIuSnNdau7yq3lFVh/bVvpDkxqq6Ism/J/mb1tqNQ3UaAAAAAAAAAGBDsulkKrXWPpvks2Pee+vI85bkr/oHAAAAAAAAAAAjJrPECQAAAAAAAAAA60BAAwAAAAAAAABgYAIaAAAAAAAAAAADE9AAAAAAAAAAABiYgAYAAAAAAAAAwMAENAAAAAAAAAAABiagAQAAAAAAAAAwMAENAAAAAAAAAICBCWgAAAAAAAAAAAxMQAMAAAAAAAAAYGACGgAAAAAAAAAAAxPQAAAAAAAAAAAYmIAGAAAAAAAAAMDABDQAAAAAAAAAAAYmoAEAAAAAAAAAMDABDQAAAAAAAACAgQloAAAAAAAAAAAMTEADAAAAAAAAAGBgAhoAAAAAAAAAAAMT0AAAAAAAAAAAGJiABgAA/P/s3XnYLVddJ/rvLwlhShgiAbwQICggNM1kRERE2qGFVkAQm1kEBMQLF4W2hWs3o31ppNvnoq0IolwBaURACRCayBjBS0gCGQiYawgyyiDaMQ0yuu4fq17OPm/ec867a9fKe074fJ5nP+dUnb1/Z+29a6+qWvWtKgAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBdhXQqKp7VtVFVXVxVT31IM/7qapqVXXKck0EAAAAAAAAADiyHTKgUVVHJ/ntJPdKcpskD66q2+zwvOOTPCnJmUs3EgAAAAAAAADgSLabK2jcOcnFrbVLWmtfTfKqJPfd4XnPSfK8JF9esH0AAAAAAAAAAEe83QQ0bpTkEyvTn5zmfVNV3SnJSa21Ny3YNgAAAAAAAACAK4XdBDQOqqqOSvIbSZ6yi+c+tqrOrqqzP//5z2/6XwMAAAAAAAAAHBF2E9D4VJKTVqZvPM3bcnyS2yZ5Z1X9TZK7JDm1qk7ZXqi19uLW2imttVNOPPHE+a0GAAAAAAAAADiC7CagcVaSW1TVyVV1bJIHJTl16x9ba5e21q7XWrtZa+1mSd6b5D6ttbOHtBgAAAAAAAAA4AhzyIBGa+3rSZ6Q5C1JPpzk1a21C6vq2VV1n9ENBAAAAAAAAAA40h2zmye11k5Lctq2eU8/wHPvsXmzAAAAAAAAAACuPHZzixMAAAAAAAAAADYgoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYMfsdQPYG39ztYcsWO3SBWsBAAAAAAAAwJWPK2gAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACD7SqgUVX3rKqLquriqnrqDv/+5Kr6UFWdX1Vvq6qbLt9UAAAAAAAAAIAj0yEDGlV1dJLfTnKvJLdJ8uCqus22p30gySmttdsleU2SX1+6oQAAAAAAAAAAR6rdXEHjzkkubq1d0lr7apJXJbnv6hNaa+9orX1pmnxvkhsv20wAAAAAAAAAgCPXbgIaN0ryiZXpT07zDuTRSd680z9U1WOr6uyqOvvzn//87lsJAAAAAAAAAHAE201AY9eq6mFJTkny/J3+vbX24tbaKa21U0488cQl/2sAAAAAAAAAgMPWMbt4zqeSnLQyfeNp3n6q6keS/GqSH2ytfWWZ5gEAAAAAAAAAHPl2cwWNs5LcoqpOrqpjkzwoyamrT6iqOyZ5UZL7tNY+t3wzAQAAAAAAAACOXIcMaLTWvp7kCUnekuTDSV7dWruwqp5dVfeZnvb8JMcl+ZOqOreqTj1AOQAAAAAAAACAbzm7ucVJWmunJTlt27ynr/z9RxZuFwAAAAAAAADAlcZubnECAAAAAAAAAMAGBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBBDQAAAAAAAAAAAYT0AAAAAAAAAAAGExAAwAAAAAAAABgMAENAAAAAAAAAIDBjtnrBgAAAAAAAADAEeGZ116w1qXL1eKI4AoaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACDCWgAAAAAAAAAAAwmoAEAAAAAAAAAMJiABgAAAAAAAADAYAIaAAAAAAAAAACD7SqgUVX3rKqLquriqnrqDv9+1ar64+nfz6yqmy3dUAAAAAAAAACAI9Uxh3pCVR2d5LeT/GiSTyY5q6pOba19aOVpj07yD62176yqByV5XpIHjmgwAAAAAAAAXOk989oL1rp0uVoAzHbIgEaSOye5uLV2SZJU1auS3DfJakDjvkmeOf39NUn+W1VVa60t2FYAgCueHWEAADi82WYH4HCy5HrpW4V1+d7y+cMVqg6VoaiqByS5Z2vt56bphyf53tbaE1ae88HpOZ+cpj8yPefvttV6bJLHTpO3SnLRUm+EYa6X5O8O+Sy1RtRaup5ae1tPrb2tp9be1lNrb+uptbf11NrbemrtbT219raeWntbT629rafW3tZTa2/rqbW39dTa23pq7W09tfa2nlp7W0+tva2nFoeLm7bWTjzUk3ZzBY3FtNZenOTFV+T/yWaq6uzW2ilqXfG1lq6n1t7WU2tv66m1t/XU2tt6au1tPbX2tp5ae1tPrb2tp9be1lNrb+uptbf11NrbemrtbT219raeWntbT629rafW3tZTa2/rqcWR5qhdPOdTSU5amb7xNG/H51TVMUmuneQLSzQQAAAAAAAAAOBIt5uAxllJblFVJ1fVsUkelOTUbc85Nckjpr8/IMnb26HunQIAAAAAAAAA8C3ikLc4aa19vaqekOQtSY5O8gettQur6tlJzm6tnZrk95O8vKouTvL36SEOrhyWvCWNWntbT629rafW3tZTa2/rqbW39dTa23pq7W09tfa2nlp7W0+tva2n1t7WU2tv66m1t/XU2tt6au1tPbX2tp5ae1tPrb2tp9be1lOLI0q50AUAAAAAAAAAwFi7ucUJAAAAAAAAAAAbENAAAAAAAAAAABhMQAMAAAAAAAAAYDABDYBJVdUO8666F205UlTV1arqyVX1uqp6bVX9UlVd7TBo1+W+t6o6YS/awpXXAZYzfQbfEqrq6L1uwxXhcP2dV9XzdjMP9trh8Hv5VlfdSXvdDjZXVUdV1V33uh0AXLGm/v/f7nU7AIDlVGttr9vAYaKqnnywf2+t/cYu69wkyedaa1+eDnj/bJI7JflQkt9rrX1907ZemVXV81prv3KoeVdge45O8rLW2kMXqHWng/17a+39M2p+R5JPtta+UlX3SHK79Pb+zxm1/qC19qiV6eOSvL619sMzaj0pyUuTXJbkJUnumOSprbXT16011Xvb9nbsNO+KVlWvTn+Pr5hmPSTJdVprPz2j1vcnObe19sWqelh6v/GC1trHZtR6U5KfbK19bZr+9iRvbK1997q1VmoeneQGSY7Zmtda+/iMOvffYfalSS5orX1ubvuuzKrqmkn+qbX2z1V1yyTfleTNW9/vmrUW+21W1ftba3c61Lxd1tppHXxpknNaa+euW+9wM6L/P5xV1dVaa1/e63aMVFWXJHltkpe21j60QL0lf5t3SnK3JC3JezZZvpb8nS/pAO06v7V2u5n1llwHP6m19oJDzTtEjZ3Wld/UWnvdjHb9dGvtTw41b5e1Nn6PB6h7VJLjWmv/uEGNxbaNp3p3TXKz7L/987I1Xv/+1tqdqurlrbWHz2nDDjUvV2vJ+nNV1Qmttb/fNu/k1tpHZ9ZbbDmrqgtaa/9yTjtWahw07Lz9va9R99j0bbuW5KLW2lfn1FlaVd0gyfdMk+/bdDu9qm6a5BattbdW1dWTHNNau2xGnQ+01u64YVsW7WOn/aQLW2vftUm7DlB7iX5xyW2MayR5SpKbtNYeU1W3SHKr1tobN2jftbJ/Hzvrt7RSb4nP7DpJfiaX7///j71u29Kq6m7pv82XVtWJ6e1bq99ectxsKUuN8V4RquoarbUvbfD6xbbxptcuuV282DZLVZ3dWjtl3dddUarqtkluk+SbJ23tdptx5PJaVddNclL278t2vX84avtnKQdo32VzxsumejdKctPs/3mdMbN5i9c7HE0nKv5C9o1BvDvJCzcZE9q0XzxI3Ue21l66xvMP23XJkuOMg/ugRb7LpY5LcHg55tBP4VvI8dOft0ofiDh1mr53kvetUee0JHee/v6fk3xHkj9L8kNT3Ucd4HUHVVW/nuTXkvxTkv+RPtj4S621Vxz0hTvXumWSFya5QWvttlV1uyT3aa392ho1fit9pbujDXZcfzTJ9jDGvXaYd0hLfGattW9U1U2r6tgFBsv+6/Tn1ZKckuS8JDW16+wk3zej5muTnFJV35nkxUlen+SVSf7NjFqfrKrfaa39wrQB/6YkvzejTpI8qrX2gqr6sSTXTfLwJC9PstYg0LSRd40k15vatHWVj2sludG6jVpi2d/mtq2126xMv6Oq5h6oe2GS21fV7dMHvV6S5Jdkp/AAACAASURBVGVJfnBGrT9L8uqqekD6jtipSf7dzHalqp6Y5BlJPpvkn6fZLX3ZXdej05f1d0zT90hyTpKTq+rZrbWXr9Guw7IvW7K/npyR5Aem38DpSc5K8sAkcwbANv5tVtUN039/V9+2Q3Ct9N/rHKdMjzdM0z+R5PwkP19Vf9Ja+/Vdtu2yHPz7vNa6DVuo31i8/6+q3zzYv+922a2qUw/9rPx9a+1nd1Nv8sGq+mySv5ge726tXbrG67fatmifPR2QeV6S66d//pWkzVkuktw+yYOSvGQabP+DJK/aYMB9qfXm05P8dJKtg0svnX5Da31m237nd8z+699Zv/OqunmSF6Qv7/+c5P9N7xsvWaPG49MHf25eVeev/NPxSd4zp12TJdfBj0h/n6t+dod5B3Pv6c/rJ7lrkrdP0/8qyV9m3/e7jqcl2T5Qv9O83VjiPSZJquqVSX4+yTfS12/XqqoXtNaeP6NdyYLbxlX18vR9uXOn9iV9HbPrgEaSY6vqIUnuutNB4TlhmyT/Yls7j0mySQh3qb7xDVV1r61+sKpuk+TVSW47s2mLLWdJ3l9V39NaO2tmW5K+vdqyrz9c1ZLcfN2CVfXjSX43yUemuidX1eNaa29es84F2Xn7Z+u7XGubvfpZys9P8s6pxm9V1S+31l6zTp2Veo9J8tgkJ6T/pm6c/r7nhO3fVlU/leR1rc0+42rRPnYaM7ioqm6yxEDxgH5xkW2MyUvTfwtb266fSl+PrB3QqKrHJXlWki9n3/I797e09Gd2WpL3Jrkg+/Z/Z1mybVX10ezwW2+trf2ZTfWekb5vcqv07/Yq6SeffP86dRYeN9sKCDwz+w5qbvVl67zPpcZ4V9u1077mpen7c09ZZ5t2qnfX9G3O45LcZNoOfVxr7RfWbNqS23jJstvF27dZjs78bZa3VtW/S/LHSb64NXPdgMCgMaBnpI9t3Sa9/7hX+kHq3W4zLr68Tu16Tvq200eyfz/7Q2uUWd3+uUmSf5j+fp0kH09y8ox2Lbmf//70cc/Vdn1mGo94TGvtnDXa9bz0sbYPZf9t/1mBiiXqjTr+snB/9rL0EOhvTdMPSd/OmHPy4lL94oE8K319t1vHH/opu7P09nr2jTPuZN3f+Yh15mLf5cLHJTictNY8PPZ7pK8kj1+ZPj7JGWu8/kMrfz8nyVEr0+dt0K5zpz/vl+T3k1x7br0k70oPkXxgZd4H16zxiIM9ZrTp8ek7v19MPyi39fhoklfs5WeWvqFxVpL/mOTJW48NvsvXJfmXK9O3TfKambXeP/35y0meOP39Axu07dfTB8vOSvJTG9Q5f/rzBUnuN7ddSZ40LQNfSXLJ9PePph/cfMKMehsv+9vqvSLJXVamvzf9zJFNvsunJ3n06ryZ9f739IPdFyS569w6U62Lk3zbJjVWar0lfSdsa/oG07wTZvRDS/ZlL07fgX7i9Dgjye/OfI+L9dfblo0nJvn3q//HjFob/zanz+sd6Ttgb195vH6r5ox2nZF+ttbW9HHT93v1rKxX16j3nPSDuMenH1B+fJJnz2zbYv1Glu3/d1xms+Z6OMlfpw+2Hehxj/SzQtdt303SQ0S/k+Rv5iyzS37202svTnLrua8/SN0fTD9A8cUkf5jkO2fUWGq9eVGSq61MXz39jOx162z/nb9jerw+yf1nfk7vTT8odMz0eFiSM9esce30s1n/e/qg/dbjhA2/w43XwUkenL7e/Yf0AY2txzuSvG1mu05P8u0r09+e5C1r1rhX+mDZZ5P85srj/0k/K37Oe/yfC77HrXXmQ9MHma6y9XvY8LvceNs4yYeTftXNDdpzt/QB6C+kDwauPv5gzVpPm36TX0/yjyuPLyR57gZtXKRvTPLj6f32cekHXy5McocZdUb8lv5q+tw+kr6PecEmy9lSj6ld37ky/R1J/mpGnZse7DGj3nlJrr8yfWI2HMtIcmz2X59fMLPWZekDs1+blv/LkvzjzFob97Errz1jasvbVpfbuZ/X9OdS/eIi2xjT687e/vq5y0b6Nuj15r6vwZ/Z7P3wkW1L8m0rjxsl+cXM3MfZalv6gaHV73Nu2xYbN5v6xnulh6i++Z5n1tpojHdbreckeVz27WM+Nj3g+MAk75xR78z0A8uz9nWy4DbetrpLbBfvtM1yWTbYZsm+8cDVxyUz6jwiy48BXZDkqK3+MH2c68/3cnmdXn9RkmPnvn5brd9L8m+2LX8vmllryTGW30vyYyvT/zrJi5LcJevva16U5KpLfF5L1RuxvE51F+vPssOY3U7zdllro35xev75B3hckOQrS32/M97botvrg9q45Dpz4+9y5XWLHZfwOLwerqDBTm6QZDXx/dVp3m59oqp+qLX29vQDEicl+VhVfduG7brK9OePJ/mT1tqlVTudvLMr12itvW/b69e69Upr7Q/n/ucH8Mokb07y3CRPXZl/WZt/ubSt3/imn9lHpsdRWSY5eavW2gVbE621D1bVrWfW+lpVPTh9Y23rTKCrHOT5l7PtbL4z03eo35ekVdX927wz+86pqtPTk9RPq6rjM+PMk9YvYfyCqnpia+23DvmCQ9t42U/2S71eJclfVtXHp+mbpg8mzHFZVT0t/eDVD0xnZK/7Xa5ekmwr3X5ukrtU1V3a/EuSfSI9Sb2Ek1prn12Z/tw07++rat1LEC7Wl01nZd+tTbehqqrfTT/zf46l+p4tVVXflz6o9+hp3tEza23825w+sz+sqqdk/zNJW5ITquoObf3bklw/PYi15WvpQZ5/qqqvHOA1B3Of1trtV6ZfWFXnpQ8yrWuRfmOyZP9/u+ywzLbWfn7NOr/aWnvXwZ5QVc9ap2BV3Tj9zLsfSL/SxIXpgwnrWvKzT5LPttY+vMHrv2k6++vHkzwyPTDwX5P8Ufp7Pi3JLdcsuch6M8mn06/UsnU50aumh0fWsvI7/6nW2mtntGMn12j7XyXpFVX1y2u269L09dGDF2rTlo3XwelnXf9tkutl/7NZLksfEJrjpNba365MfzZ93b6OT6efCXWf9PD4art+ac1aI97jVarqKkl+Msl/a619rarazFrJAtvGKz6Y5Ibp73mW1tq7k7y7+mW5f39unanWc5M8t6qemx6qvmX2XUZ7k89skb6xtfam6bs8PX2f6X6ttf9vRqkRy9mPzXzd5VRfKT00ycmttedUv8XpDVtrc84uu6y1dvHK9CXp73MtbcZl5w/hqLb/LU2+kL4vPNdXWmtf3VqfT1d9mbXMttYWO5Mxy/SxW/7jAu3ZsnS/uNQ2RpJ8tfotalqSrdtKzdlWT/oYy1KXL9/pM9uk3sunK7+8MSvvb+bY1GJta619Ydus/7uqzsm8fZwk+WprrW0tX9VvrTnXkuNml7Y1ryR0EJuO8a7avo/54qo6t7X2K1X1f84p2Fr7xLbl4RsHeu4OltzGW7W1XfywJHefs128us3SWnvaBm1Zrbn2lRoOUGfEGNDWLWm/Xv22TZ9LPx6wriWX16Rvy15nas+m7tJae8zWRGvtzdWvHjvHkvv529t1elX9l9ba46rqqmvWuiR9WZ+7Xlu83qDlNVm2P3v/NOb83qlt35veN82yYb+Y9N/Mj6WHvVdV+n7GrtVCV66dnrv09nqSZNrGeHySu0+z3pkenppzm59F+6AFvsstSx6X4DAioMFOXpbkfVX1p9P0T6anj3fr55K8rKqemd5xnFtV56ZvEB30fk6H8Iaq+qv0S+Y/vvq9Iefey+vvph3prZ2wB2TmwGNVnZLkV3P5+6mtdYmhrQH3qvoPST7TVu4bXVVz7xv9xiU+s9bas5JF7392flW9JP3qC0kf4Js72PjI9Mtl/qfW2ker6uT0y4it497bpj+QvgF57/RlZE5A49FJ7pCeZv/SFFB65Iw6Wz5TVce31i6blpE7Jfm1tsb91CZLLfs/MeM1h/LA9MvAPaq19plpsHfdy55uHwh53QHmr+uSJO+sqjdl/wGqOYGPd1bVG7PvcpsPmOZdM/2M3HUs1pelX+73Wkm2Bt2Om+bNsUjfs+IX089A+dPW2oXVbxPwjpm1lvxtfnf6JXFPTd/RmXVbkskfJTmzql4/Td87ySun5WLObYO+WFUPTfKq9OXjwVm5DOqallzOluz/F1lmW2uvXuI523w8/Qy6/2tGYGTVkp99kpxdVX+cfhuo1b5sznrur9N/h89vra3u5L+mqu5+gNcczFK/zUuTXFhVf57+uf1o+nbtbyazLoH6k1X11mk7LVV10/Sz/udclv7NVfXU7PtdPjDJaTXdN3iDQO4SNl4HTwMuH8u8W9YdyNuq6i3pVwzZaudb12zXeUnOm/Ztvtha+0byzZDRWoOWrbWPVdUnk3z5UMGuNbwoPdR+XpIzpmVs7q2CkgW2javqDenL6PFJPlRV78v+fcZ91qi1FYT+h1ruFieXpJ/ddONMQdz0WwatcxnbVRv1jXX5Sy9fO/0g3ROqau1+Z+u3NK3HP92m+1dPB4VvnL68rGVadm+fHqJLeqDxvHXrTH4n/eD2D6WffXhZ+q11vmdGrbOr6rT0W8G09EtBn7W1rKy7fFTVXdLPpr51+hUrjk7/3a97u5o379D3nLZmjVXvmgb7r15VP5p+lbM3HOI1O9ohIHNS+lUw5gRkNu5jt7TW3lVVN8i+5eB920Iu61i6X1xy+/+Z6bdwPKmq/ig9kDu31tPST3Y4M/v3PXMu177TZ7bJQP5X07cDfjUb3n5lybbV/reXPCp9X2yTse1XV9WLklxnCqQ8KjNvc7vwuNk7qur56eMZq8vGuuM/yeZjvKu+VP0WUFu3e3pA9u3nzwlRfaL6JeDbdIDtSelX79qV1tp5VfXB9KsHLHkS3dZ28aM3GJvaauPTqupGufyY8dq3jKiqa6SPq9+ktfbYqrpF+gkQa99iabLkGNDZVXWd9N/POUn+V/q22bqWXF6TfhLkB6blZNa27IpPT+Oxq2MZn57ZriX38/+2qn4lfR8z6cvvZ6d9nV2FEVe2Zb+Ufhznbdl8vZSF6y25vCbL9mffnX0nLyY97HpRTSc3rnmMaKN+cfLG9Cv0Xu7Esap655q1dn2LnN1acHt9ywvTj+P8zjT98Gnez82otVMfNHf9ssR3uWXJ4xIcRqq1TULoXFlNOz1bgzdntNY+MKPGrdPPajomySeTnNVam33vyuqpz2umJ8m/MR20Oq7tfyb6bmvdPP3SWHdNTxN+NMnDWmt/M6PWRemXEN7v3pxzU4FTmOWU9LNRT0u/lPa/aK2tfd/oqd4J2f8zO7619pk1a3xf+m0KjmutbXz/s6q6WvZPNp6R5IVbg48z6l09fQflojmvH2Fl4OzmrbVn12ZnlqWqzm+t3a6q7pbk19J3Dp/eWvveNesstuyPMA3W3KK19tZp5/Po1traZ9ENaNczdpq/NQizZq1Kcv/0S34nyXuSvLbNWCEv3Jc9Mn3A8R3pYYO7J3nm3IGOJfqeA9Q9Kr0vmjVIW1Vv235gdad5u6x1RvolLv/XNH1ckjcluWeSc1prt1mz3vekf5dJ8p7W2uzEfVXdLP0yzt+fvnP5niS/OHPZ2Gk5e+ic9dyS/f+0zD4j++4PP3uZrapHpO8s3Wqa9eEkv9la2+09c7fXu336b/zu6Tvnf53kXW3Ns8eX7rOr6qU7zG6ttUetWefo9CuPPHtOOw5Qc5H15vRdHtC6y0f1+8P/Uvpg6I3St/me0lpb+8Ba9fumH6Rp8+6fvpRN18G18318k333lJ014DIdqF3dL/nTgz3/IHXem+RHtvXZp7fW7nrwV+5Y623pt7rZ+CyWqjp6KzQyTVf6Z7/J1XK2al03/Qz5tYJwVfWDB/v3dcIpB+h3Vkqt1/9MNS9IPwj83tbaHarqu9IDcZcLgGzQxl23bel+Z6Xu2em36fvqNH1s+vbB2kGIqnpSksdkX3j5fkle3GZcoa+q3t9au1NVfaC1dsdp3nlt/7MQd1tr0eVj+swelB6EPiXJzyS5ZVvz7OXq90w/M/u21/8i/QzVX1mnzkq9o9JDAv86vU98S5KXzNz+f2GmgExr7dbT7/z0OcvFVO9+Wdku26CP/bfp+6jvTH+PP5Dkl1trrznY69aof8zcfnF6j29v+8KW10lyj9ban82s923pwbBK74f+bmad96VfYW37WNKcbdmTW2sfXZmu9NsH/fXMtl2S5M5z39uotlXVakj/6+nBj/+yyVhQ9dDUN3+brbU/n1lnsXGzbe9zS2utzQoiLjHGO9W5efo+5velb/O9N307+VNJvrv1q2atU+96U70fSf/8T0/ypHb5K6Ucqs5fJPnhrfXl4aSq/nP6eulD2XfmdJsTEKgeJj0nyc+01m47ba//ZWvtDjPbtugY0ErdmyW51rrbnyuvX2R5nWpdmB4S297Prh20nsa4npH9xzKe1WaE7Bcey7ve1K7VMcZnpQfhbtL2v1LZgWocbFu2bTAusmPdmeu5pccsF+vPpv3oA1pn7GypfnGUWiCEuNT2+kq9y+2HzN03mV671Dpzse9yyeMSHGbaYXCfFY/D55GeWFv7nq9XUNsud7+/neatWXProOEmNd494n0m+ffZ/L7R10jyH9IH35LkFkl+Ykadxe6ZNWC5uHf6Pe0+Ok3fIfPvdfuHSa6zMn3drHlv7JXXvjDJbyf58EqtszZ4nx+Y/nxukodsslxMr9142R/wXT4m/Yzzj0zTt8j8+2zfMn1n5/Qkb996LNDGayxQ45rpB16SfjD4PkmuskDNjb/P9MuY33d63HCTz2mJvmel3ivTk/JbV5P4ZPqA7zo1rpbkhPQzt647/f2E9DDcrPVe+u18rrIyfdWtWnN+n9M6+H9LP6B/k/Sd6Y2+0yUe6Wdo7recbc3b43ZV+o7c+6ff0U3SB5LXrfOI9Csn/av0s56vk35W8DlJHr5B+45LD+v8p/SrCnxsg1qHY589+77OB6i36Hpz4bbdLf22Q3+7Sd94OD+WXAcfro8k5+5m3i5rvT79Sjm/n5V7ns+s9fFpm+WHM51AseH7fOe0zjwhfbD3zCS/sUG9G0597L0Pl+V/q29Iv3rGVae/X3gYtOub23jT9NHZYNvxAMvseTNrnZ/kmtvaev7MWmdO721rv/XEOds9g76Ds7fe78q8OdtkO409zP28jk7yRwu+x63PfXXffNZyMb32punhtaRvw8/a3kjfxr7+yvSJGyyv107yG+mXBz87/VY/197gPe70W5o7xnK5dePc9eWSv5sDLLPnbFDv9E36r5FtG/FYWW+ekOSEmTUOu3Gz9KuMHDX9/dj0K7HOen+H8yP9jOez0m+19OStxwb17p8esL80/eo9lyX5x5m1LtraVlngfW6t4xbp/6fXLzUGtFHfuPr72+mxQbsOi/3Jg7TvsNrPTz94fMh5a9Y8Nslt/3/2zjzu1nJs/99jp+wGO5GMzVISaVIqQwhRvUXDm0oSKr1kKmNKXlIKyasIiQaVUJrnQdE8Ty8y1kv4aRDNx++P87r3utd61jPc130ta7Vbx+ezP89e937uc1/ree51Ded5nMeR/rTNfRZ5Xgf0s1uMsOFdvfoz7DEVfn8vJ/Kxv0+vVwW+nhmryH69du/VwPK118v123s0iLc+sGP6+zMYcv6TOEscOOxnYPxnMH/GFidjdMHR6XybpKVs/376O5pB0g22X9zwnmcRHYsLSlqNKMhAHKAWahirr8WKkheU82SB9lbItffKdeXI9ULHN/rttPeNPoIoMFWdgXcQ7MTG8ncu55nVF5JOt71Rxq37AC8jktHYvjaxYHPwEtesZGz/PT1zOVjbqbOsFmuBzFgAdyikNzcE9lcoyszYB3lAz35p7Eb8Li8DsP1LSUtkxjoBOAz4FgWe1Xo3DNBWReYi4BWp2+0MIum4NdE53nRcnwcOqJ7bFPPDtj+VMS4cCheVxQaSVrJ9a0aoYnNPwsq271VIfZ8OfCzFbyIzujNhlfKcdG81od0LfC1zXMVsSSS9j+h6+DPxzIpg8Teyy9JEmfUuOE9K8kTicFm3SPkhIePYCJLWI+btpemWeM2ZtyuJ9QVtn5ye/xyJ9V2Bzd3drXKepLcSMqFNbbOqjoAnE/6eFwGvdLOuiYHM2ZJeQBAhnunounoJ4b363xnhLpH0NeA4avY5zpNehkLrpqSNCcn96hlrq96wPZHsfTvxeTxN0o7OsAZQeVnikii2Bif1kwlocraoqXFUc+HcfyL/93m/pNWrZ1TSGoQVVw5+RJ4FXj+sRFhk7QZ8W2GD9gM37EKtYdG0Zr4L+J7tvSXldjC+C/g0QXQVcIikfW1/JyPWM4HPA8+xvZGklYGXu6GyUMIfUwf8T4CzJf2dIMJlQWHF9m6CtFlfm5qqe5xLdEj9I71ekChyNlZpSfiLpE1tn5zG+R9Abje76N4TV3uNHHwV+DGwhKTPEZLQWXtPhQXP+5j4s8+RHoeQq16AkNM+gCDWNTkz7UrYjyzX87l5CtGR2hgpx7K0pAVcprv7YYWSVbBV4/nNUipVWDq8hyiALU/kXQ4jCGNNMcvdliZ/o8HPvgffAW4EtkqvtyfOF1kqOZOMo1E+VKECtxCweNpz1vNSz80c1+mS3kPY3dRzSTPuxlYoCL0IWFTdNlJzCIJ6Lu4nPkfnkylLX3Jsk+2Na+PK3RvvTHSaP0B8jqp9R1ZOqW3eTNJ2to+a7P02eZ+SNiOUAx6TtAvwCWJ9WlHSrs5Tgyu1XlbxjiSKv/V8xkEZ8X6d/syivb0twAHAJrZzpejruJ3I6T443TfOAA8pFISr+X/5NnEVD+vrqCkYSnqZGygYFpwbr6Kz9+9F9mcSuFjSfoQtbSu7oPT870nMa3PnMGco20j6dM/rKlZjhcp0xv8IEz+XOYo7OxAd/3W8o8+1mY7t1UQz5G+J3+2SknZwhsUPFM1ZFs2NSPos8XP6Nd22YDnPRtF5tiC+AryB+CzhsJjKsbaFlvv1PtiDsAa7nXjOlibTfi4pVaxJNFQeQczfRxHqxE1jFVnj0lmi8f8/xuMDY4LGGP2wGOHdfTndCfcZJUnUx1u4+ieC6dgUbyAWuecRXRQV7iMOGE1QbdRXJAo4J6fXmwBZ1hPEhL8SMWFXiRGTn7Rt7Rtdw/K2t06EDxx+qzmJuCKeWer2C+36J0L5IgcP276n523lWunMkrSY7b/DXPm63HmyWOIsYSuiE/tA23dLejaxAZkpShxSB40HbT9U/S4lPYk8H1OAR2wfWmxkZTeiSp/FnQhrhwMU1kY52Mj23HkwFTTfRGaSvA/OIlQJmqLU3FNh/jT3bAZ8zfbDkho9G7YPBg6W9D5nyHlPEvOzkk6ns1HfxR1bkqaEm92JQm1b2cLq/18PWJkonkN4ujcljQwi4fttQjbyKtqTp0oR4ea4j5So7d9KyvXArCwZliEKHstLapJwGdScfTixdnwDwPb1ko4hrLOaolq36+8pKwmRUGrd/Arx87/Bdu4aUsdbgfVT0elYhRfpkeTtW0qT10qi5Bp8au3vs4Flie7BF800gO25nwFJL6VbYrQxOSbhA8AJku6kcy7ZOieQ7SPTfPOCdOk22w9nxvoncDxwfEraHAxcSHTK5OBJaZ+4FfDJzBgV9gBWq9Ymhaz/pUTxtCm+S3wGqjH9L7FGNSZo2N48/XWfVDxclCC95uIkwsLiHNqtTbOdLHQAbP8jEbNysQtwtKT/IT6PfyTIYjk4giCV/ph4/v+DjJ89gO2jJV1FUn0BNmtRxPpJGsdPaXdWqrA9keD9L2K/sSQxj88UxxBk4P0IQnCF+5oUzfvgdoLYeDLdOZaconI/gsxemeMqSZA/Q9KZwLHp9dbEzzIHy9uu/94+0+K8BHClpC8RSl0Q77upp/ogyN7bpK91Se+mhcgVCZLfU+k0+EDky96dOS6Iz2aWBUwNJcc2qL3xR4BVXMDKhTJ5s4XT1xLvd2+iw3lBQuFmLdu3KaT4TyTm3aYotV5WKNIk5fIS738uRM4A+CdRhOxt6stpnNiH2O8sKelo4sz/jhZjqxoeXkOc6e6jecNDkbnR9rIN/s8mqJ6nder/HXln1qOJvevGxB5tB+AvmeOqN7/MTjFzn7nWDWopd/c2YNm0V6nwFKDN/ucg4PVONlSJFHEsGc0+kyA3ZwllcyNbEXuXEkTc0vNsMbQlIdbQb7+eS8LF9rlKzS/p0m22c8lrmxPzxtUp9p2Sctfkko3A16bP5gl0nyVKNY2MMSSMCRpj9EPu4b7CccSmpV9St3FBx+EldqSkt9o+sc3Aqk27pIuIbuD70ut96E4mN8Fatlec/ttmBts3A++vvf4NsH9muFLs6l2IZPFziWLCWURnUVNcQSSc+xVqn5oRD4JM9DZgvrQYv59IHOfgIODnkk5Ir7ckpOlzUKyzDOYm738kaQl1OlNnzBIewIF1ELhQ0icItZwNiWcsJ2kA8FNJ7yV+B1ndSL0ouBGVQpFjW8KLGvKLMPNJenK18Uyf9yc3HMxXJ/sn8j+XRTs7iAPTb4nE0kUpqXRvTiDbh6TE2TJ0s9GzPDUTIePKab9xevyBkFBthbRmVh2g6zt5dUs6jDjkNcEgEr732M5N1veiVEF/qg763O76bwJ3E4e6B5rePMA5eyHbl/fMZVl+7rY3KDOkuSi1bv6BkJMuQc7A9mY9ry+X9LLMcKXJayVRbA12j1peIujm7BuR9H5ivvkRsS59X9LhOUQ721ck4lk9cZNFqlDhbjBJryKKmW8k1pStpr5jSuwLnAlckt7zcoRMdw7+Rsz5Fe5L13KwuO3jJX0cwPYjklonHZ3hId4HC9n+aIE4JVVasP1rYB1Ji6TX/5jmlqlifUnSBXT8yXd0Qz/lRF6vcBedQjySnpa5z37A9mR70RysAZxq+16iK74RbN9D7Me2me57G6JYd3dhgkwxcp7tPRKhxGXI4wAAIABJREFUt3rGvmn7x5nj+pek9Z2UhBRdg9mfJUKlZS86xOWzCZLGjDEgsnfrgqTtk4CTJL3c9s8LDKuKe2SBGMXGNsC98a+JAnoJ9MubNX3OqkJhkffr6DZH0u+rAqnt30nK7VQutV5WKNIkJemnTK0i2VSV6UpJxxEkpbZKySfTaQ5sBdtnpfl/HWL+370luah1w8Mg5kZJmwJVQ9QFzlQbTM/5obaPLzEu4Om2vy1p97T/vFDSFTmBbB9Ufy3pQGL/noMSDWqXEioGixO58Qr3ETZ5uZi/mnsAbP9vIrDNGAPKWULB3Aih+vVUYn/cFqXn2VIo0rybsFmaOx4g7dcl7U6+Usv8BFls7rwh6RuZZ/2HbFupKVChkJyLko3As4lzeJ1c1qZBfIwRwZigMcYE2L5QIUFbMWYvd7dU5XS4nujyv7H3HyS9rsXQTkmF+GXoLqo1lv8CngnUWY0PpWs5uFTSyolYkQ1Jx9veStIN9DlY2G4kc5+wN2XY1Sva7uoGT0mSpjKvtxC2EBOSxJL+kDEuiGTLJ4lD0zHEhjaH7Yrt7ylk6avF7i25v9fCibPqgHIQwUq/i2AI30qDbtQUZzliw7MO8Zz9HPig7dtzx1YQHyMICzcQG6vTCAZ4DnZIX+sqI21kEUtuRHcn3uuPbN+kUMk5LzPW0cC5ko5Ir3ckCkZNsCPwYfoTKHKT0/swce7JkpcDSIn7+qHsd5KyisOSvk8oGlxLh2Rjwrd2mLidOEScSncSKNd+aDFC6aIqliySrs0YA0r4ni/pi8QhopXEKOUK+i9Uf/l/kT9nPM/2GzPv7Qyg/Jz910SYqg6bWxCJmJyxLUrsM6pD8IXAvqm41RgF1809CRuSCynwWdIk0qfk7TVKk9dKouQa3AXbV0taO/P2dwHrOFksSdqf+BzMOAEs6TW2z9NElb8XKJRtcpIaxbrBJP0WuIZQ0djD3XZSjWH7BKKzpnp9O80UBOr4FR0rLxOqC9crSa83/Fzdr1DgqJ7/dShATCyEUyS9yfZpLeMUU2mBsrYwab65KX0eNyDs9n7jWlfXDFCXH18K+Dud5PjvCbWcpjhYISV8Fu33BRCE0i8rGjKOA86oyKrDhDuNIgs5iPfZkPR929tTI+vXrjVFMXKepP1TQeFHfa41xS7A99JeA+JZ22GK758SaV792LTfOLNYh0hahVCqq0vcz/gsMcW6VMXKWZd+lX6Xy1DGeuI39M9L5eyNi41tsn2Z8+z6INRLLpV0GS3VDVKhvLFtaT8obCN2YqKVQqOfmaRZth8D3lm7Nh+Qa79bar2sUG+SEnGey2mSup1Yc49Kr7chrENzVWDmEMSd19euZRXCHKprCxIWh7dNe8MUUKhwHGT71Nq1b9p+T2bIYsq/JebGNIYvEPWIo9Ol3SWt65pybIMxPSZpT2KPXQJVsff/JL0ZuJOwCCuBhQjl8By0blBz2LH+Dnh55hgmw5UKW/jqs7ktzRucBpGzhIK5EUJ57RpJN9L9O8ix7Cs9z5ZCqeZdKGylQ+wL5idUgSAUOg4lcglNcbzCYv6pCivAd5KfFym1xmE7O6c+xmhDLtNcNsY8BElbAV8ELiAmj1cQycIfzvD+VwC/cx+faUlruiP/3nRcZxBJvC5Z9F7W6QxjfZLoTKtLvB5ne7+MWLcQxb7fEItw5Y3diFAh6dm2/0/RGT4BbuBd3xP36XTY1b/IYVdLutr26tNdm0GcLQjJ8QmHEkmb2W4rodkaktYHVrB9RDqcLOJQMcmJtRgh01VPQmQlGyVdRxBHzrG9Wkqsbmd7p2lu7Y3zC0Latep4+0/gfbZzCyfFkFipD9h+NL2eD3hy2yRmCUhanNgovo74LJ1FdCs07iKVtCZBKlqGUM7ImjNq8Tai4xN9tu1GrHtJ5wGfsj1BeSYl7rM6u0rMPT3x3szEBFWOP+ctwMoesQ1QKk5MgDO7pyTtSBBlzid+B68E9nFGN1wiAPVL0OYkVc/vc9nO80etbFiqgv65OQX9ydbd2uAar7+SvgkcYvuGpvf2xCk6ZyfCxzcJi42/E3uX7dzH4mUGsU4kOkWqZ2p7YFXbWdKUKTnyR9sPKtQJXgJ8r2HxEElnEf7aN1BLMLb4LF1Ikj61vVq6dqPtVTJivZ6Y/1cm1pH1iC72fp+Lxy3U7Zs+iyAtPM32GzJi3UCo1T2QXs8GrnCPSsc0MfaxvU+fuaxaf3Pmsut71+1+12YYa46j278IShavJlubKjT5XCmUVA4BViHmjmcAW9hu05XXGpJE52z5IJF8r56NxjZXCiJva5WWFOt0ki2M7VUV6gbXNHn+a7GuJfyUlyGUI08GXmT7TRmxDgd+XCWO0150M9s7Z8Taj1g/fk3NLjR3X5Bizg9sRJBj1if2xzkJ2mJQqOd9mzhbLiVpVaJxoXFiu/ccns5MN9heOSPWLKII/HriuT/T9uFN4/QbV7rWeF5MY9rCobgzByB3jpT0Fdsf0CTd9TmFkzQvvppYy08jnrWf2d6iQYzedUn1r5nr0qWEWl5vvixLhTad5SrMJtRFn2b708McW8l9Wbr3cuBnTNw3zvjMJOkQplZvaEz2SMWcWwnLgX2JouYttndvEGMtYm54oOf6MoTS4lH97psm5n2EDUvr9bIWc2U6TVLnOaNJStKVttec7towIGkT4EBgAdvLKqz79s2cf24n1ALPc4f41zg3W4u3LbFWrk6c6bYgckMnTHlj/1it58YU53rgpYlYVK1x17TIl30B+CtB2qzbAjRW/ZK0MTGXLUnsaecAn7HdWCFF3c2Z8xH74n1tN7bMUhDqemFnEOoUBOpDgBcSRK75gPtzP+OSnkwoCVXqWhcDX3cD+4kB5iz75Ua2zcz/3EQo//auJTNW+kvza7UXKDrPloCkI4EPuKMGsRhBGJvxnkUdK5316Vb4nQM8avu1fW+cPu51tled7lqDeBvSvTc+OydOitV6jUtxiuVlxxgtjAkaY0xAKgRv6KSakYrU5zSd1CStZ/uS6a41iJd96Jok3uoE+cTAxW4o8VqLU5RQURqSngssTTdJYEbyyymRtC7RDfbl2j/NATbPXehKQtLZwJZVASdtEH6QWQTYm0hcrmj7BZKeA5xge72MWJ8l2J+/prOAtilCXml7zfT5XM3BBG+82ZikoJC9aSmJVIh8nZN8s0LO+Szb62bE6uvP7Uwbi5KQdBvhdXsj3Rv3ocwZCom1B1yQCCPp3N6Ndb9rDeIdRnQUbEAwl7cg1J0aEZRSrBOA99vOZcY/bpDmsO0JtZeFgDtnOv/3xKl3Xs8mPBnvzEk2Pp6gIOxtY7uRNHG692bg+bQnbw5kzlYQ4mY5Wb1lxrjW9kunu9YkHgWKhwPYL15hey1J19QKAW3eZ1HyWltoEuW2CpmEg71rMR8hbEBObJKIq8X6ENFhU8nkbwZ81/ZXGsT4MBMLYFRjdIa6iqTvEGt4vRtsvsyiWtFu4NLFq1KQtCWhdLckoeixNrCX85USiqHkz0cFukdrsYrNP1UBR9FJ+i9Hp+vcuA1j3eCJVkYTrs0w1q8I4mwJz+563PkJy6AdgVfaXrxk/IzxXEbsX0/O/Vwq7IE+ASxIdHZXc9lDhJ3IxzPGtbtDYnrKa9PE2JXooFyeUN2p8BTgUvcocc4wZpHCqqQ1bF+lsJGagCaFk1rMG4BViYLhqgqlm6Nsb9ggxiDWpey9SYP/4yrbOUpRxcY2gH1Z1jzYE6NSd1mPmP8rK50tgZtt75I7ruoskOa0i22v02asowZ17Hu74D4Nf9PEuQV4s5PKYCq8nmr7hZnjKkl2vYoozl3Qdl8m6WrgZYSS5JLAdsD5uQSNFLN1w0OK03puTHGuB15dEShSvuqCFgSNIuSFRBR5v+0vT/vNM4tXryU8AvzZI6D4pVCV/k9CjW9N4O3AC3L2GAXHVDxnmeI+mdibLUMoodxLPBs5jWBX2F5r+u98/KLfetl0DU3P/bKE4khd2ew+4Prcz0CaG7d02ENWa8APc+ZG9VF/63dtmhhzbN+rbnvIuXAeQewJmZd9ImBscTJGP8xyt6XJ34jut6Y4hGDhTndtprhU0ovdshu1hkeJxKrJlHCDTlFV0hLUEnFNoQ5TcsI/kd/BtT/Bhr6JWkcSMNMC3QKELP6T6PbKvZfYxGRB3Z2VFe4BrrJ9bcNwi7vWXevwTFwic2ibA6sBV6dYd0rK9QjeivCaL5VsvDsRFi4CjpZ0FzX2dwOcLuljwA+IZ2FrQgr+aZC3SSiI2a55a9v+h6SFMmPVN8aziQPn1WTaWCiIau+mjGTsX2xnSQfXxvMz2+v3mTcazxe1g+9biCRGtty+orN5IWDxRJaqko1zCBm8XKybElPX2/6MpIOA0zNjLQ7crOiWais92BoaQGdfivsuwk7neYSdyzqELUBjkph7utskHUt0mmVBhdRQBgFJqxGM/i0JckWun+NGLcdRHeT6ztkt4haTy6e8P/xjth9Jc9HXquJhRpzTJL3e9lktxlJHSVuYiqh2ap9rw8LG6WtFRPp++rodUxA3psFpRBFxGTpr5scIVZRGsP0lSRfQ6bra0c1J1YukrysS+4OTiPVpE+DypmNK2JX4mVUJkYvpSKo2xeEkQgWA7eslHUOmZR8F/ZTT/mdPJs7ZOYTjvWyfkPYHGxDdpIcSRI1h4ypJa9nO8hGvoEm6R8m3UStpC/Owomvt7cSzDyEFnIM7JX2KboLSnZmxSnp2o1Dz2Jr4PVxAEHu3KhG7LWz/oedz+ehk3zvJ/fsB+0nar2ChpITE9DHEvnxCsr3F2fIcSR+hZcdzImfMB7wnhygyCR5wNEs8olD4uIsolDbBINalopLoioamCrOIQl1uDrnk2EpK0kPstd9DWPvkWgMcmcayK6FM8Uh6fRjdHcJNUKkv3a0g/v0JyMpzqT8Z9x7CZuC/PQNVUEkr2b6157mYixZky1NrY1uQKNzdRkMrX6Kp7AKFwgTEHjTX9gPK7s0etn1Pz/yfm4NWer7eK+kdxB6jkY3p3EAxN95keyVqllkt8K8CcyN0rCLqSqDZFlXOVFfoE+fRtI9qTdBIP/sz08++TZxB2GVh+1eS5nOoGx+RzuSN9h0qaOM+wDz1ScDdRK44dx9b4WKFKtzJtLTsk7Q5obRwT3r9VIK0NGzV8VmSFnNHQeNpNNwXuGalk3JTVe7+lpYEpT0IO+X6GpBrCbIh0EvG2KjPtalwDJFnqewhK1TE3MbqNqXzsmOMDsYEjTH64QxJZ9KR025UDFBHdeEZPYX4OYQ0Vi7WB96R2K/Z3ahpjLsTxdYTU5yjFL59M/azrsXalPCUeg6xAV2a6FZudKCwnUsEmAqbEWoQWQVXR0fJhZK+67Ld/WumP1WRemPgemAXSSfYPqBBrMckLVUx7BMbM7eg8JBtS6oO+wtnxoHCyUbChucB4INEEnRRQuqyKaoEZa8E8X+SuUkoiPslrV5tYCWtQWaxz/b76q/ThvYHLcZ2EpFcOYeGydQ+2FvhwXgu3Rv3GR+ebK+fvpacN0p4du9MJEeeQ2xEqyzEvUBjqcYaqufgnwpViL8Bz86MtU+LcQwCVTH0wMJxdycOO7+wvYGiM+bzhWKvQH6CsK8aSqFxZUHRIbVN+lPJn8r2BrkxC6yZ1UGu+gzV52zTMEFSw3dJcvnp9f8S7zeHoFHUH55yxcNdgY9IeohOcjuL6JqwGyF9upKkO0jSp00CDJC81ho1ovGGPd0vH1V0ouQkRI+ij1JUizFeTSLPZt5fSUBfBKzupBwjaR9qZJmGMR+U9DViLX+MsLLIJeUWI1QklCxeHU3MERsTn/kdgL9kxqr2T28GDrd9qqRcEkpprA1sK+l3RDE495y5BZ3u0R1T4rGxhHwNHyISvctLuoRkC5MZa0fid/g527+RtCydPUhTbAPsTUfZ5iLyPcCfCtwq6QrKEGffTjyzO7chHQ8Af5C0LmBFJ/zuRM5gxqgKpMAJ/YqkTYoA6khMLyupLs3+FKApCeIe4B5JBwP/rzbHzpG0tu3LmsRL2Dp9rauY5Sa0H5W0tKQF2jZPKCbq69PZ8nBiv/YPggTdZEzF1yXimfqEpFKS6HUr4UoNK5fsVHJsrfdlPajmrvreOjcvshixt6s+Q4uQWTwHvpn2jJ8i1oFFgL0yY51OrMHHpNf/SexL/0ScDTbpf1sXPkQQHvpZTJuMJgAAT1RjWp1Q5GmKOYSF2rLApkROuo1KXcm92U2S3gbMJ2kFgtw7waphhjis+ovt76bid2O1x3T/o5Juq+dTW+LKtnNjGtexCnJ2Vbj9qO0/5Q4qrbm7EkQPCPLmN5xnQXdJ2v/3kgcbnVMK/uxfBZxH/8+wyWs2+aekBYBrJR1AnCFymnYrO6aNp/yuBihBNuvB82y/scjgotkTojGqQu7cuLftao+N7bsVJPBhEzQOAn6uUCWGaGr6XE4ghbLigcTnUcAhkvaw/cPMsV1CEOpeS5BuzqTh/KOaIpxCyafCU1L8GcP2xulrEYLYJMjOy44xWhhbnIzRF4l9OdcfrL4wzODeVxEdK7tQ2zwSckU/tf3LzDEVsxJJE+3Lbd+fXi8M/DyT7HEdseCe45Ag3IDwc28svV8aCt/iLV1TJWh4/6A6uy8C3uRuK4tTCRnaq9zAP1fSG4kD+oXEov4KokPmzIxxfYRY4DYkWNvvBI7JJO6sSRT1b2QEuvQfD1B4pP6AYC4LeBawte2rCsSeH7jR9orTfnP/+0vKsh4FrESPso2b+fb1lUmrkMswVyHPbknvy/ncTBFvL0KB6TXA/6TL37KdlaRK68kKts9RqLTM5xZWD22h6KD4XsHOvrr877XA2qmYeJPtpt1IdYWniu39J+DjvQzuGcaqZHqrr4sAp9t+RdNYpSDpMYKAtZPtX6VrtzvDs3XUobJy+cumIt9cf/jqWubYVib2jj9Pibllga1s758TrxRUQPpUQQyuyGt30Pks3UfI0v/PFLf/W5Dmit2crAhTIfHrmc/Gzyoi4ShBYTH2kqpom3631+fsDRRKQIcRVnYiCgI7226s7pT26/9F2OqtnggVO9nOUuJRfz/l7Wz/NiPWVbbXUM1uSZkSvpJOIZ7/DQlFxX8RdmWjYLNX5Jwp6XLbL1PImW9AfMZvcYsOSUlPIrrsRRCBcgoKvTEXA5a0ff203zx1nKcQ82HWWTPFuJzoept7Cdjf9igoqxSDpMUJVYrXEe/xLGD3JsUERUPJexRdxb2wGyjbaAAS04oO29WdkoySZgFXuoX0filI+h7wQqLQXS+q5ViJzLXzkbQMMCf3s1RyXXoiID1TW9g+XgXs+kpD0o5EM0C9838fJ4WNhrEqGxzoEHvvJkN1Vsniqt81ZdpTDRI5Y6qdLdcHPksU/j6du5aU3JulfMMngdcTv8szgc/afqBBjOJy+SnuRURh+XK658ZWecsCc2O2VXefWN8iSP/V53B74NHMPFfr9bcWayA/+7ZI+4M/E4raHySaA79e5Uky4i1MR13lBUQu9PSc/WwijExGNlvf9kzIZvV43wQOcTml9iJQf5vbkZirU86met7Ps31zZpzrgA2dFPwVqo3n5J4LJR1P5GmOTpfeBjzV9pYNYixKkCpbK8JpErWpCk1JXSlmr4J2dl52jNHCWEFjjAmQtBNwkfOlsAaiumD7d2mzvYLtI9Lkvch0900C0d0F/yidQ09TPGz7b5JmSZpl+3xJM/bFHgQkHUJM2v8kWK+9nfoz9acaVGf3EvXxEF0Uz7T9L0VXxYxh+4y08FUs1Q8408/d9oGSNiQW9RWJA93ZObGIzf/+wA206B7tswDP/Scyuk4kvb3fdWd6Y5eE7SsUXf5VQio7Cd1DKppFSE0f32J4JWVZ1yqQdOvtrq8jWwnF9sMpGWFCYnQzoPHB1WFNUMyDnZiDdiUIWD8niumH5gSS9G6i++dphFf2c4ki29AsBlyws6+GPyo6WH4CnC3p74SUYM74Siq1lFRDKYW3EIf78yWdQRDFcvcExVH4s1RSLv9EohBzb+3aD4HG3uQA6XD//trr3xDraGMo1M3mdknZPiUnTkJr6VPbBwMHS/o08JWUYN2LKFI37iwbEHYCvpMSEyIK+zk2XlBAKWpA+B5wuaSKeL4Z0Tmag4OADWqkruUJsnGO/VbRbmCH//rrChWvqn3Y/yVSyp3E+pmDrQgy9oGOTrBn012YHxoKnlmLdI9qEqlq4AWSsj5Lim7UTYkc0FXAXZIusd3PenK6WC8mPk9PS6//Cuxg+8amsYAnpfxBPf6CGXGqe99CrB1LEHNZWxWBIkjn01ZE3ETOmAV8qiLTtYj1O+B3krYl/KsfgLk/++cRaglNoYqckf6PxxLBqHmgKGh+CFgqve8VCGXQ3PX81+nPLDrWrbndalcrWSLlEN960Hpd0oCsJ9Jc9nYmWnxmeZ0nYtgKdO9nGxVc0zO1J3C8U7NVLjQAa4CUpzydjnVXm87/NSinOjufpJfZvhzmNsZU6sY5ZKx1mfhc5FrJ1tegWcTeOGe/XVqlq9jezPY/CYLGJ6f73inQK5dfP6u2UcLNVWWZi6kKkaop5DaI19aquxdr9RR9z0vF4cZwC4XNPphNt7qEyD/7Phl4KxM/l41Vl1PtZYEU60e0UwmE+L29Iq0BZwFXEL/fnM/T63rIZjfUyGbbZcQrqdS+KKEuV+UgLgT2dbIpaYgrJX2JTnPabsRnf+hIOZssUkYPZlXkjIS/kafUUmEVdzf7ni+p0TgdVlT/AFYrcDacTG2qQo719CCU98cYAYwJGmP0w1LANxLj9SpiMb24KUubKL58kTKexSjknNYkirdHEAzYo4D1MsIdAVzWcxDOkfeG8IRchCgYHi3pLmrs1yHhyvT1KqJLJAsejGcrBKPxMkknpdebAMekRPKMFtA+iYjqELeUQiYuKxGRCBm5pIw6/mn7q22DDGABrnc8ziaK0leT743dGlMkR7KT0HSTih4Bfmf7jxljqxNkKlnWKomRm+y9VNLKuUzj9B8Xl0lTQc9ulfdgP5Lo6Ks+U29LsXLGtxvwMuAyANu/lDQKsnC3E5KZrTv70n2bp7/ukzo9FgXOyB2cOspaJvYEufKKp6SE7xeJucdEIWtoSO/lJ2kN+g9C6WAJSYcCP7Z91rDGNoDPUmu5/ESkexGwaM+8PYfafq8pUvFlPyaSURolHCV9gVjrqu6J3SWtZzvXFqak9OkWtvdNhOPXEGvVoXQS+UODQ61q1ZRcqiTrc7Ej0R01P92J1aESNGx/LhVOKsWeHW1fkxnuPnd3kt1OrFMzRk9R4jSi43YWsQa8Fcia/yV9HjjA9t3p9WLAh21/KiPcf6dn4sOEktUcopuuMVKB4ke11/9HvvXKSMJ2Jct+WCL85XaPTtUBmPtZWjSRw95FqHbtrW753ib4BvAh2+cDSHo1HdWWGUEdGeHl1FJGuAcHAJvYbmQfMmgomkvezcTiSSMiXCpQf42OlHZbHE/37+1R4AS6z4wzxe2S3k+HRP1eYm7MwRFELqMa2x1pXLkEjZttn1C/oJDXzkEpS6RS69JArCeIdekXtGw4AUjzzu4E+edaornm55ljO0ehfNprMdBUQaCYNUCfAvUf0tfnSHpOZm7qeQQRulKd3Zsggr6S+Gw0IWi8iyDhLkI8r/cC70pnn/2aDErS94kmh2vpkCJM/tmknu96hHiPOd3Ad0j6BqHStX8qWLcp9m3GxL3Z6xTKYk0VTNYEPsHE+X/Gc4btjSUJeJXL2JFUcS+c/rumRTX3zCZy9tcRz9lLiNz0yxvGa2XV3QePSlre9q9hrtJclm1xz969wj1kKNtQlqB6UjUOupshG0N9VAIlZakEViFt/1PRDPx12wcolBtzUJRsRuRWSuE7hIJ2laPcntjLTEa6ngrvI8hTx6XXZ5NpZTTCOF3SmcCx6fXWxJybi6slrWP7FwCS1qZTG5sxXMh+qCJzSdqKsA+vN+h8NiempHNtv3a6a2M8/jC2OBljUqSNwbsJD+nn2p5vmlt67z+LWEw+Qs2z2PZHM8dzLZGIuNodWe4Jsk8N4q1Ot41LVoI2JSGOJToNtyWKYEe7ufdZcaQD1wO2H02v5wOenBKkTeL8DHhNS9Zsb8y16CRcLrHdaOGUdLjtd6usxFyxjqvEdn2QKITVu0ezPdQHgVQo/UHB4lPOGD6TksRH9PlnN01cDgIKW5KKrNYq4SvpFiKpUYKlvR5wre37E2N8daI7u/FGUtKxxJx9etvDsMIbsvJgX1XJg932hpnxbu5hQ/e9NsNYl9leW8niQdHZd3XuWlIKKek2AU4e1cOEpK8Dz6f78PRr260OiSlxNrtlIXggSAXNLQmbpaEdeAbwWdqSkNVdkigArw3s1WRtkvQfROJsU7pJoPcR60mWp3Laa+wNfJlIlu9IdFZ8umGc64GX2n4svZ6P+Pnl7heLSZ/W5p39gBtsH6Oa3cwwoYJdP5Ju8zwuz54IXEsTxU0T88XvgXNgZp23tXl/RaIYehKxJ9iEsP7I6QSj3zOlPvLmM4gzH/B+21/OGccTEaOcOEvryesJ0usnHcp1WWdpSde5R4K437VpYhSTEe6Je4ntnAaOgULSpURDx1XUCkPOs4s7kChu/8gtE3rqY3PW9HdZu28Jgkz9GmJePJdQt7xryhv7x7rS9prqtmTLGle6d1KLh4xYxax3Rxm5P59JYt1ArHO/sP1SBdn387YbF64Unc797HcbKwioZpnS9N6eOP1yUhVyc1O3Ai92UhRN56brbK+Uu3dUARJuymWs3HbuKQ2F6s4bif31LxUqXS92JtFe0jEE2eBkYm9WKZgsQ9iezJggo7Ay2oMeslPOnKFCNgdKdoSaqNjbJgf6I2Dv6sykUIHcx3bTZoBWVt194r2WKJTfTry/pQky3FSf28liVc9Fr7LNMsw1AKJnAAAgAElEQVTwuVCNoEqQICo8hciNN97/S7rR9ipN75sk1q3Axu5RCXSmXZ/C/uy9xBl/J9s35T7HqY7wHUJNfS7ZjFBbeXPbubwNJtlPFbPKntegUMq5jFpdDlinac0w7S9MNIasSJzHTXzOb83MGRezH1IB+y1Jswkrn/OJ5q1KQWkOQf7IttIcYzQwVtAYYwIkfYpQpVgEuIYgWFycEerptr8taXd3bE+uaDG0h2xbUiXLvXBuIIWk901VQULSHElr274sI9wSRILkamKj8L0ROqycS/jcVhvbBQlJsRl3NyUU7exOuJrohHkSQFN2ou13p68lJeZKdlxVB+Z1atfadLAMCveTL4dYBLarAsW7KjJRW5Qk2yR8m+hs+mo6oFxNkDUOzohVkgxzKNHxvCrR3fotwproVU0D2d6m4Lgqj8lHJM0B7iIKwrkowoZOuFDSJ4AFFZZG76VzwB4aKiKGpIXckET3b8BrgBdWa5ukI4lDcGOkw8V76ahx/EzSoW7gwVsaaUy7ECSUG4Bv2/470Q38zWGNK6H0Z2kv2yckAsoGZCg42D4JOEnSy22XtOdY0Pa5kpQSlvtIugpoRNBIeCpQFfgWbTmuYtKnlO/uK4mSXT+tlaIeB5hN+DNX6+1fiH32Jsyw87Y2719EdMnel17vQ3SQ5mI+SU92IlsqSPdPbhrE0UG0DZFQHWMK1BJni6f5tZ44e26LuM8EPg88x/ZGCt/nl9vOUX7clyDoXZLIGcsBv8wc2u2KLrDKDnM7GiolpALhPUDJ/SeELPRxhMXbKFksLdQ06TwFdiaUbB5Vxx4095zzF0mb2j4Z5pIwc+1C7yIs40rgoTR3VXvP5cnoClYoBL4JeK6kurrlHPK6bUeaiKGytnjfV1hDnkL3ZymHQPWA7QckkdanWyXlEjlXpvsscTHR7d0YrlmmZI6lilMyJ1WhtepsBfXYH0ixRDnD/oDYKz6LlgpY6raknYCmhTCXV+kqqWDyl2qOLYC5FkttgtheP30tqdi7omuEdts3SnrhTG9WOavuKt6WDuWk2wl7pbqVcm5DUonn4hjCErEkQfVSSS92gYYCCqgE9uADwMcJZdKb0v6zMTkGID33L56EbDY0ckbCvyStb/tnMLeZ7l/T3NMXCtW1PSmkSD+i2DDti+fO25I+AzTdK288/bc0RmvrpxpK2G/tTHyOnkPUIircC3yt/RDHGDbGBI0x+uEtdKTlLgR+nrl5KelZDHB8Smo/NR0U30m+LPqhRKd5hX/0uTYj2P5USlC9nuj2/Jqk44kCz6+nvnvgmF1nHdv+R2KWN0U/z9ZsSHof0aX5Z2KxErERn3GxQ5N7MwPZSbg/FyJnDOqQ3hqJZFNhFpHgGPZGtsJvFHLQxwHntSQ6FZU3tn1+KqCsRRQ1dwFWARoTNAon9R5JxLX/AL6WSHE75QQqTGop4sFewxrEobMicS0F3FaxpRsWSj8G7EQU4ncmZPS+1WJsRSDp5QQRaBHCqmlVYGd35NKHiV8RP/Pq2V0yXcvB94gD/iHp9duIAk+uzHQJHEnsWS4mZC5XJmSYRwGlP0sl/Zk3l3QTkXg4g1jDP2j7qMx4Dyo6GX8p6b8IEuciGXH2A65RdDOKSJh9bOpbpkRJ6dOtCJLegbbvVnT37VEwfhssb/uttdefUb787DpEYrUEqWUkYXvHguGeCdRV6h5K13JxNHCuOspkOxLzXA4uUdgp9ErJj5Qi3Aignji7is7Zpr7e5eC7BFGq8q3/X+J30ZigkYoUJ9Re304U7HLwTuAzdGToLyaes1HAHKK48/rataFbLBEWb2+y3Ua+ucJJFFL2I840R0v6H+Ln9Efg7TmB0pzTT9kgRw1xb2JvsaSko4kGondkxLmTIHVvSrd/+31k2jWNKlTeFu8hwpLwk3R+ryavueOPaT/7E+BsSX+nc65oiiOJokTd+vJIMq05KWeZgqT5gV3pqJFdAHzDSQWjCWx/VqEkUCkC7eKO6mxT++Fi9gfA4sDNki6nu3jetLO4sqR9C0H4qM4P2xB5wmFjCbp/Vg8Dz7T9rxoxbqbYW9K3iAa6tsTBYhZLEI1y/a43aZ6r4fr0Pqvf5baEusRMUcSqu4aPE/ueEx1qQLm2bnW0fi4GRFAt2VBwpaTT6FYJvKLKwTd9bp0admGuatFfm5JtKhQmm5XGrsCRFXmEUFl/R2aso4k1aWNqivRtBzgKUGGLw0GQZm1fqFBLW8H2OamO1shVoIbWDTqpMfRgSe+z3eZcOcaIYmxxMkZfpC7N9YhFfkvgroph2yDGxkSyZkk6nsWfacMcTt3Oryc2G2faPjszTj/pqWy7lHT/qkRi6o0EG3Qd4Gzbe+bGbAuFv/z73FEKWYMo4jbyAFTNr6/QuH4FrO0WNjDqb4dRwU0SQTWyx6uIw2GRjqtETOplvA5145gO0lUx6BFC/uu/CnZ0ZSNtejYmOq9WJ7p1flAxkBvGKipvnNj7CxOF0YuBnzlDrrc0JF1IJC93JBJBdxHSpzlygb9iAJ7dkpYh34O9itFXSrjCKHeyzRSSLgO2AE52R8q5mFRl5piqzqZFCXLS5en12oT8/qszYhazqykF1SQ2FZY3l7uQpHNJFPosnUIQHzYk5tl/Ee83R8r8WodM9ebE3P0h4KKcWCneWsAthPrFZ4nn7gAn5ZyGsZ5NPLMQ7+9POWN6IkHSz4E9erp+Dmy6Z0z3zvPy75KWJfyBl6HbTzxH+vSTRGHpx+nSZsBxthv5wvfEfCOhogdxHjkzM07V4VYlDaqE77zUwVUMkj5NWM11+QznElokXWF7LXXbPGTJJUt6AdGQ8Ezbq0h6CbCp7cYkPUlrEkXbZeg8//MUCasU1C0fvwhxxqyUG7KI0JI2IJT9XkHYJrZR9qtiLpIGlC0pL6lO+JkNbA7cmVOISWev7wB3E/POZcDnbL8nc2zzE8/qUrZvy4kx6lB5W7zbgZfZzlJUmSLuq4g93uk5xIXSZwmVtUz5FiGzXpEitwcetf2unLGVQskzZfr9TUAqwubEu9L2mtNd+3cjreGbE+QWCAWTk4GDgG/anjFJRmGXuxKhQFlZnDTKWdZiFd1jp3mjwmxgWUJh4kUZsWbTTVC6CGillKlQJVsy5/wr6Wzis70WfVTBM/fsvc/FpunvjZ+Lkij5XJTMtad4xxAkg0eBK4ja0MG2v5gxtjPokM3qdnEHNY01KKR6GrbvbRHjKttr1OtU1Zmg1DiHBQ3I4rAkFE3h7wGeZnt5SSsAhznDslIF7bcUClofJPay70njWtH2KU1jjTFaGBM0xpgAhSziK4hi9ZrAH4gDf47E9EhC4Y13AZGkgmDvbWB7s4xYuxNdJn8lurB/YvvhxAz9pe3ly4y6OVKx4wdE54gI8sF/1pj3M41zISHldgWxsb3ILaTTUrJ3Q9tZsqKlUduAGuZKElfIPTgdRkgdb0A8F1sQRaIsdYNSUH//3VbkpEEgHcQOBra1PWOm6gDJNl8mVBweJFi9FxHqQlmSdaUg6VlE19AVti9OHRCvdoaUbUlSi0bbg31jovi7NJGobWt/U2pcl9leW4W8tguNaUqrnJxEXEpQfc3ddjW72c7q1iyB3nmx3zw5hDGt5JB/7juOFsW+kgfEm2y/KCWjf2j7jGE/s2lcmxMqTPek108l5sWfDHNcow5JLyUKCvWunx3aEILmZUi6jlAx6PUTzy1QrE6cvyD22de0HN8zgZcRe9vLc0mlkj5M9/7YROfylbZzFVbmWaiAz3BPvAuITsGzba+usOnc33ZjK7t0ntuD6OZuRQSVdBthg3oj3c//0EhYkva0fYA6EuldyCEJlETa/5RSvUDSfHQr+/3LGR7UKmuj0xt7FkFqb2qvWpED/kCs55UdVPb+TNImxOdxAdvLpjVv35wC3ahC0uW2X6awh9uAUAm5Jee5SPHOAjZzAetFSd+3vf1012YYq+hZQmGlM8EyJeec328fPCJ7428Ch7TJ4Q0Kkm4B3uxQdaoIsKfZnrE1xqCQyIhVfuSSpnnUWpzbbOda+kwWcwm6G8FyFC/6xV0deO8wSUVp77Mpkau5imhCusT2hxrGWYAgyn4fmPB+WuzZizwXJSBpjoMU3FetfBQK3uo0dWxL/D4+BlyVk4MuSTYrDUmfJ5pL7k6vFwM+bPtTGbF+YXsdSWcSalF3EvmWodWXnkhQqIi+DLisdmaa29Q1xHEdR8yJb3eQ7RcCLnUGcX+M0cLY4mSMfvgCcSj5KlH0a8xqB5D0PEI5o37Q2d32HxvG+Znt9dXdfQLtimq7EO/vUynmuQQ7LgdPA97Sm5By+FkOwgurCa4nmNpzvfbI8Dq3/aq0uV2LkM08VdIitnMta24HLpB0Kt3F8y81DZQIMkcQCYjDSRu+JsUmJ5lqSUcSz2h9Q5XLxF03JWivt/0ZSQcRPoNDgQrLiA0KqSC8NVFAvJLmUqWbpK+Vd2UReWPbH0zjewohU3cEQQBp7OleGB90Tf3E9u8lNe52SGjt2a0BebAXxlcIKdUbPFos1T9IWhewostvd0JNYGjITVpMg5J2NaWwqqSqw0HAgun1MMk7HyL2Jf3WIANZ3esu68/8U0m3Eiocuyq8Utt0SL2AKB5W5KlqjE3f6962KyUCHFYiexNz2xiT4xbCHmx5QsXkHkLJYUzQ6I8HbH91+m+bGRLpqohtiKStCFn6C4h57BBJe9j+YUa4NQjC/skp1sbEM7GzpBNsN/FgfyKgpI0UxFpwMrC8QhnxGQTpOwcL2b5c6uKi55Ll/2L7p5n3DgrVnulK+hA0RgDfJkhYX5XUSvVCE5X91solYVHQRqcPViDk4HNwN/Ba4uf1U2C7lmPZh0i2XwBg+9pUCJ6XUNoW737Crux8us+GOWSnrvNpIhitkTmu0meJkpYpj6qmPitpOWpd3kNEMfsDlbVFhegGviCRskScA3bOjFUUqfBeovh+qaSVbd/cNpCkTYnz4XMI4sLSxPqXmwPqgu2rE+kpZ2wrEF3xK9NNHmmqRrNoIh28C/ie7b17cpgzgu2HgF9IWtd2EXuItH7fYPtKhZrVupJ+VeWQh4BjiL35VUxsOMyypFJBxbWE+VN+azOCXPewpNx92qWSXjyKZDNgI9ufqF7Y/rukNxF1p6b4b4XSxIfpKNJ/oMwwx5gBHrT9UHVmUqjsjsLZYnnbW0vaBiK3p56D3RiPT4wJGmP0wzeBU2w/Nu13To0jiM1C5Su/XbrWSGLRyVrF9lNajqce8y7CRqFErL2n+LehFteIDv/Vie4mIDpPCBLDjJG6wCoZ1acS1hMTJOIa4PfpzwLpTxu80/bBkt4APJ2Qkfw+0LgbGHhJfWOdNlSrZY6r6rj4p6TnAH8Dnp0ZqwSOIQgioywj9lvgGsLrcA/b9099x0QMiGyDpP8inv81gN8SkrttPgOlsCHQa0+zUZ9rM0EJz+5BebCXxB+AG0eMnAFBHDyYILLcQcxhuw1zQAMiSL6xzOjKwQ1Uev5dcEgWzgI+ZXtkSHR12P6YpAOAe2w/Kul+4D9ahDwBOIwoLLRJZvcjoo7PPNPjJKIgdjUxB40xNQ5OxJ+z6C5cFSFZtMQnqRVsE3nqHCCHoPE8YHUn24P0nk8l5KuvIkg9Y3TQ2me4B8sT+7olCSWNtcmfz/6aCgsGkLQF+QS9vRXqSedSQKmuBGqEkZuBT9BjvwI0VpcrCdvnS7qIbtWLVYi9X1NcT5xJViHIdHdLylX2W9z28ZI+nsb5iKSsNbjPfvFP5J1JINR+HwHeK+kdwM8ISexcPGz7np489qidBbKREvT7pbPvYQoZ+Fa2eASxtRW5NT1Xn6BDfoY4RzxE5B1zUPossYq77VHOl5RbSN8j3V8nG+zYdoAFsFHBWAdQ0BbVocC3AtFYBnCr7QenuudxiHUIslNrggyhzrUOcI7t1RJJIJvAJqmuSjGLyBXfmRnuCGBv4MvEOrcjeXugJylUHreiQx5sDElfsf0B4Dv9CAHOU1A6EVhT0vOJc+vJRK71TbnjbAPbG6evJQmHh5MU11Ls6xU2JbkEjW8QOdTrgIsUdiy59h/FyGYDwHySnlzNXwp1ptyGvi0JBbIbgQ0UCikHAqNGjp5XcaGkau+yIdHsOgo/+4fSc1Wd5Zandg4b4/GLcbJyjH7YCviypBOB79i+NTPOM2zXvcu+K6kx40+TSHVVyCkuD4AROlJQ2B48l1hMVqO7i32hjJAXEEnY/Qi5wYfajM9JprQQqvf2JoJdfVMLBuEsSYvZ/jvMffZy58lTUgfLF4lihwmrk6HAIfV+D7DNsMYwA7zELXz6+sQqRbaB6AD4EiHFN3RrHnUUUZbXREWUS3NiVuSWNkhdgAervwd7mw6uktgTOE0h9d1KwackHP7OQ/EsnQyDIEgCK9g+p35B0g62j5zshkFDM5DMnsn3lIZDietrQJu5qzgkvcb2eepYStGz7OYW6B6xfej03zYtrpT0JeB/0uvdiD3MGFPjebZHjkA1wngxQQp+DTU/cTLVbQpjVk83/d/IJwksQXfi52Hi/PQvSeOE0ERsRRQPD0zqPc8mkty52Mv2CYlovAGRnD2UIGo0xW5EQXQlSXcAvyG/qLMjUUybn+7nf2gEjRqOIn7mXfZDw0ZJ1QuXVfa7X9LT6SR71yHOjI2Qzt8vciGZfaLwBYDt7yZ1hDbE5ZskvY0ooKwAvJ/MM9MowrYlnUasTdj+bYGYrffmtvcD9pO0n+2Pt42XYpa2Urpa0jrutkzJUk2wfW56vuYq2A6TbKBkf0A0S5TCn0s2oikk2j8ELG373ZJWkLSi7VNK/R8jgJL764dt/03SLEmzEvnvKy3i1c/5jxAk3BMzYy2YPgNKn9N9FJZLTe3S9wXOJOxDrlAo0fwyYzzfT18PzLh3MjyWiIxvIdQgDpHUypawFNJecQW61UsuyghVUnENh+JgXXXwd4lYlIOSZLPSOBo4Vx0L9R3JJwf35rP/X8t89hjN8DFgJ+IssTNwGkOs58DcffZhwBnAkpKOJqyW3jHMcY1RBmOCxhgTYHs7SXOIQu53E9P0COBY20029n+TtB1wbHq9DZEgbIq6VNdShCe2CCWH3wM5TNHSjNBRwxuISfp5RFG5wn1EB0NTLE5M/K8E3i/pMUKdY68mQSoGs0KmtBSD+SqFP+qywMdToio3GXcQ8HNJJ6TXWwKfywlk+7PprydKOgWYnUgSY0yOZ0n6MWWIUyXJNtgueagrgeKKKOrYUlV+mlm2VAlb2N5Xob7zGtoVFErjc4Tk72zaK/i0hibxSq/g4Xumzwfc5Ez/6j74tKS3Et71ixAHnQcJKeFh4YWaWjZVwKL/rsH04Nz08/rRCKm+vAo4j7CUmqCsQsMCXY2I+1NJu6X76+SppnPa+4C9CIl2A2cThLYxpsYoS8aOIrYElmtLWh4QzlB4FldnsK2JxFIOjgYuk3RSer0JcIykhQmlgjFqcFkbKShomWL7duB16Xc3q+G5vhdr2V5x+m8bCv5i++RhD6IPiqleqKyyXxEbnUQQOJVEEGgL29/oeX0V8M4WId9HdGI/SJyjziQ60eclXC1pLdtXtAki6XjbWyVSTL+cTU6n8imSFrZ9f8oRrg4cPACyRQ5KW6asQUfB56WSsD0sBZ/i9gcUsEXtwRFpfC9Pr+8gVPXmJYJGyTPc3ZIWAS4CjpZ0F2FHlIXCzXMPKhQgf5nWqTuI837TMZ1APAPV69sJFbGmca5KX0vatj6ssBd4Ox175fkLxs+Cwg5md6IGcC2hsvJz8ojjJRXXkPRM4PPAc2xvJGll4vM+Yyu1AZHNisL2/pKuA16XLn3W9pmZ4Yrms8dojM2IBuDDhz2QCmmfvQfwauLzLSJf/9ehDmyMItDo5HrHGDWkTortCbn6W4DnA1+1PSOZeoVs1SHEwmuiQ+H9uV0Vkg4Hfmz7tPR6I2Az2439CSVdYXstSdfYXi1du9b2S3PGNqqQ9Fbbuezn3lgvJIoyrwDWBX5v+1UNY6xh+ypJfe/L2TinA8BLgdtTp9rTgec6U84zbRarTex5buETKWlduuV1h3k4H3kkRYM9gG/UPpc32l4lI9bbCTJSF9nG9vcnv+vxB0mvK6VGIOlsIolT/Yy2A7a13ciWKsW6xiG5uR/h0XlMfb4dJnKfqUFB0g7pr+sRfq3HpddbAjfb3mUoA6shFebeV6IrMjG/P0zHW/jTto+d4paBI+1XpsOjmWSlVlDIhS9MdK08QHuf52KQNJtIli1DTUbe9r4N4/yG7qRx1+HEDX2LJW2ZEntTXhujGwo57+cTXfWjJhk7cpD0E+A9uR3wg0bq7Fs/vbzY9o9bxFqTDnnzEocn+xj/BiSS9x2EZcrqhIXi5bZXzYj1eeAAd9v/fdh2Y2/s1B34xTbnpEFB0muJxpCRsV+pQx3Vi48Az7LdWPVC0kcIQkYRZT+Ft/aKxLx/m+2HM+McSXQUtyIIDAJpHvskE/cs88waJ+lWYh3/HVGwzVrHJT3b9v9Ntj/OIVUkIvSqwEuA7xIE7a2a5pMGgenOAU3er6TvE9ZU19Ih2HnYhPuSqHWH12HbWQQqSVfaXrMnN3tdzjo3qqiRnUQ0iSxLzLUvyoi1MJ0z4bZEE8HRtnOaIZmsea5CkyY6SWsRtYOnEgS4OcS+47KGYyqqeC1pPWAfwnLoSXTmxsYEpZQv3oVoWDxW0rLEXLZ/zthKIT1jawG/sP1SSSsBn7f9lmlu7RdrOUJxbV2iQfY3wHbOVGaSdDpBxPqk7VXTnuMa2zMmdEo6xfbGffIGkPm7LA1J+9v+6HTXZhjrCZHPHlWkde41BBHuOOCMEvvtthjlffYY7TAmaIwxAZI2JaSYnk/IMR1p+y6F9NzNtpcZ0rhu6F3A+12bYazTgf8CTrC9emKE7mR7lOWysiDpzcCL6JY5a1o8uR24lfB+vYhIDA61Y1DSlFLzHrIH+BPhcF4apYlTJck2owqFl/VN9KgR2G7c+dbvZ5378y9ZUCgNSQcQnq1nDXssdUj6BbB+tfGXND9RVFtnuCOb+5ytBlxOrUOnScKmFutphDTfHKLD4yhgf483pI87KPzN7yZsvOrrXJZdkMJP871EUdlE8ekwN+wuVh87mn7XxuhGyULMEwGSLiAKTVfQXQTOUYMrBoXq0Tm2c6WDxxghpPP3Gwmy6y8VlikvztnD9CPK5s6Nkm4hzjkjR+iSdBRhv3ITNfuV3OJhKWii6sXFxD7vvCGNZ8qiTQ6hpRRBYBCQdBtxXrqRmtrmvLTGjfI6Xs01ChvMO2x/e17cm6W5ceVROdeMes4MQNKlwGsJAujqis79Y22/bMhDGxjS7+W9tt81AmM5mLDIOipd2gb4M6GQ0qiJrhRJvmTjVrr3VuCDhFJLdWYll9QyiqjlUq8F1rb9oKSbckhAtZglFNeeSA2y/XIQ1+fugZ4I+exRRsrHbkQoUa4PnD3sOXuU99ljtMNYHmeMfngr8GX3eJXZ/qeknaa7WdJXp/r3FgXqOyV9is7GcVvgzsxY/Tx4t82MNbKQdBiwEOFZ/C1CrvTyjFDPt93aw1eTyGSSt6gclL7OJhJd16c4LyE8Q18+yX3/LqzJCB3OHycoKqWXNrDz+ib2VYQawbXpdRs1glK2VFDeg70kdgU+Iukh4CFGR5FgMYK0UNk5LJKujQIa2VlNg18AX7D9nVSQ3x+4hOjQGKMPVM5PtjSeZ7ukp/KRwL10PGrflq5tNZObFcpqbwKe27MXnUML39wnCkahgPM4w97DHkA/2H5U0mOSFvXYWu9xD5e1TJlP0pNtPwhzSXGN1RsSSs79pTGq9iuzCevRIqoXBbDJFP/W2K4s4Q2ZY/l34C+2fzrsQQwY/217+/qF1DSy/STfPyUSiWd/YAnivNTmzHSfpI8TCo2vVKigDt0WYAC4kSh2t7G2KomDpvg3k2F/kDqL+1nfNCbBSRJB3D8DWFLS0YRi1zuaxno8wfbVkhpZvypUFafKpebmMtazvWbt9U+TqskHM2J9nJo1yRTXpsNCti+Px2Mu2qyb99g+vcX9cyFpY0IdpFeNY9i5pD9KeipBrDlb0t+JIu6MIelDk1wHILcJA7hfoXRd5XnXIazemoxtZMlmknYlmkyWU7dt7lOIPFcWniD57JGF7YdTc7eBBQnbk2GT6kZ5nz1GC4wJGmNMgO0dJC2tJJ2fkjdPsn2f7XNnEOIthHzkYoQcVilsQyRDK4nei9K1GaNnw3EacD4wi2CevZVImsxLWNf2SxJr8zOSDgJyNqbPl1RCYm7jjP+7L6rOQEk/AtZw8kyXtAohXzdsjNrh/PGAJwRxqjAWA14G/JpQI1hakjKJQe8kbKm+TMeW6h05gypcUCgK208Z9hgmwReAaySdTxz0X8lozGUAb3IfuUYgx8/1dcCrJH3a9r6SDiTkpsfoA5X1ky2NSyW9uFp/C2AV2yvXXp+vsN2YKe4kCJqbEh1SFe4juqbGGKMYmnQUDgH/AG5QWJfVVY/GKm5PbBwNnKuOPP2OBAmuMUac0HWppJVHrdPQ9oHDHkMdtnccQNiiBIHC2FvStxhR65tC6OqUTopKa7SIdwCwie1bWo0qsDVBvN3J9p8kLQV8sUDckYA6NhFPAW6WdDkjoK41IDWtU2p/nw1sTmbjnG1L2gN4NXHGEbC77b+2HeQooScPPYtQGG30MxtgDmNhScvZvh1AYdmxcJMAAyDJF23cIs6UXyTyU/XPZU5R/ytEzeOGUWrGs715+us+KZ+0KEF8aoJBPWMfAk4Glpd0CfAMonm0CYqTzQriGKLOsh/wsdr1+2z/v/63jDHKSHPa1sTadAHJlm2IQwJG/vw1RguMLU7GmABJ7wbeAzzN9vKSViAkpl87w/tvJgowpxOTWRftdZgLlKSq221Fwp/tJGJ8mxDy+9sNa2yDgAqvLKYAACAASURBVKTLbK+tkM5/C9ENf5Pt5zeMU1RiLt3/LKKwbOAK23/KjDNBtq2tlFsJpE3xSwnFkqEfzkcZfZjaC9IhTrVhas/zkPS/TFQjWNN2YzUChZ/dB2z/Pb1+GqGAMVRJ6NJInTrbAsva/qykJYFn285RFyo5pucBDwNVN81lufNiaZSUa0xkv8eA19h+YVKHOMv2WoWGO09BBf1kC4/JBNF7BeB2CkjcK2Tpv2b7F+n12sButt/eMM4c4H7bj6bX8wFPTsSxMcZoBUk/s71+n07GUemgQ9IO/a7bzirGjzHvQNIbiXM6hFTvmcMczyCgEbZfGSVM1ilbIef81btfTOvvDT3ky6FAI2p9UwJJmeITxBm62uuIUAr8pu2PZ8a9xPZ6ZUY5b0PSq6b692GTOhVS7bsSDQAQBadv2H64QOxZwM9y8g/p/iOJ/f8VbccyqqjloSEIC78FTrT9QEaspfpdt/37zLG9kWiSup2YN5YGdm6yP5C0KpH73Bf4dO2f7gPOr/JLDeItl8a0LtH0+Rtg29ziZMrNQmffXu0LchRkzgde6wIK06WQ1tqbbK807LH0g6QtgTOBJYnG2LWBvYapejEIJFLRHx32Mq8m1L2/Z/vu4Y5sjKaQdCxwHHB6pTw4xhiDxFhBY4x+2I0onF8G4PC7XaLB/YcRnQnL0d3BKGJDtFzOoCQ9A9iT6Ayoy3zPeFNl+zMp1kXA6k5eapL2AU7NGdeI45Qkc3YAnd/FtzLiFJWYSx3BnwbOI56LQyTta/s7GeGuT90wdeub66f4/n8X9hn2AB5HqJjavcSp7cmz5HkioaQawUvqh2fb/0/SalPd8DjF10kEAUKe8h/A/xDP3lCQuodOs/1i4vkfCdTkGpfvI9d4aWbYtR3+wtcA2P67pAVaDnVexgO2H5CEQpr+VknDlm4vpobVgzWIzucqwbgUcFtFCGlQXDuLmBv/kV4vmK6NbXTGaA3b66evo6rGhO0j07y6EnH2us32Q0Me1hijgWsIWwGnv8+LGGX7lVFCsTmsThCQdG91mUQQKPX/tMSoWt+0hu39gP0k7ZdLxpgEV0o6jpDMb6U6orJ2KSOHOgFD0tLACg414oWA+YY3srk4lJj7v55eb5+ulZBrX4H4veZibWBbSb8jGnTmOVJdlYcuhHreejawLHAbPQo6M4XtM1JTZlXcv7VpQdL2dcB1ko4h6kxL2b4tZzyJ8LOm7ddJWhiYVeXtW+CCPtdyu5X3BE5LTYz1eXFoTWUOe8PbJC2VS9QBkLSn7QMkHUJ/G6NcJb69bJ+QGnM2AA4k5p9GNj9pjAMjmxXAicCakp5P7H1OItQ13jTUUY3RGLYbqfWPMUZbjAkaY/TDg7Yfqorxkp5Eg82L7a8CX5V0qO1dC47raILBtjGwC7AD8JfMWM8kEgYVHkrX5jUcSGxeXkFIol9MbISaorTE3B7Aarb/luI9nSj25RA0diTe4+7p9UXkvceiGHaXxOMJT0DiVEl8nA7ZYF+iS+Eg8sgGsyQt1qOgMS/uE0aVIHC1pLVGrHtoEHKND6cuj2o9eQadTsYxJqK1n2xpDFBasVRRbbbtipyB7X+kBPkYYzwhIOlNwDcI+zMBy0ra2YX8t8d4fELSVoSlwAV0CPJ72P7hUAdWGANco+YplCwYDpAgUBIjaX1TGKdIWtj2/ZK2I2wUDm7xmZhDKHK8vnbN1GwsG6CkXcrIQjU1YkLJ57lEA9uM1IgHiLVsr1p7fZ6k65oGSaqPj9IhQQP8Cfho/ztmhDe0uPdxAXUscOq4h7Bm/EYTJY3U0FGPvTrRUJE7toUIC4qlbb9b0gqSVrR9ynT39sEbiRz0AsTe86XAvm6gImz7MUl7Asfbvn/aG2aG+vM6m6gp5M5Fn0vxZhPvc1SwGHCTwl6pbm/YRMH5o8Rc/WvK2tU/mr6+GTjc9qmSmtqlVxgk2awtHrP9SCIkHmL7kCrnOMbjC/M6qXSM0cO8WHgZoz0ulFR1QGxIbPZObhqkMDkD4Om2vy1p91T8vlBSbiHre8Dlkn6cXm8GfLfEIEcMRxIF28oH8G3Ee2/qnbUbwQBdSdIdhMRcGzuYv6VxVbgvXWuM1Fl8GHBaLku7JPpIXndhvKBPiScKcaokSpINDgJ+LumE9HpL4gA6r2FUCQJrA9tJ+i0j0j1k+x7gHkmP9CZ3JX3fPT7jM8RXgR8DS0j6HOE/+qn2o5034TJ+so8LFCyq3S9p9Uo2VdIawL8KxR5jjMcDvgRsYPtXMFdy91SCcDfGExefJIp0d8Hc/c85wDxF0BijGSQ9DzgEqKwsLgZ2t/3HjHClCQIlsQ5wraR52frmUGDVZDfwYUI59XvAlPYbk8H2jgXH9ud5nZyR0FaNeFB4VNLytn8Ncy0kHp3mnglIqo83u4XVcZ+YozA/DBq3A88Ajk2vtyZyoC8ADieKzFmwfbXCFjIXRxBqyy9Pr+8ATgByCBr7EM//BWls10paNiPOOZI+QjRo1skGWQ0itg+qv06qs7kWb88p+fwXREU8qSCiwNwEf/7/7d15lGVlee/x76+BgAwiuTEOl9AMUbgtEgSRQWIQ49WbqziBBhuNOCwDLpE4JK6YRC/GuDQaY4hBNLkEiSRCYpYaNQ4IgrTITDMIawUIaPSaOAEOjD73j3cfurpoGmrX7tqnqr6ftXp17X36vDy21af2fvfvfZ8kj6YtgjyEWe3q5+E/kpwMPB14V5ItaS2t+xgkbLaJ3JXkSOClwLO7c1uMWI/6WxahUk0PAxrakDNp/eOuBF4NfIb57ZYwlMmWVd9O8r+Bb9GS6XNWVe9I8lnazhIAR1fVUkw27lnr93w9O8mcV41U1Q3AkFvM/RvwtSSfoD0kfQ6tVcnru//eg94eLslhtNVgvVPaQ5pseZ3k7bR/N6fRLmxXA48ao6ZFZLkEp4Y0WNigqj6S5GLabhwAz1+iq8ymNSDwDNrKh8nPpXOBaelXud6Wqd3OWvv2GaiqPprkEtpKsgDP9cbn/iX5C+AfqmqNOzM9aMcDZyb5Fu177JG0iVBpubhtEs7o3MD6wWgtTysm4YzO9+g/Qa6l4xTajmlHdMdHdeee3mOsQQMCA1sOrW/u7h6gPwf4y25x0yvmOsgm2uZ+sHYpU25euxFvQm+izQXeQLs2Xkl7CNvHJVO46+O0O6iqZu5w+qkkF1XVfkmunstAkznTzgpaEO5b86htt6p6Ufdgmar6SZK+D+bvqqpbZr29z/f/5L7tNbPG6dUufQO2Bnbs+d7PJPmfVfX5gWoZyuaz5wqSPGSOY5zEJmhXT1sg+kzgPVX1wySPon0m9TFI2GwTOZq22/s7qurGLpx02sg1qZ/lEirVlDCgoQ05GfitqvowQHeh9of0S9AO6Y+TbE+72T+RtuXi7/QdrFtZeelAtU2rS5McUFUXAHTJ6osf7JtnXfzPPA/Mq8/e9d2viU90v/fphftWhklpD+2wWcnek7pk7x+NVdC0W0bBqSENGjboAhlLMZRxrykOCDyXtjXjx2l1nUZbUXPiWAVlwz3FoQUme/cUr6prgWvnWd5ycQnwB0l2p/1b/4eqetA/x5ejqrooyR7ApNf8dTUdfWmlhXJxks8AZ9AmVI8ALuq2a12KD8T04Pxrks+x/grez4xYj6bDw6vqlBnHf5vk+J5jDRIQ2BSWySr927pr96OApyRZQb/Vu5P7oosZLlwwZLuUabah3Yg/NXJNVNVZSR7D+tfGd2zsPRuxP7A6yU1Mya6Pi8C2SXaqqpsBkuwEbNu9duf9v22DZs6Z3k3bIe2f5lHbnd2D/MmCn92YEaKao6uTvBjYrPt+O47WynpOqmrQ+dwkV7Lus2wz2m4mJ/Qc7hjgjUnuoM2JjNr6IMkxtM+ZXZOsnfHSdsD5cxmrqk6ktb8btF19Vf2EGZ/1VfVt+i8CHjJsNqhuLvW4Gcc3MvddTDQdlkuoVFMiVdMQ5tU06RKI/wgcCTyFtj3Ts7qtzseqaTPguKp631g1LCYzLkC3oN2E3dwdrwSunbWrxsbGeevGXq8Be9f2leSCqjogyWVV9YTu3NqxbxCTrAE+APwD7e/+SOA1VXXQmHVp6ekeRE7CBmdNSdhg6iTZ6I5LfbfMHEp3Q33gpNdqt2PRV8f+LOtqeSdtm7/H0rbPhDYRce54VS0v3ffvC4DfBHaqqseMXNLUSXJoVX1p8hB6Nm+otVwkOWUjL1dVvXzBitFU6T4fD+4Oz6uqf97Yn9fSl+Qs2o4Zk+DOkbSQ/NN6jPVlWhu2o2nzSP8JXFFVjx+oXG1EkkfSWtpeVFXndQ+BD6mqj/Qcbz9aUHtn1i3u80H8RnShmFfQgiihtVH46xp54j3JFrQHy0/pTp0DnNwnwJxk5YbOL5MQVC9JfgP4IG2RWoBdaA/VzwFeVVV/PlJdobVXeQWwCvg8rd3Vy6rqnB7jbU1rpzYJYn0OeHufMFCSg1j/s4d5fJbN/J69m7Y6/u4+Y3Xj/TzwGNbNizDWTpfdItYdgHcCb57x0m1jz29tKl2LlCHCZkPVc0ZVvXBWEOhe/sxcfO7nXtp7aG0yBjS0QUkeS0uK3Qw8r6pG792d5MKqetLYdSwG93fTNDH2zVOSJ9Iu3Fey/gX3nC9ckvwNbRu2N9MeXh0HbFFVvz1Mtf0k2Rl4P+0Gp2jp5eOr6t/Hq0pavtJ6Thfrtmi89yXaxfZQW2b20t3Q7VdVt3fHW9EmWEef1E7yKtpn647A5bQ+3l+tqkM3+kYNJsmTaKudnwN8vaqe/QBvWXaSvK2q3tbdUG/o37g31JKWpW6xwxer6qlj16Lp0s0bnAgcSPvZuQZ4bVV9o8dYgwYENK4k19FWK1/JjBaafeaSkuxI+z57cnfqPOB1VfXNAUqdGl3A/vaquqc73gzYsltBPmZdf01bvHVqd+olwD1V9crxqloeutDOAbRdEffoTl83uefvMd6nuO9D4FtoO96cPNdxuzmIQ7oaA1xQVd/tWdtknndn5hHqSnIasBtt3mHSvqJ6tlcaVJJXAq9j/XmRNX1CjZq7IcNmA9b0qKr6tuE1SX0Z0NC9NpD2+0Xahd4dMH7qL8n7aDcVH6NtpQfc26pEm0A2Tf/RoW/2Z6e0P09Lafe64ZG0tHWTJKuBXarqhG7y+FFV9bWR63o98Fu0NhbQWp787VgramaahEdoEzZ7d7u2/ElVbXCnAg0nybuB59FWXH0M+Oeq+uG4VU2nJG9g/RDWpAFywbzaskmLShe0Pwl4RFXtmWQvWuu9Px65NI2o2ynh+WPuiqnpk+RU2iKCH3THP0/rE2+ocZHpdsh5F20eL8xz6/0kX6mqgx/4Tz6osb4AnE5r4QitDcvqqnr6EONPiyQXAL9eVT/qjrcFPj/2LqpJrqj12+9u8Jw2jZm7/Q4w1vtpLTpmtiu7lXa/89CqeskcxzuV1pLqogFquw54I3AV85jnTfJ1YNXYO89siPMi4zJspoWwXEKlmh6bP/Af0TLyrLELeAB7d79P2mpMJuBdwbvp/B5tW/vrgR8MOO5/VdUnBxrrZ1X1FlpIA4AkvwCMEtC4vzDLxDSkvqVl7gO0CYNDab1Hb6P1bd1vzKKq6s+SnMO6rcePrqrLRixpptur6vYkJNmyqq5NsvsDv00DuJ7W+qbXSqZlZtLLeXfav+dP0K4Vnw1cOFZR0gg+TAtCnwxQVWuTnA4Y0FjefgRc2T0onbnYwXuT5W2vSTgDWsu/JL0eJA4dENCcvRt49oDtLt/aPQw7i/n3YH94Vc3cMvxvkxw/3wKn0FaTcAZAVf2oW1A0tnuS7FZV18O9ba3veYD3aDhnJXkB8PEBQgcHVdXMeYtPJbmoqvZLcnWP8fYHVie5iXZtMPnc7rNA87+q6lM93jfbVcAjgW8PMNbQnBcZ136zgmVfSnLFaNUASW5jw88AvAZavE6hhUqP6I6P6s4tqVCppocBDd1rEWy79C/cd0XkrUn2rqrLxytrSftOkkfT+sgewrq/+/ka8mb/oiSvqqoLALobn3cCjx2k0rm7eKT/rqQHZ/+q2ifJZQBV9YMkPzd2UXDvjlDTuCvUN5M8jNb67AtJfgBM+zXDopZkn+7Li4Cdup1e7uXuYfdVVf8HIMm5wD5VdVt3/Dbg0yOWJi20ravqwtZa/F69e21ryfh490uaaUWSHWbtoNF3nnDogIDm5jsD/90fTWvJsAXrVsMX/T5HvpfkKNat+j8S+N68K5w+P06yz+Q6Pcm+wOjtommhzbOT3NAd70z7/1cL49XA64G7k9zO/B7cbptkp6q6GaC7R5yE1O/sMd4zerzn/sxrnndG+5btgGuSXDhrnMMGrLUv50XGNXVhs6rabsz/vjaJ5RIq1ZQwoKHFZF/gicAnaRe0zwLWAq9OcmZVvXvM4paok2gX17vSeiZOTHYv2bXnuEPe7L8Y+L/dyvNHA/+NEXdVqapTZx4n2XrsnqOS1nNX1w+4AJI8nBlbcOq+qup53ZdvS3I2sD3wryOWtBy8t/t9K9q1zxW0n7170YKAB45U12LwCNafoLyzOyctF99Nshvrfs4dznSuQtQCqqpTu0DqHrTvjeuqqs/DHC0t7wW+muTM7vgI4B09xxo6IKC5uTjJx2gPDue7CAbaSuWhVoa/nLZd+Ptonz9rgJcNNPY0OR44M8m3aNftj6S1oBjb+bRdtZ4G/BD4HPDVUStaRqpquy789hjavd18vAH4SpLrad9juwDHJtmGdW0f5lLbkOGC+c7zvof2v+ldtHavE5Nzo3NeZHSGzbQQlkuoVFMiU9jSS9qgbkXkb8zq5/hp4JnAJVW1asz6lrIkJ1XVMQOOd92AN/skeS6tn+ltwFOq6t+GGruvJAcCfwNsW1U7JfkV4NVVdezIpUnLWpLVtImyfWiTGIcDf1BVZ270jdIIknwceGtVXdkd7wm8raoOH7ey6ZXkLcALgX/uTj0X+FhVvXO8qqSF060m+xBwEK1F4Y3A6kWwW6I2oSS/QXtAN/Ohzqur6rOjFqbRJVnFugUOX6qqa3qO837aA+mhAgKagySnbOB0VdXL5zHen/b9fpg11qnA8bN2anlP39qmWZItaO32oAXh7hqzHoAkZwC3Ah/tTr0YeFhVHXH/79JQkrwSeB2wI3A5cACwpqqe1nO8LWlBCGjfY6O0d55tqHneJJdW1T6zzq3t2XZFS0iSrWghpUnY7CLgfdPyb0BLQ5KVtFDpgawLlb62qr4xamFasgxoaNFIci3w+MkNTndRekVV7ZHksqrq1StVC2/gm/2/AXajpWYfC7wfOLGqPjDfsedZ19doD34/OfneTHJVVe05Zl2SIMketJu6AGe52k/TKsnVVfW4Bzqn9XUtYn61Ozy3qi4bsx5poSRZARxeVWd0qylXTNr9aHnr7qWfNQmyd7usfLqq9tj4O6UHZ+iAgMaV5Ou0eZYbaYGbSVuGOT8k3dB83VKdw+vC1KuYsVNCVX1kvIogyTWzF7Rt6Jw2jSRXAvsBF1TV3t1cxJ9U1fN7jLU1rV3Kyqp6VZLHALtX1b8MW/XczXeeN8kxwLG0nZqvn/HSdsD5VXXU/KvUYmbYTAthOYVKNR1scaLF5KPA15J8ojt+NnB6N/k47wf9WlAHAJcnmffNPnAl8MpqabMbk+wP/NlwpfZXVd+Y1f971N54kpqquha4duw6pAdhbdfL9++649W09m7aiK7396Vj1yEttKr6WZLfBc6oqh+PXY+mym2zdhm8gbb7oDSIqnKb8REl2ZG24vPJ3anzgNdV1Td7DvnMQQprViTZYdbDjiU3H53krcAhtIDGZ4D/BXwFGDWgAVya5ICqugCgmzO7eOSalpPbq+r2JCTZsqquTdJ3p4lTaO2nJ+0u/wM4Exg9oMH853lPBz4LvBN484zzt1XV9wetVIvVnrOCZWcn8XmQhrbX5HoFoKq+n2TJBUo1PZbcBbGWrqp6e5LPsu6G87eranJTsXqkstTPYDf7VfXnSR6SZKequq6qbgFeMdT48/CNJAcB1W1z+TrAVfqSpLk4GjiG9jME4FzgpPHKkbQIfDHJG4GPAfeGNJzcXvYuTvIZ4Azadr1HABcleT7YhkLztwkCApqbU2gPOCcriY/qzj29z2ADt8V6L/DVJJOWkkcA7xhw/GlxOPArwGVVdXSSR7AuZD2mfYE1SW7ujncCrut2dui7UEoP3jeTPIzW/ukLSX4A9P33tVtVvSjJkQBV9ZPMWhU2onnN83ZzubcARw5TjpYgw2ZaCMsiVKrpYYsTSaNJ8ousv/XjzRv54/c3xrOB9wA/V1W7JNkbOKGqDhuu0rlL8gu0diu/TkuOf542QfW9MeuSJC0uSR4C7FRV141di6Tp161cvM9NflXtOkI5mhL3035iwjYUmrckX6AFBE7rTh0FrK6qXgEBzU2Sy6tq7wc6N5Ykq4BDu8MvDdHudtokubCqnpTkEuCptF2Kvj52K6kkKzf2+sBhHG1Ekl8Dtgf+taru7PH+NbRWredX1T5du7K/r6onDVyqNHW61lu7A+uFzYC7MWymgSR5KfD7tN2JoAuVVtVp9/8uqT8DGpIWXJLDaKsoHg38J7CSduP6uB5jXUK70T9n0sM0yVVVteeAJUuStOC6n5d/ypSFECVNry7UdSxwMC2ocR7wwar66aiFSVrSpj0gsNQlOYu2Y8bfd6eOBI6uqqeNV9XykuSvaA91fhN4A/Aj4HLb/2gI3U4ZL6HtGLyKtgjsycDLquqcEUuTFoRhMy2U5RAq1fQwoCFpwSW5gvaD7otV9YQkTwWOqqo5tyZJckFVHZDkshkBjbVjJWeT/G5VvTvJiWx49eJxI5QlSVqE7ieEeGVVPX7cyiRNqyRnALcCH+1OvRjYvqpeOF5VGluSx9JaZD2iqvZMshdwWFX98cilaYkwIDCu7sHVicCBtHmINcBrq+oboxa2TCXZGXhoVa0duRQtIV1bmkOAA2g79V5QVd8dtShJktSb/XMkjeGuqvpekhVJVlTV2Un+vOdYVyd5MbBZkscAx9EmI8bye8C7geuBH4xYhyRp8burqm6Z1VrYdLWkjdmzqlbNOD47iat+9GHgTcDJAFW1NsnpgAENDeXltIDA+1gXEHjZmAUtMycAvzWrZ/p7aP+/aBNKss/GXquqSxeyHi1plwK7VtWnxy5EkiTNnwENSWP4YZJtgXOBjyb5T+DHPcd6LfAW4A7aap3PAW8fpMp+vpPk0cDRtGR7Nv7HJUm6X9MWQpQ0/S5NckBVXQCQZH/g4pFr0vi2rqoLZwX+7h6rGC1JBgTGtdfk7x6gqr6f5AljFrSMvHfG1zOD1OmOD0Uaxv7A6iQ30eZQA9RYOwhLkqT5MaAhaQzPAX4K/A6wGtieNqEzZ1X1E1pA4y2DVTc/JwFnAbsCl8w4P7k533WMoiRJi9LMEOLptBCiq50lbcy+wJokN3fHOwHXddtiO4m/fH03yW50Dw+THA58e9yStMQYEBjXiiQ7zArIOOe7AKrqqQBJHgIcCxxM+6w9jzY/JA3lGWMXIEmShpMqd0mWtLCSbAP8tKp+1vVD3gP4bFXdNYcxPsVGtnmvqsPmX2l/SU6qqmPGrEGStHgl2Qx4V1W9cexaJC0eSVZu7PWqummhatH0SLIr8CHgIFobxhuB1X4/aChJrgAOmRUQ+HJVPX7cypaHJC8Ffh84szt1BPCOqjptvKqWlyRnALcCH+1OvRjYvqpeOF5VkiRJmlYGNCQtuCSXAL8K7ACcD1wE3FlVq+cwxq91Xz4feCTwd93xkcB3qup3hqtYkqSFl+SCqjpg7DokSYtXkhXA4VV1RheUX1FVt41dl5YWAwLjS7KKde00vlRV14xZz3KT5JqqWvVA5yRJkiQwoCFpBEkurap9krwWeEhVvTvJ5VW1d4+xLq6qJz7QOUmSFpskJwH/nfaw48eT81X18dGKkiQtOt4faSEYENByluTvgL+sqgu64/2B11TVS8etTJIkSdPIfoSSxpAkBwKrgVd05zbrOdY2SXatqhu6gXcBthmgRkmSxrYV8D3WPeyA1t7LgIYkaS6+mOSNwMdYP/D3/fFK0lLTBTIMZWi52hdYk+Tm7ngn4LokVwJVVXuNV5okSZKmjTtoSFpwXXuSNwDnV9W7up7Ix1fVcT3Geiatn/INQICVwKur6nND1ixJkiRJi1GSG2kBv/VU1a4jlCNJS06SlRt7vapuWqhaJEmSNP0MaEgaTZKH0lYSzKsHcpItgT26w2ur6o55FydJ0siSbEXbaepxtN00AKiql49WlCRp0UnyEOBY4GBaUOM84INV9dNRC5MkSZIkaRlaMXYBkpafJE/stnlcC1yV5Iok+85jyH1pD69+BXhREnt8SpKWgtOARwLPAL4M7AjMK9QoSVqWTgX+B/AXwInAqu6cJEmSJElaYO6gIWnBJVkLvKaqzuuODwb+qk9PziSnAbsBlwP3dKerT7sUSZKmSZLLquoJSdZW1V5JtgDOq6oDxq5NkrR4JLmmqlY90DlJkiRJkrTpbT52AZKWpXsm4QyAqvpKkrt7jvVEYFWZNpMkLT13db//MMmewP8DfnHEeiRJi9OlSQ6oqgsAkuwPXDxyTZIkSZIkLUsGNCSN4ctJTgb+ntYD+UXAOUn2AaiqS+cw1lW07d+/PXiVkiSN60NJdgD+EPgksC3wR+OWJElahPYF1iS5uTveCbiuaztZfXYylCRJkiRJ/djiRNKCS3J29+XkAyjd16FNEB46x7H2Bi4E7picr6rDhqlWkiRJkhavJCs39npV3bRQtUiSJEmStNy5g4akMZwz67gAquqEHmO9bb7FSJI0jZJsCbwA2JkZ1+09f15KkpYpAxiSJEmSJE0PAxqSxvCjGV9vBTwL+Hqfgarqy4NUJEnS9PkEcAtwCTN2iZIkSZIkSZIkLU62OJE0um6FqoinuwAABVlJREFU8Oeq6pA5vOcrVXVwkttY1yoF1rVJeejAZUqStKCSXFVVe45dhyRJkiRJkiRpGO6gIWkabA3sOJc3VNXB3e/bbZKKJEka35okj6+qK8cuRJIkSZIkSZI0fwY0JC24JFeybteLzYCHAyeMV5EkSdNjxs/JzYGjk9xAa3Ey2SVqrzHrkyRJkiRJkiT1Y4sTSQsuycoZh3cD36mqu8eqR5KkaTLr5+R9VNVNC1WLJEmSJEmSJGk4BjQkSZKkKZRkN+CbVXVHkkOAvYCPVNUPx61MkiRJkiRJktTHirELkCRJkrRB/wTck+SXgQ8BvwScPm5JkiRJkiRJkqS+DGhIkiRJ0+lnXQuw5wMnVtWbgEeNXJMkSZIkSZIkqScDGpIkSdJ0uivJkcBLgX/pzm0xYj2SJEmSJEmSpHkwoCFJkiRNp6OBA4F3VNWNSXYBThu5JkmSJEmSJElST6mqsWuQJEmSNEOSzYCPVNXqsWuRJEmSJEmSJA3DHTQkSZKkKVNV9wArk/zc2LVIkiRJkiRJkoax+dgFSJIkSdqgG4Dzk3wS+PHkZFX92XglSZIkSZIkSZL6MqAhSZIkTafru18rgO1GrkWSJEmSJEmSNE+pqrFrkCRJknQ/kmwLUFU/GrsWSZIkSZIkSVJ/K8YuQJIkSdJ9JdkzyWXA1cDVSS5J8rix65IkSZIkSZIk9WNAQ5IkSZpOHwJeX1Urq2ol8AbgwyPXJEmSJEmSJEnqyYCGJEmSNJ22qaqzJwdVdQ6wzXjlSJIkSZIkSZLmY/OxC5AkSZK0QTck+UPgtO74KOCGEeuRJEmSJEmSJM2DO2hIkiRJ0+nlwMOBj3e/fqE7J0mSJEmSJElahFJVY9cgSZIkaSOSbEZreXLr2LVIkiRJkiRJkvpxBw1JkiRpCiU5PclDk2wDXAlck+RNY9clSZIkSZIkSerHgIYkSZI0nVZ1O2Y8F/gssAvwknFLkiRJkiRJkiT1ZUBDkiRJmk5bJNmCFtD4ZFXdBdifUJIkSZIkSZIWKQMakiRJ0nQ6Gfh3YBvg3CQrgVtHrUiSJEmSJEmS1FuqXIQnSZIkLQZJNq+qu8euQ5IkSZIkSZI0d5uPXYAkSZKk+0qyJfACYGfWv24/YZSCJEmSJEmSJEnzYkBDkiRJmk6fAG4BLgHuGLkWSZIkSZIkSdI82eJEkiRJmkJJrqqqPceuQ5IkSZIkSZI0jBVjFyBJkiRpg9YkefzYRUiSJEmSJEmShuEOGpIkSdIUSnIN8MvAjbQWJwGqqvYatTBJkiRJkiRJUi8GNCRJkqQplGTlhs5X1U0LXYskSZIkSZIkaf5scSJJkiRNoS6I8UvAod3XP8Hrd0mSJEmSJElatNxBQ5IkSZpCSd4KPBHYvaoem+TRwJlV9eSRS5MkSZIkSZIk9eAKPEmSJGk6PQ84DPgxQFV9C9hu1IokSZIkSZIkSb0Z0JAkSZKm053VtrsrgCTbjFyPJEmSJEmSJGkeDGhIkiRJ0+mMJCcDD0vyKuCLwIdHrkmSJEmSJEmS1NPmYxcgSZIkaYMeDvwjcCuwO/BHwK+PWpEkSZIkSZIkqbe0XZMlSZIkTZMkl1bVPrPOra2qvcaqSZIkSZIkSZLUnztoSJIkSVMkyTHAscCuSdbOeGk74PxxqpIkSZIkSZIkzZc7aEiSJElTJMn2wA7AO4E3z3jptqr6/jhVSZIkSZIkSZLmy4CGJEmSJEmSJEmSJEnSJrZi7AIkSZIkSZIkSZIkSZKWOgMakiRJkiRJkiRJkiRJm5gBDUmSJEmSJEmSJEmSpE3MgIYkSZIkSZIkSZIkSdIm9v8B9sDUk+5uLM8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] }, "metadata": { @@ -2917,21 +1650,24 @@ } ], "source": [ - "plt.figure(figsize=(20,10))\n", - "labels, values = zip(*d.most_common(100))\n", + "plt.figure(figsize=(30,10))\n", + "labels, values = zip(*c.most_common(100))\n", "\n", "indexes = np.arange(len(labels))\n", "width = 1\n", "\n", - "accuracies = [c[tok] for tok in labels]\n", + "freqs = [per_token_freq[l] for l in labels]\n", "\n", - "plt.bar(indexes, accuracies, width, label='Accuracy')\n", - "plt.bar(indexes, values, width, label='Frequency')\n", + "mean_freq = np.mean(list(per_token_freq.values()))\n", + "mean_acc = (accuracy / len(results_df))\n", + "\n", + "plt.bar(indexes, values, width, label='Accuracy')\n", + "plt.bar(indexes, freqs, width, label='Frequency')\n", "plt.xticks(indexes , labels, rotation=90)\n", - "plt.title('MAGRET - large (200k epochs) - mean_freq = {:.3f} / max_freq = {:.2f} / mean_acc = {:.3f}'.format(mean_freq, np.max(freqs), mean_acc))\n", + "plt.title('BERT (100k epochs) - mean_freq = {:.3f} / max_freq = {:.2f} / mean_acc = {:.3f}'.format(mean_freq, np.max(freqs), mean_acc))\n", "plt.legend()\n", "plt.tight_layout()\n", - "plt.savefig('MAGRET-lg-freq-200k_epochs_top100.png')\n", + "plt.savefig('BERT-100k2_epochs_top100.pdf')\n", "plt.show()" ] }, @@ -2944,7071 +1680,3263 @@ }, { "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], + "execution_count": 72, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[2,\n", + " 2,\n", + " 237,\n", + " 25,\n", + " 230,\n", + " 53,\n", + " 25,\n", + " 25,\n", + " 603,\n", + " 25,\n", + " 25,\n", + " 7,\n", + " 98,\n", + " 319,\n", + " 25,\n", + " 3,\n", + " 2,\n", + " 398,\n", + " 44,\n", + " 1142,\n", + " 653,\n", + " 25,\n", + " 104,\n", + " 603,\n", + " 1142,\n", + " 657,\n", + " 4,\n", + " 655,\n", + " 1142,\n", + " 871,\n", + " 25,\n", + " 1142,\n", + " 655,\n", + " 659,\n", + " 1142,\n", + " 871,\n", + " 25,\n", + " 3,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0,\n", + " 0]" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "confusion = {}" + "pred = list(results_df.loc[10][3:])\n", + "pred" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ - "for i in range(len(results_df)):\n", - " snippet = [results_df[str(_)][i] for _ in range(64)]\n", - " msk_idx = results_df.iloc[i]['masked_lm_positions']\n", - " masked_tk = snippet[msk_idx]\n", - " prediction = vocab_df.loc[results_df.iloc[i]['masked_lm_predictions']][0]\n", - " label = vocab_df.loc[results_df.iloc[i]['label_ids']][0]\n", - " if confusion.get(label, None) == None:\n", - " confusion[label] = []\n", - " if prediction != label:\n", - " confusion[label].append(prediction)" + "pred_str = [vocab_df.loc[i][0] for i in pred]" ] }, { "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], + "execution_count": 74, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['[CLS]',\n", + " '[CLS]',\n", + " 'slice',\n", + " 'keyword',\n", + " 'noteq',\n", + " 'equal',\n", + " 'keyword',\n", + " 'keyword',\n", + " 'print',\n", + " 'keyword',\n", + " 'keyword',\n", + " 'arguments',\n", + " 'training',\n", + " 'instance',\n", + " 'keyword',\n", + " '[SEP]',\n", + " '[CLS]',\n", + " 'biases',\n", + " 'string',\n", + " 'batchnorm',\n", + " 'subclassed',\n", + " 'keyword',\n", + " 'target',\n", + " 'print',\n", + " 'batchnorm',\n", + " 'setattr',\n", + " '[MASK]',\n", + " 'expects',\n", + " 'batchnorm',\n", + " 'stopped',\n", + " 'keyword',\n", + " 'batchnorm',\n", + " 'expects',\n", + " 'inbound',\n", + " 'batchnorm',\n", + " 'stopped',\n", + " 'keyword',\n", + " '[SEP]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]',\n", + " '[PAD]']" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "confusion_counter = {c: Counter(confusion[c]) for c in confusion}" + "pred_str" ] }, { "cell_type": "code", - "execution_count": 29, - "metadata": {}, + "execution_count": 75, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "text/plain": [ - "{nan: Counter({'alpha': 4, 'float64': 1, nan: 89}),\n", - " 'resize': Counter({'kneighbors': 1, 'reshape': 3}),\n", - " 'categorical': Counter({'metric': 7, 'n': 4}),\n", - " 'bernoulli': Counter({'normal': 5}),\n", - " 'steps': Counter({'backend': 1,\n", - " 'interval': 1,\n", - " 'isnot': 1,\n", - " 'matrix': 4,\n", - " 'split': 4,\n", - " 'weight': 2}),\n", - " 'bound': Counter({'d': 6}),\n", - " 'yr': Counter({'x': 3}),\n", - " 'dilation': Counter({'bias': 2, 'learning': 9}),\n", - " 'variance': Counter({'f': 1, 'mask': 1}),\n", - " 'sig': Counter({'filename': 1}),\n", - " 'expr': Counter({'assert': 7,\n", - " 'attribute': 1,\n", - " 'name': 152,\n", - " 'nameconstant': 3,\n", - " 'num': 1,\n", - " 'raise': 20,\n", - " 'return': 40}),\n", - " 'frompyfunc': Counter({'approx': 4, 'repeat': 1, 'reshape': 4}),\n", - " 'g': Counter({'clf': 4, 'lda': 4, 's': 3}),\n", - " 'binomial': Counter({'normal': 8, 'randint': 3}),\n", - " 'coordinate': Counter({'multi': 2}),\n", - " 'warning': Counter(),\n", - " 'preference': Counter({'tol': 1, 'verbose': 2}),\n", - " 'arguments': Counter({'arg': 3,\n", - " 'index': 1,\n", - " 'name': 10,\n", - " 'shape': 2,\n", - " 'transformers': 6,\n", - " 'update': 1}),\n", - " 'discovery': Counter({'importfrom': 4, 'learning': 3}),\n", - " 'optimizer': Counter({'backend': 3,\n", - " 'input': 5,\n", - " 'loss': 1,\n", - " 'self': 2,\n", - " 'support': 1,\n", - " 'threshold': 3}),\n", - " 'reduction': Counter({'add': 3,\n", - " 'alpha': 6,\n", - " 'beta': 1,\n", - " 'bool': 1,\n", - " 'call': 1,\n", - " 'cell': 3,\n", - " 'default': 4,\n", - " 'function': 3,\n", - " 'kwargs': 2,\n", - " 'layer': 1,\n", - " 'max': 1,\n", - " 'p': 3,\n", - " 'shape': 2,\n", - " 'size': 2,\n", - " 'state': 3,\n", - " 'unroll': 1}),\n", - " 'k2': Counter({'kernel': 3}),\n", - " 'freq': Counter({'func': 1, 'loss': 2, 'mult': 5, 'shape': 6, 'var': 3}),\n", - " 'qid': Counter({'y': 2}),\n", - " 'clust2': Counter({'apca': 3, 'ensemble': 2}),\n", - " 'exc': Counter({'result': 4}),\n", - " 'sandbox': Counter({'flags': 2}),\n", - " 'log2': Counter(),\n", - " 'additional': Counter({'backend': 3}),\n", - " 'update': Counter({'append': 8, 'change': 3, 'dtype': 4, 'max': 10, 'v': 2}),\n", - " 'multiclassclassifier': Counter({'fn': 3}),\n", - " 'grid': Counter({'enet': 1, 'random': 1}),\n", - " 'store': Counter(),\n", - " 'stateful': Counter({'effective': 3,\n", - " 'metrics': 2,\n", - " 'outputs': 3,\n", - " 'param': 1,\n", - " 'strides': 2,\n", - " 'valid': 3}),\n", - " 'iter': Counter({'items': 1, 'splits': 9, 'state': 4}),\n", - " 'maxs': Counter({'core': 2, 'labels': 1}),\n", - " 'ndarray': Counter({'fit': 1, 'integral': 1, 'proto': 1, 'state': 1}),\n", - " 'cases': Counter({'inp': 1, 'loss': 3, 'msg': 5}),\n", - " 'rejection': Counter({'maxima': 1}),\n", - " 'bytedata': Counter({'fileobj': 2}),\n", - " 'pool1d': Counter({'function': 1, 'max': 2, 'state': 4, 'value': 2}),\n", - " 'atleast': Counter(),\n", - " 'modules': Counter({'name': 1, 'parameters': 3, 'state': 1}),\n", - " 'dimensions': Counter({'cell': 1, 'kernel': 1}),\n", - " 'true': Counter({'expected': 4, 'log': 4, 'mask': 3, 'pred': 3, 'score': 5}),\n", - " 'jobs': Counter({'args': 1, 'components': 1, 'handle': 5}),\n", - " 'parametrize': Counter(),\n", - " 'oh': Counter({'x': 2}),\n", - " 'normalized': Counter({'a': 1}),\n", - " 'lock': Counter({'backend': 1, 'self': 3, 'table': 1}),\n", - " 'mod': Counter({'add': 20, 'mult': 3}),\n", - " 'dd': Counter({'standard': 5}),\n", - " 'condition': Counter(),\n", - " 'pickler': Counter({'attribute': 1, 'grad': 3}),\n", - " 'cos': Counter({'sin': 2}),\n", - " 'gp': Counter({'nn': 1}),\n", - " 'cv': Counter({'lassolars': 9,\n", - " 'metric': 1,\n", - " 'test': 2,\n", - " 'verbose': 2,\n", - " 'weights': 1}),\n", - " 'anisotropic': Counter(),\n", - " 'ifexp': Counter({'assign': 1, 'call': 22, 'dict': 3}),\n", - " 'patch': Counter(),\n", - " 'apply': Counter({'all': 1, 'backend': 4, 'dim': 2}),\n", - " 'image': Counter({'input': 8, 'is': 1, 'output': 1, 'to': 1}),\n", - " 'mul': Counter({'astype': 6, 't': 6}),\n", - " 'cand': Counter(),\n", - " '10': Counter({'2': 1, 'with': 2}),\n", - " 'embeddings': Counter({'max': 7, 'state': 1, 'var': 5}),\n", - " 'ln': Counter({'l': 1}),\n", - " 'idx': Counter({'i': 2, 'indices': 5, 'mask': 2, 'name': 5, 'x': 4}),\n", - " 'isnan': Counter({'backend': 1, 'isfinite': 6}),\n", - " 'gamma': Counter({'alpha': 1,\n", - " 'beta': 1,\n", - " 'epsilon': 1,\n", - " 'label': 2,\n", - " 'metric': 5,\n", - " 'neighbors': 1,\n", - " 'pi': 4,\n", - " 'randint': 4,\n", - " 'verbose': 1}),\n", - " 'union1d': Counter(),\n", - " 'minimum': Counter({'log': 2, 'maximum': 2}),\n", - " 'bounds': Counter(),\n", - " 'pickled': Counter(),\n", - " 'tensor': Counter({'abs': 2,\n", - " 'bz2file': 2,\n", - " 'dot': 4,\n", - " 'file': 1,\n", - " 'get': 1,\n", - " 'input': 4,\n", - " 'item': 5,\n", - " 'new': 1,\n", - " 'shape': 4,\n", - " 'sparse': 2,\n", - " 'state': 6,\n", - " 'stationary': 4,\n", - " 'test': 1,\n", - " 'x': 1}),\n", - " 'empty': Counter({'alpha': 3,\n", - " 'boolop': 2,\n", - " 'd': 1,\n", - " 'get': 3,\n", - " 'l1': 1,\n", - " 'node': 2,\n", - " 'num': 4,\n", - " 'ones': 6,\n", - " 'zeros': 3}),\n", - " 'columns': Counter({'trans': 2}),\n", - " 'marginal': Counter(),\n", - " 'engine': Counter({'callbacks': 3}),\n", - " 'unsupportedoperation': Counter(),\n", - " 'starred': Counter({'keyword': 40, 'name': 11}),\n", - " 'nk': Counter({'y': 2}),\n", - " 'fs': Counter({'pipeline': 5}),\n", - " 'allclose': Counter(),\n", - " 'dx': Counter({'matrix': 5}),\n", - " 'proceed': Counter({'filename': 3}),\n", - " 'qr': Counter(),\n", - " 'inplace': Counter({'bias': 3,\n", - " 'gamma': 3,\n", - " 'model': 2,\n", - " 'self': 3,\n", - " 'value': 10}),\n", - " 'write': Counter({'makedirs': 1, 'name': 1, 'rmtree': 1}),\n", - " 'value': Counter({'attr': 3,\n", - " 'constant': 1,\n", - " 'f': 2,\n", - " 'i': 5,\n", - " 'j': 1,\n", - " 'like': 2,\n", - " 'name': 4,\n", - " 'ndim': 4,\n", - " 'p': 1,\n", - " 'params': 2,\n", - " 'self': 2,\n", - " 'transformers': 4,\n", - " 'uncovered': 1,\n", - " 'x': 11,\n", - " 'y': 1}),\n", - " 'grads': Counter({'batch': 1, 'dtype': 1, 'result': 7}),\n", - " 'factory': Counter({'count': 2, 'fit': 2, 'function': 1, 'str': 1}),\n", - " 'urlopen': Counter(),\n", - " 'plsregression': Counter({'plscanonical': 4, 'tolist': 2}),\n", - " 'filenames': Counter({'data': 6}),\n", - " 'inert': Counter({'idx': 2}),\n", - " 'refit': Counter(),\n", - " 'for': Counter({'assign': 15,\n", - " 'cell': 2,\n", - " 'kernel': 1,\n", - " 'n': 1,\n", - " 'output': 1,\n", - " 'reduce': 2}),\n", - " 'stopping': Counter(),\n", - " 'match': Counter({'group': 1, 'sub': 4, 'v': 1}),\n", - " 'output': Counter({'attr': 3,\n", - " 'bias': 1,\n", - " 'dtype': 1,\n", - " 'features': 1,\n", - " 'input': 3,\n", - " 'kernel': 6,\n", - " 'label': 1,\n", - " 'layer': 3,\n", - " 'length': 3,\n", - " 'n': 1,\n", - " 'name': 1,\n", - " 'outputs': 5,\n", - " 'self': 1,\n", - " 'shape': 1,\n", - " 'stack': 3,\n", - " 'state': 2,\n", - " 'stop': 8,\n", - " 'x': 9}),\n", - " 'iterations': Counter({'alpha': 3,\n", - " 'axis': 1,\n", - " 'coef': 1,\n", - " 'constant': 6,\n", - " 'location': 1,\n", - " 'size': 1,\n", - " 'time': 3}),\n", - " 'labels2': Counter({'scores': 1, 'x': 2}),\n", - " 'components': Counter({'a': 1,\n", - " 'clusters': 3,\n", - " 'jobs': 11,\n", - " 'nodes': 1,\n", - " 'splits': 2,\n", - " 't': 2,\n", - " 'theta': 2,\n", - " 'x': 3}),\n", - " 'delta': Counter({'effective': 1, 'on': 3}),\n", - " 'sentinel': Counter({'uid': 3}),\n", - " 'try': Counter(),\n", - " 'patternbroadcast': Counter({'reshape': 1}),\n", - " 'dst': Counter({'input': 3}),\n", - " 'based': Counter({'value': 3}),\n", - " 'pvalue': Counter({'labels': 4}),\n", - " 'choice': Counter({'searchsorted': 3}),\n", - " 'fc': Counter({'thresholds': 1}),\n", - " 'class': Counter({'cached': 1,\n", - " 'cell': 1,\n", - " 'feature': 1,\n", - " 'p': 1,\n", - " 'parameters': 3,\n", - " 'row': 3,\n", - " 'sample': 2}),\n", - " 'nearestneighbors': Counter({'memmap': 3, 'svc': 1}),\n", - " 'global': Counter({'function': 3, 'name': 2, 'return': 2}),\n", - " 'beta': Counter({'alpha': 1, 'epsilon': 2, 'labels': 3, 'value': 3}),\n", - " 'order': Counter({'indices': 2, 'layer': 1, 'shape': 2, 'size': 4}),\n", - " 'spacing': Counter(),\n", - " 'reducers': Counter({'context': 2,\n", - " 'path': 1,\n", - " 'reader': 8,\n", - " 'wlock': 1,\n", - " 'writer': 3}),\n", - " 'mp': Counter({'errno': 1, 'work': 6}),\n", - " 'stride': Counter({'alpha': 1, 'bias': 16, 'kernel': 3, 'uniform': 1}),\n", - " 'cancelled': Counter({'exception': 1, 'result': 3}),\n", - " 'interval': Counter({'sample': 1, 'steps': 1, 'weight': 1}),\n", - " 'islower': Counter({'strip': 1}),\n", - " 'stacklevel': Counter({'self': 1}),\n", - " 'needs': Counter({'max': 1}),\n", - " 'strategy': Counter({'axis': 2, 'dtype': 4}),\n", - " 'rkf': Counter({'splits': 4}),\n", - " 'singular': Counter(),\n", - " 'crossmaplrn2d': Counter({'size': 5}),\n", - " 'executable': Counter({'path': 2, 'stdout': 1, 'support': 4}),\n", - " 'convert': Counter(),\n", - " 'meshgrid': Counter({'dot': 4}),\n", - " 'triplet': Counter({'beta': 1, 'make': 2}),\n", - " 'rho': Counter({'dtype': 1}),\n", - " 'recurrent': Counter({'bias': 3, 'input': 3}),\n", - " 'normalizer': Counter({'approx': 5, 'asarray': 1, 'xt': 7}),\n", - " 'handle': Counter({'duplicatehandle': 6, 'name': 2, 'type': 1}),\n", - " 'add': Counter({'append': 9,\n", - " 'beta': 2,\n", - " 'div': 32,\n", - " 'fit': 1,\n", - " 'floordiv': 15,\n", - " 'import': 9,\n", - " 'log': 1,\n", - " 'mod': 31,\n", - " 'mult': 44,\n", - " 'name': 1,\n", - " 'pow': 11,\n", - " 'sub': 75}),\n", - " 'stack': Counter({'array': 4, 'extend': 2}),\n", - " 'analyzer': Counter(),\n", - " 'contamination': Counter(),\n", - " 'old': Counter({'feature': 9, 'g': 1, 'new': 2, 'self': 1, 'train': 1}),\n", - " 'lml': Counter({'alpha': 1, 'theta': 1, 'time': 1}),\n", - " 'plscanonical': Counter({'array': 1, 'empty': 1, 'format': 3}),\n", - " 'monitor': Counter({'fit': 1, 'initargs': 2, 'verbose': 4}),\n", - " 'linkage': Counter({'affinity': 1}),\n", - " 'variables': Counter({'backend': 6,\n", - " 'cell': 1,\n", - " 'class': 1,\n", - " 'dtype': 2,\n", - " 'flags': 2}),\n", - " 'alphak': Counter({'fig': 1}),\n", - " 'ft': Counter({'pipeline': 4}),\n", - " 'quantiles': Counter(),\n", - " 'resp': Counter({'x': 4}),\n", - " 'rec': Counter({'tsne': 2}),\n", - " 'spca': Counter(),\n", - " 'validate': Counter(),\n", - " 'splits': Counter({'outputs': 2}),\n", - " 'xw': Counter({'x': 8}),\n", - " 'point': Counter(),\n", - " 'broadcast': Counter({'to': 3}),\n", - " 'ser': Counter({'df': 4}),\n", - " 'linear': Counter({'bias': 2}),\n", - " 'field': Counter({'batch': 3}),\n", - " 'xi': Counter({'est': 2}),\n", - " 'assume': Counter(),\n", - " 'checked': Counter(),\n", - " 'linearsvr': Counter({'linearsvc': 4}),\n", - " 'end': Counter({'duration': 2, 'error': 1, 'on': 1, 'score': 5, 'start': 2}),\n", - " 'descr': Counter(),\n", - " 'successful': Counter({'values': 3}),\n", - " 'difference': Counter({'lower': 4}),\n", - " 'im': Counter(),\n", - " 'poisson': Counter({'arange': 2}),\n", - " 'grad': Counter({'best': 1,\n", - " 'by': 2,\n", - " 'c': 2,\n", - " 'data': 2,\n", - " 'function': 1,\n", - " 'idx': 1,\n", - " 'it': 2,\n", - " 'kernel': 1,\n", - " 'loss': 2,\n", - " 'mask': 1,\n", - " 'n': 2,\n", - " 'name': 1,\n", - " 'sq': 2,\n", - " 'true': 3,\n", - " 'workers': 1,\n", - " 'x': 3}),\n", - " 'covariances': Counter(),\n", - " 'obj': Counter({'args': 1, 'fileobj': 3, 'kwargs': 2}),\n", - " 'shift': Counter({'axis': 6, 'norms': 3, 'predictions': 2, 'x': 3, 'xy': 1}),\n", - " 'tree': Counter({'e': 1, 'kernel': 3}),\n", - " 'dbscan': Counter({'book': 6}),\n", - " 'tn': Counter(),\n", - " 'criteria': Counter({'tuple': 1}),\n", - " 'narrow': Counter({'name': 1, 'repeat': 4, 'transpose': 1}),\n", - " 'solve': Counter({'sqrt': 3}),\n", - " 'scores': Counter({'alphas': 6,\n", - " 'dec': 2,\n", - " 'fraction': 1,\n", - " 'labels': 4,\n", - " 'lte': 1,\n", - " 'sizes': 2,\n", - " 'train': 1}),\n", - " 'done': Counter({'state': 2}),\n", - " 'encode': Counter({'get': 5, 'name': 1}),\n", - " 'reconstructed': Counter({'shape': 2}),\n", - " 'url': Counter({'idx': 1, 's': 2}),\n", - " 'weighted': Counter({'2': 1}),\n", - " 'classification': Counter({'self': 2}),\n", - " 'thread': Counter({'function': 2}),\n", - " 'fork': Counter(),\n", - " 'algorithm': Counter({'code': 1,\n", - " 'kwargs': 2,\n", - " 'loss': 2,\n", - " 'solver': 1,\n", - " 'verbose': 2}),\n", - " 'too': Counter({'test': 4}),\n", - " 'enough': Counter({'centroids': 1}),\n", - " 'is': Counter({'eq': 4,\n", - " 'in': 4,\n", - " 'isnot': 32,\n", - " 'noteq': 1,\n", - " 'nz': 5,\n", - " 'shape': 2}),\n", - " 'cpu': Counter({'any': 2, 'feature': 2, 'read': 3}),\n", - " 'interpolate': Counter({'alpha': 2}),\n", - " 'can': Counter({'read': 2}),\n", - " 'sample': Counter({'arff': 2,\n", - " 'class': 5,\n", - " 'feature': 2,\n", - " 'named': 2,\n", - " 'randint': 10,\n", - " 'randn': 1,\n", - " 'step': 2,\n", - " 'y': 1}),\n", - " 'inputfeaturetype': Counter({'x': 2}),\n", - " 'np': Counter(),\n", - " 'logprob': Counter({'shape': 2}),\n", - " 'proto': Counter(),\n", - " 'asarray': Counter({'array': 15,\n", - " 'dot': 1,\n", - " 'empty': 1,\n", - " 'intp': 1,\n", - " 'ones': 1,\n", - " 'replace': 1,\n", - " 'shape': 1,\n", - " 'sqrt': 3,\n", - " 'var': 3,\n", - " 'zeros': 2}),\n", - " 'sync': Counter({'add': 1}),\n", - " '20newsgroups': Counter(),\n", - " 'measure': Counter({'samples': 1}),\n", - " 'yt': Counter({'xt': 5}),\n", - " 'pl': Counter({'i': 2, 'key': 1, 'r': 4, 'w': 1}),\n", - " 'chol': Counter(),\n", - " 'corrcoef': Counter({'randn': 1}),\n", - " 'input': Counter({'batch': 2,\n", - " 'centers': 1,\n", - " 'inputs': 1,\n", - " 'is': 2,\n", - " 'kwargs': 7,\n", - " 'layer': 1,\n", - " 'likelihood': 1,\n", - " 'modules': 1,\n", - " 'num': 1,\n", - " 'output': 12,\n", - " 'platform': 3,\n", - " 'return': 1,\n", - " 'self': 8,\n", - " 'shape': 3,\n", - " 'state': 4,\n", - " 't': 4,\n", - " 'target': 3,\n", - " 'test': 1,\n", - " 'value': 8,\n", - " 'x': 9}),\n", - " 'bynipals': Counter(),\n", - " 'pointer': Counter({'buffer': 1, 'squeeze': 5}),\n", - " 'argmin': Counter({'abs': 2, 'argmax': 5}),\n", - " 'as': Counter({'attribute': 6, 'decision': 9, 'name': 3, 'state': 1}),\n", - " 'categories': Counter({'classes': 2}),\n", - " 'string': Counter({'random': 1, 'sparse': 4}),\n", - " 'sizes': Counter({'buffer': 1,\n", - " 'layer': 3,\n", - " 'left': 1,\n", - " 'mask': 4,\n", - " 'results': 3,\n", - " 'scores': 4,\n", - " 'size': 10,\n", - " 'workers': 1}),\n", - " 'sparse': Counter({'assign': 1,\n", - " 'dense': 8,\n", - " 'dtype': 3,\n", - " 'in': 4,\n", - " 'is': 1,\n", - " 'pooling': 2,\n", - " 'return': 1,\n", - " 'save': 2,\n", - " 'test': 2,\n", - " 'with': 2}),\n", - " 'one': Counter({'add': 7, 'make': 1, 'stats': 2, 'to': 1}),\n", - " 'reshape': Counter({'all': 2,\n", - " 'array': 6,\n", - " 'build': 1,\n", - " 'coef': 1,\n", - " 'concatenate': 3,\n", - " 'data': 1,\n", - " 'dot': 2,\n", - " 'format': 1,\n", - " 'get': 5,\n", - " 'losses': 1,\n", - " 'randint': 2,\n", - " 'sum': 4,\n", - " 'unique': 1}),\n", - " 'type': Counter({'apply': 4,\n", - " 'config': 1,\n", - " 'mask': 4,\n", - " 'nameconstant': 3,\n", - " 'proto': 1,\n", - " 'regularizer': 1,\n", - " 'shape': 1,\n", - " 'state': 5,\n", - " 'sum': 3,\n", - " 'tree': 6,\n", - " 'weights': 1}),\n", - " 'platform': Counter({'b': 1, 'float64': 1}),\n", - " 'noise': Counter({'explained': 4, 'theta': 1}),\n", - " 'rtol': Counter({'kernel': 1}),\n", - " 'transform': Counter({'apply': 1,\n", - " 'astype': 2,\n", - " 'est': 1,\n", - " 'fit': 9,\n", - " 'name': 2,\n", - " 'predict': 3}),\n", - " 'merge': Counter({'legacy': 2}),\n", - " 'folder': Counter(),\n", - " 'pinvh': Counter({'eye': 1}),\n", - " 'embedded': Counter({'checked': 1, 'k': 2, 'trans': 4}),\n", - " 'informative': Counter({'samples': 1}),\n", - " 'conv1d': Counter({'cell': 2, 'kernel': 1, 'support': 2}),\n", - " 'training': Counter({'backend': 1,\n", - " 'batch': 1,\n", - " 'bias': 6,\n", - " 'dict': 2,\n", - " 'kernel': 5,\n", - " 'output': 1,\n", - " 'p': 5,\n", - " 'value': 5}),\n", - " 'subclass': Counter({'call': 1}),\n", - " 'skeleton': Counter({'multi': 2}),\n", - " 'eclf': Counter(),\n", - " 'high': Counter({'x': 2}),\n", - " 'feature': Counter({'c': 1, 'input': 1}),\n", - " 'nnet': Counter({'dtype': 1, 'nn': 5}),\n", - " 'prelu': Counter({'dot': 4}),\n", - " 'where': Counter({'argmax': 1, 'kneighbors': 1, 'take': 3}),\n", - " 'network': Counter({'graph': 1, 'n': 1}),\n", - " 'costs': Counter({'intercept': 2}),\n", - " 'normalization': Counter({'by': 4, 'size': 3, 'sizes': 1, 'sum': 1}),\n", - " 'losses': Counter({'layer': 1,\n", - " 'like': 1,\n", - " 'name': 3,\n", - " 'names': 7,\n", - " 'shape': 2,\n", - " 'weights': 3}),\n", - " 'leaky': Counter({'layer': 2}),\n", - " 'divide': Counter(),\n", - " 'squares': Counter({'checked': 2, 'transformer': 1}),\n", - " 'hashable': Counter({'str': 1}),\n", - " 'ceil': Counter({'argmax': 1, 'bias': 1, 'log': 3, 'mmap': 5}),\n", - " 'dim2': Counter({'out': 4}),\n", - " 'sequence': Counter({'to': 5}),\n", - " 'conflict': Counter({'mask': 1}),\n", - " 'loadtxt': Counter({'pad': 5, 'percentile': 2}),\n", - " 'lp': Counter({'max': 5}),\n", - " 'effective': Counter({'get': 3}),\n", - " 'reachability': Counter({'alpha': 3,\n", - " 'predecessor': 2,\n", - " 'take': 4,\n", - " 'target': 2}),\n", - " 'around': Counter({'log': 4}),\n", - " 'alpha1': Counter({'cnts': 1, 'ids': 2}),\n", - " 'swapaxes': Counter({'reshape': 4}),\n", - " 'out': Counter({'feature': 2,\n", - " 'mask': 2,\n", - " 'num': 2,\n", - " 'self': 1,\n", - " 'shape': 4,\n", - " 'trans': 2}),\n", - " 'importfrom': Counter(),\n", - " 'centers': Counter({'labels': 1,\n", - " 'mask': 4,\n", - " 'predictions': 3,\n", - " 'shuffle': 1,\n", - " 'weights': 6,\n", - " 'y': 1}),\n", - " 'permute': Counter({'bool': 2, 'items': 2, 'output': 5}),\n", - " 'estimator': Counter({'as': 1,\n", - " 'axis': 1,\n", - " 'cv': 3,\n", - " 'data': 4,\n", - " 'e': 2,\n", - " 'input': 2,\n", - " 'k': 2,\n", - " 'kwargs': 3,\n", - " 'metric': 3,\n", - " 'name': 15,\n", - " 'path': 1,\n", - " 'tree': 2,\n", - " 'type': 1,\n", - " 'value': 2,\n", - " 'verbose': 1,\n", - " 'w': 4,\n", - " 'x': 3}),\n", - " 'nonzero': Counter({'all': 2}),\n", - " 'hidden': Counter({'batch': 4, 'visible': 1}),\n", - " 'contiguous': Counter({'dtype': 4}),\n", - " 'phase': Counter({'rate': 5}),\n", - " 'kwstring': Counter({'args': 4}),\n", - " 'masking': Counter({'activation': 5, 'bias': 2}),\n", - " 'endswith': Counter(),\n", - " 'idxs': Counter({'mask': 1, 'values': 2}),\n", - " 'cls': Counter({'attr': 1,\n", - " 'backend': 1,\n", - " 'cell': 3,\n", - " 'clf': 7,\n", - " 'dtype': 1,\n", - " 'layer': 1,\n", - " 'name': 5,\n", - " 'self': 5,\n", - " 'weights': 3}),\n", - " 'subcluster': Counter(),\n", - " 'split': Counter({'astype': 1,\n", - " 'good': 1,\n", - " 'searchsorted': 2,\n", - " 'this': 1,\n", - " 'value': 1}),\n", - " 'probs': Counter({'path': 1, 'prob': 3, 'v': 2, 'x': 2, 'y': 2}),\n", - " 'isclose': Counter({'allclose': 1, 'reshape': 1}),\n", - " 'ensemble': Counter({'est': 2, 'types': 8}),\n", - " 'uncovered': Counter(),\n", - " 'broken': Counter({'contiguous': 1}),\n", - " 'xa': Counter({'xb': 2}),\n", - " 'annotate': Counter({'parametrize': 2, 'uniform': 3}),\n", - " 'datasets': Counter({'value': 5}),\n", - " 'pollin': Counter({'name': 2}),\n", - " 'colors': Counter(),\n", - " 'negative': Counter({'data': 4, 'p': 1, 'self': 1}),\n", - " 'shape': Counter({'activation': 6,\n", - " 'alphas': 2,\n", - " 'classes': 4,\n", - " 'coef': 2,\n", - " 'components': 5,\n", - " 'constant': 1,\n", - " 'dropout': 1,\n", - " 'dtype': 7,\n", - " 'fit': 4,\n", - " 'importances': 1,\n", - " 'initializer': 2,\n", - " 'input': 4,\n", - " 'keyword': 1,\n", - " 'mask': 7,\n", - " 'name': 1,\n", - " 'new': 2,\n", - " 'nonzero': 2,\n", - " 'out': 1,\n", - " 'outputs': 2,\n", - " 'size': 10,\n", - " 'state': 1,\n", - " 'strides': 3,\n", - " 'svd': 3,\n", - " 'tile': 3,\n", - " 'transformers': 2,\n", - " 'tsne': 1,\n", - " 'type': 4,\n", - " 'update': 6,\n", - " 'value': 2,\n", - " 'where': 3}),\n", - " 'exists': Counter(),\n", - " 'instance': Counter({'batch': 3}),\n", - " 'binop': Counter({'augassign': 1, 'layer': 1, 'unaryop': 1}),\n", - " 'fn': Counter({'args': 9, 'kwargs': 1, 'metrics': 1, 'queue': 2, 'self': 2}),\n", - " 'num': Counter({'assert': 7,\n", - " 'expr': 22,\n", - " 'func': 1,\n", - " 'i': 2,\n", - " 'list': 7,\n", - " 'n': 2,\n", - " 'name': 698,\n", - " 'nameconstant': 178,\n", - " 'old': 1,\n", - " 'return': 4,\n", - " 'slice': 1,\n", - " 'stop': 4,\n", - " 'str': 211}),\n", - " 'python': Counter({'first': 1, 'old': 6, 'text': 1}),\n", - " 'truncated': Counter({'multivariate': 5}),\n", - " 'wlock': Counter({'reader': 1, 'reducers': 1, 'writer': 7}),\n", - " 'logspace': Counter({'reshape': 2}),\n", - " 'ct': Counter({'y1': 1}),\n", - " 'spmatrix': Counter({'x': 4}),\n", - " 'notin': Counter({'eq': 5, 'gt': 1, 'in': 31, 'noteq': 2}),\n", - " 'dens': Counter({'outputs': 3}),\n", - " 'strdata': Counter(),\n", - " 'pooling': Counter(),\n", - " 'gens': Counter({'name': 3}),\n", - " 'degrees': Counter({'predict': 1}),\n", - " 'dset': Counter({'dtype': 1, 'x': 1}),\n", - " 'tiled': Counter({'output': 2}),\n", - " 'probb': Counter({'intercept': 1}),\n", - " 'block': Counter({'all': 1, 'batch': 6}),\n", - " 'iterator': Counter({'value': 3}),\n", - " 'd': Counter({'distr': 1,\n", - " 'expected': 4,\n", - " 'h': 1,\n", - " 'obj': 3,\n", - " 't': 3,\n", - " 'time': 2,\n", - " 'weights': 2,\n", - " 'y': 2}),\n", - " 'desired': Counter({'name': 2}),\n", - " 'prev': Counter(),\n", - " 'dists': Counter({'x': 6}),\n", - " 'ignore': Counter({'metadata': 1}),\n", - " 'author': Counter({'msg': 2}),\n", - " 'norms': Counter({'norm': 3}),\n", - " 'tokenerror': Counter({'linalgerror': 5}),\n", - " 'filled': Counter({'self': 1}),\n", - " 'state': Counter({'authkey': 2,\n", - " 'constant': 6,\n", - " 'input': 2,\n", - " 'kind': 2,\n", - " 'name': 1,\n", - " 'output': 9,\n", - " 'process': 1,\n", - " 'type': 1}),\n", - " 'fixed': Counter({'batch': 2, 'criterion': 2}),\n", - " 'centroids': Counter({'classes': 2, 'means': 1, 'theta': 5}),\n", - " 'returncode': Counter(),\n", - " 'tolist': Counter({'start': 2, 'toarray': 2}),\n", - " 'features': Counter({'axis': 3, 'c': 4, 'newaxis': 1, 'samples': 4}),\n", - " 'pass': Counter({'continue': 1, 'name': 1, 'return': 6}),\n", - " 's': Counter({'centers': 1,\n", - " 'l': 3,\n", - " 'line': 4,\n", - " 'msg': 5,\n", - " 'name': 2,\n", - " 's2': 5,\n", - " 'test': 1,\n", - " 'v': 3,\n", - " 'value': 2,\n", - " 'verbose': 1,\n", - " 'x': 5}),\n", - " 'monkeypatch': Counter(),\n", - " 'dir1': Counter({'2': 1}),\n", - " 'sq': Counter({'squared': 1}),\n", - " 'invalidoperation': Counter(),\n", - " 'cuda': Counter({'backend': 5, 'cell': 2, 'data': 1, 'flags': 1, 'nn': 1}),\n", - " 'kmeans': Counter({'factory': 3, 'norms': 2}),\n", - " 'sk': Counter({'fit': 1}),\n", - " 'copies': Counter({'distributions': 4}),\n", - " 'pipeline': Counter({'base': 1, 'pipe': 5}),\n", - " 'behaviour': Counter({'contamination': 2}),\n", - " 'critical': Counter(),\n", - " 'leak': Counter({'check': 1}),\n", - " 'iters': Counter({'features': 1}),\n", - " 'formatargvalues': Counter({'memmap': 3}),\n", - " 'workers': Counter({'features': 5, 'verbose': 1}),\n", - " 'keras': Counter({'int': 2, 'noise': 2, 'output': 13, 'shape': 1}),\n", - " 'sin': Counter({'sign': 1, 'sqrt': 3}),\n", - " 'swap': Counter({'alpha': 1, 'self': 2}),\n", - " 'best': Counter({'base': 1,\n", - " 'diag': 1,\n", - " 'estimator': 1,\n", - " 'filters': 4,\n", - " 'init': 1,\n", - " 'metric': 5,\n", - " 'units': 2,\n", - " 'verbose': 1,\n", - " 'wtx': 1}),\n", - " 'util': Counter({'stderr': 6}),\n", - " 'svds': Counter({'accept': 5, 'g': 2}),\n", - " 'pu': Counter({'i': 2, 'res': 1}),\n", - " 'child': Counter({'batch': 3, 'old': 1}),\n", - " 'suffix': Counter({'s': 2}),\n", - " 'join': Counter({'error': 2, 'format': 3}),\n", - " 'compresslevel': Counter({'fileobj': 2}),\n", - " 'session': Counter({'arguments': 1}),\n", - " 'timeseriesgenerator': Counter({'activation': 1}),\n", - " 'serializer': Counter({'authkey': 2}),\n", - " 'l': Counter({'coefs': 1, 'i': 2, 'precision': 2, 'y': 3}),\n", - " 'descent': Counter({'function': 1}),\n", - " 'covar': Counter({'covariance': 3}),\n", - " 'arr': Counter({'boolop': 2}),\n", - " 'localoutlierfactor': Counter({'factory': 2, 'svc': 6}),\n", - " 'code': Counter({'dist': 1, 'returncode': 4, 'weights': 2, 'x2': 1}),\n", - " 'mark': Counter(),\n", - " 'transformer': Counter({'fit': 1}),\n", - " 'create': Counter({'csr': 2}),\n", - " 'kl': Counter({'bias': 3, 'loss': 5}),\n", - " 'likelihood': Counter(),\n", - " 'floor': Counter({'size': 1}),\n", - " 'current': Counter({'max': 2, 'metric': 1, 'y': 5}),\n", - " 'dtype': Counter({'class': 9,\n", - " 'default': 3,\n", - " 'float32': 3,\n", - " 'float64': 14,\n", - " 'int': 2,\n", - " 'name': 6,\n", - " 'norms': 1,\n", - " 'shape': 6,\n", - " 'sparse': 2,\n", - " 'value': 1,\n", - " 'x': 2}),\n", - " 'searchsorted': Counter({'labels': 2}),\n", - " 'on': Counter({'return': 2, 'stop': 7}),\n", - " 'gap': Counter(),\n", - " 'multivariate': Counter(),\n", - " 'writer': Counter({'handle': 4, 'reader': 5, 'stdout': 1}),\n", - " 'filepath': Counter({'dir': 2}),\n", - " 'reconstruct': Counter(),\n", - " 'fan': Counter({'axis': 1}),\n", - " 'diabetes': Counter({'mean': 3, 'scale': 1}),\n", - " 'strides': Counter({'bias': 1,\n", - " 'filters': 2,\n", - " 'kernel': 4,\n", - " 'kernels': 1,\n", - " 'kwargs': 1,\n", - " 'self': 2,\n", - " 'shape': 6}),\n", - " 'exit': Counter({'management': 1}),\n", - " 'isnot': Counter({'is': 48, 'notin': 1}),\n", - " 'computation': Counter({'code': 1}),\n", - " 'remainder': Counter({'transformers': 1}),\n", - " 'error': Counter({'loss': 5, 'module': 11, 'weight': 1}),\n", - " 'histogram': Counter({'max': 1}),\n", - " 'extra': Counter({'fun': 2, 'h': 2}),\n", - " 'compare': Counter({'attribute': 1, 'call': 1}),\n", - " 'dist': Counter({'add': 2,\n", - " 'coefs': 1,\n", - " 'covariance': 2,\n", - " 'exp': 1,\n", - " 'ind': 1,\n", - " 'initialize': 1,\n", - " 'store': 2,\n", - " 'y': 4}),\n", - " 'metadata': Counter({'id': 1, 'layer': 4, 'losses': 1}),\n", - " 'after': Counter({'set': 1}),\n", - " 'cumsum': Counter({'argsort': 2}),\n", - " 'train2': Counter({'test': 4}),\n", - " 'warns': Counter({'raises': 8}),\n", - " 'diag': Counter({'abs': 3, 'array': 3, 'cumsum': 1, 'dot': 1, 'exp': 1}),\n", - " 'files': Counter({'root': 2}),\n", - " 'callbacks': Counter({'mask': 2, 'shape': 3}),\n", - " 'resolution': Counter({'search': 1}),\n", - " 'linearoperator': Counter({'empty': 4, 'zeros': 2}),\n", - " 'activation': Counter({'size': 1}),\n", - " 'counts': Counter({'coef': 2, 'gamma': 1, 'importances': 1, 'seed': 4}),\n", - " 'csc': Counter({'csr': 10}),\n", - " 'fprime': Counter(),\n", - " 'flip': Counter({'feature': 1, 'function': 1}),\n", - " 'multi': Counter({'iris': 5, 'pred': 4, 'sw': 2, 'weight': 1}),\n", - " 'setter': Counter({'transformers': 1}),\n", - " 'nccl': Counter({'batch': 2, 'dtype': 4, 'kind': 1}),\n", - " 'formatted': Counter({'x': 1}),\n", - " 'degree': Counter(),\n", - " 'mktemp': Counter({'encode': 2}),\n", - " 'register': Counter({'add': 2,\n", - " 'beta': 2,\n", - " 'fill': 6,\n", - " 'pop': 1,\n", - " 'remove': 1,\n", - " 'reset': 3}),\n", - " '0': Counter({'bounds': 1}),\n", - " 'distance': Counter({'result': 3, 'scaler': 1}),\n", - " 'score1': Counter({'score': 2}),\n", - " 't21': Counter({'num': 1}),\n", - " 'isscalar': Counter({'issparse': 4}),\n", - " 'isfortran': Counter({'allclose': 1}),\n", - " 'append': Counter({'extend': 3,\n", - " 'group': 1,\n", - " 'items': 3,\n", - " 'k1': 1,\n", - " 'pop': 3,\n", - " 'power': 4,\n", - " 'reshape': 5,\n", - " 'save': 3,\n", - " 'sleep': 4,\n", - " 'sqrt': 1,\n", - " 'stop': 2,\n", - " 'sum': 4,\n", - " 'write': 3}),\n", - " 'boolean': Counter({'make': 2}),\n", - " 'precision': Counter({'self': 2}),\n", - " 'reference': Counter({'batch': 5}),\n", - " 'id': Counter({'item': 1, 'layer': 3, 'like': 1, 'size': 2}),\n", - " 'padding': Counter({'batch': 2,\n", - " 'bias': 17,\n", - " 'constant': 2,\n", - " 'dim': 4,\n", - " 'dtype': 6,\n", - " 'exponent': 1,\n", - " 'kernel': 14,\n", - " 'length': 6,\n", - " 'message': 3,\n", - " 'multioutput': 3,\n", - " 'output': 1,\n", - " 'platform': 3,\n", - " 'self': 3,\n", - " 'shape': 8,\n", - " 'strides': 29,\n", - " 'target': 1,\n", - " 'value': 1}),\n", - " 'count': Counter({'col': 1,\n", - " 'id': 1,\n", - " 'out': 4,\n", - " 'self': 1,\n", - " 'shape': 5,\n", - " 'size': 1,\n", - " 'v': 3,\n", - " 'vars': 3,\n", - " 'weight': 1}),\n", - " 'size': Counter({'alpha': 4,\n", - " 'arange': 7,\n", - " 'argsort': 4,\n", - " 'buffer': 2,\n", - " 'c': 2,\n", - " 'dim': 3,\n", - " 'epsilon': 3,\n", - " 'format': 1,\n", - " 'i': 5,\n", - " 'layer': 3,\n", - " 'log': 7,\n", - " 'mask': 6,\n", - " 'ndim': 2,\n", - " 'out': 1,\n", - " 'power': 1,\n", - " 'query': 2,\n", - " 'ravel': 2,\n", - " 'return': 12,\n", - " 'shape': 27,\n", - " 'sum': 8,\n", - " 'verbose': 1,\n", - " 'weight': 6,\n", - " 'weights': 1,\n", - " 'x': 1}),\n", - " 'astype': Counter({'abs': 1,\n", - " 'dtype': 1,\n", - " 'fit': 6,\n", - " 'size': 9,\n", - " 'transform': 13}),\n", - " 'dec': Counter({'labels': 1, 'score': 2, 'x': 1, 'y': 4}),\n", - " 'address': Counter({'authkey': 3, 'state': 4}),\n", - " 'elements': Counter({'2d': 1, 'indices': 3}),\n", - " 'converged': Counter({'verbose': 1}),\n", - " 'proba': Counter({'args': 1,\n", - " 'dense': 4,\n", - " 'intercept': 1,\n", - " 'p': 2,\n", - " 'predict': 4,\n", - " 'x': 1}),\n", - " 'labels': Counter({'axis': 1,\n", - " 'classes': 1,\n", - " 'clf': 1,\n", - " 'core': 1,\n", - " 'data': 3,\n", - " 'fit': 1,\n", - " 'inertia': 3,\n", - " 'mean': 3,\n", - " 'score': 1,\n", - " 'scores': 1,\n", - " 'target': 7,\n", - " 'unique': 1,\n", - " 'x': 5,\n", - " 'y': 2}),\n", - " 'upsample': Counter({'input': 1, 'make': 1}),\n", - " 'square': Counter({'log': 3, 'sqrt': 2, 'y': 6}),\n", - " 'ind': Counter({'e': 1,\n", - " 'i': 1,\n", - " 'idx': 3,\n", - " 'index': 1,\n", - " 'j': 8,\n", - " 'mask': 1,\n", - " 'multilabel': 1,\n", - " 'out': 2,\n", - " 'score': 2,\n", - " 'xg': 1}),\n", - " 'patches': Counter({'shape': 2}),\n", - " 'construct': Counter({'fn': 4, 'kwargs': 3}),\n", - " 'mlp': Counter(),\n", - " 'warm': Counter(),\n", - " 'elementwise': Counter({'bias': 2}),\n", - " 'context': Counter({'best': 4}),\n", - " 'approx': Counter({'column': 1, 'y': 1}),\n", - " 'renorm': Counter({'nearestneighbors': 3}),\n", - " 'radius': Counter({'p': 2}),\n", - " 'get': Counter({'astype': 4,\n", - " 'attribute': 1,\n", - " 'build': 2,\n", - " 'copy': 1,\n", - " 'item': 1,\n", - " 'metric': 1,\n", - " 'to': 2}),\n", - " 'bandwidth': Counter({'kernel': 2}),\n", - " 'matrix': Counter({'coef': 1, 'ndarray': 1, 'value': 3}),\n", - " 'wakeup': Counter(),\n", - " 'threads': Counter({'call': 1}),\n", - " 'explained': Counter(),\n", - " 'user': Counter({'decision': 3}),\n", - " 'flat': Counter({'shape': 1}),\n", - " 'subtensor': Counter({'like': 1, 'shape': 2, 'size': 2}),\n", - " 'layers': Counter({'activation': 1,\n", - " 'copyfileobj': 1,\n", - " 'info': 2,\n", - " 'kernels': 2,\n", - " 'layer': 1,\n", - " 'names': 4,\n", - " 'output': 1,\n", - " 'partial': 1,\n", - " 'state': 2}),\n", - " 'ipca': Counter({'dico': 1, 'pca': 1, 'trans': 2}),\n", - " 'reduce': Counter({'alpha': 1,\n", - " 'error': 1,\n", - " 'partial': 6,\n", - " 'self': 1,\n", - " 'size': 2,\n", - " 'strides': 3}),\n", - " 'title': Counter({'keys': 2}),\n", - " 'ravel': Counter({'all': 3,\n", - " 'array': 2,\n", - " 'astype': 1,\n", - " 'concatenate': 5,\n", - " 'sign': 1,\n", - " 'sqrt': 1,\n", - " 'squeeze': 4,\n", - " 'target': 1,\n", - " 'toarray': 2}),\n", - " 'indptr': Counter({'flat': 4, 'shape': 1}),\n", - " 'neighbors': Counter({'fetch': 1,\n", - " 'idx': 3,\n", - " 'jobs': 2,\n", - " 'l': 4,\n", - " 'rr': 2,\n", - " 'transform': 1}),\n", - " 'save': Counter({'add': 2,\n", - " 'append': 3,\n", - " 'extend': 2,\n", - " 'get': 4,\n", - " 'make': 2,\n", - " 'set': 1}),\n", - " 'format': Counter({'info': 4, 'issparse': 3, 'name': 1}),\n", - " 'local': Counter({'detach': 3, 'layer': 1, 'max': 1}),\n", - " 'y': Counter({'axis': 5,\n", - " 'b': 1,\n", - " 'batch': 2,\n", - " 'classes': 3,\n", - " 'data': 1,\n", - " 'fig': 1,\n", - " 'fit': 1,\n", - " 'g': 1,\n", - " 'groups': 1,\n", - " 'init': 4,\n", - " 'input': 5,\n", - " 'kwargs': 1,\n", - " 'labels': 6,\n", - " 'matrix': 3,\n", - " 'name': 1,\n", - " 'pred': 2,\n", - " 'protocol': 1,\n", - " 'row': 3,\n", - " 'self': 5,\n", - " 'total': 1,\n", - " 'trans': 2,\n", - " 'update': 5,\n", - " 'x': 52,\n", - " 'y1': 1}),\n", - " 'ref': Counter({'processes': 2, 'val': 3}),\n", - " 'randn': Counter({'arange': 1,\n", - " 'dot': 5,\n", - " 'name': 1,\n", - " 'randint': 3,\n", - " 'repeat': 8}),\n", - " 'placeholder': Counter({'add': 1, 'sum': 3}),\n", - " 'flag': Counter(),\n", - " 'periodicity': Counter({'alpha': 5}),\n", - " 'subset': Counter(),\n", - " 'nested': Counter({'args': 4}),\n", - " 'targets': Counter({'constant': 1, 'predictions': 1, 'samples': 1}),\n", - " 'label': Counter({'labels': 2, 'shuffle': 1}),\n", - " 'regularizer': Counter({'info': 3, 'init': 5, 'initializer': 16, 'size': 3}),\n", - " 'prob': Counter({'proba': 2, 'weight': 2, 'weights': 3}),\n", - " 'copy': Counter({'axis': 3,\n", - " 'detach': 3,\n", - " 'get': 1,\n", - " 'keyword': 1,\n", - " 'param': 1,\n", - " 'ravel': 10,\n", - " 't': 5,\n", - " 'threshold': 4}),\n", - " 'impurity': Counter({'self': 1}),\n", - " 'errstate': Counter(),\n", - " 'treeestimator': Counter({'str': 1}),\n", - " 'incorrect': Counter({'exception': 1, 'func': 3}),\n", - " 'x2': Counter({'i': 1, 'target': 2, 'x': 1, 'xt': 1}),\n", - " 'squeeze': Counter({'sum': 3}),\n", - " 'lt': Counter({'eq': 15,\n", - " 'gt': 29,\n", - " 'gte': 9,\n", - " 'in': 3,\n", - " 'lte': 12,\n", - " 'notin': 2,\n", - " 'num': 2}),\n", - " 'backends': Counter({'flags': 2, 'linalg': 1}),\n", - " 'include': Counter({'like': 3, 'metric': 1}),\n", - " 'metrics': Counter({'epsilon': 3,\n", - " 'n': 1,\n", - " 'names': 2,\n", - " 'output': 3,\n", - " 'pooling': 5,\n", - " 'score': 2,\n", - " 'set': 1,\n", - " 'weights': 6}),\n", - " 'line': Counter({'ispkg': 1, 'process': 2, 'x': 8}),\n", - " 'significant': Counter({'reachability': 2}),\n", - " 'mo': Counter({'predict': 5}),\n", - " 'trueinputtype': Counter({'score': 2}),\n", - " 'break': Counter({'continue': 4, 'return': 6}),\n", - " 'bufferedreader': Counter({'call': 1, 'decode': 1}),\n", - " 'freedom': Counter(),\n", - " 'method': Counter({'average': 2, 'msg': 1, 'solver': 2}),\n", - " 'getnnz': Counter({'min': 1, 'sum': 4}),\n", - " 'residual': Counter({'expected': 1, 'residues': 3}),\n", - " 'scale': Counter({'copy': 3,\n", - " 'diff': 2,\n", - " 'max': 4,\n", - " 'negative': 3,\n", - " 'scores': 1,\n", - " 'square': 2,\n", - " 'var': 2,\n", - " 'x': 1}),\n", - " 'send': Counter(),\n", - " 'objclass': Counter({'proto': 6, 'type': 1}),\n", - " 'min': Counter({'initial': 1,\n", - " 'max': 17,\n", - " 'mean': 1,\n", - " nan: 1,\n", - " 'new': 3,\n", - " 'x': 3}),\n", - " 'cur': Counter({'iter': 1}),\n", - " 'range': Counter({'repeat': 1, 'vstack': 1}),\n", - " 'dissimilarity': Counter({'affinity': 1, 'kernel': 1, 'verbose': 2}),\n", - " 'rows': Counter({'gradient': 1, 'outputs': 2}),\n", - " 'einsum': Counter(),\n", - " 'mv': Counter({'dot': 4}),\n", - " 'vocab': Counter({'metrics': 1, 'msg': 1}),\n", - " 'picklingerror': Counter(),\n", - " 'rstrip': Counter({'strip': 4}),\n", - " 'catch': Counter(),\n", - " 'put': Counter({'add': 1, 'append': 2, 'hash': 4}),\n", - " 'rng': Counter({'a': 3, 'random': 1}),\n", - " 'clf1': Counter({'clf': 4, 'ensemble': 4}),\n", - " 'duration': Counter(),\n", - " 'core': Counter({'n': 6}),\n", - " 'dataset': Counter({'clf': 5, 'imputer': 2, 'location': 1}),\n", - " 'closed': Counter(),\n", - " 'padded': Counter({'to': 2}),\n", - " 'xx': Counter({'v': 3, 'y': 4}),\n", - " 'formatargspec': Counter({'sub': 1}),\n", - " 'score2': Counter({'score': 5}),\n", - " 'whiten': Counter({'alpha': 1, 'copy': 2}),\n", - " 'isfile': Counter({'exists': 2}),\n", - " 'message': Counter({'error': 2,\n", - " 'info': 4,\n", - " 'line': 1,\n", - " 'out': 2,\n", - " 'transform': 1}),\n", - " 'nind': Counter({'comprehension': 1, 'i': 1}),\n", - " 'conversor': Counter({'args': 1, 'input': 1, 'key': 5, 'message': 2}),\n", - " 'fileno': Counter({'getpid': 1, 'items': 1, 'values': 1}),\n", - " 'vect': Counter({'x': 4, 'xt': 1}),\n", - " 'multiarray': Counter(),\n", - " 'folds': Counter({'cv': 5}),\n", - " 'sequences': Counter({'add': 3, 'count': 2, 'out': 1, 'state': 7}),\n", - " 'ppf': Counter({'ceil': 1, 'read': 4}),\n", - " 'nb': Counter({'num': 1}),\n", - " 'similarity': Counter(),\n", - " 'classifier': Counter({'clf': 1}),\n", - " 'scoring': Counter({'copy': 1, 'cv': 2}),\n", - " 'ranks': Counter(),\n", - " 'dispatched': Counter({'svd': 6}),\n", - " 'findall': Counter({'items': 6, 'iteritems': 2}),\n", - " 'ascontiguousarray': Counter({'transform': 3, 'vstack': 1}),\n", - " 'int': Counter({'copy': 1, 'test': 3}),\n", - " 'constants': Counter({'all': 5, 'inputs': 1}),\n", - " 'huber': Counter({'correct': 2}),\n", - " 'exception': Counter({'exc': 1, 'func': 4, 'result': 3, 'state': 1}),\n", - " 'bbox': Counter({'fun': 2}),\n", - " 'dropout2d': Counter({'target': 1, 'value': 5}),\n", - " 'stdout': Counter(),\n", - " 'ties': Counter({'sum': 1}),\n", - " 'debug': Counter({'write': 2}),\n", - " 'seeds': Counter({'bias': 8, 'cvclass': 1, 'multioutput': 1}),\n", - " 'wh': Counter({'x': 3}),\n", - " 'clamp': Counter({'max': 1, 'sum': 1, 'thread': 5}),\n", - " 'raise': Counter({'expr': 10, 'name': 15, 'return': 12, 'str': 1}),\n", - " 'prior': Counter({'epsilon': 3, 'scale': 1}),\n", - " 'self': Counter({'a': 1,\n", - " 'args': 1,\n", - " 'axis': 1,\n", - " 'epsilon': 1,\n", - " 'fit': 1,\n", - " 'kwargs': 5,\n", - " 'name': 4,\n", - " 'url': 2,\n", - " 'x': 9}),\n", - " 'conv2d': Counter({'kernel': 3, 'transpose': 3}),\n", - " 'shortlist': Counter({'batch': 2, 'num': 2}),\n", - " 'keep': Counter({'a': 5}),\n", - " 'face': Counter({'noise': 1, 'shape': 3}),\n", - " 'err': Counter({'expected': 5}),\n", - " 'sparsetensor': Counter({'zeros': 4}),\n", - " 'better': Counter({'metric': 1}),\n", - " 'call': Counter({'arg': 1,\n", - " 'assert': 4,\n", - " 'assign': 5,\n", - " 'attribute': 38,\n", - " 'constant': 1,\n", - " 'dict': 1,\n", - " 'ifexp': 8,\n", - " 'index': 1,\n", - " 'init': 1,\n", - " 'keyword': 61,\n", - " 'list': 19,\n", - " 'name': 5,\n", - " 'nameconstant': 1,\n", - " 'ones': 1,\n", - " 'sig': 4,\n", - " 'slice': 1,\n", - " 'tuple': 55}),\n", - " 'sort': Counter({'argsort': 2, 'array': 5, 'cumsum': 4, 'tolist': 2}),\n", - " 'elems': Counter({'axis': 3}),\n", - " 'gen': Counter({'str': 1}),\n", - " 'int16': Counter({'float64': 5}),\n", - " 'head': Counter({'backend': 2}),\n", - " 'false': Counter({'importfrom': 1, 'learning': 3, 'mask': 3}),\n", - " 'tmpdir': Counter({'fileobj': 4}),\n", - " 'seed': Counter({'gamma': 3, 'self': 1, 'shape': 1, 'state': 1, 'value': 2}),\n", - " 'begin': Counter({'queue': 1, 'score': 5, 'size': 4}),\n", - " 'clip': Counter({'dot': 3, 'get': 13, 'linspace': 6, 'uniform': 1, 'x': 5}),\n", - " 'acc': Counter({'axis': 4}),\n", - " 'functiondef': Counter({'return': 3}),\n", - " 'intc': Counter(),\n", - " 'p': Counter({'backend': 1,\n", - " 'dim': 3,\n", - " 'dropout': 2,\n", - " 'i': 5,\n", - " 'intercept': 2,\n", - " 'is': 1,\n", - " 'kwargs': 3,\n", - " 'loss': 1,\n", - " 'mask': 1,\n", - " 'residues': 4,\n", - " 'self': 2,\n", - " 'shape': 7,\n", - " 'value': 4,\n", - " 'x': 7,\n", - " 'y': 3}),\n", - " 'filter': Counter({'batch': 1, 'predict': 2}),\n", - " 'paths': Counter({'documents': 3}),\n", - " 'excepthandler': Counter({'classdef': 5, 'if': 6, 'name': 1, 'raise': 6}),\n", - " 'edges': Counter({'dist': 1, 'idx': 1, 'intercept': 1}),\n", - " 'func': Counter({'args': 4,\n", - " 'call': 5,\n", - " 'class': 1,\n", - " 'diff': 1,\n", - " 'doc': 1,\n", - " 'filename': 2,\n", - " 'grad': 6,\n", - " 'kwargs': 3,\n", - " 'metadata': 1,\n", - " 'names': 1,\n", - " 'output': 2,\n", - " 'pred': 2,\n", - " 'self': 2,\n", - " 'verbose': 2}),\n", - " 'linalg': Counter(),\n", - " 'symbols': Counter({'args': 2}),\n", - " 'epoch': Counter({'queue': 6}),\n", - " 'rlock': Counter({'reader': 3, 'wlock': 1, 'writer': 3}),\n", - " 'stderr': Counter(),\n", - " 'temp': Counter(),\n", - " 'isfinite': Counter(),\n", - " 'bool': Counter({'append': 1, 'dtype': 4, 'gamma': 1, 'ndarray': 2}),\n", - " 'yield': Counter({'list': 2, 'name': 1}),\n", - " 'nusvc': Counter({'svc': 2}),\n", - " 'leaf': Counter({'i': 1}),\n", - " 'lars2': Counter({'lars': 5}),\n", - " 'at': Counter({'size': 1}),\n", - " 'bins': Counter({'layers': 1}),\n", - " 'isspmatrix': Counter({'issparse': 1}),\n", - " 'wi': Counter({'y': 2}),\n", - " 'next': Counter({'batch': 2,\n", - " 'executor': 2,\n", - " 'i': 1,\n", - " 'idx': 1,\n", - " 'length': 2,\n", - " 'log': 1,\n", - " 'prob': 1}),\n", - " 'eps': Counter({'kernel': 2,\n", - " 'norm': 6,\n", - " 'normalize': 3,\n", - " 'out': 2,\n", - " 'positive': 1,\n", - " 'self': 2,\n", - " 'tol': 2}),\n", - " 'trainable': Counter({'initial': 2, 'strides': 3, 'value': 3}),\n", - " 'configure': Counter(),\n", - " 'path': Counter({'alphas': 1, 'args': 4, 'self': 2}),\n", - " 'fixture': Counter({'errstate': 1}),\n", - " 'enet': Counter(),\n", - " 'log': Counter({'cos': 1,\n", - " 'dimshuffle': 1,\n", - " 'eye': 2,\n", - " 'length': 2,\n", - " 'make': 1,\n", - " 'mean': 1,\n", - " 'predict': 2,\n", - " 'singular': 5,\n", - " 'sqrt': 5,\n", - " 'sum': 2,\n", - " 'theta': 1,\n", - " 'total': 2,\n", - " 'x': 2}),\n", - " 'finfo': Counter(),\n", - " 'circ': Counter({'pred': 1, 'prob': 2}),\n", - " 'rad': Counter({'res': 1, 'yt': 1}),\n", - " 'predictions': Counter({'old': 2}),\n", - " 'avg': Counter({'max': 10}),\n", - " 'execution': Counter({'cell': 1, 'done': 2}),\n", - " 'weights': Counter({'asarray': 1,\n", - " 'assign': 2,\n", - " 'estimates': 1,\n", - " 'estimators': 9,\n", - " 'functions': 1,\n", - " 'get': 1,\n", - " 'loadings': 1,\n", - " 'means': 2,\n", - " 'metrics': 1,\n", - " 'out': 2,\n", - " 'r': 2,\n", - " 'reduce': 2,\n", - " 'state': 3,\n", - " 'sum': 2,\n", - " 'value': 2}),\n", - " 'skewedness': Counter({'alpha': 2}),\n", - " 'fpr': Counter(),\n", - " 'dimshuffle': Counter({'asarray': 1, 'transpose': 2}),\n", - " 'elkan': Counter({'sparse': 2}),\n", - " 'work': Counter({'assign': 1}),\n", - " 'processes': Counter(),\n", - " 'gte': Counter({'eq': 4,\n", - " 'gt': 20,\n", - " 'lt': 10,\n", - " 'lte': 7,\n", - " 'noteq': 6,\n", - " 'notin': 4}),\n", - " 'nusvr': Counter({'svc': 5}),\n", - " 'fdescr': Counter(),\n", - " 'uint8': Counter({'data': 1, 'int': 7, 'max': 1}),\n", - " 'circles': Counter({'classification': 1}),\n", - " 'top': Counter({'data': 1,\n", - " 'module': 1,\n", - " 'range': 1,\n", - " 'return': 1,\n", - " 'want': 6,\n", - " 'with': 7}),\n", - " 'part': Counter({'gradient': 4}),\n", - " 'ins': Counter({'layer': 1, 'result': 1}),\n", - " 'usub': Counter(),\n", - " 'rint': Counter({'randint': 1}),\n", - " 'eclf2': Counter({'eclf': 5}),\n", - " 'rate': Counter({'div': 1, 'epsilon': 5, 'kwargs': 3, 'nu': 1, 'padding': 1}),\n", - " 'and': Counter({'or': 16}),\n", - " 'kind': Counter({'format': 2, 'idx': 2}),\n", - " 'est': Counter({'clf': 15,\n", - " 'cv': 1,\n", - " 'estimator': 5,\n", - " 'ransac': 2,\n", - " 'rbm1': 1,\n", - " 'tree': 1}),\n", - " 'maxsize': Counter(),\n", - " 'friedman1': Counter({'classification': 1}),\n", - " 'oob': Counter(),\n", - " 'hot': Counter({'backend': 2, 'batch': 7}),\n", - " 'location': Counter({'cachedir': 4, 'dist': 2}),\n", - " 'fval': Counter(),\n", - " 'decode': Counter({'get': 3, 'replace': 3}),\n", - " 'normal': Counter({'init': 3, 'sample': 4, 'state': 1, 'zeros': 1}),\n", - " 'feed': Counter({'build': 1,\n", - " 'cell': 1,\n", - " 'set': 2,\n", - " 'trainable': 1,\n", - " 'training': 3}),\n", - " 'opt': Counter({'fun': 2}),\n", - " 'frame': Counter({'name': 1}),\n", - " 'find': Counter(),\n", - " 'raises': Counter(),\n", - " 'dirichlet': Counter(),\n", - " 'ret': Counter({'output': 3, 'outputs': 3, 'x': 4}),\n", - " 'transformers': Counter({'args': 1, 'trans': 1}),\n", - " 'almost': Counter({'array': 1}),\n", - " 'newaxis': Counter(),\n", - " 'kwds': Counter({'values': 4, 'weights': 1}),\n", - " 'pool3d': Counter({'fan': 5}),\n", - " 'eclf1': Counter({'eclf': 1}),\n", - " 'sqr': Counter({'log': 10}),\n", - " 'element': Counter({'item': 3, 'key': 1, 'string': 5}),\n", - " 'alphas': Counter({'active': 4,\n", - " 'empty': 1,\n", - " 'jobs': 3,\n", - " 'labels': 2,\n", - " 'res': 2,\n", - " 'shape': 1,\n", - " 'y': 3}),\n", - " 'model': Counter({'data': 4,\n", - " 'flags': 1,\n", - " 'lasso': 3,\n", - " 'lda': 4,\n", - " 'loss': 1,\n", - " 'modules': 5,\n", - " 'nn': 4,\n", - " 'obj': 1,\n", - " 'pred2': 1}),\n", - " 'axes': Counter({'axis': 2,\n", - " 'categories': 3,\n", - " 'dtype': 3,\n", - " 'kwargs': 1,\n", - " 'shape': 2,\n", - " 'size': 1}),\n", - " 'obs': Counter({'size': 3, 'zeros': 1}),\n", - " 'iso': Counter({'gradient': 2, 'means': 1}),\n", - " 'extract': Counter(),\n", - " 'tasks': Counter({'backend': 2, 'components': 6, 'features': 1}),\n", - " 'samples': Counter({'c': 1,\n", - " 'classes': 2,\n", - " 'components': 2,\n", - " 'features': 2,\n", - " 'impurity': 1,\n", - " 'iter': 2,\n", - " 'mask': 3,\n", - " 'outputs': 1,\n", - " 'p': 2}),\n", - " 'binary': Counter({'module': 2, 'pred': 3}),\n", - " 'process': Counter({'batch': 3, 'max': 1}),\n", - " 'remaining': Counter({'initial': 1}),\n", - " 'blob': Counter({'executable': 1}),\n", - " 'accuracy': Counter({'point': 1}),\n", - " 'failing': Counter(),\n", - " 'shifted': Counter({'y': 3}),\n", - " 'progbar': Counter({'data': 2, 'offset': 1, 'workers': 3, 'zeros': 2}),\n", - " 'inputs': Counter({'args': 9,\n", - " 'cls': 1,\n", - " 'dict': 1,\n", - " 'input': 3,\n", - " 'kwargs': 1,\n", - " 'node': 3,\n", - " 'output': 2,\n", - " 'outputs': 11,\n", - " 'self': 1,\n", - " 'state': 3,\n", - " 'strides': 3,\n", - " 'updates': 1,\n", - " 'x': 6}),\n", - " 'lstsq': Counter(),\n", - " 'versions': Counter({'none': 2}),\n", - " 'setstate': Counter({'update': 3}),\n", - " 'dpgmm': Counter({'pca': 3}),\n", - " 'issparse': Counter({'any': 4}),\n", - " 'decrease': Counter(),\n", - " 'h2o': Counter({'state': 1}),\n", - " 'mat': Counter({'i': 1, 'x': 3}),\n", - " 'pckg': Counter({'descr': 3}),\n", - " 'total': Counter({'current': 1, 'min': 2, 'stop': 4}),\n", - " 'floordiv': Counter({'add': 6, 'mult': 7}),\n", - " 'nodes': Counter({'cell': 1, 'layer': 1, 'layers': 1, 'name': 1}),\n", - " 'ident': Counter({'kind': 3}),\n", - " 'lookuptable': Counter({'add': 2}),\n", - " 'xy': Counter({'memory': 1, 's': 1, 'u': 1, 'y': 1}),\n", - " 'indiv': Counter({'paths': 4}),\n", - " 'greater': Counter({'class': 1, 'dot': 6, 'not': 2}),\n", - " 'decompressor': Counter({'flags': 1, 'ma': 1}),\n", - " 'nbrs': Counter(),\n", - " 'generic': Counter({'integral': 2}),\n", - " 'seen': Counter({'constant': 1, 'epsilon': 2, 'inf': 1, 'stop': 2}),\n", - " 'deep': Counter({'params': 1}),\n", - " 'solver': Counter({'verbose': 1}),\n", - " 'xs': Counter(),\n", - " 'gram': Counter({'precompute': 1}),\n", - " 'msg': Counter({'message': 2, 'name': 5, 'path': 1, 'x': 2}),\n", - " 'xg': Counter({'x': 1}),\n", - " 'momentum': Counter({'x': 2}),\n", - " 'ii': Counter({'cov': 3}),\n", - " 'rotate': Counter({'self': 2}),\n", - " 'memmappingexecutor': Counter({'backend': 2}),\n", - " 'int32': Counter({'arange': 3, 'bool': 4, 'dtype': 11, 'float32': 3, nan: 3}),\n", - " 'presort': Counter({'loss': 1}),\n", - " 'memory': Counter({'affinity': 2, 'data': 2, 'init': 5}),\n", - " 'float16': Counter({'float32': 3, 'kind': 7}),\n", - " 'theta': Counter({'bounds': 6, 'gamma': 1, 'shape': 5}),\n", - " 'number': Counter({'class': 1}),\n", - " 'rep': Counter({'j': 1}),\n", - " 'arg': Counter({'attribute': 2,\n", - " 'dim': 3,\n", - " 'globals': 2,\n", - " 'i': 1,\n", - " 'message': 1,\n", - " 'name': 4,\n", - " 'size': 1,\n", - " 'str': 2}),\n", - " 'dump': Counter({'fit': 4}),\n", - " 'eval': Counter({'copy': 5, 'sum': 1}),\n", - " 'conv': Counter({'length': 1, 'size': 2}),\n", - " 'yw': Counter({'x': 7}),\n", - " 'estimator3': Counter({'estimator': 3}),\n", - " 'deconv': Counter({'output': 1}),\n", - " 'layer': Counter({'add': 1,\n", - " 'attribute': 2,\n", - " 'cell': 11,\n", - " 'diag': 1,\n", - " 'dims': 1,\n", - " 'environ': 2,\n", - " 'f': 6,\n", - " 'fdst': 1,\n", - " 'int32': 1,\n", - " 'isnot': 1,\n", - " 'kernel': 3,\n", - " 'layers': 1,\n", - " 'name': 1,\n", - " 'new': 1,\n", - " 'output': 1,\n", - " 'shape': 3}),\n", - " 'only': Counter({'state': 2}),\n", - " 'maxval': Counter({'value': 3}),\n", - " 'duplicate': Counter(),\n", - " 'estimates': Counter({'state': 1}),\n", - " 'by': Counter({'batch': 7, 'initial': 3}),\n", - " 'di': Counter({'dist': 5}),\n", - " 'extslice': Counter(),\n", - " 'iteration': Counter(),\n", - " 'fill': Counter({'fit': 3, 'max': 2, 'shape': 1}),\n", - " 'center': Counter({'est': 1, 'i': 2, 'max': 4, 'positive': 1}),\n", - " 'createprocess': Counter({'duplicatehandle': 2}),\n", - " 'found': Counter({'folder': 1, 'home': 3}),\n", - " 'initial': Counter({'layer': 1, 'random': 2, 'size': 1}),\n", - " 'iris': Counter({'clf': 3, 'imputer': 1}),\n", - " 'lshift': Counter(),\n", - " 'requires': Counter({'batch': 8, 'importfrom': 1, 'loss': 2}),\n", - " 'gzipfile': Counter({'name': 3}),\n", - " 'bic': Counter({'cost': 5, 'predict': 6}),\n", - " 'neg': Counter({'k': 2}),\n", - " 't': Counter({'abs': 2,\n", - " 'allclose': 1,\n", - " 'components': 1,\n", - " 'epsilon': 1,\n", - " 'f': 1,\n", - " 'inputs': 3,\n", - " 'kernel': 5,\n", - " 'randn': 6,\n", - " 'shape': 7,\n", - " 'sum': 7,\n", - " 'w': 2,\n", - " 'x': 4}),\n", - " 'authkey': Counter({'process': 1}),\n", - " 'check': Counter({'assert': 1, 'error': 3, 'get': 1, 'i': 2, 'no': 2}),\n", - " 'correct': Counter(),\n", - " 'pred': Counter({'prob': 3, 'proba': 3, 'score': 4, 'true': 9, 'y': 2}),\n", - " 'ransac': Counter(),\n", - " 'dict': Counter({'call': 4,\n", - " 'keyword': 5,\n", - " 'keywords': 3,\n", - " 'list': 13,\n", - " 'name': 3,\n", - " 'nameconstant': 1,\n", - " 'num': 7,\n", - " 'size': 2,\n", - " 'str': 6,\n", - " 'threshold': 1,\n", - " 'tuple': 2}),\n", - " 'xtr': Counter({'y': 7}),\n", - " 'dloss': Counter({'outputs': 4}),\n", - " 'source': Counter({'and': 2, 'close': 3, 'msg': 1, 'shape': 3}),\n", - " 'duplicatehandle': Counter(),\n", - " 'estimate': Counter(),\n", - " 'hastie': Counter({'w': 4}),\n", - " 'tail': Counter({'futures': 2}),\n", - " 'decisiontreeregressor': Counter({'locallylinearembedding': 4}),\n", - " 'factor': Counter({'length': 7}),\n", - " 'epochs': Counter({'value': 2}),\n", - " 'classdef': Counter({'functiondef': 1, 'return': 4}),\n", - " 'mins': Counter({'core': 1}),\n", - " 'upper': Counter({'dim': 1, 'transpose': 3}),\n", - " 'view': Counter({'astype': 12,\n", - " 'dispatch': 1,\n", - " 'max': 3,\n", - " 'repeat': 1,\n", - " 'shape': 3,\n", - " 'uniform': 6}),\n", - " 'warn': Counter({'append': 7, 'clip': 3, 'expected': 2, 'put': 1}),\n", - " 'access': Counter({'duplicatehandle': 4}),\n", - " 'dual': Counter(),\n", - " 'covariance': Counter({'clip': 7,\n", - " 'init': 4,\n", - " 'mean': 5,\n", - " 'reshape': 4,\n", - " 'sample': 1}),\n", - " 'search': Counter({'clf': 2, 'ndarray': 7, 'startswith': 9}),\n", - " 'toarray': Counter({'copy': 5, 'mean': 2, 'ravel': 1}),\n", - " 'preprocess': Counter({'save': 7}),\n", - " 'print': Counter({'add': 1}),\n", - " 'random': Counter({'environ': 3,\n", - " 'grid': 6,\n", - " 'multivariate': 2,\n", - " 'name': 3,\n", - " 'randint': 1,\n", - " 'with': 2}),\n", - " 'generator': Counter({'binary': 3,\n", - " 'get': 2,\n", - " 'mask': 8,\n", - " 'proba': 1,\n", - " 'verbose': 2}),\n", - " 'isomap': Counter({'factory': 7, 'nmf': 5}),\n", - " 'import': Counter({'factor': 1,\n", - " 'gte': 1,\n", - " 'importfrom': 11,\n", - " 'in': 1,\n", - " 'isnot': 1,\n", - " 'pos': 1,\n", - " 'reconstruction': 2,\n", - " 'split': 1}),\n", - " 'functions': Counter({'flags': 1}),\n", - " 'e': Counter({'tree': 3, 'x': 8}),\n", - " 'you': Counter({'attribute': 1}),\n", - " 'pca': Counter({'clf': 5, 'est': 4}),\n", - " 'replication': Counter({'bias': 1}),\n", - " 'dimension': Counter({'handle': 1}),\n", - " 'result': Counter({'args': 3,\n", - " 'attr': 2,\n", - " 'call': 2,\n", - " 'function': 1,\n", - " 'kwargs': 2,\n", - " 'layer': 5,\n", - " 'maxsize': 1,\n", - " 'params': 2,\n", - " 'predictions': 2,\n", - " 's': 3,\n", - " 'scores': 5,\n", - " 'state': 2,\n", - " 'str': 2,\n", - " 'y': 1}),\n", - " 'sw': Counter({'k': 5, 'val': 2, 'x': 2}),\n", - " 'rmtree': Counter(),\n", - " 'coef0': Counter({'gamma': 3}),\n", - " 'cross': Counter({'in': 3}),\n", - " 'region': Counter(),\n", - " 'prefixes': Counter({'args': 5}),\n", - " 'unknown': Counter({'axis': 1, 'dtype': 1, 'to': 4, 'y': 4}),\n", - " 'worker': Counter({'dispatch': 2, 'factor': 1, 'limit': 2, 'processes': 1}),\n", - " 'hooks': Counter({'dispatch': 2, 'flags': 2, 'layer': 1, 'parallel': 2}),\n", - " 'rnn': Counter({'cell': 2}),\n", - " 'u': Counter({'h': 1, 's': 7, 'transformers': 4, 'x': 1}),\n", - " 'sorted': Counter({'get': 5, 'test': 1}),\n", - " 'skips': Counter(),\n", - " 'logs': Counter({'dtype': 1, 'stop': 1}),\n", - " 'time': Counter({'theta': 2, 'w': 4}),\n", - " 'nanmax': Counter({nan: 3}),\n", - " 'test': Counter({'2': 4,\n", - " 'batch': 3,\n", - " 'by': 4,\n", - " 'clf': 2,\n", - " 'ct': 1,\n", - " 'decision': 2,\n", - " 'dense': 1,\n", - " 'expected': 2,\n", - " 'input': 1,\n", - " 'old': 1,\n", - " 'precision': 5,\n", - " 'pred': 1,\n", - " 'train': 20}),\n", - " 'fmt': Counter({'metric': 3, 'tmp': 3}),\n", - " 'dictwriter': Counter({'pipe': 3}),\n", - " 'permutation': Counter({'out': 1, 'target': 1}),\n", - " 'from': Counter({'beta': 1, 'get': 2, 'ids': 1, 'initial': 6, 'kwargs': 3}),\n", - " 'continue': Counter({'break': 2, 'return': 7}),\n", - " 'scope': Counter({'metric': 3}),\n", - " 'affinity': Counter({'csr': 2, 'dist': 1, 'shape': 2, 'verbose': 2}),\n", - " 'hardtanh': Counter({'value': 1}),\n", - " 'waittime': Counter({'threshold': 2}),\n", - " 'floating': Counter({'from': 4, 'graph': 1}),\n", - " 'step': Counter({'batch': 1,\n", - " 'c': 1,\n", - " 'from': 1,\n", - " 'ndim': 1,\n", - " 'size': 2,\n", - " 'verbose': 2}),\n", - " 'feats': Counter({'features': 4}),\n", - " 'score': Counter({'asarray': 3,\n", - " 'covariance': 1,\n", - " 'dot': 1,\n", - " 'fit': 3,\n", - " 'key': 8,\n", - " 'labels': 1,\n", - " 'mean': 2,\n", - " 'nameconstant': 2,\n", - " 'predict': 8,\n", - " 'result': 4,\n", - " 'scores': 5,\n", - " 'true': 1,\n", - " 'x': 1}),\n", - " 'rst': Counter(),\n", - " 'lambdas': Counter({'alphas': 7, 'scores': 3}),\n", - " 'cloned': Counter(),\n", - " 'mask': Counter({'args': 5,\n", - " 'bias': 1,\n", - " 'classifier': 4,\n", - " 'diff': 2,\n", - " 'dist': 2,\n", - " 'idx': 3,\n", - " 'ind': 2,\n", - " 'key': 1,\n", - " 'kwargs': 1,\n", - " 'max': 1,\n", - " 'shape': 1,\n", - " 'x': 3}),\n", - " 'flatten': Counter({'ravel': 10, 'squeeze': 3}),\n", - " 'valid': Counter({'layer': 1, 'training': 1}),\n", - " 'pow': Counter({'abs': 3,\n", - " 'dot': 9,\n", - " 'exp': 1,\n", - " 'fit': 3,\n", - " 'floordiv': 1,\n", - " 'mult': 12,\n", - " 'name': 6,\n", - " 't': 4}),\n", - " 'getvalue': Counter({'build': 1}),\n", - " 'exec': Counter({'encode': 6}),\n", - " 'soft': Counter({'make': 2}),\n", - " 'lmost': Counter({'co': 1}),\n", - " 'eigen': Counter({'svd': 3}),\n", - " 'softplus': Counter({'exp': 1}),\n", - " 'cropping': Counter({'mode': 2}),\n", - " 'shapes': Counter({'shape': 2}),\n", - " 'constraint': Counter({'bias': 8,\n", - " 'info': 2,\n", - " 'init': 3,\n", - " 'initializer': 9,\n", - " 'loss': 2,\n", - " 'p': 6,\n", - " 'regularizer': 1,\n", - " 'size': 3}),\n", - " 'wait': Counter({'close': 1, 'items': 6, 'post': 1}),\n", - " 'bh': Counter({'2': 2, 'divergence': 6}),\n", - " 'float': Counter({'float64': 1, 'random': 2, 'squeeze': 3}),\n", - " 'eigvalsh': Counter({'sum': 2}),\n", - " 'submit': Counter({'fit': 5}),\n", - " 'estimators': Counter({'args': 1,\n", - " 'coef': 3,\n", - " 'iteritems': 2,\n", - " 'jobs': 1,\n", - " 'shape': 7,\n", - " 'theta': 1,\n", - " 'weights': 2}),\n", - " 'closure': Counter({'kernels': 3,\n", - " 'name': 4,\n", - " 'prnt': 1,\n", - " 'shape': 5,\n", - " 'updates': 3}),\n", - " 'unroll': Counter({'strides': 2}),\n", - " 'pvalues': Counter({'alphas': 3, 'estimators': 1, 'mode': 1}),\n", - " 'xk': Counter({'means': 2}),\n", - " 'linspace': Counter(),\n", - " 'abs': Counter({'all': 1,\n", - " 'argmax': 1,\n", - " 'data': 2,\n", - " 'log': 1,\n", - " 'mean': 2,\n", - " 'sin': 1,\n", - " 'sqrt': 8}),\n", - " 'seq': Counter({'bias': 1}),\n", - " 'legacy': Counter({'default': 5, 'get': 2, 'save': 1}),\n", - " 'ir': Counter({'tsne': 1}),\n", - " 'require': Counter({'parallel': 2}),\n", - " 'data2cats': Counter({'data': 1, 'imputer': 2}),\n", - " 'multiply': Counter({'dot': 1}),\n", - " 'queue': Counter({'add': 1,\n", - " 'batch': 1,\n", - " 'exc': 1,\n", - " 'leaf': 2,\n", - " 'output': 1,\n", - " 'set': 1}),\n", - " 'pool': Counter({'bias': 1, 'kernel': 16, 'mmap': 2, 'random': 2}),\n", - " 'keys': Counter({'args': 4, 'items': 7, 'values': 2}),\n", - " 'new': Counter({'batch': 6,\n", - " 'format': 1,\n", - " 'grad': 3,\n", - " 'layer': 1,\n", - " 'output': 2,\n", - " 'random': 6,\n", - " 'self': 1,\n", - " 'size': 4,\n", - " 'y': 2}),\n", - " 'repeat': Counter({'diff': 1,\n", - " 'dim': 1,\n", - " 'full': 3,\n", - " 'log': 4,\n", - " 'make': 1,\n", - " 'n': 3,\n", - " 'predict': 1}),\n", - " 'boxcox': Counter({'unique': 2}),\n", - " 'loadings': Counter({'r2': 9, 'weights': 2}),\n", - " 'vlines': Counter({'hlines': 4}),\n", - " 'corners': Counter({'function': 2,\n", - " 'loss': 2,\n", - " 'mask': 3,\n", - " 'mode': 1,\n", - " 'var': 2}),\n", - " 'close': Counter({'fit': 2}),\n", - " 'decrement': Counter(),\n", - " 'fix': Counter({'load': 2}),\n", - " 'val': Counter({'batch': 5,\n", - " 'depth': 1,\n", - " 'init': 1,\n", - " 'self': 2,\n", - " 'size': 1,\n", - " 'state': 5,\n", - " 'target': 2,\n", - " 'this': 1,\n", - " 'value': 4,\n", - " 'with': 3}),\n", - " 'z': Counter({'bias': 1, 'c': 6, 'f': 1, 'h': 1, 'kernel': 1, 'r': 1}),\n", - " 'variablefunctions': Counter({'nn': 1}),\n", - " 'nanmin': Counter({nan: 1}),\n", - " 'trigger': Counter({'early': 2}),\n", - " 'samme': Counter({'name': 3, 'unnormalized': 2, 'weight': 1}),\n", - " 'masked': Counter({'get': 3, 'uniform': 3}),\n", - " 'reassign': Counter({'state': 4}),\n", - " 'dumps': Counter({'all': 1}),\n", - " 'outputs': Counter({'apply': 3,\n", - " 'classes': 3,\n", - " 'inputs': 1,\n", - " 'kwargs': 3,\n", - " 'output': 3,\n", - " 'shape': 6,\n", - " 'strides': 2,\n", - " 'unique': 3,\n", - " 'weights': 1,\n", - " 'x': 1}),\n", - " 'spec': Counter({'dim': 1,\n", - " 'from': 2,\n", - " 'idx': 1,\n", - " 'kwargs': 1,\n", - " 'shape': 12,\n", - " 'size': 8}),\n", - " 'multi2': Counter({'function': 1}),\n", - " 'compile': Counter({'nearestneighbors': 3, 'radiusneighborsregressor': 1}),\n", - " 'pls': Counter({'s': 1}),\n", - " 'dropout': Counter({'bias': 7,\n", - " 'mask': 4,\n", - " 'names': 4,\n", - " 'regularizer': 2,\n", - " 'uniform': 3,\n", - " 'value': 3}),\n", - " 'less': Counter(),\n", - " 'argsort': Counter({'sort': 5, 'unique': 3}),\n", - " 'isdir': Counter({'exists': 4}),\n", - " 'bunch': Counter({'name': 1}),\n", - " 'q': Counter({'self': 2, 'x': 8}),\n", - " 'dummy': Counter({'next': 5, 'y': 1}),\n", - " 'client': Counter({'authkey': 4, 'msg': 6}),\n", - " 'z1': Counter({'x': 6}),\n", - " 'xb': Counter(),\n", - " 'rfecv': Counter({'lr': 5}),\n", - " 'logical': Counter(),\n", - " 'float32': Counter({'context': 1, 'dtype': 11, 'float64': 1, 'mark': 4}),\n", - " 'fmin': Counter({'ndarray': 3, 'reshape': 5}),\n", - " 'lars': Counter({'estimator': 1, 'transformer': 1}),\n", - " 'before': Counter({'str': 1}),\n", - " 'doc': Counter({'name': 1, 'x': 4}),\n", - " 'gt': Counter({'eq': 33,\n", - " 'gte': 8,\n", - " 'lt': 10,\n", - " 'lte': 8,\n", - " 'noteq': 17,\n", - " 'notin': 7}),\n", - " 'sv2': Counter({'cnts': 2}),\n", - " 'no': Counter({'init': 1, 'input': 1, 'name': 1, 'path': 1, 'str': 4}),\n", - " 'cholesky': Counter({'add': 2, 'get': 1}),\n", - " 'weight': Counter({'backend': 5,\n", - " 'bias': 11,\n", - " 'coef': 2,\n", - " 'constant': 1,\n", - " 'data': 3,\n", - " 'default': 1,\n", - " 'name': 4,\n", - " 'named': 1,\n", - " 'p': 3,\n", - " 'self': 7}),\n", - " 'ds': Counter(),\n", - " 'remove': Counter({'is': 1, 'rmtree': 2}),\n", - " 'conversors': Counter({'children': 2}),\n", - " 'load': Counter({'for': 1}),\n", - " 'max': Counter({'array': 1,\n", - " 'batch': 2,\n", - " 'from': 1,\n", - " 'index': 1,\n", - " 'log': 2,\n", - " 'mean': 1,\n", - " 'min': 3,\n", - " 'n': 3,\n", - " 'new': 2,\n", - " 'sum': 13,\n", - " 'train': 3}),\n", - " 'list': Counter({'assign': 1,\n", - " 'call': 35,\n", - " 'dict': 3,\n", - " 'keyword': 31,\n", - " 'name': 21,\n", - " 'nameconstant': 10,\n", - " 'num': 3,\n", - " 'return': 4,\n", - " 'str': 1,\n", - " 'tuple': 81}),\n", - " 'multiplier': Counter({'dim': 2}),\n", - " 'augassign': Counter({'binop': 23}),\n", - " 'running': Counter({'pending': 1}),\n", - " 'uadd': Counter({'usub': 4}),\n", - " 'words': Counter({'seen': 1, 'x': 1}),\n", - " 'ellipsis': Counter({'name': 3}),\n", - " 'incr': Counter(),\n", - " 'iterating': Counter({'cond': 4}),\n", - " 'mun': Counter({'dist': 3}),\n", - " 'convergence': Counter({'max': 7}),\n", - " 'selector': Counter({'info': 1}),\n", - " 'messages': Counter({'message': 1}),\n", - " 'accgradparameters': Counter({'item': 1, 'transpose': 1, 'uniform': 1}),\n", - " 'thnn': Counter({'max': 1}),\n", - " 'init': Counter({'components': 1,\n", - " 'dtype': 2,\n", - " 'expected': 2,\n", - " 'fit': 4,\n", - " 'get': 2,\n", - " 'scaling': 2,\n", - " 'verbose': 3}),\n", - " 'kernel2': Counter({'self': 1}),\n", - " 'len': Counter({'vocabulary': 2}),\n", - " 'bag': Counter({'batch': 4}),\n", - " 'tracerwarning': Counter({'type': 2}),\n", - " 'shuffle': Counter({'verbose': 1, 'x': 2}),\n", - " 'cw': Counter({'val': 1}),\n", - " 'schedule': Counter({'value': 4}),\n", - " 'x1': Counter({'gamma': 1, 'i': 3, 'output': 6}),\n", - " 'getcol': Counter(),\n", - " 'backwards': Counter({'metrics': 4}),\n", - " 'nominal': Counter({'invert': 1}),\n", - " 'children': Counter({'coefs': 2, 'y': 3}),\n", - " 'pre': Counter({'cell': 3, 'dispatch': 1, 'loss': 1, 'weight': 2}),\n", - " 'iprint': Counter({'tol': 5}),\n", - " 'psi': Counter({'init': 1}),\n", - " 'inf': Counter({nan: 7}),\n", - " 'gradient': Counter({'1': 1, 'i': 1, 'seen': 2, 'target': 2, 'words': 2}),\n", - " 'dt': Counter(),\n", - " 'width': Counter({'samples': 3}),\n", - " 'units': Counter({'filters': 7, 'kernel': 1, 'size': 3}),\n", - " 'maxima': Counter(),\n", - " 'variable': Counter({'call': 1,\n", - " 'kind': 1,\n", - " 'ones': 3,\n", - " 'theta': 2,\n", - " 'value': 1}),\n", - " 'of': Counter(),\n", - " 'sys': Counter({'coef': 1, 'version': 1}),\n", - " 'locallylinearembedding': Counter({'factory': 4}),\n", - " 'breadth': Counter(),\n", - " 'extend': Counter({'append': 14}),\n", - " 'writeable': Counter({'contiguous': 3}),\n", - " 'upsampling1d': Counter({'get': 3}),\n", - " 'denom': Counter({'beta': 1}),\n", - " 'y4': Counter({'y': 2}),\n", - " 'setdiff1d': Counter({'searchsorted': 6, 'unique': 1}),\n", - " 'log1p': Counter({'exp': 9, 'fit': 4, 'issparse': 7}),\n", - " 'backward': Counter({'cell': 7, 'reduce': 3}),\n", - " 'zero': Counter({'children': 1}),\n", - " 'multiclass': Counter({'true': 4}),\n", - " 'index': Counter({'j': 1,\n", - " 'keyword': 5,\n", - " 'line': 5,\n", - " 'name': 1,\n", - " 'return': 2,\n", - " 'shape': 2,\n", - " 'slice': 23,\n", - " 'string': 3}),\n", - " 'cov': Counter(),\n", - " 'interpolation': Counter({'constant': 3}),\n", - " 'tol': Counter({'alpha': 1,\n", - " 'c': 1,\n", - " 'coef': 1,\n", - " 'mode': 1,\n", - " 'normalize': 4,\n", - " 'precision': 1,\n", - " 'scale': 1,\n", - " 'self': 2,\n", - " 'verbose': 6}),\n", - " 'threshold': Counter({'covariances': 1,\n", - " 'function': 1,\n", - " 'offset': 2,\n", - " 'output': 7,\n", - " 'value': 6}),\n", - " 'invert': Counter({'usub': 11}),\n", - " 'attr': Counter({'item': 1}),\n", - " 'selection': Counter(),\n", - " 'matmul': Counter({'multiply': 2, 'reshape': 1, 'searchsorted': 1}),\n", - " 'matlab': Counter({'rst': 6}),\n", - " 'or': Counter({'and': 60, 'list': 1}),\n", - " '64': Counter({'32': 6}),\n", - " 'depthwise': Counter({'input': 2, 'pointwise': 1, 'recurrent': 3}),\n", - " 'implementation': Counter({'strides': 2}),\n", - " 'comb': Counter({'x': 1}),\n", - " 'function': Counter({'backend': 1,\n", - " 'call': 2,\n", - " 'd': 4,\n", - " 'kind': 1,\n", - " 'name': 1,\n", - " 'names': 2,\n", - " 'startswith': 1,\n", - " 'state': 3}),\n", - " 'custom': Counter({'correct': 2, 'oob': 1}),\n", - " 'utils': Counter({'modules': 1, 'parallel': 1}),\n", - " 'builder': Counter({'subclusters': 1}),\n", - " 'previous': Counter({'batch': 2}),\n", - " '1d': Counter(),\n", - " 'trials': Counter({'depth': 1}),\n", - " 'biases': Counter({'bias': 1}),\n", - " 'coroutine': Counter({'condition': 2, 'setter': 1}),\n", - " 'dictcomp': Counter({'generatorexp': 3}),\n", - " 'phi': Counter({'weights': 1}),\n", - " 'accs': Counter({'train': 1}),\n", - " 'tuple': Counter({'assign': 13,\n", - " 'attribute': 2,\n", - " 'call': 70,\n", - " 'decision': 1,\n", - " 'dict': 3,\n", - " 'ifexp': 5,\n", - " 'index': 6,\n", - " 'keyword': 16,\n", - " 'list': 101,\n", - " 'nameconstant': 1,\n", - " 'slice': 4,\n", - " 'str': 5,\n", - " 'type': 2}),\n", - " 'management': Counter(),\n", - " 'jit': Counter({'class': 1, 'dispatch': 7, 'ma': 5, 'testing': 1}),\n", - " 'winexe': Counter(),\n", - " 'kneighborsclassifier': Counter({'factory': 7, 'integral': 2}),\n", - " 'est1': Counter({'est': 1, 'name': 3}),\n", - " 'int64': Counter({'bool': 3, 'indptr': 1, 'intp': 1}),\n", - " 'pipe': Counter({'2': 3, 'pipeline': 5}),\n", - " 'long': Counter({'bias': 1}),\n", - " 'futures': Counter({'folder': 3}),\n", - " 'importances': Counter(),\n", - " 'change': Counter(),\n", - " 'xception': Counter({'call': 1}),\n", - " 'query': Counter({'y': 4}),\n", - " 'take': Counter(),\n", - " 'percentiles': Counter({'axis': 2}),\n", - " 'test2': Counter({'test': 3}),\n", - " 'tostring': Counter({'tocsc': 1}),\n", - " 'dest': Counter(),\n", - " 'cols': Counter({'rows': 2}),\n", - " 'device': Counter({'args': 1,\n", - " 'arguments': 2,\n", - " 'call': 3,\n", - " 'children': 1,\n", - " 'data': 9,\n", - " 'dim': 3,\n", - " 'dtype': 1,\n", - " 'empty': 2,\n", - " 'get': 3,\n", - " 'idx': 1,\n", - " 'mask': 1,\n", - " 'node': 9,\n", - " 'return': 2,\n", - " 'shape': 1}),\n", - " 'flags': Counter({'handle': 3, 'thread': 1}),\n", - " 'j': Counter({'data': 3, 'i': 3, 'idx': 3, 'ind': 1, 'y': 1}),\n", - " ...}" + "[('keyword', 0.26686460438364684),\n", + " ('batchnorm', 0.08261153427638737),\n", + " ('equal', 0.08151406808642934),\n", + " ('instance', 0.04415047411782994),\n", + " ('name', 0.043056116897248566),\n", + " ('filters', 0.03942484066531945),\n", + " ('expects', 0.026326752681486088),\n", + " ('assign', 0.0256831960205192),\n", + " ('slice', 0.02468210788123737),\n", + " ('excepthandler', 0.021517177055806),\n", + " ('string', 0.015712731229597387),\n", + " ('functiondef', 0.015134462925540184),\n", + " ('overwrite', 0.014801803202238457),\n", + " ('floatx', 0.014245297683817814),\n", + " ('print', 0.012267993160267372),\n", + " ('is', 0.011898025804445825),\n", + " ('biases', 0.009127934089849216),\n", + " ('expr', 0.008235659878750193),\n", + " ('arguments', 0.007903000155448469),\n", + " ('extend', 0.0066967200373076324),\n", + " ('saver', 0.006395150007772424),\n", + " ('any', 0.005561946214829784),\n", + " ('argmax', 0.005207523705891497),\n", + " ('on', 0.004651018187470854),\n", + " ('low', 0.004514223534898182),\n", + " ('call', 0.004315249494792476),\n", + " ('progbar', 0.004249961137882792),\n", + " ('queue', 0.004047878128400436),\n", + " ('items', 0.003764961915125136),\n", + " ('cast', 0.0036965645888388),\n", + " ('training', 0.003491372609979792),\n", + " ('noteq', 0.003370122804290378),\n", + " ('init', 0.0033639048655370743),\n", + " ('v', 0.003283071661744132),\n", + " ('pooling1d', 0.002962847815949013),\n", + " ('lambda', 0.0029566298771957094),\n", + " ('metrics', 0.002944193999689103),\n", + " ('gt', 0.002860251826519509),\n", + " ('only', 0.002720348204570185),\n", + " ('alpha', 0.002524483133841132),\n", + " ('best', 0.002462303746308099),\n", + " ('reset', 0.002269547644955697),\n", + " ('in', 0.0022166951655526192),\n", + " ('with', 0.002048810819213431),\n", + " ('cell', 0.002005285247940308),\n", + " ('tf', 0.0019555417379138814),\n", + " ('str', 0.0018591636872376807),\n", + " ('default', 0.0018156381159645577),\n", + " ('item', 0.001796984299704648),\n", + " ('callback', 0.0017254780040416601),\n", + " ('pool', 0.0017130421265350536),\n", + " ('true', 0.0016881703715218405),\n", + " ('new', 0.001598010259598943),\n", + " ('nameconstant', 0.0015855743820923365),\n", + " ('lr', 0.0015233949945593036),\n", + " ('target', 0.001520286025182652),\n", + " ('k', 0.0015078501476760455),\n", + " ('pool2d', 0.001486087362039484),\n", + " ('config', 0.0014643245764029225),\n", + " ('schedule', 0.001442561790766361),\n", + " ('concat', 0.0013866003419866315),\n", + " ('d', 0.0013803824032333281),\n", + " ('hsplit', 0.0013368568319602051),\n", + " ('compare', 0.0013368568319602051),\n", + " ('list', 0.001330638893206902),\n", + " ('scale', 0.0013057671381936887),\n", + " ('explicitly', 0.0013057671381936887),\n", + " ('units', 0.001277786413803824),\n", + " ('far', 0.001268459505673869),\n", + " ('norms', 0.0011378827918545002),\n", + " ('stddev', 0.0010725944349448157),\n", + " ('sum', 0.001053940618684906),\n", + " ('algorithm', 0.0010477226799316026),\n", + " ('round', 0.0010383957718016477),\n", + " ('raise', 0.0009793253536452666),\n", + " ('for', 0.0009513446292554018),\n", + " ('support', 0.0009202549354888855),\n", + " ('l1', 0.0008922742110990207),\n", + " ('grad', 0.0008798383335924141),\n", + " ('isinf', 0.0008736203948391108),\n", + " ('prime', 0.0008642934867091559),\n", + " ('sub', 0.0008611845173325043),\n", + " ('types', 0.0008580755479558526),\n", + " ('legacy', 0.0008580755479558526),\n", + " ('unaryop', 0.0008487486398258977),\n", + " ('states', 0.0008394217316959428),\n", + " ('nw', 0.0008300948235659878),\n", + " ('non', 0.0008052230685527748),\n", + " ('done', 0.0007399347116430903),\n", + " ('hstack', 0.0007306078035131353),\n", + " ('verbose', 0.0007243898647598321),\n", + " ('required', 0.0007181719260065288),\n", + " ('task', 0.0006933001709933157),\n", + " ('multiprocessing', 0.0006870822322400125),\n", + " ('1d', 0.0006870822322400125),\n", + " ('chunk', 0.0006746463547334058),\n", + " ('atleast', 0.0006715373853567543),\n", + " ('params', 0.0006622104772267993),\n", + " ('update', 0.0006591015078501477),\n", + " ('strides', 0.0006591015078501477)]" ] }, - "execution_count": 29, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "confusion_counter" + "d = Counter(per_token_freq)\n", + "d.most_common(100)" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 76, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Label -- nan\n", - "Preds -- nan (89) alpha (4) float64 (1)\n", - "\n", - "Label -- resize\n", - "Preds -- reshape (3) kneighbors (1)\n", - "\n", - "Label -- categorical\n", - "Preds -- metric (7) n (4)\n", - "\n", - "Label -- bernoulli\n", - "Preds -- normal (5)\n", - "\n", - "Label -- steps\n", - "Preds -- matrix (4) split (4) weight (2) isnot (1) backend (1)\n", - "\n", - "Label -- bound\n", - "Preds -- d (6)\n", - "\n", - "Label -- yr\n", - "Preds -- x (3)\n", - "\n", - "Label -- dilation\n", - "Preds -- learning (9) bias (2)\n", - "\n", - "Label -- variance\n", - "Preds -- f (1) mask (1)\n", - "\n", - "Label -- sig\n", - "Preds -- filename (1)\n", - "\n", - "Label -- expr\n", - "Preds -- name (152) return (40) raise (20) assert (7) nameconstant (3)\n", - "\n", - "Label -- frompyfunc\n", - "Preds -- reshape (4) approx (4) repeat (1)\n", - "\n", - "Label -- g\n", - "Preds -- clf (4) lda (4) s (3)\n", - "\n", - "Label -- binomial\n", - "Preds -- normal (8) randint (3)\n", - "\n", - "Label -- coordinate\n", - "Preds -- multi (2)\n", - "\n", - "Label -- warning\n", - "Preds -- \n", - "\n", - "Label -- preference\n", - "Preds -- verbose (2) tol (1)\n", - "\n", - "Label -- arguments\n", - "Preds -- name (10) transformers (6) arg (3) shape (2) index (1)\n", - "\n", - "Label -- discovery\n", - "Preds -- importfrom (4) learning (3)\n", - "\n", - "Label -- optimizer\n", - "Preds -- input (5) backend (3) threshold (3) self (2) loss (1)\n", - "\n", - "Label -- reduction\n", - "Preds -- alpha (6) default (4) cell (3) add (3) p (3)\n", - "\n", - "Label -- k2\n", - "Preds -- kernel (3)\n", - "\n", - "Label -- freq\n", - "Preds -- shape (6) mult (5) var (3) loss (2) func (1)\n", - "\n", - "Label -- qid\n", - "Preds -- y (2)\n", - "\n", - "Label -- clust2\n", - "Preds -- apca (3) ensemble (2)\n", - "\n", - "Label -- exc\n", - "Preds -- result (4)\n", - "\n", - "Label -- sandbox\n", - "Preds -- flags (2)\n", - "\n", - "Label -- log2\n", - "Preds -- \n", - "\n", - "Label -- additional\n", - "Preds -- backend (3)\n", - "\n", - "Label -- update\n", - "Preds -- max (10) append (8) dtype (4) change (3) v (2)\n", - "\n", - "Label -- multiclassclassifier\n", - "Preds -- fn (3)\n", - "\n", - "Label -- grid\n", - "Preds -- random (1) enet (1)\n", - "\n", - "Label -- store\n", - "Preds -- \n", - "\n", - "Label -- stateful\n", - "Preds -- valid (3) outputs (3) effective (3) metrics (2) strides (2)\n", - "\n", - "Label -- iter\n", - "Preds -- splits (9) state (4) items (1)\n", - "\n", - "Label -- maxs\n", - "Preds -- core (2) labels (1)\n", - "\n", - "Label -- ndarray\n", - "Preds -- proto (1) integral (1) fit (1) state (1)\n", - "\n", - "Label -- cases\n", - "Preds -- msg (5) loss (3) inp (1)\n", - "\n", - "Label -- rejection\n", - "Preds -- maxima (1)\n", - "\n", - "Label -- bytedata\n", - "Preds -- fileobj (2)\n", - "\n", - "Label -- pool1d\n", - "Preds -- state (4) value (2) max (2) function (1)\n", - "\n", - "Label -- atleast\n", - "Preds -- \n", - "\n", - "Label -- modules\n", - "Preds -- parameters (3) state (1) name (1)\n", - "\n", - "Label -- dimensions\n", - "Preds -- kernel (1) cell (1)\n", - "\n", - "Label -- true\n", - "Preds -- score (5) log (4) expected (4) pred (3) mask (3)\n", - "\n", - "Label -- jobs\n", - "Preds -- handle (5) args (1) components (1)\n", - "\n", - "Label -- parametrize\n", - "Preds -- \n", - "\n", - "Label -- oh\n", - "Preds -- x (2)\n", - "\n", - "Label -- normalized\n", - "Preds -- a (1)\n", - "\n", - "Label -- lock\n", - "Preds -- self (3) backend (1) table (1)\n", - "\n", - "Label -- mod\n", - "Preds -- add (20) mult (3)\n", - "\n", - "Label -- dd\n", - "Preds -- standard (5)\n", - "\n", - "Label -- condition\n", - "Preds -- \n", - "\n", - "Label -- pickler\n", - "Preds -- grad (3) attribute (1)\n", - "\n", - "Label -- cos\n", - "Preds -- sin (2)\n", - "\n", - "Label -- gp\n", - "Preds -- nn (1)\n", - "\n", - "Label -- cv\n", - "Preds -- lassolars (9) verbose (2) test (2) metric (1) weights (1)\n", - "\n", - "Label -- anisotropic\n", - "Preds -- \n", - "\n", - "Label -- ifexp\n", - "Preds -- call (22) dict (3) assign (1)\n", - "\n", - "Label -- patch\n", - "Preds -- \n", - "\n", - "Label -- apply\n", - "Preds -- backend (4) dim (2) all (1)\n", - "\n", - "Label -- image\n", - "Preds -- input (8) is (1) output (1) to (1)\n", - "\n", - "Label -- mul\n", - "Preds -- t (6) astype (6)\n", - "\n", - "Label -- cand\n", - "Preds -- \n", - "\n", - "Label -- 10\n", - "Preds -- with (2) 2 (1)\n", - "\n", - "Label -- embeddings\n", - "Preds -- max (7) var (5) state (1)\n", - "\n", - "Label -- ln\n", - "Preds -- l (1)\n", - "\n", - "Label -- idx\n", - "Preds -- indices (5) name (5) x (4) i (2) mask (2)\n", - "\n", - "Label -- isnan\n", - "Preds -- isfinite (6) backend (1)\n", - "\n", - "Label -- gamma\n", - "Preds -- metric (5) pi (4) randint (4) label (2) verbose (1)\n", - "\n", - "Label -- union1d\n", - "Preds -- \n", - "\n", - "Label -- minimum\n", - "Preds -- log (2) maximum (2)\n", - "\n", - "Label -- bounds\n", - "Preds -- \n", - "\n", - "Label -- pickled\n", - "Preds -- \n", - "\n", - "Label -- tensor\n", - "Preds -- state (6) item (5) stationary (4) input (4) dot (4)\n", - "\n", - "Label -- empty\n", - "Preds -- ones (6) num (4) zeros (3) get (3) alpha (3)\n", - "\n", - "Label -- columns\n", - "Preds -- trans (2)\n", - "\n", - "Label -- marginal\n", - "Preds -- \n", - "\n", - "Label -- engine\n", - "Preds -- callbacks (3)\n", - "\n", - "Label -- unsupportedoperation\n", - "Preds -- \n", - "\n", - "Label -- starred\n", - "Preds -- keyword (40) name (11)\n", - "\n", - "Label -- nk\n", - "Preds -- y (2)\n", - "\n", - "Label -- fs\n", - "Preds -- pipeline (5)\n", - "\n", - "Label -- allclose\n", - "Preds -- \n", - "\n", - "Label -- dx\n", - "Preds -- matrix (5)\n", - "\n", - "Label -- proceed\n", - "Preds -- filename (3)\n", - "\n", - "Label -- qr\n", - "Preds -- \n", - "\n", - "Label -- inplace\n", - "Preds -- value (10) self (3) bias (3) gamma (3) model (2)\n", - "\n", - "Label -- write\n", - "Preds -- rmtree (1) makedirs (1) name (1)\n", - "\n", - "Label -- value\n", - "Preds -- x (11) i (5) name (4) ndim (4) transformers (4)\n", - "\n", - "Label -- grads\n", - "Preds -- result (7) batch (1) dtype (1)\n", - "\n", - "Label -- factory\n", - "Preds -- count (2) fit (2) str (1) function (1)\n", - "\n", - "Label -- urlopen\n", - "Preds -- \n", - "\n", - "Label -- plsregression\n", - "Preds -- plscanonical (4) tolist (2)\n", - "\n", - "Label -- filenames\n", - "Preds -- data (6)\n", - "\n", - "Label -- inert\n", - "Preds -- idx (2)\n", - "\n", - "Label -- refit\n", - "Preds -- \n", - "\n", - "Label -- for\n", - "Preds -- assign (15) cell (2) reduce (2) output (1) kernel (1)\n", - "\n", - "Label -- stopping\n", - "Preds -- \n", - "\n", - "Label -- match\n", - "Preds -- sub (4) v (1) group (1)\n", - "\n", - "Label -- output\n", - "Preds -- x (9) stop (8) kernel (6) outputs (5) length (3)\n", - "\n", - "Label -- iterations\n", - "Preds -- constant (6) time (3) alpha (3) coef (1) location (1)\n", - "\n", - "Label -- labels2\n", - "Preds -- x (2) scores (1)\n", - "\n", - "Label -- components\n", - "Preds -- jobs (11) clusters (3) x (3) splits (2) theta (2)\n", - "\n", - "Label -- delta\n", - "Preds -- on (3) effective (1)\n", - "\n", - "Label -- sentinel\n", - "Preds -- uid (3)\n", - "\n", - "Label -- try\n", - "Preds -- \n", - "\n", - "Label -- patternbroadcast\n", - "Preds -- reshape (1)\n", - "\n", - "Label -- dst\n", - "Preds -- input (3)\n", - "\n", - "Label -- based\n", - "Preds -- value (3)\n", - "\n", - "Label -- pvalue\n", - "Preds -- labels (4)\n", - "\n", - "Label -- choice\n", - "Preds -- searchsorted (3)\n", - "\n", - "Label -- fc\n", - "Preds -- thresholds (1)\n", - "\n", - "Label -- class\n", - "Preds -- parameters (3) row (3) sample (2) cell (1) cached (1)\n", - "\n", - "Label -- nearestneighbors\n", - "Preds -- memmap (3) svc (1)\n", - "\n", - "Label -- global\n", - "Preds -- function (3) return (2) name (2)\n", - "\n", - "Label -- beta\n", - "Preds -- labels (3) value (3) epsilon (2) alpha (1)\n", - "\n", - "Label -- order\n", - "Preds -- size (4) shape (2) indices (2) layer (1)\n", - "\n", - "Label -- spacing\n", - "Preds -- \n", - "\n", - "Label -- reducers\n", - "Preds -- reader (8) writer (3) context (2) wlock (1) path (1)\n", - "\n", - "Label -- mp\n", - "Preds -- work (6) errno (1)\n", - "\n", - "Label -- stride\n", - "Preds -- bias (16) kernel (3) uniform (1) alpha (1)\n", - "\n", - "Label -- cancelled\n", - "Preds -- result (3) exception (1)\n", - "\n", - "Label -- interval\n", - "Preds -- steps (1) sample (1) weight (1)\n", - "\n", - "Label -- islower\n", - "Preds -- strip (1)\n", - "\n", - "Label -- stacklevel\n", - "Preds -- self (1)\n", - "\n", - "Label -- needs\n", - "Preds -- max (1)\n", - "\n", - "Label -- strategy\n", - "Preds -- dtype (4) axis (2)\n", - "\n", - "Label -- rkf\n", - "Preds -- splits (4)\n", - "\n", - "Label -- singular\n", - "Preds -- \n", - "\n", - "Label -- crossmaplrn2d\n", - "Preds -- size (5)\n", - "\n", - "Label -- executable\n", - "Preds -- support (4) path (2) stdout (1)\n", - "\n", - "Label -- convert\n", - "Preds -- \n", - "\n", - "Label -- meshgrid\n", - "Preds -- dot (4)\n", - "\n", - "Label -- triplet\n", - "Preds -- make (2) beta (1)\n", - "\n", - "Label -- rho\n", - "Preds -- dtype (1)\n", - "\n", - "Label -- recurrent\n", - "Preds -- input (3) bias (3)\n", - "\n", - "Label -- normalizer\n", - "Preds -- xt (7) approx (5) asarray (1)\n", - "\n", - "Label -- handle\n", - "Preds -- duplicatehandle (6) name (2) type (1)\n", - "\n", - "Label -- add\n", - "Preds -- sub (75) mult (44) div (32) mod (31) floordiv (15)\n", - "\n", - "Label -- stack\n", - "Preds -- array (4) extend (2)\n", - "\n", - "Label -- analyzer\n", - "Preds -- \n", - "\n", - "Label -- contamination\n", - "Preds -- \n", - "\n", - "Label -- old\n", - "Preds -- feature (9) new (2) train (1) self (1) g (1)\n", - "\n", - "Label -- lml\n", - "Preds -- time (1) theta (1) alpha (1)\n", - "\n", - "Label -- plscanonical\n", - "Preds -- format (3) array (1) empty (1)\n", - "\n", - "Label -- monitor\n", - "Preds -- verbose (4) initargs (2) fit (1)\n", - "\n", - "Label -- linkage\n", - "Preds -- affinity (1)\n", - "\n", - "Label -- variables\n", - "Preds -- backend (6) dtype (2) flags (2) class (1) cell (1)\n", - "\n", - "Label -- alphak\n", - "Preds -- fig (1)\n", - "\n", - "Label -- ft\n", - "Preds -- pipeline (4)\n", - "\n", - "Label -- quantiles\n", - "Preds -- \n", - "\n", - "Label -- resp\n", - "Preds -- x (4)\n", - "\n", - "Label -- rec\n", - "Preds -- tsne (2)\n", - "\n", - "Label -- spca\n", - "Preds -- \n", - "\n", - "Label -- validate\n", - "Preds -- \n", - "\n", - "Label -- splits\n", - "Preds -- outputs (2)\n", - "\n", - "Label -- xw\n", - "Preds -- x (8)\n", - "\n", - "Label -- point\n", - "Preds -- \n", - "\n", - "Label -- broadcast\n", - "Preds -- to (3)\n", - "\n", - "Label -- ser\n", - "Preds -- df (4)\n", - "\n", - "Label -- linear\n", - "Preds -- bias (2)\n", - "\n", - "Label -- field\n", - "Preds -- batch (3)\n", - "\n", - "Label -- xi\n", - "Preds -- est (2)\n", - "\n", - "Label -- assume\n", - "Preds -- \n", - "\n", - "Label -- checked\n", - "Preds -- \n", - "\n", - "Label -- linearsvr\n", - "Preds -- linearsvc (4)\n", - "\n", - "Label -- end\n", - "Preds -- score (5) duration (2) start (2) on (1) error (1)\n", - "\n", - "Label -- descr\n", - "Preds -- \n", - "\n", - "Label -- successful\n", - "Preds -- values (3)\n", - "\n", - "Label -- difference\n", - "Preds -- lower (4)\n", - "\n", - "Label -- im\n", - "Preds -- \n", - "\n", - "Label -- poisson\n", - "Preds -- arange (2)\n", - "\n", - "Label -- grad\n", - "Preds -- x (3) true (3) it (2) data (2) c (2)\n", - "\n", - "Label -- covariances\n", - "Preds -- \n", - "\n", - "Label -- obj\n", - "Preds -- fileobj (3) kwargs (2) args (1)\n", - "\n", - "Label -- shift\n", - "Preds -- axis (6) norms (3) x (3) predictions (2) xy (1)\n", - "\n", - "Label -- tree\n", - "Preds -- kernel (3) e (1)\n", - "\n", - "Label -- dbscan\n", - "Preds -- book (6)\n", - "\n", - "Label -- tn\n", - "Preds -- \n", - "\n", - "Label -- criteria\n", - "Preds -- tuple (1)\n", - "\n", - "Label -- narrow\n", - "Preds -- repeat (4) transpose (1) name (1)\n", - "\n", - "Label -- solve\n", - "Preds -- sqrt (3)\n", - "\n", - "Label -- scores\n", - "Preds -- alphas (6) labels (4) dec (2) sizes (2) train (1)\n", - "\n", - "Label -- done\n", - "Preds -- state (2)\n", - "\n", - "Label -- encode\n", - "Preds -- get (5) name (1)\n", - "\n", - "Label -- reconstructed\n", - "Preds -- shape (2)\n", - "\n", - "Label -- url\n", - "Preds -- s (2) idx (1)\n", - "\n", - "Label -- weighted\n", - "Preds -- 2 (1)\n", - "\n", - "Label -- classification\n", - "Preds -- self (2)\n", - "\n", - "Label -- thread\n", - "Preds -- function (2)\n", - "\n", - "Label -- fork\n", - "Preds -- \n", - "\n", - "Label -- algorithm\n", - "Preds -- verbose (2) loss (2) kwargs (2) code (1) solver (1)\n", - "\n", - "Label -- too\n", - "Preds -- test (4)\n", - "\n", - "Label -- enough\n", - "Preds -- centroids (1)\n", - "\n", - "Label -- is\n", - "Preds -- isnot (32) nz (5) eq (4) in (4) shape (2)\n", - "\n", - "Label -- cpu\n", - "Preds -- read (3) feature (2) any (2)\n", - "\n", - "Label -- interpolate\n", - "Preds -- alpha (2)\n", - "\n", - "Label -- can\n", - "Preds -- read (2)\n", - "\n", - "Label -- sample\n", - "Preds -- randint (10) class (5) named (2) step (2) feature (2)\n", - "\n", - "Label -- inputfeaturetype\n", - "Preds -- x (2)\n", - "\n", - "Label -- np\n", - "Preds -- \n", - "\n", - "Label -- logprob\n", - "Preds -- shape (2)\n", - "\n", - "Label -- proto\n", - "Preds -- \n", - "\n", - "Label -- asarray\n", - "Preds -- array (15) var (3) sqrt (3) zeros (2) ones (1)\n", - "\n", - "Label -- sync\n", - "Preds -- add (1)\n", - "\n", - "Label -- 20newsgroups\n", - "Preds -- \n", - "\n", - "Label -- measure\n", - "Preds -- samples (1)\n", - "\n", - "Label -- yt\n", - "Preds -- xt (5)\n", - "\n", - "Label -- pl\n", - "Preds -- r (4) i (2) w (1) key (1)\n", - "\n", - "Label -- chol\n", - "Preds -- \n", - "\n", - "Label -- corrcoef\n", - "Preds -- randn (1)\n", - "\n", - "Label -- input\n", - "Preds -- output (12) x (9) self (8) value (8) kwargs (7)\n", - "\n", - "Label -- bynipals\n", - "Preds -- \n", - "\n", - "Label -- pointer\n", - "Preds -- squeeze (5) buffer (1)\n", - "\n", - "Label -- argmin\n", - "Preds -- argmax (5) abs (2)\n", - "\n", - "Label -- as\n", - "Preds -- decision (9) attribute (6) name (3) state (1)\n", - "\n", - "Label -- categories\n", - "Preds -- classes (2)\n", - "\n", - "Label -- string\n", - "Preds -- sparse (4) random (1)\n", - "\n", - "Label -- sizes\n", - "Preds -- size (10) mask (4) scores (4) results (3) layer (3)\n", - "\n", - "Label -- sparse\n", - "Preds -- dense (8) in (4) dtype (3) pooling (2) save (2)\n", - "\n", - "Label -- one\n", - "Preds -- add (7) stats (2) make (1) to (1)\n", - "\n", - "Label -- reshape\n", - "Preds -- array (6) get (5) sum (4) concatenate (3) all (2)\n", - "\n", - "Label -- type\n", - "Preds -- tree (6) state (5) apply (4) mask (4) sum (3)\n", - "\n", - "Label -- platform\n", - "Preds -- float64 (1) b (1)\n", - "\n", - "Label -- noise\n", - "Preds -- explained (4) theta (1)\n", - "\n", - "Label -- rtol\n", - "Preds -- kernel (1)\n", - "\n", - "Label -- transform\n", - "Preds -- fit (9) predict (3) astype (2) name (2) apply (1)\n", - "\n", - "Label -- merge\n", - "Preds -- legacy (2)\n", - "\n", - "Label -- folder\n", - "Preds -- \n", - "\n", - "Label -- pinvh\n", - "Preds -- eye (1)\n", - "\n", - "Label -- embedded\n", - "Preds -- trans (4) k (2) checked (1)\n", - "\n", - "Label -- informative\n", - "Preds -- samples (1)\n", - "\n", - "Label -- conv1d\n", - "Preds -- cell (2) support (2) kernel (1)\n", - "\n", - "Label -- training\n", - "Preds -- bias (6) kernel (5) value (5) p (5) dict (2)\n", - "\n", - "Label -- subclass\n", - "Preds -- call (1)\n", - "\n", - "Label -- skeleton\n", - "Preds -- multi (2)\n", - "\n", - "Label -- eclf\n", - "Preds -- \n", - "\n", - "Label -- high\n", - "Preds -- x (2)\n", - "\n", - "Label -- feature\n", - "Preds -- c (1) input (1)\n", - "\n", - "Label -- nnet\n", - "Preds -- nn (5) dtype (1)\n", - "\n", - "Label -- prelu\n", - "Preds -- dot (4)\n", - "\n", - "Label -- where\n", - "Preds -- take (3) argmax (1) kneighbors (1)\n", - "\n", - "Label -- network\n", - "Preds -- n (1) graph (1)\n", - "\n", - "Label -- costs\n", - "Preds -- intercept (2)\n", - "\n", - "Label -- normalization\n", - "Preds -- by (4) size (3) sum (1) sizes (1)\n", - "\n", - "Label -- losses\n", - "Preds -- names (7) weights (3) name (3) shape (2) layer (1)\n", - "\n", - "Label -- leaky\n", - "Preds -- layer (2)\n", - "\n", - "Label -- divide\n", - "Preds -- \n", - "\n", - "Label -- squares\n", - "Preds -- checked (2) transformer (1)\n", - "\n", - "Label -- hashable\n", - "Preds -- str (1)\n", - "\n", - "Label -- ceil\n", - "Preds -- mmap (5) log (3) argmax (1) bias (1)\n", - "\n", - "Label -- dim2\n", - "Preds -- out (4)\n", - "\n", - "Label -- sequence\n", - "Preds -- to (5)\n", - "\n", - "Label -- conflict\n", - "Preds -- mask (1)\n", - "\n", - "Label -- loadtxt\n", - "Preds -- pad (5) percentile (2)\n", - "\n", - "Label -- lp\n", - "Preds -- max (5)\n", - "\n", - "Label -- effective\n", - "Preds -- get (3)\n", - "\n", - "Label -- reachability\n", - "Preds -- take (4) alpha (3) target (2) predecessor (2)\n", - "\n", - "Label -- around\n", - "Preds -- log (4)\n", - "\n", - "Label -- alpha1\n", - "Preds -- ids (2) cnts (1)\n", - "\n", - "Label -- swapaxes\n", - "Preds -- reshape (4)\n", - "\n", - "Label -- out\n", - "Preds -- shape (4) trans (2) feature (2) num (2) mask (2)\n", - "\n", - "Label -- importfrom\n", - "Preds -- \n", - "\n", - "Label -- centers\n", - "Preds -- weights (6) mask (4) predictions (3) y (1) shuffle (1)\n", - "\n", - "Label -- permute\n", - "Preds -- output (5) items (2) bool (2)\n", - "\n", - "Label -- estimator\n", - "Preds -- name (15) w (4) data (4) kwargs (3) cv (3)\n", - "\n", - "Label -- nonzero\n", - "Preds -- all (2)\n", - "\n", - "Label -- hidden\n", - "Preds -- batch (4) visible (1)\n", - "\n", - "Label -- contiguous\n", - "Preds -- dtype (4)\n", - "\n", - "Label -- phase\n", - "Preds -- rate (5)\n", - "\n", - "Label -- kwstring\n", - "Preds -- args (4)\n", - "\n", - "Label -- masking\n", - "Preds -- activation (5) bias (2)\n", - "\n", - "Label -- endswith\n", - "Preds -- \n", - "\n", - "Label -- idxs\n", - "Preds -- values (2) mask (1)\n", - "\n", - "Label -- cls\n", - "Preds -- clf (7) self (5) name (5) weights (3) cell (3)\n", - "\n", - "Label -- subcluster\n", - "Preds -- \n", - "\n", - "Label -- split\n", - "Preds -- searchsorted (2) good (1) value (1) this (1) astype (1)\n", - "\n", - "Label -- probs\n", - "Preds -- prob (3) v (2) x (2) y (2) path (1)\n", - "\n", - "Label -- isclose\n", - "Preds -- reshape (1) allclose (1)\n", - "\n", - "Label -- ensemble\n", - "Preds -- types (8) est (2)\n", - "\n", - "Label -- uncovered\n", - "Preds -- \n", - "\n", - "Label -- broken\n", - "Preds -- contiguous (1)\n", - "\n", - "Label -- xa\n", - "Preds -- xb (2)\n", - "\n", - "Label -- annotate\n", - "Preds -- uniform (3) parametrize (2)\n", - "\n", - "Label -- datasets\n", - "Preds -- value (5)\n", - "\n", - "Label -- pollin\n", - "Preds -- name (2)\n", - "\n", - "Label -- colors\n", - "Preds -- \n", - "\n", - "Label -- negative\n", - "Preds -- data (4) self (1) p (1)\n", - "\n", - "Label -- shape\n", - "Preds -- size (10) mask (7) dtype (7) activation (6) update (6)\n", - "\n", - "Label -- exists\n", - "Preds -- \n", - "\n", - "Label -- instance\n", - "Preds -- batch (3)\n", - "\n", - "Label -- binop\n", - "Preds -- unaryop (1) layer (1) augassign (1)\n", - "\n", - "Label -- fn\n", - "Preds -- args (9) queue (2) self (2) kwargs (1) metrics (1)\n", - "\n", - "Label -- num\n", - "Preds -- name (698) str (211) nameconstant (178) expr (22) assert (7)\n", - "\n", - "Label -- python\n", - "Preds -- old (6) text (1) first (1)\n", - "\n", - "Label -- truncated\n", - "Preds -- multivariate (5)\n", - "\n", - "Label -- wlock\n", - "Preds -- writer (7) reader (1) reducers (1)\n", - "\n", - "Label -- logspace\n", - "Preds -- reshape (2)\n", - "\n", - "Label -- ct\n", - "Preds -- y1 (1)\n", - "\n", - "Label -- spmatrix\n", - "Preds -- x (4)\n", - "\n", - "Label -- notin\n", - "Preds -- in (31) eq (5) noteq (2) gt (1)\n", - "\n", - "Label -- dens\n", - "Preds -- outputs (3)\n", - "\n", - "Label -- strdata\n", - "Preds -- \n", - "\n", - "Label -- pooling\n", - "Preds -- \n", - "\n", - "Label -- gens\n", - "Preds -- name (3)\n", - "\n", - "Label -- degrees\n", - "Preds -- predict (1)\n", - "\n", - "Label -- dset\n", - "Preds -- x (1) dtype (1)\n", - "\n", - "Label -- tiled\n", - "Preds -- output (2)\n", - "\n", - "Label -- probb\n", - "Preds -- intercept (1)\n", - "\n", - "Label -- block\n", - "Preds -- batch (6) all (1)\n", - "\n", - "Label -- iterator\n", - "Preds -- value (3)\n", - "\n", - "Label -- d\n", - "Preds -- expected (4) obj (3) t (3) time (2) y (2)\n", - "\n", - "Label -- desired\n", - "Preds -- name (2)\n", - "\n", - "Label -- prev\n", - "Preds -- \n", - "\n", - "Label -- dists\n", - "Preds -- x (6)\n", - "\n", - "Label -- ignore\n", - "Preds -- metadata (1)\n", - "\n", - "Label -- author\n", - "Preds -- msg (2)\n", - "\n", - "Label -- norms\n", - "Preds -- norm (3)\n", - "\n", - "Label -- tokenerror\n", - "Preds -- linalgerror (5)\n", - "\n", - "Label -- filled\n", - "Preds -- self (1)\n", - "\n", - "Label -- state\n", - "Preds -- output (9) constant (6) kind (2) input (2) authkey (2)\n", - "\n", - "Label -- fixed\n", - "Preds -- batch (2) criterion (2)\n", - "\n", - "Label -- centroids\n", - "Preds -- theta (5) classes (2) means (1)\n", - "\n", - "Label -- returncode\n", - "Preds -- \n", - "\n", - "Label -- tolist\n", - "Preds -- toarray (2) start (2)\n", - "\n", - "Label -- features\n", - "Preds -- samples (4) c (4) axis (3) newaxis (1)\n", - "\n", - "Label -- pass\n", - "Preds -- return (6) name (1) continue (1)\n", - "\n", - "Label -- s\n", - "Preds -- msg (5) x (5) s2 (5) line (4) v (3)\n", - "\n", - "Label -- monkeypatch\n", - "Preds -- \n", - "\n", - "Label -- dir1\n", - "Preds -- 2 (1)\n", - "\n", - "Label -- sq\n", - "Preds -- squared (1)\n", - "\n", - "Label -- invalidoperation\n", - "Preds -- \n", - "\n", - "Label -- cuda\n", - "Preds -- backend (5) cell (2) data (1) nn (1) flags (1)\n", - "\n", - "Label -- kmeans\n", - "Preds -- factory (3) norms (2)\n", - "\n", - "Label -- sk\n", - "Preds -- fit (1)\n", - "\n", - "Label -- copies\n", - "Preds -- distributions (4)\n", - "\n", - "Label -- pipeline\n", - "Preds -- pipe (5) base (1)\n", - "\n", - "Label -- behaviour\n", - "Preds -- contamination (2)\n", - "\n", - "Label -- critical\n", - "Preds -- \n", - "\n", - "Label -- leak\n", - "Preds -- check (1)\n", - "\n", - "Label -- iters\n", - "Preds -- features (1)\n", - "\n", - "Label -- formatargvalues\n", - "Preds -- memmap (3)\n", - "\n", - "Label -- workers\n", - "Preds -- features (5) verbose (1)\n", - "\n", - "Label -- keras\n", - "Preds -- output (13) int (2) noise (2) shape (1)\n", - "\n", - "Label -- sin\n", - "Preds -- sqrt (3) sign (1)\n", - "\n", - "Label -- swap\n", - "Preds -- self (2) alpha (1)\n", - "\n", - "Label -- best\n", - "Preds -- metric (5) filters (4) units (2) verbose (1) diag (1)\n", - "\n", - "Label -- util\n", - "Preds -- stderr (6)\n", - "\n", - "Label -- svds\n", - "Preds -- accept (5) g (2)\n", - "\n", - "Label -- pu\n", - "Preds -- i (2) res (1)\n", - "\n", - "Label -- child\n", - "Preds -- batch (3) old (1)\n", - "\n", - "Label -- suffix\n", - "Preds -- s (2)\n", - "\n", - "Label -- join\n", - "Preds -- format (3) error (2)\n", - "\n", - "Label -- compresslevel\n", - "Preds -- fileobj (2)\n", - "\n", - "Label -- session\n", - "Preds -- arguments (1)\n", - "\n", - "Label -- timeseriesgenerator\n", - "Preds -- activation (1)\n", - "\n", - "Label -- serializer\n", - "Preds -- authkey (2)\n", - "\n", - "Label -- l\n", - "Preds -- y (3) i (2) precision (2) coefs (1)\n", - "\n", - "Label -- descent\n", - "Preds -- function (1)\n", - "\n", - "Label -- covar\n", - "Preds -- covariance (3)\n", - "\n", - "Label -- arr\n", - "Preds -- boolop (2)\n", - "\n", - "Label -- localoutlierfactor\n", - "Preds -- svc (6) factory (2)\n", - "\n", - "Label -- code\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preds -- returncode (4) weights (2) x2 (1) dist (1)\n", - "\n", - "Label -- mark\n", - "Preds -- \n", - "\n", - "Label -- transformer\n", - "Preds -- fit (1)\n", - "\n", - "Label -- create\n", - "Preds -- csr (2)\n", - "\n", - "Label -- kl\n", - "Preds -- loss (5) bias (3)\n", - "\n", - "Label -- likelihood\n", - "Preds -- \n", - "\n", - "Label -- floor\n", - "Preds -- size (1)\n", - "\n", - "Label -- current\n", - "Preds -- y (5) max (2) metric (1)\n", - "\n", - "Label -- dtype\n", - "Preds -- float64 (14) class (9) shape (6) name (6) float32 (3)\n", - "\n", - "Label -- searchsorted\n", - "Preds -- labels (2)\n", - "\n", - "Label -- on\n", - "Preds -- stop (7) return (2)\n", - "\n", - "Label -- gap\n", - "Preds -- \n", - "\n", - "Label -- multivariate\n", - "Preds -- \n", - "\n", - "Label -- writer\n", - "Preds -- reader (5) handle (4) stdout (1)\n", - "\n", - "Label -- filepath\n", - "Preds -- dir (2)\n", - "\n", - "Label -- reconstruct\n", - "Preds -- \n", - "\n", - "Label -- fan\n", - "Preds -- axis (1)\n", - "\n", - "Label -- diabetes\n", - "Preds -- mean (3) scale (1)\n", - "\n", - "Label -- strides\n", - "Preds -- shape (6) kernel (4) filters (2) self (2) kwargs (1)\n", - "\n", - "Label -- exit\n", - "Preds -- management (1)\n", - "\n", - "Label -- isnot\n", - "Preds -- is (48) notin (1)\n", - "\n", - "Label -- computation\n", - "Preds -- code (1)\n", - "\n", - "Label -- remainder\n", - "Preds -- transformers (1)\n", - "\n", - "Label -- error\n", - "Preds -- module (11) loss (5) weight (1)\n", - "\n", - "Label -- histogram\n", - "Preds -- max (1)\n", - "\n", - "Label -- extra\n", - "Preds -- fun (2) h (2)\n", - "\n", - "Label -- compare\n", - "Preds -- attribute (1) call (1)\n", - "\n", - "Label -- dist\n", - "Preds -- y (4) covariance (2) add (2) store (2) exp (1)\n", - "\n", - "Label -- metadata\n", - "Preds -- layer (4) id (1) losses (1)\n", - "\n", - "Label -- after\n", - "Preds -- set (1)\n", - "\n", - "Label -- cumsum\n", - "Preds -- argsort (2)\n", - "\n", - "Label -- train2\n", - "Preds -- test (4)\n", - "\n", - "Label -- warns\n", - "Preds -- raises (8)\n", - "\n", - "Label -- diag\n", - "Preds -- array (3) abs (3) exp (1) cumsum (1) dot (1)\n", - "\n", - "Label -- files\n", - "Preds -- root (2)\n", - "\n", - "Label -- callbacks\n", - "Preds -- shape (3) mask (2)\n", - "\n", - "Label -- resolution\n", - "Preds -- search (1)\n", - "\n", - "Label -- linearoperator\n", - "Preds -- empty (4) zeros (2)\n", - "\n", - "Label -- activation\n", - "Preds -- size (1)\n", - "\n", - "Label -- counts\n", - "Preds -- seed (4) coef (2) gamma (1) importances (1)\n", - "\n", - "Label -- csc\n", - "Preds -- csr (10)\n", - "\n", - "Label -- fprime\n", - "Preds -- \n", - "\n", - "Label -- flip\n", - "Preds -- feature (1) function (1)\n", - "\n", - "Label -- multi\n", - "Preds -- iris (5) pred (4) sw (2) weight (1)\n", - "\n", - "Label -- setter\n", - "Preds -- transformers (1)\n", - "\n", - "Label -- nccl\n", - "Preds -- dtype (4) batch (2) kind (1)\n", - "\n", - "Label -- formatted\n", - "Preds -- x (1)\n", - "\n", - "Label -- degree\n", - "Preds -- \n", - "\n", - "Label -- mktemp\n", - "Preds -- encode (2)\n", - "\n", - "Label -- register\n", - "Preds -- fill (6) reset (3) add (2) beta (2) pop (1)\n", - "\n", - "Label -- 0\n", - "Preds -- bounds (1)\n", - "\n", - "Label -- distance\n", - "Preds -- result (3) scaler (1)\n", - "\n", - "Label -- score1\n", - "Preds -- score (2)\n", - "\n", - "Label -- t21\n", - "Preds -- num (1)\n", - "\n", - "Label -- isscalar\n", - "Preds -- issparse (4)\n", - "\n", - "Label -- isfortran\n", - "Preds -- allclose (1)\n", - "\n", - "Label -- append\n", - "Preds -- reshape (5) power (4) sleep (4) sum (4) extend (3)\n", - "\n", - "Label -- boolean\n", - "Preds -- make (2)\n", - "\n", - "Label -- precision\n", - "Preds -- self (2)\n", - "\n", - "Label -- reference\n", - "Preds -- batch (5)\n", - "\n", - "Label -- id\n", - "Preds -- layer (3) size (2) item (1) like (1)\n", - "\n", - "Label -- padding\n", - "Preds -- strides (29) bias (17) kernel (14) shape (8) length (6)\n", - "\n", - "Label -- count\n", - "Preds -- shape (5) out (4) v (3) vars (3) size (1)\n", - "\n", - "Label -- size\n", - "Preds -- shape (27) return (12) sum (8) log (7) arange (7)\n", - "\n", - "Label -- astype\n", - "Preds -- transform (13) size (9) fit (6) abs (1) dtype (1)\n", - "\n", - "Label -- dec\n", - "Preds -- y (4) score (2) x (1) labels (1)\n", - "\n", - "Label -- address\n", - "Preds -- state (4) authkey (3)\n", - "\n", - "Label -- elements\n", - "Preds -- indices (3) 2d (1)\n", - "\n", - "Label -- converged\n", - "Preds -- verbose (1)\n", - "\n", - "Label -- proba\n", - "Preds -- predict (4) dense (4) p (2) intercept (1) args (1)\n", - "\n", - "Label -- labels\n", - "Preds -- target (7) x (5) mean (3) data (3) inertia (3)\n", - "\n", - "Label -- upsample\n", - "Preds -- make (1) input (1)\n", - "\n", - "Label -- square\n", - "Preds -- y (6) log (3) sqrt (2)\n", - "\n", - "Label -- ind\n", - "Preds -- j (8) idx (3) score (2) out (2) xg (1)\n", - "\n", - "Label -- patches\n", - "Preds -- shape (2)\n", - "\n", - "Label -- construct\n", - "Preds -- fn (4) kwargs (3)\n", - "\n", - "Label -- mlp\n", - "Preds -- \n", - "\n", - "Label -- warm\n", - "Preds -- \n", - "\n", - "Label -- elementwise\n", - "Preds -- bias (2)\n", - "\n", - "Label -- context\n", - "Preds -- best (4)\n", - "\n", - "Label -- approx\n", - "Preds -- column (1) y (1)\n", - "\n", - "Label -- renorm\n", - "Preds -- nearestneighbors (3)\n", - "\n", - "Label -- radius\n", - "Preds -- p (2)\n", - "\n", - "Label -- get\n", - "Preds -- astype (4) build (2) to (2) item (1) copy (1)\n", - "\n", - "Label -- bandwidth\n", - "Preds -- kernel (2)\n", - "\n", - "Label -- matrix\n", - "Preds -- value (3) ndarray (1) coef (1)\n", - "\n", - "Label -- wakeup\n", - "Preds -- \n", - "\n", - "Label -- threads\n", - "Preds -- call (1)\n", - "\n", - "Label -- explained\n", - "Preds -- \n", - "\n", - "Label -- user\n", - "Preds -- decision (3)\n", - "\n", - "Label -- flat\n", - "Preds -- shape (1)\n", - "\n", - "Label -- subtensor\n", - "Preds -- shape (2) size (2) like (1)\n", - "\n", - "Label -- layers\n", - "Preds -- names (4) info (2) state (2) kernels (2) output (1)\n", - "\n", - "Label -- ipca\n", - "Preds -- trans (2) dico (1) pca (1)\n", - "\n", - "Label -- reduce\n", - "Preds -- partial (6) strides (3) size (2) error (1) self (1)\n", - "\n", - "Label -- title\n", - "Preds -- keys (2)\n", - "\n", - "Label -- ravel\n", - "Preds -- concatenate (5) squeeze (4) all (3) array (2) toarray (2)\n", - "\n", - "Label -- indptr\n", - "Preds -- flat (4) shape (1)\n", - "\n", - "Label -- neighbors\n", - "Preds -- l (4) idx (3) rr (2) jobs (2) fetch (1)\n", - "\n", - "Label -- save\n", - "Preds -- get (4) append (3) add (2) extend (2) make (2)\n", - "\n", - "Label -- format\n", - "Preds -- info (4) issparse (3) name (1)\n", - "\n", - "Label -- local\n", - "Preds -- detach (3) layer (1) max (1)\n", - "\n", - "Label -- y\n", - "Preds -- x (52) labels (6) axis (5) self (5) update (5)\n", - "\n", - "Label -- ref\n", - "Preds -- val (3) processes (2)\n", - "\n", - "Label -- randn\n", - "Preds -- repeat (8) dot (5) randint (3) name (1) arange (1)\n", - "\n", - "Label -- placeholder\n", - "Preds -- sum (3) add (1)\n", - "\n", - "Label -- flag\n", - "Preds -- \n", - "\n", - "Label -- periodicity\n", - "Preds -- alpha (5)\n", - "\n", - "Label -- subset\n", - "Preds -- \n", - "\n", - "Label -- nested\n", - "Preds -- args (4)\n", - "\n", - "Label -- targets\n", - "Preds -- samples (1) predictions (1) constant (1)\n", - "\n", - "Label -- label\n", - "Preds -- labels (2) shuffle (1)\n", - "\n", - "Label -- regularizer\n", - "Preds -- initializer (16) init (5) info (3) size (3)\n", - "\n", - "Label -- prob\n", - "Preds -- weights (3) weight (2) proba (2)\n", - "\n", - "Label -- copy\n", - "Preds -- ravel (10) t (5) threshold (4) detach (3) axis (3)\n", - "\n", - "Label -- impurity\n", - "Preds -- self (1)\n", - "\n", - "Label -- errstate\n", - "Preds -- \n", - "\n", - "Label -- treeestimator\n", - "Preds -- str (1)\n", - "\n", - "Label -- incorrect\n", - "Preds -- func (3) exception (1)\n", - "\n", - "Label -- x2\n", - "Preds -- target (2) x (1) i (1) xt (1)\n", - "\n", - "Label -- squeeze\n", - "Preds -- sum (3)\n", - "\n", - "Label -- lt\n", - "Preds -- gt (29) eq (15) lte (12) gte (9) in (3)\n", - "\n", - "Label -- backends\n", - "Preds -- flags (2) linalg (1)\n", - "\n", - "Label -- include\n", - "Preds -- like (3) metric (1)\n", - "\n", - "Label -- metrics\n", - "Preds -- weights (6) pooling (5) output (3) epsilon (3) names (2)\n", - "\n", - "Label -- line\n", - "Preds -- x (8) process (2) ispkg (1)\n", - "\n", - "Label -- significant\n", - "Preds -- reachability (2)\n", - "\n", - "Label -- mo\n", - "Preds -- predict (5)\n", - "\n", - "Label -- trueinputtype\n", - "Preds -- score (2)\n", - "\n", - "Label -- break\n", - "Preds -- return (6) continue (4)\n", - "\n", - "Label -- bufferedreader\n", - "Preds -- call (1) decode (1)\n", - "\n", - "Label -- freedom\n", - "Preds -- \n", - "\n", - "Label -- method\n", - "Preds -- average (2) solver (2) msg (1)\n", - "\n", - "Label -- getnnz\n", - "Preds -- sum (4) min (1)\n", - "\n", - "Label -- residual\n", - "Preds -- residues (3) expected (1)\n", - "\n", - "Label -- scale\n", - "Preds -- max (4) negative (3) copy (3) diff (2) var (2)\n", - "\n", - "Label -- send\n", - "Preds -- \n", - "\n", - "Label -- objclass\n", - "Preds -- proto (6) type (1)\n", - "\n", - "Label -- min\n", - "Preds -- max (17) x (3) new (3) nan (1) mean (1)\n", - "\n", - "Label -- cur\n", - "Preds -- iter (1)\n", - "\n", - "Label -- range\n", - "Preds -- repeat (1) vstack (1)\n", - "\n", - "Label -- dissimilarity\n", - "Preds -- verbose (2) kernel (1) affinity (1)\n", - "\n", - "Label -- rows\n", - "Preds -- outputs (2) gradient (1)\n", - "\n", - "Label -- einsum\n", - "Preds -- \n", - "\n", - "Label -- mv\n", - "Preds -- dot (4)\n", - "\n", - "Label -- vocab\n", - "Preds -- msg (1) metrics (1)\n", - "\n", - "Label -- picklingerror\n", - "Preds -- \n", - "\n", - "Label -- rstrip\n", - "Preds -- strip (4)\n", - "\n", - "Label -- catch\n", - "Preds -- \n", - "\n", - "Label -- put\n", - "Preds -- hash (4) append (2) add (1)\n", - "\n", - "Label -- rng\n", - "Preds -- a (3) random (1)\n", - "\n", - "Label -- clf1\n", - "Preds -- clf (4) ensemble (4)\n", - "\n", - "Label -- duration\n", - "Preds -- \n", - "\n", - "Label -- core\n", - "Preds -- n (6)\n", - "\n", - "Label -- dataset\n", - "Preds -- clf (5) imputer (2) location (1)\n", - "\n", - "Label -- closed\n", - "Preds -- \n", - "\n", - "Label -- padded\n", - "Preds -- to (2)\n", - "\n", - "Label -- xx\n", - "Preds -- y (4) v (3)\n", - "\n", - "Label -- formatargspec\n", - "Preds -- sub (1)\n", - "\n", - "Label -- score2\n", - "Preds -- score (5)\n", - "\n", - "Label -- whiten\n", - "Preds -- copy (2) alpha (1)\n", - "\n", - "Label -- isfile\n", - "Preds -- exists (2)\n", - "\n", - "Label -- message\n", - "Preds -- info (4) error (2) out (2) transform (1) line (1)\n", - "\n", - "Label -- nind\n", - "Preds -- comprehension (1) i (1)\n", - "\n", - "Label -- conversor\n", - "Preds -- key (5) message (2) args (1) input (1)\n", - "\n", - "Label -- fileno\n", - "Preds -- items (1) values (1) getpid (1)\n", - "\n", - "Label -- vect\n", - "Preds -- x (4) xt (1)\n", - "\n", - "Label -- multiarray\n", - "Preds -- \n", - "\n", - "Label -- folds\n", - "Preds -- cv (5)\n", - "\n", - "Label -- sequences\n", - "Preds -- state (7) add (3) count (2) out (1)\n", - "\n", - "Label -- ppf\n", - "Preds -- read (4) ceil (1)\n", - "\n", - "Label -- nb\n", - "Preds -- num (1)\n", - "\n", - "Label -- similarity\n", - "Preds -- \n", - "\n", - "Label -- classifier\n", - "Preds -- clf (1)\n", - "\n", - "Label -- scoring\n", - "Preds -- cv (2) copy (1)\n", - "\n", - "Label -- ranks\n", - "Preds -- \n", - "\n", - "Label -- dispatched\n", - "Preds -- svd (6)\n", - "\n", - "Label -- findall\n", - "Preds -- items (6) iteritems (2)\n", - "\n", - "Label -- ascontiguousarray\n", - "Preds -- transform (3) vstack (1)\n", - "\n", - "Label -- int\n", - "Preds -- test (3) copy (1)\n", - "\n", - "Label -- constants\n", - "Preds -- all (5) inputs (1)\n", - "\n", - "Label -- huber\n", - "Preds -- correct (2)\n", - "\n", - "Label -- exception\n", - "Preds -- func (4) result (3) exc (1) state (1)\n", - "\n", - "Label -- bbox\n", - "Preds -- fun (2)\n", - "\n", - "Label -- dropout2d\n", - "Preds -- value (5) target (1)\n", - "\n", - "Label -- stdout\n", - "Preds -- \n", - "\n", - "Label -- ties\n", - "Preds -- sum (1)\n", - "\n", - "Label -- debug\n", - "Preds -- write (2)\n", - "\n", - "Label -- seeds\n", - "Preds -- bias (8) cvclass (1) multioutput (1)\n", - "\n", - "Label -- wh\n", - "Preds -- x (3)\n", - "\n", - "Label -- clamp\n", - "Preds -- thread (5) sum (1) max (1)\n", - "\n", - "Label -- raise\n", - "Preds -- name (15) return (12) expr (10) str (1)\n", - "\n", - "Label -- prior\n", - "Preds -- epsilon (3) scale (1)\n", - "\n", - "Label -- self\n", - "Preds -- x (9) kwargs (5) name (4) url (2) axis (1)\n", - "\n", - "Label -- conv2d\n", - "Preds -- kernel (3) transpose (3)\n", - "\n", - "Label -- shortlist\n", - "Preds -- batch (2) num (2)\n", - "\n", - "Label -- keep\n", - "Preds -- a (5)\n", - "\n", - "Label -- face\n", - "Preds -- shape (3) noise (1)\n", - "\n", - "Label -- err\n", - "Preds -- expected (5)\n", - "\n", - "Label -- sparsetensor\n", - "Preds -- zeros (4)\n", - "\n", - "Label -- better\n", - "Preds -- metric (1)\n", - "\n", - "Label -- call\n", - "Preds -- keyword (61) tuple (55) attribute (38) list (19) ifexp (8)\n", - "\n", - "Label -- sort\n", - "Preds -- array (5) cumsum (4) tolist (2) argsort (2)\n", - "\n", - "Label -- elems\n", - "Preds -- axis (3)\n", - "\n", - "Label -- gen\n", - "Preds -- str (1)\n", - "\n", - "Label -- int16\n", - "Preds -- float64 (5)\n", - "\n", - "Label -- head\n", - "Preds -- backend (2)\n", - "\n", - "Label -- false\n", - "Preds -- learning (3) mask (3) importfrom (1)\n", - "\n", - "Label -- tmpdir\n", - "Preds -- fileobj (4)\n", - "\n", - "Label -- seed\n", - "Preds -- gamma (3) value (2) shape (1) self (1) state (1)\n", - "\n", - "Label -- begin\n", - "Preds -- score (5) size (4) queue (1)\n", - "\n", - "Label -- clip\n", - "Preds -- get (13) linspace (6) x (5) dot (3) uniform (1)\n", - "\n", - "Label -- acc\n", - "Preds -- axis (4)\n", - "\n", - "Label -- functiondef\n", - "Preds -- return (3)\n", - "\n", - "Label -- intc\n", - "Preds -- \n", - "\n", - "Label -- p\n", - "Preds -- shape (7) x (7) i (5) residues (4) value (4)\n", - "\n", - "Label -- filter\n", - "Preds -- predict (2) batch (1)\n", - "\n", - "Label -- paths\n", - "Preds -- documents (3)\n", - "\n", - "Label -- excepthandler\n", - "Preds -- raise (6) if (6) classdef (5) name (1)\n", - "\n", - "Label -- edges\n", - "Preds -- idx (1) intercept (1) dist (1)\n", - "\n", - "Label -- func\n", - "Preds -- grad (6) call (5) args (4) kwargs (3) verbose (2)\n", - "\n", - "Label -- linalg\n", - "Preds -- \n", - "\n", - "Label -- symbols\n", - "Preds -- args (2)\n", - "\n", - "Label -- epoch\n", - "Preds -- queue (6)\n", - "\n", - "Label -- rlock\n", - "Preds -- reader (3) writer (3) wlock (1)\n", - "\n", - "Label -- stderr\n", - "Preds -- \n", - "\n", - "Label -- temp\n", - "Preds -- \n", - "\n", - "Label -- isfinite\n", - "Preds -- \n", - "\n", - "Label -- bool\n", - "Preds -- dtype (4) ndarray (2) append (1) gamma (1)\n", - "\n", - "Label -- yield\n", - "Preds -- list (2) name (1)\n", - "\n", - "Label -- nusvc\n", - "Preds -- svc (2)\n", - "\n", - "Label -- leaf\n", - "Preds -- i (1)\n", - "\n", - "Label -- lars2\n", - "Preds -- lars (5)\n", - "\n", - "Label -- at\n", - "Preds -- size (1)\n", - "\n", - "Label -- bins\n", - "Preds -- layers (1)\n", - "\n", - "Label -- isspmatrix\n", - "Preds -- issparse (1)\n", - "\n", - "Label -- wi\n", - "Preds -- y (2)\n", - "\n", - "Label -- next\n", - "Preds -- executor (2) length (2) batch (2) i (1) prob (1)\n", - "\n", - "Label -- eps\n", - "Preds -- norm (6) normalize (3) kernel (2) tol (2) self (2)\n", - "\n", - "Label -- trainable\n", - "Preds -- strides (3) value (3) initial (2)\n", - "\n", - "Label -- configure\n", - "Preds -- \n", - "\n", - "Label -- path\n", - "Preds -- args (4) self (2) alphas (1)\n", - "\n", - "Label -- fixture\n", - "Preds -- errstate (1)\n", - "\n", - "Label -- enet\n", - "Preds -- \n", - "\n", - "Label -- log\n", - "Preds -- singular (5) sqrt (5) length (2) sum (2) total (2)\n", - "\n", - "Label -- finfo\n", - "Preds -- \n", - "\n", - "Label -- circ\n", - "Preds -- prob (2) pred (1)\n", - "\n", - "Label -- rad\n", - "Preds -- res (1) yt (1)\n", - "\n", - "Label -- predictions\n", - "Preds -- old (2)\n", - "\n", - "Label -- avg\n", - "Preds -- max (10)\n", - "\n", - "Label -- execution\n", - "Preds -- done (2) cell (1)\n", - "\n", - "Label -- weights\n", - "Preds -- estimators (9) state (3) sum (2) out (2) assign (2)\n", - "\n", - "Label -- skewedness\n", - "Preds -- alpha (2)\n", - "\n", - "Label -- fpr\n", - "Preds -- \n", - "\n", - "Label -- dimshuffle\n", - "Preds -- transpose (2) asarray (1)\n", - "\n", - "Label -- elkan\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preds -- sparse (2)\n", - "\n", - "Label -- work\n", - "Preds -- assign (1)\n", - "\n", - "Label -- processes\n", - "Preds -- \n", - "\n", - "Label -- gte\n", - "Preds -- gt (20) lt (10) lte (7) noteq (6) notin (4)\n", - "\n", - "Label -- nusvr\n", - "Preds -- svc (5)\n", - "\n", - "Label -- fdescr\n", - "Preds -- \n", - "\n", - "Label -- uint8\n", - "Preds -- int (7) data (1) max (1)\n", - "\n", - "Label -- circles\n", - "Preds -- classification (1)\n", - "\n", - "Label -- top\n", - "Preds -- with (7) want (6) data (1) module (1) range (1)\n", - "\n", - "Label -- part\n", - "Preds -- gradient (4)\n", - "\n", - "Label -- ins\n", - "Preds -- layer (1) result (1)\n", - "\n", - "Label -- usub\n", - "Preds -- \n", - "\n", - "Label -- rint\n", - "Preds -- randint (1)\n", - "\n", - "Label -- eclf2\n", - "Preds -- eclf (5)\n", - "\n", - "Label -- rate\n", - "Preds -- epsilon (5) kwargs (3) padding (1) div (1) nu (1)\n", - "\n", - "Label -- and\n", - "Preds -- or (16)\n", - "\n", - "Label -- kind\n", - "Preds -- idx (2) format (2)\n", - "\n", - "Label -- est\n", - "Preds -- clf (15) estimator (5) ransac (2) rbm1 (1) cv (1)\n", - "\n", - "Label -- maxsize\n", - "Preds -- \n", - "\n", - "Label -- friedman1\n", - "Preds -- classification (1)\n", - "\n", - "Label -- oob\n", - "Preds -- \n", - "\n", - "Label -- hot\n", - "Preds -- batch (7) backend (2)\n", - "\n", - "Label -- location\n", - "Preds -- cachedir (4) dist (2)\n", - "\n", - "Label -- fval\n", - "Preds -- \n", - "\n", - "Label -- decode\n", - "Preds -- replace (3) get (3)\n", - "\n", - "Label -- normal\n", - "Preds -- sample (4) init (3) zeros (1) state (1)\n", - "\n", - "Label -- feed\n", - "Preds -- training (3) set (2) build (1) trainable (1) cell (1)\n", - "\n", - "Label -- opt\n", - "Preds -- fun (2)\n", - "\n", - "Label -- frame\n", - "Preds -- name (1)\n", - "\n", - "Label -- find\n", - "Preds -- \n", - "\n", - "Label -- raises\n", - "Preds -- \n", - "\n", - "Label -- dirichlet\n", - "Preds -- \n", - "\n", - "Label -- ret\n", - "Preds -- x (4) output (3) outputs (3)\n", - "\n", - "Label -- transformers\n", - "Preds -- trans (1) args (1)\n", - "\n", - "Label -- almost\n", - "Preds -- array (1)\n", - "\n", - "Label -- newaxis\n", - "Preds -- \n", - "\n", - "Label -- kwds\n", - "Preds -- values (4) weights (1)\n", - "\n", - "Label -- pool3d\n", - "Preds -- fan (5)\n", - "\n", - "Label -- eclf1\n", - "Preds -- eclf (1)\n", - "\n", - "Label -- sqr\n", - "Preds -- log (10)\n", - "\n", - "Label -- element\n", - "Preds -- string (5) item (3) key (1)\n", - "\n", - "Label -- alphas\n", - "Preds -- active (4) y (3) jobs (3) labels (2) res (2)\n", - "\n", - "Label -- model\n", - "Preds -- modules (5) nn (4) data (4) lda (4) lasso (3)\n", - "\n", - "Label -- axes\n", - "Preds -- dtype (3) categories (3) shape (2) axis (2) kwargs (1)\n", - "\n", - "Label -- obs\n", - "Preds -- size (3) zeros (1)\n", - "\n", - "Label -- iso\n", - "Preds -- gradient (2) means (1)\n", - "\n", - "Label -- extract\n", - "Preds -- \n", - "\n", - "Label -- tasks\n", - "Preds -- components (6) backend (2) features (1)\n", - "\n", - "Label -- samples\n", - "Preds -- mask (3) features (2) iter (2) components (2) classes (2)\n", - "\n", - "Label -- binary\n", - "Preds -- pred (3) module (2)\n", - "\n", - "Label -- process\n", - "Preds -- batch (3) max (1)\n", - "\n", - "Label -- remaining\n", - "Preds -- initial (1)\n", - "\n", - "Label -- blob\n", - "Preds -- executable (1)\n", - "\n", - "Label -- accuracy\n", - "Preds -- point (1)\n", - "\n", - "Label -- failing\n", - "Preds -- \n", - "\n", - "Label -- shifted\n", - "Preds -- y (3)\n", - "\n", - "Label -- progbar\n", - "Preds -- workers (3) data (2) zeros (2) offset (1)\n", - "\n", - "Label -- inputs\n", - "Preds -- outputs (11) args (9) x (6) node (3) input (3)\n", - "\n", - "Label -- lstsq\n", - "Preds -- \n", - "\n", - "Label -- versions\n", - "Preds -- none (2)\n", - "\n", - "Label -- setstate\n", - "Preds -- update (3)\n", - "\n", - "Label -- dpgmm\n", - "Preds -- pca (3)\n", - "\n", - "Label -- issparse\n", - "Preds -- any (4)\n", - "\n", - "Label -- decrease\n", - "Preds -- \n", - "\n", - "Label -- h2o\n", - "Preds -- state (1)\n", - "\n", - "Label -- mat\n", - "Preds -- x (3) i (1)\n", - "\n", - "Label -- pckg\n", - "Preds -- descr (3)\n", - "\n", - "Label -- total\n", - "Preds -- stop (4) min (2) current (1)\n", - "\n", - "Label -- floordiv\n", - "Preds -- mult (7) add (6)\n", - "\n", - "Label -- nodes\n", - "Preds -- layers (1) layer (1) name (1) cell (1)\n", - "\n", - "Label -- ident\n", - "Preds -- kind (3)\n", - "\n", - "Label -- lookuptable\n", - "Preds -- add (2)\n", - "\n", - "Label -- xy\n", - "Preds -- u (1) y (1) memory (1) s (1)\n", - "\n", - "Label -- indiv\n", - "Preds -- paths (4)\n", - "\n", - "Label -- greater\n", - "Preds -- dot (6) not (2) class (1)\n", - "\n", - "Label -- decompressor\n", - "Preds -- ma (1) flags (1)\n", - "\n", - "Label -- nbrs\n", - "Preds -- \n", - "\n", - "Label -- generic\n", - "Preds -- integral (2)\n", - "\n", - "Label -- seen\n", - "Preds -- stop (2) epsilon (2) constant (1) inf (1)\n", - "\n", - "Label -- deep\n", - "Preds -- params (1)\n", - "\n", - "Label -- solver\n", - "Preds -- verbose (1)\n", - "\n", - "Label -- xs\n", - "Preds -- \n", - "\n", - "Label -- gram\n", - "Preds -- precompute (1)\n", - "\n", - "Label -- msg\n", - "Preds -- name (5) message (2) x (2) path (1)\n", - "\n", - "Label -- xg\n", - "Preds -- x (1)\n", - "\n", - "Label -- momentum\n", - "Preds -- x (2)\n", - "\n", - "Label -- ii\n", - "Preds -- cov (3)\n", - "\n", - "Label -- rotate\n", - "Preds -- self (2)\n", - "\n", - "Label -- memmappingexecutor\n", - "Preds -- backend (2)\n", - "\n", - "Label -- int32\n", - "Preds -- dtype (11) bool (4) nan (3) float32 (3) arange (3)\n", - "\n", - "Label -- presort\n", - "Preds -- loss (1)\n", - "\n", - "Label -- memory\n", - "Preds -- init (5) data (2) affinity (2)\n", - "\n", - "Label -- float16\n", - "Preds -- kind (7) float32 (3)\n", - "\n", - "Label -- theta\n", - "Preds -- bounds (6) shape (5) gamma (1)\n", - "\n", - "Label -- number\n", - "Preds -- class (1)\n", - "\n", - "Label -- rep\n", - "Preds -- j (1)\n", - "\n", - "Label -- arg\n", - "Preds -- name (4) dim (3) str (2) attribute (2) globals (2)\n", - "\n", - "Label -- dump\n", - "Preds -- fit (4)\n", - "\n", - "Label -- eval\n", - "Preds -- copy (5) sum (1)\n", - "\n", - "Label -- conv\n", - "Preds -- size (2) length (1)\n", - "\n", - "Label -- yw\n", - "Preds -- x (7)\n", - "\n", - "Label -- estimator3\n", - "Preds -- estimator (3)\n", - "\n", - "Label -- deconv\n", - "Preds -- output (1)\n", - "\n", - "Label -- layer\n", - "Preds -- cell (11) f (6) kernel (3) shape (3) attribute (2)\n", - "\n", - "Label -- only\n", - "Preds -- state (2)\n", - "\n", - "Label -- maxval\n", - "Preds -- value (3)\n", - "\n", - "Label -- duplicate\n", - "Preds -- \n", - "\n", - "Label -- estimates\n", - "Preds -- state (1)\n", - "\n", - "Label -- by\n", - "Preds -- batch (7) initial (3)\n", - "\n", - "Label -- di\n", - "Preds -- dist (5)\n", - "\n", - "Label -- extslice\n", - "Preds -- \n", - "\n", - "Label -- iteration\n", - "Preds -- \n", - "\n", - "Label -- fill\n", - "Preds -- fit (3) max (2) shape (1)\n", - "\n", - "Label -- center\n", - "Preds -- max (4) i (2) positive (1) est (1)\n", - "\n", - "Label -- createprocess\n", - "Preds -- duplicatehandle (2)\n", - "\n", - "Label -- found\n", - "Preds -- home (3) folder (1)\n", - "\n", - "Label -- initial\n", - "Preds -- random (2) layer (1) size (1)\n", - "\n", - "Label -- iris\n", - "Preds -- clf (3) imputer (1)\n", - "\n", - "Label -- lshift\n", - "Preds -- \n", - "\n", - "Label -- requires\n", - "Preds -- batch (8) loss (2) importfrom (1)\n", - "\n", - "Label -- gzipfile\n", - "Preds -- name (3)\n", - "\n", - "Label -- bic\n", - "Preds -- predict (6) cost (5)\n", - "\n", - "Label -- neg\n", - "Preds -- k (2)\n", - "\n", - "Label -- t\n", - "Preds -- sum (7) shape (7) randn (6) kernel (5) x (4)\n", - "\n", - "Label -- authkey\n", - "Preds -- process (1)\n", - "\n", - "Label -- check\n", - "Preds -- error (3) i (2) no (2) assert (1) get (1)\n", - "\n", - "Label -- correct\n", - "Preds -- \n", - "\n", - "Label -- pred\n", - "Preds -- true (9) score (4) proba (3) prob (3) y (2)\n", - "\n", - "Label -- ransac\n", - "Preds -- \n", - "\n", - "Label -- dict\n", - "Preds -- list (13) num (7) str (6) keyword (5) call (4)\n", - "\n", - "Label -- xtr\n", - "Preds -- y (7)\n", - "\n", - "Label -- dloss\n", - "Preds -- outputs (4)\n", - "\n", - "Label -- source\n", - "Preds -- close (3) shape (3) and (2) msg (1)\n", - "\n", - "Label -- duplicatehandle\n", - "Preds -- \n", - "\n", - "Label -- estimate\n", - "Preds -- \n", - "\n", - "Label -- hastie\n", - "Preds -- w (4)\n", - "\n", - "Label -- tail\n", - "Preds -- futures (2)\n", - "\n", - "Label -- decisiontreeregressor\n", - "Preds -- locallylinearembedding (4)\n", - "\n", - "Label -- factor\n", - "Preds -- length (7)\n", - "\n", - "Label -- epochs\n", - "Preds -- value (2)\n", - "\n", - "Label -- classdef\n", - "Preds -- return (4) functiondef (1)\n", - "\n", - "Label -- mins\n", - "Preds -- core (1)\n", - "\n", - "Label -- upper\n", - "Preds -- transpose (3) dim (1)\n", - "\n", - "Label -- view\n", - "Preds -- astype (12) uniform (6) shape (3) max (3) dispatch (1)\n", - "\n", - "Label -- warn\n", - "Preds -- append (7) clip (3) expected (2) put (1)\n", - "\n", - "Label -- access\n", - "Preds -- duplicatehandle (4)\n", - "\n", - "Label -- dual\n", - "Preds -- \n", - "\n", - "Label -- covariance\n", - "Preds -- clip (7) mean (5) reshape (4) init (4) sample (1)\n", - "\n", - "Label -- search\n", - "Preds -- startswith (9) ndarray (7) clf (2)\n", - "\n", - "Label -- toarray\n", - "Preds -- copy (5) mean (2) ravel (1)\n", - "\n", - "Label -- preprocess\n", - "Preds -- save (7)\n", - "\n", - "Label -- print\n", - "Preds -- add (1)\n", - "\n", - "Label -- random\n", - "Preds -- grid (6) environ (3) name (3) with (2) multivariate (2)\n", - "\n", - "Label -- generator\n", - "Preds -- mask (8) binary (3) verbose (2) get (2) proba (1)\n", - "\n", - "Label -- isomap\n", - "Preds -- factory (7) nmf (5)\n", - "\n", - "Label -- import\n", - "Preds -- importfrom (11) reconstruction (2) in (1) isnot (1) factor (1)\n", - "\n", - "Label -- functions\n", - "Preds -- flags (1)\n", - "\n", - "Label -- e\n", - "Preds -- x (8) tree (3)\n", - "\n", - "Label -- you\n", - "Preds -- attribute (1)\n", - "\n", - "Label -- pca\n", - "Preds -- clf (5) est (4)\n", - "\n", - "Label -- replication\n", - "Preds -- bias (1)\n", - "\n", - "Label -- dimension\n", - "Preds -- handle (1)\n", - "\n", - "Label -- result\n", - "Preds -- layer (5) scores (5) args (3) s (3) kwargs (2)\n", - "\n", - "Label -- sw\n", - "Preds -- k (5) x (2) val (2)\n", - "\n", - "Label -- rmtree\n", - "Preds -- \n", - "\n", - "Label -- coef0\n", - "Preds -- gamma (3)\n", - "\n", - "Label -- cross\n", - "Preds -- in (3)\n", - "\n", - "Label -- region\n", - "Preds -- \n", - "\n", - "Label -- prefixes\n", - "Preds -- args (5)\n", - "\n", - "Label -- unknown\n", - "Preds -- y (4) to (4) dtype (1) axis (1)\n", - "\n", - "Label -- worker\n", - "Preds -- limit (2) dispatch (2) processes (1) factor (1)\n", - "\n", - "Label -- hooks\n", - "Preds -- parallel (2) flags (2) dispatch (2) layer (1)\n", - "\n", - "Label -- rnn\n", - "Preds -- cell (2)\n", - "\n", - "Label -- u\n", - "Preds -- s (7) transformers (4) h (1) x (1)\n", - "\n", - "Label -- sorted\n", - "Preds -- get (5) test (1)\n", - "\n", - "Label -- skips\n", - "Preds -- \n", - "\n", - "Label -- logs\n", - "Preds -- stop (1) dtype (1)\n", - "\n", - "Label -- time\n", - "Preds -- w (4) theta (2)\n", - "\n", - "Label -- nanmax\n", - "Preds -- nan (3)\n", - "\n", - "Label -- test\n", - "Preds -- train (20) precision (5) 2 (4) by (4) batch (3)\n", - "\n", - "Label -- fmt\n", - "Preds -- metric (3) tmp (3)\n", - "\n", - "Label -- dictwriter\n", - "Preds -- pipe (3)\n", - "\n", - "Label -- permutation\n", - "Preds -- target (1) out (1)\n", - "\n", - "Label -- from\n", - "Preds -- initial (6) kwargs (3) get (2) ids (1) beta (1)\n", - "\n", - "Label -- continue\n", - "Preds -- return (7) break (2)\n", - "\n", - "Label -- scope\n", - "Preds -- metric (3)\n", - "\n", - "Label -- affinity\n", - "Preds -- verbose (2) shape (2) csr (2) dist (1)\n", - "\n", - "Label -- hardtanh\n", - "Preds -- value (1)\n", - "\n", - "Label -- waittime\n", - "Preds -- threshold (2)\n", - "\n", - "Label -- floating\n", - "Preds -- from (4) graph (1)\n", - "\n", - "Label -- step\n", - "Preds -- verbose (2) size (2) from (1) batch (1) c (1)\n", - "\n", - "Label -- feats\n", - "Preds -- features (4)\n", - "\n", - "Label -- score\n", - "Preds -- key (8) predict (8) scores (5) result (4) asarray (3)\n", - "\n", - "Label -- rst\n", - "Preds -- \n", - "\n", - "Label -- lambdas\n", - "Preds -- alphas (7) scores (3)\n", - "\n", - "Label -- cloned\n", - "Preds -- \n", - "\n", - "Label -- mask\n", - "Preds -- args (5) classifier (4) x (3) idx (3) diff (2)\n", - "\n", - "Label -- flatten\n", - "Preds -- ravel (10) squeeze (3)\n", - "\n", - "Label -- valid\n", - "Preds -- training (1) layer (1)\n", - "\n", - "Label -- pow\n", - "Preds -- mult (12) dot (9) name (6) t (4) fit (3)\n", - "\n", - "Label -- getvalue\n", - "Preds -- build (1)\n", - "\n", - "Label -- exec\n", - "Preds -- encode (6)\n", - "\n", - "Label -- soft\n", - "Preds -- make (2)\n", - "\n", - "Label -- lmost\n", - "Preds -- co (1)\n", - "\n", - "Label -- eigen\n", - "Preds -- svd (3)\n", - "\n", - "Label -- softplus\n", - "Preds -- exp (1)\n", - "\n", - "Label -- cropping\n", - "Preds -- mode (2)\n", - "\n", - "Label -- shapes\n", - "Preds -- shape (2)\n", - "\n", - "Label -- constraint\n", - "Preds -- initializer (9) bias (8) p (6) init (3) size (3)\n", - "\n", - "Label -- wait\n", - "Preds -- items (6) close (1) post (1)\n", - "\n", - "Label -- bh\n", - "Preds -- divergence (6) 2 (2)\n", - "\n", - "Label -- float\n", - "Preds -- squeeze (3) random (2) float64 (1)\n", - "\n", - "Label -- eigvalsh\n", - "Preds -- sum (2)\n", - "\n", - "Label -- submit\n", - "Preds -- fit (5)\n", - "\n", - "Label -- estimators\n", - "Preds -- shape (7) coef (3) weights (2) iteritems (2) theta (1)\n", - "\n", - "Label -- closure\n", - "Preds -- shape (5) name (4) updates (3) kernels (3) prnt (1)\n", - "\n", - "Label -- unroll\n", - "Preds -- strides (2)\n", - "\n", - "Label -- pvalues\n", - "Preds -- alphas (3) estimators (1) mode (1)\n", - "\n", - "Label -- xk\n", - "Preds -- means (2)\n", - "\n", - "Label -- linspace\n", - "Preds -- \n", - "\n", - "Label -- abs\n", - "Preds -- sqrt (8) mean (2) data (2) sin (1) all (1)\n", - "\n", - "Label -- seq\n", - "Preds -- bias (1)\n", - "\n", - "Label -- legacy\n", - "Preds -- default (5) get (2) save (1)\n", - "\n", - "Label -- ir\n", - "Preds -- tsne (1)\n", - "\n", - "Label -- require\n", - "Preds -- parallel (2)\n", - "\n", - "Label -- data2cats\n", - "Preds -- imputer (2) data (1)\n", - "\n", - "Label -- multiply\n", - "Preds -- dot (1)\n", - "\n", - "Label -- queue\n", - "Preds -- leaf (2) add (1) exc (1) output (1) set (1)\n", - "\n", - "Label -- pool\n", - "Preds -- kernel (16) random (2) mmap (2) bias (1)\n", - "\n", - "Label -- keys\n", - "Preds -- items (7) args (4) values (2)\n", - "\n", - "Label -- new\n", - "Preds -- random (6) batch (6) size (4) grad (3) output (2)\n", - "\n", - "Label -- repeat\n", - "Preds -- log (4) full (3) n (3) dim (1) diff (1)\n", - "\n", - "Label -- boxcox\n", - "Preds -- unique (2)\n", - "\n", - "Label -- loadings\n", - "Preds -- r2 (9) weights (2)\n", - "\n", - "Label -- vlines\n", - "Preds -- hlines (4)\n", - "\n", - "Label -- corners\n", - "Preds -- mask (3) function (2) loss (2) var (2) mode (1)\n", - "\n", - "Label -- close\n", - "Preds -- fit (2)\n", - "\n", - "Label -- decrement\n", - "Preds -- \n", - "\n", - "Label -- fix\n", - "Preds -- load (2)\n", - "\n", - "Label -- val\n", - "Preds -- batch (5) state (5) value (4) with (3) target (2)\n", - "\n", - "Label -- z\n", - "Preds -- c (6) f (1) h (1) kernel (1) bias (1)\n", - "\n", - "Label -- variablefunctions\n", - "Preds -- nn (1)\n", - "\n", - "Label -- nanmin\n", - "Preds -- nan (1)\n", - "\n", - "Label -- trigger\n", - "Preds -- early (2)\n", - "\n", - "Label -- samme\n", - "Preds -- name (3) unnormalized (2) weight (1)\n", - "\n", - "Label -- masked\n", - "Preds -- uniform (3) get (3)\n", - "\n", - "Label -- reassign\n", - "Preds -- state (4)\n", - "\n", - "Label -- dumps\n", - "Preds -- all (1)\n", - "\n", - "Label -- outputs\n", - "Preds -- shape (6) output (3) kwargs (3) apply (3) classes (3)\n", - "\n", - "Label -- spec\n", - "Preds -- shape (12) size (8) from (2) dim (1) kwargs (1)\n", - "\n", - "Label -- multi2\n", - "Preds -- function (1)\n", - "\n", - "Label -- compile\n", - "Preds -- nearestneighbors (3) radiusneighborsregressor (1)\n", - "\n", - "Label -- pls\n", - "Preds -- s (1)\n", - "\n", - "Label -- dropout\n", - "Preds -- bias (7) names (4) mask (4) uniform (3) value (3)\n", - "\n", - "Label -- less\n", - "Preds -- \n", - "\n", - "Label -- argsort\n", - "Preds -- sort (5) unique (3)\n", - "\n", - "Label -- isdir\n", - "Preds -- exists (4)\n", - "\n", - "Label -- bunch\n", - "Preds -- name (1)\n", - "\n", - "Label -- q\n", - "Preds -- x (8) self (2)\n", - "\n", - "Label -- dummy\n", - "Preds -- next (5) y (1)\n", - "\n", - "Label -- client\n", - "Preds -- msg (6) authkey (4)\n", - "\n", - "Label -- z1\n", - "Preds -- x (6)\n", - "\n", - "Label -- xb\n", - "Preds -- \n", - "\n", - "Label -- rfecv\n", - "Preds -- lr (5)\n", - "\n", - "Label -- logical\n", - "Preds -- \n", - "\n", - "Label -- float32\n", - "Preds -- dtype (11) mark (4) context (1) float64 (1)\n", - "\n", - "Label -- fmin\n", - "Preds -- reshape (5) ndarray (3)\n", - "\n", - "Label -- lars\n", - "Preds -- estimator (1) transformer (1)\n", - "\n", - "Label -- before\n", - "Preds -- str (1)\n", - "\n", - "Label -- doc\n", - "Preds -- x (4) name (1)\n", - "\n", - "Label -- gt\n", - "Preds -- eq (33) noteq (17) lt (10) gte (8) lte (8)\n", - "\n", - "Label -- sv2\n", - "Preds -- cnts (2)\n", - "\n", - "Label -- no\n", - "Preds -- str (4) input (1) init (1) name (1) path (1)\n", - "\n", - "Label -- cholesky\n", - "Preds -- add (2) get (1)\n", - "\n", - "Label -- weight\n", - "Preds -- bias (11) self (7) backend (5) name (4) data (3)\n", - "\n", - "Label -- ds\n", - "Preds -- \n", - "\n", - "Label -- remove\n", - "Preds -- rmtree (2) is (1)\n", - "\n", - "Label -- conversors\n", - "Preds -- children (2)\n", - "\n", - "Label -- load\n", - "Preds -- for (1)\n", - "\n", - "Label -- max\n", - "Preds -- sum (13) min (3) train (3) n (3) batch (2)\n", - "\n", - "Label -- list\n", - "Preds -- tuple (81) call (35) keyword (31) name (21) nameconstant (10)\n", - "\n", - "Label -- multiplier\n", - "Preds -- dim (2)\n", - "\n", - "Label -- augassign\n", - "Preds -- binop (23)\n", - "\n", - "Label -- running\n", - "Preds -- pending (1)\n", - "\n", - "Label -- uadd\n", - "Preds -- usub (4)\n", - "\n", - "Label -- words\n", - "Preds -- x (1) seen (1)\n", - "\n", - "Label -- ellipsis\n", - "Preds -- name (3)\n", - "\n", - "Label -- incr\n", - "Preds -- \n", - "\n", - "Label -- iterating\n", - "Preds -- cond (4)\n", - "\n", - "Label -- mun\n", - "Preds -- dist (3)\n", - "\n", - "Label -- convergence\n", - "Preds -- max (7)\n", - "\n", - "Label -- selector\n", - "Preds -- info (1)\n", - "\n", - "Label -- messages\n", - "Preds -- message (1)\n", - "\n", - "Label -- accgradparameters\n", - "Preds -- uniform (1) item (1) transpose (1)\n", - "\n", - "Label -- thnn\n", - "Preds -- max (1)\n", - "\n", - "Label -- init\n", - "Preds -- fit (4) verbose (3) scaling (2) get (2) expected (2)\n", - "\n", - "Label -- kernel2\n", - "Preds -- self (1)\n", - "\n", - "Label -- len\n", - "Preds -- vocabulary (2)\n", - "\n", - "Label -- bag\n", - "Preds -- batch (4)\n", - "\n", - "Label -- tracerwarning\n", - "Preds -- type (2)\n", - "\n", - "Label -- shuffle\n", - "Preds -- x (2) verbose (1)\n", - "\n", - "Label -- cw\n", - "Preds -- val (1)\n", - "\n", - "Label -- schedule\n", - "Preds -- value (4)\n", - "\n", - "Label -- x1\n", - "Preds -- output (6) i (3) gamma (1)\n", - "\n", - "Label -- getcol\n", - "Preds -- \n", - "\n", - "Label -- backwards\n", - "Preds -- metrics (4)\n", - "\n", - "Label -- nominal\n", - "Preds -- invert (1)\n", - "\n", - "Label -- children\n", - "Preds -- y (3) coefs (2)\n", - "\n", - "Label -- pre\n", - "Preds -- cell (3) weight (2) loss (1) dispatch (1)\n", - "\n", - "Label -- iprint\n", - "Preds -- tol (5)\n", - "\n", - "Label -- psi\n", - "Preds -- init (1)\n", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAALICAYAAADyhJW9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xu4XVV9L/zvzwByNUigPULA4BFUvEQwwVqo0qKCN5SioKUiKGpPX2+naqXVItXa6tH64rGWVovmxUsQPDXIkSptLbVqWy5eqJAqaEGCChgEEyHIZbx/zJW4st07e2ewQwJ8Ps+zHtaac8w5x5xzrbXJd435m9VaCwAAAAAAbKwHbO4OAAAAAABw7yRgBgAAAACgi4AZAAAAAIAuAmYAAAAAALoImAEAAAAA6CJgBgAAAACgi4AZAJhWVR1WVctmaV2tqh4+G+uabVV1fFV9qWO551TVJzdFn7YkVfUnVfWjqvrh5u4Ls8/5BQCgh4AZALZAVXVVVd1aVaur6sdV9dmq2nNs/pKq+tlo/trHN0bzFoxC3LXTr6qqk8aWHV/mrrHtrK6qY6fo0juSvHOK/q2uqvMn9P9/VtUPq+onVfXhqnrg7B6hLUtr7dwkj66qx23uvmwqVbVXktcn2a+19t82d382pKp+q6qurqqfVtWyqtplA20fX1WXVNUto/8+fmxeVdW7qmrl6PGuqqqx+R+sqm+NPkfHz7Bv36qqfe/WDm4C98XzW1X7VtU5VXVDVd1YVZ+vqkeMzf+rCd+Ht1XVqmm2/aSq+sps79P92XSfswltn1VVX6qqm0Z/Y/6mqnaa0OapVfXV0ftjRVUdPZr+axPO9+rR38qj7on9BID7MgEzAGy5ntNa2zHJQ5Jcl+T9E+b/r9bajmOPhRPm7zxa/vlJ/qiqnpYk48sk+d7a7YweH5/YiapanGRua+3fJuvf6PH0sfaHJTkpyaFJHprkYUn+uPcg3IssTfKKzd2JTWivJCtba9dPNrOqtrqH+zOpqnp0kr9O8uIkv5zkliR/OUXbbZKck+RjSR6c5P9Lcs5oejKcz+clWZjkcUmek+SVY6v4RpLfTfLVGfbtvyeZ01r79sbt1T3iPnd+k+yc5DNJHjFqe2GG850kaa39zoTvw6VJzp6mC89Kct7d2gkmmu5zNm5ukj9JsnuSRyXZI8m7186sqv2SfCLJm0dtFya5JElaa/8y4Xw/O8nqJJ/bBPsEAPcrAmYA2MK11tYk+VSS/TqXvzjJZUkeP13bKTwjyT9vRPuXJDm9tXZZa+3HSd6e5PjJGlbVwVV1TVUdMsX8X6mqr4xGq31jvF1VXVBVf1ZVF45GSp8zPpKxqo6oqstGy15QVY8am7dnVf3taGTjyqr6iwnbfU8NI8f/q6qeMTb9+Kr6blWtGs0bH/F9QYbwqUsNo9L/sqr+bjSy7stV9d+q6tRRX/6zqvYfa797Vf2f0T78V1W9ZmzegVX1r6N9/0FV/cVYaLq2TMnvVNUVozYfmGrE4Kj9U5P8fZLdR31bUj8fKf+yqvpeki+M2m7onO1dVf88On5/P+rXx3qP2RSOTXJua+2LrbXVSf4oyW9OHOU4ckiSrZKc2lq7rbX2v5NUkt8YzX9Jkj9vra1orV2b5M8z9l5urX2gtfaPSdbMsG9ThpOj9+ifjI7d6qo6t6rmVdXHR+/vi6pqwVj7940+Oz+pYeT1r43NO6+q/nzs9ZlV9eGpOnVfPb+ttQtba6e31m5srd2e5P9N8oiqmjfJMdghyVEZfmTYkGdmknM4drxOGJ2XH48+Y4ur6tLR8Zr4PfPSqlo+avv5qnro2LwNnd9TquqsqjpjdKwvq6pF0/Q7VXVSVX1ntMzlVXXkhPkvH/Vn7fwDRtM3+H05Czb4ORvXWvtEa+1zrbVbRn9fPpTkoLEmb0ny1621v2ut3dFaW9la+84Gtvup1tpPZ29XAOD+ScAMAFu4qto+yTFJJo4gnunyv5LkMUmu7OzCY5N8a5LpHx8FDudX1fjo6UdnGNm51jeS/PLEUKeqDs8wYvCo1toFk/R7jySfzTBabZckb0jyf6pqt7FmxyV5aYZR3nck+d+jZfcdrft1SXbLEAidW1XbVNWcJP83ydVJFmQYAXfm2DqfONrfXZP8rySn12CH0fqf0VrbKcmvJvn62HLLkyyoqgdNcqxm6ugMAcmuSW5L8q8ZRsfumuFHhveO9u8BSc7NcGz3yDBa/HU1jB5PkjuT/M/Rck8azf/dCdt6dpLFGUYMHp3ksEyhtfYPGX5o+P5o9N/xY7OfkmEk4WEzOGefyDCacNcMPzy8ZKptVtVeo1BuqsdvTbHoeu+/Ubj0sySTlaV4dJJLW2ttbNqlo+m/sK7R80en3zMzHJ+pvDDDyNw9kvz3DOf/IxmO5fIkbx1re1GGH412yXBcz66qbUfzXprkxVX1GzX8CHJgktdOtdH78Pmd6MlJfthaWznJvKOS3JDkixvo80MyjIT+2ga28cQk+2T4zj41w0jap476fXRVPWW0rucm+cMkv5nhO+pfMnxnrbWh85skR2T43lo7Snsmoe93kvxahpG9f5zkY6N9SlW9IMkpGb5THzRa/8oZfF+uU0Ppkg2d072m6Nfd+Zw9OcMPqGv9yqgv/1HDj2sfq0lKqIy+z5+f6X9QAABmQMAMAFuuZVV1U5KbkzwtY5cBj7xhwj/eJ/5D+UdVdWuGkOovk/TepG/nJBPrkh6bIWx4aJJ/SvL5qtp5NG/HUZ/XWvt8fIThCzJc5v6M1tqFU2z3t5Oc11o7r7V2V2vt75NcnCGkW+ujrbVvjkag/VGGAGdOhnDns621vx+NXHxPku0yhMIHZri8+o2ttZ+21ta01sZv7Hd1a+1DrbU7M4QPa0OlJLkryWOqarvW2g9aa+PBxtpjtHP6fbq1dslo1Pqnk6xprZ0x6ssnk6wdwbw4yW6ttbe11n7WWvtuhpF8L0yS0Tr+bTSC76oMx/opE7b1ztbaTa2172U4h70j3E8ZHcdbs4FzNgqXFif5o9Fo4S9mCMkn1Vr7Xmtt5w08PjHFohPffxm9nmwE83RtJ3sv71g19WjvqYx+KFqcYaT7VD7SWvtOa+3mJH+X5DuttX9ord2RoXTDuhHsrbWPjUZn3tFa+/MkD8xQCiKttR8m+R8Z3r/vS3Jca22DtYU34N58ftepqvlJPpDk96Zo8pIkZ0z4sWGiZyb53DRt3j76Tjk/yU+TLG2tXT8amfsv+fk5/J0kf9ZaWz46v3+a5PFrRzFv6PyOfGl0Hu5M8tEMpSA2qLV2dmvt+6Nz98kkV2T4PkySEzOUXbqoDa5srV2d6b8vx9f/iWnO6fem6FrX56yGsk8vSXLy2OT5GX6kOSpD0L9dfrG8VDIE+z/Kxl2dAwBMQcAMAFuu57XWdk6ybZJXJfnnqhq/+dZ7JvzjfeJowV0z/MP99RlKAWzd2Y8fZ0J401r7cmvt1jZcpvxnSW7KMDIuGWpajo/iXft8POB6XZKzWmvf3MB2H5rkBeMhepKDMwS+a10z9vzqDPu4a4ZA5Oqx/t41artHkj0zhMh3TLHdH44td8vo6Y6jEPuYDMHQD2q48eIjx5Zbe4xumrjCqjq2fn5Tqb/bwD5fN/b81kle7zh6/tAM5QzGj80fZhSE13Bzs/9boxstZgivdp1qPzPUsd0xfcbPwYbO2e5JftzWvxz96sy+ie+/jF5PFrBO13ay9/LqaQLGqRya5Cuttds20Gam5z9V9YZROYObR8d5btY/x+cmmZPkW1MFgjN0bz6/SZLRCOvzk/xla23pJPP3yvAdecY02560PMYEG/MZft/YcbwxQ3mWPUZ9mu78Tvz8blvT1MmuquOq6utj23zM2Dr3zDDCeaLpvi9nw0Z/zkZX5nwiyfPb+jXNb83wQ82321BC5U+z/o+Sa83kBwUAYIYEzACwhWut3dla+9sMZQ8O7lj2vRlqxE4skTBTl2b6y89bhnAkGS5XHh9NtzDJdW39y9JfkOR5VTXlZfsZgq2PTgjRd2itvXOszZ5jz/dKcnuGUWnfzxDgJElGI+H2THLtaL17TRfGTKa19vnW2tMyBGr/mWHU8FqPSnJVa+0nkyz38fbzm0s9Y+L8Dtck+a8Jx2an1traIOW0Uf/2aa09KEP4vNGjbmdoPKDZ0Dn7QZIHjy5NX2uqS+bXllBYvYHHsVMsut77r6oelmH052Q31rssyeMmjJR8XH5+yf1k7+XxUesbYybh5IzUUI/39zOUNnnw6Ieom7P+OX5HhrIaD6mqF92Nzd2bz2+q6sEZwuXPtNbeMcU6X5zky224EmCq/m6d4SqAv5+qzUa6JskrJxzL7VprX5nh+d0oo5HRH8rwY+W80Tq/ObbOazKUZZmsnzP6vpzwQ9pkj6neDxv1OauhFv1nkry0DTXQx12a9d+zvxAgV9WemdkPCgDADAmYAWALV4PnJnlwhsCoxzuT/H6tX8Nzps7LWHmFUTB0UA31jLetqjdmGAX35VGTM5K8rKr2G5XNeEuSJRPW+f0MIzpfW1X/Y4rtfizJc6rqsKqaM9rWIaNL3df67dF2tk/ytgw3bLozyVlJnlVVh46CoddnqGn8lSQXZgjD3llVO4zWe1CmUVW/XFXPHQVot2UYdXfXWJOnZChrcE+4MMmqqnpTVW03Oj6PqarFo/k7JflJktWjUdZTHePZNuU5G11uf3GSPx69dw5O8pypVjQqobDjBh4fn2LRj4/68Gujc/W2JH/bJi8RcUGGH25eU1UPrKpXjaZ/YfTfM5L8XlXtUVW7Z3gfLVm78NrPQIaQbuvR/k71/9fPyIbrL2+MnTLUHL8hyVZVdXLGRoBW1ZOTnJChnu5Lkry/hvrJd9e96vzWUA/98xnC45M2sF/H5Re/oyY6OEO97l/4AanTXyX5g6p6dJJU1dwa6iAn05zfTjtkCFtvGG3vhAwjmNf6mwxll54w+pvz8FEoPePvywk/pE32mKpExgY/Z+Oq6jFJPpfk1a21yUqwfCTJCVX1sNHfhZMy1JAe9+IMVxNMdfM/AGAjCZgBYMt1blWtzhAUviPJS9r6NX9/f8LosB9tYF2fzVDq4uUb24nW2leT3FxVTxxN2inDCNkfZxgRfHiGWsorR+0/l+HmeP+U5HsZLpN/6yTr/V6GkPmkqjpxkvnXJFl7I6wbMoyke2PW//+Xj2YIIn6YoZTIa0bLfitDvdj3ZxjR/Jwkz2lDveI7R68fPurfigylL6bzgAz1W7+f4XL2p2T94PZFGWodb3KjfXh2hrrJ/5VhH/8mw2X0yXDztd/KUDbgQxnqN98T/ZrunP1Whpug3ZjhPTHrIwhHn5HfyRBEXp/h/bpu9H5V/V1V/eGo7c+SPC9DwHhThpvjPW80PRnO57lJ/iPDaM/PZv1zfH6GS/J/NckHR8+fPLFPo1Bs9QYCto31+Qwh27czfL7WZFTKYhSqnpHkVa21a1tr/5Lk9CQfqdr42tHj7m3nN8mRGepCnzDVSNqqelKGur1nT7PpZ2WWRqCP9uPTSd6V5Mwayth8M8OPEMkGzu/d2N7lSf48Q03+6zLcvPXLY/PPzvB35hMZvjeWJdnlbnxfbowNfs5G52xtCabXZ7gp4ulj53Pd38XW2oczvO/+PcOxuy2jvwtjjoub+wHArCplpwCA6VTV05P8bmvteZu7L2tV1QVJPtZa+5stoC/PSfLi1trRm7sv9yZVdUqSh7fWfntz92VTqqrfT7Jra+33N3df7kn3pfNbVZdnqPd7+ebuCwDAlmajaw8CAPc/rbXzM4zWZBKjS7Unu1wbkuSqeH/ca1XVNhluCCdcBgCYhBIZAAAkSarqr2rym3P91ebu271Za+2s1lpv/fRZ4/z2GZXWeef0LTev2vCNE6e84SIAwN2lRAYAAAAAAF2MYAYAAAAAoMtmq8G86667tgULFmyuzQMAAAAAMIVLLrnkR6213aZrt9kC5gULFuTiiy/eXJsHAAAAAGAKVXX1TNopkQEAAAAAQBcBMwAAAAAAXQTMAAAAAAB02Ww1mAEAAAAApnP77bdnxYoVWbNmzebuyn3Stttum/nz52frrbfuWl7ADAAAAABssVasWJGddtopCxYsSFVt7u7cp7TWsnLlyqxYsSJ777131zqUyAAAAAAAtlhr1qzJvHnzhMubQFVl3rx5d2t0uIAZAAAAANiiCZc3nbt7bAXMAAAAAAB0UYMZAAAAALjXWHDSZ2d1fVe981kzbrts2bIceeSRWb58eR75yEfOaj/urYxgBgAAAACYgaVLl+bggw/O0qVLN9k27rzzzk227k1BwAwAAAAAMI3Vq1fnS1/6Uk4//fSceeaZ66a/613vymMf+9gsXLgwJ510UpLkyiuvzFOf+tQsXLgwBxxwQL7zne/kggsuyLOf/ex1y73qVa/KkiVLkiQLFizIm970phxwwAE5++yz86EPfSiLFy/OwoULc9RRR+WWW25Jklx33XU58sgjs3DhwixcuDBf+cpXcvLJJ+fUU09dt943v/nNed/73ncPHJGBEhkAAAAAANM455xzcvjhh2fffffNvHnzcskll+T666/POeeck3//93/P9ttvnxtvvDFJcuyxx+akk07KkUcemTVr1uSuu+7KNddcs8H1z5s3L1/96leTJCtXrszLX/7yJMlb3vKWnH766Xn1q1+d17zmNXnKU56ST3/607nzzjuzevXq7L777vnN3/zNvO51r8tdd92VM888MxdeeOGmPRhjBMwAAAAAANNYunRpXvva1yZJXvjCF2bp0qVpreWEE07I9ttvnyTZZZddsmrVqlx77bU58sgjkyTbbrvtjNZ/zDHHrHv+zW9+M295y1ty0003ZfXq1TnssMOSJF/4whdyxhlnJEnmzJmTuXPnZu7cuZk3b16+9rWv5brrrsv++++fefPmzdp+T0fADAAAAACwATfeeGO+8IUv5D/+4z9SVbnzzjtTVXnBC14w43VstdVWueuuu9a9XrNmzXrzd9hhh3XPjz/++CxbtiwLFy7MkiVLcsEFF2xw3SeeeGKWLFmSH/7wh3npS1864z7NBjWYAQAAAAA24FOf+lRe/OIX5+qrr85VV12Va665JnvvvXfmzp2bj3zkI+tqJN94443ZaaedMn/+/CxbtixJctttt+WWW27JQx/60Fx++eW57bbbctNNN+Uf//Efp9zeqlWr8pCHPCS33357Pv7xj6+bfuihh+a0005LMtwM8Oabb06SHHnkkfnc5z6Xiy66aN1o53uKEcwAAAAAwL3GVe981j2+zaVLl+ZNb3rTetOOOuqoLF++PEcccUQWLVqUbbbZJs985jPzp3/6p/noRz+aV77ylTn55JOz9dZb5+yzz87DHvawHH300XnMYx6TvffeO/vvv/+U23v729+eJz7xidltt93yxCc+MatWrUqSvO9978srXvGKnH766ZkzZ05OO+20POlJT8o222yTX//1X8/OO++cOXPmbNJjMVG11u7RDa61aNGidvHFF2+WbQMAAAAA9w7Lly/Pox71qM3djS3aXXfdlQMOOCBnn3129tlnn41efrJjXFWXtNYWTbesEhkAAAAAAPdSl19+eR7+8Ifn0EMP7QqX7y4lMgAAAAAA7qX222+/fPe7391s2zeCGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIub/AEAAAAA9x6nzJ3l9d08bZM5c+bksY997LrXy5Yty4IFC2a3H/dS0wbMVfXhJM9Ocn1r7TGTzK8k70vyzCS3JDm+tfbV2e4oAAAAAMDmsN122+XrX//6lPPvuOOObLXV/XMs70xKZCxJcvgG5j8jyT6jxyuSnHb3uwUAAAAAsOVasmRJjjjiiPzGb/xGDj300CTJu9/97ixevDiPe9zj8ta3vnVd23e84x3Zd999c/DBB+dFL3pR3vOe9yRJDjnkkFx88cVJkh/96EfrRkXfeeedeeMb37huXX/913+dJLngggtyyCGH5PnPf34e+chH5thjj01rLUly0UUX5Vd/9VezcOHCHHjggVm1alWe/OQnrxeMH3zwwfnGN74xq8dh2li9tfbFqlqwgSbPTXJGG/bk36pq56p6SGvtB7PURwAAAACAzebWW2/N4x//+CTJ3nvvnU9/+tNJkq9+9au59NJLs8suu+T888/PFVdckQsvvDCttRxxxBH54he/mB122CFnnnlmvv71r+eOO+7IAQcckCc84Qkb3N7pp5+euXPn5qKLLsptt92Wgw46KE9/+tOTJF/72tdy2WWXZffdd89BBx2UL3/5yznwwANzzDHH5JOf/GQWL16cn/zkJ9luu+3yspe9LEuWLMmpp56ab3/721mzZk0WLlw4q8dmNsZt75HkmrHXK0bTfiFgrqpXZBjlnL322msWNn3vtOCkz270Mle981mboCcAAAAAwHSmKpHxtKc9LbvsskuS5Pzzz8/555+f/fffP0myevXqXHHFFVm1alWOPPLIbL/99kmSI444YtrtnX/++bn00kvzqU99Kkly880354orrsg222yTAw88MPPnz0+SPP7xj89VV12VuXPn5iEPeUgWL16cJHnQgx6UJHnBC16Qt7/97Xn3u9+dD3/4wzn++OPv3oGYxD1aGKS19sEkH0ySRYsWtXty2wAAAAAAs2mHHXZY97y1lj/4gz/IK1/5yvXanHrqqVMuv9VWW+Wuu+5KkqxZs2a9db3//e/PYYcdtl77Cy64IA984APXvZ4zZ07uuOOOKde//fbb52lPe1rOOeecnHXWWbnkkktmtmMbYSY1mKdzbZI9x17PH00DAAAAALhfOOyww/LhD384q1evTpJce+21uf766/PkJz85y5Yty6233ppVq1bl3HPPXbfMggUL1oW+a0crr13Xaaedlttvvz1J8u1vfzs//elPp9z2Ix7xiPzgBz/IRRddlCRZtWrVuuD5xBNPzGte85osXrw4D37wg2d3pzM7I5g/k+RVVXVmkicmuVn9ZQAAAABgkzjl5s3dg0k9/elPz/Lly/OkJz0pSbLjjjvmYx/7WA444IAcc8wxWbhwYX7pl35pXRmLJHnDG96Qo48+Oh/84AfzrGf9vETuiSeemKuuuioHHHBAWmvZbbfdsmzZsim3vc022+STn/xkXv3qV+fWW2/Ndtttl3/4h3/IjjvumCc84Ql50IMelBNOOGGT7HetvcvglA2qliY5JMmuSa5L8tYkWydJa+2vqqqS/EWSw5PckuSE1trF02140aJFbe0dEu9v1GAGAAAAgJlZvnx5HvWoR23ubsyaU045JTvuuGPe8IY33CPb+/73v59DDjkk//mf/5kHPGDyghaTHeOquqS1tmi69U87grm19qJp5rck/8906wEAAAAA4J5zxhln5M1vfnPe+973Thku31336E3+AAAAAADuz0455ZR7bFvHHXdcjjvuuE26jU0TWwMAAAAAzJLpyvzS7+4eWwEzAAAAALDF2nbbbbNy5Uoh8ybQWsvKlSuz7bbbdq9DiQwAAAAAYIs1f/78rFixIjfccMPm7sp90rbbbpv58+d3Ly9gBgAAAAC2WFtvvXX23nvvzd0NpqBEBgAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBFwAwAAAAAQBcBMwAAAAAAXQTMAAAAAAB0ETADAAAAANBlRgFzVR1eVd+qqiur6qRJ5u9VVf9UVV+rqkur6pmz31UAAAAAALYk0wbMVTUnyQeSPCPJfkleVFX7TWj2liRntdb2T/LCJH852x0FAAAAAGDLMpMRzAcmubK19t3W2s+SnJnkuRPatCQPGj2fm+T7s9dFAAAAAAC2RDMJmPdIcs3Y6xWjaeNOSfLbVbUiyXlJXj3ZiqrqFVV1cVVdfMMNN3R0FwAAAACALcVs3eTvRUmWtNbmJ3lmko9W1S+su7X2wdbaotbaot12222WNg0AAAAAwOYwk4D52iR7jr2eP5o27mVJzkqS1tq/Jtk2ya6z0UEAAAAAALZMMwmYL0qyT1XtXVXbZLiJ32cmtPlekkOTpKoelSFgVgMDAAAAAOA+bNqAubV2R5JXJfl8kuXH/IjcAAAgAElEQVRJzmqtXVZVb6uqI0bNXp/k5VX1jSRLkxzfWmubqtMAAAAAAGx+W82kUWvtvAw37xufdvLY88uTHDS7XQMAAAAAYEs2Wzf5AwAAAADgfkbADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHSZUcBcVYdX1beq6sqqOmmKNkdX1eVVdVlVfWJ2uwkAAAAAwJZmq+kaVNWcJB9I8rQkK5JcVFWfaa1dPtZmnyR/kOSg1tqPq+qXNlWHAQAAAADYMsxkBPOBSa5srX23tfazJGcmee6ENi9P8oHW2o+TpLV2/ex2EwAAAACALc1MAuY9klwz9nrFaNq4fZPsW1Vfrqp/q6rDZ6uDAAAAAABsmaYtkbER69knySFJ5if5YlU9trV203ijqnpFklckyV577TVLmwYAAAAAYHOYyQjma5PsOfZ6/mjauBVJPtNau7219l9Jvp0hcF5Pa+2DrbVFrbVFu+22W2+fAQAAAADYAswkYL4oyT5VtXdVbZPkhUk+M6HNsgyjl1NVu2YomfHdWewnAAAAAABbmGkD5tbaHUleleTzSZYnOau1dllVva2qjhg1+3ySlVV1eZJ/SvLG1trKTdVpAAAAAAA2vxnVYG6tnZfkvAnTTh573pL83ugBAAAAAMD9wExKZAAAAAAAwC8QMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHQRMAMAAAAA0EXADAAAAABAFwEzAAAAAABdBMwAAAAAAHSZUcBcVYdX1beq6sqqOmkD7Y6qqlZVi2aviwAAAAAAbImmDZirak6SDyR5RpL9kryoqvabpN1OSV6b5N9nu5MAAAAAAGx5ZjKC+cAkV7bWvtta+1mSM5M8d5J2b0/yriRrZrF/AAAAAABsoWYSMO+R5Jqx1ytG09apqgOS7Nla++yGVlRVr6iqi6vq4htuuGGjOwsAAAAAwJbjbt/kr6oekOS9SV4/XdvW2gdba4taa4t22223u7tpAAAAAAA2o5kEzNcm2XPs9fzRtLV2SvKYJBdU1VVJfiXJZ9zoDwAAAADgvm0mAfNFSfapqr2rapskL0zymbUzW2s3t9Z2ba0taK0tSPJvSY5orV28SXoMAAAAAMAWYdqAubV2R5JXJfl8kuVJzmqtXVZVb6uqIzZ1BwEAAAAA2DJtNZNGrbXzkpw3YdrJU7Q95O53CwAAAACALd3dvskfAAAAAAD3TwJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJgBAAAAAOgiYAYAAAAAoIuAGQAAAACALgJmAAAAAAC6CJiB/5+9+w6zrKj2Pv5bM0PO6aqXDKLIVZAo4mC6oiICKkmJIgoYEEVB9IokvYiCiqAoaSSqgBIlIxlhhhmSoFwJBlD0FQFHMrjeP1bt6d2nd6zuGRr4fp6nn5k+vffZdc7Zp3btVVWrAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZJn0fBfgpej3826bsdejY14OAAAAAAAAABgNRjADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAsnQKMJvZu83sLjO728z2rfj7XmZ2p5ndZmaXm9nyY19UAAAAAAAAAMB40hpgNrOJkr4naWNJq0n6kJmtNrDZzZLWcffVJZ0p6RtjXVAAAAAAAAAAwPjSZQTzepLudvd73f1pST+RtHl5A3e/wt0fT7/eIGmZsS0mAAAAAAAAAGC86RJgXlrSn0q/358eq7OLpAtHUygAAAAAAAAAwPg3aSyfzMy2l7SOpLfU/H1XSbtK0nLLLTeWhwYAAAAAAAAAzGFdRjA/IGnZ0u/LpMeGMbN3SPofSZu5+1NVT+Tux7j7Ou6+zlJLLZVTXgAAAAAAAADAONElwDxN0ipmtqKZzS3pg5LOLW9gZmtK+qEiuPy3sS8mAAAAAAAAAGC8aQ0wu/uzkj4l6WJJv5F0urvfYWYHmdlmabNvSlpQ0hlmdouZnVvzdAAAAAAAAACAF4lOOZjd/QJJFww89pXS/98xxuUCAAAAAAAAAIxzXVJkAAAAAAAAAAAwAgFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmAEAAAAAAAAAWQgwAwAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALJMer4LgI4OWCRjn0fHvhwAAAAAAAAAkBBgfjHrG5QmIA0AAAAAAACgB1JkAAAAAAAAAACyEGAGAAAAAAAAAGQhwAwAAAAAAAAAyEKAGQAAAAAAAACQhQAzAAAAAAAAACALAWYAAAAAAAAAQBYCzAAAAAAAAACALASYAQAAAAAAAABZCDADAAAAAAAAALIQYAYAAAAAAAAAZCHADAAAAAAAAADIQoAZAAAAAAAAAJCFADMAAAAAAAAAIAsBZgAAAAAAAABAFgLMAAAAAAAAAIAsBJgBAAAAAAAAAFkIMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkGXS810AjCMHLJKxz6NjXw4AAAAAAAAALwgEmDE6BKUBAAAAAACAlyxSZAAAAAAAAAAAsjCCGXNe31HPjHgGAAAAAAAAxiVGMAMAAAAAAAAAshBgBgAAAAAAAABkIcAMAAAAAAAAAMhCgBkAAAAAAAAAkIUAMwAAAAAAAAAgCwFmAAAAAAAAAECWSc93AYBWBywyh47z6Jw5DgAAAAAAAPAiQYAZKPQNZBOQBgAAAAAAwEscKTIAAAAAAAAAAFkYwQzkykndwahnAAAAAAAAvIgwghkAAAAAAAAAkIUAMwAAAAAAAAAgCykygDkpJ61G72OQhgMAAAAAAABzBgFm4MVmTgSxJQLZAAAAAAAAIMAMIBOjsQEAAAAAAF7yyMEMAAAAAAAAAMjCCGYA4xejpAEAAAAAAMY1AswAXtrmVM7qvgh8AwAAAACAF4BOAWYze7ekIyRNlHScu3994O/zSDpJ0tqSHpK0jbv/fmyLCgAvIeM18J2DYDkAAAAAAC9arQFmM5so6XuSNpJ0v6RpZnauu99Z2mwXSQ+7+yvN7IOSDpW0zewoMADgBebFFCzHCx8dHgAAAAAwprqMYF5P0t3ufq8kmdlPJG0uqRxg3lzSAen/Z0o6yszM3X0MywoAADA6dHgAADB6dNgCAEq6BJiXlvSn0u/3S3pD3Tbu/qyZPSppCUl/L29kZrtK2jX9+i8zuyun0C9yS2rgfRvj7efUPpSLco2nY+TsQ7ko1+zch3JRrtm5z4vlGDn7UC7KNTv3oVyUa3bu88I6xoE2lsd5KX8mOftQLso1O/d5KZcr5xgvBct32srdG38kbanIu1z8voOkowa2+bWkZUq/3yNpybbn5qfy/b5pdm4/p/ahXJRrPB2DclGu8bYP5aJcL/RyvZRfO+WiXONtH8pFucbTMSgX5Rpv+1AuyjU7j8HP0M8EtXtA0rKl35dJj1VuY2aTJC2iWOwPAAAAAAAAAPAi1SXAPE3SKma2opnNLemDks4d2OZcSTul/28p6Zeewv8AAAAAAAAAgBen1hzMHjmVPyXpYkkTJZ3g7neY2UGK4ePnSjpe0slmdrekfyiC0MhzzGzefk7tQ7nG3zFy9nmxHCNnH8o1/o6Rsw/lGn/HyNmHcr00j5GzD+Uaf8fI2Ydyjb9j5OxDuV6ax8jZh3KNv2Pk7EO5xt8xcvZ5KZcr5xhIjIHGAAAAAAAAAIAcXVJkAAAAAAAAAAAwAgFmAAAAAAAAAEAWAswAAAAAAAAAgCwEmIEGZjZ/h23MzJadjWV4U/p3ntl1jNEqytj22JxiZhPMbOvn6/h1zGyimX02Z7/ZUZ4XgvRZbvB8l+PFzMz2MrOln+9yjFZVHTle6s2+deR4q1P7MrND079b9dwv6/tuZit2eezFysxW7rn9iM+l72fV4Ri9z2EzW7visfeOZbnmhD7nY6p/a39ajvOCrieA8ealdN14vpnZvM93GTA6Ne3uxTP2GRdtdYwNFvl7HrU1HN39WzX7TZS0iaQVJE1q234U5XuVpKMlvczdX2tmq0vazN2/WrP9/JI+J2k5d/+Yma0i6dXufn6HYy0maVl3v61lu5Ul3e/uT5nZWyWtLukkd3+kZb8NNPL9Oqll++MkLejuy5nZGpJ2c/dP1Gx/u7u/rqkMucxsuruvbWYz3H2tnvv2+kzM7GRJn3L3R9Pvy0s6wd3/u+U4I8rWVN50A3SLuz9mZttLWkvSEe7+h4ZjLCDpCXf/dzo3V5V0obs/U7P9Te6+TlO5K/bZStJF7j7TzL6cyvVVd5/R53lajjHV3dfruc+9kn4maYq739lxn4MlHejuz6bfF1a8xzvXbD+PpC008ntyUMsxrpZ0vbs/1lKerPou7Xuzu6/ZtP/A9i+T9L+S/tPdNzaz1SS90d2P77h/a31kZnu6+xFtjw38varRNbPuHM5lZie7+w5tj5X+tr+krSX9Q9JPJZ3h7n+t2fZISbUNB3f/dEvZNpH0X5Jm3VjUnWNmtqekKZJmKurjNSXt6+6X1Gzfqx5Kf/+5pOMVdcm/m8o+Ghl1ZO/XkrbJuda1bt/3+2tmtyuuz9Mzrlu9vu9pn6r3a7q7jwhYlv6+oqQ9NPL1b1az/S6DdYiZfd3d963YtvE1111T+ra7SvtdJWkZSdMkXSPpane/vWH7vufjREl3uPuqTeUYzTGKv0va0d1/nX7/kKTPuPsbuh53djGzyZJWcfcpZraUon14X822nc/HVP9K0qslrSvp3PT7ppKmuvv2DWXKeY/nU7QJ76rbpmKfQ939C22PDfx9ecX7dVk65iR3n1mz7eGKtuYdXcs0sH/jNTudv5e5+9synrvvdWgvST919wd6HKPXfV2f7c3sA03HdvefN5Src32UynSSu2/XdLyK/S4fvMeoeqzD82zk7pcOPNYY6HL3f1Q8T3HP1bsMaf/O9UTa/uWS1lO0q6a5+4Mtz9/rfEz77CHpFHd/uOdr+YCkyals17r7WQ3bfkPSVyU9IekixfX/s+5+SsM+d0v6q+KadU06xqN9ythFn7oobb+xu1848Nju7v6Dhn061au5beg+7Y85ycx+Iel9xX2Mmb1C0vktba+c61bO+WWStpO0krsfZGbLSXq5u0+t2b5XnAH1JrVvgtloofRvZaOyYb/zJD0p6XZJtTfEZjZT1ZWYSXJ3X7ilfMdK2lvSDxU73GZmpym+4FWmSJou6Y3p9wcknSGpLph5paTNFOfhdEl/M7Pr3L3pRvZnktYxs1dKOkbSOZJOk/Seuh1S0HRlSbdIei497JJqb7olfVvSu5Q+E3e/1cze3LD9DDNb192nNWwzWK6qz+dRSTdJ+py735see8bMjpG0tJl9d/B5WgI6vT4TSddKujE1kJdWfP6fa3gNb5S0gaSlBgIQC0tqGnV7tKQ1LAL3n1M0kk6S9JaGfa6WtGG6kbhEcSO9jeLiUeUyM/u8ImA2K/hZ1aAs2c/dz0gNxHdI+mYq64ib2xRAaWokrF7zp+vM7KiKcjUFsdeQ9EFJx5nZBEknSPqJu/+zYZ9Jis9yZ0kvk3SUpCMbtj9Hcf5Nl/RUw3Zl90r6kKTvpvO5CGycU7HtQhWPdXW5mW0h6efunXpFf6Q49/8n/f5/ive7NsCcUR/tJGkwmPzhisfKZkhaVtLDinp4UUkPmtlfJX3M3adXlKvuPCvq8arz7L8GnmOipNrGnrsfKOnAdPO4jaSrzOx+d39HxeY3pX/fJGk1xfsqSVtJauz8MLMfSJpf0tsU3/kt1Xyt+4i7H2Fm75K0mKQdJJ2s+P6Xn/flivpqvoHA3sLpeE2+L2lnxTl8hqITp+0GYRVJhyhefzlQvlLFtr3qyFHUqb2vdT237/v9vUhxni9oZuV6qkv7o/P33cxWVZzviwwEUhZW6bOpcbaiTjhPDW2pki3M7El3PzUd+3sNxzi84Xlc0ttr/ta33aW03VvMbG5FW/Ktkn5hZgu6+7AAi5ltrGgvDbYnFpb0bMPzP2dmd5nZcu7+x6ayjOYcVtQJZ5rZtpI2lLSjpHfWHKeujVuUufIcq6lTi7bXV939oYp99pe0jqK9PkXSXJJOUdSD5e16n4+p/pWZXS1prSLwYWYHSPpFzWvIeo/NbFNJh0maW9KKZvZ6SQfVdaqUbCRpMJi8ccVjxXE+JmlXSYsr6phlJP1AUl3A7jeSjjGzSYr398dtgaY+1+x0/v7bzBbJCGB1ug6VLCTpEjNr7bAt6XRfl7n9punf/1CcM79Mv79N0vWSagPM6lEfpfd4eTOb292fbnsBFqNX55e0ZGrXW/rTworreV/HS1pu4LHpiu+6pb+V215/lFQ1WnmCmX1J0qusomO1Lugvda8nStt/VNJXFJ+JSTrSzA5y9xPqX2bv81GKe4BpFh14J0i6uMO19fuSXinpx+mh3czsHe7+yZpd3unu+5jZ+yX9XtIHFPdttQFAd39lCvptqOgw+Z6ZPeLur28o15skHSBpecV3v2hTjGh/pe371kWStJ+ZPeXuv0zPsY/i+1IZYO5Zr+a2ofu0P4py9b7WZThb0ulmtqXi/uZcSZ+vKU+5rb6mhn/n29rqvc8vRfv+34r21kGKTpmfKdpJVfrGGVCDAPPzKKdRmSzTELwqP/9oAjqSNL+7T40OoFlqb0Akrezu21iMOJG7P24DOw9YxN3/mS6wJ7n7/mbWOIJZ0r/d/dlUwRzp7kea2c0t+6wjabWOgalZ3P1PA8V/rm5bRQByOzP7gyJo2BT8KXxH0v2KAGSGQBEAACAASURBVLkpAogrK4JQJyhuEiXpvYpg57sUjaU+en0m7v5DM7tD0hWS/i5pzZbe9LklLaioS8rn2z8VN4p1nnV3N7PNJR3l7seb2S4tr8VS+XeR9H13/4aZ3dKw/Tbp33JjyCVVNkKS4jPeRNIx7v4LM6u7sS+m7RbPf3L6t+1CVDScyqM2mwIOSnXDsZKONbO3KM6Zb5vZmZIOdve7K/b5opldJulGRaP6zVXblSzj7u9uKfvgMaZImpIaDVsrGhW7qiIYVdR3mXaTtJekZ83sSbUHqZZ099PN7Ivp2M+aWdP3V+pYH6Xv0raKRuS5pT8trBgB3ORSSWe6+8Xpud6pGDU+RdEQqhqlV4yiGDy/jq4o2xclfUnReCuCeibpaUWHXJu/SXpQ0kOKm9ER3P3EdKyPS5rsQyPkf6DoYGiygbuvbma3ufuBFqPWLmzYvqir3iPpZHe/o6b+epciuL+MopFfmCnpi00FcvfLFJ1Riyg6Sy4zsz8pvm+n1IxcmCJpf0VH5NsUAeq6lGN968jcOlXqf63rvH3f76+77y1pbzO7xN2HBQgtRqI06fN9f7WiLl5UQ4EUKT77j7Uc50l3H9Fp22ALSeea2b8lvVvSI+5eed3yjJGSSd92l6RZo+Y2TD+LKjqRq76Pf1bcXG6m4e2JmZLa0jctJukOM5uq4Z2jgzfR2eewu99rZh9U3LT+UXFT+UTNtgtJksVMmr8o6shixNIrGg5zoeJaf1r6/YOKm9sHFZ2Tm1bs837FSMEZ6dh/NrOqNvZozseXKerqwtPpsSq57/EBitGSV0qSu99iDSkBUj3/CUkrDVwPF5J0XcNxPpmOc2M6zu/MrPKakv5+nKID/dWK+vQ2M7tO0rHufkXNbn3vIf4l6XYzu1TDz9/GWTfqfh0qnq9Ph22h031dzvaeZq2Z2SWK+v4v6fdXKM73Jn3ro3sVgyjO1fD3uCoou5ukz0j6T0VdVBzkn4oBESMMtLmG/UnSEoMPuvuKab9jJZ3l7hek3zeW9L6a5/pg+tvgd6uLrvVEYW/FfdZDqVxLKIL+TQHmXudjKseXzWw/RWfdzpKOMrPTJR3v7vfU7PZ2Sa8p2gdmdqKkphkGRUxpE0WnyqMtxZKZLaMItG6oGEhzh2KgU5PjFdeq6Wq+Ly/0qouSzSSdb2Z7K671q0ravGH7A9SxXh1FG7pz+6Ok87WuJhhdLndlfePux1p0bp+tmFGxm7tfX/M05bb64Ro6l2cq7l2a9D6/JL3B3dcq4kTu/nAqa52+cQbUIMA8PvRpVErShWb2Tm+YDlMlVajl0VaNo1Ak/d0iJUVxcdlS0Yiv87TFFJFi+5XVPBJyUmrgbK2hkYZtnkkBnp00VDHO1bLPryW9XM1lH/Qni6nDbmZzSdpTMcKizrt6PHdhM3dfo/T7MWZ2i7t/waL3XJLk7n+X9BMz+42739rzGL0+EzPbQdJ+ilFDq0u6wMx2rjuuu1+laDz/yBvSW1SYmYJh20t6s8Wo3LbP0SxG7Wwnqbio1o7UKRqWPT1gZj9UjNY51CJtRGXgqHi9FtPyytO597UYJVA5bSkn8GBD0yF3VlzAD5d0qqJRdoGkV1Xs82ZJ31UEsl+nGBmxi7v/ueYw15vZ67xhWnXFMY5T9MAXU9y2VGpYV2zbGMhpusnL6Cx7LDXUi/N+fUWvfZOu9dH1irpkSQ0fpThTUlsH2fruPivI4O6XmNlh7r6b1ecfqzy/vGJanLsfIukQMzvE3RsDq2Vm9gnF615KMcPhY96eimUxDQ+qL5gea1IEih43s/9UBLKbAkHT003xipK+mG7URozWSg32E83scxoaraT0/8XN7PXuXttITOfK9oqRQDcrvluTFdeZt1bsMp+7X25mluqBA8xsumIk0mDZRtSRqb5b0CtmIAxub2bzu/vjdWUf0Pda13n7UXx/l6x47N2S9ml4rs7fd4/ZEueY2Rvd/Vdd90uOsBhxdolK10UfmE1iw6dZf1RxI3WdIoi0uDfMiknth49LKmZAXSnphzUdF1L/dlfhSsUN9yGSLvCaEYTpWn6rmZ3WUIY6+3XZKOccrri5XVxxfb/RzJpmBEkj21JHm9mtqvg+Ju/w4VNxb0916loWKbuqPO3ubmbF57JA1UajPB9PkjTVzIpp6O9TTQBwFG2vZypuzJs6mE5TBCkO0fA2zcym817SU+7+dHEci5HJbSMmJyoCOasqBjjcKmkvM9vN3T9YsUvfe4ifq3m0bp1O16EKrR22JX3v63LuA5ctgsvJXzVyxO+gvvXRPelnglqCsx6jcI+S9CV3P7it8MmGimv1vwYeN0WAr85g2+tCq+no9JjBdKhFR3hTB3iVTvVEyUOKtmNhZnqsSdb5mMr1oOKcfFbRXjvTzC5196rr8d2K86OoX5ZNj9U538x+q2jnfdwiPciTLcX6o2KU6P+6++5tryF5tOfn0rsucve/m9lmki5TXFe3LALtNfrWq1LHNvRo2h/qd63rNWjKho/uL2YI3CJpfTNbv6pTqdRW38Ldf9ZQ7io559cz6bpSfB+XUvN3pVecAfUIMI8PnRuVyQ2Szko3qc+oZTRfqiQPV/QS/00xreQ3GphGXeGTilFvq5rZA5LuU1zY6+yvmBa7rJmdquiV/HDD9gdKuliRc2mama0k6XctZdpZ0u6Svubu91n0EJ7css+Sku60GHVTvolsmhK4u2Kq+9KKtBKXaPhI2GHSTdSIvFst5XrcYiG6M9PvW2qosqy6MD1hZperX27GAzTyM6nMwZtsoehR/ZukH6dz8keKHvkm81ik8VhBw/PB1Y3K3UYxCnQXd3/QYorUN1uO8RnFaMSzUo/9SoqR1pUspt99QkP5w66R9AN3b7ogba0Ifhzm7o+km5e9W8plZvYmd78u/bKBGhZQtbz8wL9TvNZvDvQMn2n1qVsOk7RVESi0mK77S8XNW5XJkna2yPf8lLqNwl9CcfF9RNFI+nvRG1+h7+j7YSymLK2i4Z1kV9dsvpdimtbKFqOgllL76M+D1KE+SjfzfzCzd2hkrq624PxfzOwLkn6Sft9G0l9TA6iu0dP5/DKzVd39t5LOsIocsIOBs5JlFXlO+/TUf13SzWZ2heJcebOivmlyvpktqviuz1B8L49r2H4XxYj/e9OogiXUXH+trRiVe24q03sVQf/dzewMdx9xQ5nquFcrriOblm7Af2pmNw1unzyVrr+/M7NPKa4RbfX9IWa2u2I0yTRJC5vZEe5eV+/9p5ldmJ63dR2ApNO1zszOU7z3C3XZPun1/bXmkY91o1uKfTvn5LRSPkNLM3XKmjquFB1vOyhGahXfv6rZJOVp1sW/m6SftlkxRys6T7+fft8hPfbRmu37trsKSyqu72+W9GmLUU6/cve6oPB6FrPlOk0zlmYFNfvocw6PZiG/x8xsO0W96oqZCE1rAkw0s/U85WE0s3U1dBNZd/063aLzeVGLKdcfUcxyqHOzmX1SI/PNf6RuB3f/Wnq/NkwP7ezulTP0zOw77v4ZxUjEEe3FhvbtHRbpRyZapPr5tBq+jx7pJB61WJPiQS+tf2JmTeufXGUxUGI+M9tIURecV3ccM/u2YtDI5YpgU5E66VAzq0tZ1OseIgU3cvS6Dlleh22v+7qM7aVIPXSxhlIebKMIoDXpVR/50MzcBdPvg4Hgwe2fS23TrgHmGyQ9XlUXNZwnkvTndA4X0+m3U8zmaPLL9F1ZQR3XJVHHeqIUnLtb0Yl2jqLu2lztAxX6totkkbd5R0XHzXGS9nb3Z4p2jKo7fBeS9JvUPpAircBNlkaRD9Yx7r6vRdD+0fS5Pq7mUb9S3FtOlrStme2bynJVy/3QFWb2TUVnUW3HcEnnusiG0i4V1/q5Fdf3Lc2s6fvVq15NurahR9P+6Hyt8/6DpgY7kH5e83iVZSzWBSpm566lljziFefXY2o/v74r6SxJ/2FmX1PcBzZ1lPeKM6Aei/yNEykYUDQqr65rVKZt71N8qW5v6VErtr9VccN0mbuvaWZvk7S9t0+tKPZfQNIEb0iIX9p2CUnrKyrAGzxG31ZtN1HSp939213KUNovZ2Gtyry+GTdLTeWalXfL3V9lMTrvDHevXc07VVxHKPIju6Lh9FlFsGJtd792YPurlHKhFZW/mf3a3V/bUrZOn0nadlYgq/TYmxsCecU2typyUw2bsuQVOWVHyzqO6LOY/jVTQw3KbSUt6u5bNezTa3G09Pe1FdPZFlG8xw8rcqTVjeS9UCk/sLuvYdGbfrM3LBJpkUuzsaFesc9Ed39u4LElvCbnlsUiGIupVA8ppmC1jo4ys9coRvF/VtJEd1+mT1k7PP9HFbMIllHqIVcET2rTiqT39dWKz+QuH/uF9KYr3qvFFKMJpilGr9SmSDGzJRUdcZPTQ9cpbpIfVSwOMmJ0yMD5JUUwv/L8MrNj3H3X1GAd5E3vVw6L1ChFWo8bvWVxmoF955E0rzfkw7RIhfRLH1p0dFFJb3X3s2u2v1rSe4rvSrrJ/YWi02i6u69Wsc/bvH4Kdl251lV00i6quDFeRNI33P2Ghn1ucffXp0DYWorG+vS6Dhwzu1HRGD63a33f9VpXt13d9jXHaqyHLVKOLKYeIx9tKCfnFYqR4+X8fBd5xQJzZrZTUzmbgkoWCwyt5h3yheYys1t9+Ojayscq9uvc7irt8xrFOgYbKnKt/tHdKz9ri5FAI6YZV10fLHM9j5xzOIeZraBoS70plfM6RYfZ72u2X1dRpy6YXsM/FQH/OyRt4u6n1+y3kWKKuSlymF5atV3a9gxJv1W0Ow5SBLR+4+579n6B1c+/trtP79u+tVj4+X80lNf6YkUuzsaRYBbThNdRBNsuUKzZ8F/uXrn+SQpc7aLS+yXpuLp7Fou1Ik73isWCrSZvck17dcRjpb91zp1fse/qGhlorBwNbWaHKBb569xhm3Ff12v70n4f0PB7zdpF2wb261QfmdlrFZ21xajLvysW7axNrWBmh0n6lbqvsdGbxSjQ/TU0k+RqxSLYTbNPLtLQuiTlOrIpv36nesKGFvas5A0pqcz6LVyW9jlQsYjmiPa8mb3G3UfM0O3bTkh1y16Ktuyu1rKofGm/BRVt4mJ0utx9+Ybte7Vv+9ZFOQbq1eIYB3eoV7Pb0B3L1ftal+r6T/rwQS3f94a82BnlujXd/75LMaDvy4p0L02L/PVaCLW036qKfNsm6fKqc71inz4zB1GBAPPzzPJW5r5acZPdacV7M7vJ3ddJQcA1PUbcdbnB+V/FTfMj6ffFFIvPfblhnz6NsKnu3jSlqWqfqpVHe6843+E4J0rac+C1H+41o09ShbympBmlG6nb6oIHmWWa5u7rll9vEbRo2KfX6sw172/jyq5pm8rV0Su2u9bdJ1fcsLaOvrCYtnK8Ymp564g+M7tzMKBU9djA34e91vT9vL1pn9K2i0izRvw0bZfzOS6lyN+4goZ/t2pHQ6X9NtHIEVSVoy8sRjh8VNELbYqZFMe6e+3CgGb2XkWj8M2KYNsNkq7xhgVK0mv5gkbe5DUFi29XjJ64IQXpVlWMcqpcHd3Mdqx63N1rF/a0mA2xh0a+x5UjwWxomtkeipQJ32j7HEej6/n1fLKhEdSDj2etYl/1fjbV9ylo9jofWs16Hkm3uvuqg/vllimXRW771yumnB/l7lc1XYfN7EZ3f8NAPdF63e5ZpkPd/Qttjw38vVc93LM8e2ooJ+cD0qwROzMVOfG/N9pjDBzvbEm7eszY6bL9JyWdOtAu+JC7f79hnxmKmST3pN9XUuRhr7ymmlllWoe6eru0372KgOa1iuDJVG8InBfnV9NzjtacOIdHY3bWqcVrLtqBFqlSrnH39cf6WD3KNFHSoe5euQBTy77F9W4fxcydI8ei7W0VM23KvGHx477tVTO7VkO58zdVyp3v7nWpVIr9TlCkjLtDpZkOTe0vq5jR6O73NWzf976u1/a5Up08RR1HGprZ9YrBE1ek39+qaKtt0HCMmZIWUARxn1CH+4E5wUbRGWYxOrPcjmxbn6PPcx+ttHCZu78mXYcucfe6hctkkSbuDh9a62lhRX7lG1uO9TINLYg2telaaWY/VQTjd/SYZTu/pOtb7m1ukjSPYrTv1YrZCH1S/swW1nNww8C+EyUt4M2LsPfuKDCzrRQd7TMtRuOvpQhit61D1etaZ9WDWppm07xKsf7OCuo2g3lWfMTMjpB0pbuf1XY9MbMLVLGwqTd3xvQaNDY727cvNaTIeJ55j5W5S+6VdKXFSMjy9JC6XpxHLHoIr5Z0qpn9Tc3TBwsbu3s5F/DDZvYeRU/TCHWNMNXnPLvOIv/WTzV8MYiqkXl1C2stpJaFtSqCmdLQKqqfc/d7K3Zb3UtT/9Jrb2pI9827lRM07JwLzXquzmyjW/Vdks6zmBZ4loafk8M+G3efnP7NWYDyO4pRssX0rFutPj2EJM2wyAN1gySZ2Rs0tHrvMDaKxdFSEGsLpc/RUg6uhoBATn7gcxQpPi5Tt0UtZLFgxPyKRciOU4wkqx3hoOjhX9/TCCIzO1QxqqQ2wKwYGXqNpCO8PrfzoFMV3/lNFD3XO0n6fy37POnuT5qZzGwed/+txWJAdcoN7XkVvdczFOmI6pytaFicp275Fc165urKbIjlpFQpRh0MHqfp9Y+FS1Sd0zF3FfuqVCBN7ZZTNTTdtDjuaak+HpyiXLWQV6HpulV8jntrKL1A7NQ8QvyHipWvb5V0tcWMgaYbkM7rAFh+x91Gis6eso0rHivrWw935jET6YgUZP2OxwJe+ylupBrz2VqMaqpKFdD0mSwq6bdmNk3d0md9rBzkTu2Cj2ko/UWVvRVTeu9VfB7Lq3k6c7ltNq8idUTriBtJr+wZbOo7zThH37UserMYAbWMYobeH0qPf8QHOjrNbHt3P2WgjaPSNXtEG9pGTpme9Sc1f7eKGTOPWIzqfFDteXg7s/oFmWpTW6X7jckV+3RRrH+yoxrWP2koV1GGwXI1jQatXPx4FO3VzrnzB6zvHQYZlMo3a0ajIjg7l2ImXe2MRvW/r+u7fdGpeqjiPDR1C+R+xCNX8rsUKdF2UIxQrpvKvoCXZgS5+5Vt90N97gdq7ueklteS7rf20cgBF03Xh5x1SXZTzEp7UtGOLOqNylHymdetvguXSZGWqdzx8q+KxwbLtrUindmVitdxpJnt7e5n1uzSa1H5pBhRv4JikfuVLXLu13aopmBpeTT6VZIOqguemtmbFKknOqeDkrS/l0b3e6RM3F9xn1B1jNMU9zNdU6BJ0W74t6KOO0jRifMzDb9/KdvP3c9Idfg7FJ/ND1S9OHhRrr73p8XM4zXKQWmLGSZ1gewzUjmOU8f7U+XlEe+7EKo0kAo2Bf+bBsPNtvbtSw0B5vGh68rchfvSz9zpp83miovdZxXBkEUUlVmbiSmY85QkWSwWV7cQldSzEaYYzaWBslQ2KDW6hbW+I+l+xcgxU6yiurIi4HSCqhdxmmBmi7n7w5JkMb2q6fvSNz+f1D9o2CcXWnl15vINY93qzNmrvifFNOVyvuK23FC9ufufBtorTe/b2ooGYtFxs5yku4oboPKFyjMXR0vO0dA0uqZFLQufU//8wPN7w6jCGhukHuLb3P1AMztcsVhPHdPw9/M5DXVMVHL3T6UA6LoWI5EaRzgkS7j78RapbYqFiqa17HO/xQiCsyVdamYPa2jhkapy7VH+Pe37k5rNC0+6e+NCZgP2VP9cXTkNsR8ppVRJv/+fIkBfG2A2s5MVddwtpeO4mgPsnVj9Ym+mCNiN4Pmr2N9kZt+SVAT1PqmGXMDufnC64S5u5Hd396JTabuBbRtzFrYoPsdj1fFzTOdW+b37g0W6qjqd1wHo23FnzfmRK6eXDxyvTz2cY8s0omeyoj1wmOJmuGnEbXlU5ryKm6q6fLqFxmnKFSam4FTROThRLW2wFNBaRRFskiJdT+11wgemX1tMH7+4Q9leaTGyresaDcV7uU758Kpuf+XqtZZFXxaz7CYr2jhfsshLXHSIfkrRviubP/3bZxHJnM5wKRZtXkwxIONcRfuqLZDZR27O6pstBmmcoeH3G20zNrquf9KrXJ4WPTazeX1gOrnFQIkque3VnNz5kvQrM1vN2/MoF96vNKNRktz9zymA0qTvfV3f7SXpG4p1Bvp08hQV/XsknZTaOk3twntTp2BxbmyvCIY3HyTWCpq1EKrXpFUYxfexGNjwXnUf2DBZ0oct0pF0XZfk85Je6w2pCCu2L3S9bvVduEySZl23JMljJnNbDOh/JK1btOnTcS7T0LpBg3otKp8coxghO0PtC7YVTlAsULx1+n0HRRu5blba8apIB9Wi7+CG1VKH+HaK+6x90/GaAsx9OwqKsm+imNH1CzNrWoNJ6n9/OstAwP5AxXtc5Vl3P7rPcysjj7h6LGxqIweNFXVW66CxOdC+fWlwd36e5x9FzrwRPzXbTlQsQDYnyvUFxXTLXdLPtZL2adj+eEUlOzvLtJIib2fx+3ySVmjZ59aKx26p+1t6fEfFdNODJX01/X+HluNspLiYHCZpow6v5ZbM92ABSQt13HaPns+9/Jw4tzJf95mKUSszFCNCPi/pJ02vpemnYb+l03HeXPy0lOvXGa9lkqJn9bWS5uqw/VcVuWX7HOPG9O8Nio6GeSTd3bD9XorRlQekn1sUeSybjrGVItB7oiJ4eZ8iONS0zw3p34sVDaU1Jd3T43W9RdJmkubusc9cisBO0zbbKgJOb1SM6lhL0lpjfA5Pz9hnWvr35tJjjXWHYpSgjWXZS889U9Kuihu0wZ+/t5Vr4PcJg48N/H0BxUIoN6WfQxQjpMby9cyTPvsvKQJAX5H0ldnwOb5McY28MP2+mmKR0zH/jDqUZRHFiJYfD9SLi3fYt1c9nFm+m9O/h0jatvxYz+eZ2mGb5RUrrUsRgKy9tiqu76crZkT8d/r/4S3PP5diwZ8z08+n1KHOL+2/mBrq7dJ2V0lab6Ce6H1teiH9KKbKTkr/X1SRG/jbdeeLIj2EFClL+h5ruaqf5/s9SGV7ueKauKliinXTtlMqfk4YB69hRpfHBv6+fMfnPjn9u48ioLxMet0/VwyMadv/LYogzV2KAS23S7qtYfup5fIrrmO128/B9/i6jH2mKDqGflfUj6q4/pXe470UHakz0s93JC3WcoyvKxZ3/Ej6uVTSIWP82qenf28rPTat7fyq+mnZ5yLFgJDRlLXxuqXoLD9X0UHytXReNtZp6Vz/tOJ6VMwmObtln9sHfp8w+NjA39+puA79P0VA//eS3tZyjJz7pxHt36rHSn+7MeMYJ0j6ltKo6vT/HzVsf0d6X89Qit+oJr5QLpciplPUE0upoZ0j6XzFTLh7Fde7eToco/P7m+q2qp/bJT3VsN8BigELr1DkXl9c3dqSiynaLF3vtd+v6BR9QtGZOFPSP1v26VWPaA60b18qP4xgHgc8cjF2ynPkMcWtaZrVCANTiuZWfGke85b8Vu5+aBrdVOTrPdjdm0bSnKTo6X9QHXp7LW/q9+mKL3/hOUWFXpt7StLjaapP0eu6pYZ6Sr1qB3c/ySI3VDGa5wPeMnrBYyGH2kVfKpxvZu9x9wuaNhqYAlh+vDhu1bTOt7v7LyU9YBW5Rr1+tMrjFtNmO00jK45TdYyW4+ToOxpqFXcftkK2me3kzYs+fV0xwv1ODR/52bTIYa9pdOk79RPFIjD3dNlH0Rj8kpk9pe4rhp+fRu5+U3GxdMXI2Uru/i0zu1JDC9DV5twq+bL6jXCQpK+mqVefU6TfWFgx2r5RGiE9Ob2O67w5v+h5GvpuT1AE8yoXbip5nWIkxNs1PMVP3bmfM+WyUyqZATkpVX6tCDpUptAZpWmKRuuIFbLN7ICWfXutYu+RrmVw5eqx1nmER5rJIuV9jj9Sj5HoFqtlf1XRmL5IkX7qs+5+StX2Pbm7/94ip/DgcRdveR1V9fBY56d7IM0I2kjSoWmaZ9WIollKn43StmtrKIdg3T4fU3SWLK64iVxaMTK9co0CRaf7bpI+nn6/VA11anK0os1VpNHYIT320ZoylVMMTFTcdHaZcTa/u08dGHnTOBLOeuToz1Ez2+FRSTe5+zkVf+trkrs/K82awrypYuTwGaoe1fkeM9tXMfPkjJ7H+kXp//MqpvbepYEpuAXLWMMkh8UCuF9RpB0qprEf5DXrIHjPmRtmdrq7b201qS8a2vfrK67vr1F8FhNVcd9hscjV0oqRZmtqeDq3+VUhjVT/jKSjLKWlGyjT4OzPtS0W3t5OMevkcUX7o6vjFd/bYbk/G/Se0Wg9UyVYRrotxYygnypmgpWvW03t9K4jDYv3eCdF6qtySpm2NAnvkfR6Tyl+LNbAuVnxPR0rRcqav6R6788aWohwGDNb2CN/bucFVku+qLgnuFHD3+NP1xxr8Lq1jlquW+5+qkVql+I69T5vH5W+uyLw/2XF53K54trX5KKK9lrt/aq7X5LKVSwqv6e3j+TunYZE0hNmNtndr5VmpcB4omH7nHRQe0jaT9FGk+Ja33S/2TcFmhSfx1mS/sPMvqaITTRdH7ZWpCU8LF3vXqHhs4ar9Hl/X6ZID/HwwOOmmEVeZ6f0b+cZzFazcLuaZ1B9SzEAqPPCpu7+xXTtXUXD2zl19/SzddbVSwmL/I0DNjLP0YaSavMcpWmQS6v/FLciqfzmil77Mb1xt1iRfS+NTMBeOZXdYirzFMWCEGuk6To3u/vrGo5RtehT46IxFlPXj1BUTK4Y0flZReWxdnGRStsu7DHNpbLhMXjjbZn5wEr7LqC44NUGDW1oteFXKwLpRQ7qTRWdESPSZJjZge6+v5lNqX4ZtYsVXqK4oH5epWlkXpOeIfc4c4LFIih3KF7LgopAwFPuXjuF0szuUuTf7jyVyMzupqhE3wAAIABJREFUlPRKxejdLh0ryysaatsovic/Vaye3piDPZ2TgxfJypXiK/adRzHyf0wXMzKz28vfV4vpp7e2fIcHF9BcXNFgalow5yuK0dJFHfc+SWd4zfRvG7769bOS/uDu97e8lrsVMzBqA9cD2/f6rqR97qt42L0hF1wKrB+pGO3+a0XAaSt3v7VhnysUN4VT1S23bGfp83rSM1dYtlg8ZdZK7l6xin0RQBjoKJhlLF5H6VidF/JJn5+r+oa57XPstbhn8bf0fr1XcW29uula15WZne/u7615PW2v40TFzIYifVTjAriZ5ZtfcSN1u7v/Lt1Ivc4bpkYOvJZnFfXxQeXre8U+tyhG0NxY+kxub6q/Ml7LiPZJU5slXR8Kz0r6axFEbTnOhYrR0Wd4TLvdUjFCfuOa7Stz9Lv7LlXb5zCzYyStqqFg7haKz2UJRcCqtWOx5fnPl/TNweugxbThL7n7hIHHv6lY92JBRZBx1p/U3mE7eOy1JH3C3es6CkYsWGQdFkzuK7VZNnD3h9LvSygW1qpco8Ai7cQuGtmxUNcmfIW7/2XgvJyloX1/k6Kz/gxF0GxHSa/ygRRkZraTpA+nbcprZMxUjBgccV9jZmu7+/SB63y5TIPnw6cVnUIrafjioV1yscrMfuXub2zapmKfjRQjOk3SxR4DUJq2L+cFnZUqwd33qdn+VkVn2LBp/x75U+uO0bmdbmnBXqtZhHEwOFfxHs/6k9qvKbcpFlD7R/p9cUWajLFcJP29ipSEy2poYMOB7n5uxbajuT5OVcz2HbwPrhzYMnCMZxRBysbrVtpvcMDFWObOLx/nAxoadHJNVXuttG2vReXT33vdP6V9Xq+YNVkE4h+WtJO7V6bLTO3hQe7NnTGjZmazOkAbtllV0VFgki73DulrzOw/NLzurr137PP+mtnxkqZUnXtmdpq7b9tWtq6s58LtaZ/eC5vWBbJn92cPAszjQmoobOQDowAbbkBGHcyravxWbNNrQYi+jbC+N9zp75dKOrJoFJjZ5pI+3XQB66OiYTHrT+rQEJ2dUuW6iQ+tAryQpF+4e2UC+hTs29Ld20ZulveZ7u5rW1rhNT02zZtXJ+59nBzWc0SfmZlilMpu6aGvuPuPq7Yt7XOhInj3rx7l6nXjNbDvKope8u3cvXZxmpqL5PUtDbeJihQUK2j4CJfaRWD6Sjfsq2v4CIfbWoKsVTfebasH3yVpDU85Gi3yvN1SdxOdtlleaRR72n5S8d2p2f5sSbt6ew7pYvve35UcqXPgOUUHkylGzU3whk6QrjfezweLEWtvUNx8TXP3Byu26RVAGGV5jlFcU/qMoMk5zpWKoMGlKQC4vmLKfuVrLALfZnacpDPd/aKmwGRmmU5RTGm9xt1/23Gf3t/f8crMbnT3NxTlt+jknlF3c5vq60MUMyLKN3hNAYcZimvKPen3lRSf54jATaqz73D3VTNey0qK3IIbKG6471NcV+oCgMUq7sW/CyrSt2zY99gNZbpB0pvc/bn0+yRFkGeyovOgz5odVc8/nyS5+4jRa2a2tLs/MHIvyczOcffNR3Ps9Dy1nREpaLauD1/D5CZ3rxzxPIoyXK+46X46/T63Iji3Qc32ZyhSvm2rGBm/nSJN0Z5jXK6b3H2dgetjbT1hZlu4+8/GsgwVxzja3T/evuWI/b6vmJJ+nrqP/B01M5vq7uvV/G26uzctVjXaYx/j7rv2Dc7lvMcWi8J9XbGGhSk6oPd195827tj9+Scq7hO/PRbP13KsXtdCiwFmF/nwBW0PbgoY29CAi58p3q/GARdpn14dS2mfPSSd4qkzueW551d8fm+Vhs1CuKjpepZz/5TaxFsqZh0tqpgV4z62s296zVC0/gsP9r7WW+QpP1yR8vBvijRNv226pozm/rRHuXasOUbtmi+l+M8tilzUT5nZHS2v5UeKDqw+C5t2CmSb2ZGqmdGejlE5AwH1SJExPkwYCGo8pIbpoN5/ilv5i1RMwemSTL/vghA3W6yk2rURljP1e3dJp5rZ99J+9ytGRoxgZvu4+zfqKo6qCsPd35v+XbGlHMUxKkc6l55vxFRj6zkyoORligT1hafTY3XH/reZ7aP21ABlnaeRjfI4Od7p7vtYjOj7vWJBh6sVq3NXKfI73aMIzC5vZsMWuqjwuKRbzOxydZjelv72B4vFqFZx9ympYdK4cIwNH8X8nKIh02RPDV0k31ZcJFv2OU/xPe86rbM3d9/bzLbQ0KJqx3jDCIek7wKaUpyH82qo3ppHw0fJDGMjp74vo+ap71I0VH9rseBgl1G/faZcjiaVzK9SMOqO0vPNUMPq33MikGzVU6YfVYxC+6qnEXUD+3Sazp2CyxMVAf/tBp9njE2WtLOZ3avuI2jmVaSFKEYQXSPpBz6wSNWAvRSzT1aybot7nm9mv1V0qH081StdF8Hp6njFjKkjLRbkmaEINh/RsE/O93eOMLPXamTwt2lhy6vMrFgIZiPFZ3pew/ZTFDeR31aM/N1ZLak7FNNGr0jnlxQdfpVtOI8UaHeZ2XLeMqOlwgOpfFco6qF/KmZV1N10F0HZxy2mtj+kyKE4lhZTXAuLdt0CityMz1mkexqt10iS1a85VnmNyAku2/BUZRMU9e+fG3Y5VZESqBgQsrNi1N1Yu1vSjWZ2jqIu2lzSbUV5K26+X+nuW5nZ5u5+YmqzX1P35JY/S+/xFOy+xWJwwF9U8V0xs+09BgmsYBXp4FqCB29S5P9cXlEHNQ4EyQkuJ/Mprg3vLD+dhmZUFeWpe6+K4zfNaOyUKsFGkaYpnYtV90Ijgozuvmv6t2kh2hFy3mN3/7FFB+y6qXxf8IqO51ypvvmQot7uLJ1ft7j7Y2a2veI7/52WuvlCM9tVI++D6z6XL7v76dZvQdvtNHzAxdcVA0+aFnw7WdGx9C6VOpYatpfi/nJaam+eoBiJX3V+lxeVn66hAHPdovKzZAY6z9HQwoC19wGFvsHfpO+ikL0WHsy81h+sGFx0mUeH+NsUi2iOYKNL89JXeVDNvIr7rBlqXlS818LtyX3qv7Dpk+7+pJnJzOZJsZeqgUnF7Jk3KdqQRefWVoqUmehpXNwUoF+eIzNbRjHFpwjqXKOYcl43BXzT0v+fVQTnujSw/9ojuCx1bISVFDfcK5duuLdqOoDHKKD1LUbbyJtHmhZlv6lhm2Hqgr6l4w8Gf6draHrTcoqRQ6YIVv1RUlWgei9F8Ovwir/V5nxVVNZTzawI4L1P7Tcsl5nZ5xWVZTmdSl1jpyo/7mdbjpFznBxFfbWJorf+0YYbSylSoXzd3U+wGD10qKTrNDyH96BzNZSCpBOLFCbrKEaYTlHk2zxFQ9/Pwe1v1NBiEFu5e+sK2+p+kSxbpilINlbSqKM+I48OV+RqL6ZNb6VYqGSEUufQo5LusJjB4IrcrFMbjvFJpanvqYy/s5hW1mT/lr8P6pNL+i2KoOqmFX+rrCMtLzflte4+ueJGt/cU8A4uVHSOnJZ+/2Aq14OKfMNVr3VvSWv6wHRuReN8mNQAX97M5vaOaUsybawIhBUjN69W3Lw0OUnRcD8y/b6t4gau6fp1pyIY8Hja92xFHuZK7r5vCsw8mt6Lx9Xtut2Zu19hMTNmXUXAdHdFKpamAHPn7++clOrhtypuDi5QfK7XqvkmZ1/FqK7bFTfJF7h7U67U+dz98tRR+QdJB1jknPxKwz7XKfIz/rfivLpYkWuwzmKKum6qhl9L29LClG+6mwKfhV45+jN9QxFgvFJDIxP/18wWUEPu9R6q2lCFpvz5vWbnJQuV/v+sIidz7XXP+69hkuue9FMoclsvVLGtNNQx+kjqkHlQ8T5Ucve652mzgyJQ+ilFG3JZxQyOQQukfxs75Wscn557WJqIsZQ6Om/zDqNfi/fKzA5WBNRPVpxb26m986Z8L1GkSqhKV1PeTuqR91SxSFhhXsWiWa11RUbHXY43aqjDdpLiWjmWrjOzozTyHqUptcTRktYwszUU7bzjFJ9p5ayj5EPp33IqmKbPpThvN5F0rLv/wiLFT5NeAy6SXh1LkuTuX7YYVf1ORQfZUWZ2uqTjvbR+TOqQPsLM9nD3I2uebiwt4+7v7rF9r+BvsoS7H29me6YBG1elwSd1Vnb3cv12oMXo3CZ9r/XPuPtDZjbBzCak9tt3arY9TREcH6wvpPZ6ohd336P8e2pX/KRln/en/x5gMUtiEcXM5KZ9DswoXqdAtqcUNmb2cUmTPaU2sUgl1vg9QTVSZIwT1i/P0aWKyuPk9ND2iqmQG41xmY5QLBTVZ0GIPs+fM/U7Z2HA8v4TJC2Yevaq/l45HWzWf+qnxxwr6SxPC/aZ2caKhRd2q9l+Qir3dV3KXdpvbQ2dJ1d7yyJslpHzNYeNTClSHGjMjpN66d+nGHm1niKIf767V/b0m9lyiobgiu5+UPp9Ba9P7l/sN59idfi7OpbrFklrKqZWF6leZk0Lrdj+1V2fu7TPWYoG3mcUN80PS5rL3d/TsM+hipxetXlLc41iVFOx/2oauvn/pdcsoGmRn7GW1+e16zX1vbRfOa3G/JImek1aDcvIJd2HZeSmnJOsIp9o8ZjVTB23/tO5T1KMUjxXwxvgY5nmZU/Fgms/19B002ObbpTM7E4fmN5f9djA309XjOg5NT20raRF3b0yKJ3Ov70UddGuFukZXu3u51dtn8NipsYCioDnNZKu9Q4pYrp+f+ckixH1ayjWcVgjtRVOaWoXpZvHI9oeK/3tesX190xFh9EDik7MplQ9fT/3qRoeNDJFKpWmEW2yHrnE0/bz+FD6hnmUAhZN7a8+LHp/l1EEY4tp/tPcvUvwe7ayyLffZ3beC0Jb+zZt81FFYHx1RZBlQUn7ufsPx7gsC0h6wocWbpsoaR7PzN1fc4wb274XY3Sc2lQVNdv3yrue/t4rVYKZzesDM2aqHmsp5wRFnV876KKu484b1jLpyyIFySs1fJDVPe4+Zotrle7tygsPet09XdqnaM98RdIDKeA4pnnULfLIP6AYNLGW4v5masu5craiU3hwwMX9UvWMy+IcTh3Kn1B0LE3tco+WAuw7K9ZFuEIxivZSr8gPPic6I6xnWjOrXrupLR3nDe6+vsXgv+8qgvpnuvvKNdv/SrF2VnnhwcO8IW2o9UwBZ2aXKdqnh0haUpEmYx13rxzM9Hwxs7kUC4E3DoKyipm/7l4Vsyi2z1lYvbz/W5QC2V4zaMUiHeMbfSgf/GKKmcNtA7owgBHM44CZ7aIIFnYNGCzl7uU8zD8ys9rFUqx6Je9Zqi5GycKK0VadRiRb/xxPvad+K0bGTZH0P+n3/1P0SNcGmFNP7e6KYPY0SQub2RHu/s3BbT1NB6tr7DWUa313/1jpeS60GH1WySOtxFGKwGQftyhGRkxK5WycXuMdU30UbGh0fHnqd9Po+MJqqpgy3ufYbXzkiL7H1Dyi74uK1BBvV0wJm6kY8dSUT3pTxRS1uSWtaLGYxEHePHrsaXd3S6uZpxurptdxl0VKhcHvSW3+MM/o7VWM4D4r3UTULiKZw/NHNRX736kO047qAsgdXGX9pr7LRqbVWFrNaTVWL4LLqaz/sBhp3HSMeRSjuFbQ8LzYIz779NpPtDmQmzLTRDNbz92nSpKZrSupyCM+bGETG5r6XDmdu+EYxei8CRoakTfWveK7KOrvx1JZD1UEXJtG4swws/Xd/Ya0zxvUPlPmtQMB6CssFmCpM0Ux+qS4+X9AMethzALMivd+bcWo5UcVoxp/5RU5bcu6fn/nsCfSdfVZM1tYcfO1bMs+O2nkaO0PVzxW2FMxSv/TivbA2zW0gnqdvp/7pMEbTEu5hlv0WS1einN8LUlKQeWnOrS/OkvXxAtSR9M5rTuMQrqh/biGpkBfKemH7v5MzS6dZ+dZzUKjhbq2geWNku6tT/s2lbcYpX6VxnAUW4XLJb1DUjHLcD5Jl6hmBllFh22XxUOvsFgH4ucaPghmrBc86zv69TEz204xis8Vo1ofq9m20DdVwvUa+V2teqzJKmoYvZ5sqaGOu52Ljrsex+ji7ZJe4+5FG/pEle4Lx8j5Gj6S0yX908xe7+51I01nmtkXFYO43pza0nNVbWj5adC2VgRuD3P3RywWtN27ZtvCWRo+wvvKlu0l6Zj0ndpP0WG/oJpn3hSd7ztK+rti9Pbe7v5Meh9+p4HUfnWdEWqeRZRjsqQPWwxs6pLW7AkzmzwQ/G1s46jfDEUprj8npn1M0j/U0jaoCyQ3uFURk/msYlbEImpPx5iT5qWXgWvkBMXn35gy03rO/E06py2x6vSlRdtoQcXnU+XrinSv5XzwBzSUCTUIMI8Py0n6oZmtoLihvFoxirnuovdQqiiK3t4P/f/2zjxclqo897/3IIoKKArEARlVCCoig4CigJhoonEA1DA4IlHMVZyTOIEkXsWAChgZNBAcr3LVi+gVB0RADygeRpmMkCgOOCByDyKj7/3jW3V27z7d1V29q4d99vd7nvOc3dVVXat3765a6xvel9DP68c69NaUqWvTbKz1zJAaTxqh9buDDcsk7J/KGO+WNKg1btsSKD6QaOv+R+L33HMCXmg62fuFpHcwN/E6kMGtZ2cr9Gu/UE2s6lAYLhwO/IpYTFRO2HVaod+hmDgRTsOD9JhOJarjq+qqg8q2QdXxpxFVWlUy44Cy7YV9jxiNhwFPL8mMin6Tl11K9cElALZvVlRM1nEEUW317XLMpQrzpDo+J+kk4IElSPkKalqNFS039yNa0j9GTODr5B7m0WBS8gGi7fCKYf6+Zhk11/tdrfWdwe3fTWU1RtGiPaOMewUdC+IBnC3pAzTTj5sErwROUcgVifj+v7IkWN7btW8VHO7Xzt2Pq2yf3rlBUq2M0giI+e3V1bW1jh2JgF41Sd8UuLb6O+2z0GkalN7K9osU2pHYvk2q1wRqiu03lLGsRwRWTyW6lu7T5nkmxA8UrZAfJb5ft9JnjlN+pwcQScROSaT16L/wwPZF5fhlhGnUMPqGQ33uitbM1xAa3Z1Jl/UImY1BDLXoXuD8qykXS9q5+r2NkROIBepHyuMXl22v7LP/DyR9luG6844u/+9DfDeqOd7+xFysH009TEal0fxWIUt0BLGQr4oB/rnHPXShrOMOCTvbtyq6MvrRnbC9eVDClrn5eGV2V82Jh6poa0BV6diZCK47zwFEkurYst93y7Y6hpJKWMj3V3OdZ9Xv6UagryFz4fYREndN+TFxD61a1x9RtrXJjkRA60vE+382kWB9laTTbfcqCHoR8bkdbPtGRRdkv3VjYxk0iPt653O2f0kUEdXxO8LgfWhvlRETSxsA+7hLJ7n8PTy7x/6TSEZABK6b8Grg4yX4C9EBOigxfHOZY99CrNWqYG1PSrzm8eU7guu7SEaVsturfOZ/oshjds0VejGKzEtTju74+W7gJ0MUpT2f0vkLYPsXZR5aRxPZklHkS3FUU3+VuXtLq3rwS4kMMM8Atg+HVVUqhxDZyw8xVw3WzSuIjNoHiS/QcvqYxhS2o4emjO1X141LzSuSh9V4egaxmN2ECIJVrATeVjcmRjMGXLtUuDwP+HDJwA4KuDXVxdqfCP5WWeXzmNPi6seriBbouyXdzuCby2FEi3SThcCLCW3RfYF/VRjrnF8FFnrQqDq+g6ZVWo0ZITt+l6Its/pb2YjBZnd3eXVt59pjbB+tqJL9f0Q29l22v1FzyJNsb6eQ0Xi3pGOIhWHb3EC0KS3q4HKhkd5vmYR9tPwbljts31l99gpZjbrf3ShatE214yC6M5rqx42dEjR6XDVp7wp4f65r31G00yC6EE4fYttCOJWoqu7Uth8kuTT0Z9iRHFmbuaC0CWOqa2oOvbPMCarr11YMn5QYdmz/g7g/7Ehofp7CItObk/Rkh9TUG0ol7omSzgLWt91v8bWcWMRvyHwd35XUVNRL2on4e6m0Vm8BXmF7Rc0Qh01GfJq4zr2XCBKuGpOH8zIYdtHdOf86hrkA1TDzr6bsAhwo6SdEBedAA80R2dnzW8q/Jemymv2H7s6rErqSjrG9U8dTZ0qqSxA19TAZlV7z27r9/xcxP630Qg8kik+e3vK4/iBph6rKt3x36qoGR0nYfrvHttbnO25udPffNNfL/3kpVPgL4ChFt1MvA9GR109u2HlWEpqXD5u4WwDrAVcr5IEgugx/UCX/PFh/fhg2AXaokh5lPfEVInG/gkgIzaMElj7Q8fin9Flv2D68JB6/anvchucvAj4k6fPAKbbr5hHAvC6yTm4BVvQqZitrp7+1fUSv1+tzbRuli6gx3QHvfnS9548zp/f+B+J6VxecPZ7VuwF6bavO9WAiBrA7YEVx15G91uu2dy//D/V97Eg+bzVC8vlu25b0XOL+8O+KrvnWaFD01Emjzt/C0MbqLt3b6iNf2r2/pG0c3kbV53tD+f9hkh7m9rti1ngywDwDKCpfn0yU7V8CvJmaRV65uDa54W5ATKirRcq6ZdsgmrrODmUe4oW1fvcyBhykBXYSsXi+DDhPobPaN7tYGHayB1CZ2R021DuYO6apzMANDA6md5/jv0rw+s7yby+K83ofmlbHV4zSMt6Uptnx44iA/8aS3lOOf8eAc1wp6QCi/f9RRCv08roDJB1l+x8IPbTubb2oNPJuk/Qw4ns5yABmFK4Hvl2ysZ1VWq3p106Qp3u+7t0VmtPHW81FWaNpgp+rBrIatj9eAgxVFdM+HqxF27SNHUYzDxk76pL7qIIarpF6KUGGtxPB1U6JkO4qy78C/hp4uOZLPK1Pl/zGQrH9AYUJWaVt/3L30bbXXNtdz8rVPoHAXpU+tZSF/YmEDM4jJH2KmCO8rOlrDWAdYgG9okpAL0KOI4K4nZIP/113QJlD/YTo8GjCKcBrbJ8PqzQET6Wmi4ghkxEd1VKDEtP9jh9q0b3A+VdTnjHm16+4R9JWLsZTiq6jvp1tbt6dB3B/SVu6mPJK2oK5gEUvmlRJL4Re89u6eeJDbXfKvf2LpBe1PCaI+fDpkqpOvocSgbF+dCZsRczXBiVsO02+1yGuta0H9UsS9XAGdBFpzpS4J+4vRwhDSiUs9Psr6Tl0SMm4RtO/BICe6KgsHyZxNyq1Ug0tsTHzE7R3AX9m+4+l8GYVGrHCtARX38oAeYCFYvugEsDdnygCMnEf+oz7d9XsVP5Vc9qqgvvV6lHB7ZAhvFYDZBi7GLqLaEJUa+ytiaTFGcRneBB9ukYl7UbI+GzUFaBen/5FfzBC4k5REb8aPX7fC0k+Dy3zMioaTQ6qV+fvoIKgXrIl/YrlKoaVL30jIZHYyzh4HF0xazxp8jcDKHTvKlfqcwlt4jqju42ISufNmb9I71lZLOnlxOTo23RoyniAvqnmDLIuLxWXaxPVr7v22b8yD3kcUVXY0zykTyZ1FYMCYIrKwlXGgO6vs1f7GnULakUr3zMJeYH/LJO9x7mPYZqkRxOJgc2Z/5nUGUicbXvvQds6nvt34n1/hSEDhpKuI/SzqmryS13TVlUWJ8cTC++qOv51gyYYkq4uY5tXpUX8XbdSsaQ5k4oVRKB8JXC17W1qjtmG0NAVYXhXu/gon/vbicomAV8j2kf7Gqeot9lZncnfO4nf8d7AvxG/54/abnWSrajQWA2PXk06NRTVaId4vt7vxxxmXpe4mCt27P/gjofrENXFD6r7HZeJ18F0fPa2m1RAD/M+riLMbIbVjkMjmIdMgrLYrOQ+VgVzbPeaoFXHXEssmq+gozOgOzimaOfbnkhsdn5mK4FzXKrcJk1H4qJTxxHmPsc2TU2vIDo2di2vf6Ht37b1+msKki4kFsrPo4dzea+gzqgBhD7XmlZNnyaFQl/zVOI79VEiOP+P/eY4CzzXxszvgmtN/7G8/t7Ee7me+Aw3IxJFvUyb0ZzXRNXyPNBrQtIzgZO7zvEq21/rs/+pPTa73zx9VEqibz9i7rkWUQixlu139tn/A0RwpQqC7Qc80fabWx7XC4j506ZEt80uxHqgbyWYFmgeWn4XX7O950iD7v+6nye6iKo104uBx9vep2u/qu3+yfSQJfSArtEhx3KQ7U9KehO9k+h164H3EYG2ynB0f8J4s2/ls0IP+cMes8yNQvrjicR7usgtt6WXeffzmZPl+huiWOkY4GTbB7Z0nvcRa65uve5hulCanuvBxN/i64nEyiOB49zDoFhh7vfXnqvgXpdYSz6TSDCvZlBcjnkCcb3ofC8DC9wUkp/jSEY0pryPZ1XBd4UUw1dsP7XHvnsQ865XM99HaCVwpu3/7HOO1Ux21cfsuvP5jofrELIN19p+zFBvbAjK9+oA4jt1fglq7+kWjRc1ommuopCnc73Vt/NXUVH/OtsfbHiOrxH390750qfaXi35XdaAuzk64pIFkgHmGaFkI59MVFG9APi1SxtFj32XE1+Y7oV9z2x2qYaqbkJHEEZxD6mCNTVjauQ6q/kVbVWGzO6qaOsX+Op4H30DYArZjtXM5AYEADsXUh8jbpitLqRKAOxEVv9MVmudLe/hfoQb757MBSvWJ4wFewZMRwkYlve+O9GmdA2RwDjPpdKnLUpgui/dAaQRz/ERogXwb4kM5q1EwHyUaqQFo462Jebrxa0HLO83YS0Lr7Nsr9QQbuHJqoDyKUTSqtL7PZjQkn+Wh2hJlLTC9o41zx9m+9hB2xZCv+9J3fdDYTR5GmHoAUU/btoT914T6iGO+U6/+1qf/dcmEnab2r626RjHiaKa+VHMD5yN0irY7/UnsrBf7EjakKgSOooelXCDEulDnqMKIL+EMCv7DDH/eBGhUVqbNJ9FJF1WEnTPIBbT7wA+0WawXFEteQzhnfBrIih7dZsL6I5z3YdIckMs0uuKNL5BJN0/UTYdBBxou9Zropyjmp9dU3eOSVESfb8ntCyruaf7BRoiKkrtAAAgAElEQVRLUuX+zCX4ljEXPOqbXBlhXFVhyu6EIebRhHzYLl37re/QkO7X6jx0YE5hYnaR7UcuZOw9XvdS29sP2tbx3IXMlyWsLc5pOJZX2T5pxPXA5cD2VZFJCdpcMiDBfQ0RuBybzI2iOOldhIaxCH3YI22f0tY5ynl2Yi6p9F3bbXdZdiah59Fy8vm5RDfTIwnph9Ns/7oUyFxle/Mex1xDFEndVR7fB7jM9ja9Eqdln546vf3mOWpYNDUpSmHDdtX1urz3y21vXXPMZtW8vAQe13W9rvKCE3dlnvEa2/28AxqjkJ643VGR/mji/vVVj1CYV3OO79quM+dr6zzft/3Ehsc8iPndJ+cB7+53X+n3XUiakwHmGUAhJ/EU4qa6EyGFcL77VNvVTWz67H8CMZl8mu0/L5Owr9veecBxQ1Ukd+zfuKKtKZI+RwSKq2zUAcADbfc1fupaSL2KcNFteyFVG7zq2vcwItj/MODnsMpwYyWRSf+3AcevC+AOA5UhzrkuodP9ZkIHdq2u54/reWDB9a19E2dc2fEyAX0bq1eirzaZVrTqbEDDtqVhF14LRfOdfSsqY7yT6pIys4p66/322q/zu72MuK4e6vk6nd3H9KpEb2WysZBFtOYq1LYiDCpuoUfibtJIOhk43g3kPhSVhvsDZzNE27ikvyG+H/e2vUUJth/pdjQZR6bcGw8jdB0vJaqMl7e5kJrEwn5NQtLjbdfp7i7ktXtWwhbsmk6lWaXjPnQs0Sr/xbYXVyXx/jTgm45uuL2Ag2y3qgFZAniH0tH6T9zjei6imwYMy/P3I9poN7N9iEJCa2v3kRjQCFXSozBKom8SaK4D8r1EJ+Cne/19Sfqy7Wf3CMwN7ArRfPPftQjJvCNtf7jl99Koi6gEtHar7utlzXVhXUCr4XhGrea7nKherMb1IOK7XxdgbpwUb0r5fT3JRa9WUZm7vK3f1yRR+Cb0KoKq0x9veo7PAv9m+7yObUfZ/gdJe9s+u8cxY6vg1ohFU5NC0tsJCZpOn43P2u42o+485tNE4vUe4CLivRxr+1+79us0zrw/c7GPtYBbmybsNKDquSmKjt+nEGvV7xLv5c6FfN4dr111cOxBGOAOlIPS6kajq55iQIJT0geJ4sXu7oCBxVll7fgnDzBmlnQ0IevyBWeAdEFkgHkGkPRl4iZ0PpF9r80sKczmlruIlg/x+pVW6arJXRV0HXDcFrb/a9C2jueGmuhKeqvt96uPXlldMFPSVe5q5em1rev5SSykjiAqdL7I/AtsXeDoXcCHSuBpYCVrSUR8gjlR+98CL7F9Zc05jiEmOusSchffIZIX13ft9zNCGmIDokJyHm6hCmxUtLr4/jyGubk0ONdQLfxdxzzd9je7tr203+9s2IXXQil/7xsxp6f9IqLy10Rw/sVtnm+caEgNxI79z2Hu2nI3oVF5tO0f9dh3fyJRtTvzte/XIyYkCw4a9lhEd7owDVpE96pQazVxNwoaTe7jk0QFxZXMfb/s/vJOK4gA1bc77l2tTsBHoQQ2diaCBtsrpHj+p7taphd4jrEv7NckSnXOCYSu5mMlbQc8x3adOe+SRSHh8HBgC8LbYC3iezZUonzIc/zA9k4l0PwEh0bpwLnnCOf5GLHw7JQwuMd9KsEknU3RLC2b9ickNfpe60tQZwUx53psCTgv7xeU1ohV0k0ZMdG3Hasn0VvVhi7rmp8TPiY7EAZ/32/zs++6Rt5NGCu2riWvhl1EClnCI4iAWyVL+G7b/9HimBpV80mrOln/uWtc/2j7s3XHjhtFV+6etu8sj+9NXIueNM1xjYKiCOr/MSdDcgDwANsv7H9U43M0kuXr2KdRBbekXYkk2Z8D9ybuEX/oDgJqgUVTk6CsH59SHp7nPj4bHftfWuZ2B1LkowgpkV7FRgIe4YbST5ovF7qsnOfB7iHfMCod8Z/XAvctsZdW7sGak4HqXtPAeOSgeiX67Xop0qr7tdLjrjVm1lyHz92EX9IwetJJDzLAPAMo2gi/7Bpt3K79qy/AHYRRwSDdwO8RovUXlQvNRkQFc21Aq89NrG+l7rATXUk32X6wpNfTMJhZAhQf9nwzub+3/ZKaYyaxkOoVdB8UOGpUyVomYW930RWUtCcR1Og5CSs3vYOIz/pXA8Z/FdFm/FXmZ6CrN9K6ftiwSDrZ9t91BQ1h7u++teoxNWzhL8ecRwTM3kwE8j8G3GG7p/nkJBZe5TwXuatLodom6UqPoU15XGhIDcSO/St9wm6t3HjQ0T5cFqlb0KMSnWijm6r52bCJu0kzSgBU0rVuUJUk6ULbu3YlRwcupMZNx/foUmAX23cstu/Umoakc4nk4EkdfyutfHe0QN+IWUTR9rs9cL3DVOzBwMP7Bc1GPMc3iWqx9wIbEkn4ndxyO22vBXPdIlq9vSZea/uGXvuXY6pg+VCFGhqhSroJmqvevRch1XM9QyT6JJ1CmFIOleRbwPiG8jHpVzhQ4RmQDtMIXUQK7dNqLv89t68p3Liar/zN/CWRHIWYd7Y6rlGQ9HGiU/YM4m/6uYSu/uWwuK6vGqEIqsFrV7J8WwKdMofrEQHj1Qyvu47fHXiU7VNLHGBd9ykYK/v/gJAkPJ3oAnwJ8Gjb/9Rn/0ZFU7OMpCuJ++OniZjDuXVzz1EKHzRf5qYqhPm8W+wulXQJ8TfzQeBg21e2XaShkHM7zGEGiqJj45i6e4qkT7iryKnXthbGdjkRI+o0Zv7ItNcQS4F7Dd4lmQAvBD5Ygiin2L6mbmfb69U934PjiMrajSW9h5govaPfzopqrMcAD9BcCwREi8g6vY8CogLwZSXYWjfR/ZWkhxGSDXuyeuarjh2B5ZLmmclVk+0+F42DiRvF2sRNckNC8qM1bG8xwmFVNeKzCJO3ryiq0/txf3eY1tj+tkJfqd+YrKgW/0S/fTo4kWhb35Ko0qmoMtGt6Yc1xfbflR//mtVbz05o+XSHK6qhhmrhL+xBaEJfWh6/y/ZnavYfyi28BdZVhwO0wtxh3fLcnWM43zjZyva+HY/fXYJ7/diR+a7Rf0Poo61m0FECoj8hgg1jp0y+urV7z+t/BMslPW5Q4m5SqMh9EAH4piyXtK2HN2+6UtIBwFqKlvTXEcGgafMzhVv6/wG+Ielm4m8omR73s/39yKuuoq3kUNM518zjqCb+FbCtwjh5HFwG3EY4vR9IVICuW3vEaNwjaSsXbwlJW9LR7dGDI4kK1JvL/g8iEvx1QdY7Fe3vLsdsRcccoQc3STqI+VXSNw3zZobk2SMet2sbwa5B2L4N+ELH418Cv+yxa10njpkz/ZsmZzDXRfTzQTtrTnf2jB7b2qJKVHQGuQf9vi4mJPK+1OI42uA65gdMq9/bYrzuXixp164iqLa0nj9NFAE1kuUr4zicWP9uTXRvrE1ITdYm+2z/WNJatu8BTi0By54BZmA/20eWIN7TiGvqCcwlWhYTJxEB38uA80pSsk6a72JJO7uBZ4YnY7j+euLz+mIJLm9JdDC0yXZVcBnA9s2SBnXkzivGKHOQgUV/kp5Vju1cP9XJBd5TBZfLvt+R1Hde2Os6PYZr95IgA8wzgO2DFCZ/+wP/IcmU9j330YuR9HDCMKWzxa1nkML2pxStxnsTwZbnud7tc2ti8vpAIjBTsRI4pOa4v6p5rpMTGD2Y+cwhz9HJK1hdL/MCooKlNRQSFtsy/8JX59T6c0knEZWsR5UqiWU1+19fssKdLZfX1+wPQ970bB8HHCfpBNuHDnjNaXEa0XpW6UUfQBhctNZ6RiQ9tiEmX6uqe+hYKPVgA8L9+jrib2wzSbJ7t4c0WHgtlDcB35F0HfHd2gJ4TUlKTE3yZET+KGl3z9dArNO02wTYwXOu0UcQrtGrVXioVK1rThts1VO03Bql3tq9F1C/KBw2cTcpPk3cH1bQQ+6D+uv3rsClDd7LawnpnjvKeb9GdHtMFdvPLz8eoeiseABw1hSHlMBvS9CvCgDuR0vX1QktBCeKpKMI2aSr6DCHI0xw2mIvR2fenyj3nFJR1DZvAc6RVM2HNifu5f3YrgouQ3RoDbEgPpz4jj9C0qeIwMzLavZ/BTHH/CBzVdJ1+zfCo0vlXNAwyTdWbO817TEMwSa2B649NKdFu2FJJHdq0T68zQGN+HvbBThQ0kzp+q9h19dRiqCGwiEJdwsRK2jK8wmD+4vLa/1C0qAA/m0KuZJLJb2fuJ/WrVGbFk3NMicRCcHNCd+mZYS2fz8af7fU2ydnFW7Ba8RhyHhu6SjBIY/ZtqfSMkkbdCVse8YXJf0T4XN0X0mdpol3ASfXnUTSicT1dS+iU3g/onCojnNLnKXTmPnbKp0zVXX9JK/dS4WUyJghFC2KLyYyTlcT+pbH2T6+a7+eC4M2LkZd59nN9gVtvmbX6zcOZqqh3m15fhJ6mYcT1djbAv+XCLZ/x31kEsoxQ7UQduy/AfBuIuAEUcF7ROdCqccx1xDVkv/NDE0oR0FjbD3reL1GLfzlmB8B77N9SqlwOopoA56afpyi/XlXIghYGWxc60Vo7Acg6fFEMmFYDcTGrtGTYJRrkdYgLd6m70WhGfh25uuFLsrrVzJeSmXOyYQc2M2ENviBbXxPtMhMcIeh+xrZ8mtXrdxbAT/ueGqoVu4RzrcOkVDdm6g0vQj4YL/7nUITes+uBfG5HtA2XObouxLzqAtt/7Zm39OA13dXSbtlKYqmSNqDMPe6kdlIWFbjWofe5mhTn7NoePm/iWnRqqEvRTlmJucSWl3+DgAvTvPUnr/jimn9rlU0uzWnyXt/4IIBAdDNgF8R+stvIObfH7H94z77T0T+bxKot/eJ3UeuZZTvlsIn5yFEJTlE4uBXRGdcFRxeEJJ2A/6dkEPZtKylXmX7NQt97Y5zvIQIGp9eNr0AeI9ruqcVHkTvBx7NXFGe+xVKlmMqWdHq/3WBr9p+Ss0xVbV2dX2prsnzJDYnee1eKmSAeQZQaDC/nAgofxw4zfavSwDyKtubd+0/toVB13neD/wLcZM4i9Bte4PtT9YeON4xNdK7LceMXS+zBI4eD1xi+/GS/gz4pFs2dBlhXDM5oRwFjaC/PcI5TgX+tUl1j0J6Yg9gC0d72KbA5nU3ykmgMRgHToMSLN/P9ucUnR44JBrqjmnsGj0JJnEtGjdqQTNT0sbM7/ToaY5S7nVvJvS3hzLdTJYWWl0f+b5EtdEfoB39TkkvrXu+LsE9q0j6KvAC27eO4bUfQHT2NG7lHvF8vYy1Hmj7BX32b7wgLscN3TnY6/47C/dkST8G3kgDI+NJUD7DlcwFW2o/w0mihoa2moAWrRr6Uswykjpb49cB9gXutv3WKQ1pjUPSm4lio78grsuvAD7dXcC2wHM0KpqaZTSCf4NG0Li2vdOgbQtB4cG1H/Alt+xN0XWebZnrxPzWoDW0pEOISup53Zx1SSVJ37O9i6QLgX2ICvMrbT+y5pjDuzYZ+stqTOLavVRIiYzZYF+i2mLeRNX2bZIO7rH/9UQL/1gDzMBf2n6rpOcTFbD7EO2TUwsw01zvFiajl/lHh6bh3SUI9mvgEW28sKQP2X69+rTTuKZy3fZPet302hjXpNCcmc3azLWemVjo1eqVj0DTFn4Ifas/ETfXI4lF0jHMGalMi7Ml7Qt8wYs4k1i+V28FPjcosNxxzHtKAKXKbL/cA1yjJ8SaoN07smZmSaYeQ1QJ/Jr4Dl9Nlx5bB7+xfeaI40yWBlWb79bM111/MYPbJ4diMQaQh+A24l7X7Tew4GpsL6yVexQe6/mdTOeUoGBPbH9cYWBVXav2GWJBXHUOzjPHo7+kyNBtwxPmN549DV5o+BlOmGHl/yomoUXb1JdiZrG9omvTdyW1cu1OAttHS/oLIhG3NbF2/kbdMQopuiNYPanWUwbNk5P/mwSNvE80msb1/SVt6ZCtQNIWQF9fpVGxfYPme1PU+ROMeo6riK76YXkdc92ce6l0cw445stl/fR+5uRVPzbgmM4E+jqEvF+dROyapCM+VWZhsrPksf1SSZupyD8o2uzvZXul7bOr/SQdT0xox7Yw6GLt8v+zgNNt39J1kZoGjfRuYWJ6mT8oF76PEhe+Wwlt1TaoqmqObnrgiDe9WWNUM5tRGEXjexdHy9klsMrg4N4tj2sUXkVUKt0t6XZoX1N4gnyzVGB0O6b3rYYrGeeZyjpP6Fo0Vrwwzcx/JpI437T9BEl7EVry/RjFdDNZQrjod5buptV019s8V0nQ/gOrey0sulZuQiZhFgONo9DYWGuEBfHzgK0bdA4eQ+gdz6uSbnC+cXGJpE8DZzJb19RxmqMtiBGquyehRdvUl2JmKcmXimXEmuUBfXZPRqQElGuDyl38OyGNsYIxBCVnkY6CpnsBL1fo+g9TbDSKxvUbCD3g68vrb0as29rkBklPAixpbcIDpi7AOilut327JCTdx/Y1kgZJGB4NHEoUDl1AyCidUHeA7XkFMZKOJrxc+rEm6YhPlQwwzwClVeDvgAcRmnWbACcSenKdVJOtFUxmYXCmQsP3j8ChZXE1bT20C1ld7/a7hO7iQNyCplGf1630jE5UaDet7z76sCO8dpWp2972sZ3PKXSD6t7TKDe9mWLCrZujVPreJWmt6tjyPflT/SHjx/Z6ZeL+KDqCIYuUFxG/327dsDpDuZmi/I1caXsbGN+1aFKUyeqhzGlAfhs4yfZdNYfdZfsmScskLbN9jqQP1ew/iulmsjT5M+DOjsd3lm1t8ikiyfUs4NXAS4HftHyOiWD7tJIIfXTZdO2A7+4sMzZjrQ4adQ6OUiU9Ie5LvIe/7Ng2C9fUSXyGk6KpgfcoHAqcppCjEfA7WjSRnDCdhsF3ER2zvbp3k4ZodfPqVU8xuODkFttfHc/IZpZRC5rutG1J1TpwYCWy7bMkPYo5n5xrGiQwh+XVwLGEUd3Pga8Df9/yOUZhlG7O04gO4coT4wBCVvaFDc57PyLG1o9JXLuXBKnBPAOUtqYnAt/r0Mi5wn0MR8qF63bb95THawH3Ke0pbY/tQcRN5h6FvtL6tm9s+zwNxjOTerfQTJ9vxNe/2PYOXdtqNf00grHDUqYjey0iKLsFsfDuq5Er6UAiALoDcQPcD3iH7dP7HTMJJL2SyFZ3alwtt92duJp5SjKplwHQoqrYkXQG8Fr30RxeTJTK4rWZrwF5j+1X1hzzTaIS8L3AhoRMxs7uY4ipEUw3k6WJJqC7LmmF7R1VTGbKtotsT1sOqTGS9iS+u/9N3O8eQRinTn0u1RSN0Viro3Pw4YTPxrg7B5ck4/wMJ40mqEWrIX0pZhlJLwTOcuqezhSS3gesRSSfOq95+bl0oRE0rst14o3AZrYPKcHmrW1/eRJjnhUUxrMPIK4Bd9bsd1WXjFLPbV3PV2t6iL/ljQgz1A/32X+N0RGfNlnBPBvcYfvOSn5C0r2or6Q8G3g6c9oy9yWyUkNV8TZkG2DzMqaKj4/hPMMyk3q3mtPnu4oOx1n66/M1ee39iUzdFpI6K9fXI6oW6vhcycY9sFTKv4KQ8Uh60J3UURia1brt2v6UpBVEx4GA59mehRakw2iucTWrnEZox3Vmrk+jWeZ6FtgAuFKhL9gp9dFXR32G2dnz3cG/JemyAcc8l+iCeQNwIDGp7Gm2UVguadsZqfxLZhhPRne9qvD9paRnAb8gOs8WI8cQPhvXAkh6NPAZopJ0UTHm4OOkOwfHiqRNgOOZk0k7HzjM9s+mNyogfEK+2blB0ku9CPXPPQEtWnWZm5b14y3ACtuLTYv5HQ4T59Q9nS2q3391TxADfDaWMAa+Q6xTHs0QGteEbOUKYLfy+OeE8WxrAWZJpxHX99+XxxsAx9h+RVvnWCgNujlHkVHqrEi/G/iV7btrxrIm6YhPlQwwzwbnSnobcF+FCP9rqJ/IruMO52/bt5asS6tI+gQh2XEp84Om0wwwz6rebVN9viYsJy5wGzLfYGslUCvD4RGMHZI5bF9cbmKD9ruG9g0HF8ooGlezyiwbADWhMpmoECHzsxi5R9JWtq8DkLQlA3T6bP+h4+EwgYNRTDeTJYrHr7v+L6Ul/U1EkG594PVjPN84WbsKLgPY/lGRvUk6qAKc/ToHpzm2ETkV+DShCQ2hgX8qUXk3Td6lMCV+M2FE/THimr/oAswTYqfyrzLBfTaxHni1pNNtv39qI2tO6p7OJt/usS3b3nuzLlHA9TtCRmsYicytbL+oFJFh+zapdaOr7argcjnHzZL6dj3POI1llBZT58uaRgaYZ4PTge2BKwiB9/9LfcbkD5J2qNpUJO3IeMwddgK29WzpqMyk3i0N9fmaUC6QPylSDL+wfTuskg3YhGhx7UmpcvhsBpWHo6sqZBnRqveLKQ1noYyicTWrzKwBUEPu1Z2tL9/jxchbiEB/p0HJy3vtuAAdwFFMN5NkXLwA+I7tHwJ7FQmxo5kL8iwmflBkbj5ZHh/I4rymTopJdg6Ok41sn9rx+D8kzUKSZA8icVNV377L9memOJ5ZZxPC1PRWWGXo/RXCE2EFsJgCzKl7Opvc2vFzVRwxC92ZM4fDbPjdkrYjupnPlfQz20+vOezOMv+v4hlb0X4MYZmkDWzfXM7xIBZv7C/XA4uIxfpHtqZxEqF991FYJYnwTvq3SbweOF3SL4gF+kOAvx3DuH5YXnuW2gOOIzQWN5b0Hore7bQG06HPdxtRaTdOfb7PMX8xcw+RnKiTB1kP+LqkKqt6uu1ftTimNY1OA8S7iQn756c0lgVh+/nlxyMknUPRuJrikBbCojYAknQo0ZmypaTOyob1CJPSRYftsyvNuLLp2n4dHLZHMhbN6oNkxuiuBvrdIq4GOpQw+6nmKOcDH5necGaeiXQOToCbJB1EyKEA7A/cNMXxVGxAeNFcRwRPN5OkGStwmSU2Zn4w6i7gz2z/UdI4OinHyQuJ4NHRtn9fdE/fMuUxLXlsd3bMIulo4GtTGs5i4dfAjcQ1deN+O5VK5ROJNdkjJH2KkC16WcvjOQa4QNLpRLxoP+A9LZ9jIuR6YHGRJn8zQGkt/t/ERO+pwEuAZ9u+pc/+9yGqdlct7IFlbcszlKDU9sD3mR80napeaNGSrfRuz56m3q2kl9Y8bdutyYlIutT29l3bLuvSQe13bJVV3RcYlFVNkplCi9wAqLTVb0CYf/xjx1MrbQ/SUZ9JSjv9ocQ9C6Kd8iTbd/U9KEkWMUVjfM+uaqBzu7X7FwP9JB88BrPoNQFJ3yUMWqvOwZ2A423vVn/kbFHupccTup8mJNhea/uGKY/rR8D7bJ9SqvqOAnZyHwPYpY7CDO/5wBll098Q0orHACfbPnBaY0vWTIp+70W2Hzntscwakl5DJEo2Igq/PjfIO6QUyOxJSMGJ8Mv57RjGti2hm23gnPQ0SSZBVjDPALavl/S3RCv7TwnjlTrJiwts70BUGAMg6WKinb9Njmj59VphlvRuO/T5DrN9bOdzkg5r+XS/kfQc218qr/9cYNib0VBZ1aWOpDNZvZX/FqJ1+KRKniSZLLMeQB5ESRbeQiQR1xROIGSBqqrHF5dtr5zaiJJkvHRWA0FIZizKaiDWHMmHSXEYc52DAA8lkvaLjSOJjsnOJMnRhH7oNHk6sIekd9k+slRLbj7lMc0stv9ZYWpamTW+2nYlcZPB5WTBVB2C5eFaRPC0zpR5KfMI4PUNDTYvBra0/ZUxjalibSKAXf2cJGMnK5inSNfFGyLwdwulWri77VvSQ4CHE5p5BzB3wVgfONH2NuMec9IbSReXoH/ntktst9Y+W/SZPgU8jPjsbwBeYvvHNcc0zqouZSQdS/yuqvbRFxEGiQbWt/3iaY0tSWaJXt0Tw3ZUJMlipaMaCOBbi/V+2qcjarVtSSDpBUR7+KbAPsAuwDuriubFQq95adtz1VGQdALRmfk0239eqiW/brtOAm7JURICfVmsHVHJ7NHVOXg38Cvbd09rPGsakq4BHkl44/yBMZhYl0K3QwipRxFdDyfbPr6tcyRJL7KCebo8u+H+zyD0eTYBPtCxfSXwtpbGhKTv2N69hzHTIEOmJUfRyz4A2ELSlzqeWp9wk20N29cBu0patzy+dcAhEFnVw4g2dpPZy0E8qWtBc6aki2zvLOnKqY0qSWaPeyRtVa5LldTTPQOOSZJFTQkoL8qgcheTMoteU3in7dOLce5eRNXvCUSgeTExq6ZPu9jeQdIlALZvlnTvaQ9qBllBzOWrAqNqjaby85bTGFSy5rHYOwcXAc+YwDkOJq6tfwCQdBRwASGTlCRjYxYmFUuWphfvIsdwmqR9bY/NeMz27uX/kYyZlhjLCRPEDYn22YqVwOU9jxiRor29L9E2eK/wCADbdS1LNxIV718gJqCflJTZy/6sK2lT2z8FkLQpsG557s7pDStJZo63AOdIur483hx4+fSGkyRJA3qZRS9GyYdJUSXPngV81PZXJP3LNAc0IrMq83JX0QE3gKSNiIrmpAPbW1Q/l+TAo4B1pjeiJElGYUIBfDG/8OMe5pJTSTI2UiJjkSLpWcBj6JhYDAg0JmOmSJg8kZggX2T7xpZf/yxCQmUFHTeMbqffrmMuB3bryF7en9Dwbq0FZ01C0l8Tzr7XETfhLYDXEAZmh9j+0PRGlySzg6R1gDcRhqu/By4CPpg65UmyOChGnavMotOgsz+Svgz8HPgLwu/kj8D3F6Mk0CzKvEg6kEhw7ACcBuwHvMP26bUHLlEkvZLoTtwEuJQwCltue++pDixJkplB0huBlwJfLJueB/xHrmWTcZMB5kWIpBOB+xFteh8jJmLft33wVAe2hJF0MHA48C0iMLkHcKTtU1o8xw9tP7bhMVcAO1dBnxIUumgxut6PG0nLiEn6CqDSM782A2ZJsjqSPkfok3+qbDoAeKDtF0xvVEmSDIOk+wFvBDazfYikRxVD6j0AAAmcSURBVAFb2/7ylIc2k5Tf1zOBK2z/p6SHAo+z/fUpD22NQdI2RMJSwNm2r57ykGaWam4PXGh7+/K7+5+295ny0JIkmSEk7QDsXh6eb/uSaY4nWRpkgHkRIuly29t1/L8u8FXbT5n22JYqkq4l9HtvKo8fTFQTbF1/ZKNznAwcb/uKBsdk9rIBs2B2kySLAUlX2d520LYkSWYPSZ8lkqkvsf3YEkBdniZ/STL7dHiDXEporN4h6Urbj5n22JIkmT5FcuhK29sM3DlJWmbZtAeQjERlxHKbpIcBdwEPneJ4EriJ0F2uWFm2tcnuwApJ10q6XNIVRQKjL7Y/QOii/q78e3kGl2s5W9K+qgSukyTpx8WSdq0eSNoF+MEUx5MkyfBsZfv9xPwR27eR2oxJslj4WTGc/D/ANySdAaQpW5IkANi+B7i2eAklyURJk7/FyZfLxOL9RAUKhFRGMj1+DHyvTPIMPBe4vFQQV4HehfJXoxxUXOIvbuH8S4FXEW3Dd0u6neLMbXv96Q4rSWaOHYHlkn5aHm9KTGavIL4zqfOeJLPLnZLuy5yp2lbAHdMdUpIkw2D7+eXHIySdAzwAOGuKQ0qSZPbYALhS0veBP1QbbT9nekNKlgIZYF6cHA0cCjwFuAA4HzhhqiNKriv/Ks4o/6/X4jlSz2bM2F4vnbmTZCieOe0BJEkyMocTAalHSPoU8GTgZVMdUZIkjbF97rTHkCTJTPLOaQ8gWZqkBvMipJgrrQQ+WTYdADzA9gunN6oEwgimtJqO47WvIILMIoKfWxAmdKm51hLpzJ0kSZIsBYpXxK7EnOJC27+d8pCSJEmSJGkJSQ8BnkjEDy6yfeOUh5QsAVKDeXHyWNsH2z6n/DsEeOy0B7WUkbSbpKuAa8rjx0v6SJvnsP0429uV/x9F3DAuaPMcCYcRztw/sb0X8ATglukOKUmSJEla5+HAWsC9gadK2mfK40mSJEmSpAVK0dT3gX2A/YALJb1iuqNKlgIpkbE4uVjSrrYvhDRXmhE+BDwD+BKA7cskPXWcJ7R9cfnsk/a43fbtkpB0H9vXSNp62oNKkiRJkraQdAqwHXAl8Key2cAXpjaoJEmSJEna4i3AE2zfBKu6lpYDp0x1VMkaTwaYFxEdEglrM2euZGAzSuVsMj1s3yDNM2G/p83XrwwDC8sIk61ftHmOZDVn7ptJZ+4kSZJkzWJX29tOexBJkiRJkoyFmwhJ1YqVZVuSjJUMMC8unj3tASR9uUHSkwBLWpuQWri6jReW9AnbLwbeBXywbL4b+DLw+TbOkQTpzJ0kSZIsAS6QtK3tq6Y9kCRJkiRJWufHwPcknUEUJD4XuLwqWLP9gWkOLllzSZO/JGkBSRsCxwJPJwxzvg4cVrWlLPC1ryqvexawZ/fztn+30HMkSZIkSbI0kLQHIel1I3AHMW+x7e2mOrAkSZIkSRaMpMPrnrf97kmNJVlaZIA5SWYcSa8DDgW2YL4kRrUg3HIqA0uSJEmSZNEh6cfAG4ErmNNgxnZKQiVJkiRJkiQjkQHmJGkBSacRFcu/L483AI6x3Zpbq6QTbB/a1uslSZIkSbL0kHSB7d2mPY4kSZIkSdpD0odsv17SmYQ0xjxsP2cKw0qWEBlgTpIWkHSJ7ScM2pYkSZIkSTJNJH0EeCBwJiGRAYDtL0xtUEmSJEmSLAhJO9peUaSwVsP2uZMeU7K0SJO/JGmHZZI2sH0zgKQHkd+vJEmSJElmj/sSgeW/7NhmIAPMSZIkSbJIsb2i/Li97WM7n5N0GJAB5mSsZAVzkrSApJcAbwNOL5teALzH9iemN6okSZIkSZIkSZIkSZYKki62vUPXtuyuTsZOBpiTpCUkPQbYqzz8lu2rpjmeJEmSJEmSbiStAxwMPAZYp9repm9EkiRJkiSTRdL+wAHA7sD5HU+tB/zJ9t5TGViyZMgW/iRpAUlPt/1N4MqObS+1fdoUh5UkSZIkSdLNJ4BrgGcARwIHAldPdURJkiRJkiyU5cAvgQ2BYzq2rwQun8qIkiVFVjAnSQtIOo8ILr+JyBB+DLjD9n5THViSJEmSJEkHVZuspMttbydpbeB827tOe2xJkiRJkiTJ4iQrmJOkHfYggsuXlcfvsv2ZKY4nSZIkSZKkF3eV/38v6bHAjcDGUxxPkiRJkiQLRNJKwrR3tacA215/wkNKlhgZYE6SdtgAeCJwHbAJsJkkOVsEkiRJkiSZLU6WtAHwDuBLwLrAO6c7pCRJkiRJFoLt9aY9hmRpkxIZSdICkn4EvM/2KZLuCxwF7GT7SVMeWpIkSZIkySok3QfYF9gcWLtstu0jpzaoJEmSJElaQdKmvbbb/umkx5IsLTLAnCQtUC7iewBb2D6yPN7c9nlTHlqSJEmSJMkqJJ0F3AKsAO6ptts+pu9BSZIkSZIsCiRd0fFwHWAL4Frbj5nSkJIlQgaYk6QFJJ0A/Al4mu0/L62nX7e985SHliRJkiRJsgpJP7T92GmPI0mSJEmS8SNpB+A1tl857bEkazbLpj2AJFlD2MX23wO3A9i+Gbj3dIeUJEmSJEmyGsslPW7ag0iSJEmSZPzYvhjYZdrjSNZ80uQvSdrhLklrUVxbJW1EVDQnSZIkSZLMErsDL5P0X8AdzLnLbzfdYSVJkiRJslAkvbHj4TJgR+AXUxpOsoTIAHOStMNxwBeBjSW9B9iPcGdPkiRJkiSZJf5q2gNIkiRJkmRsrEcpfAPuBs4EPj+94SRLhdRgTpKWkLQNsDdRCXS27aunPKQkSZIkSZIkSZIkSZYIknYG3gZszlxRaXYqJWMnA8xJkiRJkiRJkiRJkiRJssiRdC3wZuCHdMh22v7J1AaVLAlSIiNJkiRJkiRJkiRJkiRJFj+/sX3mtAeRLD2ygjlJkiRJkiRJkiRJkiRJFjmS9gb2B84mzHwBsP2FqQ0qWRJkBXOSJEmSJEmSJEmSJEmSLH5eDmwDrM2cRIaBDDAnYyUrmJMkSZIkSZIkSZIkSZJkkSPpWttbT3scydJj2bQHkCRJkiRJkiRJkiRJkiTJglkuadtpDyJZemQFc5IkSZIkSZIkSZIkSZIsciRdDWwF/BehwSzAtreb6sCSNZ4MMCdJkiRJkiRJkiRJkiTJIkfSZr222/7JpMeSLC0ywJwkSZIkSZIkSZIkSZIkSZKMRGowJ0mSJEmSJEmSJEmSJEmSJCORAeYkSZIkSZIkSZIkSZIkSZJkJDLAnCRJkiRJkiRJkiRJkiRJkoxEBpiTJEmSJEmSJEmSJEmSJEmSkfj/rFLqGjgfD1gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20,10))\n", + "labels, values = zip(*d.most_common(100))\n", + "\n", + "indexes = np.arange(len(labels))\n", + "width = 1\n", + "\n", + "accuracies = [c[tok] for tok in labels]\n", + "\n", + "plt.bar(indexes, accuracies, width, label='Accuracy')\n", + "plt.bar(indexes, values, width, label='Frequency')\n", + "plt.xticks(indexes , labels, rotation=90)\n", + "plt.title('BERT (50k epochs) - mean_freq = {:.3f} / max_freq = {:.2f} / mean_acc = {:.3f}'.format(mean_freq, np.max(freqs), mean_acc))\n", + "plt.legend()\n", + "plt.tight_layout()\n", + "plt.savefig('BERT-freq-50k_epochs_top100.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "confusion = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(len(results_df)):\n", + " snippet = [results_df[str(_)][i] for _ in range(64)]\n", + " msk_idx = results_df.iloc[i]['masked_lm_positions']\n", + " masked_tk = snippet[msk_idx]\n", + " prediction = vocab_df.loc[results_df.iloc[i]['masked_lm_predictions']][0]\n", + " label = vocab_df.loc[results_df.iloc[i]['label_ids']][0]\n", + " if confusion.get(label, None) == None:\n", + " confusion[label] = []\n", + " if prediction != label:\n", + " confusion[label].append(prediction)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "confusion_counter = {c: Counter(confusion[c]) for c in confusion}" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'1': Counter({'keyword': 12}),\n", + " '1d': Counter({'keyword': 221}),\n", + " '2': Counter({'keyword': 12}),\n", + " '2d': Counter({'keyword': 78}),\n", + " '3d': Counter({'keyword': 24}),\n", + " '[CLS]': Counter({'keyword': 9}),\n", + " '[MASK]': Counter({'keyword': 6}),\n", + " '[PAD]': Counter({'keyword': 1}),\n", + " '[SEP]': Counter({'keyword': 19}),\n", + " '[UNK]': Counter({'keyword': 3}),\n", + " '[cls]': Counter({'keyword': 5}),\n", + " 'a': Counter({'keyword': 13}),\n", + " 'abs': Counter({'keyword': 112}),\n", + " 'acc': Counter({'keyword': 4}),\n", + " 'accumulators': Counter({'keyword': 7}),\n", + " 'activation': Counter({'keyword': 2}),\n", + " 'add': Counter({'keyword': 12}),\n", + " 'algorithm': Counter({'keyword': 337}),\n", + " 'alias': Counter({'keyword': 3}),\n", + " 'all': Counter({'keyword': 18}),\n", + " 'alloc': Counter({'keyword': 1}),\n", + " 'allow': Counter({'keyword': 32}),\n", + " 'allowed': Counter({'keyword': 83}),\n", + " 'alpha': Counter({'keyword': 812}),\n", + " 'alt': Counter({'keyword': 7}),\n", + " 'amsgrad': Counter({'keyword': 18}),\n", + " 'and': Counter({'keyword': 54}),\n", + " 'any': Counter({'keyword': 1789}),\n", + " 'append': Counter({'keyword': 36}),\n", + " 'apply': Counter({'keyword': 2}),\n", + " 'arange': Counter({'keyword': 95}),\n", + " 'arg': Counter({'keyword': 2}),\n", + " 'argmax': Counter({'keyword': 1675}),\n", + " 'argmin': Counter({'keyword': 11}),\n", + " 'args': Counter({'keyword': 80}),\n", + " 'argument': Counter({'keyword': 24}),\n", + " 'arguments': Counter({'keyword': 2542}),\n", + " 'as': Counter({'keyword': 65}),\n", + " 'asarray': Counter({'keyword': 48}),\n", + " 'assert': Counter({'keyword': 96}),\n", + " 'assign': Counter({'keyword': 8261}),\n", + " 'astype': Counter({'keyword': 5}),\n", + " 'async': Counter({'keyword': 78}),\n", + " 'at': Counter({'keyword': 26}),\n", + " 'atleast': Counter({'keyword': 216}),\n", + " 'attribute': Counter({'keyword': 9}),\n", + " 'attrs': Counter({'keyword': 111}),\n", + " 'augassign': Counter({'keyword': 11}),\n", + " 'available': Counter({'keyword': 16}),\n", + " 'axes': Counter({'keyword': 1}),\n", + " 'axis': Counter({'keyword': 73}),\n", + " 'b': Counter({'keyword': 56}),\n", + " 'backend': Counter({'keyword': 200}),\n", + " 'backup': Counter({'keyword': 7}),\n", + " 'backward': Counter({'keyword': 187}),\n", + " 'backwards': Counter({'keyword': 41}),\n", + " 'bar': Counter({'keyword': 7}),\n", + " 'baseline': Counter({'keyword': 27}),\n", + " 'batch': Counter({'keyword': 149}),\n", + " 'batches': Counter({'keyword': 20}),\n", + " 'batchnorm': Counter({'keyword': 26572}),\n", + " 'begin': Counter({'keyword': 126}),\n", + " 'best': Counter({'keyword': 792}),\n", + " 'beta': Counter({'keyword': 48}),\n", + " 'bias': Counter({'keyword': 79}),\n", + " 'biases': Counter({'keyword': 2936}),\n", + " 'binary': Counter({'keyword': 174}),\n", + " 'binomial': Counter({'keyword': 6}),\n", + " 'binop': Counter({'keyword': 106}),\n", + " 'bool': Counter({'keyword': 20}),\n", + " 'boolop': Counter({'keyword': 18}),\n", + " 'build': Counter({'keyword': 9}),\n", + " 'built': Counter({'keyword': 211}),\n", + " 'by': Counter({'keyword': 5}),\n", + " 'c': Counter({'keyword': 104}),\n", + " 'cache': Counter({'keyword': 5}),\n", + " 'call': Counter({'keyword': 1388}),\n", + " 'callback': Counter({'keyword': 555}),\n", + " 'callbacks': Counter({'keyword': 87}),\n", + " 'carry': Counter({'keyword': 7}),\n", + " 'cast': Counter({'keyword': 1189}),\n", + " 'cell': Counter({'keyword': 645}),\n", + " 'cells': Counter({'keyword': 2}),\n", + " 'channels': Counter({'keyword': 9}),\n", + " 'check': Counter({'keyword': 29}),\n", + " 'child': Counter({'keyword': 2}),\n", + " 'chunk': Counter({'keyword': 217}),\n", + " 'class': Counter({'keyword': 29}),\n", + " 'classdef': Counter({'keyword': 3}),\n", + " 'classes': Counter({'keyword': 34}),\n", + " 'classification': Counter({'keyword': 4}),\n", + " 'clear': Counter({'keyword': 9}),\n", + " 'clip': Counter({'keyword': 7}),\n", + " 'clipnorm': Counter({'keyword': 22}),\n", + " 'clipvalue': Counter({'keyword': 42}),\n", + " 'cloned': Counter({'keyword': 3}),\n", + " 'close': Counter({'keyword': 69}),\n", + " 'closure': Counter({'keyword': 17}),\n", + " 'cls': Counter({'keyword': 30}),\n", + " 'cntk': Counter({'keyword': 99}),\n", + " 'collected': Counter({'keyword': 17}),\n", + " 'cols': Counter({'keyword': 5}),\n", + " 'compare': Counter({'keyword': 430}),\n", + " 'comprehension': Counter({'keyword': 6}),\n", + " 'compute': Counter({'keyword': 19}),\n", + " 'concat': Counter({'keyword': 446}),\n", + " 'concatenate': Counter({'keyword': 69}),\n", + " 'condition': Counter({'keyword': 1}),\n", + " 'config': Counter({'keyword': 471}),\n", + " 'const': Counter({'keyword': 2}),\n", + " 'constant': Counter({'keyword': 64}),\n", + " 'constants': Counter({'keyword': 7}),\n", + " 'constraint': Counter({'keyword': 7}),\n", + " 'constraints': Counter({'keyword': 9}),\n", + " 'constructor': Counter({'keyword': 5}),\n", + " 'continue': Counter({'keyword': 17}),\n", + " 'conv': Counter({'keyword': 70}),\n", + " 'conv1d': Counter({'keyword': 12}),\n", + " 'conv2d': Counter({'keyword': 66}),\n", + " 'conv3d': Counter({'keyword': 3}),\n", + " 'conversions': Counter({'keyword': 62}),\n", + " 'convert': Counter({'keyword': 12}),\n", + " 'converted': Counter({'keyword': 27}),\n", + " 'cooldown': Counter({'keyword': 6}),\n", + " 'copy': Counter({'keyword': 2}),\n", + " 'count': Counter({'keyword': 43}),\n", + " 'counter': Counter({'keyword': 3}),\n", + " 'cpu': Counter({'keyword': 7}),\n", + " 'create': Counter({'keyword': 30}),\n", + " 'created': Counter({'keyword': 4}),\n", + " 'cropping2d': Counter({'keyword': 8}),\n", + " 'cropping3d': Counter({'keyword': 3}),\n", + " 'crossentropy': Counter({'keyword': 4}),\n", + " 'csv': Counter({'keyword': 18}),\n", + " 'ctype': Counter({'keyword': 91}),\n", + " 'cudnn': Counter({'keyword': 35}),\n", + " 'cumprod': Counter({'keyword': 3}),\n", + " 'cumsum': Counter({'keyword': 20}),\n", + " 'current': Counter({'keyword': 108}),\n", + " 'custom': Counter({'keyword': 187}),\n", + " 'd': Counter({'keyword': 444}),\n", + " 'data': Counter({'keyword': 84}),\n", + " 'decay': Counter({'keyword': 2}),\n", + " 'decode': Counter({'keyword': 34}),\n", + " 'deconv2d': Counter({'keyword': 28}),\n", + " 'decrement': Counter({'keyword': 12}),\n", + " 'deepcopy': Counter({'keyword': 4}),\n", + " 'default': Counter({'keyword': 584}),\n", + " 'delete': Counter({'keyword': 1}),\n", + " 'delta': Counter({'keyword': 42}),\n", + " 'dense': Counter({'keyword': 20}),\n", + " 'densenet121': Counter({'keyword': 3}),\n", + " 'densenet169': Counter({'keyword': 121}),\n", + " 'densenet201': Counter({'keyword': 44}),\n", + " 'desired': Counter({'keyword': 3}),\n", + " 'device': Counter({'keyword': 4}),\n", + " 'devices': Counter({'keyword': 26}),\n", + " 'devs': Counter({'keyword': 23}),\n", + " 'dict': Counter({'keyword': 112}),\n", + " 'dictcomp': Counter({'keyword': 12}),\n", + " 'diff': Counter({'keyword': 74}),\n", + " 'dilation': Counter({'keyword': 1}),\n", + " 'dim': Counter({'keyword': 55}),\n", + " 'dimensions': Counter({'keyword': 36}),\n", + " 'dims': Counter({'keyword': 37}),\n", + " 'dimshuffle': Counter({'keyword': 16}),\n", + " 'dir': Counter({'keyword': 34}),\n", + " 'disconnected': Counter({'keyword': 15}),\n", + " 'distribution': Counter({'keyword': 81}),\n", + " 'div': Counter({'keyword': 85}),\n", + " 'done': Counter({'keyword': 238}),\n", + " 'dot': Counter({'keyword': 204}),\n", + " 'dropout': Counter({'keyword': 46}),\n", + " 'dtype': Counter({'keyword': 15}),\n", + " 'dump': Counter({'keyword': 18}),\n", + " 'dumps': Counter({'keyword': 8}),\n", + " 'dynamic': Counter({'keyword': 31}),\n", + " 'e': Counter({'keyword': 18}),\n", + " 'element': Counter({'keyword': 7}),\n", + " 'elements': Counter({'keyword': 4}),\n", + " 'elems': Counter({'keyword': 17}),\n", + " 'elu': Counter({'keyword': 57}),\n", + " 'embedding': Counter({'keyword': 7}),\n", + " 'embeddings': Counter({'keyword': 9}),\n", + " 'end': Counter({'keyword': 33}),\n", + " 'epoch': Counter({'keyword': 10}),\n", + " 'epochs': Counter({'keyword': 28}),\n", + " 'epsilon': Counter({'keyword': 63}),\n", + " 'eq': Counter({'keyword': 55}),\n", + " 'equal': Counter({'keyword': 26219}),\n", + " 'error': Counter({'keyword': 3}),\n", + " 'eval': Counter({'keyword': 26}),\n", + " 'evaluate': Counter({'keyword': 31}),\n", + " 'exc': Counter({'keyword': 2}),\n", + " 'excepthandler': Counter({'keyword': 6921}),\n", + " 'execute': Counter({'keyword': 1}),\n", + " 'exists': Counter({'keyword': 6}),\n", + " 'exp': Counter({'keyword': 73}),\n", + " 'expand': Counter({'keyword': 15}),\n", + " 'expects': Counter({'keyword': 8468}),\n", + " 'explicitly': Counter({'keyword': 420}),\n", + " 'expr': Counter({'keyword': 2649}),\n", + " 'extend': Counter({'keyword': 2154}),\n", + " 'extra': Counter({'keyword': 1}),\n", + " 'extslice': Counter({'keyword': 54}),\n", + " 'eye': Counter({'keyword': 52}),\n", + " 'f': Counter({'keyword': 10}),\n", + " 'factor': Counter({'keyword': 23}),\n", + " 'fan': Counter({'keyword': 7}),\n", + " 'far': Counter({'keyword': 408}),\n", + " 'feature': Counter({'keyword': 1}),\n", + " 'feed': Counter({'keyword': 4}),\n", + " 'field': Counter({'keyword': 171}),\n", + " 'fieldnames': Counter({'keyword': 26}),\n", + " 'fields': Counter({'keyword': 27}),\n", + " 'file': Counter({'keyword': 178}),\n", + " 'filename': Counter({'keyword': 38}),\n", + " 'filepath': Counter({'keyword': 13}),\n", + " 'filewriter': Counter({'keyword': 3}),\n", + " 'fill': Counter({'keyword': 52}),\n", + " 'filter': Counter({'keyword': 13}),\n", + " 'filters': Counter({'keyword': 12681}),\n", + " 'first': Counter({'keyword': 16}),\n", + " 'flags': Counter({'keyword': 2}),\n", + " 'flatten': Counter({'keyword': 40}),\n", + " 'float16': Counter({'keyword': 87}),\n", + " 'float32': Counter({'keyword': 116}),\n", + " 'float64': Counter({'keyword': 23}),\n", + " 'floatx': Counter({'keyword': 4582}),\n", + " 'floordiv': Counter({'keyword': 44}),\n", + " 'flush': Counter({'keyword': 38}),\n", + " 'fn': Counter({'keyword': 3}),\n", + " 'foldl': Counter({'keyword': 3}),\n", + " 'foldr': Counter({'keyword': 5}),\n", + " 'for': Counter({'keyword': 306}),\n", + " 'format': Counter({'keyword': 59}),\n", + " 'forward': Counter({'keyword': 6}),\n", + " 'fpath': Counter({'keyword': 4}),\n", + " 'freq': Counter({'keyword': 5}),\n", + " 'from': Counter({'keyword': 36}),\n", + " 'full': Counter({'keyword': 6}),\n", + " 'func': Counter({'keyword': 17}),\n", + " 'function': Counter({'keyword': 56}),\n", + " 'functiondef': Counter({'keyword': 4868}),\n", + " 'functions': Counter({'keyword': 8}),\n", + " 'g': Counter({'keyword': 3}),\n", + " 'gain': Counter({'keyword': 12}),\n", + " 'gamma': Counter({'keyword': 1}),\n", + " 'gates': Counter({'keyword': 5}),\n", + " 'gather': Counter({'keyword': 3}),\n", + " 'gaussiandropout': Counter({'keyword': 5}),\n", + " 'gaussiannoise': Counter({'keyword': 2}),\n", + " 'generator': Counter({'keyword': 1}),\n", + " 'generatorexp': Counter({'keyword': 53}),\n", + " 'generic': Counter({'keyword': 26}),\n", + " 'gens': Counter({'keyword': 87}),\n", + " 'get': Counter({'keyword': 197}),\n", + " 'global': Counter({'keyword': 68}),\n", + " 'go': Counter({'keyword': 45}),\n", + " 'gpus': Counter({'keyword': 23}),\n", + " 'grad': Counter({'keyword': 283}),\n", + " 'gradient': Counter({'keyword': 15}),\n", + " 'gradients': Counter({'keyword': 22}),\n", + " 'grads': Counter({'keyword': 4}),\n", + " 'graph': Counter({'keyword': 34}),\n", + " 'greater': Counter({'keyword': 158}),\n", + " 'group': Counter({'keyword': 49}),\n", + " 'gt': Counter({'keyword': 920}),\n", + " 'gte': Counter({'keyword': 120}),\n", + " 'hash': Counter({'keyword': 1}),\n", + " 'hasher': Counter({'keyword': 152}),\n", + " 'header': Counter({'keyword': 3}),\n", + " 'headers': Counter({'keyword': 137}),\n", + " 'high': Counter({'keyword': 15}),\n", + " 'histogram': Counter({'keyword': 2}),\n", + " 'history': Counter({'keyword': 32}),\n", + " 'hot': Counter({'keyword': 5}),\n", + " 'hsplit': Counter({'keyword': 430}),\n", + " 'hstack': Counter({'keyword': 235}),\n", + " 'id': Counter({'keyword': 6}),\n", + " 'ident': Counter({'keyword': 57}),\n", + " 'identity': Counter({'keyword': 39}),\n", + " 'idx': Counter({'keyword': 11}),\n", + " 'idxs': Counter({'keyword': 4}),\n", + " 'if': Counter({'keyword': 74}),\n", + " 'ifexp': Counter({'keyword': 111}),\n", + " 'image': Counter({'keyword': 8}),\n", + " 'images': Counter({'keyword': 29}),\n", + " 'img': Counter({'keyword': 57}),\n", + " 'import': Counter({'keyword': 42}),\n", + " 'importfrom': Counter({'keyword': 16}),\n", + " 'in': Counter({'keyword': 713}),\n", + " 'inbound': Counter({'keyword': 17}),\n", + " 'inceptionresnetv2': Counter({'keyword': 4}),\n", + " 'inceptionv3': Counter({'keyword': 7}),\n", + " 'include': Counter({'keyword': 8}),\n", + " 'increment': Counter({'keyword': 26}),\n", + " 'index': Counter({'keyword': 40}),\n", + " 'indexedslices': Counter({'keyword': 1}),\n", + " 'indices': Counter({'keyword': 98}),\n", + " 'inf': Counter({'keyword': 52}),\n", + " 'inferreddimension': Counter({'keyword': 6}),\n", + " 'info': Counter({'keyword': 178}),\n", + " 'init': Counter({'keyword': 1082}),\n", + " 'initial': Counter({'keyword': 3}),\n", + " 'initializer': Counter({'keyword': 11}),\n", + " 'input': Counter({'keyword': 6}),\n", + " 'inputs': Counter({'keyword': 48}),\n", + " 'ins': Counter({'keyword': 1}),\n", + " 'insecure': Counter({'keyword': 4}),\n", + " 'instance': Counter({'keyword': 14201}),\n", + " 'int': Counter({'keyword': 23}),\n", + " 'intermediate': Counter({'keyword': 34}),\n", + " 'intersection': Counter({'keyword': 15}),\n", + " 'is': Counter({'keyword': 3827}),\n", + " 'isinf': Counter({'keyword': 281}),\n", + " 'isnan': Counter({'keyword': 46}),\n", + " 'isnot': Counter({'keyword': 46}),\n", + " 'item': Counter({'keyword': 578}),\n", + " 'items': Counter({'keyword': 1211}),\n", + " 'iterable': Counter({'keyword': 2}),\n", + " 'iterations': Counter({'keyword': 30}),\n", + " 'join': Counter({'keyword': 52}),\n", + " 'json': Counter({'keyword': 113}),\n", + " 'k': Counter({'keyword': 485}),\n", + " 'keepdims': Counter({'keyword': 12}),\n", + " 'keras': Counter({'keyword': 31}),\n", + " 'kernel': Counter({'keyword': 34}),\n", + " 'key': Counter({'keyword': 4}),\n", + " 'keys': Counter({'keyword': 138}),\n", + " 'keyword': Counter(),\n", + " 'kwargs': Counter({'keyword': 66}),\n", + " 'kwd': Counter({'keyword': 85}),\n", + " 'l1': Counter({'keyword': 287}),\n", + " 'l1l2': Counter({'keyword': 93}),\n", + " 'l2': Counter({'keyword': 199}),\n", + " 'label': Counter({'keyword': 6}),\n", + " 'lambda': Counter({'keyword': 951}),\n", + " 'last': Counter({'keyword': 9}),\n", + " 'layer': Counter({'keyword': 21}),\n", + " 'layers': Counter({'keyword': 37}),\n", + " 'learning': Counter({'keyword': 104}),\n", + " 'legacy': Counter({'keyword': 276}),\n", + " 'length': Counter({'keyword': 28}),\n", + " 'less': Counter({'keyword': 36}),\n", + " 'level': Counter({'keyword': 3}),\n", + " 'like': Counter({'keyword': 1}),\n", + " 'limit': Counter({'keyword': 1}),\n", + " 'linalg': Counter({'keyword': 29}),\n", + " 'line': Counter({'keyword': 2}),\n", + " 'list': Counter({'keyword': 428}),\n", + " 'listcomp': Counter({'keyword': 3}),\n", + " 'load': Counter({'keyword': 206}),\n", + " 'loads': Counter({'keyword': 12}),\n", + " 'log': Counter({'keyword': 24}),\n", + " 'logits': Counter({'keyword': 143}),\n", + " 'logs': Counter({'keyword': 44}),\n", + " 'logsumexp': Counter({'keyword': 1}),\n", + " 'lookup': Counter({'keyword': 20}),\n", + " 'loss': Counter({'keyword': 1}),\n", + " 'losses': Counter({'keyword': 26}),\n", + " 'low': Counter({'keyword': 1452}),\n", + " 'lower': Counter({'keyword': 141}),\n", + " 'lr': Counter({'keyword': 490}),\n", + " 'lt': Counter({'keyword': 115}),\n", + " 'lte': Counter({'keyword': 1}),\n", + " 'm': Counter({'keyword': 102}),\n", + " 'make': Counter({'keyword': 2}),\n", + " 'map': Counter({'keyword': 3}),\n", + " 'mask': Counter({'keyword': 33}),\n", + " 'masking': Counter({'keyword': 106}),\n", + " 'matrix': Counter({'keyword': 25}),\n", + " 'max': Counter({'keyword': 15}),\n", + " 'maximum': Counter({'keyword': 6}),\n", + " 'maxval': Counter({'keyword': 93}),\n", + " 'mean': Counter({'keyword': 53}),\n", + " 'merged': Counter({'keyword': 5}),\n", + " 'message': Counter({'keyword': 3}),\n", + " 'metadata': Counter({'keyword': 8}),\n", + " 'methods': Counter({'keyword': 52}),\n", + " 'metrics': Counter({'keyword': 947}),\n", + " 'min': Counter({'keyword': 31}),\n", + " 'minimum': Counter({'keyword': 79}),\n", + " 'minval': Counter({'keyword': 35}),\n", + " 'mobilenet': Counter({'keyword': 7}),\n", + " 'mobilenetv2': Counter({'keyword': 182}),\n", + " 'mod': Counter({'keyword': 91}),\n", + " 'mode': Counter({'keyword': 126}),\n", + " 'model': Counter({'keyword': 115}),\n", + " 'module': Counter({'keyword': 4}),\n", + " 'moments': Counter({'keyword': 14}),\n", + " 'momentum': Counter({'keyword': 89}),\n", + " 'monitor': Counter({'keyword': 154}),\n", + " 'moves': Counter({'keyword': 97}),\n", + " 'moving': Counter({'keyword': 10}),\n", + " 'ms': Counter({'keyword': 2}),\n", + " 'msg': Counter({'keyword': 8}),\n", + " 'mult': Counter({'keyword': 157}),\n", + " 'multiprocessing': Counter({'keyword': 221}),\n", + " 'name': Counter({'keyword': 13849}),\n", + " 'nameconstant': Counter({'keyword': 510}),\n", + " 'names': Counter({'keyword': 27}),\n", + " 'nasnetlarge': Counter({'keyword': 41}),\n", + " 'nasnetmobile': Counter({'keyword': 10}),\n", + " 'nb': Counter({'keyword': 13}),\n", + " 'ndarray': Counter({'keyword': 103}),\n", + " 'ndim': Counter({'keyword': 107}),\n", + " 'neg': Counter({'keyword': 26}),\n", + " 'negative': Counter({'keyword': 52}),\n", + " 'neq': Counter({'keyword': 67}),\n", + " 'nesterov': Counter({'keyword': 3}),\n", + " 'network': Counter({'keyword': 6}),\n", + " 'new': Counter({'keyword': 514}),\n", + " 'next': Counter({'keyword': 60}),\n", + " 'nn': Counter({'keyword': 28}),\n", + " 'nnet': Counter({'keyword': 12}),\n", + " 'nodes': Counter({'keyword': 28}),\n", + " 'noise': Counter({'keyword': 4}),\n", + " 'non': Counter({'keyword': 259}),\n", + " 'nonzero': Counter({'keyword': 3}),\n", + " 'norm': Counter({'keyword': 137}),\n", + " 'normal': Counter({'keyword': 136}),\n", + " 'normalization': Counter({'keyword': 2}),\n", + " 'normalize': Counter({'keyword': 5}),\n", + " 'normalized': Counter({'keyword': 3}),\n", + " 'normed': Counter({'keyword': 21}),\n", + " 'norms': Counter({'keyword': 366}),\n", + " 'not': Counter({'keyword': 112}),\n", + " 'noteq': Counter({'keyword': 1084}),\n", + " 'notin': Counter({'keyword': 95}),\n", + " 'num': Counter({'keyword': 108}),\n", + " 'nw': Counter({'keyword': 267}),\n", + " 'obj': Counter({'keyword': 81}),\n", + " 'object': Counter({'keyword': 171}),\n", + " 'objects': Counter({'keyword': 6}),\n", + " 'old': Counter({'keyword': 131}),\n", + " 'on': Counter({'keyword': 1496}),\n", + " 'ones': Counter({'keyword': 16}),\n", + " 'only': Counter({'keyword': 875}),\n", + " 'op': Counter({'keyword': 58}),\n", + " 'open': Counter({'keyword': 189}),\n", + " 'ops': Counter({'keyword': 10}),\n", + " 'opt': Counter({'keyword': 6}),\n", + " 'optimizer': Counter({'keyword': 33}),\n", + " 'or': Counter({'keyword': 103}),\n", + " 'order': Counter({'keyword': 63}),\n", + " 'ordering': Counter({'keyword': 3}),\n", + " 'origin': Counter({'keyword': 76}),\n", + " 'original': Counter({'keyword': 1}),\n", + " 'out': Counter({'keyword': 175}),\n", + " 'output': Counter({'keyword': 156}),\n", + " 'outputs': Counter({'keyword': 9}),\n", + " 'override': Counter({'keyword': 10}),\n", + " 'overwrite': Counter({'keyword': 4761}),\n", + " 'p': Counter({'keyword': 27}),\n", + " 'pad': Counter({'keyword': 2}),\n", + " 'padding': Counter({'keyword': 174}),\n", + " 'parameter': Counter({'keyword': 13}),\n", + " 'params': Counter({'keyword': 213}),\n", + " 'pass': Counter({'keyword': 1}),\n", + " 'path': Counter({'keyword': 5}),\n", + " 'patience': Counter({'keyword': 37}),\n", + " 'pattern': Counter({'keyword': 15}),\n", + " 'period': Counter({'keyword': 148}),\n", + " 'permute': Counter({'keyword': 1}),\n", + " 'phase': Counter({'keyword': 141}),\n", + " 'phases': Counter({'keyword': 2}),\n", + " 'placeholder': Counter({'keyword': 94}),\n", + " 'pool': Counter({'keyword': 551}),\n", + " 'pool2d': Counter({'keyword': 478}),\n", + " 'pool3d': Counter({'keyword': 5}),\n", + " 'pooling': Counter({'keyword': 135}),\n", + " 'pooling1d': Counter({'keyword': 953}),\n", + " 'pooling2d': Counter({'keyword': 166}),\n", + " 'pooling3d': Counter({'keyword': 2}),\n", + " 'pop': Counter({'keyword': 11}),\n", + " 'pos': Counter({'keyword': 28}),\n", + " 'positions': Counter({'keyword': 13}),\n", + " 'post': Counter({'keyword': 2}),\n", + " 'pow': Counter({'keyword': 19}),\n", + " 'pred': Counter({'keyword': 7}),\n", + " 'predict': Counter({'keyword': 15}),\n", + " 'predictions': Counter({'keyword': 21}),\n", + " 'preds': Counter({'keyword': 2}),\n", + " 'prefix': Counter({'keyword': 3}),\n", + " 'prelu': Counter({'keyword': 2}),\n", + " 'preprocess': Counter({'keyword': 20}),\n", + " 'preprocessor': Counter({'keyword': 10}),\n", + " 'prime': Counter({'keyword': 278}),\n", + " 'print': Counter({'keyword': 3946}),\n", + " 'prob': Counter({'keyword': 41}),\n", + " 'proba': Counter({'keyword': 28}),\n", + " 'probs': Counter({'keyword': 63}),\n", + " 'process': Counter({'keyword': 27}),\n", + " 'prod': Counter({'keyword': 20}),\n", + " 'progbar': Counter({'keyword': 1367}),\n", + " 'put': Counter({'keyword': 124}),\n", + " 'pv': Counter({'keyword': 19}),\n", + " 'py': Counter({'keyword': 7}),\n", + " 'py2': Counter({'keyword': 13}),\n", + " 'queue': Counter({'keyword': 1302}),\n", + " 'raise': Counter({'keyword': 315}),\n", + " 'randint': Counter({'keyword': 1}),\n", + " 'random': Counter({'keyword': 138}),\n", + " 'range': Counter({'keyword': 98}),\n", + " 'rank': Counter({'keyword': 4}),\n", + " 'rate': Counter({'keyword': 91}),\n", + " 'readline': Counter({'keyword': 1}),\n", + " 'receptive': Counter({'keyword': 10}),\n", + " 'recurrent': Counter({'keyword': 5}),\n", + " 'reduce': Counter({'keyword': 11}),\n", + " 'reference': Counter({'keyword': 8}),\n", + " 'regularization': Counter({'keyword': 93}),\n", + " 'regularizer': Counter({'keyword': 4}),\n", + " 'relu': Counter({'keyword': 153}),\n", + " 'repeat': Counter({'keyword': 3}),\n", + " 'repeats': Counter({'keyword': 7}),\n", + " 'requestexception': Counter({'keyword': 61}),\n", + " 'required': Counter({'keyword': 231}),\n", + " 'reraise': Counter({'keyword': 4}),\n", + " 'res': Counter({'keyword': 51}),\n", + " 'reset': Counter({'keyword': 730}),\n", + " 'reshape': Counter({'keyword': 188}),\n", + " 'resnet50': Counter({'keyword': 23}),\n", + " 'restore': Counter({'keyword': 156}),\n", + " 'result': Counter({'keyword': 9}),\n", + " 'retain': Counter({'keyword': 2}),\n", + " 'return': Counter({'keyword': 40}),\n", + " 'reverse': Counter({'keyword': 1}),\n", + " 'rho': Counter({'keyword': 10}),\n", + " 'rng': Counter({'keyword': 1}),\n", + " 'rnn': Counter({'keyword': 199}),\n", + " 'root': Counter({'keyword': 97}),\n", + " 'round': Counter({'keyword': 334}),\n", + " 'rows': Counter({'keyword': 4}),\n", + " 'run': Counter({'keyword': 10}),\n", + " 'running': Counter({'keyword': 13}),\n", + " 's': Counter({'keyword': 43}),\n", + " 'sample': Counter({'keyword': 3}),\n", + " 'save': Counter({'keyword': 36}),\n", + " 'saver': Counter({'keyword': 2057}),\n", + " 'scale': Counter({'keyword': 420}),\n", + " 'schedule': Counter({'keyword': 464}),\n", + " 'scope': Counter({'keyword': 1}),\n", + " 'second': Counter({'keyword': 10}),\n", + " 'seed': Counter({'keyword': 85}),\n", + " 'seen': Counter({'keyword': 47}),\n", + " 'select': Counter({'keyword': 124}),\n", + " 'self': Counter({'keyword': 184}),\n", + " 'send': Counter({'keyword': 47}),\n", + " 'separable': Counter({'keyword': 6}),\n", + " 'seq': Counter({'keyword': 21}),\n", + " 'seqs': Counter({'keyword': 104}),\n", + " 'sequence': Counter({'keyword': 16}),\n", + " 'sequences': Counter({'keyword': 31}),\n", + " 'serialize': Counter({'keyword': 3}),\n", + " 'sess': Counter({'keyword': 4}),\n", + " 'session': Counter({'keyword': 23}),\n", + " 'set': Counter({'keyword': 160}),\n", + " 'setattr': Counter({'keyword': 15}),\n", + " 'setdefault': Counter({'keyword': 86}),\n", + " 'setter': Counter({'keyword': 4}),\n", + " 'shape': Counter({'keyword': 13}),\n", + " 'shapes': Counter({'keyword': 16}),\n", + " 'shared': Counter({'keyword': 36}),\n", + " 'sharedvar': Counter({'keyword': 1}),\n", + " 'shuffle': Counter({'keyword': 22}),\n", + " 'sigmoid': Counter({'keyword': 10}),\n", + " 'signature': Counter({'keyword': 18}),\n", + " 'simple': Counter({'keyword': 2}),\n", + " 'size': Counter({'keyword': 50}),\n", + " 'sk': Counter({'keyword': 15}),\n", + " 'slice': Counter({'keyword': 7939}),\n", + " 'slices': Counter({'keyword': 15}),\n", + " 'slope': Counter({'keyword': 57}),\n", + " 'so': Counter({'keyword': 4}),\n", + " 'softmax': Counter({'keyword': 188}),\n", + " 'softplus': Counter({'keyword': 20}),\n", + " 'softsign': Counter({'keyword': 1}),\n", + " 'sparse': Counter({'keyword': 5}),\n", + " 'sparsetensor': Counter({'keyword': 5}),\n", + " 'sparsetype': Counter({'keyword': 62}),\n", + " 'spatial': Counter({'keyword': 13}),\n", + " 'spatialdropout1d': Counter({'keyword': 29}),\n", + " 'spatialdropoutnd': Counter({'keyword': 15}),\n", + " 'spec': Counter({'keyword': 4}),\n", + " 'splice': Counter({'keyword': 99}),\n", + " 'split': Counter({'keyword': 10}),\n", + " 'sqrt': Counter({'keyword': 97}),\n", + " 'square': Counter({'keyword': 40}),\n", + " 'squared': Counter({'keyword': 163}),\n", + " 'squeeze': Counter({'keyword': 49}),\n", + " 'stack': Counter({'keyword': 3}),\n", + " 'standardize': Counter({'keyword': 9}),\n", + " 'starred': Counter({'keyword': 6}),\n", + " 'startswith': Counter({'keyword': 109}),\n", + " 'state': Counter({'keyword': 24}),\n", + " 'stateful': Counter({'keyword': 24}),\n", + " 'states': Counter({'keyword': 270}),\n", + " 'std': Counter({'keyword': 3}),\n", + " 'stddev': Counter({'keyword': 345}),\n", + " 'step': Counter({'keyword': 49}),\n", + " 'steps': Counter({'keyword': 2}),\n", + " 'stop': Counter({'keyword': 15}),\n", + " 'stopped': Counter({'keyword': 105}),\n", + " 'str': Counter({'keyword': 598}),\n", + " 'strides': Counter({'keyword': 212}),\n", + " 'string': Counter({'keyword': 5054}),\n", + " 'strip': Counter({'keyword': 24}),\n", + " 'sub': Counter({'keyword': 277}),\n", + " 'subclassed': Counter({'keyword': 11}),\n", + " 'subscript': Counter({'keyword': 54}),\n", + " 'subtensor': Counter({'keyword': 27}),\n", + " 'sum': Counter({'keyword': 339}),\n", + " 'summary': Counter({'keyword': 79}),\n", + " 'support': Counter({'keyword': 296}),\n", + " 'supports': Counter({'keyword': 35}),\n", + " 'svd': Counter({'keyword': 8}),\n", + " 'switch': Counter({'keyword': 17}),\n", + " 'symbolic': Counter({'keyword': 80}),\n", + " 't': Counter({'keyword': 19}),\n", + " 'target': Counter({'keyword': 489}),\n", + " 'targets': Counter({'keyword': 10}),\n", + " 'task': Counter({'keyword': 223}),\n", + " 'tasks': Counter({'keyword': 5}),\n", + " 'temporal': Counter({'keyword': 18}),\n", + " 'tensor': Counter({'keyword': 12}),\n", + " 'tensorlike': Counter({'keyword': 5}),\n", + " 'tensors': Counter({'keyword': 11}),\n", + " 'tensorsharedvariable': Counter({'keyword': 97}),\n", + " 'tensorvariable': Counter({'keyword': 103}),\n", + " 'tf': Counter({'keyword': 629}),\n", + " 'th': Counter({'keyword': 34}),\n", + " 'theano': Counter({'keyword': 69}),\n", + " 'theta': Counter({'keyword': 33}),\n", + " 'threshold': Counter({'keyword': 22}),\n", + " 'time': Counter({'keyword': 160}),\n", + " 'times': Counter({'keyword': 134}),\n", + " 'timesteps': Counter({'keyword': 25}),\n", + " 'tmp': Counter({'keyword': 2}),\n", + " 'to': Counter({'keyword': 143}),\n", + " 'tolist': Counter({'keyword': 5}),\n", + " 'top': Counter({'keyword': 95}),\n", + " 'total': Counter({'keyword': 136}),\n", + " 'totals': Counter({'keyword': 51}),\n", + " 'train': Counter({'keyword': 63}),\n", + " 'trainable': Counter({'keyword': 3}),\n", + " 'training': Counter({'keyword': 1123}),\n", + " 'transpose': Counter({'keyword': 7}),\n", + " 'true': Counter({'keyword': 543}),\n", + " 'truncated': Counter({'keyword': 20}),\n", + " 'try': Counter({'keyword': 67}),\n", + " 'ts': Counter({'keyword': 1}),\n", + " 'tuple': Counter({'keyword': 189}),\n", + " 'tuples': Counter({'keyword': 7}),\n", + " 'type': Counter({'keyword': 67}),\n", + " 'types': Counter({'keyword': 276}),\n", + " 'u': Counter({'keyword': 10}),\n", + " 'uid': Counter({'keyword': 5}),\n", + " 'unaryop': Counter({'keyword': 273}),\n", + " 'unfinished': Counter({'keyword': 9}),\n", + " 'uniform': Counter({'keyword': 21}),\n", + " 'units': Counter({'keyword': 411}),\n", + " 'unpack': Counter({'keyword': 2}),\n", + " 'unroll': Counter({'keyword': 5}),\n", + " 'update': Counter({'keyword': 212}),\n", + " 'updated': Counter({'keyword': 4}),\n", + " 'updates': Counter({'keyword': 34}),\n", + " 'upper': Counter({'keyword': 53}),\n", + " 'upsampling1d': Counter({'keyword': 3}),\n", + " 'upsampling2d': Counter({'keyword': 14}),\n", + " 'upsampling3d': Counter({'keyword': 10}),\n", + " 'use': Counter({'keyword': 32}),\n", + " 'user': Counter({'keyword': 5}),\n", + " 'uses': Counter({'keyword': 49}),\n", + " 'usub': Counter({'keyword': 80}),\n", + " 'v': Counter({'keyword': 1056}),\n", + " 'val': Counter({'keyword': 41}),\n", + " 'validation': Counter({'keyword': 50}),\n", + " 'value': Counter({'keyword': 4}),\n", + " 'values': Counter({'keyword': 6}),\n", + " 'var': Counter({'keyword': 48}),\n", + " 'variable': Counter({'keyword': 16}),\n", + " 'verbose': Counter({'keyword': 233}),\n", + " 'vgg16': Counter({'keyword': 19}),\n", + " 'vgg19': Counter({'keyword': 17}),\n", + " 'vhats': Counter({'keyword': 12}),\n", + " 'volumes': Counter({'keyword': 2}),\n", + " 'vs': Counter({'keyword': 6}),\n", + " 'w': Counter({'keyword': 44}),\n", + " 'wait': Counter({'keyword': 199}),\n", + " 'warn': Counter({'keyword': 154}),\n", + " 'weight': Counter({'keyword': 17}),\n", + " 'weights': Counter({'keyword': 23}),\n", + " 'when': Counter({'keyword': 10}),\n", + " 'where': Counter({'keyword': 7}),\n", + " 'while': Counter({'keyword': 103}),\n", + " 'with': Counter({'keyword': 659}),\n", + " 'withitem': Counter({'keyword': 26}),\n", + " 'workers': Counter({'keyword': 15}),\n", + " 'write': Counter({'keyword': 4}),\n", + " 'writer': Counter({'keyword': 50}),\n", + " 'x': Counter({'keyword': 16}),\n", + " 'xception': Counter({'keyword': 97}),\n", + " 'y': Counter({'keyword': 209}),\n", + " 'yaml': Counter({'keyword': 2}),\n", + " 'yield': Counter({'keyword': 8}),\n", + " 'z': Counter({'keyword': 12}),\n", + " 'zero': Counter({'keyword': 18}),\n", + " 'zeropadding3d': Counter({'keyword': 3}),\n", + " 'zeros': Counter({'keyword': 38})}" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "confusion_counter" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label -- a\n", + "Preds -- keyword (13)\n", "\n", - "Label -- inf\n", - "Preds -- nan (7)\n", + "Label -- grads\n", + "Preds -- keyword (4)\n", "\n", - "Label -- gradient\n", - "Preds -- target (2) seen (2) words (2) 1 (1) i (1)\n", + "Label -- y\n", + "Preds -- keyword (209)\n", "\n", - "Label -- dt\n", - "Preds -- \n", + "Label -- expects\n", + "Preds -- keyword (8468)\n", "\n", - "Label -- width\n", - "Preds -- samples (3)\n", + "Label -- names\n", + "Preds -- keyword (27)\n", "\n", - "Label -- units\n", - "Preds -- filters (7) size (3) kernel (1)\n", + "Label -- algorithm\n", + "Preds -- keyword (337)\n", "\n", - "Label -- maxima\n", - "Preds -- \n", + "Label -- get\n", + "Preds -- keyword (197)\n", "\n", - "Label -- variable\n", - "Preds -- ones (3) theta (2) value (1) kind (1) call (1)\n", + "Label -- network\n", + "Preds -- keyword (6)\n", "\n", - "Label -- of\n", - "Preds -- \n", + "Label -- constructor\n", + "Preds -- keyword (5)\n", "\n", - "Label -- sys\n", - "Preds -- version (1) coef (1)\n", + "Label -- argmin\n", + "Preds -- keyword (11)\n", "\n", - "Label -- locallylinearembedding\n", - "Preds -- factory (4)\n", + "Label -- constraint\n", + "Preds -- keyword (7)\n", "\n", - "Label -- breadth\n", - "Preds -- \n", + "Label -- identity\n", + "Preds -- keyword (39)\n", "\n", - "Label -- extend\n", - "Preds -- append (14)\n", + "Label -- ones\n", + "Preds -- keyword (16)\n", "\n", - "Label -- writeable\n", - "Preds -- contiguous (3)\n", + "Label -- channels\n", + "Preds -- keyword (9)\n", "\n", "Label -- upsampling1d\n", - "Preds -- get (3)\n", - "\n", - "Label -- denom\n", - "Preds -- beta (1)\n", - "\n", - "Label -- y4\n", - "Preds -- y (2)\n", + "Preds -- keyword (3)\n", "\n", - "Label -- setdiff1d\n", - "Preds -- searchsorted (6) unique (1)\n", - "\n", - "Label -- log1p\n", - "Preds -- exp (9) issparse (7) fit (4)\n", + "Label -- fill\n", + "Preds -- keyword (52)\n", "\n", - "Label -- backward\n", - "Preds -- cell (7) reduce (3)\n", + "Label -- parameter\n", + "Preds -- keyword (13)\n", "\n", - "Label -- zero\n", - "Preds -- children (1)\n", + "Label -- separable\n", + "Preds -- keyword (6)\n", "\n", - "Label -- multiclass\n", - "Preds -- true (4)\n", + "Label -- nesterov\n", + "Preds -- keyword (3)\n", "\n", - "Label -- index\n", - "Preds -- slice (23) keyword (5) line (5) string (3) shape (2)\n", + "Label -- attribute\n", + "Preds -- keyword (9)\n", "\n", - "Label -- cov\n", - "Preds -- \n", + "Label -- indexedslices\n", + "Preds -- keyword (1)\n", "\n", - "Label -- interpolation\n", - "Preds -- constant (3)\n", + "Label -- lte\n", + "Preds -- keyword (1)\n", "\n", - "Label -- tol\n", - "Preds -- verbose (6) normalize (4) self (2) mode (1) coef (1)\n", + "Label -- mean\n", + "Preds -- keyword (53)\n", "\n", - "Label -- threshold\n", - "Preds -- output (7) value (6) offset (2) covariances (1) function (1)\n", + "Label -- chunk\n", + "Preds -- keyword (217)\n", "\n", - "Label -- invert\n", - "Preds -- usub (11)\n", + "Label -- upsampling3d\n", + "Preds -- keyword (10)\n", "\n", - "Label -- attr\n", - "Preds -- item (1)\n", + "Label -- tasks\n", + "Preds -- keyword (5)\n", "\n", - "Label -- selection\n", - "Preds -- \n", + "Label -- 2d\n", + "Preds -- keyword (78)\n", "\n", - "Label -- matmul\n", - "Preds -- multiply (2) searchsorted (1) reshape (1)\n", + "Label -- baseline\n", + "Preds -- keyword (27)\n", "\n", - "Label -- matlab\n", - "Preds -- rst (6)\n", + "Label -- clear\n", + "Preds -- keyword (9)\n", "\n", - "Label -- or\n", - "Preds -- and (60) list (1)\n", + "Label -- best\n", + "Preds -- keyword (792)\n", "\n", - "Label -- 64\n", - "Preds -- 32 (6)\n", + "Label -- ifexp\n", + "Preds -- keyword (111)\n", "\n", - "Label -- depthwise\n", - "Preds -- recurrent (3) input (2) pointwise (1)\n", + "Label -- zero\n", + "Preds -- keyword (18)\n", "\n", - "Label -- implementation\n", - "Preds -- strides (2)\n", + "Label -- g\n", + "Preds -- keyword (3)\n", "\n", - "Label -- comb\n", - "Preds -- x (1)\n", + "Label -- subclassed\n", + "Preds -- keyword (11)\n", "\n", - "Label -- function\n", - "Preds -- d (4) state (3) call (2) names (2) kind (1)\n", + "Label -- inceptionv3\n", + "Preds -- keyword (7)\n", "\n", - "Label -- custom\n", - "Preds -- correct (2) oob (1)\n", + "Label -- seq\n", + "Preds -- keyword (21)\n", "\n", - "Label -- utils\n", - "Preds -- parallel (1) modules (1)\n", + "Label -- pool\n", + "Preds -- keyword (551)\n", "\n", - "Label -- builder\n", - "Preds -- subclusters (1)\n", + "Label -- kernel\n", + "Preds -- keyword (34)\n", "\n", - "Label -- previous\n", - "Preds -- batch (2)\n", + "Label -- stddev\n", + "Preds -- keyword (345)\n", "\n", - "Label -- 1d\n", - "Preds -- \n", + "Label -- readline\n", + "Preds -- keyword (1)\n", "\n", - "Label -- trials\n", - "Preds -- depth (1)\n", + "Label -- alias\n", + "Preds -- keyword (3)\n", "\n", - "Label -- biases\n", - "Preds -- bias (1)\n", + "Label -- loss\n", + "Preds -- keyword (1)\n", "\n", - "Label -- coroutine\n", - "Preds -- condition (2) setter (1)\n", + "Label -- argument\n", + "Preds -- keyword (24)\n", "\n", - "Label -- dictcomp\n", - "Preds -- generatorexp (3)\n", + "Label -- p\n", + "Preds -- keyword (27)\n", "\n", - "Label -- phi\n", - "Preds -- weights (1)\n", + "Label -- on\n", + "Preds -- keyword (1496)\n", "\n", - "Label -- accs\n", - "Preds -- train (1)\n", + "Label -- gaussiandropout\n", + "Preds -- keyword (5)\n", "\n", - "Label -- tuple\n", - "Preds -- list (101) call (70) keyword (16) assign (13) index (6)\n", + "Label -- extslice\n", + "Preds -- keyword (54)\n", "\n", - "Label -- management\n", - "Preds -- \n", + "Label -- excepthandler\n", + "Preds -- keyword (6921)\n", "\n", - "Label -- jit\n", - "Preds -- dispatch (7) ma (5) testing (1) class (1)\n", + "Label -- states\n", + "Preds -- keyword (270)\n", "\n", - "Label -- winexe\n", - "Preds -- \n", + "Label -- error\n", + "Preds -- keyword (3)\n", "\n", - "Label -- kneighborsclassifier\n", - "Preds -- factory (7) integral (2)\n", + "Label -- custom\n", + "Preds -- keyword (187)\n", "\n", - "Label -- est1\n", - "Preds -- name (3) est (1)\n", + "Label -- stateful\n", + "Preds -- keyword (24)\n", "\n", - "Label -- int64\n", - "Preds -- bool (3) intp (1) indptr (1)\n", + "Label -- steps\n", + "Preds -- keyword (2)\n", "\n", - "Label -- pipe\n", - "Preds -- pipeline (5) 2 (3)\n", + "Label -- f\n", + "Preds -- keyword (10)\n", "\n", - "Label -- long\n", - "Preds -- bias (1)\n", + "Label -- layers\n", + "Preds -- keyword (37)\n", "\n", - "Label -- futures\n", - "Preds -- folder (3)\n", + "Label -- squared\n", + "Preds -- keyword (163)\n", "\n", - "Label -- importances\n", - "Preds -- \n", + "Label -- embeddings\n", + "Preds -- keyword (9)\n", "\n", - "Label -- change\n", - "Preds -- \n", + "Label -- volumes\n", + "Preds -- keyword (2)\n", "\n", - "Label -- xception\n", - "Preds -- call (1)\n", + "Label -- norm\n", + "Preds -- keyword (137)\n", "\n", - "Label -- query\n", - "Preds -- y (4)\n", + "Label -- gte\n", + "Preds -- keyword (120)\n", "\n", - "Label -- take\n", - "Preds -- \n", + "Label -- v\n", + "Preds -- keyword (1056)\n", "\n", - "Label -- percentiles\n", - "Preds -- axis (2)\n", + "Label -- m\n", + "Preds -- keyword (102)\n", "\n", - "Label -- test2\n", - "Preds -- test (3)\n", + "Label -- svd\n", + "Preds -- keyword (8)\n", "\n", - "Label -- tostring\n", - "Preds -- tocsc (1)\n", + "Label -- starred\n", + "Preds -- keyword (6)\n", "\n", - "Label -- dest\n", - "Preds -- \n", + "Label -- e\n", + "Preds -- keyword (18)\n", "\n", - "Label -- cols\n", - "Preds -- rows (2)\n", + "Label -- prime\n", + "Preds -- keyword (278)\n", "\n", - "Label -- device\n", - "Preds -- data (9) node (9) dim (3) call (3) get (3)\n", + "Label -- cloned\n", + "Preds -- keyword (3)\n", "\n", - "Label -- flags\n", - "Preds -- handle (3) thread (1)\n", + "Label -- notin\n", + "Preds -- keyword (95)\n", "\n", - "Label -- j\n", - "Preds -- data (3) idx (3) i (3) ind (1) y (1)\n", + "Label -- isnot\n", + "Preds -- keyword (46)\n", "\n", - "Label -- hook\n", - "Preds -- batch (7) flags (4) v (2) lock (1) from (1)\n", + "Label -- only\n", + "Preds -- keyword (875)\n", "\n", - "Label -- backprop\n", - "Preds -- fit (5) asgd (2)\n", + "Label -- output\n", + "Preds -- keyword (156)\n", "\n", - "Label -- ax\n", - "Preds -- y (2) verbose (1)\n", + "Label -- softmax\n", + "Preds -- keyword (188)\n", "\n", - "Label -- fobj\n", - "Preds -- x (2) tuple (1)\n", + "Label -- data\n", + "Preds -- keyword (84)\n", "\n", - "Label -- dico\n", - "Preds -- tsne (1)\n", + "Label -- begin\n", + "Preds -- keyword (126)\n", "\n", - "Label -- coefs\n", - "Preds -- y (5) matrix (5) coef (3) alphas (2) alpha (2)\n", + "Label -- normalization\n", + "Preds -- keyword (2)\n", "\n", - "Label -- tpr\n", - "Preds -- fpr (8)\n", + "Label -- equal\n", + "Preds -- keyword (26219)\n", "\n", - "Label -- make\n", - "Preds -- get (2) set (1) add (1) default (1)\n", + "Label -- time\n", + "Preds -- keyword (160)\n", "\n", - "Label -- relu\n", - "Preds -- batch (2) sqrt (2) transpose (2) contents (1) ceil (1)\n", + "Label -- name\n", + "Preds -- keyword (13849)\n", "\n", - "Label -- cutoffs\n", - "Preds -- intercept (4) coefs (1)\n", + "Label -- iterations\n", + "Preds -- keyword (30)\n", "\n", - "Label -- probas\n", - "Preds -- pred (2)\n", + "Label -- repeat\n", + "Preds -- keyword (3)\n", "\n", - "Label -- img\n", - "Preds -- reduce (4)\n", + "Label -- dictcomp\n", + "Preds -- keyword (12)\n", "\n", - "Label -- density\n", - "Preds -- seed (2) method (1)\n", + "Label -- at\n", + "Preds -- keyword (26)\n", "\n", - "Label -- depth\n", - "Preds -- bias (2) process (1)\n", + "Label -- feed\n", + "Preds -- keyword (4)\n", "\n", - "Label -- registry\n", - "Preds -- failed (1)\n", + "Label -- metrics\n", + "Preds -- keyword (947)\n", "\n", - "Label -- a\n", - "Preds -- clf (10) shape (3) g (3) t (2) c (2)\n", + "Label -- uid\n", + "Preds -- keyword (5)\n", "\n", - "Label -- target\n", - "Preds -- data (5) fit (4) array (3) self (3) name (3)\n", + "Label -- override\n", + "Preds -- keyword (10)\n", "\n", - "Label -- enabled\n", - "Preds -- eps (4)\n", + "Label -- sub\n", + "Preds -- keyword (277)\n", "\n", - "Label -- sampling\n", - "Preds -- dispatch (3)\n", + "Label -- gradients\n", + "Preds -- keyword (22)\n", "\n", - "Label -- df\n", - "Preds -- x (3)\n", + "Label -- list\n", + "Preds -- keyword (428)\n", "\n", - "Label -- evaluate\n", - "Preds -- max (3)\n", + "Label -- totals\n", + "Preds -- keyword (51)\n", "\n", - "Label -- mode\n", - "Preds -- shape (6) rate (5) size (5) alpha (5) val (3)\n", + "Label -- bias\n", + "Preds -- keyword (79)\n", "\n", - "Label -- outer\n", - "Preds -- dot (6) inner (4) like (4) concatenate (1)\n", + "Label -- opt\n", + "Preds -- keyword (6)\n", "\n", - "Label -- ind2\n", - "Preds -- \n", + "Label -- fpath\n", + "Preds -- keyword (4)\n", "\n", - "Label -- ratio\n", - "Preds -- names (8)\n", + "Label -- vgg19\n", + "Preds -- keyword (17)\n", "\n", - "Label -- name\n", - "Preds -- num (940) str (359) expr (229) nameconstant (178) return (55)\n", + "Label -- rng\n", + "Preds -- keyword (1)\n", "\n", - "Label -- splice\n", - "Preds -- format (1)\n", + "Label -- updates\n", + "Preds -- keyword (34)\n", "\n", - "Label -- shared\n", - "Preds -- current (1)\n", + "Label -- classdef\n", + "Preds -- keyword (3)\n", "\n", - "Label -- info\n", - "Preds -- msg (8) metrics (4) w (2) write (2) mode (1)\n", + "Label -- supports\n", + "Preds -- keyword (35)\n", "\n", - "Label -- buffers\n", - "Preds -- backend (3) params (2)\n", + "Label -- writer\n", + "Preds -- keyword (50)\n", "\n", - "Label -- use\n", - "Preds -- named (4) out (1)\n", + "Label -- wait\n", + "Preds -- keyword (199)\n", "\n", - "Label -- l2\n", - "Preds -- make (5) priors (3) pi (2) no (1)\n", + "Label -- z\n", + "Preds -- keyword (12)\n", "\n", - "Label -- bn\n", - "Preds -- cell (4) nn (2)\n", + "Label -- result\n", + "Preds -- keyword (9)\n", "\n", - "Label -- floatx\n", - "Preds -- sum (3) append (3) items (2) equal (1)\n", + "Label -- when\n", + "Preds -- keyword (10)\n", "\n", - "Label -- pen\n", - "Preds -- paths (4)\n", + "Label -- pooling\n", + "Preds -- keyword (135)\n", "\n", - "Label -- kwarg\n", - "Preds -- \n", + "Label -- keepdims\n", + "Preds -- keyword (12)\n", "\n", - "Label -- f\n", - "Preds -- x (7) i (6) kwargs (4) c (4) y (4)\n", + "Label -- ins\n", + "Preds -- keyword (1)\n", "\n", - "Label -- mi\n", - "Preds -- s (4) search (4)\n", + "Label -- saver\n", + "Preds -- keyword (2057)\n", "\n", - "Label -- rand\n", - "Preds -- randn (10) data (8) str (1) abs (1)\n", + "Label -- yaml\n", + "Preds -- keyword (2)\n", "\n", - "Label -- o\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preds -- i (5) c (4)\n", + "Label -- float64\n", + "Preds -- keyword (23)\n", "\n", - "Label -- epsilon\n", - "Preds -- group (8) alpha (3) tol (3) x (1) exp (1)\n", + "Label -- [MASK]\n", + "Preds -- keyword (6)\n", "\n", - "Label -- csv\n", - "Preds -- make (2)\n", + "Label -- nnet\n", + "Preds -- keyword (12)\n", "\n", - "Label -- common\n", - "Preds -- \n", + "Label -- extra\n", + "Preds -- keyword (1)\n", "\n", - "Label -- log10\n", - "Preds -- \n", + "Label -- moments\n", + "Preds -- keyword (14)\n", "\n", - "Label -- boolop\n", - "Preds -- \n", + "Label -- serialize\n", + "Preds -- keyword (3)\n", "\n", - "Label -- inbound\n", - "Preds -- output (3) cell (2) n (2) h (1) ignore (1)\n", + "Label -- flush\n", + "Preds -- keyword (38)\n", "\n", - "Label -- dispatch\n", - "Preds -- append (5) backend (3) environ (2) activation (1) dict (1)\n", + "Label -- subscript\n", + "Preds -- keyword (54)\n", "\n", - "Label -- percentile\n", - "Preds -- pad (2)\n", + "Label -- const\n", + "Preds -- keyword (2)\n", "\n", - "Label -- centered\n", - "Preds -- \n", + "Label -- pool2d\n", + "Preds -- keyword (478)\n", "\n", - "Label -- updates\n", - "Preds -- name (3) mask (3) cls (1) losses (1)\n", + "Label -- phase\n", + "Preds -- keyword (141)\n", "\n", - "Label -- any\n", - "Preds -- all (5) array (3)\n", + "Label -- mode\n", + "Preds -- keyword (126)\n", "\n", - "Label -- lassolars\n", - "Preds -- lasso (5)\n", + "Label -- try\n", + "Preds -- keyword (67)\n", "\n", - "Label -- isdigit\n", - "Preds -- startswith (6)\n", + "Label -- ndarray\n", + "Preds -- keyword (103)\n", "\n", - "Label -- std\n", - "Preds -- mean (8) sum (5) centers (2) var (1)\n", + "Label -- metadata\n", + "Preds -- keyword (8)\n", "\n", - "Label -- conv3d\n", - "Preds -- t (2) learning (1) fit (1)\n", + "Label -- argmax\n", + "Preds -- keyword (1675)\n", "\n", - "Label -- receptive\n", - "Preds -- batch (4)\n", + "Label -- check\n", + "Preds -- keyword (29)\n", "\n", - "Label -- pattern\n", - "Preds -- names (4) name (4) kernel (1) affinity (1) y (1)\n", + "Label -- binop\n", + "Preds -- keyword (106)\n", "\n", - "Label -- invalid\n", - "Preds -- \n", + "Label -- condition\n", + "Preds -- keyword (1)\n", "\n", - "Label -- islice\n", - "Preds -- backend (4)\n", + "Label -- cast\n", + "Preds -- keyword (1189)\n", "\n", - "Label -- xt\n", - "Preds -- x (6) labels (2) cov (1) value (1) cm (1)\n", + "Label -- setattr\n", + "Preds -- keyword (15)\n", "\n", - "Label -- candidates\n", - "Preds -- file (3)\n", + "Label -- diff\n", + "Preds -- keyword (74)\n", "\n", - "Label -- params\n", - "Preds -- clf (5) weights (4) name (3) transform (3) intercept (2)\n", + "Label -- tuples\n", + "Preds -- keyword (7)\n", "\n", - "Label -- map\n", - "Preds -- submit (4) type (2)\n", + "Label -- gain\n", + "Preds -- keyword (12)\n", "\n", - "Label -- metric\n", - "Preds -- p (5) verbose (3) new (3) no (2) batch (2)\n", + "Label -- rate\n", + "Preds -- keyword (91)\n", "\n", - "Label -- inferreddimension\n", - "Preds -- dim (6) dtype (6) output (1) float32 (1) name (1)\n", + "Label -- img\n", + "Preds -- keyword (57)\n", "\n", - "Label -- multilabel\n", - "Preds -- \n", + "Label -- tensorsharedvariable\n", + "Preds -- keyword (97)\n", "\n", - "Label -- pi\n", - "Preds -- log (7) shape (3)\n", + "Label -- standardize\n", + "Preds -- keyword (9)\n", "\n", - "Label -- mock\n", - "Preds -- assume (3) grid (3) is (1)\n", + "Label -- decrement\n", + "Preds -- keyword (12)\n", "\n", - "Label -- cached\n", - "Preds -- \n", + "Label -- device\n", + "Preds -- keyword (4)\n", "\n", - "Label -- edge\n", - "Preds -- module (1) add (1)\n", + "Label -- evaluate\n", + "Preds -- keyword (31)\n", "\n", - "Label -- attribute\n", - "Preds -- call (46) binop (7) tuple (5) arg (1) keyword (1)\n", + "Label -- x\n", + "Preds -- keyword (16)\n", "\n", - "Label -- logdet\n", - "Preds -- \n", + "Label -- ts\n", + "Preds -- keyword (1)\n", "\n", - "Label -- loop\n", - "Preds -- reduce (2) proba (1)\n", + "Label -- lower\n", + "Preds -- keyword (141)\n", "\n", - "Label -- with\n", - "Preds -- from (2)\n", + "Label -- convert\n", + "Preds -- keyword (12)\n", "\n", - "Label -- v0\n", - "Preds -- \n", + "Label -- matrix\n", + "Preds -- keyword (25)\n", "\n", - "Label -- dia\n", - "Preds -- csr (3)\n", + "Label -- setter\n", + "Preds -- keyword (4)\n", "\n", - "Label -- predinputtype\n", - "Preds -- score (1)\n", + "Label -- switch\n", + "Preds -- keyword (17)\n", "\n", - "Label -- fraction\n", - "Preds -- \n", + "Label -- dimshuffle\n", + "Preds -- keyword (16)\n", "\n", - "Label -- functiondoc\n", - "Preds -- format (3)\n", + "Label -- listcomp\n", + "Preds -- keyword (3)\n", "\n", - "Label -- bad\n", - "Preds -- early (4)\n", + "Label -- self\n", + "Preds -- keyword (184)\n", "\n", - "Label -- est2\n", - "Preds -- est (2) name (1)\n", + "Label -- not\n", + "Preds -- keyword (112)\n", "\n", - "Label -- pending\n", - "Preds -- running (1)\n", + "Label -- collected\n", + "Preds -- keyword (17)\n", "\n", - "Label -- executor\n", - "Preds -- backend (1) path (1)\n", + "Label -- sigmoid\n", + "Preds -- keyword (10)\n", "\n", - "Label -- special\n", - "Preds -- assume (2)\n", + "Label -- gens\n", + "Preds -- keyword (87)\n", "\n", - "Label -- quantile\n", - "Preds -- gamma (3) score (1)\n", + "Label -- maximum\n", + "Preds -- keyword (6)\n", "\n", - "Label -- box\n", - "Preds -- bounds (2)\n", + "Label -- dense\n", + "Preds -- keyword (20)\n", "\n", - "Label -- hh\n", - "Preds -- concentration (3)\n", + "Label -- uses\n", + "Preds -- keyword (49)\n", "\n", - "Label -- noisy\n", - "Preds -- old (2)\n", + "Label -- split\n", + "Preds -- keyword (10)\n", "\n", - "Label -- pickle\n", - "Preds -- get (5) original (1)\n", + "Label -- info\n", + "Preds -- keyword (178)\n", "\n", - "Label -- decision\n", - "Preds -- target (4) return (1)\n", + "Label -- kwargs\n", + "Preds -- keyword (66)\n", "\n", - "Label -- vh\n", - "Preds -- v (4)\n", + "Label -- preprocess\n", + "Preds -- keyword (20)\n", "\n", - "Label -- reset\n", - "Preds -- add (3) set (2) named (2)\n", + "Label -- summary\n", + "Preds -- keyword (79)\n", "\n", - "Label -- adaptive\n", - "Preds -- max (1)\n", + "Label -- format\n", + "Preds -- keyword (59)\n", "\n", - "Label -- tile\n", - "Preds -- transpose (5) dot (3) ranking (3) reshape (2) repeat (1)\n", + "Label -- extend\n", + "Preds -- keyword (2154)\n", "\n", - "Label -- along\n", - "Preds -- point (1)\n", + "Label -- pv\n", + "Preds -- keyword (19)\n", "\n", - "Label -- not\n", - "Preds -- \n", + "Label -- deconv2d\n", + "Preds -- keyword (28)\n", "\n", - "Label -- em\n", - "Preds -- \n", + "Label -- add\n", + "Preds -- keyword (12)\n", "\n", - "Label -- ecoc\n", - "Preds -- clf (4)\n", + "Label -- msg\n", + "Preds -- keyword (8)\n", "\n", - "Label -- repr\n", - "Preds -- \n", + "Label -- non\n", + "Preds -- keyword (259)\n", "\n", - "Label -- imputer\n", - "Preds -- feature (1)\n", + "Label -- inf\n", + "Preds -- keyword (52)\n", "\n", - "Label -- iterable\n", - "Preds -- ndarray (2)\n", + "Label -- s\n", + "Preds -- keyword (43)\n", "\n", - "Label -- hstack\n", - "Preds -- ravel (4) concatenate (2)\n", + "Label -- batch\n", + "Preds -- keyword (149)\n", "\n", - "Label -- to\n", - "Preds -- output (4) unique (3) descent (2) enet (2) file (1)\n", + "Label -- 1\n", + "Preds -- keyword (12)\n", "\n", - "Label -- decompress\n", - "Preds -- read (1)\n", + "Label -- py2\n", + "Preds -- keyword (13)\n", "\n", - "Label -- loss\n", - "Preds -- res (4) proba (4) weights (4) transpose (3) gradient (3)\n", + "Label -- make\n", + "Preds -- keyword (2)\n", "\n", - "Label -- reader\n", - "Preds -- \n", + "Label -- dims\n", + "Preds -- keyword (37)\n", "\n", - "Label -- kshape\n", - "Preds -- out (5)\n", + "Label -- isinf\n", + "Preds -- keyword (281)\n", "\n", - "Label -- w\n", - "Preds -- x (18) h (5) y (4) v (3) bias (3)\n", + "Label -- range\n", + "Preds -- keyword (98)\n", "\n", - "Label -- first\n", - "Preds -- second (2) parameters (1)\n", + "Label -- concat\n", + "Preds -- keyword (446)\n", "\n", - "Label -- readline\n", - "Preds -- keys (6) decode (3)\n", + "Label -- minimum\n", + "Preds -- keyword (79)\n", "\n", - "Label -- bgmm\n", - "Preds -- \n", + "Label -- unroll\n", + "Preds -- keyword (5)\n", "\n", - "Label -- separator\n", - "Preds -- name (8)\n", + "Label -- weights\n", + "Preds -- keyword (23)\n", "\n", - "Label -- if\n", - "Preds -- return (10) expr (6) assert (5) call (4) while (1)\n", + "Label -- apply\n", + "Preds -- keyword (2)\n", "\n", - "Label -- linearsvc\n", - "Preds -- linearsvr (3) svc (2)\n", + "Label -- pooling1d\n", + "Preds -- keyword (953)\n", "\n", - "Label -- attrname\n", - "Preds -- name (1)\n", + "Label -- random\n", + "Preds -- keyword (138)\n", "\n", - "Label -- k\n", - "Preds -- x (9) size (7) y (6) cov (4) j (3)\n", + "Label -- std\n", + "Preds -- keyword (3)\n", "\n", - "Label -- functiontype\n", - "Preds -- float32 (5)\n", + "Label -- schedule\n", + "Preds -- keyword (464)\n", "\n", - "Label -- projection\n", - "Preds -- components (1)\n", + "Label -- tf\n", + "Preds -- keyword (629)\n", "\n", - "Label -- nsec\n", - "Preds -- denominator (2)\n", + "Label -- accumulators\n", + "Preds -- keyword (7)\n", "\n", - "Label -- history\n", - "Preds -- shape (3)\n", + "Label -- sk\n", + "Preds -- keyword (15)\n", "\n", - "Label -- mkdtemp\n", - "Preds -- lassolars (1)\n", + "Label -- sum\n", + "Preds -- keyword (339)\n", "\n", "Label -- dot\n", - "Preds -- diag (3) maximum (3) log (3) error (2) idx (2)\n", - "\n", - "Label -- reduced\n", - "Preds -- size (4) process (2) obj (1)\n", + "Preds -- keyword (204)\n", "\n", - "Label -- predected\n", - "Preds -- \n", - "\n", - "Label -- file\n", - "Preds -- co (2) name (2) weight (1) regularizer (1) path (1)\n", + "Label -- gates\n", + "Preds -- keyword (5)\n", "\n", - "Label -- batch\n", - "Preds -- train (10) axis (5) no (3) queue (3) inc (3)\n", + "Label -- hsplit\n", + "Preds -- keyword (430)\n", "\n", - "Label -- sqrt\n", - "Preds -- log (5) mean (5) transform (3) argsort (2) log2 (1)\n", + "Label -- dict\n", + "Preds -- keyword (112)\n", "\n", - "Label -- second\n", - "Preds -- first (5)\n", + "Label -- predictions\n", + "Preds -- keyword (21)\n", "\n", - "Label -- setcomp\n", - "Preds -- listcomp (2)\n", + "Label -- min\n", + "Preds -- keyword (31)\n", "\n", - "Label -- sub\n", - "Preds -- add (70) mult (51) div (29) store (2) floordiv (1)\n", + "Label -- alloc\n", + "Preds -- keyword (1)\n", "\n", - "Label -- pool2d\n", - "Preds -- padding (8) dims (3) state (1)\n", + "Label -- minval\n", + "Preds -- keyword (35)\n", "\n", - "Label -- timeout\n", - "Preds -- error (3) lock (2)\n", + "Label -- allow\n", + "Preds -- keyword (32)\n", "\n", - "Label -- kneighborsregressor\n", - "Preds -- allclose (2)\n", + "Label -- moving\n", + "Preds -- keyword (10)\n", "\n", - "Label -- gain\n", - "Preds -- units (1)\n", + "Label -- losses\n", + "Preds -- keyword (26)\n", "\n", - "Label -- oov\n", - "Preds -- work (1)\n", + "Label -- pool3d\n", + "Preds -- keyword (5)\n", "\n", - "Label -- prod\n", - "Preds -- vstack (5) copy (3) predict (2) diag (1) apply (1)\n", + "Label -- densenet201\n", + "Preds -- keyword (44)\n", "\n", - "Label -- multioutput\n", - "Preds -- true (1)\n", + "Label -- linalg\n", + "Preds -- keyword (29)\n", "\n", - "Label -- acquire\n", - "Preds -- \n", + "Label -- execute\n", + "Preds -- keyword (1)\n", "\n", - "Label -- safe\n", - "Preds -- x (3)\n", + "Label -- temporal\n", + "Preds -- keyword (18)\n", "\n", - "Label -- cat\n", - "Preds -- i (1) name (1)\n", + "Label -- densenet121\n", + "Preds -- keyword (3)\n", "\n", - "Label -- chunk\n", - "Preds -- new (2) args (1)\n", + "Label -- filter\n", + "Preds -- keyword (13)\n", "\n", - "Label -- fontsize\n", - "Preds -- affinity (4) mode (3)\n", + "Label -- cropping3d\n", + "Preds -- keyword (3)\n", "\n", - "Label -- activity\n", - "Preds -- recurrent (1)\n", + "Label -- queue\n", + "Preds -- keyword (1302)\n", "\n", - "Label -- n\n", - "Preds -- max (5) filters (5) t (4) count (4) scale (3)\n", + "Label -- iterable\n", + "Preds -- keyword (2)\n", "\n", - "Label -- graph\n", - "Preds -- tensor (2) uid (1)\n", + "Label -- inbound\n", + "Preds -- keyword (17)\n", "\n", - "Label -- ideal\n", - "Preds -- by (4)\n", + "Label -- disconnected\n", + "Preds -- keyword (15)\n", "\n", - "Label -- tf\n", - "Preds -- input (3)\n", + "Label -- headers\n", + "Preds -- keyword (137)\n", "\n", - "Label -- extr\n", - "Preds -- tsne (4)\n", + "Label -- end\n", + "Preds -- keyword (33)\n", "\n", - "Label -- ab0\n", - "Preds -- alpha (4) expected (1)\n", + "Label -- hasher\n", + "Preds -- keyword (152)\n", "\n", - "Label -- svd\n", - "Preds -- dispatch (2) hidden (1) start (1)\n", + "Label -- original\n", + "Preds -- keyword (1)\n", "\n", - "Label -- interp\n", - "Preds -- \n", + "Label -- params\n", + "Preds -- keyword (213)\n", "\n", - "Label -- elu\n", - "Preds -- value (2)\n", + "Label -- images\n", + "Preds -- keyword (29)\n", "\n", - "Label -- var\n", - "Preds -- mean (9) fit (5) covariance (5) error (4) maximum (3)\n", + "Label -- str\n", + "Preds -- keyword (598)\n", "\n", - "Label -- ld\n", - "Preds -- h (1)\n", + "Label -- epsilon\n", + "Preds -- keyword (63)\n", "\n", - "Label -- nonrobust\n", - "Preds -- \n", + "Label -- simple\n", + "Preds -- keyword (2)\n", "\n", - "Label -- xbar\n", - "Preds -- \n", + "Label -- norms\n", + "Preds -- keyword (366)\n", "\n", - "Label -- level\n", - "Preds -- method (2)\n", + "Label -- save\n", + "Preds -- keyword (36)\n", "\n", - "Label -- exp\n", - "Preds -- x (9) format (3) abs (2) fill (2) effective (1)\n", + "Label -- return\n", + "Preds -- keyword (40)\n", "\n", - "Label -- hdf5\n", - "Preds -- initial (2) decision (1)\n", + "Label -- fields\n", + "Preds -- keyword (27)\n", "\n", - "Label -- value1\n", - "Preds -- attr (2)\n", + "Label -- rows\n", + "Preds -- keyword (4)\n", "\n", - "Label -- compute\n", - "Preds -- is (2) cluster (1)\n", + "Label -- op\n", + "Preds -- keyword (58)\n", "\n", - "Label -- strip\n", - "Preds -- \n", + "Label -- [UNK]\n", + "Preds -- keyword (3)\n", "\n", - "Label -- bucket\n", - "Preds -- train (10) grid (1)\n", + "Label -- tmp\n", + "Preds -- keyword (2)\n", "\n", - "Label -- i2h\n", - "Preds -- state (3)\n", + "Label -- kwd\n", + "Preds -- keyword (85)\n", "\n", - "Label -- callback\n", - "Preds -- item (4) valid (1) target (1)\n", + "Label -- units\n", + "Preds -- keyword (411)\n", "\n", - "Label -- b\n", - "Preds -- a (10) bias (6) h (2) out (2) w (1)\n", + "Label -- binary\n", + "Preds -- keyword (174)\n", "\n", - "Label -- tensors\n", - "Preds -- backend (1)\n", + "Label -- top\n", + "Preds -- keyword (95)\n", "\n", - "Label -- kneighbors\n", - "Preds -- \n", + "Label -- overwrite\n", + "Preds -- keyword (4761)\n", "\n", - "Label -- fit\n", - "Preds -- split (10) fun (5) t (5) transform (5) array (4)\n", + "Label -- objects\n", + "Preds -- keyword (6)\n", "\n", - "Label -- coef\n", - "Preds -- intercept (13) weight (4) active (3) alphas (3) data (2)\n", + "Label -- zeros\n", + "Preds -- keyword (38)\n", "\n", - "Label -- version\n", - "Preds -- message (5) s (1)\n", + "Label -- boolop\n", + "Preds -- keyword (18)\n", "\n", - "Label -- x\n", - "Preds -- y (48) self (7) bias (6) scale (6) kwargs (5)\n", + "Label -- u\n", + "Preds -- keyword (10)\n", "\n", - "Label -- case\n", - "Preds -- \n", + "Label -- function\n", + "Preds -- keyword (56)\n", "\n", - "Label -- reason\n", - "Preds -- msg (5)\n", + "Label -- spec\n", + "Preds -- keyword (4)\n", "\n", - "Label -- offset2bag\n", - "Preds -- backend (2)\n", + "Label -- layer\n", + "Preds -- keyword (21)\n", "\n", - "Label -- bias\n", - "Preds -- kernel (9) shape (3) out (2) binop (1)\n", + "Label -- cooldown\n", + "Preds -- keyword (6)\n", "\n", - "Label -- scorer\n", - "Preds -- v (4)\n", + "Label -- clipnorm\n", + "Preds -- keyword (22)\n", "\n", - "Label -- hsz\n", - "Preds -- mask (2)\n", + "Label -- py\n", + "Preds -- keyword (7)\n", "\n", - "Label -- alone\n", - "Preds -- exception (3)\n", + "Label -- neq\n", + "Preds -- keyword (67)\n", "\n", - "Label -- fp\n", - "Preds -- name (1) quote (1)\n", + "Label -- support\n", + "Preds -- keyword (296)\n", "\n", - "Label -- unserializable\n", - "Preds -- max (3)\n", + "Label -- attrs\n", + "Preds -- keyword (111)\n", "\n", - "Label -- outs\n", - "Preds -- str (1)\n", + "Label -- initializer\n", + "Preds -- keyword (11)\n", "\n", - "Label -- constr\n", - "Preds -- equal (3)\n", + "Label -- normalized\n", + "Preds -- keyword (3)\n", "\n", - "Label -- maxvalue\n", - "Preds -- name (1) kind (1)\n", + "Label -- methods\n", + "Preds -- keyword (52)\n", "\n", - "Label -- required\n", - "Preds -- shape (1)\n", + "Label -- constants\n", + "Preds -- keyword (7)\n", "\n", - "Label -- stop\n", - "Preds -- start (5) is (3)\n", + "Label -- build\n", + "Preds -- keyword (9)\n", "\n", - "Label -- states\n", - "Preds -- outputs (16) output (9) cell (5) state (4) shape (3)\n", + "Label -- id\n", + "Preds -- keyword (6)\n", "\n", - "Label -- header\n", - "Preds -- test (5)\n", + "Label -- loads\n", + "Preds -- keyword (12)\n", "\n", - "Label -- issubdtype\n", - "Preds -- \n", + "Label -- scope\n", + "Preds -- keyword (1)\n", "\n", - "Label -- uncalibrated\n", - "Preds -- current (5)\n", + "Label -- step\n", + "Preds -- keyword (49)\n", "\n", - "Label -- ms\n", - "Preds -- velocities (4) updates (1)\n", + "Label -- preds\n", + "Preds -- keyword (2)\n", "\n", - "Label -- unused\n", - "Preds -- self (8)\n", + "Label -- update\n", + "Preds -- keyword (212)\n", "\n", - "Label -- diff\n", - "Preds -- classes (6) error (2) min (1)\n", + "Label -- forward\n", + "Preds -- keyword (6)\n", "\n", - "Label -- release\n", - "Preds -- close (1)\n", + "Label -- high\n", + "Preds -- keyword (15)\n", "\n", - "Label -- support\n", - "Preds -- mask (4) y (2) intercept (1)\n", + "Label -- nameconstant\n", + "Preds -- keyword (510)\n", "\n", - "Label -- loky\n", - "Preds -- update (5)\n", + "Label -- patience\n", + "Preds -- keyword (37)\n", "\n", - "Label -- xl\n", - "Preds -- x (2)\n", + "Label -- flags\n", + "Preds -- keyword (2)\n", "\n", - "Label -- alpha\n", - "Preds -- inf (10) pi (4) res (3) b (3) components (3)\n", + "Label -- message\n", + "Preds -- keyword (3)\n", "\n", - "Label -- identity\n", - "Preds -- repeat (2)\n", + "Label -- elu\n", + "Preds -- keyword (57)\n", "\n", - "Label -- res\n", - "Preds -- mask (3) first (2) x (2) result (2) clf (1)\n", + "Label -- square\n", + "Preds -- keyword (40)\n", "\n", - "Label -- c\n", - "Preds -- i (7) values (7) r (5) size (5) nn (4)\n", + "Label -- types\n", + "Preds -- keyword (276)\n", "\n", - "Label -- fdst\n", - "Preds -- \n", + "Label -- ndim\n", + "Preds -- keyword (107)\n", "\n", - "Label -- str\n", - "Preds -- name (378) num (344) nameconstant (74) expr (22) string (3)\n", + "Label -- clipvalue\n", + "Preds -- keyword (42)\n", "\n", - "Label -- open\n", - "Preds -- backend (6) filename (4) sub (1)\n", + "Label -- intersection\n", + "Preds -- keyword (15)\n", "\n", - "Label -- r\n", - "Preds -- residues (5) v (2) i (2) j (2) out (2)\n", + "Label -- constraints\n", + "Preds -- keyword (9)\n", "\n", - "Label -- keyword\n", - "Preds -- assign (23) call (13) list (12) starred (9) name (8)\n", + "Label -- create\n", + "Preds -- keyword (30)\n", "\n", - "Label -- db\n", - "Preds -- clf (4) x (4)\n", + "Label -- unfinished\n", + "Preds -- keyword (9)\n", "\n", - "Label -- squared\n", - "Preds -- \n", + "Label -- prod\n", + "Preds -- keyword (20)\n", "\n", - "Label -- compress\n", - "Preds -- path (6) location (1) metadata (1)\n", + "Label -- select\n", + "Preds -- keyword (124)\n", "\n", - "Label -- kpca\n", - "Preds -- x (6) tsne (2) outputs (1)\n", + "Label -- ctype\n", + "Preds -- keyword (91)\n", "\n", - "Label -- 2d\n", - "Preds -- 1d (4) test (3) 3d (3) shape (1)\n", + "Label -- desired\n", + "Preds -- keyword (3)\n", "\n", - "Label -- lower\n", - "Preds -- \n", + "Label -- validation\n", + "Preds -- keyword (50)\n", "\n", - "Label -- root\n", - "Preds -- tree (2)\n", + "Label -- csv\n", + "Preds -- keyword (18)\n", "\n", - "Label -- kernel\n", - "Preds -- batch (13) bias (12) x (8) distribution (4) weights (3)\n", + "Label -- values\n", + "Preds -- keyword (6)\n", "\n", - "Label -- buckets\n", - "Preds -- dispatch (3) kernels (2) shape (1) strides (1)\n", + "Label -- label\n", + "Preds -- keyword (6)\n", "\n", - "Label -- mean\n", - "Preds -- sum (35) train (4) t (4) score (4) max (3)\n", + "Label -- config\n", + "Preds -- keyword (471)\n", "\n", - "Label -- precisions\n", - "Preds -- flags (1)\n", + "Label -- instance\n", + "Preds -- keyword (14201)\n", "\n", - "Label -- dense\n", - "Preds -- sparse (7) imputer (3) int (3) expected (2) center (1)\n", + "Label -- prob\n", + "Preds -- keyword (41)\n", "\n", - "Label -- status\n", - "Preds -- method (1)\n", + "Label -- reference\n", + "Preds -- keyword (8)\n", "\n", - "Label -- cell\n", - "Preds -- initial (4) dtype (3) k (3) attribute (3) layer (2)\n", + "Label -- 2\n", + "Preds -- keyword (12)\n", "\n", - "Label -- dynamic\n", - "Preds -- build (3) layer (3) set (2) decision (1) best (1)\n", + "Label -- mask\n", + "Preds -- keyword (33)\n", "\n", - "Label -- prediction\n", - "Preds -- result (2)\n", + "Label -- use\n", + "Preds -- keyword (32)\n", "\n", - "Label -- expects\n", - "Preds -- output (2)\n", + "Label -- regularization\n", + "Preds -- keyword (93)\n", "\n", - "Label -- signature\n", - "Preds -- args (2)\n", + "Label -- scale\n", + "Preds -- keyword (420)\n", "\n", - "Label -- embedding\n", - "Preds -- nbrs (3) x (1) gamma (1)\n", + "Label -- abs\n", + "Preds -- keyword (112)\n", "\n", - "Label -- inliers\n", - "Preds -- \n", + "Label -- normalize\n", + "Preds -- keyword (5)\n", "\n", - "Label -- trywait\n", - "Preds -- post (3) thread (1)\n", + "Label -- index\n", + "Preds -- keyword (40)\n", "\n", - "Label -- integer\n", - "Preds -- integral (1)\n", + "Label -- nodes\n", + "Preds -- keyword (28)\n", "\n", - "Label -- intercept\n", - "Preds -- coef (11) diff (2) shape (2) 1 (1) weights (1)\n", + "Label -- bool\n", + "Preds -- keyword (20)\n", "\n", - "Label -- positional\n", - "Preds -- keyword (1)\n", + "Label -- pow\n", + "Preds -- keyword (19)\n", "\n", - "Label -- distributions\n", - "Preds -- \n", + "Label -- global\n", + "Preds -- keyword (68)\n", "\n", - "Label -- read\n", - "Preds -- transpose (3) result (2) permutation (1) dense (1) startswith (1)\n", + "Label -- indices\n", + "Preds -- keyword (98)\n", "\n", - "Label -- unsorted\n", - "Preds -- sorted (11) test (2) get (2)\n", + "Label -- densenet169\n", + "Preds -- keyword (121)\n", "\n", - "Label -- calib\n", - "Preds -- train (2) r (1)\n", + "Label -- learning\n", + "Preds -- keyword (104)\n", "\n", - "Label -- single\n", - "Preds -- to (2)\n", + "Label -- workers\n", + "Preds -- keyword (15)\n", "\n", - "Label -- triu\n", - "Preds -- make (2)\n", + "Label -- timesteps\n", + "Preds -- keyword (25)\n", "\n", - "Label -- dims\n", - "Preds -- shape (7) likelihood (1)\n", + "Label -- string\n", + "Preds -- keyword (5054)\n", "\n", - "Label -- component\n", - "Preds -- word (4) c (2)\n", + "Label -- import\n", + "Preds -- keyword (42)\n", "\n", - "Label -- multinomial\n", - "Preds -- \n", + "Label -- pass\n", + "Preds -- keyword (1)\n", "\n", - "Label -- fmax\n", - "Preds -- ndarray (3)\n", + "Label -- spatialdropoutnd\n", + "Preds -- keyword (15)\n", "\n", - "Label -- groups\n", - "Preds -- copy (2) verbose (1) cv (1) x (1) all (1)\n", + "Label -- eval\n", + "Preds -- keyword (26)\n", "\n", - "Label -- regr\n", - "Preds -- \n", + "Label -- [SEP]\n", + "Preds -- keyword (19)\n", "\n", - "Label -- partial\n", - "Preds -- call (3) func (1) class (1)\n", + "Label -- join\n", + "Preds -- keyword (52)\n", "\n", - "Label -- original\n", - "Preds -- \n", + "Label -- backwards\n", + "Preds -- keyword (41)\n", "\n", - "Label -- k1\n", - "Preds -- \n", + "Label -- nb\n", + "Preds -- keyword (13)\n", "\n", - "Label -- lambda\n", - "Preds -- attribute (2)\n", + "Label -- generator\n", + "Preds -- keyword (1)\n", "\n", - "Label -- auc\n", - "Preds -- grid (4) descent (1)\n", + "Label -- item\n", + "Preds -- keyword (578)\n", "\n", - "Label -- blobs\n", - "Preds -- classification (3) test (3)\n", + "Label -- xception\n", + "Preds -- keyword (97)\n", "\n", - "Label -- calls\n", - "Preds -- \n", + "Label -- gradient\n", + "Preds -- keyword (15)\n", "\n", - "Label -- mult\n", - "Preds -- sub (24) div (22) add (18) mod (14) pow (14)\n", + "Label -- and\n", + "Preds -- keyword (54)\n", "\n", - "Label -- getcurrentprocess\n", - "Preds -- \n", + "Label -- max\n", + "Preds -- keyword (15)\n", "\n", - "Label -- ones\n", - "Preds -- zeros (9) arange (6) abs (4) append (2) full (1)\n", + "Label -- value\n", + "Preds -- keyword (4)\n", "\n", - "Label -- pointwise\n", - "Preds -- layer (4)\n", + "Label -- isnan\n", + "Preds -- keyword (46)\n", "\n", - "Label -- char\n", - "Preds -- start (2) path (1)\n", + "Label -- noteq\n", + "Preds -- keyword (1084)\n", "\n", - "Label -- uses\n", - "Preds -- weights (1)\n", + "Label -- momentum\n", + "Preds -- keyword (89)\n", "\n", - "Label -- kwonlydefaults\n", - "Preds -- thread (2)\n", + "Label -- prelu\n", + "Preds -- keyword (2)\n", "\n", - "Label -- lmbda\n", - "Preds -- ind (2)\n", + "Label -- input\n", + "Preds -- keyword (6)\n", "\n", - "Label -- csr\n", - "Preds -- csc (9) x (2) dtype (1)\n", + "Label -- unaryop\n", + "Preds -- keyword (273)\n", "\n", - "Label -- expected\n", - "Preds -- train (6) x (4) correct (4) avg (2) initial (2)\n", + "Label -- stop\n", + "Preds -- keyword (15)\n", "\n", - "Label -- zeros\n", - "Preds -- ones (21) empty (12) append (10) arange (5) full (3)\n", + "Label -- reshape\n", + "Preds -- keyword (188)\n", "\n", - "Label -- mtrand\n", - "Preds -- random (3)\n", + "Label -- image\n", + "Preds -- keyword (8)\n", "\n", - "Label -- pprob\n", - "Preds -- out (1)\n", + "Label -- dimensions\n", + "Preds -- keyword (36)\n", "\n", - "Label -- det\n", - "Preds -- t (5)\n", + "Label -- axes\n", + "Preds -- keyword (1)\n", "\n", - "Label -- formatmessage\n", - "Preds -- score (2)\n", + "Label -- seqs\n", + "Preds -- keyword (104)\n", "\n", - "Label -- reverse\n", - "Preds -- max (5) append (3) pop (1)\n", + "Label -- out\n", + "Preds -- keyword (175)\n", "\n", - "Label -- tls\n", - "Preds -- pickler (2) fields (1)\n", + "Label -- histogram\n", + "Preds -- keyword (2)\n", "\n", - "Label -- exercise\n", - "Preds -- line (2)\n", + "Label -- setdefault\n", + "Preds -- keyword (86)\n", "\n", - "Label -- r2\n", - "Preds -- trans (4) transformed (2)\n", + "Label -- l1\n", + "Preds -- keyword (287)\n", "\n", - "Label -- ndim\n", - "Preds -- randn (9) append (6) shape (3) min (2) dict (2)\n", + "Label -- less\n", + "Preds -- keyword (36)\n", "\n", - "Label -- key\n", - "Preds -- d (5) scorer (4) param (3) call (1) names (1)\n", + "Label -- nasnetmobile\n", + "Preds -- keyword (10)\n", "\n", - "Label -- cvargs\n", - "Preds -- cv (5)\n", + "Label -- strip\n", + "Preds -- keyword (24)\n", "\n", - "Label -- testing\n", - "Preds -- \n", + "Label -- placeholder\n", + "Preds -- keyword (94)\n", "\n", - "Label -- got\n", - "Preds -- call (1)\n", + "Label -- nn\n", + "Preds -- keyword (28)\n", "\n", - "Label -- km\n", - "Preds -- clf (9) pca (1) se (1)\n", + "Label -- usub\n", + "Preds -- keyword (80)\n", "\n", - "Label -- hasher\n", - "Preds -- clf (4)\n", + "Label -- positions\n", + "Preds -- keyword (13)\n", "\n", - "Label -- im2col\n", - "Preds -- fit (2)\n", + "Label -- reraise\n", + "Preds -- keyword (4)\n", "\n", - "Label -- tup\n", - "Preds -- x (10) out (2)\n", + "Label -- level\n", + "Preds -- keyword (3)\n", "\n", - "Label -- bicubic2d\n", - "Preds -- transpose (3) graph (1)\n", + "Label -- repeats\n", + "Preds -- keyword (7)\n", "\n", - "Label -- non\n", - "Preds -- layer (2)\n", + "Label -- arg\n", + "Preds -- keyword (2)\n", "\n", - "Label -- rmatvec\n", - "Preds -- sqrt (3)\n", + "Label -- while\n", + "Preds -- keyword (103)\n", "\n", - "Label -- vocabulary\n", - "Preds -- estimators (3) categories (3) scores (2)\n", + "Label -- all\n", + "Preds -- keyword (18)\n", "\n", - "Label -- while\n", - "Preds -- if (10) set (2) save (1)\n", + "Label -- alpha\n", + "Preds -- keyword (812)\n", "\n", - "Label -- clf\n", - "Preds -- rbm1 (5) estimator (5) x (5) best (4) w (3)\n", + "Label -- distribution\n", + "Preds -- keyword (81)\n", "\n", - "Label -- clustering\n", - "Preds -- clf (1)\n", + "Label -- class\n", + "Preds -- keyword (29)\n", "\n", - "Label -- initializer\n", - "Preds -- random (4) size (4) regularizer (2) add (2) axis (2)\n", + "Label -- merged\n", + "Preds -- keyword (5)\n", "\n", - "Label -- concatenate\n", - "Preds -- mean (12) array (5) sum (4) arange (3) ones (2)\n", + "Label -- order\n", + "Preds -- keyword (63)\n", "\n", - "Label -- indexes\n", - "Preds -- indices (1)\n", + "Label -- module\n", + "Preds -- keyword (4)\n", "\n", - "Label -- tmp\n", - "Preds -- arff (3) v (1) x (1) new (1) reg (1)\n", + "Label -- go\n", + "Preds -- keyword (45)\n", "\n", - "Label -- s1\n", - "Preds -- s2 (6)\n", + "Label -- arange\n", + "Preds -- keyword (95)\n", "\n", - "Label -- saver\n", - "Preds -- apply (4) data (1) keys (1) default (1) values (1)\n", + "Label -- expand\n", + "Preds -- keyword (15)\n", "\n", - "Label -- sleep\n", - "Preds -- warn (6) rmtree (2)\n", + "Label -- training\n", + "Preds -- keyword (1123)\n", "\n", - "Label -- unique\n", - "Preds -- transform (7) predict (5) rand (5) ones (4) bincount (3)\n", + "Label -- send\n", + "Preds -- keyword (47)\n", "\n", - "Label -- ts\n", - "Preds -- ratio (2)\n", + "Label -- ops\n", + "Preds -- keyword (10)\n", "\n", - "Label -- unsqueeze\n", - "Preds -- astype (4)\n", + "Label -- relu\n", + "Preds -- keyword (153)\n", "\n", - "Label -- future\n", - "Preds -- fn (3) args (1) target (1) l (1) event (1)\n", + "Label -- keras\n", + "Preds -- keyword (31)\n", "\n", - "Label -- fns\n", - "Preds -- loss (1)\n", + "Label -- filewriter\n", + "Preds -- keyword (3)\n", "\n", - "Label -- mldata\n", - "Preds -- tfidf (2)\n", + "Label -- low\n", + "Preds -- keyword (1452)\n", "\n", - "Label -- expand\n", - "Preds -- mean (2) constant (1) get (1)\n", + "Label -- object\n", + "Preds -- keyword (171)\n", "\n", - "Label -- column\n", - "Preds -- i (8) expected (4) names (3) row (3) ind (1)\n", + "Label -- truncated\n", + "Preds -- keyword (20)\n", "\n", - "Label -- select\n", - "Preds -- reshape (2) rand (2) sum (2) randint (1) size (1)\n", + "Label -- round\n", + "Preds -- keyword (334)\n", "\n", - "Label -- replace\n", - "Preds -- strip (5) get (1)\n", + "Label -- keyword\n", + "Preds -- \n", "\n", - "Label -- subtract\n", - "Preds -- fit (7) dot (5)\n", + "Label -- assert\n", + "Preds -- keyword (96)\n", "\n", - "Label -- set\n", - "Preds -- list (14) tuple (5) append (4) get (4) state (1)\n", + "Label -- items\n", + "Preds -- keyword (1211)\n", "\n", - "Label -- assert\n", - "Preds -- name (11) if (5) num (5) format (3) expr (2)\n", + "Label -- biases\n", + "Preds -- keyword (2936)\n", "\n", - "Label -- lte\n", - "Preds -- gt (13) eq (10) gte (7) name (6) lt (5)\n", + "Label -- trainable\n", + "Preds -- keyword (3)\n", "\n", - "Label -- neighbor\n", - "Preds -- query (1) mask (1)\n", + "Label -- dtype\n", + "Preds -- keyword (15)\n", "\n", - "Label -- col\n", - "Preds -- extslice (3) trans (1) path (1) self (1) features (1)\n", + "Label -- conv\n", + "Preds -- keyword (70)\n", "\n", - "Label -- book\n", - "Preds -- \n", + "Label -- cumprod\n", + "Preds -- keyword (3)\n", "\n", - "Label -- sl\n", - "Preds -- parameter (1)\n", + "Label -- withitem\n", + "Preds -- keyword (26)\n", "\n", - "Label -- full\n", - "Preds -- reshape (6) repeat (2) sparse (2) layer (1) int32 (1)\n", + "Label -- pred\n", + "Preds -- keyword (7)\n", "\n", - "Label -- minval\n", - "Preds -- value (4)\n", + "Label -- proba\n", + "Preds -- keyword (28)\n", "\n", - "Label -- argmax\n", - "Preds -- max (9) mean (6) shape (3) reshape (3) keys (2)\n", + "Label -- moves\n", + "Preds -- keyword (97)\n", "\n", - "Label -- variances\n", - "Preds -- means (2) threshold (2)\n", + "Label -- tuple\n", + "Preds -- keyword (189)\n", "\n", - "Label -- convolution\n", - "Preds -- normalize (13) init (2) call (2)\n", + "Label -- next\n", + "Preds -- keyword (60)\n", "\n", - "Label -- pc\n", - "Preds -- multi (4)\n", + "Label -- float16\n", + "Preds -- keyword (87)\n", "\n", - "Label -- power\n", - "Preds -- \n", + "Label -- graph\n", + "Preds -- keyword (34)\n", "\n", - "Label -- prefix\n", - "Preds -- fileobj (6) decode (3) name (2) c (1) path (1)\n", + "Label -- uniform\n", + "Preds -- keyword (21)\n", "\n", - "Label -- scaler\n", - "Preds -- remainder (1) clf (1)\n", + "Label -- first\n", + "Preds -- keyword (16)\n", "\n", - "Label -- keepdims\n", - "Preds -- self (4)\n", + "Label -- cropping2d\n", + "Preds -- keyword (8)\n", "\n", - "Label -- ninf\n", - "Preds -- nan (5)\n", + "Label -- delta\n", + "Preds -- keyword (42)\n", "\n", - "Label -- attrs\n", - "Preds -- data (7) modules (1)\n", + "Label -- asarray\n", + "Preds -- keyword (48)\n", "\n", - "Label -- combinations\n", - "Preds -- \n", + "Label -- length\n", + "Preds -- keyword (28)\n", "\n", - "Label -- loss2d\n", - "Preds -- transpose (4) batch (1)\n", + "Label -- decay\n", + "Preds -- keyword (2)\n", "\n", - "Label -- in\n", - "Preds -- eq (17) notin (15) isnot (12) noteq (6) is (4)\n", + "Label -- created\n", + "Preds -- keyword (4)\n", "\n", - "Label -- svc\n", - "Preds -- svr (10) factory (6)\n", + "Label -- so\n", + "Preds -- keyword (4)\n", "\n", - "Label -- double\n", - "Preds -- float64 (8) dtype (2) loss (1) log (1)\n", + "Label -- child\n", + "Preds -- keyword (2)\n", "\n", - "Label -- category\n", - "Preds -- \n", + "Label -- beta\n", + "Preds -- keyword (48)\n", "\n", - "Label -- comprehension\n", - "Preds -- assign (2)\n", + "Label -- mult\n", + "Preds -- keyword (157)\n", "\n", - "Label -- like\n", - "Preds -- \n", + "Label -- hstack\n", + "Preds -- keyword (235)\n", "\n", - "Label -- cache\n", - "Preds -- input (2) backend (1) reduce (1) new (1)\n", + "Label -- receptive\n", + "Preds -- keyword (10)\n", "\n", - "Label -- kw\n", - "Preds -- kwargs (3) i (1) format (1)\n", + "Label -- exc\n", + "Preds -- keyword (2)\n", "\n", - "Label -- improved\n", - "Preds -- diff (1)\n", + "Label -- conv3d\n", + "Preds -- keyword (3)\n", "\n", - "Label -- pos\n", - "Preds -- buffer (3)\n", + "Label -- new\n", + "Preds -- keyword (514)\n", "\n", - "Label -- kernels\n", - "Preds -- \n", + "Label -- expr\n", + "Preds -- keyword (2649)\n", "\n", - "Label -- norm\n", - "Preds -- shape (5) input (4) weight (3) transformers (3) prob (2)\n", + "Label -- sequence\n", + "Preds -- keyword (16)\n", "\n", - "Label -- bpe\n", - "Preds -- name (2)\n", + "Label -- tolist\n", + "Preds -- keyword (5)\n", "\n", - "Label -- nll\n", - "Preds -- beta (1)\n", + "Label -- put\n", + "Preds -- keyword (124)\n", "\n", - "Label -- hess\n", - "Preds -- \n", + "Label -- current\n", + "Preds -- keyword (108)\n", "\n", - "Label -- copyfileobj\n", - "Preds -- name (3)\n", + "Label -- negative\n", + "Preds -- keyword (52)\n", "\n", - "Label -- job\n", - "Preds -- i (3) neighbors (1)\n", + "Label -- gt\n", + "Preds -- keyword (920)\n", "\n", - "Label -- contourf\n", - "Preds -- uniform (2)\n", + "Label -- args\n", + "Preds -- keyword (80)\n", "\n", - "Label -- dataframe\n", - "Preds -- array (6)\n", + "Label -- post\n", + "Preds -- keyword (2)\n", "\n", - "Label -- randomstate\n", - "Preds -- \n", + "Label -- elements\n", + "Preds -- keyword (4)\n", "\n", - "Label -- intp\n", - "Preds -- int (7)\n", + "Label -- multiprocessing\n", + "Preds -- keyword (221)\n", "\n", - "Label -- withitem\n", - "Preds -- \n", + "Label -- bar\n", + "Preds -- keyword (7)\n", "\n", - "Label -- softmax\n", - "Preds -- likelihood (4) uniform (1) call (1) reshape (1) apply (1)\n", + "Label -- w\n", + "Preds -- keyword (44)\n", "\n", - "Label -- osz\n", - "Preds -- beta (1)\n", + "Label -- epoch\n", + "Preds -- keyword (10)\n", "\n", - "Label -- hash\n", - "Preds -- size (3) str (2) check (1)\n", + "Label -- b\n", + "Preds -- keyword (56)\n", "\n", - "Label -- en\n", - "Preds -- no (2)\n", + "Label -- mobilenetv2\n", + "Preds -- keyword (182)\n", "\n", - "Label -- entropy\n", - "Preds -- validation (4)\n", + "Label -- res\n", + "Preds -- keyword (51)\n", "\n", - "Label -- go\n", - "Preds -- cell (1)\n", + "Label -- grad\n", + "Preds -- keyword (283)\n", "\n", - "Label -- rbm2\n", - "Preds -- tsne (2)\n", + "Label -- variable\n", + "Preds -- keyword (16)\n", "\n", - "Label -- dstack\n", - "Preds -- predict (6)\n", + "Label -- crossentropy\n", + "Preds -- keyword (4)\n", "\n", - "Label -- cg\n", - "Preds -- \n", + "Label -- json\n", + "Preds -- keyword (113)\n", "\n", - "Label -- pred2\n", - "Preds -- \n", + "Label -- fieldnames\n", + "Preds -- keyword (26)\n", "\n", - "Label -- group\n", - "Preds -- decision (5) state (3) handle (1) i (1) k (1)\n", + "Label -- progbar\n", + "Preds -- keyword (1367)\n", "\n", - "Label -- active\n", - "Preds -- int (3) initial (2) n (1) alphas (1)\n", + "Label -- shuffle\n", + "Preds -- keyword (22)\n", "\n", - "Label -- wminkowski\n", - "Preds -- metric (1) base (1)\n", + "Label -- path\n", + "Preds -- keyword (5)\n", "\n", - "Label -- low\n", - "Preds -- \n", + "Label -- requestexception\n", + "Preds -- keyword (61)\n", "\n", - "Label -- bincount\n", - "Preds -- unique (4) fit (3) asarray (1)\n", + "Label -- built\n", + "Preds -- keyword (211)\n", "\n", - "Label -- cs\n", - "Preds -- reshape (9) active (4) h (3)\n", + "Label -- 3d\n", + "Preds -- keyword (24)\n", "\n", - "Label -- setflags\n", - "Preds -- nearestneighbors (1)\n", + "Label -- stack\n", + "Preds -- keyword (3)\n", "\n", - "Label -- param\n", - "Preds -- i (5) weights (4) check (3) buffer (3) alpha (3)\n", + "Label -- last\n", + "Preds -- keyword (9)\n", "\n", - "Label -- positive\n", - "Preds -- self (2) bias (2)\n", + "Label -- is\n", + "Preds -- keyword (3827)\n", "\n", - "Label -- kwonlyargs\n", - "Preds -- \n", + "Label -- running\n", + "Preds -- keyword (13)\n", "\n", - "Label -- inv\n", - "Preds -- norm (2)\n", + "Label -- load\n", + "Preds -- keyword (206)\n", "\n", - "Label -- learning\n", - "Preds -- \n", + "Label -- lt\n", + "Preds -- keyword (115)\n", "\n", - "Label -- ops\n", - "Preds -- linalg (5) backend (3) info (3) random (1) cell (1)\n", + "Label -- k\n", + "Preds -- keyword (485)\n", "\n", - "Label -- iid\n", - "Preds -- cv (1)\n", + "Label -- if\n", + "Preds -- keyword (74)\n", "\n", - "Label -- kept\n", - "Preds -- g (3)\n", + "Label -- close\n", + "Preds -- keyword (69)\n", "\n", - "Label -- population\n", - "Preds -- samples (1)\n", + "Label -- init\n", + "Preds -- keyword (1082)\n", "\n", - "Label -- data\n", - "Preds -- indices (11) x (11) shape (9) array (6) indptr (6)\n", + "Label -- gamma\n", + "Preds -- keyword (1)\n", "\n", - "Label -- integral\n", - "Preds -- number (2)\n", + "Label -- batchnorm\n", + "Preds -- keyword (26572)\n", "\n", - "Label -- 2\n", - "Preds -- 1 (9) bynipals (2) w (1)\n", + "Label -- symbolic\n", + "Preds -- keyword (80)\n", "\n", - "Label -- bitor\n", - "Preds -- \n", + "Label -- default\n", + "Preds -- keyword (584)\n", "\n", - "Label -- td\n", - "Preds -- x (2)\n", + "Label -- append\n", + "Preds -- keyword (36)\n", "\n", - "Label -- should\n", - "Preds -- item (1) func (1)\n", + "Label -- normal\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preds -- keyword (136)\n", "\n", - "Label -- default\n", - "Preds -- fileobj (3) batch (2) length (2) dtype (2) get (2)\n", + "Label -- vgg16\n", + "Preds -- keyword (19)\n", "\n", - "Label -- library\n", - "Preds -- return (4) random (2) max (2)\n", + "Label -- origin\n", + "Preds -- keyword (76)\n", "\n", - "Label -- forward\n", - "Preds -- cell (10) dict (3) apply (2) dispatch (2) backend (2)\n", + "Label -- allowed\n", + "Preds -- keyword (83)\n", "\n", - "Label -- gaussiannoise\n", - "Preds -- get (1)\n", + "Label -- padding\n", + "Preds -- keyword (174)\n", "\n", - "Label -- bz2file\n", - "Preds -- integral (1)\n", + "Label -- amsgrad\n", + "Preds -- keyword (18)\n", "\n", - "Label -- globals\n", - "Preds -- dict (1)\n", + "Label -- from\n", + "Preds -- keyword (36)\n", "\n", - "Label -- cause\n", - "Preds -- num (1) args (1)\n", + "Label -- targets\n", + "Preds -- keyword (10)\n", "\n", - "Label -- round\n", - "Preds -- predict (1)\n", + "Label -- callbacks\n", + "Preds -- keyword (87)\n", "\n", - "Label -- evl\n", - "Preds -- idx (1)\n", + "Label -- filename\n", + "Preds -- keyword (38)\n", "\n", - "Label -- inverse\n", - "Preds -- fit (4)\n", + "Label -- devs\n", + "Preds -- keyword (23)\n", "\n", - "Label -- table\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Preds -- \n", + "Label -- tensors\n", + "Preds -- keyword (11)\n", "\n", - "Label -- varargs\n", - "Preds -- args (3)\n", + "Label -- period\n", + "Preds -- keyword (148)\n", "\n", - "Label -- alive\n", - "Preds -- stationary (1)\n", + "Label -- weight\n", + "Preds -- keyword (17)\n", "\n", - "Label -- train\n", - "Preds -- test (13) batch (5) step (3) error (2) gradient (2)\n", + "Label -- shapes\n", + "Preds -- keyword (16)\n", "\n", - "Label -- improvement\n", - "Preds -- \n", + "Label -- dir\n", + "Preds -- keyword (34)\n", "\n", - "Label -- sparseefficiencywarning\n", - "Preds -- name (2)\n", + "Label -- cumsum\n", + "Preds -- keyword (20)\n", "\n", - "Label -- skip\n", - "Preds -- make (3) mask (1) arguments (1) support (1) start (1)\n", + "Label -- fan\n", + "Preds -- keyword (7)\n", "\n", - "Label -- y2\n", - "Preds -- x (10) y1 (9) target (1) y (1)\n", + "Label -- float32\n", + "Preds -- keyword (116)\n", "\n", - "Label -- abspath\n", - "Preds -- basename (1)\n", + "Label -- cells\n", + "Preds -- keyword (2)\n", "\n", - "Label -- labelpropagation\n", - "Preds -- labelspreading (1)\n", + "Label -- tensor\n", + "Preds -- keyword (12)\n", "\n", - "Label -- freedimension\n", - "Preds -- dtype (10) category (1) shape (1) name (1)\n", + "Label -- insecure\n", + "Preds -- keyword (4)\n", "\n", - "Label -- startswith\n", - "Preds -- endswith (2)\n", + "Label -- history\n", + "Preds -- keyword (32)\n", "\n", - "Label -- values\n", - "Preds -- message (5) readlines (4) s (4) data (3) dtype (3)\n", + "Label -- lr\n", + "Preds -- keyword (490)\n", "\n", - "Label -- popen\n", - "Preds -- new (2)\n", + "Label -- sharedvar\n", + "Preds -- keyword (1)\n", "\n", - "Label -- counter\n", - "Preds -- args (1) size (1)\n", + "Label -- devices\n", + "Preds -- keyword (26)\n", "\n", - "Label -- warnings\n", - "Preds -- \n", + "Label -- slices\n", + "Preds -- keyword (15)\n", "\n", - "Label -- vstack\n", - "Preds -- hstack (11)\n", + "Label -- generic\n", + "Preds -- keyword (26)\n", "\n", - "Label -- binarizer\n", - "Preds -- \n", + "Label -- cls\n", + "Preds -- keyword (30)\n", "\n", - "Label -- shutdown\n", - "Preds -- broken (2)\n", + "Label -- dumps\n", + "Preds -- keyword (8)\n", "\n", - "Label -- logaddexp\n", - "Preds -- exp (5) maximum (3)\n", + "Label -- conversions\n", + "Preds -- keyword (62)\n", "\n", - "Label -- methods\n", - "Preds -- wrapper (4) method (2) attribute (1) weight (1) svd (1)\n", + "Label -- neg\n", + "Preds -- keyword (26)\n", "\n", - "Label -- centroid\n", - "Preds -- priors (1)\n", + "Label -- full\n", + "Preds -- keyword (6)\n", "\n", - "Label -- base\n", - "Preds -- predictions (3) type (3) per (1) multi (1)\n", + "Label -- pad\n", + "Preds -- keyword (2)\n", "\n", - "Label -- cast\n", - "Preds -- all (7) full (5) log (5) value (4) dot (3)\n", + "Label -- floordiv\n", + "Preds -- keyword (44)\n", "\n", - "Label -- all\n", - "Preds -- toarray (7) mean (5) any (5) sparse (3) sum (2)\n", + "Label -- callback\n", + "Preds -- keyword (555)\n", "\n", - "Label -- median\n", - "Preds -- max (6) proba (3)\n", + "Label -- squeeze\n", + "Preds -- keyword (49)\n", "\n", - "Label -- concat\n", - "Preds -- array (2)\n", + "Label -- model\n", + "Preds -- keyword (115)\n", "\n", - "Label -- spatial\n", - "Preds -- kernel (2)\n", + "Label -- closure\n", + "Preds -- keyword (17)\n", "\n", - "Label -- uniform\n", - "Preds -- randint (16) normal (6) row (3) parameter (2)\n", + "Label -- upsampling2d\n", + "Preds -- keyword (14)\n", "\n", - "Label -- raisefailure\n", - "Preds -- warn (3)\n", + "Label -- var\n", + "Preds -- keyword (48)\n", "\n", - "Label -- constant\n", - "Preds -- kind (3) parameter (2)\n", + "Label -- log\n", + "Preds -- keyword (24)\n", "\n", - "Label -- filterwarnings\n", - "Preds -- \n", + "Label -- deepcopy\n", + "Preds -- keyword (4)\n", "\n", - "Label -- in1d\n", - "Preds -- setdiff1d (6)\n", + "Label -- restore\n", + "Preds -- keyword (156)\n", "\n", - "Label -- visibledeprecationwarning\n", - "Preds -- name (4)\n", + "Label -- dropout\n", + "Preds -- keyword (46)\n", "\n", - "Label -- inverseprepad\n", - "Preds -- size (7)\n", + "Label -- atleast\n", + "Preds -- keyword (216)\n", "\n", - "Label -- fetch\n", - "Preds -- test (1) cached (1)\n", + "Label -- spatial\n", + "Preds -- keyword (13)\n", "\n", - "Label -- iteritems\n", - "Preds -- params (2)\n", + "Label -- c\n", + "Preds -- keyword (104)\n", "\n", - "Label -- distances\n", - "Preds -- y (4)\n", + "Label -- filepath\n", + "Preds -- keyword (13)\n", "\n", - "Label -- items\n", - "Preds -- \n", + "Label -- classification\n", + "Preds -- keyword (4)\n", "\n", - "Label -- alfa\n", - "Preds -- u (1)\n", + "Label -- func\n", + "Preds -- keyword (17)\n", "\n", - "Label -- p1top\n", - "Preds -- diff (3)\n", + "Label -- embedding\n", + "Preds -- keyword (7)\n", "\n", - "Label -- verbose\n", - "Preds -- self (5) tol (4) alpha (3) msg (2) value (2)\n", + "Label -- softplus\n", + "Preds -- keyword (20)\n", "\n", - "Label -- my\n", - "Preds -- base (1)\n", + "Label -- reset\n", + "Preds -- keyword (730)\n", "\n", - "Label -- both\n", - "Preds -- \n", + "Label -- spatialdropout1d\n", + "Preds -- keyword (29)\n", "\n", - "Label -- align\n", - "Preds -- max (5) negative (3) weight (2)\n", + "Label -- hot\n", + "Preds -- keyword (5)\n", "\n", - "Label -- concentration\n", - "Preds -- \n", + "Label -- stopped\n", + "Preds -- keyword (105)\n", "\n", - "Label -- connectivity\n", - "Preds -- verbose (1)\n", + "Label -- with\n", + "Preds -- keyword (659)\n", "\n", - "Label -- internal\n", - "Preds -- bias (3)\n", + "Label -- axis\n", + "Preds -- keyword (73)\n", "\n", - "Label -- early\n", - "Preds -- \n", + "Label -- alt\n", + "Preds -- keyword (7)\n", "\n", - "Label -- dim\n", - "Preds -- sum (10) alpha (7) items (6) tuple (6) x (5)\n", + "Label -- div\n", + "Preds -- keyword (85)\n", "\n", - "Label -- sum\n", - "Preds -- mean (24) sqrt (13) ravel (12) concatenate (7) time (6)\n", + "Label -- task\n", + "Preds -- keyword (223)\n", "\n", - "Label -- dnn\n", - "Preds -- max (4) nn (1) name (1)\n", + "Label -- factor\n", + "Preds -- keyword (23)\n", "\n", - "Label -- asscalar\n", - "Preds -- hstack (1)\n", + "Label -- functions\n", + "Preds -- keyword (8)\n", "\n", - "Label -- deserialize\n", - "Preds -- get (5)\n", + "Label -- [CLS]\n", + "Preds -- keyword (9)\n", "\n", - "Label -- scaling\n", - "Preds -- \n", + "Label -- cols\n", + "Preds -- keyword (5)\n", "\n", - "Label -- works\n", - "Preds -- args (4)\n", + "Label -- concatenate\n", + "Preds -- keyword (69)\n", "\n", - "Label -- leaves\n", - "Preds -- coef (4) nodes (2) process (1)\n", + "Label -- foldr\n", + "Preds -- keyword (5)\n", "\n", - "Label -- maximum\n", - "Preds -- logaddexp (6) mean (4) log (2)\n", + "Label -- file\n", + "Preds -- keyword (178)\n", "\n", - "Label -- delegate\n", - "Preds -- \n", + "Label -- seed\n", + "Preds -- keyword (85)\n", "\n", - "Label -- return\n", - "Preds -- name (158) expr (26) num (19) break (11) str (5)\n", + "Label -- root\n", + "Preds -- keyword (97)\n", "\n", - "Label -- built\n", - "Preds -- sparse (1) activation (1) outputs (1) bias (1)\n", + "Label -- pop\n", + "Preds -- keyword (11)\n", "\n", - "Label -- fileobj\n", - "Preds -- \n", + "Label -- epochs\n", + "Preds -- keyword (28)\n", "\n", - "Label -- slice\n", - "Preds -- index (102) list (5) name (5) dims (4) feature (4)\n", + "Label -- gpus\n", + "Preds -- keyword (23)\n", "\n", - "Label -- topic\n", - "Preds -- \n", + "Label -- gather\n", + "Preds -- keyword (3)\n", "\n", - "Label -- simplefilter\n", - "Preds -- warn (3) info (2) write (1)\n", + "Label -- threshold\n", + "Preds -- keyword (22)\n", "\n", - "Label -- eq\n", - "Preds -- gt (45) noteq (23) lt (13) in (8) lte (7)\n", + "Label -- intermediate\n", + "Preds -- keyword (34)\n", "\n", - "Label -- enqueuer\n", - "Preds -- backend (3)\n", + "Label -- assign\n", + "Preds -- keyword (8261)\n", "\n", - "Label -- cells\n", - "Preds -- output (5) cell (4) padding (1)\n", + "Label -- strides\n", + "Preds -- keyword (212)\n", "\n", - "Label -- eye\n", - "Preds -- diag (2) sum (1) log (1) warn (1) repeat (1)\n", + "Label -- to\n", + "Preds -- keyword (143)\n", "\n", - "Label -- damping\n", - "Preds -- verbose (2)\n", + "Label -- dilation\n", + "Preds -- keyword (1)\n", "\n", - "Label -- m\n", - "Preds -- b (5) v (4) seed (4) obj (3) w (3)\n", + "Label -- sample\n", + "Preds -- keyword (3)\n", "\n", - "Label -- start\n", - "Preds -- get (3) ndim (3) d (2) queue (2) temp (1)\n", + "Label -- slice\n", + "Preds -- keyword (7939)\n", "\n", - "Label -- noteq\n", - "Preds -- eq (36) gt (21) lt (12) gte (4) lte (4)\n", + "Label -- binomial\n", + "Preds -- keyword (6)\n", "\n", - "Label -- svr\n", - "Preds -- svc (1)\n", + "Label -- rnn\n", + "Preds -- keyword (199)\n", "\n", - "Label -- logits\n", - "Preds -- input (1)\n", + "Label -- logsumexp\n", + "Preds -- keyword (1)\n", "\n", - "Label -- bytes\n", - "Preds -- name (7) num (3) nameconstant (2)\n", + "Label -- continue\n", + "Preds -- keyword (17)\n", "\n", - "Label -- this\n", - "Preds -- new (4) case (2) test (1) x (1) val (1)\n", + "Label -- [cls]\n", + "Preds -- keyword (5)\n", "\n", - "Label -- frombuffer\n", - "Preds -- linspace (4) max (1) zeros (1)\n", + "Label -- total\n", + "Preds -- keyword (136)\n", "\n", - "Label -- ctx\n", - "Preds -- context (1) self (1)\n", + "Label -- cudnn\n", + "Preds -- keyword (35)\n", "\n", - "Label -- kwargs\n", - "Preds -- args (9) self (7) x (5) obj (4) fn (4)\n", + "Label -- outputs\n", + "Preds -- keyword (9)\n", "\n", - "Label -- parent\n", - "Preds -- thread (1) children (1)\n", + "Label -- second\n", + "Preds -- keyword (10)\n", "\n", - "Label -- intersect1d\n", - "Preds -- \n", + "Label -- sess\n", + "Preds -- keyword (4)\n", "\n", - "Label -- numel\n", - "Preds -- reduce (1) transpose (1) concatenate (1)\n", + "Label -- rho\n", + "Preds -- keyword (10)\n", "\n", - "Label -- statistics\n", - "Preds -- components (1)\n", + "Label -- eye\n", + "Preds -- keyword (52)\n", "\n", - "Label -- axis\n", - "Preds -- weights (7) uniform (2) output (2) shape (1) kwargs (1)\n", + "Label -- permute\n", + "Preds -- keyword (1)\n", "\n", - "Label -- alias\n", - "Preds -- \n", + "Label -- map\n", + "Preds -- keyword (3)\n", "\n", - "Label -- maj\n", - "Preds -- pred (3)\n", + "Label -- retain\n", + "Preds -- keyword (2)\n", "\n", - "Label -- ctc\n", - "Preds -- beta (2)\n", + "Label -- sparsetype\n", + "Preds -- keyword (62)\n", "\n", - "Label -- predict\n", - "Preds -- transform (18) fit (5) sum (4) x (4) diag (3)\n", + "Label -- shape\n", + "Preds -- keyword (13)\n", "\n", - "Label -- intercepts\n", - "Preds -- coefs (4) reachability (4) coef (2)\n", + "Label -- importfrom\n", + "Preds -- keyword (16)\n", "\n", - "Label -- div\n", - "Preds -- mult (45) add (37) sub (18) pow (7) output (2)\n", + "Label -- seen\n", + "Preds -- keyword (47)\n", "\n", - "Label -- sigma\n", - "Preds -- means (1)\n", + "Label -- predict\n", + "Preds -- keyword (15)\n", "\n", - "Label -- row\n", - "Preds -- tokens (4) time (4) p (2) col (2) x (1)\n", + "Label -- pos\n", + "Preds -- keyword (28)\n", "\n", - "Label -- precompute\n", - "Preds -- x (3) msg (2)\n", + "Label -- functiondef\n", + "Preds -- keyword (4868)\n", "\n", - "Label -- methodtype\n", - "Preds -- \n", + "Label -- splice\n", + "Preds -- keyword (99)\n", "\n", - "Label -- length\n", - "Preds -- shape (14) size (1) idx (1) extslice (1)\n", + "Label -- size\n", + "Preds -- keyword (50)\n", "\n", - "Label -- results\n", - "Preds -- g (4) record (3) classifier (3) f (1) shape (1)\n", + "Label -- activation\n", + "Preds -- keyword (2)\n", "\n", - "Label -- average\n", - "Preds -- array (5) asarray (3) w (1) bincount (1)\n", + "Label -- cache\n", + "Preds -- keyword (5)\n", "\n", - "Label -- parameters\n", - "Preds -- name (8) outputs (7) values (5) items (3) args (2)\n", + "Label -- acc\n", + "Preds -- keyword (4)\n", "\n", - "Label -- probabilities\n", - "Preds -- \n", + "Label -- augassign\n", + "Preds -- keyword (11)\n", "\n", - "Label -- none\n", - "Preds -- \n", + "Label -- counter\n", + "Preds -- keyword (3)\n", "\n", - "Label -- joined\n", - "Preds -- name (3) msg (1)\n", + "Label -- vs\n", + "Preds -- keyword (6)\n", "\n", - "Label -- decay\n", - "Preds -- dtype (9) rate (2) size (2) value (1)\n", + "Label -- lookup\n", + "Preds -- keyword (20)\n", "\n", - "Label -- buffer\n", - "Preds -- batch (3) data (2) length (2) weight (2)\n", + "Label -- l1l2\n", + "Preds -- keyword (93)\n", "\n", - "Label -- float64\n", - "Preds -- dtype (14) float32 (8) int (6) bool (5) constant (2)\n", + "Label -- any\n", + "Preds -- keyword (1789)\n", "\n", - "Label -- crossentropy\n", - "Preds -- features (2) point (1) metric (1)\n", + "Label -- keys\n", + "Preds -- keyword (138)\n", "\n", - "Label -- fitted\n", - "Preds -- \n", + "Label -- run\n", + "Preds -- keyword (10)\n", "\n", - "Label -- offset\n", - "Preds -- shape (2) all (1) rate (1) row (1) pred (1)\n", + "Label -- vhats\n", + "Preds -- keyword (12)\n", "\n", - "Label -- clusters\n", - "Preds -- jobs (3) features (1) components (1)\n", + "Label -- mod\n", + "Preds -- keyword (91)\n", "\n", - "Label -- keywords\n", - "Preds -- kwargs (1)\n", + "Label -- converted\n", + "Preds -- keyword (27)\n", "\n", - "Label -- priors\n", - "Preds -- components (4)\n", + "Label -- generatorexp\n", + "Preds -- keyword (53)\n", "\n", - "Label -- staged\n", - "Preds -- \n", + "Label -- transpose\n", + "Preds -- keyword (7)\n", "\n", - "Label -- delete\n", - "Preds -- assign (6) path (2) return (1) repeat (1) where (1)\n", + "Label -- unpack\n", + "Preds -- keyword (2)\n", "\n", - "Label -- types\n", - "Preds -- rate (2) init (2)\n", + "Label -- done\n", + "Preds -- keyword (238)\n", "\n", - "Label -- params2\n", - "Preds -- params (5)\n", + "Label -- elems\n", + "Preds -- keyword (17)\n", "\n", - "Label -- listcomp\n", - "Preds -- generatorexp (19) index (1)\n", + "Label -- include\n", + "Preds -- keyword (8)\n", "\n", - "Label -- unaryop\n", - "Preds -- \n", + "Label -- train\n", + "Preds -- keyword (63)\n", "\n", - "Label -- mmap\n", - "Preds -- \n", + "Label -- prefix\n", + "Preds -- keyword (3)\n", "\n", - "Label -- idle\n", - "Preds -- stop (3)\n", + "Label -- signature\n", + "Preds -- keyword (18)\n", "\n", - "Label -- sprase\n", - "Preds -- \n", + "Label -- conv1d\n", + "Preds -- keyword (12)\n", "\n", - "Label -- lr\n", - "Preds -- length (4) dtype (1)\n", + "Label -- pooling2d\n", + "Preds -- keyword (166)\n", "\n", - "Label -- stddev\n", - "Preds -- shape (2) kwargs (2) x (1) state (1)\n", + "Label -- limit\n", + "Preds -- keyword (1)\n", "\n", - "Label -- updated\n", - "Preds -- get (3)\n", + "Label -- available\n", + "Preds -- keyword (16)\n", "\n", - "Label -- parallel\n", - "Preds -- backend (5) prefer (2)\n", + "Label -- maxval\n", + "Preds -- keyword (93)\n", "\n", - "Label -- enum\n", - "Preds -- mask (4) listcomp (3) shape (1) weight (1) tuple (1)\n", + "Label -- type\n", + "Preds -- keyword (67)\n", "\n", - "Label -- dropout3d\n", - "Preds -- value (4) output (1)\n", + "Label -- conv2d\n", + "Preds -- keyword (66)\n", "\n", - "Label -- spatialdropout1d\n", - "Preds -- get (1)\n", + "Label -- greater\n", + "Preds -- keyword (158)\n", "\n", - "Label -- semlock\n", - "Preds -- gamma (2) gram (1)\n", + "Label -- idxs\n", + "Preds -- keyword (4)\n", "\n", - "Label -- errors\n", - "Preds -- name (3) values (1)\n", + "Label -- times\n", + "Preds -- keyword (134)\n", "\n", - "Label -- transpose\n", - "Preds -- repeat (4) fit (3) mean (2) reshape (2)\n", + "Label -- sequences\n", + "Preds -- keyword (31)\n", "\n", - "Label -- config\n", - "Preds -- params (5) value (4) metrics (3) shape (2) fit (1)\n", + "Label -- session\n", + "Preds -- keyword (23)\n", "\n", - "Label -- exploration\n", - "Preds -- max (1)\n", + "Label -- sparsetensor\n", + "Preds -- keyword (5)\n", "\n", - "Label -- missing\n", - "Preds -- \n", + "Label -- resnet50\n", + "Preds -- keyword (23)\n", "\n", - "Label -- typename\n", - "Preds -- classes (4) dim (3) shape (3) default (2) parameters (1)\n", + "Label -- field\n", + "Preds -- keyword (171)\n", "\n", - "Label -- normalize\n", - "Preds -- h (4) verbose (2) args (2) outputs (1) axis (1)\n", + "Label -- open\n", + "Preds -- keyword (189)\n", "\n", - "Label -- assign\n", - "Preds -- keyword (21) call (15) for (8)\n", + "Label -- ident\n", + "Preds -- keyword (57)\n", "\n", - "Label -- pad\n", - "Preds -- bias (10) axis (6) s (2) 1 (1) value (1)\n", + "Label -- true\n", + "Preds -- keyword (543)\n", "\n", - "Label -- product\n", - "Preds -- zeros (4) log (3) slice (2)\n", + "Label -- updated\n", + "Preds -- keyword (4)\n", "\n", - "Label -- cumprod\n", - "Preds -- transform (1)\n", + "Label -- group\n", + "Preds -- keyword (49)\n", "\n", - "Label -- left\n", - "Preds -- out (4)\n", + "Label -- t\n", + "Preds -- keyword (19)\n", "\n", - "Label -- sign\n", - "Preds -- c (3) sqrt (1) transform (1) abs (1)\n", + "Label -- process\n", + "Preds -- keyword (27)\n", "\n", - "Label -- reg\n", - "Preds -- est (5) clf (1)\n", + "Label -- d\n", + "Preds -- keyword (444)\n", "\n", - "Label -- tocsr\n", - "Preds -- name (1)\n", + "Label -- nasnetlarge\n", + "Preds -- keyword (41)\n", "\n", - "Label -- rrelu\n", - "Preds -- optimizer (5)\n", + "Label -- [PAD]\n", + "Preds -- keyword (1)\n", "\n", - "Label -- esrch\n", - "Preds -- eexist (3)\n", + "Label -- legacy\n", + "Preds -- keyword (276)\n", "\n", - "Label -- uid\n", - "Preds -- i (4) name (1) losses (1)\n", + "Label -- optimizer\n", + "Preds -- keyword (33)\n", "\n", - "Label -- reg2\n", - "Preds -- clf (1)\n", + "Label -- in\n", + "Preds -- keyword (713)\n", "\n", - "Label -- cost\n", - "Preds -- 1 (1)\n", + "Label -- logits\n", + "Preds -- keyword (143)\n", "\n", - "Label -- cluster\n", - "Preds -- x (2) n (1)\n", + "Label -- comprehension\n", + "Preds -- keyword (6)\n", "\n", - "Label -- ordering\n", - "Preds -- classes (4) kwargs (1)\n", + "Label -- logs\n", + "Preds -- keyword (44)\n", "\n", - "Label -- names\n", - "Preds -- col (6) bias (3) params (3) shape (3) class (3)\n", + "Label -- set\n", + "Preds -- keyword (160)\n", "\n", - "Label -- criterion\n", - "Preds -- name (3)\n", + "Label -- upper\n", + "Preds -- keyword (53)\n", "\n", - "Label -- lasso\n", - "Preds -- lars (4)\n", + "Label -- softsign\n", + "Preds -- keyword (1)\n", "\n", - "Label -- means\n", - "Preds -- theta (4) xbar (2) mask (1) vars (1)\n", + "Label -- foldl\n", + "Preds -- keyword (3)\n", "\n", - "Label -- separable\n", - "Preds -- max (1)\n", + "Label -- batches\n", + "Preds -- keyword (20)\n", "\n", - "Label -- rank\n", - "Preds -- axis (2)\n", + "Label -- startswith\n", + "Preds -- keyword (109)\n", "\n", - "Label -- height\n", - "Preds -- attr (6) input (1)\n", + "Label -- async\n", + "Preds -- keyword (78)\n", "\n", - "Label -- i\n", - "Preds -- name (11) j (5) x (5) h (4) format (3)\n", + "Label -- nonzero\n", + "Preds -- keyword (3)\n", "\n", - "Label -- regularization\n", - "Preds -- s (4) x (3) e (2) bandwidth (1)\n", + "Label -- compute\n", + "Preds -- keyword (19)\n", "\n", - "Label -- moving\n", - "Preds -- return (1) explained (1)\n", + "Label -- filters\n", + "Preds -- keyword (12681)\n", "\n", - "Label -- vs\n", - "Preds -- shape (3)\n", + "Label -- inferreddimension\n", + "Preds -- keyword (6)\n", "\n", - "Label -- text\n", - "Preds -- shape (2)\n", + "Label -- ms\n", + "Preds -- keyword (2)\n", "\n", - "Label -- bitand\n", - "Preds -- \n", + "Label -- required\n", + "Preds -- keyword (231)\n", "\n", - "Label -- last\n", - "Preds -- all (4) coord (2) current (1) wrong (1)\n", + "Label -- write\n", + "Preds -- keyword (4)\n", "\n", - "Label -- subpopulation\n", - "Preds -- features (2)\n", + "Label -- increment\n", + "Preds -- keyword (26)\n", "\n", - "Label -- task\n", - "Preds -- learning (2) cell (1)\n", + "Label -- cell\n", + "Preds -- keyword (645)\n", "\n", - "Label -- jll\n", - "Preds -- threshold (4) classes (3) diff (1) proba (1)\n", + "Label -- exp\n", + "Preds -- keyword (73)\n", "\n", - "Label -- penalty\n", - "Preds -- handle (3) verbose (1)\n", + "Label -- initial\n", + "Preds -- keyword (3)\n", "\n", - "Label -- build\n", - "Preds -- output (1) a (1) append (1)\n", + "Label -- freq\n", + "Preds -- keyword (5)\n", "\n", - "Label -- asfortranarray\n", - "Preds -- \n", + "Label -- floatx\n", + "Preds -- keyword (4582)\n", "\n", - "Label -- isinf\n", - "Preds -- any (2)\n", + "Label -- slope\n", + "Preds -- keyword (57)\n", "\n", - "Label -- sem\n", - "Preds -- \n", + "Label -- regularizer\n", + "Preds -- keyword (4)\n", "\n", - "Label -- filters\n", - "Preds -- units (6)\n", + "Label -- backend\n", + "Preds -- keyword (200)\n", "\n", - "Label -- attributes\n", - "Preds -- size (3) outputs (2)\n", + "Label -- compare\n", + "Preds -- keyword (430)\n", "\n", - "Label -- dist2\n", - "Preds -- \n", + "Label -- astype\n", + "Preds -- keyword (5)\n", "\n", - "Label -- scan\n", - "Preds -- repeat (3) constant (1) kneighbors (1) init (1)\n", + "Label -- element\n", + "Preds -- keyword (7)\n", "\n", - "Label -- randint\n", - "Preds -- argmax (5) randn (4) linspace (4) warn (3) bincount (3)\n", + "Label -- eq\n", + "Preds -- keyword (55)\n", "\n", - "Label -- backend\n", - "Preds -- verbose (4) apply (3) lower (3) state (3) nn (1)\n", + "Label -- backward\n", + "Preds -- keyword (187)\n", "\n", - "Label -- terminal\n", - "Preds -- \n", + "Label -- backup\n", + "Preds -- keyword (7)\n", "\n", - "Label -- lines\n", - "Preds -- line (2)\n", + "Label -- zeropadding3d\n", + "Preds -- keyword (3)\n", "\n", - "Label -- combine\n", - "Preds -- name (1)\n", + "Label -- target\n", + "Preds -- keyword (489)\n", "\n", - "Label -- margin\n", - "Preds -- beta (4) alpha (4) p (1)\n", + "Label -- count\n", + "Preds -- keyword (43)\n", "\n", - "Label -- v\n", - "Preds -- x (4) transformers (2) is (1) sparse (1) a (1)\n", + "Label -- where\n", + "Preds -- keyword (7)\n", "\n", - "Label -- wrong\n", - "Preds -- good (1)\n", + "Label -- delete\n", + "Preds -- keyword (1)\n", "\n", - "Label -- finditer\n", - "Preds -- group (2)\n", + "Label -- obj\n", + "Preds -- keyword (81)\n", "\n", - "Label -- equal\n", - "Preds -- log (2) dot (2) squeeze (2) dtype (1) predict (1)\n", + "Label -- 1d\n", + "Preds -- keyword (221)\n", "\n", - "Label -- 20\n", - "Preds -- with (3)\n", + "Label -- randint\n", + "Preds -- keyword (1)\n", "\n", - "Label -- classes\n", - "Preds -- samples (6) shape (5) outputs (4) estimators (3) fit (2)\n", + "Label -- feature\n", + "Preds -- keyword (1)\n", "\n", - "Label -- coalesced\n", - "Preds -- names (2) to (2)\n", + "Label -- gaussiannoise\n", + "Preds -- keyword (2)\n", "\n", - "Label -- gbestimator\n", - "Preds -- self (3)\n", + "Label -- call\n", + "Preds -- keyword (1388)\n", "\n", - "Label -- exe\n", - "Preds -- folder (4)\n", + "Label -- like\n", + "Preds -- keyword (1)\n", "\n", - "Label -- predecessor\n", - "Preds -- \n", + "Label -- verbose\n", + "Preds -- keyword (233)\n", "\n", - "Label -- libsvm\n", - "Preds -- \n", + "Label -- l2\n", + "Preds -- keyword (199)\n", "\n", - "Label -- callable\n", - "Preds -- build (1)\n", + "Label -- flatten\n", + "Preds -- keyword (40)\n", "\n", - "Label -- modes\n", - "Preds -- concentration (1) layer (1)\n", + "Label -- clip\n", + "Preds -- keyword (7)\n", "\n", - "Label -- item\n", - "Preds -- keyword (4) strip (4) key (3) file (2) ravel (2)\n", + "Label -- theta\n", + "Preds -- keyword (33)\n", "\n", - "Label -- parameter\n", - "Preds -- value (3) constant (2) average (2) state (2) parameters (1)\n", + "Label -- exists\n", + "Preds -- keyword (6)\n", "\n", - "Label -- aug\n", - "Preds -- \n", + "Label -- as\n", + "Preds -- keyword (65)\n", "\n", - "Label -- mcd\n", - "Preds -- tsne (2)\n", + "Label -- masking\n", + "Preds -- keyword (106)\n", "\n", - "Label -- xr\n", - "Preds -- x (1)\n", + "Label -- decode\n", + "Preds -- keyword (34)\n", "\n", - "Label -- array\n", - "Preds -- sparse (5) nan (4) ones (4) asarray (3) toarray (3)\n", + "Label -- int\n", + "Preds -- keyword (23)\n", "\n", - "Label -- sigterm\n", - "Preds -- \n", + "Label -- sqrt\n", + "Preds -- keyword (97)\n", "\n", - "Label -- pack\n", - "Preds -- make (1)\n", + "Label -- raise\n", + "Preds -- keyword (315)\n", "\n", - "Label -- flush\n", - "Preds -- \n", + "Label -- header\n", + "Preds -- keyword (3)\n", "\n", - "Label -- node\n", - "Preds -- test (3) subscript (2) n (1) i (1) values (1)\n", + "Label -- mobilenet\n", + "Preds -- keyword (7)\n", "\n", - "Label -- 1\n", - "Preds -- 2 (7) true (3)\n", + "Label -- user\n", + "Preds -- keyword (5)\n", "\n", - "Label -- filename\n", - "Preds -- shape (2) path (2) name (2) graph (2) data (1)\n", + "Label -- reduce\n", + "Preds -- keyword (11)\n", "\n", - "Label -- half\n", - "Preds -- values (3)\n", + "Label -- explicitly\n", + "Preds -- keyword (420)\n", "\n", - "Label -- ih\n", - "Preds -- add (2)\n", + "Label -- normed\n", + "Preds -- keyword (21)\n", "\n", - "Label -- tsne\n", - "Preds -- rbm1 (1)\n", + "Label -- noise\n", + "Preds -- keyword (4)\n", "\n", - "Label -- traceback\n", - "Preds -- presort (2)\n", + "Label -- hash\n", + "Preds -- keyword (1)\n", "\n", - "Label -- ids\n", - "Preds -- names (3) regularizer (2) sizes (1) results (1) idx (1)\n", + "Label -- val\n", + "Preds -- keyword (41)\n", "\n", - "Label -- nn\n", - "Preds -- sparse (2) cell (1)\n", + "Label -- constant\n", + "Preds -- keyword (64)\n", "\n", - "Label -- h\n", - "Preds -- c (4) r (4) state (4) kernel (3) bias (2)\n", + "Label -- cntk\n", + "Preds -- keyword (99)\n", "\n", - "Label -- inlier\n", - "Preds -- \n", + "Label -- probs\n", + "Preds -- keyword (63)\n", "\n", - "Label -- generatorexp\n", - "Preds -- listcomp (30)\n", + "Label -- arguments\n", + "Preds -- keyword (2542)\n", "\n", - "Label -- subscript\n", - "Preds -- call (1)\n", + "Label -- copy\n", + "Preds -- keyword (2)\n", "\n", - "Label -- inertia\n", - "Preds -- labels (2)\n", + "Label -- monitor\n", + "Preds -- keyword (154)\n", "\n", - "Label -- trans\n", - "Preds -- sum (3) str (3) name (1)\n", + "Label -- theano\n", + "Preds -- keyword (69)\n", "\n", - "Label -- rv\n", - "Preds -- args (4)\n", + "Label -- phases\n", + "Preds -- keyword (2)\n", "\n", - "Label -- coordinates\n", - "Preds -- layer (1)\n", + "Label -- tensorvariable\n", + "Preds -- keyword (103)\n", "\n", - "Label -- z0\n", - "Preds -- denominator (1)\n", + "Label -- reverse\n", + "Preds -- keyword (1)\n", "\n", - "Label -- terminate\n", - "Preds -- \n", + "Label -- lambda\n", + "Preds -- keyword (951)\n", "\n", - "Label -- dilated\n", - "Preds -- step (2) batch (1)\n", + "Label -- ordering\n", + "Preds -- keyword (3)\n", "\n", - "Label -- compressor\n", - "Preds -- v (1)\n", + "Label -- cpu\n", + "Preds -- keyword (7)\n", "\n", - "Label -- vals\n", - "Preds -- kwargs (1)\n", + "Label -- classes\n", + "Preds -- keyword (34)\n", "\n", - "Label -- derivatives\n", - "Preds -- kwargs (3)\n", + "Label -- nw\n", + "Preds -- keyword (267)\n", "\n", - "Label -- indices\n", - "Preds -- dtype (4) input (4) row (3) idx (3) size (3)\n", + "Label -- rank\n", + "Preds -- keyword (4)\n", "\n", - "Label -- cudnn\n", - "Preds -- flags (4)\n", + "Label -- dump\n", + "Preds -- keyword (18)\n", "\n", - "Label -- ngram\n", - "Preds -- string (2)\n", + "Label -- key\n", + "Preds -- keyword (4)\n", "\n", - "Label -- issubset\n", - "Preds -- any (2)\n", + "Label -- warn\n", + "Preds -- keyword (154)\n", "\n", - "Label -- validation\n", - "Preds -- training (4) grid (2)\n", + "Label -- state\n", + "Preds -- keyword (24)\n", "\n", - "Label -- shrinkage\n", - "Preds -- \n", + "Label -- or\n", + "Preds -- keyword (103)\n", "\n", - "Label -- arange\n", - "Preds -- full (7) eye (5) hstack (4) rand (3) ones (3)\n", + "Label -- pooling3d\n", + "Preds -- keyword (2)\n", "\n", - "Label -- raw\n", - "Preds -- \n", + "Label -- old\n", + "Preds -- keyword (131)\n", "\n", - "Label -- so\n", - "Preds -- predict (4)\n", + "Label -- num\n", + "Preds -- keyword (108)\n", "\n", - "Label -- per\n", - "Preds -- layer (2) dispatch (2)\n", + "Label -- subtensor\n", + "Preds -- keyword (27)\n", "\n", - "Label -- splitter\n", - "Preds -- \n", + "Label -- dim\n", + "Preds -- keyword (55)\n", "\n", - "Label -- rotations\n", - "Preds -- expected (1)\n", + "Label -- yield\n", + "Preds -- keyword (8)\n", "\n", - "Label -- event\n", - "Preds -- \n", + "Label -- dynamic\n", + "Preds -- keyword (31)\n", "\n", - "Label -- errno\n", - "Preds -- \n", + "Label -- tensorlike\n", + "Preds -- keyword (5)\n", "\n", - "Label -- l1\n", - "Preds -- t (1) whiten (1)\n", + "Label -- inceptionresnetv2\n", + "Preds -- keyword (4)\n", "\n", - "Label -- unlink\n", - "Preds -- post (6) name (2)\n", + "Label -- print\n", + "Preds -- keyword (3946)\n", "\n", - "Label -- terms\n", - "Preds -- scores (1)\n", + "Label -- for\n", + "Preds -- keyword (306)\n", "\n", - "Label -- args\n", - "Preds -- x (7) d (6) kwargs (5) params (4) shape (2)\n", + "Label -- shared\n", + "Preds -- keyword (36)\n", "\n", - "Label -- methodname\n", - "Preds -- kwargs (2)\n", + "Label -- line\n", + "Preds -- keyword (2)\n", "\n", - "Label -- supports\n", - "Preds -- normalize (1) original (1) trainable (1) losses (1) done (1)\n", + "Label -- by\n", + "Preds -- keyword (5)\n", "\n", - "Label -- references\n", - "Preds -- max (3)\n", + "Label -- idx\n", + "Preds -- keyword (11)\n", "\n", - "Label -- pop\n", - "Preds -- append (4) get (2)\n", + "Label -- carry\n", + "Preds -- keyword (7)\n", "\n", - "Label -- 3d\n", - "Preds -- density (3) output (1)\n", + "Label -- pattern\n", + "Preds -- keyword (15)\n", "\n", - "Label -- named\n", - "Preds -- \n", + "Label -- sparse\n", + "Preds -- keyword (5)\n", "\n", - "Label -- nameconstant\n", - "Preds -- name (289) num (266) str (113) list (2)\n", + "Label -- th\n", + "Preds -- keyword (34)\n", "\n", - "Label -- enc\n", - "Preds -- clf (4)\n", + "Label -- preprocessor\n", + "Preds -- keyword (10)\n", "\n", - "Label -- prefer\n", - "Preds -- parallel (1) mode (1)\n", + "Label -- fn\n", + "Preds -- keyword (3)\n", "\n", - "Label -- bytesio\n", - "Preds -- integral (1)\n", + "Label -- far\n", + "Preds -- keyword (408)\n", "\n", - "Label -- module\n", - "Preds -- name (8) excepthandler (4) kwargs (3) parameters (3) value (2)\n", + "Label -- recurrent\n", + "Preds -- keyword (5)\n", "\n", - "Label -- sibling\n", - "Preds -- \n", + "Label -- inputs\n", + "Preds -- keyword (48)\n", "\n" ] } @@ -10029,7 +4957,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -10039,7 +4967,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -10049,7 +4977,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 84, "metadata": {}, "outputs": [], "source": [ @@ -10074,16 +5002,16 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 85, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.9962488646684832, 0.003751135331516803)" + "(0.4620767915436033, 0.5379232084563967)" ] }, - "execution_count": 34, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -10108,7 +5036,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 86, "metadata": {}, "outputs": [], "source": [ @@ -10137,7 +5065,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -10147,7 +5075,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -10175,7 +5103,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -10198,7 +5126,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -10208,7 +5136,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -10233,16 +5161,16 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.9908219800181653, 0.009178019981834696)" + "(0.2747738224778486, 0.7252261775221515)" ] }, - "execution_count": 41, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -10260,7 +5188,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -10269,7 +5197,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -10289,57 +5217,57 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 95, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[5.00000e+00, 0.00000e+00, 5.00000e+00, 0.00000e+00, 0.00000e+00,\n", + "array([[0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.90000e+01],\n", - " [0.00000e+00, 1.20850e+04, 3.68000e+02, 1.00000e+00, 2.00000e+00,\n", - " 0.00000e+00, 9.00000e+00, 0.00000e+00, 1.00000e+00, 2.50000e+01,\n", - " 1.70000e+01, 2.00000e+00, 0.00000e+00, 5.60000e+01],\n", - " [8.00000e+00, 4.21000e+02, 1.47267e+05, 0.00000e+00, 1.50000e+01,\n", - " 1.00000e+00, 7.00000e+00, 0.00000e+00, 1.20000e+01, 6.80000e+01,\n", - " 1.00000e+00, 0.00000e+00, 0.00000e+00, 3.49000e+02],\n", - " [0.00000e+00, 0.00000e+00, 0.00000e+00, 2.20000e+01, 0.00000e+00,\n", - " 0.00000e+00, 2.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.50000e+01],\n", - " [0.00000e+00, 2.00000e+00, 2.60000e+01, 0.00000e+00, 7.06000e+03,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 9.00000e+00],\n", - " [0.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 6.83000e+02, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.00000e+00],\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 4.86800e+03, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 5.70000e+01],\n", - " [0.00000e+00, 0.00000e+00, 1.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 1.47400e+03, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 3.00000e+00],\n", - " [0.00000e+00, 3.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.56200e+03, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.30000e+01],\n", - " [0.00000e+00, 2.10000e+01, 1.64000e+02, 0.00000e+00, 5.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.16330e+04,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 1.30000e+01],\n", - " [4.00000e+00, 0.00000e+00, 0.00000e+00, 2.00000e+00, 0.00000e+00,\n", " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 9.20000e+01, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [4.00000e+00, 1.75970e+04, 1.94400e+04, 2.06000e+02, 8.03300e+03,\n", + " 1.57000e+02, 6.85000e+02, 1.92000e+02, 6.97600e+03, 8.83810e+04,\n", + " 6.92100e+03, 6.00000e+00, 2.90000e+01, 1.73023e+05],\n", " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 6.35000e+02, 0.00000e+00, 1.00000e+00],\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", - " 0.00000e+00, 0.00000e+00, 2.74000e+02, 0.00000e+00],\n", - " [1.30000e+01, 3.20000e+01, 1.13000e+02, 2.50000e+01, 2.40000e+01,\n", - " 0.00000e+00, 4.10000e+01, 0.00000e+00, 1.40000e+01, 1.70000e+01,\n", - " 0.00000e+00, 0.00000e+00, 0.00000e+00, 2.95190e+04]])" + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00],\n", + " [0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00,\n", + " 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00]])" ] }, - "execution_count": 44, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -10350,29 +5278,29 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'0': 0.00013623978201634878,\n", - " '1': 0.05705722070844687,\n", - " '10': 0.0004995458673932788,\n", - " '11': 0.002892824704813806,\n", - " '12': 0.0012443233424159854,\n", - " '13': 0.13653950953678473,\n", - " '2': 0.671866485013624,\n", - " '3': 0.00022706630336058128,\n", - " '4': 0.03227066303360581,\n", - " '5': 0.003106267029972752,\n", - " '6': 0.02237511353315168,\n", - " '7': 0.006693914623069936,\n", - " '8': 0.0117574931880109,\n", - " '9': 0.05333333333333334}" + "{'0': 1.243587750660656e-05,\n", + " '1': 0.05470853412093891,\n", + " '10': 0.021517177055806,\n", + " '11': 1.865381625990984e-05,\n", + " '12': 9.016011192289756e-05,\n", + " '13': 0.5379232084563967,\n", + " '2': 0.06043836468210788,\n", + " '3': 0.0006404476915902378,\n", + " '4': 0.024974351002642625,\n", + " '5': 0.0004881081921343075,\n", + " '6': 0.0021296440230063733,\n", + " '7': 0.0005969221203171148,\n", + " '8': 0.02168817037152184,\n", + " '9': 0.2747738224778486}" ] }, - "execution_count": 45, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -10391,18 +5319,18 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([3.00000e+01, 1.25640e+04, 1.47945e+05, 5.00000e+01, 7.10600e+03,\n", - " 6.84000e+02, 4.92700e+03, 1.47400e+03, 2.58900e+03, 1.17440e+04,\n", - " 1.10000e+02, 6.37000e+02, 2.74000e+02, 3.00660e+04])" + "array([4.00000e+00, 1.75970e+04, 1.94400e+04, 2.06000e+02, 8.03300e+03,\n", + " 1.57000e+02, 6.85000e+02, 1.92000e+02, 6.97600e+03, 8.83810e+04,\n", + " 6.92100e+03, 6.00000e+00, 2.90000e+01, 1.73023e+05])" ] }, - "execution_count": 46, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -10413,22 +5341,22 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 47, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANHCAYAAADaFKdrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Wu0ZWdZJ/r/Q8wN0gEhyiVcApgESYSSRBFEOiAMECMXGzQRG3O6j9HB7YCCBAQ62q0gwsFGQCz72FFaCdANdMQcgwrVIAJSgUpCwi0RFAIeCdcGQgh7P+fDXoUra+1dteeuWVl71/79xpij9nrnnO961xr15T+eZ76rujsAAAAcmFssegEAAACHAuEKAABgBMIVAADACIQrAACAEQhXAAAAIxCuAAAARiBcAQAA205V/WFV/XNVfWiN81VVr6iqq6vq8qq63/7mFK4AAIDt6IIkj9zH+R9LcuLkODfJ7+1vQuEKAADYdrr7nUm+sI9LHpPkj3vFe5PcpqruuK85v2PMBQIAAIe+RzzkVv35Lywtehn7dOnlN1yZ5BtTQzu7e+eAKY5P8qmp15+ejH12rRuEKwAAYJDPf2Epf3fJXRe9jH067I4f/0Z3n35zvqe2QAAAgHnXJrnL1Os7T8bWJFwBAADMuyjJkya7Bv5Qki9395otgYm2QAAAYKBOspzlRS/jgFTV65KckeS4qvp0kv+Q5PAk6e7XJLk4yaOSXJ3k60n+j/3NKVwBAADbTnefvZ/zneQpQ+bUFggAADAClSsAAGCgzlJv7bbAg0HlCgAAYATCFQAAwAi0BQIAAIOs7BbYi17GpqNyBQAAMALhCgAAYATCFQAAwAg8cwUAAAy2HFuxz1K5AgAAGIFwBQAAMAJtgQAAwCCdzlLbin2WyhUAAMAIhCsAAIARaAsEAAAGW462wFkqVwAAACMQrgAAAEagLRAAABikkyxpC5yjcgUAADAC4QoAAGAE2gIBAIDB7BY4T+UKAABgBMIVAADACIQrAACAEXjmCgAAGKSTLLVnrmapXAEAAIxAuAIAABiBtkAAAGCw5UUvYBNSuQIAABiBcAUAADACbYEAAMAgnc5S7BY4S+UKAABgBMIVAADACLQFAgAAw3SypCtwjsoVAADACIQrAACAEWgLBAAABun4EeHVqFwBAACMQLgCAAAYgbZAAABgoMpSatGL2HRUrgAAAEYgXAEAAIxAuAIAABiBZ64AAIBBOslyL3oVm4/KFQAAwAiEKwAAgBFoCwQAAAazFfs8lSsAAIARCFcAAAAj0BYIAAAM0tEWuBqVKwAAgBEIVwAAACPQFggAAAy23NoCZ6lcAQAAjEC4AgAAGIG2QAAAYBC7Ba5O5QoAAGAEwhUAAMAIhCsAAIAReOYKAAAYpFNZUqeZ4xsBAAAYgXAFAAAwAm2BAADAYMttK/ZZKlcAAAAjEK4AAABGoC0QAAAYpJMsRVvgLJUrAACAEahcrcMRh9+qjzryNotexsZ97fpFrwAAgHX43/nidd39XYteBxsjXK3DUUfeJve/zy8uehkb997LF70CAADW4a/6v//DotewPpWl1gQ3yzcCAAAwAuEKAABgBNoCAQCAQTrJsjrNHN8IAADACIQrAACAEQhXAAAAI/DMFQAAMNhSatFL2HRUrgAAAEYgXAEAAIxAWyAAADBId2Wp1Wlm+UYAAABGIFwBAACMQFsgAAAw2LLdAueoXAEAAIxAuAIAABiBtkAAAGCQTrKkTjPHNwIAADAC4QoAAGAE2gIBAICB/IjwarbUN1JVXVX/ber1d1TV56rqrVNjj62qy6vqw1V1RVU9durcBVX1iaq6rKo+VlV/XFV3vrk/BwAAcOjZUuEqydeSnFpVR09ePzzJtXtPVtV9k7w0yWO6+3uTPDrJS6vqPlNzPLu775vk5CQfTPL2qjriZlk9AABwyNpq4SpJLk7y45O/z07yuqlzz0rym939iSSZ/PuiJM+enaRXvDzJPyX5sYO6YgAAOIR0kuXcYlMfi7AVw9WFSc6qqqOS3CfJ+6bOnZLk0pnrd0/G1/KBJPeaHayqc6tqd1XtvvHGrx3gkgEAgEPdlgtX3X15khOyUrW6eIQpa4332dndp3f36YcffqsR3gYAADiUbblwNXFRVp6tet3M+FVJTpsZOy3JlfuY6/uTfHi8pQEAANvRVt2K/Q+TfKm7r6iqM6bGX5rkjVX19u7+ZFWdkOR5SR4/O0FVVZKnJbljkr846CsGAIBDyFKv2gC2rW3JcNXdn07yilXG91TVc5L8WVUdnuTGJL/S3XumLvvtqnpBklsmeW+Sh3T3N2+OdQMAAIeuLRWuuvuYVcZ2Jdk19fpNSd60xv3nHKSlAQAA29yWClcAAMDidSpLW3b7hoPHNwIAADAC4QoAAGAE2gIBAIDBlludZpZvBAAAYATCFQAAwAi0BQIAAIN0YrfAVfhGAAAARiBcAQAAjEBbIAAAMEinstS16GVsOipXAAAAIxCuAAAARiBcAQAAjMAzVwAAwGDL6jRzfCMAAAAjEK4AAABGoC0QAAAYpDtZanWaWb4RAACAEahcrcfXrk/ee/miV7Fhr/3Uuxe9hAPyb+/yw4tewobVkUcuegkHpG+4YdFLALahOv3URS/hgPTuDy16CcCCCFcAAMBAleXUohex6WgLBAAAGIFwBQAAMAJtgQAAwCAduwWuxjcCAAAwAuEKAABgBNoCAQCAwZbUaeb4RgAAAEYgXAEAAIxAWyAAADBIp7LcfkR4lsoVAADACIQrAACAEQhXAAAAI/DMFQAAMJit2Of5RgAAAEYgXAEAAIxAWyAAADBIJ1ludZpZvhEAAIARCFcAAAAj0BYIAAAMVFlKLXoRm86WCFdV9atJfibJUpLlJF9M8p1JjknyXUk+Mbn0yUl+M8k9ktytu3ty/1uSPCzJA5K8dnLtXZN8eXJc190Pu1k+DAAAcEja9OGqqh6Q5Mwk9+vuG6rquCRHdPdnquqMJM/q7jOnrk+SLyX54SR/U1W3SXLHJOnuK5LsmFx3QZK3dvd/vxk/DgAAcIja9OEqK8Houu6+IUm6+7p13HNhkrOS/E2Sn0zypiSnHLQVAgDANmK3wNVthW/kbUnuUlUfq6pXV9W/Xsc9f53kwVV1WFZC1uuHvmlVnVtVu6tq9425YejtAADANrPpw1V3fzXJaUnOTfK5JK+vqnP2c9tSVqpWZyU5urs/uYH33dndp3f36YfnyKG3AwAA28xWaAtMdy8l2ZVkV1VdkeTnklywn9suTPLmJOcfzLUBAMB2ZLfAeZu+clVVJ1fViVNDO5L8wzpufVeSFyV53UFZGAAAwJStULk6JsnvTnb9+1aSq7PSIrhPk23YX3qQ1wYAAJBkC4Sr7r40yQPXOLcrK+2C02NnrHHtMTOvzxljfQAAAMkWCFcAAMDm0l22Yl+FbwQAAGAEwhUAAMAItAUCAACDLWkLnOMbAQAAGIFwBQAAMAJtgQAAwCCdZDm16GVsOipXAAAAIxCuAAAARqAtEAAAGKi2/G6BVfXIJP85yWFJ/kt3v3jm/F2T/FGS20yuOa+7L97XnFv7GwEAABioqg5L8qokP5bk3knOrqp7z1z2/CRv6O7vT3JWklfvb17hCgAA2G5+MMnV3f333f3NJBcmeczMNZ3k2Mnft07ymf1Nqi0QAAAYpJMs96bfLfC4qto99Xpnd++c/H18kk9Nnft0kvvP3H9+krdV1dOS3CrJw/b3hsIVAABwKLquu08/gPvPTnJBd7+sqh6Q5LVVdWp3L691g7ZAAABgu7k2yV2mXt95Mjbt3yd5Q5J093uSHJXkuH1NKlwBAADbzfuTnFhVd6+qI7KyYcVFM9f8Y5IfTZKq+t6shKvP7WtSbYEAAMBgS1u4TtPd36qqpya5JCvbrP9hd19ZVb+eZHd3X5Tkl5P8QVU9MyuPmZ3T3b2veYUrAABg25n8ZtXFM2MvnPr7qiQ/PGRO4Wodlr/zVvnqw2c3D9k6fu5et1r0Eg7Ixde+a9FL2LBHHX+/RS8B2Kja9LtgHbL6Ax9e9BLYym5x2KJXcGCWFr0ADoRwBQAADNKprbAV+81u6zZKAgAAbCLCFQAAwAi0BQIAAIMtq9PM8Y0AAACMQLgCAAAYgbZAAABgkO5kyW6Bc1SuAAAARiBcAQAAjEBbIAAAMJgfEZ6ncgUAADAC4QoAAGAE2gIBAIBBOpXlVqeZ5RsBAAAYgXAFAAAwAuEKAABgBJ65AgAABluKrdhnqVwBAACMQLgCAAAYgbZAAABgkE6y3NoCZ22JylVVLVXVnqnjvKo6rKouraoHT133tqp6wuTvT1bVFVV1+WT8DquM/6+qutuiPhcAAHDo2BLhKsn13b1j6nhxdy8leXKSV1bV4VV1dpLl7n7j1H0P6e77JNmd5HmrjO9K8vyb60MAAACHri3dFtjd76uq9yQ5P8nPJHn4Gpe+M8nTVxl/zxrjAADAmirLvVXqNDefrRKujq6qPVOvX9Tdr5/8/dwkn0ryO9199Rr3n5nkilXGH5nkLavdUFXnJjk3SY645W02tGgAAGD72Crh6vru3rHGuQcn+XKSU1c5946qWkpyeW7a/veOqrptkq8mecFqk3b3ziQ7k+SY296lN7pwAABge9jStbyqulWSlyR5aJLvrqpHzVzykMkzWk/q7i9Njye5W5I9SX7t5lktAAAcOpZTm/pYhC0drpK8MMkbuvsjWdnc4uVVddR6buzubyV5RpInTapYAAAAG7ZVwtXRM1uxv7iqTknyuCS/kSTd/cEklyR5znon7e7PJnldkqccjEUDAADbx5Z45qq7D1vj1Ekz1z196u8T1pjrhJnXTzvA5QEAwLbSnSz5EeE5W6VyBQAAsKkJVwAAACMQrgAAAEawJZ65AgAANpflVqeZ5RsBAAAYgXAFAAAwAm2BAADAIJ3Ksq3Y56hcAQAAjEC4AgAAGIG2QAAAYLDlaAucpXIFAAAwAuEKAABgBNoCAQCAQTqxW+AqVK4AAABGIFwBAACMQFsgAAAw2HKr08zyjQAAAIxA5WodbvHFr+WYN75v0cvYsOVFL+AAPer4+y16CRv2j+c/cNFLOCB3Pf9vF70EWJzuRa9g++qlRa+ArWzZ/x8WR7gCAACG6bJb4Cq0BQIAAIxAuAIAABiBcAUAADACz1wBAACDdJLleOZqlsoVAADACIQrAACAEWgLBAAABrMV+zyVKwAAgBEIVwAAACPQFggAAAzS0Ra4GpUrAACAEQhXAAAAI9AWCAAADKYtcJ7KFQAAwAiEKwAAgBFoCwQAAAbplLbAVahcAQAAjEC4AgAAGIFwBQAAMALPXAEAAIMtxzNXs/ZbuaqqparaM3WcV1WHVdWlVfXgqeveVlVPmPz9yaq6oqoun4zfYZXx/1VVd9vPe9+hqi6sqmsm73dxVZ00OXdKVb29qj5aVR+vqhdUVU3OnVNVy1V1n6m5PlRVJ1TV+yaf4x+r6nNTn+uEjXyBAAAAyfraAq/v7h1Tx4u7eynJk5O8sqoOr6qzkyx39xun7ntId98nye4kz1tlfFeS56/1ppOg9OYku7r7nt19WpLnJrl9VR2d5KIkL+7uk5PcN8kDJ2va69NJfnV23u6+f3fvSPLCJK+f+lyfXMd3AQAAsKoNtwV29/uq6j1Jzk/yM0kevsal70zy9FXG37PG+F4PSXJjd79m6j0vS5Kq+vdJ3t3db5uMf72qnpqVwPaqyeVvTfLgqjq5uz+63s8FAADsR8dW7KtYT+Xq6Jm2wJ+eOvfcJM9I8qfdffUa95+Z5IpVxh+Z5C37eN9Tk1y6xrlTZs919zVJjqmqYydDy0lekptWzdatqs6tqt1VtfvG3LCRKQAAgG1kPZWr6ydtdKt5cJIvZyUIzXpHVS0luTw3bf97R1XdNslXk7xgyGI34E+T/GpV3X3ojd29M8nOJDm2bttjLwwAADi0bHgr9qq6VVYqQw9N8t1V9aiZSx4yeZbpSd39penxJHdLsifJr+3jLa5Mctoa566aPVdV90jy1e7+yt6x7v5Wkpclec46PhIAALAOnZW2wM18LMKB/M7VC5O8obs/kpWNJF5eVUet58ZJ6HlGkidNqlireXuSI6vq3L0DVXWfqvqRJH+S5EFV9bDJ+NFJXpGVsDfrgiQPS/Jd6/pUAAAAG7CRZ65eXFWnJHlckt9Iku7+YJJLMqBC1N2fTfK6JE9Z43xP3uNhk63Yr0zyoiT/1N3XJ3lMkudX1Uez8kzX+5O8cpV5vpmV4PXd610bAADAUPt95qq7D1vj1Ekz1z196u8T1pjrhJnXT9vPe38myU+tce6KJGesce6CrFSs9r5+RVYC1prXAAAA62e3wHkH0hYIAADAxIZ/52osVXW7JH+9yqkf7e7P39zrAQAA2IiFh6tJgFprq3cAAGCT6SxuR77NTFsgAADACIQrAACAEQhXAAAAI1j4M1cAAMDW0565mqNyBQAAMALhCgAAYATaAgEAgMGWoy1wlsoVAADACIQrAACAEWgLBAAABulOlu0WOEflCgAAYATCFQAAwAi0BQIAAIP5EeF5KlcAAAAjULmCg+iu5//topdwQC6+9gOLXsIBedTx91v0EgCAbUS4AgAABiq7Ba5CWyAAAMAIhCsAAIARaAsEAAAGs1vgPJUrAACAEQhXAAAAIxCuAAAARuCZKwAAYJBObMW+CpUrAACAEQhXAAAAI9AWCAAADNNJ96IXsfmoXAEAAIxAuAIAABiBtkAAAGCw5dgtcJbKFQAAwAiEKwAAgBFoCwQAAAbpJO1HhOeoXAEAAIxAuAIAABiBtkAAAGCgyrK2wDmbvnJVVb9aVVdW1eVVtaeq7l9Vu6rq9Jnrzqiqt069/rGq2l1VV1XVB6vqZZPx86vq2slce4/b3NyfCwAAOLRs6spVVT0gyZlJ7tfdN1TVcUmOWMd9pyZ5ZZIf7+6PVNVhSc6duuTl3f3Sg7JoAABgW9rU4SrJHZNc1903JEl3X5ckVfstQf5Kkt/o7o9M7ltK8nsHcZ0AAMA2t9nbAt+W5C5V9bGqenVV/et13ndqkkv3cf6ZUy2B7zjwZQIAwPbSvbmPRdjUlavu/mpVnZbkR5I8JMnrq+q8Eabeb1tgVZ2bSSvhUbnlCG8JAAAcyjZ1uEq+3dK3K8muqroiyc+t47Yrk5yW5LIDeN+dSXYmybF12wVlXwAAYKvY1G2BVXVyVZ04NbQjyT+s49bfTvK8qjppMs8tquoXD8YaAQBgO+quTX0swqYOV0mOSfJHk+3UL09y7yTnT879eVV9enK8cfqm7r48yTOSvK6qPpzkQ0nuMXXJM2e2Yj/hYH8QAADg0Lap2wK7+9IkD1zl1Blr3LJr6t63Jnnr7AXdfX7+JaABAACMYlOHKwAAYPNZ2ZFvMa13m9lmbwsEAADYEoQrAACAEWgLBAAABlvWFjhH5QoAAGAEwhUAAMAItAUCAACDdS96BZuPyhUAAMAIhCsAAIARaAsEAAAG8yPC81SuAAAARiBcAQAAjEC4AgAAGIFnrgAAgEE65ZmrVahcAQAAjEC4AgAAGIG2QAAAYLBe9AI2IZUrAACAEahcAWt61PH3W/QSDsgln9mz6CUckEfcaceilwAADCBcAQAAw3TsFrgKbYEAAAAjEK4AAABGoC0QAAAYznaBc1SuAAAARiBcAQAAjEBbIAAAMJjdAuepXAEAAIxAuAIAABiBcAUAADAC4QoAABise3Mf+1NVj6yqj1bV1VV13hrX/FRVXVVVV1bVn+5vThtaAAAA20pVHZbkVUkenuTTSd5fVRd191VT15yY5LlJfri7v1hV372/eVWuAACA7eYHk1zd3X/f3d9McmGSx8xc8/NJXtXdX0yS7v7n/U2qcgUAAAzS2fJbsR+f5FNTrz+d5P4z15yUJFX17iSHJTm/u/9iX5MKVwAAwKHouKraPfV6Z3fvHHD/dyQ5MckZSe6c5J1V9X3d/aV93QAAAHCoua67T1/j3LVJ7jL1+s6TsWmfTvK+7r4xySeq6mNZCVvvX+sNPXMFAAAM00m6Nvexb+9PcmJV3b2qjkhyVpKLZq55S1aqVqmq47LSJvj3+5pUuAIAALaV7v5WkqcmuSTJh5O8obuvrKpfr6pHTy67JMnnq+qqJO9I8uzu/vy+5tUWCAAAbDvdfXGSi2fGXjj1dyf5pcmxLsIVAAAw2Hp+qHe7udnaAqtqqar2VNVlVfWBqnrg1LlTqurtk19I/nhVvaCqaur8Y6vq8qr6cFVdUVWPnTp3QVU9fpX3W3POqjqnqj43Wc9VVfXzB/vzAwAAh7ab85mr67t7R3ffNyu/dPyiJKmqo7Py8NiLu/vkJPdN8sAkT56cv2+SlyZ5THd/b5JHJ3lpVd1nrTfa35wTr+/uHVl5SO03q+r2Y35YAABge1nUhhbHJvni5O+fSfLu7n5bknT317PycNl5k/PPSvKb3f2JyflPZCWYPXsf8+9vzm+b/NLyNUnudoCfCQAAto/e5McC3JzPXB1dVXuSHJXkjkkeOhk/Jcml0xd29zVVdUxVHTs5/9KZuXYneco+3mt/c35bVd0jyT2SXD0zfm6Sc5PkqNxy/58OAADY1m7OcHX9pA0vVfWAJH9cVafejO8/66er6kFJbkjyC939hemTk19v3pkkx9ZtPa4HAADs00J2C+zu90x+iOu7klyV5MHT5yfVpK9291cm+8qfluSyqUtOS3LlPt5if3MmK89cPfWAPwwAAEAW9MxVVd0ryWFJPp/kT5I8qKoeNjl3dJJXJHnJ5PKXJnluVZ0wOX9Ckucledk+3mJ/cwIAABtW6d7cxyIs4pmrJKkkP9fdS0mur6rHJPndqnpVVkLXa5O8Mkm6e09VPSfJn1XV4UluTPIr3b1nau7fr6rfmfz9qe5+wL7mBAAAGNvNFq66+7B9nLsiK1uir3X+TUnetMa5c4bO2d0XJLlgrfcDAAAYaiHPXAEAAFucLd/mLOp3rgAAAA4pwhUAAMAItAUCAADDdBa2I99mpnIFAAAwAuEKAABgBNoCAQCA4ewWOEflCgAAYATCFQAAwAi0BQIAABtgt8BZKlcAAAAjEK4AAABGoC0QAAAYzm6Bc1SuAAAARiBcAQAAjEC4AgAAGIFnrgAAgOE8czVH5QoAAGAEKlfAIesRd9qx6CUckIuuff+il3BAHn38Dyx6CQBwsxKuAACAYTpJ16JXseloCwQAABiBcAUAADACbYEAAMBgbbfAOSpXAAAAIxCuAAAARqAtEAAAGE5b4ByVKwAAgBEIVwAAACPQFggAAAznR4TnqFwBAACMQLgCAAAYgXAFAAAwAs9cAQAAg5Wt2OeoXAEAAIxAuAIAABiBtkAAAGCYnhzchMoVAADACIQrAACAEWgLBAAABqqka9GL2HQ2VLmqqjtX1f+sqo9X1TVV9Z+r6oiqOqOqvlxVe6rqw1X1HybXT4/vPR42Obc0ef2hqvqzqrrNzHs9o6q+UVW3nrx+xNQcX62qj07+/uPJ+QdV1d9V1Ucmx7lTc51fVddOrr+qqs7e6BcHAAAwbXC4qqpK8qYkb+nuE5OclOSYJL8xueRd3b0jyelJfraq7jc9PnX81WT8+snrU5N8IclTZt7y7CTvT/KTSdLdl+ydI8nuJE+cvH5SVd0hyZ8m+cXuvleSByX5har68an5Xj659zFJfr+qDh/6HQAAAMzaSOXqoUm+0d3/NUm6eynJM5P8uyS33HtRd38tyaVJvmfA3O9JcvzeF1V1z6wEt+dnJWTtz1OSXNDdH5is4bokv5LkvNkLu/vjSb6e5DsHrA8AAEj+ZcfAzXoswEbC1SlZCU3f1t1fSfKPmQpSVXW7JD+U5MrJ0I/MtAXec3qOqjosyY8muWhq+KwkFyZ5V5KTq+r2Q9eWlerWKbMXTipqH+/uf15toqo6t6p2V9XuG3PDft4WAADY7g7GboE/UlUfTPK2JC/u7r3harYt8JrJ+NFVtSfJPyW5fZK/nJrr7CQXdvdykv+R5AkjrO+ZVXVlkvflX1oZ53T3zu4+vbtPPzxHjvC2AADAoWwj4eqqJKdND1TVsUnumuTqrISo7+/u07r7NeuY7/rJM1B3S1KZPHNVVd+X5MQkf1lVn8xKFWt/rYFza5u8vnLq9cu7+5Qk/ybJ/1NVR61jjQAAwLRFt/0dIm2Bf53kllX1pOTb7XwvS3JBVp5h2pDu/nqSpyf55ar6jqwEqfO7+4TJcackd6qqu+1jmlclOaeqdkzWdrskv5XkJau830VZaRn8uY2uGQAAYK/B4aq7O8njkjyhqj6e5GNJvpHkefu5dfaZq8evMvcHk1yelWB1VpI3z1zy5sn4Wmv7bJKfTfIHVfWRJH+b5A+7+8/WuOXXk/xSVfkxZQAA4IBs6EeEu/tTSX5ilVO7Jsfs9buS3HqNuY6Zeb133teucu0vzbw+Y5Vr3pnkB9Z4r/NnXl+a5OTVrgUAAPZhQa13m5mKDQAAwAiEKwAAgBEIVwAAACPY0DNXAADANtZJuha9ik1H5QoAAGAEwhUAAMAItAUCAACDla3Y56hcAQAAjEC4AgAAGIG2QAAAYDhtgXNUrgAAAEYgXAEAAIxAuAIAABiBcAUAADAC4QoAAGAEdgsEAAAG8yPC81SuAAAARiBcAQAAjEBbIMAm9ejjf2DRSzggl3xmz6KXcEAecacdi14CAFuMcAUAAAzXtegVbDraAgEAAEYgXAEAAIxAWyAAADBMTw5uQuUKAABgBMIVAADACLQFAgAAw2kLnKNyBQAAMALhCgAAYATaAgEAgMFKW+AclSsAAIARCFcAAAAj0BYIAAAMpy1wjsoVAADACIQrAACAEQhXAAAAI/DMFQAAMJxnruaoXAEAAIxAuAIAABiBtkAAAGCQ6pWDm9oUlauqOqGqPjQzdn5VPauqLqiqa6vqyMn4cVX1yZlrn1FV36iqW0+NnVFVX66qPVX1kap66WT8lKr6WFUdPXXtn1fV2Qf1QwIAAIe0TRGu1mEpyb/bx/mzk7w/yU/OjL+ru3ck+f4kZ1bVD3f3lUnelORXk6SqHpvk8O5+3fjLBgAAtoutEq5+J8mKwauYAAAgAElEQVQzq2qujbGq7pnkmCTPz0rImtPd1yfZk+T4ydCvJ3lCVe1I8uIkTzkYiwYAgENW1+Y+FmCrhKt/TPI3Sf7tKufOSnJhknclObmqbj97QVV9Z5ITk7wzSbr760meNXl9YXd/fJV7zq2q3VW1+8bcMNoHAQAADk2bJVyt9Tjc9PiLkjw782s+OysBaTnJ/0jyhKlzP1JVlyW5Nskl3f1P3564+8+SfCnJq1d94+6d3X16d59+eI4c9GEAAIDtZ7PsFvj5JN85M3bbJJ/Y+6K7P15Ve5L81N6xqvq+rFSk/rKqkuSIyT2vnFzyru4+s6runuS9VfWG7t4z9R7LkwMAABjCboFzNkXlqru/muSzVfXQJKmq2yZ5ZFZaAaf9Rlba+fY6O8n53X3C5LhTkjtV1d1m5v9EVp6tes7B+gwAAMD2tinC1cSTkrxgUp16e5Jf6+5rpi+Y7PT3gamhs5K8eWaeN0/GZ70myYOr6oSxFgwAALDXZmkLTHdfleQhq4yfM/P6J6f+vscq1//S1MtdU+PX5192C9w7dsJG1wsAANuZHxGet5kqVwAAAFuWcAUAADCCTdMWCAAAbCHaAueoXAEAAIxAuAIAABiBcAUAADACz1wBAADDtK3YV6NyBQAAMALhCgAAYATaAgEAgOG0Bc5RuQIAABiBcAUAADACbYEAAMBw2gLnqFwBAACMQLgCAAAYgbZAAABgMD8iPE/lCgAAYATCFQAAwAi0BQJwUDziTjsWvYQD8tZrL130Eg7ImceftuglAGw7KlcAAAAjEK4AAABGIFwBAACMwDNXAADAcLZin6NyBQAAMALhCgAAYATaAgEAgGE6KW2Bc1SuAAAARiBcAQAAjEBbIAAAMJy2wDkqVwAAACMQrgAAAEagLRAAABhOW+AclSsAAIARCFcAAAAj0BYIAAAMUvEjwqtRuQIAABiBcAUAADACbYEAAMBw2gLnqFwBAACMYFOEq6q6Q1VdWFXXVNWlVXVxVZ1UVV1V/2nquuOq6saqeuXk9flVdW1V7amqD1XVo6euPbeqPjI5/q6qHjR1bldVfbSqLquqd1fVyTfvJwYAAA41Cw9XVVVJ3pxkV3ffs7tPS/LcJLdP8okkPz51+ROSXDkzxcu7e8fk3B9W1S2q6swkv5DkQd19ryS/mORPq+oOU/c9sbvvm+SPkvz2wfhsAADA9rHwcJXkIUlu7O7X7B3o7suSfCrJ15N8uKpOn5z66SRvWG2S7v5wkm8lOS7Jc5I8u7uvm5z7QFZC1FNWufWdSb5nnI8CAADbQK9sxb6Zj0XYDOHq1CSX7uP8hUnOqqq7JFlK8pnVLqqq+ydZTvK5JKesMufuyfisn0hyxSrznVtVu6tq9425Yb8fAgAA2N62wm6Bf5HkPyb5/5K8fpXzz6yqn03yv5P8dHf3Sqfhfv1JVV2f5JNJnjZ7srt3JtmZJMfWbe2FAgAA7NNmCFdXJnn8Wie7+5tVdWmSX05y7ySPnrnk5d390pmxq5KcluTtU2On5abPaz2xu3dveNUAALCdKT/M2QxtgW9PcmRVnbt3oKruk+QuU9e8LMlzuvsL65zzJUl+q6puN5lvR5Jzkrx6lBUDAADMWHjlatLG97gkv1NVz0nyjay06j1j6porM79L4L7mvKiqjk/yt1XVWWkZ/Nnu/uyoiwcAAJhYeLhKku7+TJKfWuXUqatce0GSCyZ/n7+POX8vye+tce6M4asEAAC+TVvgnM3QFggAAHCzqqpHVtVHq+rqqjpvH9f9m6rqqZ+HWpNwBQAAbCtVdViSVyX5saxsmnd2Vd17lev+VZL/K8n71jOvcAUAAAy26B8JPsAfEf7BJFd399939zez8tu6j1nluv+Y5Leysi/EfglXAADAdnN8kk9Nvf70ZOzbqup+Se7S3X++3kk3xYYWAAAAIzuuqqZ/13Znd+9cz41VdYsk/3dWfs5p3YQrAABguM2/W+B13b3WJhTX5qa/q3vnydhe/yorO5fvqqokuUOSi6rq0d09HdhuQlsgAACw3bw/yYlVdfeqOiLJWUku2nuyu7/c3cd19wndfUKS9ybZZ7BKhCsAAGCb6e5vJXlqkkuSfDjJG7r7yqr69ap69Ebn1RYIAABsO919cZKLZ8ZeuMa1Z6xnTuEKAAAYprMVnrm62WkLBAAAGIFwBQAAMAJtgQAAwGClLXCOyhUAAMAIhCsAAIARaAsEAACG0xY4R+UKAABgBMIVAADACLQFAsAqzjz+tEUv4YC89dpLF72EDdvq3z1sF3YLnKdyBQAAMALhCgAAYATaAgEAgOG0Bc5RuQIAABiBcAUAADAC4QoAAGAEnrkCAACG6XjmahUqVwAAACMQrgAAAEagLRAAABikJgc3pXIFAAAwAuEKAABgBNoCAQCA4ewWOEflCgAAYATCFQAAwAi0BQIAAIOVtsA5KlcAAAAjEK4AAABGoC0QAAAYTlvgnIVXrqrqDlV1YVVdU1WXVtXFVXVSVZ1SVW+vqo9W1cer6gVVVZN7zqmqrqqHTc3z2MnY4yevd03uvayq3l1VJ68y/v6q2rGYTw4AABxKFhquJmHpzUl2dfc9u/u0JM9NcvskFyV5cXefnOS+SR6Y5MlTt1+R5Kyp12cnuWzmLZ7Y3fdN8kdJfnuV8VfPjAMAAGzIoitXD0lyY3e/Zu9Ad1+W5KQk7+7ut03Gvp7kqUnOm7r3XUl+sKoOr6pjknxPkj1rvM87J+dnvSfJ8Qf8KQAAYLvpTX4swKKfuTo1yaWrjJ8yO97d11TVMVV17N6hJH+V5BFJbp2VStfd13ifn8hKpWvWI5O8ZQPrBgAAuIlFh6sDdWGSp2clXP1ykufNnP+Tqro+ySeTPG1m/IgkxyRZ9Zmrqjo3yblJclRuOe6qAQCAQ86i2wKvTHLaKuNXzY5X1T2SfLW7v7J3rLv/Lsn3JTmuuz+2yjxP7O4d3f3Y7v7U9HiSe2TlWazfXW1h3b2zu0/v7tMPz5GDPhQAALD9LDpcvT3JkZMqUZKkqu6T5KNJHrR3N8CqOjrJK5K8ZJU5zst8xWq/uruTvCDJD1XVvTawdgAA2J46qU1+LMJCw9Uk4DwuycMmW7FfmeRFSf4pyWOSPL+qPpqV56Xen+SVq8zx/3b3Ozb4/tcneVmSZ2/wIwAAACTZBM9cdfdnkvzUGqfPWOOeC5JcsMr4OVN/r3XvGTOvX7aOZQIAAOzTwsMVAACwBS2o9W4zW/QzVwAAAIcE4QoAAGAE2gIBAIDBFrUj32amcgUAADAC4QoAAGAE2gIBAIDhtAXOUbkCAAAYgXAFAAAwAm2BAADAYHYLnKdyBQAAMALhCgAAYATCFQAAwAg8cwUAAAzTsRX7KlSuAAAARiBcAQAAjEBbIAAAMJy2wDkqVwAAACNQuVqHOvqo3OKkey16GRu2fPlHFr2EbeuwY49d9BIOyNJXvrLoJQAbdObxpy16CRv26Ks+v+glHJCL7n27RS8BWBDhCgAAGKSSlLbAOdoCAQAARiBcAQAAjEBbIAAAMJy2wDkqVwAAACMQrgAAAEagLRAAABisWl/gLJUrAACAEQhXAAAAI9AWCAAADNOxW+AqVK4AAABGIFwBAACMQLgCAAAYgWeuAACAwcozV3NUrgAAAEYgXAEAAIxAWyAAADCctsA5KlcAAAAjEK4AAABGoC0QAAAYzG6B8xZSuaqqparaM3WcV1WHVdWlVfXgqeveVlVPmPx9TFX9flVdM7luV1Xdf635JuO7quqjVXVZVb27qk6uqjdPrrm6qr48dc8DF/FdAAAAh4ZFVa6u7+4ds4NV9eQkf1BVpyV5fJLl7n7j5PR/SfKJJCd293JV3T3Jvfc138QTu3t3VZ2b5Le7+9GT9zojybO6+8zxPhYAALBdbaq2wO5+X1W9J8n5SX4mycOTpKrumeT+WQlKy5NrP5GVsLVe70zyjFEXDAAA25W2wDmLCldHV9Weqdcv6u7XT/5+bpJPJfmd7r56MnZKkj3dvbSB+fb6iSRXHOjCAQAAVrOp2gInHpzky0lOHWm+P6mq65N8MsnT1jvhpI3w3CQ56vBjBywFAADYjjZVW2BV3SrJS5I8NMl/rapHdffFSa5Mct+qOmwf1au1PLG7dw9dS3fvTLIzSW59yzspegIAwF5tt8DVbLbfuXphkjd090eSPDnJy6vqqO6+JsnuJL9WVZUkVXVCVf34AtcKAADwbZvlmau/SPLaJI9Lct8k6e4PVtUlSZ6T5NeS/J9JXpbk6kmb33VJnr3WfN193kH+DAAAAN+2kHDV3YetceqkmeuePvX3V5L8/JD5uvuMfaxhV5Jd+14pAADA+myqZ64AAIAtwjNXczbbM1cAAABbknAFAAAwAm2BAADAIBVbsa9G5QoAAGAEwhUAAMAItAUCAADDtb7AWSpXAAAAIxCuAAAARqAtEAAAGMxugfNUrgAAAEYgXAEAAIxAWyAAADBMTw5uQuUKAABgBMIVAADACIQrAACAEXjmCgAAGKyWF72CzUflCgAAYAQqV+vQ138jy5d/ZNHLYAta+spXFr0EgC3nonvfbtFLOCCXfGbPopdwQB5xpx2LXgJsWcIVAAAwnK3Y52gLBAAAGIFwBQAAMAJtgQAAwGClLXCOyhUAAMAIhCsAAIARaAsEAACG6SStL3CWyhUAAMAIhCsAAIARaAsEAAAGs1vgPJUrAACAEQhXAAAAI9AWCAAADKctcI7KFQAAwAiEKwAAgBEIVwAAACPwzBUAADBIxVbsq1G5AgD+//buPMyyur7z+PtDK+CCrYgQQcImGR9RQOyRiDpGTEYYUUwQBSVGo2IyGqOiAeMSNXFFB1zQCBNcMhEkIogbkIhrCGpL0NiICRHcN5ZIEnCjv/PHOUXfvrV03e7bdc6per+e5z7cc86t6k811VX3e36/3/cnSZoCiytJkiRJmgKnBUqSJEmaTFXz0EYGPXKV5HFJKsl92uM9k9yS5IokVyZ5b5Lbj7z+QUk+leRfk1ye5KNJ7t/dVyBJkiRpuRh0cQUcC3yu/e+Mf6uqA4H7A/cCngCQZBfgHOBPq2rfqjoIeC2wz9JGliRJkrQcDXZaYJI7Aw8FHgF8GPiz0etVdWuSLwC7taeeA7ynqi4dec3nliiuJEmStKzYLXC2IY9cHQlcWFX/Alyf5IGjF5NsDxwMXNie2g+4fLGfPMnxSdYmWfsLfjatzJIkSZKWqSEXV8cCZ7fPz2bD1MB9klwB/BD4flV9Za4PTvL5JF9L8ua5rlfV6VW1pqrW3J7tpp1dkiRJ0jIzyGmBSXYEDgXun6SAVUABp9GuuUqyE/APSR5bVRcA64CDgA8BVNXBSR4PHNHJFyFJkiQNmdMCZxnqyNXjgb+uqj2qas+q2h24Bth95gVVdR1wEvDi9tRpwFOTHDLyee64VIElSZIkLW9DLa6OBc4bO3cuGwqpGecDd0zysKr6AfBE4LVJrk5yKU2R9ratnlaSJEnSsjfIaYFV9Yg5zr0FeMvYuQIOGDm+DHj4Vg8oSZIkLXN2C5xtqCNXkiRJktQrFleSJEmSNAUWV5IkSZI0BYNccyVJkiSpQwWsd9HVOEeuJEmSJGkKLK4kSZIkaQqcFihJkiRpcs4KnMWRK0mSJEmaAosrSZIkSZoCpwVKkiRJmlicFjiLI1eSJEmSNAUWV5IkSZI0BU4LlCRJkjS5cl7gOEeuJEmSJGkKLK4kSZIkaQqcFihJkiRpYnYLnM2RK0mSJEmaAosrSZIkSZoCpwVKkiRN0aN2PbDrCFvkou9d0XWELTL0v//BqPahjThyJUmSJElTYHElSZIkSVNgcSVJkiRpxUlyWJKvJ7k6yUlzXH9BkiuTfCXJJ5LssanP6ZorSZIkSRMJkBruoqskq4DTgN8CvgN8MckFVXXlyMv+CVhTVTcn+UPgDcATF/q8jlxJkiRJWmkeBFxdVd+oqp8DZwNHjr6gqj5ZVTe3h5cB99rUJ7W4kiRJkrQc7ZRk7cjj+JFruwHfHjn+TntuPk8HPr6pP9BpgZIkSZImt77rAJt0XVWt2dJPkuQ4YA3w8E291uJKkiRJ0krzXWD3keN7tec2kuQ3gZcAD6+qn23qkzotUJIkSdJK80Vg3yR7JdkWOAa4YPQFSR4AvBN4bFX9aDGf1JErSZIkSRMbcrfAqvplkucAFwGrgDOral2SVwFrq+oC4GTgzsDfJgH4VlU9dqHPa3ElSZIkacWpqo8BHxs79/KR57856ed0WqAkSZIkTYEjV5IkSZImU+1DG3HkSpIkSZKmwOJKkiRJkqbAaYGSJEmSJlQw4G6BW4sjV5IkSZI0BRZXkiRJkjQFFleSJEmSNAWuuZIkSZI0sbjkapZORq6S/Gf73z2TVJK/GLm2U5JfJHlbe/yKJN9NckWSryZ57Mhrj09yVfv4QpKHjlz7VJKvJ/lyki8mObA9//n2c30ryY/b51ck2XOpvn5JkiRJy08fpgVeAzx65PhoYN3Ya06pqgPba2cm2SbJEcCzgIdW1X2APwDel+RXRj7uyVV1APB24GSAqjq4/VwvB95fVQe2j2u3xhcnSZIkaWXoQ3F1M/C1JGva4ycC58z1wqr6GvBLYCfgROBFVXVde+1y4D3As+f40H8EdptybkmSJGnlqur3owN9KK4AzgaOSbI7cCvwvblelORgYD3wY2A/4EtjL1nbnh93GHD+JIHaKYdrk6z9BT+b5EMlSZIkrUB9aWhxIfDnwA+B989x/flJjgP+A3hiVVWSxXzev0myLXBn4MBJAlXV6cDpAHfJji7XkyRJkrSgXoxcVdXPaUahTgA+MMdLTmnXRT2sqj7bnrsSeODY6x7Ixuu1ngzsTTNd8K3TTS1JkiStUAVZ3+9HF/oycgXwJuDTVXXDIkel3gC8PslhVXV92w3wqcDBoy9qR7leBvxbkvtU1VXTDi5JkiRJvSmuqmods7sELvT6C5LsBlyapGimDB5XVd+f47W3JHkT8CLg6dPKLEmSJEkzOimuqurO7X+vBe43x/V3A+9un79igc/zDuAd81z7jbHjN833Z0iSJEmaUEcd+fqsF2uuJEmSJGnoLK4kSZIkaQp6s+ZKkiRJ0oA4K3AWR64kSZIkaQosriRJkiRpCiyuJEmSJGkKXHMlSZIkaWKxFfssjlxJkiRJ0hRYXEmSJEnSFDgtUJIkSdLknBY4iyNXkiRJkjQFFleSJEmSNAVOC5QkSZI0mQLWdx2ifxy5kiRJkqQpsLiSJEmSpClwWqAkSZKkiYRyE+E5OHIlSZIkSVNgcSVJkiRJU+C0wEX4+T3vxLeOP6TrGJvtV191adcRVqyrT/n1riNskXs//7KuI6xs26zqOsGWWX9r1wm2TNJ1gi3jdB1tpkftemDXEbbIed/5QtcRtsgOu3WdYAL+nJnFkStJkiRJmgKLK0mSJEmaAqcFSpIkSZqc0wJnceRKkiRJkqbA4kqSJEmSpsDiSpIkSZKmwDVXkiRJkiZTwPquQ/SPI1eSJEmSNAUWV5IkSZI0BU4LlCRJkjSx2Ip9FkeuJEmSJGkKLK4kSZIkaQqcFihJkiRpck4LnMWRK0mSJEmaAosrSZIkSZoCpwVKkiRJmlA5LXAOjlxJkiRJ0hRYXEmSJEnSFDgtUJIkSdJkCqcFzsGRK0mSJEmagsEWV0k+meRRY+eel+QdI89/mmT1yPXfSPKTJFckuSrJG5c6tyRJkqTlabDFFXAWcMzYuWPa8wDHAl8EfmfsNZ+tqgOBBwBHJHnIVk0pSZIkaUUYcnH1AeDRSbYFSLInsCvw2ST7AHcGXkpTZM1SVbcAVwC7LUVYSZIkaVlZ3/NHBwZbXFXVDcAXgMPbU8cA51RVtc/PBj4L/Lcku4x/fJK7AfsCn5nr8yc5PsnaJGtvvfm/tsaXIEmSJGkZGWxx1RqdGjg+JfDsqloPnAscPfIxD0vyZeC7wEVV9YO5PnFVnV5Va6pqzao73mnrpJckSZK0bAy9FfuHgFOSHATcsaq+lOT+NCNSf5cEYFvgGuBt7cd8tqqOSLIXcFmSc6rqii7CS5IkSUMVW7HPMuiRq6r6T+CTwJlsPGr1iqras33sCuyaZI+xj70GeB1w4lJmliRJkrQ8Dbq4ap0FHMCG4uoY4Lyx15zH7M6CAH8J/I+2GYYkSZIkbbahTwukqs4HMnK89xyvecHI4adGzt+C3QIlSZKkyTktcJblMHIlSZIkSZ2zuJIkSZKkKRj8tEBJkiRJS6yA9U4LHOfIlSRJkiRNgcWVJEmSJE2B0wIlSZIkTajsFjgHR64kSZIkaQosriRJkiRpCpwWKEmSJGlyTgucxZErSZIkSZoCiytJkiRJmgKLK0mSJEmaAtdcSZIkSZqca65mceRKkiRJkqbA4kqSJEmSpsBpgZIkSZImU8B6pwWOc+RKkiRJkqbA4kqSJEmSpiBll49NSvJj4Jtb8Y/YCbhuK37+rc383TJ/d4acHczfNfN3a8j5h5wdzL8pe1TVPbbi55+K1dvtUofs+uSuYyzowmtP+VJVrVnKP9M1V4uwtb/Bk6xd6v/x02T+bpm/O0PODubvmvm7NeT8Q84O5tfy5rRASZIkSZoCR64kSZIkTc7lRbM4ctUPp3cdYAuZv1vm786Qs4P5u2b+bg05/5Czg/m1jNnQQpIkSdJEVm+3Sx1yzyd1HWNBF37zVBtaSJIkSeo5NxGek9MCJUmSJGkKLK4kSZIkaQosrqQBSfKrXWfYXEnussC1QXxdSe6RZE2Su3adZaVJ8sSuM2i4kvx61xlWqqH8fJ/Ucv26tOUsrjqQ5HZJHpPkRe3jiCSDWP+W5OKuM2wNSe6a5CVd51iE87sOsAU+NfMkySfGrvX+60ryDGAd8FbgqiSP7TjSxJKsSrLTyPG2SY5P8rUucy3S7ya5MMneXQeZVJJ9k3woyVeTnJVkt64zTUOSX0tyRtc5FuntXQfYHEn2G/1Zk+SUJGe2j4O6zDaB3v98X0iSByd5fJKd2+P9k7wP+IeOo/VDVb8fHbC4WmLtL9V1wAnArsBuwIuAdUl27TLbIt2j6wBbIsnuSU5P8pEkz0hypyRvAv4F2LnrfIuQrgNsgdHsOy5wra+eB+xXVQ8GDgFe3HGeiSQ5BrgB+EqSTyf5n8A3gMOBJ3cabhGq6gjgL4GPJnlZkp2S7Djz6DrfJpwJfAQ4CricpkAfjPbN5MVtcfgXSe6Z5FzgEuDKrvMtc68Drhs5fhTwUeCTwMs7STS5Ifx8n1OSk2n+/R5F87PnL4CLgc8D+3aZTf01iNGSZebVwDuq6tTRk0meC7wW+L1OUi3e6iS/M9/FqvrgUobZDO8FPg2cCxwGrAWuAPavqh90GWyRdkvylvkuVtVzlzLMhGqe53Md99HPq+rHAFX1jSTbdR1oQi8FHlhVV7d3vP8ReHxVfbjjXItWVecnuQb4DPB0NnzfFNDnEa0dqmpmhOfkJJd3mmZyZwDvoPmeOYzmZ+Z7gCdX1U+7DDaBvZNcMN/FqurrSPQ9q+rSkeObqupcgCTP6ijTpIb8e+vRwAOq6qdJ7gZ8G7hfVV3bbSz1mcXV0vv1qnrq+MmqekuSr3eQZ1KrgSOY+05UAX0vrnasqle0zy9KcjTNG4T1HWaaxC3Al7oOsZl2TvICmu+dmee0x0MYEb3X2BuEjY57/gYBmuLwaoCqujzJvw6psGqL2ZcCj6f5N/uRjiNNYvskD2DDz807jB5XVd+Lre2q6t3t868n+eOq+pMuA22GHwNv6jrEZthh9KCqRteODWG2BQz799ZPZ24gVNWN7c/NazvO1C/ulzuLxdXSu2WBazcvWYrN982q+v2uQ2yJ9u7TzJuc62lG42be5NzQWbDFub6q3tN1iM10BhveKIw+B/i/Sx9nYi8aOx7am4XRghbgrqPHVfV/Osg0ia/QjDgfVFUL/Rzto+8Do3+/Pxg5LuDQJU80mfHi8GcDKw4B/qOqPt11iM3wvSQHV9XnR0+2DTq+11GmSQ3599b4iOdeo8c9HvFUhyyult580+oCzNtNrUcGO3e6tZpmzcOomeO+Ty0C+HnXATZXVb2y6wxbYvTNQZI7t+f+s7tEExsvaMeP++63q2rO9T1JfrWqvrXUgRarqh7RdYYtNFoMjh8PoTgEuLbrAJvpROD9Sd7Nht9VD6RZQjCUDpqD/b0FHDl2PMTRTy2xlMN5SyrJuxa6XlVPW6osmyPJflW1ruscK9WmWr/2+Q1muzD46qp659j5ZwF7VdVJ3SRbvCR/SNPI4k7tqf8EXl9Vg+xENjRJHkzTBOgzVfWjJPsDJwEPq6rdu023sLbT2LOB/dpT64DTqupH3aVaOZL8GnAysA/wz8ALq+q73aZanCS7MPf3zg+7S7Xl2v8nL6qqZ3adZVJJdgeOqaqTu87SpdXb7lyH3KPfNf6F33vbl6pqzVL+mY5cLbG+F0+LcFmS0Yo8NHcuA1RV9Xr0rX2D86fAvWmmGb2uqm7qNtVEPsqGv+8ZRbNmaWdgVRehFulQYK51GmfQ/L/odXGV5KU0XQJ/o6q+0Z7bG3hzkh2r6i86DbgISQ6nKQ7v255aR1Mcfqy7VIvTFudH0DRTODHJRcAzaBoB9XqqcpKHAO8D3k3TVAea0YcvJHlyVfW6pXOSfWkKk3szsMJkxF/R/N1/BngsTcfGeZsz9UlbRM3qDJjkIX3/3oGm2yTwRpoOyecDpwFvAw5mQCNBSe4BHA0cS/O1nNdtIvWVxVUHktyPZv3G6F2oN1bVP3eXatE+AfwKTeOKs/s8UjKP99KslXkrzRu1twBP7TLQJKrq/qPHSfakmTbym8BrOog0ie1qjqHyqlo/s+at534XOGC0O1rbNfAJwJeBXhdXSZ4JPIumwF3bnl4DvC7Jvarq9M7CLc6Qu3a9CXhcVf3TyLkLkpwHvJPmTWafnT6Q0WgAABPOSURBVMlAC5MRg+zYmGQV8ASaEduPV9W6JEfQ3CS8A/CALvMt0mC7TSbZgeZ7/UnAr9G899mrqu7VaTD1msXVEktyJM0dnNey4Y7NGuCDSV5YVR/qLNwiVNXjkqym+WFzRpLtgffTFFp9bwYBTVvbmc2CLxrKL9hx7Z3kl7Dhzt9zq+oX3abapFuS7FtV/zp6sv1ahtCgoOZ6I1BVtyQZQrfJ5wMPHft3ekk7mvU5oO/F1ZC7dt1lrLACoKquaN+89d0gC5MxQ+3Y+FfA7sAXgLcm+R7Ne4aTqmoom/MOudvkj2j+7l8KfK6qKslvd5ypPwpYP4Rff0vL4mrpvQr4rbE3BV9JcgnwofbRa1X1E+BdSd4DHEMz+rM9Gy947q2xboGrRo/7XiC2o54voRn1fAPw9Kq6tdtUi/Zy4OPtJowznfbW0ExTe15nqRbvu0keWVWfGD2Z5FCabnB9l7m+v6vq+mEMHA66a1eS3K2qbhw7uSOwTUeZJjHUwmTUUJtyrKHZh3F9ezPzB8A+VXV9x7kmMeRuky+meZ/zduCsJO/vOI8GwIYWSyzJuqrab55rV1bVfee61idJDqGZc/wwmjve76+qz3abanGSXAusZ559uqqq190Ck9xKMx3qo8Csoqrvey2NTIm9X3tqHXDyEKbEJtmP5ubH59i4OHwIcGTfG70k+TxwfFV9eez8AcAZVfWgbpItTpKHL3S9z222kxwPPBN4IRt3fHs9cOZ4k5e+SfIp5t/ou6qqr4XJ4CW5vKoOmu94CJJ8coHLg/j+SbIPTXfGY4F9gT8Dzquqf+k0WMdW337nOmSno7uOsaALf/D2JW9oYXG1xJJ8GXjM+FqlJHsAH66q/btJtjhJvgncCJwNXAL8cvR6z+9ADV6S31vo+oD3EhmE9s7xk9iwXvJK4G/6vm4AIMlDgb8B3sXGxeHvAcdV1ee6yrYlhtK1q10n8yc03ztF871zcg1oI+chS/InVfWG9vnRVfW3I9deU1V/2l26+SW5Gbh65pCm2+HV7fP1VXVAV9lWgiSnAe8bbRzS3iQ8FnhiVd27s3A9sPr2O9chd3981zEWdOEP32FxtdwleRzNdK7XsPEbnJOAE/s+h3rsDuasrnV9vwOV5KiqOneO89vS/P3/eQexNsvQ9lpK8mHmv/vd92ldC0ryD1X1kK5zbMocLZ2vpGnp/IPuUk1urq5dVfXCblNtWpKdquq6rnNMap69GW9TVR9cqiyba3TEZ0ijQe2N11mnadZhvbiq/tcSR9osQ92KIMkf00wLvCdwDk2hdUW3qfrD4mpurrlaYlV1fpJrgBOAP2pPXwk8YXy6Tk+dVFWXdR1iCxyf5OnAc0baaR8OnAJc2GmyRRrfaynJUPZaemPXAbaiBfcf64Mk766qpzJHS+chGHLXriSPoem494u2+ckTqurSjmNN4gM0Hd5m3lSObwXR++KKjTOPTwvv7aLDqvrmzPN2ndKTaG4sXAPMulHYR0PeiqCq3kyz3cYeNEXWu5LcgebrOWu8QZMEFledaIuop3SdYzO9HejlHb7FqKpHJTkW+Lsk76NZ+7MzzbSi3t+NGvJeSwutiWkXCfd2zcwiDGEKQK+nHC/CkLt2vZpmo+OrkhxMM3thwTVkPfM7NG8s96dZd3hWVV298If0Ts3zfK7j3kiz0e6x7eM6mu68qapHdBpsMkPfimCmyH098Pq2yD2TZt1Vn/eWVEcsrpbYWLerWQYwNaq3d/gmcA7N1ITnA/8OHDqgRamD3mtpAQ/uOsCmLDA1KjT7zfTdHcc6dm1kAOslh9y165dVdRVAVX1+IO3Xb9NOVz8/yZ2AI4E3Jbk78JI+NxIZc0CSm2j/vbbPaY+37y7WJl0FfBY4YqagTfL8biNNbOhbEZDkdsDhND+DHgl8CnhFh5H6w+VFs1hcLb0H03R7Owv4PMMrVvZaqEDse3HYLuo/DbiUZs76w4EPt2/UXl1VP+sy3yIMfa+lIXvMAtc+smQpNt9uNHeQ5+yUSX9bUQNQVacCp7YjtccA5wO7JjmR/nft2jnJC+Y7rqpBbGMB/BT4CXATsAf9Lko2UlVDHWGYGTX8ZJILaZpJDe19w2C3IkjyWzSjhv+LZuT8bJquq//VaTD1msXV0vsVYOYf65NoWmqf1fc2ziN+zIbNj4foVOCZVfWF9vj8JBfTDO9/GbhPZ8kWZ7B7LSWZbzppgNsvZZbNUVVP6zrDFrq67w1nFqOdDvsa4DVt164nAR8D+ty16wxghwWOe639+XIM8CDg74E3V9XablNNJsl/B3aqqo+PnT8c+FFVfWnuj+zWHKOGz6Mpzt9Bc1Ph4k4DLs4pwMVJ5tqK4JTOUi3Oi2nWV50wXhxK87FbYIeSbEdTZJ0MvLKq3tZxpE1K8k9V9YCuc2yuJNtU1ZwjPEnuW1VXLnWmSQx5r6V2r5PRDpOjP3wGsYZgZJ+u0Y5XbxzIPl2D/rer7rSj4l+h+blTjK1R6vv+egBJLgGeNtogoj2/B/CuId14SLPx/dE0rcAf2XWexXArguVp9e3vUYfc9aiuYyzowuveabfAlaAtqh5NU1jtCbwFOK/LTBO4McmvzLRuTvIU4Cjgm8ArquqGTtNt2gtpFpPP2usEOA7o5V4nM6pq3cjd+pk3+J8BnjWAvZZOBL5dVd+H2/bsOgq4lgHMXU9yJE3Hw9eyYfR2DfDBJC+sqg91Fm5xTpzr5ID2ibqGsYJ85Liqap+lT7U4Sd6y0PUBFCdDH7UF2GG8sIKmUUGSnboItLnaEZTT28cgVNVHklw2xK0IpElZXC2xJO+l6VD3MZrRqq92HGlSdwV+DpDkfwCvo2kpfyDND/p+b3jQTG15Q/v8xcBocXUYPS+uktwb2KWqzhw7/5AkP6iqf+so2mL8JfCbcNv3zmsZ1vfOq4DfqqprR859pb0j/qH20Vuj04fm2ieqq1wTGL/zuA3wBJobJrMWy/fMHwBfpWmm8z0GtmamRjYnH9r+eiPutsC1Oy5ZihVoGWxFIE3E4mrpHQf8F/DHwHOT237Hhubu6126CrZI24yMTj0ROL3dlPfcJL1vZc5A9zoZcSpNUTjupvbaQk0XurZq4N87txsrrACoqmuT9H7N2JD3iQKoquuhmdpL0zXzRTT7Lj2679N5aTYgPZrm+/6XNO20P1BV/95pqgkMeH+9GX+f5NXAS6tdD5HmF/ArgUs6Tbb8DX0rAs2nYJ6VFitar7u0LEdVtU1V7dA+7jLy2GEAhRXA7dqWpNC0Ix39pTSEYn2Qe52M2GWu9T3tuT2XPs5EVg38e+eXSWZtFtyu2fhlB3km9SPg92na9e9dVSfQjkIPQZLbJ3kWzVqNh9Hsm3PcAAorqur6qvrLdl3h02hmAFyZ5Hc7jrYo7f56j6HZX+/uVXV34BHA4e21ITgB2Bu4Osm5Sc4F/pXmRsMJnSZb/jbaioABNXORNscQ3tCoX84CPp3kOuAWmv03Zqar/aTLYIs01L1OZtx1gWt932tp6N87f0Zz9/s1bNxM5CTmWc/UM0PeJwrgGpoi9lTgW8D+SW7bGLmqPthVsMVqO2YeS9Mx9uNs+D7qu8Hvr9e2zj62beV/W0Oamc3YtVUtl60IpEWxuNJEqurVST5BM83l4pnpFTSjoH/UXbLFGfBeJzPWJnlmVZ0xejLJM+j5G7Vl8L1zfttU4QQ25L2SZv3Al7tLtjgD3ycK4O/a/+7fPmDjzpO9La6SvIqmidHXaPbJeXFVDWG0c8bg99dLclRVndsWU98YOb8tcGJV/Xl36Za9QW9FoE1YP4RJP0vLVuzSgCTZhab5wM/ZePRkW+C3Z7o4ausa8KL+jYx0nnxCVfV5nyiSnMDsVv4/Bj5XVdd0FmwR2gLkGuDm9tR4K/P9Z31Qj7Q3RV4zx/56j6RZwzSEbRQuAm4Fnj3z/dLucXUKcGFVPa/LfNIQrb7dPerBd3lc1zEWdNGN/9dW7JLmV1U/BA5J8giarpMAH62qjRZkJ7mbGx5OX5L/TTMNcKiL+jdSVV9N8jKaEbi+u/Mc5/YAXpLkFVV19lIHmsB/A3YBvj12fndgCDdEngt8KMmc++t1lmoCVfWoJMfSTO19H83Pz51ptiEYQkOdwVoGWxFIE7G4kgaoqj4JfHKBl3wCOGiJ4qwI7cL9Q2gW9X+jPbc38OYkO1ZVr9edJLkL8GxgN+ACmml2zwFeQLNB7P/rLt2mVdUr5zqfZEfg72mm2/XVKTRTAcc3sL1Le63PXT4BfgY8lab5w+j+emcAfd9fb9Q5NPmfD/w7cOgApsMuB4PeikCb4Ay4WSyupOXJX17TN/RF/X8N3Aj8I/AMmj3dQjOddLB37qvqhozsadFT83b5TLLn0seZ2Kk0xeH4/nr3p/9bQACQ5KHAacClNCOGDwc+3DZ2eXVV/azLfMvc4LcikCZhK3ZpefJW0vTNu6gfGMKi/r2r6qlV9U6ajnX3BR415MIKoJ0i2/cpsEPu8gnD3gJixqnAM6vqD6vqxqo6H3gAsB3NzRFtJUPfikCalCNXkrQ4303yyDkW9R8KfL+jTJP4xcyTqro1yXfmKhb7Ksk/M/umwY4004yesvSJJjLYLp+toReHAA+qsd1Oq+pm4MQk7+ko04oy4K0INJ8qWD+Ee4tLy+JKWp76Pk1qiIa+qH9mjzfYeJ+30IzK9X0T8yPGjgu4vt2/qO+eB5yX5MnM0eWzs1SLN/TiEOCFwBsAkhxdVX87cu04mmmy2gqWwVYE0kRsxS4tA0nuStNi+NXt8Y5VdUPHsZadJNvTtC6fWdR/JfA3QxoBUnfGunyuG+/y2VfLYQuIJJdX1UHjz+c61nQtsBXBzI2dXm9FoPmtXrVTPfjOj+06xoIuuuldtmKXNL8kuwMvA3al2QT2LOBVNM0Wzpp5nYXV1tEWUbct6k+yE00ntd5LcujMm/kke43uDZXkd6qqt5vwLheL6PLZS4vdAqLnMs/zuY41XXt1HUBaShZX0rC8F/g0cC5wGLAWuALYfwh3j4csya8DrwNuAP6cpvveTsA2SZ5SVRd2mW8R3siG9vznsnGr/pcCFlda0FCLw1bN83yuY03R+BYEWmacATeLxZU0LDtW1Sva5xclORp48vhCbW0Vb6NZl7EauAQ4vKouS3IfmlHDvhdX3rnXSnbAyBrDO4ytP9y+u1jLX5L/YO4CdijrPaWJWFxJA5Pkbmx4M3w9sHpmnx+nA25Vt6uqi6FZoF1VlwFU1VX932YJ8M69VrCqWtV1hpWqqnboOoO0lCyupGFZDVw+dm7muIC9lzbOijI6OnjL2LUhFCd7J7mApjCfeU577JoISdLEylbss1hcSQNSVXt2nWEFG/q0otF28W8cuzZ+LEmSNoPFlTQgSXamWfdzb+ArwOuq6qaFP0rTMPRpRVX16SQH0nzvrKuqr3WdSZKk5WabrgNImsh7gf8C3grsALyl2zgaiiQvB84BjgI+muSZHUeSJA1aNd0C+/zogCNX0rDcs6pe0j6/KMn4+itpPk8EDqyqm5Pcnaa74RkdZ5IkaVmxuJIGZqxb4KrRY7sFagE/q6qbAarq+iTOXJAkacosrqRhWQ18iY33JbJboBZjtEMgwD4j3QOrqh7bUS5J0hAVsH4IzXKXlsWVNCB2C9QWmOkWeAdgX+Bi4Gpmt5WXJEmbyWkh0oAkOWqe89smedlS59GgXAo8Gvh/wNOA3wf+GjiivSZJkraQxZU0LMcn+ViS26b/JTmcpi373buLpQF4A3A3YK+qOqiqDgL2oZlqenKnySRJw1Tr+/3ogNMCpQGpqkclORb4uyTvA+4H7AwcU1VXdJtOPXcE8GtVG3rTVtVNSf4QuAp4XmfJJElaJiyupOE5B9gPeD7w78ChVfUv3UbSANRoYTVy8tYkrkiWJGkKnBYoDUiSh9J0B7w7sDvwHODDSV6VZLtOw6nvrkzylPGTSY6jGbmSJElbyJEraVhOBZ5ZVV9oj89PcjHwZ8CXgft0lkx992zgg0l+n6adP8Aamu6Bv91ZKknSIBVQtmKfxeJKGpYHVW28QrPdGPbEJO/pKJMGoKq+Cxyc5FCaaaUAH6uqT3QYS5KkZcVpgdKwvHDmSZKjx64dt8RZNEBVdUlVvbV9WFhJkjRFFlfSsBwz8vzFY9cOW8ogkiRpBavqvtV6D1uxW1xJw5J5ns91LEmSpCVkcSUNS83zfK5jSZIkLSEbWkjDckCSm2hGqe7QPqc93r67WJIkaaWxW+BsFlfSgFTVqq4zSJIkaW5OC5QkSZKkKbC4kiRJkjS5rrsBbmG3wCSHJfl6kquTnDTH9e2SvL+9/vkke27qc1pcSZIkSVpRkqwCTgMOB+4LHJvkvmMvezpwY1XdGzgFeP2mPq/FlSRJkqSV5kHA1VX1jar6OXA2cOTYa44E3tM+/wDwyCQLbn1jQwtJkiRJE/kPbrzo7+sDO3WdYxO2T7J25Pj0qjq9fb4b8O2Ra98BDh77+NteU1W/TPIT4O7AdfP9gRZXkiRJkiZSVYd1naGPnBYoSZIkaaX5LrD7yPG92nNzvibJ7YDVwPULfVKLK0mSJEkrzReBfZPslWRb4BjggrHXXAD8Xvv88cAlVbXgzslOC5QkSZK0orRrqJ4DXASsAs6sqnVJXgWsraoLgL8C/jrJ1cANNAXYgrKJ4kuSJEmStAhOC5QkSZKkKbC4kiRJkqQpsLiSJEmSpCmwuJIkSZKkKbC4kiRJkqQpsLiSJEmSpCmwuJIkSZKkKfj/DxKWe75u9ggAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAANHCAYAAADaFKdrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+UZWdZJ/rvYwwkkImKUUBAAhiCJEAkGRFEJkFcoiI/HNBEvJg7c40ufl1QkICA0bkKYrg4CojtXCfqVQI6wATMGFToARlEOtBJSPiVCAqIVwKCwxBCqHruH3UaT86p6u7dedNV1fX5rLVX1Xn33u95z/nvu55nv6e6OwAAANwyX7XZCwAAADgSCFcAAAADCFcAAAADCFcAAAADCFcAAAADCFcAAAADCFcAAMCOU1W/U1X/WFXv2+B8VdWvV9W1VXVlVT3wQHMKVwAAwE50UZJH7uf89yU5aXacl+Q3DzShcAUAAOw43f22JJ/ZzyWPSfJ7veavknxtVd15f3N+9cgFAgAAR77vPev2/enPrGz2Mvbr8itvvDrJF+eGdnX3rglT3CXJx+Zef3w29smNbhCuAACAST79mZX89WXfvNnL2K+j7vzhL3b3GYfzPbUFAgAALPtEkrvNvb7rbGxDwhUAAMCyS5I8abZr4Hck+Vx3b9gSmGgLBAAAJuokq1nd7GXcIlX16iRnJjmhqj6e5OeTHJ0k3f2qJJcm+f4k1yb5QpL//UBzClcAAMCO093nHOB8J3nKlDm1BQIAAAygcgUAAEzUWent3RZ4a1C5AgAAGEC4AgAAGEBbIAAAMMnaboG92cvYclSuAAAABhCuAAAABhCuAAAABvDMFQAAMNlqbMW+SOUKAABgAOEKAABgAG2BAADAJJ3OStuKfZHKFQAAwADCFQAAwADaAgEAgMlWoy1wkcoVAADAAMIVAADAANoCAQCASTrJirbAJSpXAAAAAwhXAAAAA2gLBAAAJrNb4DKVKwAAgAGEKwAAgAGEKwAAgAE8cwUAAEzSSVbaM1eLVK4AAAAGEK4AAAAG0BYIAABMtrrZC9iCVK4AAAAGEK4AAAAG0BYIAABM0umsxG6Bi1SuAAAABhCuAAAABtAWCAAATNPJiq7AJSpXAAAAAwhXAAAAA2gLBAAAJun4EeH1qFwBAAAMIFwBAAAMoC0QAACYqLKS2uxFbDkqVwAAAAMIVwAAAAMIVwAAAAN45goAAJikk6z2Zq9i61G5AgAAGEC4AgAAGEBbIAAAMJmt2JepXAEAAAwgXAEAAAygLRAAAJikoy1wPSpXAAAAAwhXAAAAA2gLBAAAJlttbYGLVK4AAAAGEK4AAAAG0BYIAABMYrfA9alcAQAADCBcAQAADCBcAQAADOCZKwAAYJJOZUWdZolvBAAAYADhCgAAYABtgQAAwGSrbSv2RSpXAAAAAwhXAAAAA2gLBAAAJukkK9EWuEjlCgAAYACVq4Nwm7ptH5Pbb/YyAAA4wv3P/NP13f0Nm70ODo1wdRCOye3zoPruzV4GAABHuD/vP/7bzV7DwamstCa4Rb4RAACAAYQrAACAAbQFAgAAk3SSVXWaJb4RAACAAYQrAACAAYQrAACAATxzBQAATLaS2uwlbDkqVwAAAAMIVwAAAANoCwQAACbprqy0Os0i3wgAAMAAwhUAAMAA2gIBAIDJVu0WuETlCgAAYADhCgAAYABtgQAAwCSdZEWdZolvBAAAYADhCgAAYABtgQAAwER+RHg92+obqaquqv937vVXV9WnqupNc2OPraorq+r9VXVVVT127txFVfWRqrqiqj5UVb9XVXc93J8DAAA48myrcJXkfyU5taqOnb3+niSf2Heyqh6Q5MIkj+nub03y6CQXVtX95+Z4dnc/IMnJSd6b5C1VdZvDsnoAAOCItd3CVZJcmuQHZv+fk+TVc+eeleSXu/sjSTL7+6Ikz16cpNe8LMk/JPm+W3XFAABwBOkkq/mqLX1shu0Yri5OcnZVHZPk/kneNXfulCSXL1y/Zza+kfckuc/iYFWdV1V7qmrPTbnxFi4ZAAA40m27cNXdVyY5MWtVq0sHTFkbvM+u7j6ju884Orcd8DYAAMCRbNuFq5lLsvZs1asXxq9JcvrC2OlJrt7PXN+W5P3jlgYAAOxE23Ur9t9J8tnuvqqqzpwbvzDJH1XVW7r7o1V1YpLnJXn84gRVVUmeluTOSf70Vl8xAAAcQVZ63QawHW1bhqvu/niSX19nfG9VPSfJG6vq6CQ3JfnZ7t47d9mvVtULktwuyV8lOau7v3Q41g0AABy5tlW46u7j1hnbnWT33OvXJXndBvefeystDQAA2OG2VbgCAAA2X6eysm23b7j1+EYAAAAGEK4AAAAG0BYIAABMttrqNIt8IwAAAAMIVwAAAANoCwQAACbpxG6B6/CNAAAADCBcAQAADKAtEAAAmKRTWena7GVsOSpXAAAAAwhXAAAAAwhXAAAAA3jmCgAAmGxVnWaJbwQAAGAA4QoAAGAAbYEAAMAk3clKq9Ms8o0AAAAMIFwBAAAMoC0QAACYqLKa2uxFbDkqVwAAAAMIVwAAAANoCwQAACbp2C1wPb4RAACAAYQrAACAAbQFAgAAk62o0yzxjQAAAAwgXAEAAAygLRAAAJikU1ltPyK8SOUKAABgAOEKAABgAOEKAABgAM9cAQAAk9mKfZlvBAAAYADhCgAAYABtgQAAwCSdZLXVaRb5RgAAAAYQrgAAAAbQFggAAExUWUlt9iK2nG0Rrqrq55L8aJKVJKtJ/inJ1yU5Lsk3JPnI7NInJ/nlJPdMcvfu7tn9b0jyiCQPTvL7s2u/OcnnZsf13f2Iw/JhAACAI9KWD1dV9eAkj0rywO6+sapOSHKb7v77qjozybO6+1Fz1yfJZ5N8Z5K/rKqvTXLnJOnuq5KcNrvuoiRv6u4/PowfBwAAOEJt+XCVtWB0fXffmCTdff1B3HNxkrOT/GWSH0ryuiSn3GorBACAHcRugevbDt/Im5Pcrao+VFWvrKp/cxD3/EWSh1XVUVkLWa+Z+qZVdV5V7amqPTflxqm3AwAAO8yWD1fd/fkkpyc5L8mnkrymqs49wG0rWatanZ3k2O7+6CG8767uPqO7zzg6t516OwAAsMNsh7bAdPdKkt1JdlfVVUl+PMlFB7jt4iSvT3LBrbk2AADYiewWuGzLV66q6uSqOmlu6LQkf3sQt749yYuSvPpWWRgAAMCc7VC5Oi7Jb8x2/ftykmuz1iK4X7Nt2C+8ldcGAACQZBuEq+6+PMlDNji3O2vtgvNjZ25w7XELr88dsT4AAIBkG4QrAABga+kuW7GvwzcCAAAwgHAFAAAwgLZAAABgshVtgUt8IwAAAAMIVwAAAANoCwQAACbpJKupzV7GlqNyBQAAMIBwBQAAMIC2QAAAYKLa9rsFVtUjk/zHJEcl+U/d/eKF89+c5HeTfO3smvO7+9L9zbm9vxEAAICJquqoJK9I8n1J7pvknKq678Jlz0/y2u7+tiRnJ3nlgeYVrgAAgJ3m25Nc291/091fSnJxkscsXNNJjp/9/zVJ/v5Ak2oLBAAAJukkq73ldws8oar2zL3e1d27Zv/fJcnH5s59PMmDFu6/IMmbq+ppSW6f5BEHekPhCgAAOBJd391n3IL7z0lyUXe/tKoenOT3q+rU7l7d6AZtgQAAwE7ziSR3m3t919nYvH+f5LVJ0t3vTHJMkhP2N6lwBQAA7DTvTnJSVd2jqm6TtQ0rLlm45u+SfHeSVNW3Zi1cfWp/k2oLBAAAJlvZxnWa7v5yVT01yWVZ22b9d7r76qr6xSR7uvuSJD+T5Ler6plZe8zs3O7u/c0rXAEAADvO7DerLl0Ye+Hc/9ck+c4pc27fuAkAALCFqFwBAACTdGo7bMV+2KlcAQAADCBcAQAADKAtEAAAmGxVnWaJbwQAAGAA4QoAAGAAbYEAAMAk3cmK3QKXqFwBAAAMIFwBAAAMoC0QAACYzI8IL1O5AgAAGEC4AgAAGEBbIAAAMEmnstrqNIt8IwAAAAMIVwAAAAMIVwAAAAN45goAAJhsJbZiX6RyBQAAMIBwBQAAMIC2QAAAYJJOstraAhdti8pVVa1U1d654/yqOqqqLq+qh81d9+aqesLs/49W1VVVdeVs/E7rjP/3qrr7Zn0uAADgyLEtwlWSG7r7tLnjxd29kuTJSV5eVUdX1TlJVrv7j+buO6u7759kT5LnrTO+O8nzD9eHAAAAjlzbui2wu99VVe9MckGSH03yPRtc+rYkT19n/J0bjAMAABuqrPZ2qdMcPtslXB1bVXvnXr+ou18z+/+5ST6W5Ne6+9oN7n9UkqvWGX9kkjesd0NVnZfkvCQ5Jrc7pEUDAAA7x3YJVzd092kbnHtYks8lOXWdc2+tqpUkV+bm7X9vrao7JPl8khesN2l370qyK0mOrzv0oS4cAADYGbZ1La+qbp/kJUkenuQbq+r7Fy45a/aM1pO6+7Pz40nunmRvkl84PKsFAIAjx2pqSx+bYVuHqyQvTPLa7v5A1ja3eFlVHXMwN3b3l5M8I8mTZlUsAACAQ7ZdwtWxC1uxv7iqTknyuCS/lCTd/d4klyV5zsFO2t2fTPLqJE+5NRYNAADsHNvimavuPmqDU/deuO7pc/+fuMFcJy68ftotXB4AAOwo3cmKHxFesl0qVwAAAFuacAUAADCAcAUAADDAtnjmCgAA2FpWW51mkW8EAABgAOEKAABgAG2BAADAJJ3Kqq3Yl6hcAQAADCBcAQAADKAtEAAAmGw12gIXqVwBAAAMIFwBAAAMoC0QAACYpBO7Ba5D5QoAAGAA4QoAAGAAbYEAAMBkq61Os8g3AgAAMIBwBQAAMIC2QAAAYJouuwWuQ+UKAABgAOEKAABgAOEKAABgAM9cAQAAk3SS1XjmapHKFQAAwADCFQAAwADaAgEAgMlsxb5M5QoAAGAA4QoAAGAAbYEAAMAkHW2B61G5AgAAGEC4AgAAGEBbIAAAMJm2wGUqVwAAAAMIVwAAAANoCwQAACbplLbAdahcAQAADCBcAQAADCBcAQAADOCZKwAAYLLVeOZq0QErV1W1UlV7547zq+qoqrq8qh42d92bq+oJs/8/WlVXVdWVs/E7rTP+36vq7gd47ztV1cVVdd3s/S6tqnvPzp1SVW+pqg9W1Yer6gVVVbNz51bValXdf26u91XViVX1rtnn+Luq+tTc5zrxUL5AAACA5ODaAm/o7tPmjhd390qSJyd5eVUdXVXnJFnt7j+au++s7r5/kj1JnrfO+O4kz9/oTWdB6fVJdnf3vbr79CTPTXLHqjo2ySVJXtzdJyd5QJKHzNa0z8eT/NzivN39oO4+LckLk7xm7nN99CC+CwAAgHUdcltgd7+rqt6Z5IIkP5rkeza49G1Jnr7O+Ds3GN/nrCQ3dfer5t7ziiSpqn+f5B3d/ebZ+Beq6qlZC2yvmF3+piQPq6qTu/uDB/u5AACAA+jYin0dB1O5OnahLfBH5s49N8kzkvxhd1+7wf2PSnLVOuOPTPKG/bzvqUku3+DcKYvnuvu6JMdV1fGzodUkL8nNq2YHrarOq6o9VbXnptx4KFMAAAA7yMFUrm6YtdGt52FJPpe1ILTorVW1kuTK3Lz9761VdYckn0/ygimLPQR/mOTnquoeU2/s7l1JdiXJ8XWHHr0wAADgyHLIW7FX1e2zVhl6eJJvrKrvX7jkrNmzTE/q7s/Ojye5e5K9SX5hP29xdZLTNzh3zeK5qrpnks939z/vG+vuLyd5aZLnHMRHAgAADkJnrS1wKx+b4Zb8ztULk7y2uz+QtY0kXlZVxxzMjbPQ84wkT5pVsdbzliS3rarz9g1U1f2r6ruS/EGSh1bVI2bjxyb59ayFvUUXJXlEkm84qE8FAABwCA7lmasXV9UpSR6X5JeSpLvfm+SyTKgQdfcnk7w6yVM2ON+z93jEbCv2q5O8KMk/dPcNSR6T5PlV9cGsPdP17iQvX2eeL2UteH3jwa4NAABgqlrLMOzP8XWHflB992YvAwCAI9yf9x9f3t1nbPY6DuT4k+/Y//pVT9zsZezXWx7+ssP+Xd6StkAAAABmDvl3rkapqq9P8hfrnPru7v704V4PAADAodj0cDULUBtt9Q4AAGwxnc3bkW8r0xYIAAAwgHAFAAAwgHAFAAAwwKY/cwUAAGw/7ZmrJSpXAAAAAwhXAAAAA2gLBAAAJluNtsBFKlcAAAADCFcAAAADaAsEAAAm6U5W7Ra4ROUKAABgAOEKAABgAG2BAADAZH5EeJnKFQAAwADCFQAAwADaAgEAgInKboHrULkCAAAYQLgCAAAYQFsgAAAwmd0Cl6lcAQAADCBcAQAADCBcAQAADOCZKwAAYJJObMW+DpUrAACAAYQrAACAAbQFAgAA03TSvdmL2HpUrgAAAAYQrgAAAAbQFggAAEy2GrsFLlK5AgAAGEC4AgAAGEBbIAAAMEknaT8ivETlCgAAYADhCgAAYABtgQAAwESVVW2BS7Z85aqqfq6qrq6qK6tqb1U9qKp2V9UZC9edWVVvmnv9fVW1p6quqar3VtVLZ+MXVNUnZnPtO772cH8uAADgyLKlK1dV9eAkj0rywO6+sapOSHKbg7jv1CQvT/ID3f2BqjoqyXlzl7ysuy+8VRYNAADsSFs6XCW5c5Lru/vGJOnu65Ok6oAlyJ9N8kvd/YHZfStJfvNWXCcAALDDbfW2wDcnuVtVfaiqXllV/+Yg7zs1yeX7Of/MuZbAt97yZQIAwM7SvbWPzbClK1fd/fmqOj3JdyU5K8lrqur8AVMfsC2wqs7LrJXwmNxuwFsCAABHsi0drpKvtPTtTrK7qq5K8uMHcdvVSU5PcsUteN9dSXYlyfF1h03KvgAAwHaxpdsCq+rkqjppbui0JH97ELf+apLnVdW9Z/N8VVX91K2xRgAA2Im6a0sfm2FLh6skxyX53dl26lcmuW+SC2bn/qSqPj47/mj+pu6+Mskzkry6qt6f5H1J7jl3yTMXtmI/8db+IAAAwJFtS7cFdvflSR6yzqkzN7hl99y9b0rypsULuvuC/EtAAwAAGGJLhysAAGDrWduRb3Na77ayrd4WCAAAsC0IVwAAAANoCwQAACZb1Ra4ROUKAABgAOEKAABgAG2BAADAZN2bvYKtR+UKAABgAOEKAABgAG2BAADAZH5EeJnKFQAAwADCFQAAwADCFQAAwACeuQIAACbplGeu1qFyBQAAMIBwBQAAMIC2QAAAYLLe7AVsQSpXAAAAAwhXAAAAA2gLBAAApunYLXAdKlcAAAADCFcAAAADaAsEAACms13gEpUrAACAAYQrAACAAbQFAgAAk9ktcJnKFQAAwADCFQAAwADCFQAAwADCFQAAMFn31j4OpKoeWVUfrKprq+r8Da754aq6pqqurqo/PNCcNrQAAAB2lKo6KskrknxPko8neXdVXdLd18xdc1KS5yb5zu7+p6r6xgPNq3IFAADsNN+e5Nru/pvu/lKSi5M8ZuGan0jyiu7+pyTp7n880KQqVwAAwCSdbb8V+12SfGzu9ceTPGjhmnsnSVW9I8lRSS7o7j/d36TCFQAAcCQ6oar2zL3e1d27Jtz/1UlOSnJmkrsmeVtV3a+7P7u/GwAAAI4013f3GRuc+0SSu829vutsbN7Hk7yru29K8pGq+lDWwta7N3pDz1wBAADTdJKurX3s37uTnFRV96iq2yQ5O8klC9e8IWtVq1TVCVlrE/yb/U0qXAEAADtKd385yVOTXJbk/Ule291XV9UvVtWjZ5ddluTTVXVNkrcmeXZ3f3p/82oLBAAAdpzuvjTJpQtjL5z7v5P89Ow4KMIVAAAw2cH8UO9Oc9jaAqtqpar2VtUVVfWeqnrI3LlTquots19I/nBVvaCqau78Y6vqyqp6f1VdVVWPnTt3UVU9fp3323DOqjq3qj41W881VfUTt/bnBwAAjmyH85mrG7r7tO5+QNZ+6fhFSVJVx2bt4bEXd/fJSR6Q5CFJnjw7/4AkFyZ5THd/a5JHJ7mwqu6/0RsdaM6Z13T3aVl7SO2Xq+qOIz8sAACws2zWhhbHJ/mn2f8/muQd3f3mJOnuL2Tt4bLzZ+efleSXu/sjs/MfyVowe/Z+5j/QnF8x+6Xl65Lc/RZ+JgAA2Dl6ix+b4HA+c3VsVe1NckySOyd5+Gz8lCSXz1/Y3ddV1XFVdfzs/IULc+1J8pT9vNeB5vyKqrpnknsmuXZh/Lwk5yXJMbndgT8dAACwox3OcHXDrA0vVfXgJL9XVacexvdf9CNV9dAkNyb5ye7+zPzJ2a8370qS4+sOHtcDAAD2a1N2C+zud85+iOsbklyT5GHz52fVpM939z/P9pU/PckVc5ecnuTq/bzFgeZM1p65euot/jAAAADZpGeuquo+SY5K8ukkf5DkoVX1iNm5Y5P8epKXzC6/MMlzq+rE2fkTkzwvyUv38xYHmhMAADhkle6tfWyGzXjmKkkqyY9390qSG6rqMUl+o6pekbXQ9ftJXp4k3b23qp6T5I1VdXSSm5L8bHfvnZv7t6rq12b/f6y7H7y/OQEAAEY7bOGqu4/az7mrsrYl+kbnX5fkdRucO3fqnN19UZKLNno/AACAqTblmSsAAGCbs+Xbks36nSsAAIAjinAFAAAwgLZAAABgms6m7ci3lalcAQAADCBcAQAADKAtEAAAmM5ugUtUrgAAAAYQrgAAAAbQFggAABwCuwUuUrkCAAAYQLgCAAAYQFsgAAAwnd0Cl6hcAQAADCBcAQAADCBcAQAADOCZKwAAYDrPXC1RuQIAABhAuAIAABhAWyAAADBNJ+na7FVsOSpXAAAAAwhXAAAAA2gLBAAAJmu7BS5RuQIAABhAuAIAABhAWyAAADCdtsAlKlcAAAADCFcAAAADaAsEAACm8yPCS1SuAAAABhCuAAAABhCuAAAABvDMFQAAMFnZin2JyhUAAMAAwhUAAMAA2gIBAIBpenZwMypXAAAAAwhXAAAAA2gLBAAAJqqka7MXseUcUuWqqu5aVf+1qj5cVddV1X+sqttU1ZlV9bmq2ltV76+qn59dPz++73jE7NzK7PX7quqNVfW1C+/1jKr6YlV9zez1987N8fmq+uDs/9+bnX9oVf11VX1gdpw3N9cFVfWJ2fXXVNU5h/rFAQAAzJscrqqqkrwuyRu6+6Qk905yXJJfml3y9u4+LckZSX6sqh44Pz53/Pls/IbZ61OTfCbJUxbe8pwk707yQ0nS3ZftmyPJniRPnL1+UlXdKckfJvmp7r5Pkocm+cmq+oG5+V42u/cxSX6rqo6e+h0AAAAsOpTK1cOTfLG7/3OSdPdKkmcm+XdJbrfvou7+X0kuT/ItE+Z+Z5K77HtRVffKWnB7ftZC1oE8JclF3f2e2RquT/KzSc5fvLC7P5zkC0m+bsL6AACA5F92DNyqxyY4lHB1StZC01d09z8n+bvMBamq+vok35Hk6tnQdy20Bd5rfo6qOirJdye5ZG747CQXJ3l7kpOr6o5T15a16tYpixfOKmof7u5/XG+iqjqvqvZU1Z6bcuMB3hYAANjpbo3dAr+rqt6b5M1JXtzd+8LVYlvgdbPxY6tqb5J/SHLHJH82N9c5SS7u7tUk/yXJEwas75lVdXWSd+VfWhmXdPeu7j6ju884Orcd8LYAAMCR7FDC1TVJTp8fqKrjk3xzkmuzFqK+rbtP7+5XHcR8N8yegbp7ksrsmauqul+Sk5L8WVV9NGtVrAO1Bi6tbfb66rnXL+vuU5L82yT/T1UdcxBrBAAA5m12298R0hb4F0luV1VPSr7SzvfSJBdl7RmmQ9LdX0jy9CQ/U1VfnbUgdUF3nzg7vinJN1XV3fczzSuSnFtVp83W9vVJfiXJS9Z5v0uy1jL444e6ZgAAgH0mh6vu7iSPS/KEqvpwkg8l+WKS5x3g1sVnrh6/ztzvTXJl1oLV2Ulev3DJ62fjG63tk0l+LMlvV9UHkvyPJL/T3W/c4JZfTPLTVeXHlAEAgFvkkH5EuLs/luQH1zm1e3YsXr87yddsMNdxC6/3zfv761z70wuvz1znmrcl+dcbvNcFC68vT3LyetcCAAD7sUmtd1uZig0AAMAAwhUAAMAAwhUAAMAAh/TMFQAAsIN1kq7NXsWWo3IFAAAwgHAFAAAwgLZAAABgsrIV+xKVKwAAgAGEKwAAgAG0BQIAANNpC1yicgUAADCAcAUAADCAcAUAADCAcAUAADCAcAUAADCA3QIBAIDJ/IjwMpUrAACAAYQrAACAAYQrAACAATxzBQAATNe12SvYclSuAAAABhCuAAAABtAWCAAATNOzg5tRuQIAABhAuAIAABhAWyAAADCdtsAlKlcAAAADCFcAAAADaAsEAAAmK22BS1SuAAAABhCuAAAABtAWCAAATKctcInKFQAAwADCFQAAwADCFQAAwACeuQIAAKbzzNUSlSsAAIABhCsAAIABtAUCAACTVK8d3NyWqFxV1YlV9b6FsQuq6llVdVFVfaKqbjsbP6GqPrpw7TOq6otV9TVzY2dW1eeqam9VfaCqLpyNn1JVH6qqY+eu/ZOqOudW/ZAAAMARbUuEq4OwkuTf7ef8OUneneSHFsbf3t2nJfm2JI+qqu/s7quTvC7JzyVJVT02ydHd/erxywYAAHaK7RKufi3JM6tqqY2xqu6V5Lgkz89ayFrS3Tck2ZvkLrOhX0zyhKo6LcmLkzzl1lg0AAAcsbq29rEJtku4+rskf5nkf1vn3NlJLk7y9iQnV9UdFy+oqq9LclKStyVJd38hybNmry/u7g+vc895VbWnqvbclBuHfRAAAODItFXC1UaPw82PvyjJs7O85nOyFpBWk/yXJE+YO/ddVXVFkk8kuay7/+ErE3e/Mclnk7xy3Tfu3tXdZ3T3GUfntpM+DAAAsPNsld0CP53k6xbG7pDkI/tedPeHq2pvkh/eN1ZV98taRerPqipJbjO75+WzS97e3Y+qqnsk+auqem137517j9XZAQAATGG3wCVbonLV3Z9P8smqeniSVNUdkjwya62A834pa+18+5yT5ILuPnF2fFOSb6qquy/M/5GsPVtT6nK9AAAgAElEQVT1nFvrMwAAADvblghXM09K8oJZdeotSX6hu6+bv2C209975obOTvL6hXlePxtf9KokD6uqE0ctGAAAYJ+t0haY7r4myVnrjJ+78PqH5v6/5zrX//Tcy91z4zfkX3YL3Dd24qGuFwAAdjI/IrxsK1WuAAAAti3hCgAAYIAt0xYIAABsI9oCl6hcAQAADCBcAQAADCBcAQAADOCZKwAAYJq2Fft6VK4AAAAGEK4AAAAG0BYIAABMpy1wicoVAADAAMIVAADAANoCAQCA6bQFLlG5AgAAGEC4AgAAGEBbIAAAMJkfEV6mcgUAADCAcAUAADCAcAUAADCAcAUAADCAcAUAADCAcAUAADCArdgBAIDpbMW+ROUKAABgAOEKAABgAG2BAADANJ2UtsAlKlcAAAADCFcAAAADaAsEAACm0xa4ROUKAABgAOEKAABgAG2BAADAdNoCl6hcAQAADCBcAQAADKAtEAAAmKTiR4TXo3IFAAAwgHAFAAAwgLZAAABgOm2BS1SuAAAABtgS4aqq7lRVF1fVdVV1eVVdWlX3rqquqv9r7roTquqmqnr57PUFVfWJqtpbVe+rqkfPXXteVX1gdvx1VT107tzuqvpgVV1RVe+oqpMP7ycGAACONJserqqqkrw+ye7uvld3n57kuUnumOQjSX5g7vInJLl6YYqXdfdps3O/U1VfVVWPSvKTSR7a3fdJ8lNJ/rCq7jR33xO7+wFJfjfJr94anw0AANg5Nj1cJTkryU3d/ap9A919RZKPJflCkvdX1RmzUz+S5LXrTdLd70/y5SQnJHlOkmd39/Wzc+/JWoh6yjq3vi3Jt4z5KAAAsAP02lbsW/nYDFshXJ2a5PL9nL84ydlVdbckK0n+fr2LqupBSVaTfCrJKevMuWc2vugHk1y1znznVdWeqtpzU2484IcAAAB2tu2wW+CfJvkPSf6/JK9Z5/wzq+rHkvzPJD/S3b3WaXhAf1BVNyT5aJKnLZ7s7l1JdiXJ8XUHe6EAAAD7tRXC1dVJHr/Rye7+UlVdnuRnktw3yaMXLnlZd1+4MHZNktOTvGVu7PTc/HmtJ3b3nkNeNQAA7GTKD0u2QlvgW5LctqrO2zdQVfdPcre5a16a5Dnd/ZmDnPMlSX6lqr5+Nt9pSc5N8sohKwYAAFiw6ZWrWRvf45L8WlU9J8kXs9aq94y5a67O8i6B+5vzkqq6S5L/UVWdtZbBH+vuTw5dPAAAwMymh6sk6e6/T/LD65w6dZ1rL0py0ez/C/Yz528m+c0Nzp05fZUAAMBXaAtcshXaAgEAAA6rqnpkVX2wqq6tqvP3c92/raqe+3moDQlXAADAjlJVRyV5RZLvy9qmeedU1X3Xue5fJfk/k7zrYOYVrgAAgMk2+0eCb+GPCH97kmu7+2+6+0tZ+23dx6xz3X9I8itZ2xfigIQrAABgp7lLko/Nvf74bOwrquqBSe7W3X9ysJNuiQ0tAAAABjuhquZ/13ZXd+86mBur6quS/N9Z+zmngyZcAQAA02393QKv7+6NNqH4RG7+u7p3nY3t86+ytnP57qpKkjsluaSqHt3d84HtZrQFAgAAO827k5xUVfeoqtskOTvJJftOdvfnuvuE7j6xu09M8ldJ9husEuEKAADYYbr7y0memuSyJO9P8truvrqqfrGqHn2o82oLBAAAdpzuvjTJpQtjL9zg2jMPZk7hCgAAmKazHZ65Ouy0BQIAAAwgXAEAAAygLRAAAJistAUuUbkCAAAYQLgCAAAYQFsgAAAwnbbAJSpXAAAAAwhXAAAAA2gLPAj3vv8Xctllezd7GQAAHOGOuvNmr+Dg2S1wmcoVAADAAMIVAADAANoCAQCA6bQFLlG5AgAAGEC4AgAAGEC4AgAAGMAzVwAAwDQdz1ytQ+UKAABgAOEKAABgAG2BAADAJDU7uDmVKwAAgAGEKwAAgAG0BQIAANPZLXCJyhUAAMAAwhUAAMAA2gIBAIDJSlvgEpUrAACAAYQrAACAAbQFAgAA02kLXLLplauqulNVXVxV11XV5VV1aVXdu6pOqaq3VNUHq+rDVfWCqqrZPedWVVfVI+bmeexs7PGz17tn915RVe+oqpPXGX93VZ22OZ8cAAA4kmxquJqFpdcn2d3d9+ru05M8N8kdk1yS5MXdfXKSByR5SJInz91+VZKz516fk+SKhbd4Ync/IMnvJvnVdcZfuTAOAABwSDa7cnVWkpu6+1X7Brr7iiT3TvKO7n7zbOwLSZ6a5Py5e9+e5Nur6uiqOi7JtyTZu8H7vG12ftE7k9zlFn8KAADYaXqLH5tgs5+5OjXJ5euMn7I43t3XVdVxVXX8vqEkf57ke5N8TdYqXffY4H1+MGuVrkWPTPKGQ1g3AADAzWx2uLqlLk7y9KyFq59J8ryF839QVTck+WiSpy2M3ybJcUnWfeaqqs5Lcl6SfPNdtvvXBAAA3No2uy3w6iSnrzN+zeJ4Vd0zyee7+5/3jXX3Xye5X5ITuvtD68zzxO4+rbsf290fmx9Pcs+sPYv1G+strLt3dfcZ3X3GN3z9UZM+FAAAsPNsdrh6S5LbzqpESZKqun+SDyZ56L7dAKvq2CS/nuQl68xxfpYrVgfU3Z3kBUm+o6rucwhrBwCAnamT2uLHZtjUcDULOI9L8ojZVuxXJ3lRkn9I8pgkz6+qD2bteal3J3n5OnP8t+5+6yG+/w1JXprk2Yf4EQAAAJJsgWeuuvvvk/zwBqfP3OCei5JctM74uXP/b3TvmQuvX3oQywQAANivTQ9XAADANrRJrXdb2WY/cwUAAHBEEK4AAAAG0BYIAABMtlk78m1lKlcAAAADCFcAAAADaAsEAACm0xa4ROUKAABgAOEKAABgAG2BAADAZHYLXKZyBQAAMIBwBQAAMIBwBQAAMIBnrgAAgGk6tmJfh8oVAADAAMIVAADAANoCAQCA6bQFLlG5AgAAGEDl6iB86Mrb5Xu/6bTNXgYAAEe8azd7AdwCwhUAADBJJSltgUu0BQIAAAwgXAEAAAygLRAAAJhOW+ASlSsAAIABhCsAAIABtAUCAACTVesLXKRyBQAAMIBwBQAAMIC2QAAAYJqO3QLXoXIFAAAwgHAFAAAwgHAFAAAwgGeuAACAycozV0tUrgAAAAYQrgAAAAbQFggAAEynLXCJyhUAAMAAwhUAAMAA2gIBAIDJ7Ba4bFMqV1W1UlV7547zq+qoqrq8qh42d92bq+oJs/+Pq6rfqqrrZtftrqoHbTTfbHx3VX2wqq6oqndU1clV9frZNddW1efm7nnIZnwXAADAkWGzKlc3dPdpi4NV9eQkv11Vpyd5fJLV7v6j2en/lOQjSU7q7tWqukeS++5vvpkndveeqjovya9296Nn73Vmkmd196PGfSwAAGCn2lJtgd39rqp6Z5ILkvxoku9Jkqq6V5IHZS0orc6u/UjWwtbBeluSZwxdMAAA7FTaApdsVrg6tqr2zr1+UXe/Zvb/c5N8LMmvdfe1s7FTkuzt7pVDmG+fH0xy1S1dOAAAwHq2VFvgzMOSfC7JqYPm+4OquiHJR5M87WAnnLURnpckx+R2E5YCAADsRFuqLbCqbp/kJUkenuQ/V9X3d/elSa5O8oCqOmo/1auNPLG790xdS3fvSrIrSY6vOyh6AgDAPm23wPVstd+5emGS13b3B5I8OcnLquqY7r4uyZ4kv1BVlSRVdWJV/cAmrhUAAOArtsozV3+a5PeTPC7JA5Kku99bVZcleU6SX0jyfyR5aZJrZ21+1yd59kbzdff5t/JnAAAA+IpNCVfdfdQGp+69cN3T5/7/5yQ/MWW+7j5zP2vYnWT3/lcKAABwcLbUM1cAAMA24ZmrJVvtmSsAAIBtSbgCAAAYQFsgAAAwScVW7OtRuQIAABhAuAIAABhAWyAAADBd6wtcpHIFAAAwgHAFAAAwgLZAAABgMrsFLlO5AgAAGEC4AgAAGEBbIAAAME3PDm5G5QoAAGAA4QoAAGAA4QoAAGAAz1wBAACT1epmr2DrUbkCAAAYQLgCAAAYQFsgAAAwna3Yl6hcAQAADCBcAQAADKAtEAAAmKy0BS5RuQIAABhAuAIAABhAWyAAADBNJ2l9gYtUrgAAAAYQrgAAAAbQFggAAExmt8BlKlcAAAADCFcAAAADaAsEAACm0xa4ROUKAABgAOEKAABgAOEKAABgAM9cAQAAk1Rsxb4elSsAAIABhCsAAIABtAUCAADTdK8d3My2rlxV1WOrqqvqPrPXJ1bVDVW1t6quqarfq6qj567/9qraXVUfrqr3VNWfVNX9Nu8TAAAAR4ptHa6SnJPkL2d/97muu09Lcr8kd03yw0lSVXdM8tokz+vuk7r7gUlelOReh3fJAADAkWjbtgVW1XFJHprkrCRvTPLz8+e7e6Wq/jr5/9u783DJyure498fKKARWxFxQC6DYnxEQbGvRNQYUa8QUVREQImzGK/GqGjAOMR5Qi844AAJTlGQiCJOgIpjjENLgNiIhgjOE4NiAuLQ6/6x96Gr6wx9qrv67L1Pfz/PUw97qKpep6mus9d+33ctdmwPPRN4T1V9ZeQ5X16icCVJkqRlxWqBsw155Oog4Kyq+i5wRZJ7jJ5Msg2wD3BWe2gP4LzFvnmSI5OsSrLq91w3rZglSZIkLVNDTq4OB05tt09l7dTA2yc5H/g58NOqunCuFyf5WpJvJ3nTXOer6sSqWllVK2/I1tOOXZIkSdIyM8hpgUm2A/YD7pqkgC2BAk6gXXOVZHvgX5M8rKrOBFYDewMfBaiqfZI8Cjiwkx9CkiRJGjKnBc4y1JGrRwHvq6qdq2qXqtoJuBTYaeYJVXU5cAzwgvbQCcATkuw78j43XqqAJUmSJC1vQ02uDgc+MnbsdNYmUjPOAG6c5L5V9TPgUOA1SS5J8hWaJO2tmzxaSZIkScveIKcFVtX95zj2ZuDNY8cK2Gtk/6vA/TZ5gJIkSdIyZ7XA2YY6ciVJkiRJvWJyJUmSJElTYHIlSZIkSVMwyDVXkiRJkjpUwBoXXY1z5EqSJEmSpsDkSpIkSZKmwGmBkiRJkibnrMBZHLmSJEmSpCkwuZIkSZKkKXBaoCRJkqSJxWmBszhyJUmSJElTYHIlSZIkSVPgtEBJkiRJkyvnBY5z5EqSJEmSpsDkSpIkSZKmwGmBkiRJkiZmtcDZHLmSJEmSpCkwuZIkSZKkKXBaoCRJkqTJVPvQOhy5kiRJkqQpMLmSJEmSpCkwuZIkSZK02Umyf5LvJLkkyTFznH9ukouSXJjks0l2Xt97uuZKkiRJ0kQCpIa76CrJlsAJwIOAHwHfSHJmVV008rR/B1ZW1TVJng68Hjh0ofd15EqSJEnS5uaewCVV9b2q+h1wKnDQ6BOq6nNVdU27+1Xgdut7U5MrSZIkScvR9klWjTyOHDm3I/DDkf0ftcfm82TgU+v7A50WKEmSJGlya7oOYL0ur6qVG/smSY4AVgL3W99zTa4kSZIkbW5+DOw0sn+79tg6kjwQeCFwv6q6bn1v6rRASZIkSZubbwC7J9k1yVbAYcCZo09IcnfgncDDquoXi3lTR64kSZIkTWzI1QKr6g9JngmcDWwJnFxVq5O8HFhVVWcCxwI3Af4lCcAPquphC72vyZUkSZKkzU5VfRL45Nixl4xsP3DS93RaoCRJkiRNgSNXkiRJkiZT7UPrcORKkiRJkqbA5EqSJEmSpsBpgZIkSZImVDDgaoGbiiNXkiRJkjQFJleSJEmSNAUmV5IkSZI0Ba65kiRJkjSxuORqlk5GrpL8d/vfXZJUkleOnNs+ye+TvLXdf2mSHyc5P8m3kjxs5LlHJrm4fXw9yX1Gzn0+yXeSXJDkG0nu1h7/WvteP0jyy3b7/CS7LNXPL0mSJGn56cO0wEuBh4zsHwKsHnvOcVV1t/bcyUm2SHIg8DTgPlV1J+CvgQ8kufXI6x5bVXsBbwOOBaiqfdr3egnwwaq6W/u4bFP8cJIkSZI2D31Irq4Bvp1kZbt/KHDaXE+sqm8DfwC2B44Gnl9Vl7fnzgPeAzxjjpf+G7DjlOOWJEmSNl9V/X50oA/JFcCpwGFJdgL+CPxkricl2QdYA/wS2AP45thTVrXHx+0PnDFJQO2Uw1VJVv2e6yZ5qSRJkqTNUF8KWpwFvAL4OfDBOc4/J8kRwG+AQ6uqkizmfd+fZCvgJsDdJgmoqk4ETgS4abZzuZ4kSZKkBfVi5KqqfkczCnUU8KE5nnJcuy7qvlX1pfbYRcA9xp53D9Zdr/VYYDea6YJvmW7UkiRJ0maqIGv6/ehCX0auAN4IfKGqrlzkqNTrgdcl2b+qrmirAT4B2Gf0Se0o14uB/0pyp6q6eNqBS5IkSVJvkquqWs3sKoELPf/MJDsCX0lSNFMGj6iqn87x3GuTvBF4PvDkacUsSZIkSTM6Sa6q6ibtfy8D7jLH+XcD7263X7rA+7wdePs85/5ibP+N8/0ZkiRJkibUUUW+PuvFmitJkiRJGjqTK0mSJEmagt6suZIkSZI0IM4KnMWRK0mSJEmaApMrSZIkSZoCkytJkiRJmgLXXEmSJEmaWCzFPosjV5IkSZI0BSZXkiRJkjQFTguUJEmSNDmnBc7iyJUkSZIkTYHJlSRJkiRNgdMCJUmSJE2mgDVdB9E/jlxJkiRJ0hSYXEmSJEnSFDgtUJIkSdJEQtlEeA6OXEmSJEnSFJhcSZIkSdIUOC1QkiRJ0uScFjiLI1eSJEmSNAUmV5IkSZI0BU4LlCRJkjQ5pwXO4siVJEmSJE2ByZUkSZIkTYHJlSRJkiRNgWuuJEmSJE2mgDVdB9E/jlxJkiRJ0hSYXEmSJEnSFDgtUJIkSdLEYin2WRy5kiRJkqQpMLmSJEmSpClwWqAkSZKkyTktcBZHriRJkiRpCkyuJEmSJGkKnBYoSZIkaULltMA5OHIlSZIkSVNgciVJkiRJU+C0QEmSJEmTKZwWOAdHriRJkiRpCgabXCX5XJIHjx17dpK3j2z/NsmKkfN/keTXSc5PcnGSNyx13JIkSZKWp8EmV8ApwGFjxw5rjwMcDnwDeOTYc75UVXcD7g4cmOTemzRKSZIkSZuFISdXHwIekmQrgCS7ALcFvpTk9sBNgBfRJFmzVNW1wPnAjksRrCRJkrSsrOn5owODTa6q6krg68AB7aHDgNOqqtrtU4EvAX+a5Fbjr09yc2B34ItzvX+SI5OsSrLq91y3KX4ESZIkScvIYJOr1ujUwPEpgadW1RrgdOCQkdfcN8kFwI+Bs6vqZ3O9cVWdWFUrq2rlDdl600QvSZIkadkYein2jwLHJdkbuHFVfTPJXWlGpD6dBGAr4FLgre1rvlRVBybZFfhqktOq6vwugpckSZKGKpZin2XQI1dV9d/A54CTWXfU6qVVtUv7uC1w2yQ7j732UuC1wNFLGbMkSZKk5WnQyVXrFGAv1iZXhwEfGXvOR5hdWRDgHcCft8UwJEmSJGmDDX1aIFV1BpCR/d3meM5zR3Y/P3L8WqwWKEmSJE3OaYGzLIeRK0mSJEnqnMmVJEmSJE3B4KcFSpIkSVpiBaxxWuA4R64kSZIkaQpMriRJkiRpCpwWKEmSJGlCZbXAOThyJUmSJElTYHIlSZIkSVPgtEBJkiRJk3Na4CyOXEmSJEnSFJhcSZIkSdIUmFxJkiRJ0hS45kqSJEnS5FxzNYsjV5IkSZI0BSZXkiRJkjQFTguUJEmSNJkC1jgtcJwjV5IkSZI0BSZXkiRJkjQFTgtchN9w1eWfqQ99fxP+EdsDl2/C99/UjL9bxt+dIccOxt814+/WkOMfcuxg/Ouz8yZ87ykqqDVdB9E7JleLUFW33JTvn2RVVa3clH/GpmT83TL+7gw5djD+rhl/t4Yc/5BjB+PX8ua0QEmSJEmaAkeuJEmSJE3OJsKzOHLVDyd2HcBGMv5uGX93hhw7GH/XjL9bQ45/yLGD8WsZS5lxSpIkSZrAiq1vVfve5jFdh7Ggs75//DeXen2c0wIlSZIkTcYmwnNyWqAkSZIkTYHJlSRJkiRNgcmVNCBJ/lfXMWyoJDdd4Nwgfq4kt0yyMsnNuo5lc5Pk0K5j0HAl+bOuY9hcDeX7fVLL9efSxjO56kCSGyR5aJLnt48Dkwxi/VuSc7qOYVNIcrMkL+w6jkU4o+sANsLnZzaSfHbsXO9/riRPAVYDbwEuTvKwjkOaWJItk2w/sr9VkiOTfLvLuBbpr5KclWS3rgOZVJLdk3w0ybeSnJJkx65jmoYkd0xyUtdxLNLbug5gQyTZY/S7JslxSU5uH3t3GdsEev/9vpAk90ryqCQ7tPt7JvkA8K8dh9YPVf1+dMDkaom1v1RXA0cBtwV2BJ4PrE5y2y5jW6Rbdh3AxkiyU5ITk3w8yVOS/EmSNwLfBXboOr5FSNcBbITR2Ldb4FxfPRvYo6ruBewLvKDjeCaS5DDgSuDCJF9I8n+A7wEHAI/tNLhFqKoDgXcAn0jy4iTbJ9lu5tF1fOtxMvBx4GDgPJoEfTDai8lz2uTwlUluk+R04Fzgoq7jW+ZeC1w+sv9g4BPA54CXdBLR5Ibw/T6nJMfS/Ps9mOa755XAOcDXgN27jE39NYjRkmXmVcDbq+r40YNJngW8Bnh8J1Et3ookj5zvZFV9eCmD2QDvBb4AnA7sD6wCzgf2rKqfdRnYIu2Y5M3znayqZy1lMBOqebbn2u+j31XVLwGq6ntJtu46oAm9CLhHVV3S3vH+N+BRVfWxjuNatKo6I8mlwBeBJ7P2c1NAn0e0tq2qmRGeY5Oc12k0kzsJeDvNZ2Z/mu/M9wCPrarfdhnYBHZLcuZ8J6uqryPRt6mqr4zsX11VpwMkeVpHMU1qyL+3HgLcvap+m+TmwA+Bu1TVZd2GpT4zuVp6f1ZVTxg/WFVvTvKdDuKZ1ArgQOa+E1VA35Or7arqpe322UkOoblAWNNhTJO4Fvhm10FsoB2SPJfmszOzTbs/hBHR241dIKyz3/MLBGiSw0sAquq8JP85pMSqTWZfBDyK5t/sxzsOaRLbJLk7a783bzS6X1V9T7a2rqp3t9vfSfK3VfV3XQa0AX4JvLHrIDbAtqM7VTW6dmwIsy1g2L+3fjtzA6Gqrmq/Ny/rOKZ+sV/uLCZXS+/aBc5ds2RRbLjvV9WTug5iY7R3n2Yucq6gGY2buci5srPAFueKqnpP10FsoJNYe6Ewug3wj0sfzsSeP7Y/tIuF0YQW4Gaj+1X1/zqIaRIX0ow4711VC32P9tFPgdG/35+N7Bew35JHNJnx5PC6gSWHAL+pqi90HcQG+EmSfarqa6MH2wIdP+kopkkN+ffW+IjnrqP7PR7xVIdMrpbefNPqAsxbTa1HBjt3urWCZs3DqJn9vk8tAvhd1wFsqKp6WdcxbIzRi4MkN2mP/Xd3EU1sPKEd3++7R1TVnOt7kvyvqvrBUge0WFV1/65j2EijyeD4/hCSQ4DLug5gAx0NfDDJu1n7u+oeNEsIhlJBc7C/t4CDxvaHOPqpJZZyOG9JJXnXQuer6olLFcuGSLJHVa3uOo7N1fpKv/b5ArNdGHxJVb1z7PjTgF2r6phuIlu8JE+nKWTxJ+2h/wZeV1WDrEQ2NEnuRVME6ItV9YskewLHAPetqp26jW5hbaWxZwB7tIdWAydU1S+6i2rzkeSOwLHA7YH/AJ5XVT/uNqrFSXIr5v7s/Ly7qDZe+//k+VX11K5jmVSSnYDDqurYrmPp0oqtdqh9b9nvHP+sn7z1m1W1cin/TEeulljfk6dF+GqS0Yw8NHcuA1RV9Xr0rb3A+XvgDjTTjF5bVVd3G9VEPsHav+8ZRbNmaQdgyy6CWqT9gLnWaZxE8/+i18lVkhfRVAn8i6r6XntsN+BNSbarqld2GuAiJDmAJjm8c3toNU1y+MnuolqcNjk/kKaYwtFJzgaeQlMIqNdTlZPcG/gA8G6aojrQjD58Pcljq6rXJZ2T7E6TmNyBgSUmI/6J5u/+i8DDaCo2zlucqU/aJGpWZcAk9+77ZweaapPAG2gqJJ8BnAC8FdiHAY0EJbklcAhwOM3P8pFuI1JfmVx1IMldaNZvjN6FekNV/Ud3US3aZ4Fb0xSuOLXPIyXzeC/NWpm30FyovRl4QpcBTaKq7jq6n2QXmmkjDwRe3UFIk9i65hgqr6o1M2veeu6vgL1Gq6O1VQMfDVwA9Dq5SvJU4Gk0Ce6q9vBK4LVJbldVJ3YW3OIMuWrXG4GHV9W/jxw7M8lHgHfSXGT22ckMNDEZMciKjUm2BB5NM2L7qapaneRAmpuENwLu3mV8izTYapNJtqX5rD8GuCPNtc+uVXW7TgNTr5lcLbEkB9HcwXkNa+/YrAQ+nOR5VfXRzoJbhKp6eJIVNF82JyXZBvggTaLV92IQ0JS1nWkWfPZQfsGOa+8kv5C1d/6eVVW/7zaq9bo2ye5V9Z+jB9ufZQgFCmquC4GqujbJEKpNPge4z9i/03Pb0awvA31ProZcteumY4kVAFV1fnvx1neDTEzGDLVi4z8BOwFfB96S5Cc01wzHVNVQmvMOudrkL2j+7l8EfLmqKskjOo6pPwpYM4Rff0vL5GrpvRx40NhFwYVJzgU+2j56rap+DbwryXuAw2hGf7Zh3QXPvTVWLXDL0f2+J4jtqOcLaUY9Xw88uar+2G1Ui/YS4FNtE8aZSnsraaapPbuzqBbvx0keUFWfHT2YZD+aanB9l7k+31V1xTAGDgddtStJbl5VV40d3A7YoqOYJjHUxGTUUItyrKTpw7imvZn5M+D2VXVFx3FNYsjVJl9Ac53zNuCUJB/sOB4NgAUtlliS1VW1xzznLqqqO891rk+S7Esz5/i+NHe8P1hVX+o2qsVJchmwhnn6dFVVr6sFJvkjzXSoTwCzkqq+91oamRJ7l/bQauDYIUyJTbIHzc2PL7Nucnhv4KC+F3pJ8jXgyKq6YLjUsoYAABG/SURBVOz4XsBJVXXPbiJbnCT3W+h8n8tsJzkSeCrwPNat+PY64OTxIi99k+TzzN/ou6qqr4nJ4CU5r6r2nm9/CJJ8boHTg/j8JLk9TXXGw4HdgX8APlJV3+00sI6tuOEOte/2h3QdxoLO+tnblryghcnVEktyAfDQ8bVKSXYGPlZVe3YT2eIk+T5wFXAqcC7wh9HzPb8DNXhJHr/Q+QH3EhmE9s7xY1i7XvIi4P19XzcAkOQ+wPuBd7Fucvh44Iiq+nJXsW2MoVTtatfJ/B3NZ6doPjvH1oAaOQ9Zkr+rqte324dU1b+MnHt1Vf19d9HNL8k1wCUzuzTVDi9pt9dU1V5dxbY5SHIC8IHRwiHtTcLDgUOr6g6dBdcDK264Q+17i0d1HcaCzvr5202ulrskD6eZzvVq1r3AOQY4uu9zqMfuYM6qWtf3O1BJDq6q0+c4vhXN3/8rOghrgwyt11KSjzH/3e++T+taUJJ/rap7dx3H+sxR0vkimpLOP+suqsnNVbWrqp7XbVTrl2T7qrq86zgmNU9vxutV1YeXKpYNNTriM6TRoPbG66zDNOuwXlBVf7nEIW2QobYiSPK3NNMCbwOcRpNond9tVP1hcjU311wtsao6I8mlwFHA37SHLwIePT5dp6eOqaqvdh3ERjgyyZOBZ46U0z4AOA44q9PIFmm811KSofRaekPXAWxCC/Yf64Mk766qJzBHSechGHLVriQPpam49/u2+Mmjq+orHYc1iQ/RVHibuagcbwXR++SKdWMenxbe20WHVfX9me12ndJjaG4sXArMulHYR0NuRVBVb6Jpt7EzTZL1riQ3ovl5Thkv0CSByVUn2iTqcV3HsYHeBvTyDt9iVNWDkxwOfDrJB2jW/uxAM62o93ejhtxraaE1Me0i4d6umVmEIUwB6PWU40UYctWuV9E0Or44yT40sxcWXEPWM4+kubDck2bd4SlVdcnCL+mdmmd7rv3eSNNo9/D2cTlNdd5U1f07DWwyQ29FMJPkvg54XZvknkyz7qrPvSXVEZOrJTZW7WqWAUyN6u0dvgmcRjM14TnAr4D9BrQoddC9lhZwr64DWJ8FpkaFpt9M3914rGLXOgawXnLIVbv+UFUXA1TV1wZSfv167XT1M5L8CXAQ8MYktwBe2OdCImP2SnI17b/Xdpt2f5vuwlqvi4EvAQfOJLRJntNtSBMbeisCktwAOIDmO+gBwOeBl3YYUn+4vGgWk6uldy+aam+nAF9jeMnKrgsliH1PDttF/ScAX6GZs34/4GPthdqrquq6LuNbhKH3Whqyhy5w7uNLFsWG25HmDvKclTLpbylqAKrqeOD4dqT2MOAM4LZJjqb/Vbt2SPLc+farahBtLIDfAr8GrgZ2pt9JyTqqaqgjDDOjhp9LchZNMamhXTcMthVBkgfRjBr+Jc3I+ak0VVf/p9PA1GsmV0vv1sDMP9bH0JTUPqXvZZxH/JK1zY+H6HjgqVX19Xb/jCTn0AzvXwDcqbPIFmewvZaSzDedNMANlzKWDVFVT+w6ho10Sd8LzixGOx321cCr26pdjwE+CfS5atdJwLYL7Pda+/1yGHBP4DPAm6pqVbdRTSbJ/wa2r6pPjR0/APhFVX1z7ld2a45Rw2fTJOdvp7mpcE6nAS7OccA5SeZqRXBcZ1Etzgto1lcdNZ4cSvOxWmCHkmxNk2QdC7ysqt7acUjrleTfq+ruXcexoZJsUVVzjvAkuXNVXbTUMU1iyL2W2l4noxUmR798BrGGYKRP12jFqzcMpE/XoP/tqjvtqPiFNN87xdgapb731wNIci7wxNECEe3xnYF3DenGQ5rG94fQlAJ/QNfxLIatCJanFTe8Ze17s4O7DmNBZ13+TqsFbg7apOohNInVLsCbgY90GdMErkpy65nSzUkeBxwMfB94aVVd2Wl06/c8msXks3qdAEcAvex1MqOqVo/crZ+5wP8i8LQB9Fo6GvhhVf0Uru/ZdTBwGQOYu57kIJqKh69h7ejtSuDDSZ5XVR/tLLjFOXqugwPqE3UpYwn5yH5V1e2XPqrFSfLmhc4PIDkZ+qgtwLbjiRU0hQqSbN9FQBuqHUE5sX0MQlV9PMlXh9iKQJqUydUSS/Jemgp1n6QZrfpWxyFN6mbA7wCS/DnwWpqS8nej+aLvd8ODZmrL69vtFwCjydX+9Dy5SnIH4FZVdfLY8Xsn+VlV/VdHoS3GO4AHwvWfndcwrM/Oy4EHVdVlI8cubO+If7R99Nbo9KG5+kR1FdcExu88bgE8muaGyazF8j3z18C3aIrp/ISBrZmpkebkQ+uvN+LmC5y78ZJFsRlaBq0IpImYXC29I4D/Af4WeFZy/e/Y0Nx9vWlXgS3SFiOjU4cCJ7ZNeU9P0vtS5gy018mI42mSwnFXt+cWKrrQtS0H/tm5wVhiBUBVXZak92vGhtwnCqCqroBmai9N1czn0/Rdekjfp/PSNCA9hOZz/weactofqqpfdRrVBAbcX2/GZ5K8CnhRtesh0vwCfhlwbqeRLX9Db0Wg+RTMs9Jis9brKi3LUVVtUVXbto+bjjy2HUBiBXCDtiQpNOVIR38pDSFZH2SvkxG3mmt9T3tsl6UPZyJbDvyz84cks5oFt2s2/tBBPJP6BfAkmnL9u1XVUbSj0EOQ5IZJnkazVuO+NH1zjhhAYkVVXVFV72jXFT6RZgbARUn+quPQFqXtr/dQmv56t6iqWwD3Bw5ozw3BUcBuwCVJTk9yOvCfNDcajuo0suVvnVYEDKiYi7QhhnBBo345BfhCksuBa2n6b8xMV/t1l4Et0lB7ncy42QLn+t5raeifnX+gufv9atYtJnIM86xn6pkh94kCuJQmiT0e+AGwZ5LrGyNX1Ye7Cmyx2oqZh9NUjP0Uaz9HfTf4/npt6ezD21L+1xekmWnGrk1qubQikBbF5EoTqapXJfkszTSXc2amV9CMgv5Nd5EtzoB7ncxYleSpVXXS6MEkT6HnF2rL4LNzRltU4SjWxnsRzfqBC7qLbHEG3icK4NPtf/dsH7Bu5cneJldJXk5TxOjbNH1yXlBVQxjtnDH4/npJDq6q09tk6nsjx7cCjq6qV3QX3bI36FYEWo81Q5j0s7QsxS4NSJJb0RQf+B3rjp5sBTxipoqjNq0BL+pfx0jlyUdXVZ/7RJHkKGaX8v8l8OWqurSzwBahTUAuBa5pD42XMt9z1ot6pL0p8uo5+us9gGYN0xDaKJwN/BF4xsznpe1xdRxwVlU9u8v4pCFacYNb1r1u+vCuw1jQ2Vf9o6XYJc2vqn4O7Jvk/jRVJwE+UVXrLMhOcnMbHk5fkv9LMw1wqIv611FV30ryYpoRuL67yRzHdgZemOSlVXXqUgc0gT8FbgX8cOz4TsAQbog8C/hokjn763UW1QSq6sFJDqeZ2vsBmu/PHWjaEAyhoM5gLYNWBNJETK6kAaqqzwGfW+ApnwX2XqJwNgvtwv19aRb1f689thvwpiTbVVWv150kuSnwDGBH4EyaaXbPBJ5L0yD2n7uLbv2q6mVzHU+yHfAZmul2fXUczVTA8Qa2N23P9bnKJ8B1wBNoij+M9tc7Ceh7f71Rp9HE/xzgV8B+A5gOuxwMuhWB1sMZcLOYXEnLk7+8pm/oi/rfB1wF/BvwFJqebqGZTjrYO/dVdWVGelr01LxVPpPssvThTOx4muRwvL/eXel/CwgAktwHOAH4Cs2I4f2Aj7WFXV5VVdd1Gd8yN/hWBNIkLMUuLU/eSpq+eRf1A0NY1L9bVT2hqt5JU7HuzsCDh5xYAbRTZPs+BXbIVT5h2C0gZhwPPLWqnl5VV1XVGcDdga1pbo5oExl6KwJpUo5cSdLi/DjJA+ZY1L8f8NOOYprE72c2quqPSX40V7LYV0n+g9k3DbajmWb0uKWPaCKDrfLZGnpyCHDPGut2WlXXAEcneU9HMW1WBtyKQPOpgjVDuLe4tEyupOWp79Okhmjoi/pnerzBun3eQjMq1/cm5geO7RdwRdu/qO+eDXwkyWOZo8pnZ1Et3tCTQ4DnAa8HSHJIVf3LyLkjaKbJahNYBq0IpIlYil1aBpLcjKbE8Kva/e2q6sqOw1p2kmxDU7p8ZlH/RcD7hzQCpO6MVflcPV7ls6+WQwuIJOdV1d7j23Pta7oWaEUwc2On160INL8VW25f97rJw7oOY0FnX/0uS7FLml+SnYAXA7elaQJ7CvBymmILp8w8z8Rq02iTqOsX9SfZnqaSWu8l2W/mYj7JrqO9oZI8sqp624R3uVhElc9eWmwLiJ7LPNtz7Wu6du06AGkpmVxJw/Je4AvA6cD+wCrgfGDPIdw9HrIkfwa8FrgSeAVN9b3tgS2SPK6qzuoyvkV4A2vL85/OuqX6XwSYXGlBQ00OWzXP9lz7mqLxFgRaZpwBN4vJlTQs21XVS9vts5McAjx2fKG2Nom30qzLWAGcCxxQVV9NcieaUcO+J1feudfmbK+RNYY3Glt/uE13YS1/SX7D3AnsUNZ7ShMxuZIGJsnNWXsxfAWwYqbPj9MBN6kbVNU50CzQrqqvAlTVxf1vswR4516bsarasusYNldVtW3XMUhLyeRKGpYVwHljx2b2C9htacPZrIyODl47dm4IycluSc6kScxntmn3XRMhSZpYWYp9FpMraUCqapeuY9iMDX1a0Wi5+DeMnRvflyRJG8DkShqQJDvQrPu5A3Ah8NqqunrhV2kahj6tqKq+kORuNJ+d1VX17a5jkiRpudmi6wAkTeS9wP8AbwG2Bd7cbTgaiiQvAU4DDgY+keSpHYckSRq0aqoF9vnRAUeupGG5TVW9sN0+O8n4+itpPocCd6uqa5Lcgqa64UkdxyRJ0rJiciUNzFi1wC1H960WqAVcV1XXAFTVFUmcuSBJ0pSZXEnDsgL4Juv2JbJaoBZjtEIgwO1HqgdWVT2so7gkSUNUwJohFMtdWiZX0oBYLVAbYaZa4I2A3YFzgEuYXVZekiRtIKeFSAOS5OB5jm+V5MVLHY8G5SvAQ4B/Bp4IPAl4H3Bge06SJG0kkytpWI5M8skk10//S3IATVn2W3QXlgbg9cDNgV2rau+q2hu4Pc1U02M7jUySNEy1pt+PDjgtUBqQqnpwksOBTyf5AHAXYAfgsKo6v9vo1HMHAnesWlubtqquTvJ04GLg2Z1FJknSMmFyJQ3PacAewHOAXwH7VdV3uw1JA1CjidXIwT8mcUWyJElT4LRAaUCS3IemOuAtgJ2AZwIfS/LyJFt3Gpz67qIkjxs/mOQImpErSZK0kRy5kobleOCpVfX1dv+MJOcA/wBcANyps8jUd88APpzkSTTl/AFW0lQPfERnUUmSBqmAshT7LCZX0rDcs2rdFZptY9ijk7yno5g0AFX1Y2CfJPvRTCsF+GRVfbbDsCRJWlacFigNy/NmNpIcMnbuiCWORQNUVedW1Vvah4mVJElTZHIlDcthI9svGDu3/1IGIkmSNmNV3Zda72EpdpMraVgyz/Zc+5IkSVpCJlfSsNQ823PtS5IkaQlZ0EIalr2SXE0zSnWjdpt2f5vuwpIkSZsbqwXOZnIlDUhVbdl1DJIkSZqb0wIlSZIkaQpMriRJkiRNrutqgBtZLTDJ/km+k+SSJMfMcX7rJB9sz38tyS7re0+TK0mSJEmblSRbAicABwB3Bg5Pcuexpz0ZuKqq7gAcB7xufe9rciVJkiRpc3NP4JKq+l5V/Q44FTho7DkHAe9ptz8EPCDJgq1vLGghSZIkaSK/4aqzP1Mf2r7rONZjmySrRvZPrKoT2+0dgR+OnPsRsM/Y669/TlX9IcmvgVsAl8/3B5pcSZIkSZpIVe3fdQx95LRASZIkSZubHwM7jezfrj0253OS3ABYAVyx0JuaXEmSJEna3HwD2D3Jrkm2Ag4Dzhx7zpnA49vtRwHnVtWCnZOdFihJkiRps9KuoXomcDawJXByVa1O8nJgVVWdCfwT8L4klwBX0iRgC8p6ki9JkiRJ0iI4LVCSJEmSpsDkSpIkSZKmwORKkiRJkqbA5EqSJEmSpsDkSpIkSZKmwORKkiRJkqbA5EqSJEmSpuD/A26pGiI5j7DAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -10450,32 +5378,32 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "MOD 0.167 30 0.0\n", - "STMT 0.962 12564 0.057\n", - "EXPR 0.995 147945 0.672\n", - "EXPR_CONT 0.44 50 0.0\n", - "SLICE 0.994 7106 0.032\n", - "BOOLOP 0.999 684 0.003\n", - "OPERATOR 0.988 4927 0.022\n", - "UNARY 1.0 1474 0.007\n", - "CMPOP 0.99 2589 0.012\n", - "COMPR 0.991 11744 0.053\n", - "EXCEPT 0.836 110 0.0\n", - "ARG 0.997 637 0.003\n", - "IMPORT 1.0 274 0.001\n", - "VAR 0.982 30066 0.137\n" + "MOD 0.0 4 0.0\n", + "STMT 0.0 17597 0.055\n", + "EXPR 0.0 19440 0.06\n", + "EXPR_CONT 0.0 206 0.001\n", + "SLICE 0.0 8033 0.025\n", + "BOOLOP 0.0 157 0.0\n", + "OPERATOR 0.0 685 0.002\n", + "UNARY 0.0 192 0.001\n", + "CMPOP 0.0 6976 0.022\n", + "COMPR 1.0 88381 0.275\n", + "EXCEPT 0.0 6921 0.022\n", + "ARG 0.0 6 0.0\n", + "IMPORT 0.0 29 0.0\n", + "VAR 0.0 173023 0.538\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFzCAYAAADFUUnoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXfYHGXVh+9fCL2XUEMMVUAEkVAUCyAooAIWqgoKin6fFFFRUMQINppYKEqR8ikdgUgXpYgaJLQ0WuhBpUkTpJ/vj/Ns3slm3zbPzFsm576uvbI7s+9vnszOnn3mPKfIzAiCIAiaxYjBHkAQBEFQPWHcgyAIGkgY9yAIggYSxj0IgqCBhHEPgiBoIGHcgyAIGkgY9yAIggYSxj0IgqCBhHEPgiBoICMH68DLLLOMjR07drAOHwRBMCy59dZbnzKzUb29b9CM+9ixY5k0adJgHT4IgmBYIunhvrwv3DJBEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNpFfjLunXkp6QNLWb/ZL0c0kzJE2W9M7qhxkEQRD0h77M3M8Atulh/7bAGumxD3BS/rCCIAiCHHo17mZ2I/DvHt6yA3CWOROBJSStUNUAgyAIgv5Thc99JeDRwuuZaVsQBEEwSAxohqqkfXDXDWPGjBnIQwdDhPHjh4bGQB5rIMc73Kjq3LTr1KU7nKjCuD8GrFx4PTptmwMzOxk4GWDcuHFWwbGHBcPxQgujFgTDmyqM+wRgX0nnApsAz5nZPyvQDYI+M9x+jOoa73A7D0F99GrcJZ0DbA4sI2km8F1gXgAz+yVwBbAdMAN4CfhcXYMNgiAI+kavxt3MdutlvwFfrmxEQRAEQ5Th5GKNDNUgCIIGEsY9CIKggYRxD4IgaCCD1olpKDKc/GlBEAQ9ETP3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBjJysAcQBMHQZ/z4oaER9J2YuQdBEDSQMO5BEAQNpE/GXdI2ku6RNEPSwR32j5F0naTbJU2WtF31Qw2CIAj6Sq/GXdI8wAnAtsA6wG6S1ml726HA+Wa2AbArcGLVAw2CIAj6Tl9m7hsDM8zsATN7FTgX2KHtPQYslp4vDvyjuiEGQRAE/aUv0TIrAY8WXs8ENml7z3jgGkn7AQsDW1UyuiAIgqAUVS2o7gacYWajge2A/5M0h7akfSRNkjTpySefrOjQQRAEQTt9Me6PASsXXo9O24rsDZwPYGZ/AxYAlmkXMrOTzWycmY0bNWpUuREHQRAEvdIX434LsIakVSTNhy+YTmh7zyPABwAkrY0b95iaB0EQDBK9Gnczex3YF7gauAuPipkm6XBJ26e3fQ34gqQ7gXOAz5qZ1TXoIAiCoGf6VH7AzK4Armjbdljh+XRgs2qHFgRBEJQlMlSDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBjJysAcwNzB+TVWkZBXpBEHQdGLmHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQPhl3SdtIukfSDEkHd/OenSVNlzRN0tnVDjMIgiDoD73WlpE0D3ACsDUwE7hF0gQzm154zxrAIcBmZvaMpGXrGnAQBEHQO32ZuW8MzDCzB8zsVeBcYIe293wBOMHMngEwsyeqHWYQBEHQH/pi3FcCHi28npm2FVkTWFPSXyRNlLRNVQMMgiAI+k9VJX9HAmsAmwOjgRslvd3Mni2+SdI+wD4AY8aMqejQQRAEQTt9mbk/BqxceD06bSsyE5hgZq+Z2YPAvbixnw0zO9nMxpnZuFGjRpUdcxAEQdALfTHutwBrSFpF0nzArsCEtvdcgs/akbQM7qZ5oMJxBkEQBP2gV+NuZq8D+wJXA3cB55vZNEmHS9o+ve1q4GlJ04HrgIPM7Om6Bh0EQRD0TJ987mZ2BXBF27bDCs8N+Gp6BEEQBINMZKgGQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQMJ4x4EQdBARg72AILyjB8/tHSCIBg6xMw9CIKggYRxD4IgaCBh3IMgCBpIn4y7pG0k3SNphqSDe3jfJySZpHHVDTEIgiDoL70ad0nzACcA2wLrALtJWqfD+xYFDgBurnqQQRAEQf/oy8x9Y2CGmT1gZq8C5wI7dHjfEcCRwMsVji8IgiAoQV+M+0rAo4XXM9O2WUh6J7CymV1e4diCIAiCkmQvqEoaAfwE+Fof3ruPpEmSJj355JO5hw6CIAi6oS/G/TFg5cLr0Wlbi0WBdYHrJT0EbApM6LSoamYnm9k4Mxs3atSo8qMOgiAIeqQvxv0WYA1Jq0iaD9gVmNDaaWbPmdkyZjbWzMYCE4HtzWxSLSMOgiAIeqVX425mrwP7AlcDdwHnm9k0SYdL2r7uAQZBEAT9p0+1ZczsCuCKtm2HdfPezfOHFQRBEOQQGapBEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNpE/GXdI2ku6RNEPSwR32f1XSdEmTJf1R0luqH2oQBEHQV3o17pLmAU4AtgXWAXaTtE7b224HxpnZesCFwFFVDzQIgiDoO32ZuW8MzDCzB8zsVeBcYIfiG8zsOjN7Kb2cCIyudphBEARBf+iLcV8JeLTwemba1h17A1fmDCoIgiDIY2SVYpI+DYwD3t/N/n2AfQDGjBlT5aGDIAiCAn2ZuT8GrFx4PTptmw1JWwHfBrY3s1c6CZnZyWY2zszGjRo1qsx4gyAIgj7QF+N+C7CGpFUkzQfsCkwovkHSBsCvcMP+RPXDDIIgCPpDr8bdzF4H9gWuBu4CzjezaZIOl7R9etvRwCLABZLukDShG7kgCIJgAOiTz93MrgCuaNt2WOH5VhWPKwiCIMggMlSDIAgaSKXRMgPF+PFDSycIgmCoETP3IAiCBhLGPQiCoIGEcQ+CIGggYdyDIAgaSBj3IAiCBhLGPQiCoIEMy1DIIAiCwWD8mqpIySrS6Z6YuQdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBAwnjHgRB0EDCuAdBEDSQMO5BEAQNJIx7EARBA4l67gWGU63mIAiCngjjHgQNopoJSkxOmkC4ZYIgCBpIGPcgCIIGEsY9CIKggYTPPehI+G6DYHgTM/cgCIIGEjP3oBHEnUYQzE6fZu6StpF0j6QZkg7usH9+Seel/TdLGlv1QIMgCIK+0+vMXdI8wAnA1sBM4BZJE8xseuFtewPPmNnqknYFjgR2qWPAQdAE4k4jqJu+uGU2BmaY2QMAks4FdgCKxn0HYHx6fiFwvCSZWVx9wbAmjHAwXOmLcV8JeLTweiawSXfvMbPXJT0HLA08VcUgg+YQxjIoEiU/6kO9Ta4lfRLYxsw+n15/BtjEzPYtvGdqes/M9Pr+9J6n2rT2AfZJL98K3FPVf6QDy1DPj0vohu5AaYdu6HbiLWY2qrc39WXm/hiwcuH16LSt03tmShoJLA483S5kZicDJ/fhmNlImmRm40I3dOvUrVM7dEM3h75Ey9wCrCFpFUnzAbsCE9reMwHYMz3/JPCn8LcHQRAMHr3O3JMPfV/gamAe4NdmNk3S4cAkM5sAnAb8n6QZwL/xH4AgCIJgkOhTEpOZXQFc0bbtsMLzl4Gdqh1aNnW5f0I3dAdKO3RDtzS9LqgGQRAEw4+oLRMEQdBAwrgHQRA0kMYVDpO0JLAi8F/gITN7cyjrBl1IWhh42czeGA66wwVJI4D16bp+p5rZE4M7qt6Z2z+3XBrhc5e0OPBlYDdgPuBJYAFgOWAicKKZXTdUdAv644D3UvjSAX8ws2cyNBcAPtJB93Izm1ZWt47xJqOzK/ApYCPgFWB+PAHkcuBXZjZjqOgm7VrOr6TRacxz6AJXlplMSFoN+CawFXAfXdfvmsBLwK+AM8tOVIbL9ZC03wV8Oo13BWY/v78xs+fK6Cbtyr/HVdAU4/4H4Czg92b2bNu+DYHPAFPM7LQhovs5YD/gQeBW4Am6vnSb4RfHd8zskX7qfg83PNd30N0iPf+amU0eIuO9AbgWuBSfTb6Zti+Vxrs7cLGZ/WaI6NZ1fk/HS3hcBkzqoLshcLCZ3dhP3XOAk4A/t+edSFoWPw/PmNmZ/dQdbtfDlcA/km6n8/tR4CcprLs/urWch6pohHEfbkj6Mp4v8N9u9r8DWNrM/thP3Q+b2eU97F8WGGNmk4bIeOc1s9dy3zOAunWd33XNbGoP++dLuqVmrVUzDK+HZdpLoZR5T4e/qeU8VEUjjLuk9fo7W+qn/hwXVJmLYTCQtOxQ969KGoWXtXgDeMDM/lOB5hjgeTN7NvUXGAfc3ZMRnZuQtLWZ/WGwx1FE0hLtd8gV6y+H3yEBPGZmj9d1rKFAU6Jlbpd0n6QjJK1TlaikLSTNBP4p6Zq2JiTXZOgu0/b605J+LmkfSaXL5Elaqu2xNPB3SUumW9vKkHRvBRrrSLoW+BtwM3AKMEXSGWm9o6zuwcANwERJnweuArYFzpP01QzdxSX9WNLdkv4t6WlJd6VtS2ToLiLpcEnTJD0n6UlJEyV9tqxmH+iXK7GIpI+1ridJoySdJWmKvGHP6IwxPSXpWkl755zPdiS9Q9JE3J12VHrckM7xOzO1P5TGO7Zt+145upVgZsP+AdwOrAv8AJgB3AkcDIzN1L0FeFt6/kl8UWrT1jEzdG8rPD8UL+2wJ3ABcFyG7pu4/6/4eC39+0CG7gvA8+nxQnq80dqeoTsReGt6vjG+uAfwBeDCDN1pwIJ42ekXgFFp+8K4L7es7tX4AuXyhW3Lp23XZOheCnwWv3v5KvAdYA3gTOCHGboTunn8HngxQ3d64fl5wIFp7J/FFxLL6k7B1zR+ixcevBRfYF2wrGbSvQOvUtu+fVPgzgzdHwE3Aj8F7gf2K+y7raxuVY9BPXhl/4m2E5kMxU/w2vN/zdC9s+312/AyxTvmfHjFHwbgNmDh9HxefIG2rO7X8Fnq2wvbHqzg/P4cX1hermLd9vNb/NG7K0N3cvp3HnyRa0RhX45xv6fMvhLn4Zb07wjclVRW9xngw8D72x6bA49XcR6AW9v23ZGhW/z8FwR2Bn6XDP3ZGbr39bBvRobuFGBker4EXqLluPS69OSvqkdT4txnc2WY2d9xd8TXgPdl6L4maXkz+1fSnSbpA3hUw2oZugtK2gD/8s5jZi8m/dcklY7pNbNjJZ0HHCfpUeC7VNDFwMz2T9FB50i6BDi+Cl3gfknfAf4EfByfYSFpXvJchrdJOhufqf8ROFPSVcCWzN5BrL88LOkb+B3G42msy+Ez1kd7+sNeeFHSe8zsJknb48X3MLM3c9x0+J3RS2Z2Q/sOSTm9FK6XFw78UXr+MTO7WNIWQOmQQgrfY/NFyvOB85OLbscM3SslXY5PUFqf08rAHvhkqCwjzez1NN5nJX0UOFnSBXjo9OAy2L8uVTyA3WvS3QpYv8P2JYBvZ+he1/ZYIW1fGq+0WcXYt8e/3P+q8HyMAPYH/gz8owK9JXD/52W4S23RtH1xkvurpO5IPDdh1/R8M/wH6Ruku6SSukvi/YHvxg3wv4G70ralMnTXA/4OPAvcRJerahSwf1WfX4XXwbx4W81H0uNN3P11Nh7VU1b36zWOeVvgl7hL6vfp+XaZmpcB7++w/fvAm4P9OTUiWqYTkpY2szkahgxV3aQ9DzC/mb1Ukd6CwGpWcYSIpBWADcyrhQ4Lhkt0U13IM6zfMLPnK9ZdHJ/B1vKdGMqk7xfWIRRS0kpm1t7UaEBpRLRMilZYJj0fJ+kB4GZJD0t6/1DTLeiPS5EH20tay8zeqMqww6yL7udVaKWIjk9KOhAv7/ymPKMwR3OEpM9JukzSnZJuk3SupM0zdbeV9KCkmyRtIGkaHjkzM7nVKqeCqItVJX1d0s8k/UTSlyQtlqm5YopkeQ7P8pwq6RFJ45PrK0d7+eSyfA4YIenjkt6WqTlC0l6SLq/yeujlmPv0/q7OpO/XRpLemrQ2S5/hhwfbsAONcctMKTy/DtgoPV+TDDdHjbrvxzPlrsUXvS4D/oKHaq2coTu57TEFeLn1OkN3Z9xtcCoeFfB/eETDZAqLtyV0T8dv79+DRxwcDmydzst+Gbp3AGsD78IX41oRTmtTUxQDcErG3+4P/AGPnPorcALuppoObJ6h+6fW3+NrGsfh6xDfB07O0P0iHoH1EPA/eBjraXiwwd5D7Xro7f+S8bc/TZ/X34Ej0vPvpPEeXcd4+zW+wR5ARR/QXXStWk9s25cTfVKX7u10heetgqdUky7knJC6CcBvgLWAtwBj8QWkt+BNdcvqTgYWSs+XAa5Oz9cjLxppctvrienf+cmLlilGXTzatq90NEddD/xHeJ70fCHg+vR8DHkht+1ROLcWnudE4UxJ41wa+A8pNBRfk8iJlqnleqjxc5uGLwIvhE/SWt+RecmIyqrq0Qi3DHAicIWkLYGr0q3t++W1QO4YgrrzmNmT6fkjuPHFPGNwpW7/qhfMbHvgIrwTzPpm9hDwmpk9bGYPZ4xXeEEkgBeBZdPxJgM5roPX5MWtWm6NV5PuK+RF4zwr6YuSDgKekXSgpJUk7Ykbo8qRtFamRCtybX5gEQDzmiQ57pMn5QlyK0naD59pkyJwcr77r5nZS+Z+9vutK5rsGfI+t7quh26R14cpi5lb81bhtdYY32QIuLwbEQppZr+QNAW/RVwT/3+tAVyC34JWqbsmcHGOLjBJ0mn4bfP2uDsGSQvhsdmlMQ9JuwY4QtLeVBOSdQX+43YjsA2ebNUq6JQTqncQcJ2kV/Bzu2vSHYW7qsqyJ+7iMOCDeOTM1cDDeIJUHVyDz7TLcCpwi6Sb8eqCR8Ks8/DvjDHtBRyDJ/TdAeybti8FHJKha+oqyfHh1kZ5xcwco1bX9dAT38PdQWW4XNKf8WJhp+JhmxNxt2u/irzVQWOjZYYyaTHrC8A6eDbtr83sjbT6vmzmLLt4nPWBd5nZLyvQ2o403nSH0SrROm+aWZXVFV5cachHskjqbnFawJ5mVvouJi1Gro3fzt9dVmcgkNft+afNWW9pJWBtM7s2Q7vy60FSd3WnBKxpZvNnaL8Ln8FPTHcdH8Pvxi+0Qe750HjjLulzZlb2lxlJq+KLUSvjKff34tlylYaUDRdUcUidpEXwu4Hi+b0m94shT6j5RJvuKWZ2f4bmC3gWcKcfs2PNbJkO2weVbs7DqZZZYVLSrASe9BmuhZe4yLnTqOV6kPQ48CHcLz7bLnzNaMWy2oVj1BJqmsOg+4UGgO+V/UNJ++MNDRbAmwfMj190E3PCs9RVKGqqBqhQlKTbMv62lpA6STvjrqltcJfBRniN/DskrZeh+yM8+3AiXlvn/vS4UNJOZXXxWkNTzezM9geexFM5kkq7I3o4DxfknId0nT4u6V5J2+IL7kcCd0raLUO3lusBd+ks0lp7KjweIrlES463tlDTShjsFd0qHswZAlgMBXwlQ7euKIZaCkXVeH7rCqmrKwqnGMI6EvhLer4kebVllmqNdwDP/QpD8DxMSZ/XKngxudXS9uXIC7mt5Xqo8bOp5XtR1aMRC6r4RdXtbVem9kj89nC2KIbMX+axZnZGev4TSbeY2RFp5X468K2cAav6utVLm9n1AGb2O0nfNq+Hc6ikHP9wt1E4ykvgeVPSUuYughVJi9Rm9kzy6ZbCMl0OfSEtUs86lpn9M0OulvOAux+ewkv0/seSq8vMHs+Tred6kLSI9dIjoC/v6UBd34tKaIpxb912zRGeKOn6DN26ohhqKRQl7/zyS7w2SytDbrSkZ4H/NbOyrpknJX0aT+T6ONWF1NUVhfNDvMb/vcBb8Win1ud2Z1lRSb/Hw0yvsjkXE1fF78YeMrNf91N3DF5j5wN4fRklY/YnvL3eQyWHXMt5AB5JLp9FgbslHYtXb9wKyPkxqut6uFTSHfgd863JALc+sy3wJL1TgAv7qVvX96IaBvvWYag/8DK/nwTWqlCzVSjqGbxQ1Jppe1ahKOqrWz0Gr9A3FU+SKhY6+0TmudgO+DqwdWHbCLzGTo7uUnj3pSUq/NyWx43w/bj//QrcAD+AZ5juUFL3b8AuJBdg2jYPHgo4MXPMdZyHxfBQyoPxu9lP4BOsE8hwI9V8PWyHZ1U/hFeufBq/q/82hfr8/dSs7XtRxaPx0TJzE5LuM7M1utk3w8xWH+gxNRV5550VcDfCvZZRE6iXz63bfUHQE4N/61AzOdEGg6SbU4DqSnnRpV0kvTs9dpHXss6pW90tkj5Sk+7JNemWjhoqYmYPmdnfzOyOHMOeuFXSiZI2SREYK6bnJ+KlKiqnqvPQQbd0Ia5edGu5Huqiru9Ff2iKz70n6spIrEv3f8pqmzfV2BbYgcKCKnCC1VeedyPqyR78VQ2amFlW9caa2APYGw/bbX1uM/G646V7nfZEjecha0W1B2q5Hmqkru9Fn2mcW6Y92mCo6wb1UUPU0LBkbj8PxYSruYlGGPdO0Qb4ok9WtEFdukl7cTwioDjDvtrMns3QPAX4uZlN6bBvYXzR7hUz+20J7bWY845ggpndlTHexfGFuR3xsDfDe55eCvy47LnoLmoI/wxLRw1J+iZwjJmVboXYje6hwIndTRzkhesWMrN+zQTrOg9J+0P451a8Hi41s9Luvxqvh9vqulOp43tRFU0x7n/Daytf2Priybsa7QR8xcw2HWK6e+D9Ta9h9i/d1sD3zOyskrrvwGPk346v4D+JZ9eugf8o/Rr4pfWzFkwyarsB5+LugtZ4dwXONbMflxzv1fgP5ZmWKgtKWh4v/PUBM/tgSd078DrdN7dt3xT4lZmtX1L3eLzW+JfN7C9lNLrR3QFvAfgy3jC9+Lm9A68P/kPrqiTaV926zsNP8QJ6ZzH79bAH3oz6gJK6dV0Pt5vZBmX+thfdWr4XVdEU415LtEGNuvfgIYvPtm1fErjZzNYso1vQWQQPf2tFc9xlZqUbIqc46bfZnLHd8wHTcs6Dmb21v/v6oFtb1FBa8D4er/V/El3lXsmZCSftNfB+r7M+N+BG69DGrY96tZwHSfd2ukZTfPe9Q/B6mAn8pLv9Ztbtvl50a/leVEVTFlRvTZEFZzJ7d/M9yYs2qEtXdK5P/SYVLEiZZ9pdn6tT4E08w7G9WuUKFIxbCR6W9A18pvY4zPIPf5au812GurrdY2a3SfoWXjd/Nbo+RwO2zNS+D7gvR6ONus7Dy5I2MrNb2rZvhN99lKWu62EePB6/6sXeur4XldCUmft8eLRB0fc1K9qgv26IAdDdEzgMd8u0LtoxuFvmCOsqTTAkkLQNPlu9j9nHuzqwb1k/a7pTORg/v8umzY/jHaWOzFm87iZqaEJO1JCkZYFjgVVxn3VOlueAUNN52BBvZLMoXe6IlfHkoC+b2a0ldWu5Huryudf1vaiKRhj34Ui6kD/EnAuq7fVxhgTy2u0bM/t4b6l6cXEoI+lB4Ed46eC5/ouT/OHFKJx/DeZ4uqMun3vSHrrfi6pSXQfzgXfdWaqH/VsCHxlCuqriPR3+ppaKknjdnuz3dPibTwMjeti/GvCeErqn0E3jbrxq317Ap0rojuph32YVnOdlKv7c6joPY3vZL2D0ELoeOn6HgSWAb2ec31q+F1U9muJznwL8XlKP0QZDSPc6SRfhoWOPtDYmN9B7cJ/+dcAZ/dTdhsyKkt1QV+GlpfHCVrcCt9J1flfHW5U9hd+m95cTgO9I6ilqqN/hoMC/5fXKV8KLh01NmYjfAhYESs0OJX00jel1SW8AO5tZbjVTqO88HJ1mrJcy5+e2BR46/F26XDZ9pa7rYWFJP8b945cA5wCH47Xizymh16Ku70UlNMotU3W0QV268l6TewGfwmtiP4sbhxG4H/5EM+v3gq2kO4HN6WbhyPJ82Nul8W6GF6N6DbgHuBxffyh1S55CS7dkzvN7ZfGHr6R21VFDZ+C+5b8DmwD/SPoHm9klGbqTcYN+t6RNgKPM7P1l9TroV3oekuY6dF0PKwAv4Z/bFXjocKmF1TquB0nXATfgBdq2SY87gAPLXrcF7Vq+F1XQKOM+HJHXhV8G+K9lJDAlrVdwn18n425mtmqO/tyOpKnAeualmRcA/oU3qng6U3e2Bb86k27mRiTdaYWY/hQaOcYGucdp3TTFLTNsMY+RzamBXWS61bRwFADwassgmNnLkh7INeyJZSV9tbvXVjIOO+giBTAN7AtzAAAgAElEQVS0Jj1PA4unuPysO9qhTBj3IOg7ayUXCrihWC29Fn5nVLbP5yl4WGF3r4M8Fsd9+MU72lbCmeGhrY0j3DI9IGlfMzt+sMfRVyR91oZYjPxQQ9KYDN/tW3rab2btySxDlszzUPpvg4GjMcZd0hbAfng7MfBFmOMt9TgsqTmgvs8UgbCblSjslf7+dDpnvoLPLPcuqbulmf0pPV/FzB4s7Pu4mf2upO4meNu61fDIpL3NbHoZrQ7a78KjWm40syckrYdHWrzXzFau4hiFY70H/9y+nKGxLV40a520aRqeuJNVqrmO81BjUtBoPMzypvT6q6S+xcDZZjYjQ3s+fOHzbWnTtKRZKhGxl2MtgSdz/aBq7f7QiGYdkj6Mh3X9Htgd/xCvAH6dVrOHFJIWk3SIpOMlfVDOfni7tp0zpC/DV+mLj8l4aNqHMnSPKTy/qG3foRm6J+At1ZbGa38cl6E1C0lH49fDJ4DLJX0fj0K6GQ8DrOIYG0g6WtJDwBFA6YbIkr6QNMbjLoJV8dru45XR/KLG81BXzfaj8djzFl/EG2Ubfj5KkSJ7puORZI+kx+bANElv6/4ve9VdWdLJki6T9HlJC8v7yd5LV4btoNGImbu8CfYB1pYOnmYpvygbVibpdTzEa45d+Ey4VEd2SZfi/VP/hhveZZPmAdahyXfJY6yKx1+/Dzeap5nZqyW1ZmX4tWf75WT/1RUlImk68M606Lkknhq+rmWUaE66a+JVAHfDY67PA75uZj26a/o43ve0L+xJWhq4yczWztCt4zw8gVdC7IiZ7V9St/16KF53fzaz95bU/SNeMvgPbdu3wpOYtiipW1uIZRU0ZUF1+XbDDmBmk+WFh8oypabok1XN7O0Akk7Fo2XGlI0NLiKvL30onlBzNPAly29UYN087/S6Pywh6ePdvS7r7gFebp1LM3tGXh3xoYxxtrgb+DOelTwDQNKBFeiqU8SGmT2dAjrKUtd5+C++QFk1C7S9/kDh+TIZuiu1G3YAM7tW0i8ydJcys/Hp+dWSdsIzfodEiGVTjPuLJfcNFrNKhJrZG5JmVmTYLwA2xItbHQi8ASzWMhAZIV+rSpqA3120npNer5Ix5BuAj3bz2oCyxn2OMRZeY2bbl9T9OF6r+zpJV+Gz1ypcFM9LWr/Dnef6wAsZunWdh6fN7MyMcXXHC5LWNLN7oet6TROWnPMwQtL87f71lKuQZQOHcohlU9wyzwI3dtqF3+4uWVL3W2ZWprxAb7pv4D86rYtiQdz9k+vueYjZS9AWDU/pJCZJPbq1zOyGMrp1Ufd45V2tdsDdM1viJXUvNrNrSuq9By8DcDpdM+JxeBmKT7cWGEvo1nIeJE20ko1qetHdBvg58AO6QhU3xN2LB5jZlSV1DwU2xRc5H07bxqZjTTKzw0vqPkT3ZboHPWmwKca9rov4573olvItDjckjcKLZk1v274O8KT1s0NQm8a6wEHMHsVwjHVoFVhCu1WXBGBGFXdHHY6xJN6Za1czK13PPbkPv0zXeZiONzbPTY9/B34OpllFrd/SWA9JulOAH5nZ8xVpr4t3pWqdh6nA0WY2NVN336S7UNr0In6d5bhlhjSNMO4tqv4yS3oVv7jOx+uIzPYLXfbWNI3zS/hYJwO/rsAv3tKuPORL0rl4vZsb27a/F/gfM9u9pO4OeCTOj4BJafM43HB83cwuLak7Ei/othfeSEF4TZjT8QW013r480GhJiN8GF5p8Va8Fs6PzOyUCnSvSpo3Ah8BFjWzz+bq9nLMSmLrJS0KYGY5bp6e9FfDI/Z2NbPSkTiVYINUjrLKB+43OwqPYLiVrgqORwHzZugujRvh64A/AJ8HlqhgvOcBv8FDvS4BflbReVgHmIF3jto/Pc5M296WoTuph31TM3TvpEP5WGAscGeG7nHAqbjRaW1bDI+pL32ucb/v8+nxQuH1S8DrGbqH4eFz5+DhsF+o6HqYhjfWbl3Lt1Ske2fb69uq0E1a7wI+CSybXq8HnA08mqG5abrW/oNHtqxd1XiT/or4GtcteCeq79JNqeWBfAzqwSs8ubV8mduOMRqPyf4H8JlMrSmF5yOr+nIAfwS27rB9K+C6DN17yuzrg+60HvZNz9C9D+ash4+3W7uvinOd9BYBvpkM8rE556EmI3xb2+tbK9K9E1gSr4K4VPvrDN2j8eTDc5Kh/D5enO0AYIEM3Ul4l7P5cRfa1RWdh33wid+9aazrAQ9WdX3lPpoSLfMRYE1LZxzAzJ6X9D94+Fqpbuwt5E2Rd8MvkCvJDwMrRsu8nhnuVqSukK8ZkraztmxJeVblAxm6r3e63Zan+ee4qax4LRQ2viEp2w8pz0D8Ct6L9GxgI8srIPaKmb2Uxvi0PFO5CtqjZVarKFqmrlotHwY2sIrj8vEGIK3vxQWSDsnUa3E8fiewu5lNAqji+qqKphj3Wr7Mkg7HL7i78LC3Q6wa3/j6kloLUAIWTK+zomWoL+TrK3iG487MHs3xLvyHtSzfBa6V9MM23YPxGXFZpkvaw8zOKm6U9GnyMkmXAb4G7IJnfm5gZs9ljLNFXUZ4h7bXx3R8Vz8xs7FV6HSgrrj8uvIpVsDvBI6Vtxw8H5i3/DCrpRELqpIuAX7XzZd557JfDklvAg/SlaXaOlm5VQBroa6Qr6QzP75QtG7a1FqozV20Xh83mMUF4GMto/m0pJXwGPliss04POT0Y2b2WEndF/G1nNPpEHdtJUvzDsNQ00+b2W/S883M7C+FfaWL7XUIaX5f8XXG9/j0Hnabme1VRrftGKPxH/3d8BaGF5tZHV3R+j6mhhj3ur7MtVQBlLSRmd3Szb7PmNn/ldFNf9+IkC9Jx5jZ10v+7cjk7tqSQmihmf0xc0zj6SEj18xK1z+pA3WVJ+5I2cmJCmUCVGEJiWH4IzevdYi8kpep2DVnMlUFjTDuLWr4Ml9jZh/MH9kcupOBv+BunmfTtnWBE4F/m9mOFRyjspAvSS/Q2ajlupF6OuYjZjam5N8Oq05GNRrhO/DP7Wy8qN5sbSEzJie11Brq4Xgr48by6JJ//9We9mfccT0BTMAXgP/UyTU8mDTC5y5pqfT0jvSYbbuVTwMelTm07ngnnrhzu6QjgLcD2wFfM7PLyoqmi/g5MzutaNQl7Y1HEv20jK6ZDUbjiJxV5lqqFnZIajM8/PY6K5lFmniTHoxwWczsHfLU/d2S9vT07zWZa0d11RqaRUqc2wkf+4rAxRlyx+B24UrgFaq7PtbGwzYPBc6UN70/x8wmVqSfRSNm7sk3PpOuCIuq0u4fwMMfO5KxENPSPwg4Eg+v3NjM/pGpdyuwafutYkpsmlTHGkHmDHup7nbhsdSjS+rOxEsIdyRjprZnh81L4WWazyv745m0W0b4o1RnhNuPsQteZvnIsrPgpPMSnjshvBZ/q8668KJ4C5fUXRSv37M7sCbuat2l7HVQ0F0fP7fb4G7bc4A/VjnTlrQiKVMZr/J6rpl9uyr9UmNqiHH/KbAF7uo4By+TWkXI29PApXT+pS+9EJOy2E7AZzlfAbYF9gV+YGY9Lf70pjtbI+C2fVMsVaKsEkmPWvmmDw8yZw2cFjk/yv8ETupGt3LfuKQFgb9W5Y6oyggnrZVwg/MxvMz0+fhi338yNOtai/ov8Hd8JnyTmZm8T21lNVokvRs39FsB3zSzCb38SX+0F8F/nL4KrGBmORVps2mEW8bMviIPFt8c+AzwC0nXACdZoWtQCR6uYiW9A1cDB5vZhen1PZLOB34i6fNmtllJ3RGSljOzx4sblVf2uDdK/4iaWU5FyZ7450AuZpnZf3NzFToY4QPJc0Ug6Qa8F+v5wOfwqoUA80laKsNdOS+wXDFKJh1vMzzpqCyH4OfgROAcSedlaM1BcvVsgLtBZwJPVKC5AH63tRvwbuAqPJR3jnyTgaYRxh18moeXYr0dv0COwDMVc2pp1NVx5h3tM6fkktlV3kCgLEfj8ehfY/aqekeTEePcw4KU6GqDVla7jvZndX1ucx7I69h8BjcWZTXqMsJvwX98v5gexbuknGSjn+KGuJ3n076PdtjXK8mt9VN5o5ld8dIcK0r6Jn63cW8ZXUl74a6zBYAL8fDoKgz72fgdwA14Vc/dc0ODq6QpbplWCdZd8EXQ3wHnW2ahIUnrWqEanbwzzvuAR8ysdJZqXXHC6e+3xWcO6+Jf4Gl4F5pS5VKT5nd72l/WzSGvKjkBd6e1zueGwGbADmY2raTuHAYxXSMfx6MuPlxSt1PU0H/xL/dXyq6ZaM5SzbN2MQRKx7Yj6RYz26ibfZW6/1IU2W6473313t7fjcabeAHAlrtots/QysfP74H/6NRShCyXphj3F/FZ+rnp3/YPr2wD58tw98lUSSvgs+FJ+CLSyWUX0OqKE+7H8Q8xsx/VeYw+jqOW9mcFnfnwDOPd8R6yF+HJbr/P0R1O1HFnJM8c7diDVdKMska4LoZb/HxVNMW4n0H3vt+chc9plsp2SvoWsJaZ7ZFW9f+SEX88oHHCHY7frx8QeQPn683svrS2cRredPlhYE8zu73kOO42s7W62XeXle8d+kF8tvdBvLDTeXgv3bFl9OpG0ofwUNUL27Z/Ani+/cevH7p13Rm14rpPadv+ebxw3S5ldINqaYTP3eqrJV0MKfwAyX9vZi+kW72y1B4n3Av99UkfAJyRnu8GrI/7azfASxuUalxMfbVwrsJ7nb6ntaAu6WcZenVzGNApce0GPO697OLcL/B6+53ujI7HI8zK8BXgYkmfYvaM8PnwBeEhhaQp9JxZPKTKiFRFI4x7jTwqaT98seyduNFohb7lFAhaS56V2CoS1cpQFOUXufpDf39AXi/Ezn8EOMu8CuK1ko7KGMdZwEWSOtXCKV2CAf+sdk3jewB3182ToVc381uHblZm9lRaKyhLLVVCUzTWuyVtQVetocvN7E9lNbtD0jvN7Lbe39kjOcXt+oWkk81sn4E6Xk+Ece+ZvYHD8RXxXSyVCsCLc5WOR8cz2waT/s7c30xrDs/gdzA/KOxbsOwgzOz78lo4f5a0UBrXf8ishWNmrUzlgwtxzfNKuhJfADu5rHY7kvapQG8xpXo4bdrzknF+qenOSKk2kpldh7u9ivuyaiN14FT8x7o0ZePuSzJuAI/VMzYEisrHo/4HsHDh+bf6+bcfAR7DY5hPKWx/Pz5jq2J8i1JotlLD/38E7oM/rWLd7EYrwI/xyULxM1oEX9s4MkP3UOAy4C2FbWNxP/xhGbqT8SSxJQrb1sUrOF5S8fm9va5roo4HcNVgj6H1qKopwJBDUmWzs+GEpJUkjUtREkhaVl4v/b7We8zsh/3RNK938xa8PdkXCrsm4eGnOeNdV9KZ+AzwOklnSqo8k9bM3gQewuu4VEkVMfWHAo8DD0u6VV5G4kG8vPChZUXN7Puk9QdJT0l6Cvfj/8HykrzeCTyC10baS9JxePjxUVZB0bs2hlSlzd4ws20GewyzGOxflxp/QSvr6zhcHvhC15N4d5jb8J6vT+NtCFcY7PF1GO8O+I/OXniLsvXS8/vwaI6yuusB1+Cxzd/HmypchK+dHFjx/2F0hVoL4tmTbwcWrHicld8Z4cXvWnWdVhzs66mfY3/nYI+h7kcjQiE7IekqG0q/or1QxcKRpOl4hMi/JY3BeztuZhkJV3Ui6U7ciD/Utn0scKl1UyenD7o3426Dv+HFor6FNwo/zIZQBmHdqFAltG17VpVQ1VQbaSAZiHySwaaxxr0u6rooqtDtkBDVbSGxoUAxj6DDvulmtk5J3TvM7B2F15UWnxouqKYqoZJmMHttpFZVxJ8AK1v52kgDxkDkkww2ES3Tf+qqW1KF7mjNXnN8heJrM9u/gmMAIGm8mY3PlKmrQfYCkjag65y+Unyde4c0jBjZbtgBzOzVlIxWllpqI0lawroi0uom25cv6WPADelOeRRwLJ77MR3vzVC63lAVNHZBtUYur0m3ioWjg/Ckktaj/XWVlG3aXKTVIPuzkt6eHp/D/eWHZej+C59FHpsexdeVNIluIems3t9VSnd8BTIj1KEiaKdt/WTWoqm8EmSRjhnHfeQpSddK2lvSEhk6vWJml1Qg8wPrqmF0PHA77qK6krxQ6UoIt0zDSDOItwAz6pwFVXVbqzkbZE/H49xLN8iuC0nttb+FZ3n+CcoXoOrmWFW46fYA9sfPb3uV0OPN7MzcsXVwBeb0UJ2CV5tsNda4Ce/PcKmZVdKdqkok3WNmb03PbzWzDQv7ZnMNDgaNcMvIy67ujac+r5g2P4Y32jit061pE0m1PX4I3A+skhJsKmtG0MaGvb+ld5IR36MKrRaSvmFmR6XnO5nZBYV9P7TyXelH4z8+p9JVPnccfkdQNdluOjM7S9KTeCJesUroYZZRJbRtbO3jzBn3a+Zht5elLPCP4pnGJ0i62sx2z9Cug+slHQ78KD3/mJldnDJ3nxvksTUjFBL/dT8JzxwdnR6bpm3nDfb4BvA8TAVGpeerAn8b7DH1Mt5lcNfM/njSzknp/3ApsHqG7m2dnnd63U/dEXgTjT/gfmeAB2o6NyMG+/MZhPPbMWEJWBwvUFfl/+F/K9CYFxiPx/w/goeFvoC3SBwz2J9TI2buwIZmtmbbtpnAREmlCvx3R0W1Ljrp5jRlaPGqpRolZvaApPkrGFqdnI0nQq2Bt1c7A/gZXojsVLyzVhlqmVmaJ0IdJ+mC9O/j1HT3m441VKmrNtJvO200s+fwUNZSaM5mMwIOSWUYsJI9dc09AuOB8ZIWxxewn+75rwaOphj3f0vaCbio9aWQNAJvWPtMWVFJ7b5DAZdK+ii+XlHKyEs61Dx7sFWW9RK89onwGjY3lxxye7TMbK+twmiZiljOzL6V/t8PW3KlAHdL+nKGbq1VN82jIHaS9GG8+9DcRi21kcys0sXuAt8DrsBdUq0f93nwxK7SpJDS18x5TtIWyWZMtzy3VyU0YkE1Jb0cCWyJG3MBS+ALXQdbyT6q8rK+E4Fi4aVN0zYzsy1L6hYXpC7HF7eulLQx8FMze3dJ3T172m/lF9A2Ae4ys+eTL/RgPAV9OvDDNLMqo1vXwtwbwIv4dbAg8FJrF7CAmZWq6DnAoXpzHZKWx910b+LRUvvhfQPuAg4ws3+W1B2Dr4s8AHzPzF6qIvchJeFtbmbPSDoIX/O7Aq+5NMnMOrUiHDAaYdyLyFvhUcXtkbxZwv4U2tRJetAyGzu3GbXKmnVIGtHd7XyOYZI0DVjfzF6X1+x5Ce9F+YG0/eMldZ/Fi00Jd8Xc2NqFZ9ouWUa3LiS9DlyPr/FcVKWhl/cN/TiwMvAGnl18tplVemcg6TIzG7ASuP1B0lV4qPHCePes3+Kuux2Brcxsh0z9HYBv4OU4jqrAuE81s3XT80nAe82bpY/E1x4GtU58Y4x7mvWamd2SXB3b4LPNrNsjSYvgzbZH4yFl11dwURSN2qZ41b6X0r5ZF0wJ3dvw5gw3t23/PF4JstS4VeiK1GGGXTrkSzW1P0u+1C8Bq+MVDH9tbeV0S+rWEqonaX+88uaNwHZ4vPSz+Ezwf83s+ryRz3asIZuZqdk7lD1iZmMK+yoJLZTXxx8PbGJm78vU+iuwj3kbzquA3dIsfgF85l7qe1wVjfC5yxs4bwuMlPQHYBO8yuAhaQH0Bz0K9IB5Jt6B8gzHM8n00yXaZyAjYFZyyUkZuvsDJ0v6O/BNPN79RHxxOedCnirpc+Z1Q+6UNM7MJklak9m7VfWLssa7D5yJj+vPuLF8G95NKpe6QvW+gEffvCHpJ8AVZra5pF/hkUNVGuNSLRF7o6JAg2JSZXtyWCUJl2b2Ip7cVwVfAn6b3DNPAJMk3YgXfutX5dVaGIiQnLofwBR8gWQhfIFrsbR9QWByhccRNdUcB5atSGckXgnxGeBR4IMVaC6OR7LcD9yMG84H8PKx6w/259/pemg7H5VUCKWmUL10/c6fni+Jz/pa+6YO9vns4/+hirr2hwOLdNi+OnBhztjw0smr1fD/ngefWB6A39nvQqHO/WA+GjFzx9vAvQG8JOl+S35Kc/9X6ZAyzVk74hjgnfLqi6VrR0haqsPmv6e7A1leSOQncbfBScDWwC6SJuVomi+YflbSYsAquMGcad5ubSgy627CfJ2gKt1aQvXwsM9b5NUs34sHB7SyjXPDYweKKpKuOpacMLMZ+HVdliXxAIvrJP0Ld6WdZ14PJ4tkd65Mnx2Z391KaYTPPZ3YLcxXwWctKqbY0+usfNTFrMqEks7Do2QuwNvufcrMti6p+ybQ3vprNO4+MSvvG78WeBnYz8weTOGgX8bLsh5pGe3gUrjixsBKadNjwN+t4gtI0vJm9q9MjWK0DHRFzAg/v4vljXK2Yy1rZk9UoPM2PMRwqpndnT+ygUXSjpZZr2WAorLei09+Po5H4ZxT9nuRonCOwqP0nsOvr8XoitJ7qIxuVTTFuM/RJzJtXwZvUjGlpG4ttSMkfQ2fVR/UGltFUTgfM7OLO2xfHjjWzD5VUveDuO/+Ptyog/8YrY4v+F1TcsidjjVk62x3uOMSXpAt+44rGYrnzezZFNo7DrjbzKaW1ezmOJX8GNVBjVFZc1xTkuYh3dma2edK6v4N+CnuMnqjoLsT8BUz27SMblU0wrjXRVrQehyvHfF94Cbrqh0x3sx6jPboRXs0HpL1KB7be2fZGXtBczHrJnROHUrr9kP3LmDb9pmIpFXwxb/KklqqjOZIn1OrINlUy4w6qfGO62Dgi3g+xTHA14G/4JFUp1nJDMo6f4zqoMaorHPNbNeqxlnQvc/M1ujvvoGiKT73utgX+DZwT3p9oKQXgd8Dn8kRtq4sx+3xWiUL5eglrid1ipf0RzP7QGHfJZTvIj8SN2DtPIbX16iSU3IFJK2E9/R8ma5SxzulW/2Pmdlj3f5xzxxEDXdc+LW0Dn4NPASsamZPprC9m/FyxWV4ijl/jFbCFxiNvFIBdVBXVFblhj1xq6QT8fWWR9O2lYE9qSkqqT/EzL2PqMbaEcnorJZ7C94WJ1xlctQhwM7Aucx+Ee8KnG9mP8oZd9VIuhiPPT+jbfsewCcsIxmmpjuuyWa2Xrql/yewfGHdKCfvoRb3X9KpfA0mfcdatYWewicjj6bH/pZRBlrSWmmsN1uh0YikbczsqpKa8+HVaHdg9vMwAb/jmsNVPJCEce8H8oSmNfFKgFnZiaohI1E1pfOnv1+bDhexmU0vq1kXxbWS/uzr5zG2x3uzjjWz5TO1zgDmwzMzX8K7UF2FL9QtamY7Z2jX8WNU6xpM1VFZ8iSxL+MLqO/ASxlcmvYN2TWeXMIt0wOSTjSz/03P34OnQt8PrC7pi2Z2RUndYkbiRvgt3Mp4FcucjMRl5RXwVHhOej2qpCYAZnYX/uUYDnRMeEnRQ/NUcQAzmyBPmFutArnP44twhi8gboyn39+DN6IuTU3uv5/h5QAeKm5srcGQWVgsTXCqbNbyBbxy7H/SYvWFksaa2c/ICOFUVx+JHZl90jMk+kjEzL0H2mbC1+Gx7belWff5ZjaupO4UujISF6IrI3EM7k4o6z75bk/7zayKVn7tx7zSzLatUG97y2wwIuk4vD78V8wzEltp58cBL1sN1TELvuIhS4Xuv/uAta2tpENyU0w3s9Vz9KtGbY3Y0x34hXiI5ZYZC7Xn4GUizqRrTWo07nNfysx2yRp4JjFz7zuLWUqvNq+VnpsOPRJ3x8yPGyLM7BFJpRco6zDeAJqz9PGsXfhtblnd9tA24an8IwHM7Hclpb+BRzg9LKm1oDgG/xKW7cLUG9+jZN/Mot9X3jv0WPyObipwYK5booV5Ut/PcXdPDr/Gk646rcGclqldB49LeoeZ3QFeUkTSR/D/x9szdAesj0QZYubeA5JeAmbgRmcs3l3lmWTYJ2csdB2A387Nykg0s9PlGYkXWWZBo6qRJwXdQOdb2E3NbMGSuq8BV+N1OVran8RnVWZme5XRLegviPuBAe63VJwtQ29yd7uANc2sVHOUtjvEU/GG3qfgazLvN7Mde/r7foxXeGOUewEso2rhMFuDGY1nsc+RHCdpMzP7S0ndifgPcac+El81s00yhp1NGPcekPSWtk3/MLPX5MlR78uYWQ6rjERJU/EQwvs67HvUzFYuqbsR8GM8CeSktK2SaI46kHde+hBzNoAR8FczW3HOv+qTbtG4zxbPnRnfPQGvtfR94L9pnH8G3gNgZu1hkkE/UE19JKoi3DI90N3Fb2ZP4XHUpZDXVp+Gd4YZDoyn+6p8+5UVNS/PvDWwX1rT+CYVdEqqkcvwwlZ3tO+QdH2GbnEhfDFJKoQUlnb/mdn28vpIJwPHpEXg1+o06lWvwQxl0oLyLgCqsI9EVcTMvQdSSNYh+CLJlWZ2dmHfrEiaErq1NX3ocKwh25yhiDzx6DhgXG6o3nCjw0L4ieZJTMvjTSX2yNRfGO9JsBruJx6dqdfTGsxlZrZCjv5wQjX1kaiCMO49IOkiPJZ3IrAXniW3u5m9khMfq5qaPnRzrOx0/hS6+TsrWQVzKCBpvJmNH+xxDCaS1gfeZWa/zNSpZQ1muKFCHwk8zLTVR2Jr4GrL6CNRCTYE6g4P1QdwR9vrb+M1P5Ymo3518W/xioU7426ep/FEpir/D7+uQOM54B+4v/Z/gVEVjW0c/mX4DR5t8Qc8tOwWYIOKz0MlNd3regBr4QWyFmnbvk2G5no1jXUqsEY3+x4d7HM5gJ/ZgPSRKPuopLtJg5m/GPJo/kt8Cp58tHSG7qwZj5n918zON694tyoePVIZlhlxkngAd00dAWwITJd0laQ9JeV0pjoRL5l6OfBX4FdmtgRe6vXEzDG3U1lR96pJd0aX4usXU+W9PlvkdPS5XdJ9ko5ILoOqGE8NazDDkNfN7A3zKKzZ+kjgTb4HlTDuPfN72qYK18YAAATVSURBVGKCzeuVfA14NUO326YPZpbT9KEuzMzeNLNrzGxvYEXc+G6DG/6yzGtmV5rZOekYF6aD/RFYIHvUs7Nh728ZNFoZlDsCmwPfSeGykPejNBnvwzoCmCDpTkkHpyiP0pjZhWZ2Tzf7smq6DzNeTUmIULi+5DVyBt24h899iKChXWe7W7+9pIWsZPy4vB72d/E2dcfgNT8ukTfOPtZKZgAPN2rMoGyvL7Qxnmi0M/CImb07b+QdjznkM3WrQjX1kaiKMO4lybmINfzqbK9pZpVn3KUFvqPwWc6BwP/gqduP4V3lSyWXDDck/QlPermjsG0knkH5KTMrVQ+nux9lScLzNCpvUC7pETMbU7Vu0H/CuJck5yJWfU0fFsejcHYElsVjxp/A/bk/thpDLoPy1JhBubsVwneroq5M3aBawrj3QI3p5nW12bsaz447s2UoUqz0nsAHzOyDOfpVo/p6Zu4PXGxmj/b65qDf1JWpG1RLGPceqPMiVj11tmuvY14lqq9n5nN4g+z78fyBC8zsyYqG3QhyMkklnQacbmY3ddh3tpntnj3AIJsoP9AzdaWbY/XU2X5Y0jfwmfvjAJKWAz5LV/W+ocQI6yobO66w+HeTpDnOeT94AI9e2ApPD/+epFtxQ/87M3shQ3vY0Esmaelqniliqrt9YdiHCDFzHwKoujrbS+KujR1wnzt4g+8JeOXJobZQewFey/50SacDJ1hXz8zfmtlGJXXbo0TmxTMJd8ObTGQ1LhkuRCbp3E0Y9yHGXBZKVkvPzLpCN4cbdVXzDIYHYdyHGFWGkslbA26MlxXO6mtZJ6q+Z2YtoZvDDUmfBKZ0SjiStONclnA01xHGfRCoMQrn72a2cXr+Bbwp8MXAB4Hfm9mPy+gGQTD8COM+CNQVhVN0R0i6BdjOvHTswsBEM8tpKTZskPR2vAbQSsCVwDfN7Jm0b9YP4NzM3OT+m1uJ2jKDQysK5+G2x0N4nfeyjJC0ZGocoFb4n3mT6Nd7/tNGcRJe3OrteEu5myStlvaV7lHbMGrptxsMHSIUchCoMZRscbyMgQCTtIKZ/TPVKhmyVRFrYFFLDaeBY1IY5FWSPsPQ7vRUKb24/5YbyLEEA0+4ZeYCUuW65WyQezoOFJLuxGunPFfYth5wEbCUmeWUax42RCbp3E3M3OcCUujfXGHYE0fizccntjaY2WRJHwC+M2ijGnhqS8ILhj4xcw+CIGggMXMPGkfqnrUn8Em82uYb+MLqL83s+kEcWhAMGDFzDxpHKmXwMHAtbuCfx/u/fhNvQv6LQRxeEAwIYdyDxiFpspmtV3g90cw2lTQ/3vR87UEcXhAMCBHnHjSR11px7aky4qsAqSVazGaCuYLwuQdN5CDgOkmv4Nf4rgCSRuERJEHQeMItEzSS1Cd0aTN7arDHEgSDQbhlgkZizizDLumswRxPEAw04ZYJGoekCe2bgC0kLQFgZtsP/KiCYGAJ4x40kdF4k+1T8QVUAeOAYwdzUEEwkITPPWgcKYnpAGA74CAzu0PSA7kNyINgOBHGPWgskkYDx+F9ZLevqsNVEAwHwi0TNBYzmwnsJOnDeJZqEMw1xMw9CIKggUQoZBAEQQMJ4x4EQdBAwrgHQRA0kDDuQRAEDSSMexAEQQP5f449zTEPUHHzAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAFkCAYAAADbgnvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xe8JFWZ//HPlwEUQeKMqAwwSBARRHEILvpTxAAuS1CRYACXYAAxrYouKuKuYlojqCiSlCQGRkGQVYKoIANIGOJIHHR1EAyACsjz++Opy/T09E1VdebeW3zfr1e/6K7u+/Shpvrp6lPnPEcRgZmZdcsyE90AMzNrn5O7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHObmbmXXQshP1xtOnT49Zs2ZN1NubmU1Jl19++d0RMWO0101Ycp81axZz586dqLc3M5uSJN0+lte5W8bMrIOc3M3MOsjJ3cysg5zczcw6yMndzKyDRk3ukr4h6Q+Srh3meUn6gqT5kq6WtEX7zTQzs/EYy5n78cAOIzy/I7BhdTsQ+HLzZpmZWROjJveIuAi4Z4SX7AKcGOkSYFVJT2mrgWZmNn5tTGJaC7iz5/GCatvv+l8o6UDy7J511lmnhbc2s16HHz45YtjEW6oXVCPimIiYHRGzZ8wYdfasmZnV1EZyvwtYu+fxzGqbmZlNkDaS+xzgDdWomW2AP0fEEl0yZma29Iza5y7pFOBFwHRJC4APA8sBRMRXgLOBVwDzgQeAN5ZqrJmZjc2oyT0i9hrl+QAOaq1FZmbWmGeompl1kJO7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZBzm5m5l1kJO7mVkHjSm5S9pB0o2S5ks6dMDz60g6X9KVkq6W9Ir2m2pmZmM1anKXNA04CtgR2ATYS9ImfS87DDg9Ip4D7Akc3XZDzcxs7MZy5r4VMD8ibomIB4FTgV36XhPAytX9VYDfttdEMzMbr2XH8Jq1gDt7Hi8Atu57zeHAjyW9DVgReEkrrTMzs1rauqC6F3B8RMwEXgGcJGmJ2JIOlDRX0tyFCxe29NZmZtZvLMn9LmDtnsczq2299gNOB4iIXwKPB6b3B4qIYyJidkTMnjFjRr0Wm5nZqMaS3C8DNpS0nqTlyQumc/pecwewPYCkZ5DJ3afmZmYTZNTkHhEPAwcD5wLXk6Ni5kk6QtLO1cveDRwg6SrgFGDfiIhSjTYzs5GN5YIqEXE2cHbftg/13L8O2LbdppmZWV2eoWpm1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQWNK7pJ2kHSjpPmSDh3mNa+RdJ2keZJObreZZmY2HsuO9gJJ04CjgJcCC4DLJM2JiOt6XrMh8H5g24i4V9KTSjXYzMxGN5Yz962A+RFxS0Q8CJwK7NL3mgOAoyLiXoCI+EO7zTQzs/EYS3JfC7iz5/GCaluvjYCNJP1c0iWSdhgUSNKBkuZKmrtw4cJ6LTYzs1G1dUF1WWBD4EXAXsDXJK3a/6KIOCYiZkfE7BkzZrT01mZm1m8syf0uYO2exzOrbb0WAHMi4qGIuBW4iUz2ZmY2AcaS3C8DNpS0nqTlgT2BOX2v+T551o6k6WQ3zS0tttPMzMZh1OQeEQ8DBwPnAtcDp0fEPElHSNq5etm5wB8lXQecD7wnIv5YqtFmZjayUYdCAkTE2cDZfds+1HM/gHdVNzMzm2CeoWpm1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFjGuduZmbAyWonzt7RTpwR+MzdzKyDnNzNzDrIyd3MrIOc3M3MOsjJ3cysg5zczcw6yMndzKyDnNzNzDrIyd3MrIOc3M3MOsjJ3cysg5zczcw6yMndzKyDnNzNzDrIyd3MrIOc3M3MOsjJ3cysg5zczcw6yMndzKyDnNzNzDrIyd3MrIOc3M3MOsjJ3cysg5zczcw6aEzJXdIOkm6UNF/SoSO87lWSQtLs9ppoZmbjNWpylzQNOArYEdgE2EvSJgNe90Tg7cClbTfSzMzGZyxn7lsB8yPiloh4EDgV2GXA6z4KfAL4e4vtMzOzGsaS3NcC7ux5vKDa9ihJWwBrR8RZIwWSdKCkuZLmLly4cNyNNTOzsWl8QVXSMsD/AO8e7bURcUxEzI6I2TNmzGj61mZmNoyxJPe7gLV7Hs+stg15IrApcIGk24BtgDm+qGpmNnHGktwvAzaUtJ6k5YE9gTlDT0bEnyNiekTMiohZwCXAzhExt0iLzcxsVKMm94h4GDgYOBe4Hjg9IuZJOkLSzqUbaGZm47fsWF4UEWcDZ/dt+9Awr31R82aZmVkTnqFqZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh00pgWyzWxqOHwjtRAlWohhE81n7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFjSu6SdpB0o6T5kg4d8Py7JF0n6WpJP5G0bvtNNTOzsRo1uUuaBhwF7AhsAuwlaZO+l10JzI6IZwFnAJ9su6FmZjZ2Yzlz3wqYHxG3RMSDwKnALr0viIjzI+KB6uElwMx2m2lmZuMxluS+FnBnz+MF1bbh7Af8aNATkg6UNFfS3IULF469lWZmNi6tXlCV9DpgNvCpQc9HxDERMTsiZs+YMaPNtzYzsx5jWYnpLmDtnsczq22LkfQS4D+BF0bEP9ppnpmZ1TGWM/fLgA0lrSdpeWBPYE7vCyQ9B/gqsHNE/KH9ZpqZ2XiMmtwj4mHgYOBc4Hrg9IiYJ+kISTtXL/sUsBLwbUm/ljRnmHBmZrYUjGmB7Ig4Gzi7b9uHeu6/pOV2mZlZA56hambWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kFO7mZmHeTkbmbWQU7uZmYd5ORuZtZBTu5mZh3k5G5m1kHLTnQDHhNOVjtx9o524phZ5zm593ISNrOOcLeMmVkHObmbmXWQk7uZWQc5uZuZdZCTu5lZB3m0jA3WxsghjxoymzBO7mYTYap9eU619trYumUk7SDpRknzJR064PnHSTqtev5SSbPabqiZmY3dqMld0jTgKGBHYBNgL0mb9L1sP+DeiNgA+CzwibYbamZmYzeWM/etgPkRcUtEPAicCuzS95pdgBOq+2cA20tqabqnmZmNlyJG7geT9Gpgh4jYv3r8emDriDi45zXXVq9ZUD3+TfWau/tiHQgcWD18OnBjW/8jA0wH7h71VY7ruJM3tuM67iDrRsSM0V60VC+oRsQxwDFL470kzY2I2Y7ruCXjloztuI7bxFi6Ze4C1u55PLPaNvA1kpYFVgH+2EYDzcxs/MaS3C8DNpS0nqTlgT2BOX2vmQPsU91/NfDTGK2/x8zMihm1WyYiHpZ0MHAuMA34RkTMk3QEMDci5gDHAidJmg/cQ34BTLRS3T+O67hLK7bjOm5to15QNTOzqce1ZczMOsjJ3cysg5zczcw6qJOFwyStCPw9Iv7ZUrwnAdsCTwX+BlxLXkx+pIXYq/XEva2NmKWU2g8l928Vf0ocDwXjLgNs3hs3Iv7QJGYVt+i/21QyGT/HnbigWh28ewKvBbYE/gE8jpwldhbw1YiYXyPudsChwOrAlcAfgMcDGwHrk6UWPhMRfxln3FWAg4C9gOWBhVXcNYFLgKMj4vzxtreKPZPcFy9g8Q/dWcCP6hx0BfdDqbhT7XgoFXd94H3AS4CbWXScbQQ8AHwVOGG8x0Sp9vbEn82Sx+95EXFvnXil4pb8HLehK8n9QuB/gTPJs5JHqu2rA9sBewPfi4hvjjPup4AvRsQdA55bFtgJmBYR3xln3POAE4EfRMSf+p57LvB64JqIOHaccY8D1gJ+CMxl8Q/ddsBzgUMj4qJxxi21H0rFnWrHQ6m4pwBfBn7WP++kOuvemyz4d8Kgv5+A9r4ReBtwK3A5ix+/25LJ+IOD3neC4hb5HLelK8l9uYh4qOlrpjpJm0bEtSM8vzywTp2z1qnEx8PUJOkgch7N34Z5/tnAGhHxk8kQd7LrRHIHqKpQbkWeuUKWRPhV05mykl4O7NoX98yIOKdh3FWAHfrintt/BtAg/uoAEXFPS/FK7YdScafa8VAq7sZk1dbeuHMi4vqGcYu0d6op/TluohPJXdLLgKPJfsWhujczgQ2At0bEj2vG/Rz50+1EYEFP3DcAN0fE22vGfQPwYeDHfe19KfCRiDixZtx1gE8C2wN/AgSsDPyU7I65rWbcUvuhVNypdjyUivs+sj/41L64ewKnRsSRk6y9y5JrQ+xG9otD9aUBHFv3l1bBuEU+x62JiCl/A64HZg3Yvh5wfYO4Nw2zXeRBXDfujcCqA7avNtx7jjHuL4E9yP7OoW3TyA/zJZNwP5SKO9WOh2JxgeUGbF9+krZ36BrBNmSSnFnd/zJw2iSMW+Rz3NatK0Mhl2XRGUSvu4DlGsT9u6QtI+Kyvu1bAn9vEFfAoJ9Mj1TP1TU9Ik7r3RA5/O9USR9tELfUfigVd6odD6XiPkKeqd7et/0p1XN1lWrvcyNio75tC4BLJN00CeOW+hy3oivJ/RvAZZJOBe6stq1NnrE2uVK9L/BlSU9kUbJYG/hz9Vxd/w1cIenHLGrvOuTPuSZJ+HJJR5OrYvXuh33IIWt17UuZ/VAq7lQ7HkrFfQfwE0k3s/hxtgFw8LB/Nbp9KdPeeyTtDnwnFo1wWgbYHWgyDLJU3FKf41Z0os8dQNIzGHzh6LoWYj+5N25E/F8LMVcDXs6SF2JqH2zVaJj9WHw/LAB+QPYt/qN+i8vsh1Jxp9rxUCpulcT6LyxfFi1M6Gq7vZJmkesvv5hFSXdV4HzymtGtkyluFbv1z3FbOpPczaw7JK0BEBGtLvpTKu5k1PnaMpIOLxT3ikJxi9SClrRTobil9kOpuIcXijvV9sMPC8Vtpb0R8cfeBFz9Spi0cfuV+hyPR+eTOzkjrXURsUWJuOSU8BK2LBG01H4ouH+n1PFQcD8cUCJowfaWmuVZKm6pz/GYuVtmDCStyeJ9i7+fyPZMlFL7YartX++HNNXa+1jTieRecJLCs4GvkAt+905S+BM5GabWT9BqVtv7yRl+TyKHU/2hau+R0WB2W4kZiQX3Q6m4U+14KBJ3lPf8UUTsWPNvi7W34Mzi1uOW/By3oSvJ/RTywDqBxWfM7QOsHhF71Iz7a+BNEXFp3/ZtyMqCm9eMey45a/SEoREGVd/fPsD2EfGymnFLzUgstR9KxZ1qx0OpuMN1kQj4YUQ8pWbcUu0tNbO4VNwin+PWTPQsqjZujDAbbKTnxhB32Nl2wPwGcW+s89xY9gNlZiSW2g+l4k6146FU3H+Syef8Abe/TcL2lppZXCpukc9xW7euTGIqNUnhR5LOImto9E6GeQPQpEDS7ZLeS37j/75q75rkBJA7R/rDUZSakVhqP5SKO9WOh1JxryfPsG/uf0JSk+OsVHtLzSwuFbfU57gVXemWmUW5SQo7MrgP++wGMVcjFzvYheyrA/g9MAf4RNSs5ChpB+BL5M/PJWYkRoOKfSX2Q6m4U+14KBVX0qvJeuI3Dnhu14j4foPYJdr7fuA1ZLdi/8zi0yPi45MsbpHPcVs6kdx7PZYmKQxSckbiVPRYPx6mmlIzi0vOWJ60JrpfqI0b8PxRnl8Z2LRG3K8Bmw3z3IrAvwOvrRH3dcAyIzy//mj/T8P83UptvGYp7odScafa8TDVjrMi7Z1qt1L7t61bV/rcXyXpk2R/3+UsWstwA3JZtXWBd9eIexTwQUmbkUtxDcXdkEwQ3wC+VSPuGsCVki4f0N4Xkmt9Hloj7pnVSIYzgcsj4n4ASU8j98NryA/mGeOMW2o/lIo71Y6HqXacFWmvpB8AxwDnRN9w1eoY3pdcfPobkyEu5fZvKzrTLaNceehV5JqITyEXwL0eOCsiLm4YeyVgdm/cGNCPOc6Y08g+4f72/ijGuZZjX9xXkAtDb0suYPwQWXf6LHKMd+3iTiX2Q6m4U+14KBW31HFWor3VMMJ3kf9u97AoWc4CfgN8KSLOnCxxq9jF9m9TnUnuZtYd1UXxoWR5U0Q8MJnjTkZO7mZmHfRYKBxmZvaY4+Q+Akkfm+g2jEdVU2VKvaekGZJmS1q1rTaVIqlW2YIxxp5K+2FKfS4eqzqT3CWtIeltko6qbgcPjXFuYIdWGjeApGmSpvc8Xl7SgZJqF/gCftVC05Yg6eKe+ye19Z6S9gfmAV8EbpC0c91YY3y/l0o6r0GI10s6pxph0ZqS+6HQcVbsc1GCpOMLxi6xf1vRieReTVC4FnguWV/lZrJ++TXKKol1TZO0mqTVB90atHdP8qr91ZIurAob3QLsSI50qR26wd+OZMWe+89s8T3fATwzIp4H/AtZYa8xSS+WdJOk+yR9U9JmkuYCR5Ir3tcSETuR1RDPkvRBSdPbOB4otx9KHWelPhe7SDqo5/Glkm6pbq9u0N5nNfjbYRXcv63oyjj3jwJvj4jTezdKehW5iO2rasbdmBy/OiiBBVD3DO4wckX2+crKfb8EXh0RP6gZb8gMSe8a7smI+J+acUe66t7kivyDEbEQICJukfS4BrF6fQY4kNyvO1b/PTQivtQ0cER8X9KtwEVkWeGh//8mx0Op/VDqOCv1uXgvWRJgyOPIk7QVgeMY//yMIU+Q9ByGORGJ+iWKS+3fVnQluW8WEUt8s0fEdxr2D14XEc9p8PfDeTAi5kMeWJJubumAmAasRPtn8KtK2o38pbeqpFdW20XW9K5rpqQvDPc4Ig6pGTci4oLq/vcl3dVGYq+S7mHAq8kZmG0tVVdqP5Q6zkp9LpaPiN6CWxdHlo34o6QVh/ujMViL/MIf7svoxTXjltq/rehKcr+/5nMT5Ul9Z9ir9j5ucIb9u4g4olnTBroQ2Lnn/r/1PHdRg7jv6Xvc1hJ4vV9AAMv2Po6I79aMezXwHWCLiPhbkwb2KbUfSh1npazW+yAiDu55OKNB3PkRUTeBj2RS79+uJPf+nTxENDsoPt/gb0fyNeCJIzyuq0ife0S8sVDcE4buV7MdiYj7Wgg96Ato6HEAdZP7bjFMoSlJ69SdkVhwP5Q6zj4vaQZZxmF+tLfi0KWSDoiIr/VulPQmCg0WaGik/TvhE4g6MYlJ0odHej4iPlIz7pxR4jYa1SBpekTc3SRGX7zVIqJJvfLh4r4L+HNEHNu3fT/giRHxuQax30JeQBz62X0fWS716LoxS5L0PPJn/kUR8QdJzyLrh7wgItZuELfYfihwnO0PfIycur8ecGBEjPhZGWPcJwHfB/4BDPWDP5fse981aq7RKullMcxqS5K2jYif14k7yntuGRGXtR13XG3oQnIvRdJCsv7zKcCl9J0ZR8SFNePuRF4geohcROM1EfGLZq0FSX9l0RnDUFuD/IW2fETU+qWmLIy0zYCiS8sDcyOi1mgESYeRo0MOjohbqm1PI38xXRoR/1UnbhVnU7K7Y2h0zzzg0xFxTYOYnwJ2An5NFoc6F9gf+Di5vNzfa8Ytsh8KHmfXAttFxMKqnd+qRvq0QtKL6fl3i4ifNow3jSyatxZZPOzaat98AFihresHkjYhl7ncC/hTRMxuI25t4y0jOVlv5KiIi8hKbHeTP81f0TDmNHJM7wnAlcB/kUPWmrb1amDj6v7WwIWF9slKwPvI4VmfaRDnqhGeu6ZB3BuBxw/YvgLNlsPbhRwO++/kMLhnVfdvBnZpEPe6ofaS/cP3MWD5tkm0H4ocZ8AVIz1u+0YutPKfDf7+eOAn5JfwT4FvAjeQvwaatm0W+YvravJayd1tHBNt3DrR5y7pAOBN5FCqudXm2cCRkmZGxDF14kYucHEOcE41UmIv4AJJH4lmoy8ejogbqve4VFIb/aCPUs5yfAe57NnJwJbRbLGKZSStGX0/i5VLijURMeBsNyL+JqnJsoBHAC+NiNt6tl0t6adkOeRaFQCBvw+1NyLurUZH3DbK34xFqf1Q6jgrMrpH0trAB8mlIr9P/mI+gkXHcV1bkiPqHpH0eOD/gPUbfiaQ9EuyxPGpwKsi4mZJt7Z0TDTWieQOvJMsit+7rNVPlUuBXUzWcq6lSur/Sib2WcAXgO/Vbyqw5AXgxR5Hzavsyply7wb2IGtqPyci/tyopelT5MSdd7N4X+ingE83iHuXpO0j4ie9G6uf5b9rEHfZQR+wiLhNUpM1M5/Wdx1mvd7HUf8aTKn9UOQ4o9zonhPJX9zfIX8xzyW7wDaLBqWqgX9EtZZuRPxd0i1NE3vl92RXz5rkwI2bmQQXUod0os9d0vUR8YzxPjeGuCcCmwJnA6dGxLUNmtkbt9QF4PvJWtXHAX8dELf20Kzqi/JQcn9Azgg+MiJ+1CDmM8mz6ItZlCBmk7Wxd4mIeTXjXgX8W/SNXpG0LvCDqH+N4IUjPR/1r8GU2g9FjrNR3nPZiHi45t9eFRGb9zxeAKwzlJgbtOkBYP7QQ3KFpPnV/ah7PFSxVwFeSZ78bUh2Ib08IiZ8dE9Xkvul5BX7q/q2bw58LSK2qhn3ERaNk+/dUUMHxcp14o7ynk0+HIczwplDiQ9zU9XP5L1ZdAHtOvICXa2Lk1XMXYFPkiM6epPlocD7osHC0MO839rAnhHxqQYxWt8PpUi6OCKeX90/KSJe3/PcFRGxRc24VwEvYtFggPN7H0f9hePXHen5iLi9TtwB7/Mk8sLtXuSXUu3RU620pyPJ/fnksl7HsfiHeR/gdVFz5R1Jy0XfCJE2KJf9Orj/oJK0PfD5iNh08F9ODElfZOQvjbozKEd6z59HxLYN/n5zsouqd7TMZ/pPABrEnwHsTn6Qnwp8LyL+o0G8XckRONdExLkttfELIz3foG/8yqhGmPQn897nasS9jRzVM3AmaUQ0KtgmaT16vjyjGpnUIN7u5C/BJb6AJa3b1pdGXZ3oc4+IiyVtDbyVXA8R8sxnm4Z9dZcCtc5CRnEqcL6kY8kzzBnA58hJIfs0CVx1n7wf2KTaNI8cL312g7BzR3iu1NnBOnX/UNLHIuID5IW41lQXJF9JnmFvRE6GWi8iZjaMezSZdH4BfFTSVhHx0abtBd5Mdp+dDvyW9ia5Fak1FBGz6v7tSCStDHydPOH7dbX52dUQ3/0i4i81Q+8NHCXpXPLi77nVIIzWfg00Uno4zlS+AVcWjL0K8FWy7+92stCVGsY8gEzELyav4q9c3f8V2W1V4v/j04Xi3tHgb4sMzSOXZrsQeAGLfvXe0kLca4Fp1f0nkIubt9HeNcgEfz5wHjkmf9UW4t4C7EYW5LuF/MJ7ZfX4Ny3v8/XJETTzGsQ4HjgcWKZnm4APASc2bN/K5AnZj8iL318BXlji+BvvrSvdMlcP9xQNLphUF3SGvQgZzS5QPg84mlxMdzZwEnmBsnY3kKTrWHLUEMq69hdHzQvLo7znHRFR6yxbi9d/Wewp4CsRUat0xIC+28X0759xxH0HWbVwRfJM7TTgvGjeXdDftVG733qE95hJtv1d5HWH/rr844l13EjPR8NyFZKeSo742hvYjByf/t2oOQGtGrK64Xifq/E+a5BF5d4KrB4T3OfeiW4Zsp8uyLGwPyDPsNpQpMpi1R3zHOCtEfFLZcW7jwBXSXpHDDNVeiyhByWuiPijVKrUe6N9828jPNek4mKRkrSRZRY+V83K3JMci/1USe8j+9xvqtvenhMUAetXjxuP5gBQlqPdC3gpeYbZaOhi0+Q9HEkHku1ci+xK2g84M8oOBGjlgyFpNfLXyx7A6tQvT9yaTpy5AygX5diLTBjXkYn+x1Fz5EkVs/UzqCruO4EvRNU/17N9M+DoiHhBzbilRg0NtwCDyNmrjfqc29bkol6N99qUPMN8TURsUDNGkdEcko4g52hcT17nOafJ56EnbpFaQ5IeJGuivzsi5lbbbmnhl9EJZB2cj0ZPwpP0QWCj6BntM864K5HdU3uRJ2tzyP18QUyCxNqZ5N5LudblUeSFxCbD05Zakuh5z+Uj4sGaf1tq1NCt5Blv66MYVKYGzFL/d5uMqqG8twIPVJt66w416a4sVWtoDRaNQHoyefa+b9PujeqC6rHk4IhHL6iSJUX2i5oT/STdTc5gP5W8mNr6yLomOpPcJa1F/lTeDbiXPDC+Fw1Kp0pah6yR/lD1+OnAK4Dbo35N8GLjhKu/XxM4iMXHSx8VzUYNFSFpF3KG68dZvGzE+4H/iIhaZQIk7RsRxw/Y/nhyctO3a8Yd+pJ7dFPP44iI9WvG7S341hu30XyKgr8IFpts1PfcNRGxWZ24fXFmkl0ce5HXOL4XOQKqScz1WTSK7LqI+E3DeCtEu3X9W9WJ5C7pQrKO8unk1OXFphY3uIB2EfnNfrOkDchRJ98iD5BfRUSttS4LjhOeAcyIvprjymp1C6Nayq1G3HXJKnd/rh5vB+wK3EZ+cdT9pXEVOQPztr7ts8i+1oEJZJzvMQ14OZkkXgb8LAas2jXGWP0Lri9DTloxdkS1AAAZSUlEQVT5D3KETq3lHCV9nzxT/S45E7pWXfgR4rc9vvsa4CUxuNbQ/7aR3PvibkROEqu1EE01uegDVPMIgI9H/eGPU0YnFsgmx4evRhYPO5c8C5xLdk2MNEZ7NKtFxM3V/X2AUyLibWQFyp0axC21JukXgekDtq9Bs4VHTqeqMy7p2cC3gTvIn7ZN6o0PWwMGaFIDBkkvlPRV8gtoP/Ji4np1E3vVrj9G1iS5l/z3Px94HvCvdRN7FXdX8gtoIfA15WLLbx3hWseYSFpZ0ulkRcR/r27/K+nbVVdFXUO1hl4o6YnV7UXkRfAmtYYGioib6ib2yonkTPMvkgMkRpzc1RljGS/5WL0BV/fc/zk9JUIZoQzuGOIWGSdM9ncO99y1Le2HTwOfrO4v0/tcjbhXkdO0+7ev2zDuAnJC0OvJC3wAt7ZwPCxHnkDcQE6K2aDAMbcMeYH2buBdDWMdT7nx3TuSY/7/yKIS2zu2vT9a2qdX9T0uVqIYePJE//8O3boyFLKUqyV9GriL/En3YwBlSd0mSq1JOlJJ1yZnwr0XUl9M9okTWUK1QVg+TJ5JDqwB0yDuGWS30R7APyWdSTszaW8FHiZnE98BPEu5EhPQaG1WJP0L2XX0ArKA2G4R8bNmzWXbiNi3d0NkBjpC0s2D/2RsIgvGLVE0Tg1qI5VUDVUcOlin9T6Omt22wzibMrPax60Tfe6lSFoBeDvwFOAbUQ0xrD6I60eDiSAlSDqL7AM/u2/7jsAhEbFjzbifJ/fB78gvpY0i4iFJTyFra9RecUZL1oC5jhwt06gGjPJb50VkwnwFOSN4P+DsqHmRXdLxDP8lERHx7zXj3gb8iRx18VPyC6Q38BUD/mwscUeavDM/6g/dHK420kuAz0WLtZEkHR4RhzeMcRsFa9b0vdekGanl5N4hkjYEziK7JHrPhJ8H7BQ1J9lUiXIPMsGfHhF3VdufAzwpWih0pXYXhu6PvRyLLqq+PCIGXZeYMJIuoGfUDYsnoYiIF9eMW2p892uBj5LDC/trI701Itqq715srkkpkt4ak2T9384md0kHRs0VmKYy5eIie7Oo7vo84OSYhKVjIT8MZDfMUlkgW9L/i4haXV9afOELyER8N1na4dbGjWvZKOO794+IPzWIvQqZ2Lcnu/z+m5wo12pCaeNMWDlDd1h1fxlNdl1O7lPqG39pkvTLaHFB4wbtKLUwdJEFkTV48YvVyV8Fh0fEqTXjvo78LJ7Ut/31wD8joskSc62P765itl4baZj3WSaaL9bxCFmc7e6hTT1P1/5lNNl1ObkX6fuS9OQoMCFI0jERcWDbcYd5r0nRLyjpRmDz/l8V1bWOqyJio5pxjwfWJuclbE2Wu50NHBotL9RRvd/q5PjuuotUXAps398lpaw5dFFEPLdm3JeTo4XO6Nv+arJ8wHk14w7VRjooFq+N9AqgSW2kIpQF314N/Jm8rtFocuNU0eXRMiMVpWqi1NXw2hcla2j8jS5pixZ+zsag7qJovjD0bOBZ0fKCyMOJiHvUbNjQcoOSTUTcr2Zrvn6IHDXU7wKywF6t5E6eBR8Yi2qX3w/8R9XHfzTVqLLJIpYs+PYTSbcDH4uIX4/81+MjafWWR9/U1pVJTEuIiAWFQpcqr/iHQnFL+XoLMe5Srj61GDVfGPrB6FkQmay5XiSxw6Mzdu9tEGKF6uy3P+4TgeUbxH1cDJiVHBF3s+gax7hFxGejr+hdtf0asg9+Uqq6/s4kv3y2IhdcqU3StpKulzRP0taSzgMuk3Rn1W01obp85l7K10oEjYgdSsQdRhtfUG3EOAQ4U9LAhaEbxC1SQreadt//q2d1stunyapPxwJnSHrz0PBCZQmGo6rn6lp50Ljz6tfACnWDaoTaSMAl1Pxlq1xN7fqI+EvVNXdoFes68iy7boGvoTP2XYA7ya6Zj0XzujCfJa/trESOUts1clW4LcjZsLWXiWxDZ/vcbRFJywB7RcS3qsebRsS1DWPu2kb/tcoskF2qYFZ/3AD+WHVLNCLpzeTksJWqTfeRFyi/3CDmkcCa5AXr+6ttK5EXrO+OiFoTxVSuNtI88hrMw5KOIatZnkH+Gtg8IoZb3GW0uI8AV5Nn7X+h7ws6ai6607cfro+exXAmw4COzp65SzoxIlpdQ3Oyq4a+HUSOEplD9qkeTE4SuoosekbTxF7FaOXCZJXEvzH0WNJ04B8Nw64QETdU8R4XEY/Gk7QNuaxhnbYWWxczIr4CfKXqiiEi/tpC2MOA/wJur/qYIdemPZZcuq6uUrWRlun5lTG7JzleLKlJ3/gRPe1aaaQXjlNvt3Z/EcEm3Wmt6ERylzSnfxOwnaoyARGx85J/1UknkX2/vyTXy/wAuS92bfvCURuqRHskcA85KeYksvDZMpLeEBHn1Ax9Mou6Bn7J4t0ERzNJpocP0lJSH4r1MHCopI+Q5TMA5rfQHbGqpN3I5LaqFi2XKHImcF3XSnpjRBxHrko2OyLmKqtC1h5iGQ1nuI7gg5KeEBEP9J7sVENPTyz0nmPWiW4ZSVeQP+e/zqIZfqeQ/WxExIUT17olSVqWnAq/G/DUavNd5M/GY+uOFVZPLe1qrPfvyMJck3UC01zyC2gV4Biy8NQlylW1Tmnw87735/Ji3QSTZRjoVKZCa6hWE6M+T9bXuZv8Er6zuh0SNUtSSBqxCmREHFIn7mTXiTN38iLc24H/BN4TEb+W9LemSV3SPWSN7VOAn7Y4++4kspbI4WQFQ4CZZFnhb5JT/et49EshIv4paUFbib3qtx8qFrY8OQP2tobDvpYdGhMt6YiIuKR6jxuajSxcrGug/9+s7RmUO0VEk/Vep5y6yXsMcf8M7Ft1L65H5qcF0Vc3vobWyiH0qk6g9ic/u+dExM97njssak7Ca0snztyHKFdv+Szwe2DniFinYbwbyaveewGzyIs7pwwloQZxbxpugs5Iz40h7j/JutVDmXEF8qJU0xV9dgW+ShZfejN5tn0f8HTgLRHxg5pxH73oNODCXO0LUpL+QI6IGKqJMzRzVORap2vWiTvMe5VaZ3epTWqzeiR9HXgCOVnu9cCFEfGu6jlfUG1TNbZ9d0n/Sl4Vb+r+iPgS8CXlknt7AkdXffmnRv1lv+6RtDvwnaHx2NWZ8e40GC8dEdPq/u0oPgxsTn5ZXAVsGRE3VqNHvkNOiKljc0l/IZPuCtV9qsePb9De9/Tc71+spcniLYOUmvdQZFKbWqiyaI/aamhYraQvkbnhu+TJYKnjYsw6debetuH6Z6s+4T0i4iM1484CPkHWRh9K5quR5V4PjZpFqKphhW8mL55dTZYpbmO1+94+7Gujp6TrZDhDGUS55OC65AXE2gWyxvA+W0XErwrEPafE3IfJ+u81FUm6ISI27tv2IbLW0JNimHLLS0tnZ6i25PxBGyPihrqJvfr72yJij4iYQZbjfV5EzKi2NakueAJ5xncNWefjMw1iLWaoz51cqm1o2zQmwZCvfpL2J6thfhG4QVKx0VIlEnsVt9SktiJnlNW49MeauZIW+3eKXA7wOLIbd0L5zH2SaGNcft9omWXJRbwbn6VJ2hK4pv/ibPUL5PkR8c2m79EmSdcC20XEwmp24rdiElTBnAzUQpXFYeJOqV8EU629dXSqz70EZd2QV5FVBv8J3AR8PSLmN4hZalx+72iZhxuOOHlURFw2zPbbyAWoJ5sHo6qpEhG3KGvcGznaqVDoqVYbqZUPR9VFuws5cRBySPOciLi+jfhNOLmPQNLHgSeTq8c/mVxD8zfAtyV9LCK+XTP0TJYclz+b5t0oQxcoYfGLlE1Hy2xMjkJ6hKwH80Gy2uBNwD5tHsgtDS2c2Te2ebHHTcc1S1qufy6CpOmRBbkekwp2I5VyVtMAkt5HXjw9lRwxA/nZPkXSqRFxZNP3aMLdMiMY0M1xYURsq1xc92dRc63Iqv/67WS/+NC4/FuixbUc2yTpIuBT5NTtI8nFq08DdiLrd7dWCbCNn8uS9hnp+Yg4oWbc7cg5Co8HriDL3t5WPddk6OZu5LF1T3Uh+DNkvfTrgHdHuQqn1oCkm4BnDviiXx6YN9EXVIkI34a5kcP+Vq/urwNc0vPcvBbizwS+DXwJuKOFeFuO8NzrG8S9suf+/L7nrmh5n1/ZcryVgJVainUZ+WGGXPzhZmCbpu0mV0caun8a8M7q2NgXOK/N/dHzPm8sEfexdANuANYdsH1d4MaJbp+7ZUb2MeDK6hv66cBb4NFhdrWmQveK9sflHyvp58D7oxr+J2lTsp7KPeRZZx294+f7K+i1PVrmTW0EkfQWspjTitXjNtZmXT4i5gFExBmSrge+W/08b/ITuHf/bhARQzOUj1euIlTCR8hRHVbfO8iFP24mSyRAngRuQBbsm1BO7iOIiNOUBfifRs946ciLdXu3+D5naZQytWO0BTmB50pJHwU2I7t+3h3N+rGPkrRSRNzXmxwlbQD8b6MW94kWhhZq0dqsL4q+tVmVK+XUnRb+kHqWWYyIecrFRn4IrN+gyRdIOgL4eHV/t4j4XtUNVKuGOYAW1bRf4imyFHDrJH0ocjhg50XEOcqiZlux+AXVy2LAYiZLm/vcx0FZC3sjcmWfJivHv2vA5g+QvxSImvWle+K/h5wk9VtyFt1vm8SbalRubdaXAAujr4BVNcrpoIj475pxlyPrIg3NIZhJlpH4ATmp7Y6acX9PTqjpn/Us4BcR8dQl/6oZSXdEw7Ifbas+t+8lR73NBB4kB0Z8JSKObxi7RM2lVvjMfQSSjo6It1b3n0+Wkv0NsIGkN0XE2TVDf4Rci3Uei4ZkTQOe2LC965Or9wTwDGBH4CJJ/x1ZRrVu3CJVLAuK/sRebWy0NmtEDPyVUn3R10rs1d8/RBaRO1xZGXHZaGdZwB+S1xuWKPcs6YK6QXtGZC3xFA1WeCroW8D3yC+615BddacCh0naKGqWEVFPzSXlYiuP1lySVLvmUmsmutN/Mt/ouVhIzlbdorr/NGBug7jrkBdSPwE8odp2SwvtnQ+8um/bU8kD+ecN4p4CfBnYhjzzmVnd/zJwWoO4zyr07/YTYPsB218MnN8g7krkwg/zyO6SheSycvs2bG+R/VDqBtwBrDnMc3dOdPsGtOmqvseXVf9dBrihQdwrySHS65HXzJ5ebV+3SX5o6+Yz97FbOSKugEcnxtQu3RD5M3t3SbsA50n6bEttfHZE3Nf3Xr8F9qy6FOp6bizZlbEAuKS62FzXlZJuIb98TomI6xrE6lVqbdYiZ4CU2w8oC979JSL+VM0onk0mtCarcZ1IJrBBpXhPbhC3lPslPT9yfdOdycEFRHalNKstXV1/qbqjbqy23d4kP7RlwhswyW0s6WrlwsgbVePbh/rZGo8SiYgzyUSxNYvqujex69AdSf2L825MffdI2r33gJW0jKQ9aFDFkixuNrSizxxJV0k6tEpCtUWOaNkUuIis8TGrur9p9VxdsyLi+IhYEHldZOeIuBl4I1Brfc9Kkf0g6VDgQvJLeH/gHLKr7rRhrvuMSUQcFsNc+I6a67IW9mbgfyT9iex7fxs8OurtqCaBNZlrLk30T4fJfCPPTnpvy1XbpwOvnOj2DWjvFYPuD3o8zrizyPHXC8lZqTdX908D1mujvdXjrcihlgvIC34Tvk/72vcLspYOwM7AuT3P1R7XXGo/kN1HKwBrAH8FZlTbVwSubWF/LDdg2/SJ/ndaisfDlsDjB2yfBbxuwts30Q14LN4o13d75aD7gx43eI81gDVaijWwTeSFuRdO9L/TgHY9i5xmfi9wMbBRtX0GuQzcpNoPwNXVf6eRtV+W6XmudnIHtqu+eO4Gfkz+ohl6rtVJbS3+220MbE/fhDZgh4luW6mbu2VGIOkKSYdVo1Da9C3gFrJL5iPAF8iVXLaT9LEGcYssLydpeUlvkLR95CiOl0v6kqSDqmF8dX1q0MZIk2rdW4CIuDoitoqI1SLi+RFxU7V9YUSMuE7nKErthysknUwuFfkT4ARJr5V0LFnaoK5PAi+PiOnk2rfnKRc7h0mwSEU/SYeQI7veRi7C3XvdpfbnrWB+aIXHuY9A0q3kSkOvAf6PHDVyWjQcNy7pqojYvOfxZRGxZdV/d130LQAwjrgPkCNmRE6qGapcKeBpEbFizbjfIofNPoFc+3UlMmFsTx5DI9ZymQwkbRHVBfFC8d8YDYabllANYd2d/GI/g+zu2Zsc7XJURNxfM27/8ftM8nh4H/ChmGSldKtrZs+LiPuq6xhnACdFxOfVYMH0UvmhNRP902Ey31i8D/sF5DT+/yOHRR7YIG6pvtv+awSL3RrEHfp5vyw5QmJa9VhDz9WMu0PP/VWAY8mLiyczzFC7Nv4tCx0rtWsDUaibruD/61zgyX3bZgK/Bv460e0b0N55fY9XIi8u/w/w6wZxi+SHtm7ulhmjiPhZ5ISmtcjx6U0Wfxi6en8vLV69j4jbR7o1aO8y1ey7J5Jn76tU2x8HNOmW6f1J/Bngd8C/kQW6vtog7iCNuwuqkVODbtfQbDp/kW46SRtL+pGksyStL+l4SfdK+pWkZzRo76H0/f9G1kl6EVk1dLL5vaRnDz2IHC68EzkwYrM23qDl/NAKd8uMQFmTec+JbsdEk/RO8gtoGpmEdyGT0TbAGVF/LdlHy+RK+nVEPLvnucUeNyVp14j4fsMYRabzF+ymW2qlmiczSTOBh6Mak9733LYR8fOacSd1fnByn2QmY98tgKSnQk6KUtZSeQnZFVG70JekBeRPYwEHAetHdUBKujqqleUni+pC5HERcfGA506OiFrF5CT9AnhvLJpkc1BEvLx67saIeHrNuL0Lm8+PiA16nmtSf75YrRZrj7tlapL0xkKhay+8PYikVi5uRcRvo7pQFBF/iogzmiT2ytfIrp6VyMW9pwNIejLZfzupRMR+gxJ79VyTKqH93XSHQCuTbEqVai412qszCuaHsbfBZ+71qEH1O41cinWjiGhtzc8mZ2g2tUl6E7k4+H192zcADo6IWrXiS3UjdUmT/NAW15YZwShJuMkFtDUZoe+2QdxBJt2447Fou3tKWcd9wsuwDiJpa+D6iPiLsizxoWRt/uuAj0VErZruETHwonTk4u5NFgEpVqtlKimYH1rh5D6yUkm4SCnWYbTazbMU1V4pSNJhUS3IIWkT4PvAclXi2SMiLm2vma34BjB0Jvx54AFyxMX25D6oVbdGuUDJYWRd/yPJRc6fB1xPrt17W832vhn4uqQNyeGb+1Xv17hWyxSzNE/Sxs3dMiModQHNUqnuqb5ROGcBX4qIH0naCvhcRPxLvRaXIen6iHhGdX+xbrQmo4aq0TKnkENXX0d+UZwOvAx4bUS8uHHjH8Mme35wcrcJU3BoYW9yX2wGYpMZiaVI+jZwdkQcJ+k4cvboXOUSbt+KiC1rxu0dLbNYH3DDmZlFupGsXR4tYxNpqHuqf8LVbcAFDeI+TdIcST8AZkp6Qs9zTSZdlbI/8EJJvwE2AX6prO/+teq5uh6RtJGkLYEnSJoNj15QnTbyn47oG2TXEWQ30ipkN9IDeNHtScNn7h1WfYg3J8+yWlsAYrKT9MK+TZdH1hVZk1ypalL2C0tamVzVZ1lgQUQMWgxjPPG2J6fEPwIcALyTPB5WBg6IXE+gTtwi3UjWLif3DpF0PrB7RNwt6fXAB8lFKrYGjomIL05oA23CSZoO3BsR/2wQo0g3krXL3TLdMiMi7q7uH0JWwtufTO4HTFyzli5JsyWdL+mbktaWdJ6kP0u6rLfGSNepp1Rz9XhvciHuN6lZqeZS3UjWIg+F7JaHJK0VEXeRq7APlXT9B836WKeao4EPA6uSQ9LeGREvrZLcl5kERZ2WkuOoSjVL2pfFSzVvDdQq1VxdMN237W4ka5e7ZTpE0ovIccbfAVYnRzCcCzyfLCv86Ylr3dJTapTIVDNUn0dZ1/0u4KkR8c9qvP9Vk612j7XL3TIdEhEXAP9Cls59CLgc+DvwtsdKYq/8XdLLJO0OhKRd4dELrbX7mqegUqWabQpwt0zHVD+ZvzzR7ZhgbyaXgnuEHEf/FknHk2evB05gu5a2Y4EbyC65/wS+XfWNbwOcOpENs/LcLdMhklYB3g/sCjyJXF7tD+T6kUdGxJ8msHk2AVSgVLNNDU7uHSLpXOCnwAlDCxNU5XP3AbaPiJdNZPuWFs+gNHNy75SRFnYY6bmukTQP2DwiHpZ0DDlz8gxylMjmEVGrEJfZVOI+9265XdJ7yTP33wNUszL3Be6cyIYtZctExMPV/dk9MygvljTpFgExK8GjZbplD2AN4EJJ90i6h6zRsjrwmols2FJ2bc9KOFf11FTZiBxFZNZ57paxzqkuLH8eeAFwN9nffmd1OyQirprA5pktFU7uHSNpY2At4JKIuL9n+w4Rcc7EtWzp8wxKeyxzcu8QSYcAB5Er7TwbePtQ5b/+6n1m1m2+oNotBwDPrcrbzgLOkDQrIj7PFF1L1czqcXLvlmWGVrqPiNuqWjNnSFoXJ3ezxxSPlumW3/eWtK0S/U7AdGCzCWuVmS117nPvEEkzgYeHZqf2PbdtRPx8ApplZhPAyd3MrIPcLWNm1kFO7mZmHeTkbmbWQU7uZmYd9P8B/S8dywMmHLsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -10512,29 +5440,29 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[2.270663033605813e-05,\n", - " 0.0548819255222525,\n", - " 0.6687874659400546,\n", - " 9.990917347865577e-05,\n", - " 0.03206176203451407,\n", - " 0.0031017257039055402,\n", - " 0.022107175295186195,\n", - " 0.006693914623069936,\n", - " 0.011634877384196185,\n", - " 0.052829246139872846,\n", - " 0.00041780199818346956,\n", - " 0.0028837420526793825,\n", - " 0.0012443233424159854,\n", - " 0.13405540417801998]" + "[0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.2747738224778486,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0,\n", + " 0.0]" ] }, - "execution_count": 49, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -10545,7 +5473,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -10561,7 +5489,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ @@ -10580,16 +5508,16 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 103, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.9153224341507721" + "0.26686460438364684" ] }, - "execution_count": 52, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -10600,26 +5528,16 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 104, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.\n", - " 'precision', 'predicted', average, warn_for)\n", - "/usr/local/lib/python3.5/dist-packages/sklearn/metrics/classification.py:1145: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no true samples.\n", - " 'recall', 'true', average, warn_for)\n" - ] - }, { "data": { "text/plain": [ - "0.34354859943746796" + "0.0005925447676435586" ] }, - "execution_count": 53, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -10630,16 +5548,16 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.9102201996974334" + "0.1124298789727235" ] }, - "execution_count": 54, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -10648,6 +5566,13 @@ "f1_score(labels, preds, average='weighted')" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/notebook/Inspect Predictions - Method Naming.ipynb b/notebook/Inspect Predictions - Method Naming.ipynb index 10a605f..779c9f0 100644 --- a/notebook/Inspect Predictions - Method Naming.ipynb +++ b/notebook/Inspect Predictions - Method Naming.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 19, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -32,17 +32,17 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "#path = '../../bert-cmp/bert/'\n", - "path = '../large-corpus/'" + "path = '../sparse/'" ] }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -77,326 +77,338 @@ " 8\n", " 9\n", " ...\n", - " 2480\n", - " 2481\n", - " 2482\n", - " 2483\n", - " 2484\n", - " 2485\n", - " 2486\n", - " 2487\n", - " 2488\n", - " 2489\n", + " 357\n", + " 358\n", + " 359\n", + " 360\n", + " 361\n", + " 362\n", + " 363\n", + " 364\n", + " 365\n", + " 366\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.000301\n", - " 0.000399\n", - " 0.000289\n", - " 0.000392\n", - " 0.000464\n", - " 0.000284\n", - " 0.000504\n", - " 0.000442\n", - " 0.000352\n", - " 0.000247\n", + " 4.112116e-07\n", + " 6.431073e-07\n", + " 1.849602e-07\n", + " 2.901857e-07\n", + " 1.896978e-07\n", + " 9.998808e-01\n", + " 1.181713e-07\n", + " 7.831349e-08\n", + " 1.391216e-06\n", + " 1.022416e-07\n", " ...\n", - " 0.000194\n", - " 0.000569\n", - " 0.000420\n", - " 0.000373\n", - " 0.000480\n", - " 0.000375\n", - " 0.000383\n", - " 0.000410\n", - " 0.000335\n", - " 0.000665\n", + " 4.974994e-08\n", + " 7.632985e-08\n", + " 4.758867e-08\n", + " 7.957695e-08\n", + " 1.858005e-07\n", + " 3.643930e-08\n", + " 5.673511e-08\n", + " 3.031996e-08\n", + " 2.925358e-07\n", + " 8.484311e-08\n", " \n", " \n", " 1\n", - " 0.000304\n", - " 0.000392\n", - " 0.000370\n", - " 0.000378\n", - " 0.000510\n", - " 0.000277\n", - " 0.000410\n", - " 0.000448\n", - " 0.000364\n", - " 0.000277\n", + " 3.001465e-04\n", + " 8.451400e-03\n", + " 7.237033e-05\n", + " 3.140152e-05\n", + " 2.350010e-04\n", + " 1.294978e-04\n", + " 4.570283e-04\n", + " 4.366606e-05\n", + " 1.534946e-04\n", + " 2.121972e-04\n", " ...\n", - " 0.000256\n", - " 0.000471\n", - " 0.000404\n", - " 0.000398\n", - " 0.000457\n", - " 0.000335\n", - " 0.000326\n", - " 0.000356\n", - " 0.000480\n", - " 0.000487\n", + " 1.281680e-04\n", + " 1.202347e-05\n", + " 7.841870e-05\n", + " 3.458156e-04\n", + " 2.887429e-04\n", + " 6.659747e-05\n", + " 3.862405e-05\n", + " 8.485643e-05\n", + " 1.376286e-04\n", + " 2.540933e-03\n", " \n", " \n", " 2\n", - " 0.000357\n", - " 0.000431\n", - " 0.000382\n", - " 0.000431\n", - " 0.000390\n", - " 0.000319\n", - " 0.000335\n", - " 0.000440\n", - " 0.000351\n", - " 0.000313\n", + " 9.228524e-06\n", + " 3.372166e-05\n", + " 9.086550e-06\n", + " 6.295843e-05\n", + " 4.948483e-05\n", + " 7.433358e-05\n", + " 6.279901e-04\n", + " 8.630683e-06\n", + " 6.407512e-06\n", + " 8.860663e-05\n", " ...\n", - " 0.000339\n", - " 0.000456\n", - " 0.000469\n", - " 0.000364\n", - " 0.000552\n", - " 0.000466\n", - " 0.000343\n", - " 0.000358\n", - " 0.000483\n", - " 0.000465\n", + " 1.801482e-05\n", + " 1.693699e-05\n", + " 1.927819e-05\n", + " 1.354420e-04\n", + " 1.218900e-04\n", + " 1.574835e-05\n", + " 1.220086e-05\n", + " 1.585285e-05\n", + " 2.775633e-05\n", + " 2.249711e-05\n", " \n", " \n", " 3\n", - " 0.000421\n", - " 0.000546\n", - " 0.000441\n", - " 0.000426\n", - " 0.000496\n", - " 0.000264\n", - " 0.000278\n", - " 0.000354\n", - " 0.000326\n", - " 0.000421\n", + " 1.625279e-03\n", + " 4.320768e-04\n", + " 7.980427e-04\n", + " 4.398703e-03\n", + " 7.204175e-04\n", + " 6.877603e-03\n", + " 2.316440e-03\n", + " 2.695289e-02\n", + " 1.449860e-03\n", + " 4.616880e-03\n", " ...\n", - " 0.000227\n", - " 0.000492\n", - " 0.000341\n", - " 0.000370\n", - " 0.000574\n", - " 0.000298\n", - " 0.000363\n", - " 0.000369\n", - " 0.000392\n", - " 0.000447\n", + " 4.829602e-04\n", + " 2.176314e-04\n", + " 6.519357e-04\n", + " 1.142669e-03\n", + " 5.279170e-03\n", + " 7.605951e-04\n", + " 2.147494e-04\n", + " 4.885770e-04\n", + " 1.646929e-03\n", + " 6.149090e-04\n", " \n", " \n", " 4\n", - " 0.000310\n", - " 0.000455\n", - " 0.000296\n", - " 0.000462\n", - " 0.000534\n", - " 0.000281\n", - " 0.000342\n", - " 0.000409\n", - " 0.000261\n", - " 0.000323\n", + " 6.679990e-07\n", + " 1.118133e-07\n", + " 1.356601e-07\n", + " 3.105948e-07\n", + " 9.812925e-08\n", + " 2.302669e-06\n", + " 3.953598e-07\n", + " 7.584490e-08\n", + " 8.587980e-08\n", + " 2.130783e-07\n", " ...\n", - " 0.000244\n", - " 0.000466\n", - " 0.000441\n", - " 0.000425\n", - " 0.000542\n", - " 0.000402\n", - " 0.000442\n", - " 0.000384\n", - " 0.000347\n", - " 0.000664\n", + " 5.218141e-08\n", + " 1.580854e-07\n", + " 6.571570e-08\n", + " 1.611555e-07\n", + " 1.264892e-06\n", + " 5.802754e-08\n", + " 2.287778e-08\n", + " 6.092194e-08\n", + " 1.229654e-07\n", + " 1.394618e-07\n", " \n", " \n", " 5\n", - " 0.000318\n", - " 0.000448\n", - " 0.000290\n", - " 0.000472\n", - " 0.000533\n", - " 0.000257\n", - " 0.000319\n", - " 0.000403\n", - " 0.000274\n", - " 0.000332\n", + " 2.491103e-08\n", + " 1.568859e-07\n", + " 6.609765e-08\n", + " 3.131541e-07\n", + " 3.274807e-07\n", + " 1.259794e-07\n", + " 2.869727e-08\n", + " 1.484190e-08\n", + " 1.604501e-08\n", + " 3.322065e-08\n", " ...\n", - " 0.000234\n", - " 0.000485\n", - " 0.000468\n", - " 0.000434\n", - " 0.000532\n", - " 0.000414\n", - " 0.000427\n", - " 0.000351\n", - " 0.000377\n", - " 0.000657\n", + " 2.739106e-08\n", + " 2.026524e-08\n", + " 2.147384e-08\n", + " 2.954245e-07\n", + " 2.366482e-07\n", + " 2.395059e-08\n", + " 1.943951e-08\n", + " 2.001486e-08\n", + " 4.482562e-08\n", + " 3.366723e-08\n", " \n", " \n", " 6\n", - " 0.000307\n", - " 0.000469\n", - " 0.000310\n", - " 0.000387\n", - " 0.000455\n", - " 0.000272\n", - " 0.000300\n", - " 0.000425\n", - " 0.000256\n", - " 0.000382\n", + " 1.175133e-05\n", + " 6.302856e-06\n", + " 1.538858e-05\n", + " 1.975774e-06\n", + " 6.743026e-06\n", + " 8.401215e-06\n", + " 9.915345e-05\n", + " 3.187398e-06\n", + " 1.144623e-05\n", + " 3.738823e-06\n", " ...\n", - " 0.000231\n", - " 0.000504\n", - " 0.000467\n", - " 0.000423\n", - " 0.000502\n", - " 0.000372\n", - " 0.000400\n", - " 0.000304\n", - " 0.000335\n", - " 0.000635\n", + " 5.627634e-06\n", + " 1.611392e-05\n", + " 8.483434e-06\n", + " 8.323984e-06\n", + " 1.623187e-05\n", + " 5.388600e-06\n", + " 4.647758e-06\n", + " 6.885765e-06\n", + " 1.631825e-06\n", + " 2.885853e-06\n", " \n", " \n", " 7\n", - " 0.000331\n", - " 0.000356\n", - " 0.000347\n", - " 0.000416\n", - " 0.000542\n", - " 0.000339\n", - " 0.000294\n", - " 0.000569\n", - " 0.000331\n", - " 0.000409\n", + " 1.037626e-07\n", + " 1.353383e-08\n", + " 7.288905e-09\n", + " 1.098443e-08\n", + " 4.959495e-08\n", + " 5.956720e-08\n", + " 1.022102e-07\n", + " 1.365160e-07\n", + " 3.209238e-08\n", + " 4.519928e-08\n", " ...\n", - " 0.000312\n", - " 0.000499\n", - " 0.000434\n", - " 0.000398\n", - " 0.000591\n", - " 0.000427\n", - " 0.000272\n", - " 0.000311\n", - " 0.000340\n", - " 0.000704\n", + " 1.253997e-08\n", + " 2.981331e-08\n", + " 1.712155e-08\n", + " 6.362873e-08\n", + " 3.363054e-08\n", + " 2.021101e-08\n", + " 1.268721e-08\n", + " 2.116206e-08\n", + " 4.744892e-08\n", + " 2.007199e-08\n", " \n", " \n", " 8\n", - " 0.000270\n", - " 0.000397\n", - " 0.000348\n", - " 0.000472\n", - " 0.000438\n", - " 0.000314\n", - " 0.000438\n", - " 0.000399\n", - " 0.000407\n", - " 0.000308\n", + " 6.833109e-05\n", + " 3.645496e-05\n", + " 2.202850e-05\n", + " 1.781727e-05\n", + " 3.195088e-05\n", + " 1.572230e-04\n", + " 1.019967e-05\n", + " 1.786529e-05\n", + " 2.262647e-05\n", + " 3.677092e-05\n", " ...\n", - " 0.000232\n", - " 0.000470\n", - " 0.000366\n", - " 0.000372\n", - " 0.000496\n", - " 0.000479\n", - " 0.000340\n", - " 0.000398\n", - " 0.000394\n", - " 0.000606\n", + " 7.263287e-06\n", + " 3.531726e-05\n", + " 8.178367e-06\n", + " 2.379867e-05\n", + " 4.802139e-05\n", + " 6.168165e-06\n", + " 2.953384e-05\n", + " 6.080852e-06\n", + " 1.518107e-05\n", + " 4.603200e-05\n", " \n", " \n", " 9\n", - " 0.000565\n", - " 0.000403\n", - " 0.000453\n", - " 0.000351\n", - " 0.000524\n", - " 0.000256\n", - " 0.000438\n", - " 0.000368\n", - " 0.000306\n", - " 0.000347\n", + " 1.659851e-05\n", + " 3.445375e-06\n", + " 7.167127e-05\n", + " 2.247873e-05\n", + " 5.783238e-06\n", + " 4.164083e-05\n", + " 8.055934e-05\n", + " 1.418358e-05\n", + " 1.055363e-04\n", + " 3.648655e-05\n", " ...\n", - " 0.000273\n", - " 0.000518\n", - " 0.000302\n", - " 0.000396\n", - " 0.000354\n", - " 0.000395\n", - " 0.000404\n", - " 0.000408\n", - " 0.000450\n", - " 0.000533\n", + " 6.429980e-06\n", + " 2.886483e-05\n", + " 8.141491e-06\n", + " 2.397202e-05\n", + " 1.312219e-05\n", + " 5.940739e-06\n", + " 3.801329e-06\n", + " 6.381523e-06\n", + " 7.229489e-06\n", + " 1.309865e-06\n", " \n", " \n", "\n", - "

10 rows × 2490 columns

\n", + "

10 rows × 367 columns

\n", "" ], "text/plain": [ - " 0 1 2 3 4 5 6 \\\n", - "0 0.000301 0.000399 0.000289 0.000392 0.000464 0.000284 0.000504 \n", - "1 0.000304 0.000392 0.000370 0.000378 0.000510 0.000277 0.000410 \n", - "2 0.000357 0.000431 0.000382 0.000431 0.000390 0.000319 0.000335 \n", - "3 0.000421 0.000546 0.000441 0.000426 0.000496 0.000264 0.000278 \n", - "4 0.000310 0.000455 0.000296 0.000462 0.000534 0.000281 0.000342 \n", - "5 0.000318 0.000448 0.000290 0.000472 0.000533 0.000257 0.000319 \n", - "6 0.000307 0.000469 0.000310 0.000387 0.000455 0.000272 0.000300 \n", - "7 0.000331 0.000356 0.000347 0.000416 0.000542 0.000339 0.000294 \n", - "8 0.000270 0.000397 0.000348 0.000472 0.000438 0.000314 0.000438 \n", - "9 0.000565 0.000403 0.000453 0.000351 0.000524 0.000256 0.000438 \n", + " 0 1 2 3 4 \\\n", + "0 4.112116e-07 6.431073e-07 1.849602e-07 2.901857e-07 1.896978e-07 \n", + "1 3.001465e-04 8.451400e-03 7.237033e-05 3.140152e-05 2.350010e-04 \n", + "2 9.228524e-06 3.372166e-05 9.086550e-06 6.295843e-05 4.948483e-05 \n", + "3 1.625279e-03 4.320768e-04 7.980427e-04 4.398703e-03 7.204175e-04 \n", + "4 6.679990e-07 1.118133e-07 1.356601e-07 3.105948e-07 9.812925e-08 \n", + "5 2.491103e-08 1.568859e-07 6.609765e-08 3.131541e-07 3.274807e-07 \n", + "6 1.175133e-05 6.302856e-06 1.538858e-05 1.975774e-06 6.743026e-06 \n", + "7 1.037626e-07 1.353383e-08 7.288905e-09 1.098443e-08 4.959495e-08 \n", + "8 6.833109e-05 3.645496e-05 2.202850e-05 1.781727e-05 3.195088e-05 \n", + "9 1.659851e-05 3.445375e-06 7.167127e-05 2.247873e-05 5.783238e-06 \n", "\n", - " 7 8 9 ... 2480 2481 2482 2483 \\\n", - "0 0.000442 0.000352 0.000247 ... 0.000194 0.000569 0.000420 0.000373 \n", - "1 0.000448 0.000364 0.000277 ... 0.000256 0.000471 0.000404 0.000398 \n", - "2 0.000440 0.000351 0.000313 ... 0.000339 0.000456 0.000469 0.000364 \n", - "3 0.000354 0.000326 0.000421 ... 0.000227 0.000492 0.000341 0.000370 \n", - "4 0.000409 0.000261 0.000323 ... 0.000244 0.000466 0.000441 0.000425 \n", - "5 0.000403 0.000274 0.000332 ... 0.000234 0.000485 0.000468 0.000434 \n", - "6 0.000425 0.000256 0.000382 ... 0.000231 0.000504 0.000467 0.000423 \n", - "7 0.000569 0.000331 0.000409 ... 0.000312 0.000499 0.000434 0.000398 \n", - "8 0.000399 0.000407 0.000308 ... 0.000232 0.000470 0.000366 0.000372 \n", - "9 0.000368 0.000306 0.000347 ... 0.000273 0.000518 0.000302 0.000396 \n", + " 5 6 7 8 9 ... \\\n", + "0 9.998808e-01 1.181713e-07 7.831349e-08 1.391216e-06 1.022416e-07 ... \n", + "1 1.294978e-04 4.570283e-04 4.366606e-05 1.534946e-04 2.121972e-04 ... \n", + "2 7.433358e-05 6.279901e-04 8.630683e-06 6.407512e-06 8.860663e-05 ... \n", + "3 6.877603e-03 2.316440e-03 2.695289e-02 1.449860e-03 4.616880e-03 ... \n", + "4 2.302669e-06 3.953598e-07 7.584490e-08 8.587980e-08 2.130783e-07 ... \n", + "5 1.259794e-07 2.869727e-08 1.484190e-08 1.604501e-08 3.322065e-08 ... \n", + "6 8.401215e-06 9.915345e-05 3.187398e-06 1.144623e-05 3.738823e-06 ... \n", + "7 5.956720e-08 1.022102e-07 1.365160e-07 3.209238e-08 4.519928e-08 ... \n", + "8 1.572230e-04 1.019967e-05 1.786529e-05 2.262647e-05 3.677092e-05 ... \n", + "9 4.164083e-05 8.055934e-05 1.418358e-05 1.055363e-04 3.648655e-05 ... \n", "\n", - " 2484 2485 2486 2487 2488 2489 \n", - "0 0.000480 0.000375 0.000383 0.000410 0.000335 0.000665 \n", - "1 0.000457 0.000335 0.000326 0.000356 0.000480 0.000487 \n", - "2 0.000552 0.000466 0.000343 0.000358 0.000483 0.000465 \n", - "3 0.000574 0.000298 0.000363 0.000369 0.000392 0.000447 \n", - "4 0.000542 0.000402 0.000442 0.000384 0.000347 0.000664 \n", - "5 0.000532 0.000414 0.000427 0.000351 0.000377 0.000657 \n", - "6 0.000502 0.000372 0.000400 0.000304 0.000335 0.000635 \n", - "7 0.000591 0.000427 0.000272 0.000311 0.000340 0.000704 \n", - "8 0.000496 0.000479 0.000340 0.000398 0.000394 0.000606 \n", - "9 0.000354 0.000395 0.000404 0.000408 0.000450 0.000533 \n", + " 357 358 359 360 361 \\\n", + "0 4.974994e-08 7.632985e-08 4.758867e-08 7.957695e-08 1.858005e-07 \n", + "1 1.281680e-04 1.202347e-05 7.841870e-05 3.458156e-04 2.887429e-04 \n", + "2 1.801482e-05 1.693699e-05 1.927819e-05 1.354420e-04 1.218900e-04 \n", + "3 4.829602e-04 2.176314e-04 6.519357e-04 1.142669e-03 5.279170e-03 \n", + "4 5.218141e-08 1.580854e-07 6.571570e-08 1.611555e-07 1.264892e-06 \n", + "5 2.739106e-08 2.026524e-08 2.147384e-08 2.954245e-07 2.366482e-07 \n", + "6 5.627634e-06 1.611392e-05 8.483434e-06 8.323984e-06 1.623187e-05 \n", + "7 1.253997e-08 2.981331e-08 1.712155e-08 6.362873e-08 3.363054e-08 \n", + "8 7.263287e-06 3.531726e-05 8.178367e-06 2.379867e-05 4.802139e-05 \n", + "9 6.429980e-06 2.886483e-05 8.141491e-06 2.397202e-05 1.312219e-05 \n", "\n", - "[10 rows x 2490 columns]" + " 362 363 364 365 366 \n", + "0 3.643930e-08 5.673511e-08 3.031996e-08 2.925358e-07 8.484311e-08 \n", + "1 6.659747e-05 3.862405e-05 8.485643e-05 1.376286e-04 2.540933e-03 \n", + "2 1.574835e-05 1.220086e-05 1.585285e-05 2.775633e-05 2.249711e-05 \n", + "3 7.605951e-04 2.147494e-04 4.885770e-04 1.646929e-03 6.149090e-04 \n", + "4 5.802754e-08 2.287778e-08 6.092194e-08 1.229654e-07 1.394618e-07 \n", + "5 2.395059e-08 1.943951e-08 2.001486e-08 4.482562e-08 3.366723e-08 \n", + "6 5.388600e-06 4.647758e-06 6.885765e-06 1.631825e-06 2.885853e-06 \n", + "7 2.021101e-08 1.268721e-08 2.116206e-08 4.744892e-08 2.007199e-08 \n", + "8 6.168165e-06 2.953384e-05 6.080852e-06 1.518107e-05 4.603200e-05 \n", + "9 5.940739e-06 3.801329e-06 6.381523e-06 7.229489e-06 1.309865e-06 \n", + "\n", + "[10 rows x 367 columns]" ] }, - "execution_count": 66, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "results_df = pd.read_csv(path+'cls_output-finetune/test_results.tsv', header=None, sep='\\t')\n", + "results_df = pd.read_csv(path+'cls_output-methodname-sota/test_results.tsv', header=None, sep='\\t')\n", "results_df.head(10)" ] }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(80, 2490)" + "(75, 367)" ] }, - "execution_count": 67, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -407,129 +419,125 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(2490, 1)" + "(367, 1)" ] }, - "execution_count": 68, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "vocab_label_df = pd.read_csv(path+'label_vocab.csv', header=None)\n", + "vocab_label_df = pd.read_csv(path+'sparse_fname2_vocab-label.txt', header=None)\n", "vocab_label_df.shape" ] }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ "n=10\n", - "preds = []\n", + "preds = []; probs = []\n", "for idx, row in results_df.iterrows():\n", " top_n = list(np.argsort(-row)[:n])\n", - " preds.append(top_n[:n])" + " preds.append(top_n[:n])\n", + " probs.append(row[top_n[:n]])" ] }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 115, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[[79, 2197, 2173, 2346, 1534, 2440, 2193, 2385, 2383, 1818],\n", - " [79, 2173, 2197, 2382, 2204, 1434, 2317, 2346, 1488, 428],\n", - " [79, 2173, 2175, 2316, 2312, 2380, 1817, 2435, 2338, 2317],\n", - " [79, 2173, 2197, 2380, 2345, 412, 2268, 52, 2383, 2292],\n", - " [79, 2173, 2197, 52, 2317, 2175, 412, 1967, 1534, 2397],\n", - " [79, 2173, 2197, 52, 2175, 2317, 2322, 42, 1888, 412],\n", - " [79, 2173, 2197, 42, 52, 2175, 412, 2397, 2322, 726],\n", - " [79, 2173, 2175, 2197, 2380, 52, 2200, 1967, 2075, 2346],\n", - " [79, 2197, 2383, 2346, 2173, 1146, 2157, 1506, 1620, 2193],\n", - " [79, 2312, 2338, 2317, 2197, 2173, 677, 2354, 2003, 1679],\n", - " [79, 2173, 2197, 2175, 52, 2186, 2204, 2346, 2354, 1507],\n", - " [79, 2173, 2197, 2229, 2330, 2204, 2396, 1270, 2175, 2340],\n", - " [79, 2173, 2197, 52, 2232, 2341, 2380, 2310, 2346, 958],\n", - " [79, 2173, 2186, 2246, 951, 2380, 1659, 1639, 2200, 2197],\n", - " [79, 2173, 2259, 2253, 2310, 2452, 1286, 935, 2197, 2246],\n", - " [79, 2246, 2247, 2173, 2197, 2312, 706, 52, 1016, 412],\n", - " [79, 2246, 2247, 2173, 2312, 2463, 2266, 2197, 412, 1771],\n", - " [79, 2247, 2246, 2173, 2197, 2312, 706, 412, 52, 2260],\n", - " [79, 2173, 2197, 52, 2362, 2317, 2380, 2382, 2253, 1483],\n", - " [79, 2173, 2197, 52, 2175, 2317, 2346, 2312, 2251, 2266],\n", - " [79, 2197, 2173, 52, 42, 2346, 1967, 2292, 2175, 2321],\n", - " [2173, 79, 52, 2197, 2402, 2382, 2346, 42, 1150, 2266],\n", - " [2173, 79, 52, 2197, 2402, 2382, 2346, 42, 1150, 2266],\n", - " [79, 2173, 2200, 2197, 2346, 2312, 2253, 2175, 2193, 1967],\n", - " [2173, 79, 52, 2278, 2197, 1818, 669, 2312, 49, 804],\n", - " [2173, 79, 52, 2402, 2197, 2346, 42, 545, 2382, 2266],\n", - " [79, 2173, 2197, 52, 2175, 2317, 42, 2346, 2411, 2354],\n", - " [79, 2173, 2197, 52, 412, 2200, 2186, 2399, 1967, 2317],\n", - " [2173, 79, 52, 2197, 2346, 2411, 2382, 2402, 2200, 2321],\n", - " [79, 2173, 2197, 52, 412, 2204, 42, 2186, 2292, 1164],\n", - " [79, 2173, 52, 2278, 2197, 550, 2204, 2229, 2402, 54],\n", - " [79, 2197, 2173, 52, 412, 2204, 2292, 2175, 2401, 2312],\n", - " [79, 2173, 2175, 52, 2197, 2346, 2380, 2317, 2402, 2310],\n", - " [79, 2173, 2175, 52, 851, 2197, 2312, 2402, 2380, 2349],\n", - " [2173, 79, 52, 2402, 2197, 2382, 2346, 545, 706, 2266],\n", - " [79, 2173, 2196, 2278, 2346, 2259, 152, 428, 2402, 1066],\n", - " [79, 2173, 2400, 2197, 2316, 2397, 1255, 1434, 1164, 1286],\n", - " [79, 2173, 2380, 2197, 2317, 2346, 2354, 52, 2402, 2175],\n", - " [2173, 79, 2325, 2197, 1873, 2247, 2346, 2417, 2246, 2328],\n", - " [79, 2173, 2197, 1164, 1549, 1796, 2115, 2452, 2259, 2278],\n", - " [79, 2173, 2175, 2197, 1581, 52, 2316, 2251, 2381, 2204],\n", - " [79, 2173, 2268, 2197, 52, 2380, 2292, 1680, 1549, 2157],\n", - " [79, 2173, 2197, 2370, 2383, 2345, 2200, 2268, 2204, 1680],\n", - " [79, 2173, 2246, 2312, 2197, 428, 42, 870, 2423, 2277],\n", - " [79, 2173, 2197, 2246, 677, 52, 2312, 2382, 2402, 428],\n", - " [79, 2173, 2197, 2317, 52, 2321, 2328, 2380, 42, 348],\n", - " [79, 2173, 2197, 2383, 2328, 52, 2380, 2484, 2346, 697],\n", - " [79, 2173, 2197, 2380, 2444, 52, 2361, 2383, 2246, 2346],\n", - " [79, 2173, 2197, 2328, 52, 42, 2346, 2484, 2312, 2383],\n", - " [79, 2173, 2197, 2328, 52, 2346, 2383, 2354, 2380, 2317],\n", - " [79, 2173, 2197, 2328, 1720, 412, 2484, 2380, 2317, 2383],\n", - " [79, 2173, 2197, 2328, 2246, 52, 2361, 2346, 2453, 2312],\n", - " [79, 2173, 2197, 2312, 52, 2193, 2317, 2382, 2268, 706],\n", - " [79, 2173, 2197, 2312, 52, 697, 2328, 2484, 2380, 2200],\n", - " [79, 2173, 2197, 2292, 2380, 2312, 2317, 2322, 52, 1549],\n", - " [79, 2173, 2197, 52, 2321, 2354, 407, 618, 2316, 550],\n", - " [79, 2197, 2173, 2317, 412, 2316, 2349, 2268, 52, 2175],\n", - " [79, 2173, 2197, 52, 2322, 2175, 2247, 2246, 1016, 2380],\n", - " [79, 2312, 2338, 2197, 2370, 2452, 2166, 2173, 2383, 2417],\n", - " [79, 2173, 2197, 2312, 52, 2229, 2175, 2354, 2268, 870],\n", - " [79, 2173, 2322, 2197, 2325, 2383, 52, 2380, 1851, 453],\n", - " [79, 2173, 2200, 2197, 2295, 2005, 2406, 2484, 2383, 2423],\n", - " [79, 2173, 2197, 2322, 2383, 52, 2328, 2325, 2346, 2380],\n", - " [79, 2173, 2197, 2322, 2361, 2312, 2385, 2417, 2383, 1804],\n", - " [79, 2173, 2349, 2266, 2197, 2268, 2380, 2345, 1804, 2322],\n", - " [79, 2173, 2197, 52, 2247, 2175, 2312, 2229, 2246, 2346],\n", - " [79, 2197, 2383, 2247, 2349, 2317, 2246, 2312, 2342, 642],\n", - " [79, 2173, 2197, 2246, 2186, 52, 2310, 2380, 2204, 129],\n", - " [79, 2173, 2197, 52, 2312, 1858, 550, 2317, 2175, 2278],\n", - " [2173, 79, 52, 2278, 2435, 2354, 1726, 2197, 2316, 1478],\n", - " [79, 2197, 2173, 52, 412, 2383, 2253, 2175, 2380, 2406],\n", - " [79, 2173, 2197, 2259, 2346, 52, 2312, 2324, 2175, 2196],\n", - " [79, 2173, 2383, 2197, 2380, 738, 52, 2455, 2468, 2325],\n", - " [79, 1805, 2173, 228, 883, 2312, 2183, 897, 1372, 2247],\n", - " [2173, 79, 2175, 52, 1114, 2259, 1621, 2317, 2204, 2200],\n", - " [2173, 79, 2175, 52, 1114, 2259, 1621, 2317, 2204, 2200],\n", - " [2173, 79, 2259, 52, 2200, 2253, 2312, 2469, 998, 2175],\n", - " [2173, 79, 2259, 2200, 52, 2253, 2312, 2469, 998, 1805],\n", - " [2173, 79, 52, 2197, 2186, 2346, 2402, 2321, 2204, 1304],\n", - " [79, 2173, 2197, 2317, 2349, 1434, 2380, 2235, 2383, 2186]]" + "[[5, 326, 27, 325, 327, 169, 50, 353, 349, 31],\n", + " [13, 17, 317, 1, 324, 12, 91, 16, 18, 366],\n", + " [17, 18, 12, 16, 20, 83, 19, 106, 86, 6],\n", + " [245, 223, 225, 27, 207, 7, 70, 314, 82, 106],\n", + " [27, 165, 59, 5, 326, 121, 51, 221, 242, 56],\n", + " [12, 17, 111, 84, 82, 106, 315, 107, 49, 182],\n", + " [24, 184, 333, 180, 251, 242, 182, 6, 156, 141],\n", + " [25, 312, 233, 158, 145, 240, 93, 225, 309, 157],\n", + " [31, 32, 28, 30, 33, 234, 228, 340, 5, 232],\n", + " [24, 50, 150, 191, 141, 157, 123, 199, 133, 47],\n", + " [68, 71, 304, 69, 12, 115, 111, 120, 124, 310],\n", + " [12, 17, 106, 111, 107, 84, 251, 315, 82, 27],\n", + " [13, 20, 310, 42, 15, 242, 6, 50, 154, 18],\n", + " [101, 327, 248, 156, 206, 23, 26, 163, 204, 87],\n", + " [110, 120, 111, 118, 122, 117, 115, 109, 59, 128],\n", + " [111, 110, 114, 12, 118, 303, 112, 115, 349, 120],\n", + " [12, 17, 111, 106, 315, 107, 84, 82, 251, 142],\n", + " [123, 50, 166, 135, 53, 24, 141, 111, 308, 153],\n", + " [50, 24, 53, 157, 123, 138, 203, 158, 130, 141],\n", + " [127, 128, 129, 68, 361, 130, 112, 113, 218, 110],\n", + " [127, 128, 129, 68, 361, 130, 112, 113, 218, 110],\n", + " [127, 128, 129, 68, 361, 130, 112, 113, 218, 110],\n", + " [127, 128, 129, 68, 361, 130, 112, 218, 113, 1],\n", + " [50, 24, 138, 157, 158, 123, 133, 141, 53, 103],\n", + " [50, 24, 157, 138, 53, 158, 137, 123, 203, 145],\n", + " [12, 17, 106, 111, 315, 107, 251, 84, 82, 142],\n", + " [49, 157, 278, 351, 280, 240, 84, 291, 12, 124],\n", + " [141, 142, 47, 349, 133, 85, 134, 0, 24, 329],\n", + " [134, 307, 135, 142, 355, 306, 47, 316, 132, 141],\n", + " [25, 225, 312, 93, 240, 309, 145, 158, 233, 157],\n", + " [12, 17, 111, 106, 107, 315, 251, 82, 84, 27],\n", + " [12, 17, 111, 106, 107, 251, 82, 315, 27, 142],\n", + " [138, 287, 218, 50, 324, 272, 123, 259, 148, 273],\n", + " [25, 240, 225, 312, 233, 157, 309, 158, 277, 93],\n", + " [50, 147, 157, 53, 24, 138, 123, 203, 303, 158],\n", + " [25, 225, 240, 312, 158, 309, 93, 233, 157, 145],\n", + " [53, 50, 78, 287, 259, 157, 49, 258, 134, 123],\n", + " [27, 165, 5, 59, 121, 12, 361, 326, 327, 242],\n", + " [136, 137, 25, 237, 266, 153, 24, 134, 224, 151],\n", + " [50, 53, 157, 138, 123, 303, 203, 24, 147, 135],\n", + " [50, 53, 157, 138, 123, 303, 203, 24, 147, 135],\n", + " [146, 119, 115, 67, 180, 49, 116, 50, 24, 111],\n", + " [156, 297, 216, 197, 42, 333, 211, 38, 39, 158],\n", + " [12, 17, 111, 106, 84, 315, 251, 107, 27, 49],\n", + " [12, 17, 111, 106, 251, 315, 107, 84, 82, 142],\n", + " [49, 124, 157, 64, 265, 12, 351, 278, 280, 84],\n", + " [274, 266, 265, 221, 215, 333, 24, 224, 267, 72],\n", + " [277, 172, 171, 163, 174, 98, 128, 235, 127, 161],\n", + " [220, 173, 176, 292, 174, 222, 297, 314, 155, 137],\n", + " [265, 282, 239, 185, 64, 73, 327, 260, 266, 221],\n", + " [190, 272, 297, 310, 154, 278, 239, 41, 10, 226],\n", + " [202, 203, 269, 201, 270, 215, 254, 50, 130, 214],\n", + " [215, 203, 269, 202, 130, 255, 211, 271, 197, 254],\n", + " [12, 17, 111, 49, 251, 106, 124, 84, 315, 27],\n", + " [240, 140, 49, 25, 173, 153, 50, 61, 53, 91],\n", + " [210, 88, 344, 5, 62, 76, 23, 99, 43, 175],\n", + " [189, 188, 256, 274, 252, 279, 171, 333, 183, 178],\n", + " [173, 235, 240, 72, 210, 297, 61, 366, 292, 220],\n", + " [192, 191, 193, 198, 194, 195, 170, 200, 197, 196],\n", + " [265, 209, 269, 268, 23, 330, 274, 276, 239, 190],\n", + " [239, 267, 273, 62, 144, 268, 265, 271, 314, 88],\n", + " [173, 72, 286, 70, 216, 197, 114, 61, 210, 235],\n", + " [276, 274, 216, 297, 190, 174, 215, 266, 42, 209],\n", + " [174, 314, 11, 210, 216, 245, 297, 353, 274, 9],\n", + " [186, 189, 185, 181, 180, 228, 232, 282, 363, 281],\n", + " [227, 188, 189, 267, 279, 42, 274, 281, 89, 64],\n", + " [253, 63, 170, 207, 85, 18, 78, 41, 114, 190],\n", + " [193, 194, 197, 192, 195, 191, 198, 200, 211, 196],\n", + " [279, 184, 273, 361, 360, 187, 83, 6, 109, 243],\n", + " [35, 53, 34, 106, 23, 40, 226, 43, 213, 272],\n", + " [281, 280, 205, 299, 186, 279, 65, 269, 329, 286],\n", + " [184, 101, 251, 186, 65, 163, 250, 26, 204, 232],\n", + " [106, 361, 105, 18, 202, 23, 253, 331, 19, 50],\n", + " [327, 326, 6, 184, 239, 100, 199, 2, 27, 312],\n", + " [318, 337, 338, 340, 341, 342, 339, 308, 78, 55]]" ] }, - "execution_count": 70, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } @@ -540,62 +548,840 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 116, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(80, 1)" + "[5 0.999881\n", + " 326 0.000010\n", + " 27 0.000006\n", + " 325 0.000004\n", + " 327 0.000002\n", + " 169 0.000002\n", + " 50 0.000002\n", + " 353 0.000002\n", + " 349 0.000002\n", + " 31 0.000002\n", + " Name: 0, dtype: float64, 13 0.867377\n", + " 17 0.014933\n", + " 317 0.013496\n", + " 1 0.008451\n", + " 324 0.007979\n", + " 12 0.005869\n", + " 91 0.004207\n", + " 16 0.003798\n", + " 18 0.003697\n", + " 366 0.002541\n", + " Name: 1, dtype: float64, 17 0.961273\n", + " 18 0.009632\n", + " 12 0.003729\n", + " 16 0.001567\n", + " 20 0.001309\n", + " 83 0.001292\n", + " 19 0.000922\n", + " 106 0.000880\n", + " 86 0.000693\n", + " 6 0.000628\n", + " Name: 2, dtype: float64, 245 0.059546\n", + " 223 0.051535\n", + " 225 0.041228\n", + " 27 0.030961\n", + " 207 0.029695\n", + " 7 0.026953\n", + " 70 0.022590\n", + " 314 0.020581\n", + " 82 0.019688\n", + " 106 0.018881\n", + " Name: 3, dtype: float64, 27 0.999906\n", + " 165 0.000005\n", + " 59 0.000004\n", + " 5 0.000002\n", + " 326 0.000002\n", + " 121 0.000002\n", + " 51 0.000002\n", + " 221 0.000002\n", + " 242 0.000002\n", + " 56 0.000002\n", + " Name: 4, dtype: float64, 12 9.999586e-01\n", + " 17 2.494869e-06\n", + " 111 1.370347e-06\n", + " 84 1.326499e-06\n", + " 82 1.176426e-06\n", + " 106 9.784969e-07\n", + " 315 9.536529e-07\n", + " 107 7.309952e-07\n", + " 49 6.222855e-07\n", + " 182 5.763373e-07\n", + " Name: 5, dtype: float64, 24 0.994536\n", + " 184 0.000722\n", + " 333 0.000258\n", + " 180 0.000140\n", + " 251 0.000117\n", + " 242 0.000115\n", + " 182 0.000103\n", + " 6 0.000099\n", + " 156 0.000097\n", + " 141 0.000090\n", + " Name: 6, dtype: float64, 25 9.999763e-01\n", + " 312 7.971546e-07\n", + " 233 6.942345e-07\n", + " 158 6.937109e-07\n", + " 145 5.427492e-07\n", + " 240 5.091568e-07\n", + " 93 4.868993e-07\n", + " 225 4.541431e-07\n", + " 309 4.184716e-07\n", + " 157 3.426967e-07\n", + " Name: 7, dtype: float64, 31 0.209442\n", + " 32 0.197847\n", + " 28 0.197530\n", + " 30 0.192749\n", + " 33 0.190234\n", + " 234 0.000252\n", + " 228 0.000165\n", + " 340 0.000160\n", + " 5 0.000157\n", + " 232 0.000153\n", + " Name: 8, dtype: float64, 24 0.553645\n", + " 50 0.434207\n", + " 150 0.000901\n", + " 191 0.000477\n", + " 141 0.000403\n", + " 157 0.000388\n", + " 123 0.000371\n", + " 199 0.000304\n", + " 133 0.000272\n", + " 47 0.000263\n", + " Name: 9, dtype: float64, 68 0.323439\n", + " 71 0.099377\n", + " 304 0.055161\n", + " 69 0.040093\n", + " 12 0.024331\n", + " 115 0.020087\n", + " 111 0.020053\n", + " 120 0.015049\n", + " 124 0.013617\n", + " 310 0.012776\n", + " Name: 10, dtype: float64, 12 9.999820e-01\n", + " 17 8.456656e-07\n", + " 106 4.826538e-07\n", + " 111 4.269096e-07\n", + " 107 3.721881e-07\n", + " 84 3.665438e-07\n", + " 251 3.395557e-07\n", + " 315 3.382948e-07\n", + " 82 2.640541e-07\n", + " 27 2.592397e-07\n", + " Name: 11, dtype: float64, 13 0.156603\n", + " 20 0.083141\n", + " 310 0.034374\n", + " 42 0.032037\n", + " 15 0.028185\n", + " 242 0.020976\n", + " 6 0.018526\n", + " 50 0.018121\n", + " 154 0.015058\n", + " 18 0.014073\n", + " Name: 12, dtype: float64, 101 0.999265\n", + " 327 0.000036\n", + " 248 0.000019\n", + " 156 0.000015\n", + " 206 0.000015\n", + " 23 0.000011\n", + " 26 0.000011\n", + " 163 0.000011\n", + " 204 0.000010\n", + " 87 0.000009\n", + " Name: 13, dtype: float64, 110 0.999926\n", + " 120 0.000004\n", + " 111 0.000003\n", + " 118 0.000002\n", + " 122 0.000002\n", + " 117 0.000001\n", + " 115 0.000001\n", + " 109 0.000001\n", + " 59 0.000001\n", + " 128 0.000001\n", + " Name: 14, dtype: float64, 111 0.999932\n", + " 110 0.000002\n", + " 114 0.000002\n", + " 12 0.000002\n", + " 118 0.000001\n", + " 303 0.000001\n", + " 112 0.000001\n", + " 115 0.000001\n", + " 349 0.000001\n", + " 120 0.000001\n", + " Name: 15, dtype: float64, 12 9.999851e-01\n", + " 17 6.964435e-07\n", + " 111 4.696441e-07\n", + " 106 4.666924e-07\n", + " 315 3.726095e-07\n", + " 107 2.763846e-07\n", + " 84 2.629304e-07\n", + " 82 2.549007e-07\n", + " 251 2.426592e-07\n", + " 142 2.281207e-07\n", + " Name: 16, dtype: float64, 123 0.999854\n", + " 50 0.000006\n", + " 166 0.000005\n", + " 135 0.000005\n", + " 53 0.000004\n", + " 24 0.000003\n", + " 141 0.000003\n", + " 111 0.000003\n", + " 308 0.000002\n", + " 153 0.000002\n", + " Name: 17, dtype: float64, 50 0.999925\n", + " 24 0.000005\n", + " 53 0.000004\n", + " 157 0.000004\n", + " 123 0.000002\n", + " 138 0.000002\n", + " 203 0.000002\n", + " 158 0.000001\n", + " 130 0.000001\n", + " 141 0.000001\n", + " Name: 18, dtype: float64, 127 0.343043\n", + " 128 0.325561\n", + " 129 0.323394\n", + " 68 0.000297\n", + " 361 0.000203\n", + " 130 0.000173\n", + " 112 0.000168\n", + " 113 0.000162\n", + " 218 0.000147\n", + " 110 0.000140\n", + " Name: 19, dtype: float64, 127 0.343043\n", + " 128 0.325561\n", + " 129 0.323394\n", + " 68 0.000297\n", + " 361 0.000203\n", + " 130 0.000173\n", + " 112 0.000168\n", + " 113 0.000162\n", + " 218 0.000147\n", + " 110 0.000140\n", + " Name: 20, dtype: float64, 127 0.343043\n", + " 128 0.325561\n", + " 129 0.323394\n", + " 68 0.000297\n", + " 361 0.000203\n", + " 130 0.000173\n", + " 112 0.000168\n", + " 113 0.000162\n", + " 218 0.000147\n", + " 110 0.000140\n", + " Name: 21, dtype: float64, 127 0.345454\n", + " 128 0.324784\n", + " 129 0.320049\n", + " 68 0.000325\n", + " 361 0.000277\n", + " 130 0.000243\n", + " 112 0.000233\n", + " 218 0.000230\n", + " 113 0.000176\n", + " 1 0.000162\n", + " Name: 22, dtype: float64, 50 9.999404e-01\n", + " 24 4.478387e-06\n", + " 138 2.177924e-06\n", + " 157 1.925084e-06\n", + " 158 1.393991e-06\n", + " 123 1.371040e-06\n", + " 133 1.355770e-06\n", + " 141 1.347779e-06\n", + " 53 1.108427e-06\n", + " 103 9.498099e-07\n", + " Name: 23, dtype: float64, 50 0.999861\n", + " 24 0.000028\n", + " 157 0.000005\n", + " 138 0.000005\n", + " 53 0.000004\n", + " 158 0.000003\n", + " 137 0.000003\n", + " 123 0.000002\n", + " 203 0.000002\n", + " 145 0.000002\n", + " Name: 24, dtype: float64, 12 9.999852e-01\n", + " 17 6.511552e-07\n", + " 106 4.492227e-07\n", + " 111 4.260544e-07\n", + " 315 3.449906e-07\n", + " 107 2.770787e-07\n", + " 251 2.530336e-07\n", + " 84 2.467969e-07\n", + " 82 2.462885e-07\n", + " 142 2.441781e-07\n", + " Name: 25, dtype: float64, 49 0.999875\n", + " 157 0.000014\n", + " 278 0.000007\n", + " 351 0.000006\n", + " 280 0.000004\n", + " 240 0.000003\n", + " 84 0.000002\n", + " 291 0.000002\n", + " 12 0.000002\n", + " 124 0.000002\n", + " Name: 26, dtype: float64, 141 0.999769\n", + " 142 0.000044\n", + " 47 0.000014\n", + " 349 0.000013\n", + " 133 0.000006\n", + " 85 0.000003\n", + " 134 0.000003\n", + " 0 0.000003\n", + " 24 0.000003\n", + " 329 0.000003\n", + " Name: 27, dtype: float64, 134 0.999413\n", + " 307 0.000120\n", + " 135 0.000033\n", + " 142 0.000023\n", + " 355 0.000015\n", + " 306 0.000014\n", + " 47 0.000013\n", + " 316 0.000010\n", + " 132 0.000009\n", + " 141 0.000009\n", + " Name: 28, dtype: float64, 25 9.999806e-01\n", + " 225 8.279999e-07\n", + " 312 6.953566e-07\n", + " 93 6.134323e-07\n", + " 240 4.682493e-07\n", + " 309 4.225857e-07\n", + " 145 3.473521e-07\n", + " 158 3.295080e-07\n", + " 233 2.924504e-07\n", + " 157 2.888911e-07\n", + " Name: 29, dtype: float64, 12 9.999840e-01\n", + " 17 6.322518e-07\n", + " 111 4.838913e-07\n", + " 106 4.751167e-07\n", + " 107 3.535933e-07\n", + " 315 3.172417e-07\n", + " 251 2.903685e-07\n", + " 82 2.695535e-07\n", + " 84 2.671583e-07\n", + " 27 2.459205e-07\n", + " Name: 30, dtype: float64, 12 9.999845e-01\n", + " 17 7.809409e-07\n", + " 111 5.222514e-07\n", + " 106 5.068070e-07\n", + " 107 3.785734e-07\n", + " 251 3.150659e-07\n", + " 82 2.985853e-07\n", + " 315 2.828467e-07\n", + " 27 2.661717e-07\n", + " 142 2.496913e-07\n", + " Name: 31, dtype: float64, 138 0.999845\n", + " 287 0.000008\n", + " 218 0.000007\n", + " 50 0.000006\n", + " 324 0.000004\n", + " 272 0.000003\n", + " 123 0.000003\n", + " 259 0.000002\n", + " 148 0.000002\n", + " 273 0.000002\n", + " Name: 32, dtype: float64, 25 9.999785e-01\n", + " 240 9.267596e-07\n", + " 225 6.956086e-07\n", + " 312 5.487263e-07\n", + " 233 4.995676e-07\n", + " 157 4.246942e-07\n", + " 309 3.967103e-07\n", + " 158 3.496492e-07\n", + " 277 3.412614e-07\n", + " 93 2.839041e-07\n", + " Name: 33, dtype: float64, 50 9.999527e-01\n", + " 147 1.670877e-06\n", + " 157 1.478313e-06\n", + " 53 1.348189e-06\n", + " 24 1.254787e-06\n", + " 138 1.237838e-06\n", + " 123 1.079110e-06\n", + " 203 9.251957e-07\n", + " 303 9.218769e-07\n", + " 158 9.021248e-07\n", + " Name: 34, dtype: float64, 25 9.999841e-01\n", + " 225 6.266166e-07\n", + " 240 5.070548e-07\n", + " 312 3.992814e-07\n", + " 158 3.700725e-07\n", + " 309 3.598229e-07\n", + " 93 3.486224e-07\n", + " 233 3.200063e-07\n", + " 157 2.600254e-07\n", + " 145 2.383182e-07\n", + " Name: 35, dtype: float64, 53 0.999837\n", + " 50 0.000006\n", + " 78 0.000006\n", + " 287 0.000004\n", + " 259 0.000004\n", + " 157 0.000004\n", + " 49 0.000003\n", + " 258 0.000003\n", + " 134 0.000003\n", + " 123 0.000003\n", + " Name: 36, dtype: float64, 27 0.999916\n", + " 165 0.000003\n", + " 5 0.000003\n", + " 59 0.000002\n", + " 121 0.000002\n", + " 12 0.000002\n", + " 361 0.000002\n", + " 326 0.000002\n", + " 327 0.000001\n", + " 242 0.000001\n", + " Name: 37, dtype: float64, 136 0.999663\n", + " 137 0.000112\n", + " 25 0.000004\n", + " 237 0.000004\n", + " 266 0.000004\n", + " 153 0.000004\n", + " 24 0.000004\n", + " 134 0.000003\n", + " 224 0.000003\n", + " 151 0.000003\n", + " Name: 38, dtype: float64, 50 9.999567e-01\n", + " 53 3.159763e-06\n", + " 157 1.496140e-06\n", + " 138 1.468147e-06\n", + " 123 1.181006e-06\n", + " 303 1.169216e-06\n", + " 203 1.153912e-06\n", + " 24 9.594814e-07\n", + " 147 9.243351e-07\n", + " 135 8.687176e-07\n", + " Name: 39, dtype: float64, 50 9.999567e-01\n", + " 53 3.159763e-06\n", + " 157 1.496140e-06\n", + " 138 1.468147e-06\n", + " 123 1.181006e-06\n", + " 303 1.169216e-06\n", + " 203 1.153912e-06\n", + " 24 9.594814e-07\n", + " 147 9.243351e-07\n", + " 135 8.687176e-07\n", + " Name: 40, dtype: float64, 146 0.999753\n", + " 119 0.000007\n", + " 115 0.000006\n", + " 67 0.000004\n", + " 180 0.000004\n", + " 49 0.000004\n", + " 116 0.000003\n", + " 50 0.000003\n", + " 24 0.000003\n", + " 111 0.000003\n", + " Name: 41, dtype: float64, 156 0.752045\n", + " 297 0.142837\n", + " 216 0.005502\n", + " 197 0.004975\n", + " 42 0.004152\n", + " 333 0.004043\n", + " 211 0.003317\n", + " 38 0.003078\n", + " 39 0.002822\n", + " 158 0.002204\n", + " Name: 42, dtype: float64, 12 9.999821e-01\n", + " 17 5.781328e-07\n", + " 111 5.310960e-07\n", + " 106 5.100024e-07\n", + " 84 4.549551e-07\n", + " 315 4.377289e-07\n", + " 251 3.709721e-07\n", + " 107 3.706697e-07\n", + " 27 3.014912e-07\n", + " 49 2.803699e-07\n", + " Name: 43, dtype: float64, 12 9.999844e-01\n", + " 17 6.675475e-07\n", + " 111 5.005161e-07\n", + " 106 4.741644e-07\n", + " 251 3.083991e-07\n", + " 315 2.918839e-07\n", + " 107 2.776072e-07\n", + " 84 2.594097e-07\n", + " 82 2.500452e-07\n", + " 142 2.489786e-07\n", + " Name: 44, dtype: float64, 49 0.999565\n", + " 124 0.000035\n", + " 157 0.000026\n", + " 64 0.000016\n", + " 265 0.000013\n", + " 12 0.000010\n", + " 351 0.000010\n", + " 278 0.000009\n", + " 280 0.000008\n", + " 84 0.000008\n", + " Name: 45, dtype: float64, 274 0.204041\n", + " 266 0.175397\n", + " 265 0.037251\n", + " 221 0.029118\n", + " 215 0.028097\n", + " 333 0.023645\n", + " 24 0.022377\n", + " 224 0.020392\n", + " 267 0.019130\n", + " 72 0.017497\n", + " Name: 46, dtype: float64, 277 0.314403\n", + " 172 0.109353\n", + " 171 0.057604\n", + " 163 0.054957\n", + " 174 0.039364\n", + " 98 0.036517\n", + " 128 0.024901\n", + " 235 0.020062\n", + " 127 0.014041\n", + " 161 0.011514\n", + " Name: 47, dtype: float64, 220 0.979679\n", + " 173 0.007069\n", + " 176 0.000611\n", + " 292 0.000510\n", + " 174 0.000353\n", + " 222 0.000348\n", + " 297 0.000306\n", + " 314 0.000301\n", + " 155 0.000279\n", + " 137 0.000263\n", + " Name: 48, dtype: float64, 265 0.796390\n", + " 282 0.033996\n", + " 239 0.027061\n", + " 185 0.007935\n", + " 64 0.007315\n", + " 73 0.006140\n", + " 327 0.004839\n", + " 260 0.004695\n", + " 266 0.003009\n", + " 221 0.002439\n", + " Name: 49, dtype: float64, 190 0.976114\n", + " 272 0.004040\n", + " 297 0.001813\n", + " 310 0.000798\n", + " 154 0.000621\n", + " 278 0.000617\n", + " 239 0.000339\n", + " 41 0.000319\n", + " 10 0.000315\n", + " 226 0.000304\n", + " Name: 50, dtype: float64, 202 0.965608\n", + " 203 0.030864\n", + " 269 0.000330\n", + " 201 0.000286\n", + " 270 0.000182\n", + " 215 0.000150\n", + " 254 0.000125\n", + " 50 0.000078\n", + " 130 0.000071\n", + " 214 0.000070\n", + " Name: 51, dtype: float64, 215 0.998733\n", + " 203 0.000163\n", + " 269 0.000082\n", + " 202 0.000062\n", + " 130 0.000034\n", + " 255 0.000031\n", + " 211 0.000028\n", + " 271 0.000023\n", + " 197 0.000022\n", + " 254 0.000021\n", + " Name: 52, dtype: float64, 12 9.999796e-01\n", + " 17 1.064745e-06\n", + " 111 5.733069e-07\n", + " 49 4.946203e-07\n", + " 251 4.859564e-07\n", + " 106 4.533129e-07\n", + " 124 3.596309e-07\n", + " 84 3.591473e-07\n", + " 315 3.077524e-07\n", + " 27 3.032855e-07\n", + " Name: 53, dtype: float64, 240 0.999795\n", + " 140 0.000006\n", + " 49 0.000006\n", + " 25 0.000006\n", + " 173 0.000006\n", + " 153 0.000006\n", + " 50 0.000005\n", + " 61 0.000004\n", + " 53 0.000004\n", + " 91 0.000004\n", + " Name: 54, dtype: float64, 210 0.155775\n", + " 88 0.035390\n", + " 344 0.033299\n", + " 5 0.023675\n", + " 62 0.020596\n", + " 76 0.020389\n", + " 23 0.018522\n", + " 99 0.018119\n", + " 43 0.017120\n", + " 175 0.015506\n", + " Name: 55, dtype: float64, 189 0.217180\n", + " 188 0.189048\n", + " 256 0.032585\n", + " 274 0.027121\n", + " 252 0.027077\n", + " 279 0.022765\n", + " 171 0.022476\n", + " 333 0.019257\n", + " 183 0.017829\n", + " 178 0.016233\n", + " Name: 56, dtype: float64, 173 0.999387\n", + " 235 0.000022\n", + " 240 0.000019\n", + " 72 0.000015\n", + " 210 0.000013\n", + " 297 0.000010\n", + " 61 0.000010\n", + " 366 0.000010\n", + " 292 0.000010\n", + " 220 0.000009\n", + " Name: 57, dtype: float64, 192 0.986082\n", + " 191 0.004445\n", + " 193 0.002115\n", + " 198 0.001363\n", + " 194 0.001261\n", + " 195 0.000403\n", + " 170 0.000137\n", + " 200 0.000095\n", + " 197 0.000090\n", + " 196 0.000084\n", + " Name: 58, dtype: float64, 265 0.590903\n", + " 209 0.133764\n", + " 269 0.094769\n", + " 268 0.023946\n", + " 23 0.008323\n", + " 330 0.005945\n", + " 274 0.005776\n", + " 276 0.005762\n", + " 239 0.004841\n", + " 190 0.004369\n", + " Name: 59, dtype: float64, 239 0.473214\n", + " 267 0.203843\n", + " 273 0.011089\n", + " 62 0.011038\n", + " 144 0.009577\n", + " 268 0.009548\n", + " 265 0.009039\n", + " 271 0.008898\n", + " 314 0.008314\n", + " 88 0.007290\n", + " Name: 60, dtype: float64, 173 0.991241\n", + " 72 0.001677\n", + " 286 0.000264\n", + " 70 0.000174\n", + " 216 0.000131\n", + " 197 0.000124\n", + " 114 0.000117\n", + " 61 0.000108\n", + " 210 0.000103\n", + " 235 0.000097\n", + " Name: 61, dtype: float64, 276 0.525408\n", + " 274 0.334517\n", + " 216 0.103893\n", + " 297 0.002874\n", + " 190 0.002020\n", + " 174 0.001461\n", + " 215 0.001306\n", + " 266 0.000806\n", + " 42 0.000764\n", + " 209 0.000641\n", + " Name: 62, dtype: float64, 174 0.996487\n", + " 314 0.000305\n", + " 11 0.000169\n", + " 210 0.000099\n", + " 216 0.000095\n", + " 245 0.000090\n", + " 297 0.000059\n", + " 353 0.000058\n", + " 274 0.000055\n", + " 9 0.000054\n", + " Name: 63, dtype: float64, 186 0.998226\n", + " 189 0.000434\n", + " 185 0.000134\n", + " 181 0.000111\n", + " 180 0.000095\n", + " 228 0.000029\n", + " 232 0.000024\n", + " 282 0.000024\n", + " 363 0.000022\n", + " 281 0.000018\n", + " Name: 64, dtype: float64, 227 0.802089\n", + " 188 0.115377\n", + " 189 0.009200\n", + " 267 0.003407\n", + " 279 0.003058\n", + " 42 0.003012\n", + " 274 0.002879\n", + " 281 0.001451\n", + " 89 0.001388\n", + " 64 0.001305\n", + " Name: 65, dtype: float64, 253 0.992317\n", + " 63 0.000372\n", + " 170 0.000310\n", + " 207 0.000253\n", + " 85 0.000220\n", + " 18 0.000217\n", + " 78 0.000201\n", + " 41 0.000150\n", + " 114 0.000148\n", + " 190 0.000142\n", + " Name: 66, dtype: float64, 193 0.894044\n", + " 194 0.025079\n", + " 197 0.014483\n", + " 192 0.014138\n", + " 195 0.012942\n", + " 191 0.012833\n", + " 198 0.012088\n", + " 200 0.001254\n", + " 211 0.000696\n", + " 196 0.000304\n", + " Name: 67, dtype: float64, 279 0.387478\n", + " 184 0.064559\n", + " 273 0.064026\n", + " 361 0.033274\n", + " 360 0.025578\n", + " 187 0.014483\n", + " 83 0.013893\n", + " 6 0.013881\n", + " 109 0.009716\n", + " 243 0.009453\n", + " Name: 68, dtype: float64, 35 0.123816\n", + " 53 0.068860\n", + " 34 0.066754\n", + " 106 0.052154\n", + " 23 0.050626\n", + " 40 0.037364\n", + " 226 0.028561\n", + " 43 0.016268\n", + " 213 0.015298\n", + " 272 0.011602\n", + " Name: 69, dtype: float64, 281 0.995778\n", + " 280 0.001873\n", + " 205 0.000128\n", + " 299 0.000118\n", + " 186 0.000072\n", + " 279 0.000060\n", + " 65 0.000043\n", + " 269 0.000037\n", + " 329 0.000037\n", + " 286 0.000036\n", + " Name: 70, dtype: float64, 184 0.048177\n", + " 101 0.032708\n", + " 251 0.031470\n", + " 186 0.030926\n", + " 65 0.029558\n", + " 163 0.022423\n", + " 250 0.021996\n", + " 26 0.016661\n", + " 204 0.015902\n", + " 232 0.015692\n", + " Name: 71, dtype: float64, 106 0.996581\n", + " 361 0.000394\n", + " 105 0.000158\n", + " 18 0.000090\n", + " 202 0.000083\n", + " 23 0.000063\n", + " 253 0.000058\n", + " 331 0.000058\n", + " 19 0.000057\n", + " 50 0.000045\n", + " Name: 72, dtype: float64, 327 0.992151\n", + " 326 0.000622\n", + " 6 0.000450\n", + " 184 0.000418\n", + " 239 0.000189\n", + " 100 0.000185\n", + " 199 0.000122\n", + " 2 0.000110\n", + " 27 0.000103\n", + " 312 0.000092\n", + " Name: 73, dtype: float64, 318 0.983346\n", + " 337 0.001369\n", + " 338 0.001314\n", + " 340 0.001099\n", + " 341 0.001058\n", + " 342 0.000902\n", + " 339 0.000757\n", + " 308 0.000519\n", + " 78 0.000251\n", + " 55 0.000206\n", + " Name: 74, dtype: float64]" ] }, - "execution_count": 71, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "label_keras_df = pd.read_csv(path+'keras_cls_split_magret_label_val.txt', header=None)\n", - "label_keras_df.shape" + "probs" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(37, 1)" + "(75, 1)" ] }, - "execution_count": 58, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "label_pytorch_df = pd.read_csv(path+'pytorch_cls_split_magret_label_val.txt', header=None)\n", - "label_pytorch_df.shape" + "label_keras_df = pd.read_csv(path+'sparse_fname2_split_magret_label_val.txt', header=None)\n", + "label_keras_df.shape" ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(234, 1)" + "(621, 5)" ] }, - "execution_count": 59, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], + "source": [ + "label_pytorch_df = pd.read_csv(path+'sparse_split_magret_label_val.txt', header=None)\n", + "label_pytorch_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] File b'../sparse/sklearn_cls_split_magret_label_val.txt' does not exist: b'../sparse/sklearn_cls_split_magret_label_val.txt'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlabel_skl_df\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m'sklearn_cls_split_magret_label_val.txt'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mlabel_skl_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 700\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 701\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 702\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 703\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 429\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 430\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 895\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1120\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1121\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1122\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1123\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1124\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1851\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'usecols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0musecols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1852\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1853\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1854\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munnamed_cols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1855\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] File b'../sparse/sklearn_cls_split_magret_label_val.txt' does not exist: b'../sparse/sklearn_cls_split_magret_label_val.txt'" + ] + } + ], "source": [ "label_skl_df = pd.read_csv(path+'sklearn_cls_split_magret_label_val.txt', header=None)\n", "label_skl_df.shape" @@ -603,7 +1389,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -612,13 +1398,20 @@ "label_dfs = [label_keras_df]\n", "for label_df in label_dfs:\n", " for idx, row in label_df.iterrows():\n", - " labels.append(vocab_label_df.index[vocab_label_df[0]==row[0]][0])\n", + " labels.append(vocab_label_df.index[vocab_label_df[0]==str(row[0])][0])\n", " labels_str.append(row[0])" ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 14, "metadata": { "scrolled": true }, @@ -626,89 +1419,84 @@ { "data": { "text/plain": [ - "['binary_accuracy',\n", - " 'on_train_end',\n", - " 'on_epoch_end',\n", - " '__call__',\n", - " '__call__',\n", - " '__call__',\n", - " '__call__',\n", - " 'he_normal',\n", - " 'hinge',\n", - " 'get',\n", + "['deserialize',\n", + " 'set_model',\n", + " 'get_monitor_value',\n", + " 'is_indexed_slices',\n", + " 'from_config',\n", " '__init__',\n", + " '__call__',\n", + " 'get_config',\n", + " 'glorot_normal',\n", " 'call',\n", - " 'ask_to_proceed_with_overwrite',\n", - " 'validate_file',\n", - " '__iter__',\n", - " 'NASNetMobile',\n", + " 'update',\n", + " '__init__',\n", + " 'add',\n", + " 'get_word_index',\n", " 'decode_predictions',\n", " 'preprocess_input',\n", " '__init__',\n", - " 'minimum',\n", + " '_merge_function',\n", + " '_merge_function',\n", + " 'add',\n", + " 'subtract',\n", + " 'multiply',\n", + " 'dot',\n", " 'call',\n", - " 'get_config',\n", - " 'get_config',\n", - " 'set_weights',\n", + " 'call',\n", + " '__init__',\n", + " 'compute_output_shape',\n", " 'trainable_weights',\n", + " 'updates',\n", " 'get_config',\n", - " '_pooling_function',\n", " '__init__',\n", - " 'get_config',\n", " '__init__',\n", - " 'state_size',\n", + " 'step',\n", + " 'get_config',\n", " 'call',\n", - " 'from_config',\n", - " 'from_config',\n", " 'get_config',\n", + " 'compute_mask',\n", + " 'from_config',\n", + " 'losses',\n", + " 'call',\n", + " 'call',\n", + " 'bias_initializer',\n", + " 'noised',\n", + " '__init__',\n", + " '__init__',\n", " 'compute_output_shape',\n", - " 'get_uid',\n", - " 'min',\n", - " 'sign',\n", - " 'binary_crossentropy',\n", - " 'gradients',\n", - " 'batch_get_value',\n", - " 'batch_set_value',\n", - " '_get_dynamic_axis_num',\n", - " '_get_available_gpus',\n", - " 'eye',\n", + " 'cast_to_floatx',\n", + " 'image_dim_ordering',\n", + " 'eval',\n", + " 'ndim',\n", + " 'gather',\n", + " 'argmax',\n", + " 'softmax',\n", + " '__init__',\n", + " 'infer_outputs',\n", + " '_has_nchw_support',\n", + " '_to_tensor',\n", + " 'eval',\n", " 'min',\n", - " 'std',\n", - " 'any',\n", - " 'logsumexp',\n", - " 'reshape',\n", - " 'permute_dimensions',\n", - " 'batch_get_value',\n", + " 'flatten',\n", + " 'batch_flatten',\n", + " 'get_value',\n", " 'sigmoid',\n", - " 'dropout',\n", - " '_preprocess_padding',\n", - " 'random_uniform',\n", - " 'foldl',\n", - " '_is_explicit_shape',\n", - " 'is_tensor',\n", - " 'ones_like',\n", - " 'count_params',\n", - " 'std',\n", - " 'argmin',\n", + " 'is_placeholder',\n", + " 'ones',\n", + " 'identity',\n", + " 'update_sub',\n", + " 'sum',\n", " 'arange',\n", - " '__call__',\n", + " 'ctc_cost',\n", " 'foldr',\n", - " '__init__',\n", - " 'state_updates',\n", - " 'trainable_weights',\n", - " 'summary',\n", - " 'layers',\n", - " 'predict_proba',\n", - " 'pickle_model',\n", - " 'get_input_shape_at',\n", - " 'get_output_mask_at',\n", - " 'input',\n", - " 'output',\n", - " 'get_config',\n", - " 'evaluate_generator']" + " 'save_img',\n", + " 'predict_classes',\n", + " 'model_from_json',\n", + " '_node_key']" ] }, - "execution_count": 73, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -719,12 +1507,12 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAALUCAYAAABkVfEJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xn4ZFldH/73Z2ZA9r1Bgg6DhEWCIDhsQlTQUXAElU2BQURk3CLj8guBGIKgEVwQ0EQRZJNFAiKiLAIii+zMsA1rNAMEFAUMwoiE9fz+OLemq79de/d3Ttv9ej1PPd1V33vrnqq62/vcc86t1loAAAC4+J00ugAAAAAnKoEMAABgEIEMAABgEIEMAABgEIEMAABgEIEMAABgEIEMAABgEIEMAABgEIEMAABgkFP2402vdrWrtdNOO20/3hoAAOCYd955532ytXZg3XT7EshOO+20nHvuufvx1gAAAMe8qvrwJtNpsggAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADCIQAYAADDIRoGsqq5UVX9UVe+vqvdV1W32u2AAAADHu1M2nO7xSf68tXb3qrpkksvsY5kAAABOCGsDWVVdMcm3JPnhJGmtfSHJF/a3WAAAAMe/Ta6QXSfJJ5I8tapumuS8JOe01j47P1FVnZ3k7CQ59dRTj3Y5AQCOCac95MVbz/OhR5+5DyUBjgeb9CE7JcnNk/xua+1mST6b5CF7J2qtPbG1dnpr7fQDBw4c5WICAAAcfzYJZB9N8tHW2pun53+UHtAAAAA4AmsDWWvt75N8pKpuML307Uneu6+lAgAAOAFsOsriTyd51jTC4gVJ7r9/RQIAADgxbBTIWmvvSHL6PpcFAADghLLRjaEBAAA4+gQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQU7ZZKKq+lCSC5N8OcmXWmun72ehAAAATgQbBbLJ7Vtrn9y3kgAAAJxgNFkEAAAYZNMrZC3Jy6uqJfm91toT905QVWcnOTtJTj311KNXwoFOe8iLt57nQ48+cx9KArD/7PMA4OK36RWy27XWbp7kTkl+qqq+Ze8ErbUnttZOb62dfuDAgaNaSAAAgOPRRoGstfa3078fT/KCJLfcz0IBAACcCNYGsqq6bFVdfvb/JN+Z5N37XTAAAIDj3SZ9yK6R5AVVNZv+2a21P9/XUgEAAJwA1gay1toFSW56MZQFAADghGLYewAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEEEMgAAgEE2DmRVdXJVvb2qXrSfBQIAADhRbHOF7Jwk79uvggAAAJxoNgpkVfU1Sc5M8vv7WxwAAIATx6ZXyB6X5MFJvrKPZQEAADihrA1kVfU9ST7eWjtvzXRnV9W5VXXuJz7xiaNWQAAAgOPVJlfIbpvkLlX1oSTPSXKHqnrm3olaa09srZ3eWjv9wIEDR7mYAAAAx5+1gay19tDW2te01k5L8oNJ/rK1dta+lwwAAOA45z5kAAAAg5yyzcSttVcnefW+lAQAAOAE4woZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIGsDWVVdqqreUlXvrKr3VNUjLo6CAQAAHO9O2WCazye5Q2vtn6vqEkleV1Uvba29aZ/LBgAAcFxbG8haay3JP09PLzE92n4WCgAA4ESwUR+yqjq5qt6R5ONJXtFae/P+FgsAAOD4t0mTxbTWvpzkG6vqSkleUFU3bq29e36aqjo7ydlJcuqppx71ggIA++O0h7x463k+9Ogz96EkACeerUZZbK39U5JXJbnjgr89sbV2emvt9AMHDhyt8gEAABy3Nhll8cB0ZSxVdekkZyR5/34XDAAA4Hi3SZPFayZ5elWdnB7gnttae9H+FgsAAOD4t8koi+9KcrOLoSwAAAAnlK36kAEAAHD0CGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDCGQAAACDrA1kVfW1VfWqqnpvVb2nqs65OAoGAABwvDtlg2m+lOTnW2tvq6rLJzmvql7RWnvvPpcNAADguLb2Cllr7WOttbdN/78wyfuSXGu/CwYAAHC82+QK2UWq6rQkN0vy5gV/OzvJ2Uly6qmnHoWicSI47SEv3nqeDz36zH0oCfO2/V38Jicu2/D+sz3CicV+9cSz8aAeVXW5JM9P8jOttc/s/Xtr7YmttdNba6cfOHDgaJYRAADguLRRIKuqS6SHsWe11v54f4sEAABwYthklMVK8uQk72ut/eb+FwkAAODEsMkVstsmuW+SO1TVO6bHd+9zuQAAAI57awf1aK29LkldDGUBAAA4oWw8qAcAAABHl0AGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwyNpAVlVPqaqPV9W7L44CAQAAnCg2uUL2tCR33OdyAAAAnHDWBrLW2muT/N+LoSwAAAAnFH3IAAAABqnW2vqJqk5L8qLW2o1XTHN2krOT5NRTT/2mD3/4w0epiEfPaQ958egiAAAAR9GHHn3m6CIsVFXntdZOXzfdUbtC1lp7Ymvt9Nba6QcOHDhabwsAAHDc0mQRAABgkE2Gvf/DJG9McoOq+mhVPWD/iwUAAHD8O2XdBK21e10cBQEAADjRaLIIAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwiEAGAAAwyEaBrKruWFUfqKq/qaqH7HehAAAATgRrA1lVnZzkfyS5U5IbJblXVd1ovwsGAABwvNvkCtktk/xNa+2C1toXkjwnyffub7EAAACOf5sEsmsl+cjc849OrwEAAHAETjlab1RVZyc5e3r6z1X1gaP13gNdLcknj8F5lEu5jrV5lEu59nMe5To+yrXLPMqlXPs5j3IdH+VK/epOy7k4XHujqVprKx9JbpPkZXPPH5rkoevmOx4eSc49FudRLuU61uZRLuVSrmNnnmO1XMfTZ1Eu5VKuf/3zHEuPTZosvjXJ9arqOlV1ySQ/mORPN5gPAACAFdY2WWytfamq/kOSlyU5OclTWmvv2feSAQAAHOc26kPWWntJkpfsc1mORU88RudRrmNvGbvMc6yWa5d5lOvYW8Yu8yjXsbeMXeY5Vsu1yzzKdewtY5d5lOvYW8Yu8xyr5dp1nmNGTe0uAQAAuJht0ocMAACAfSCQAXDUVNWVR5cB4Hhj33p8E8j2WVXd7yi9z2Wr6qTp/9evqrtU1SWOxnsDHEWvHF0AgOOQfetxTCDbf+ccpfd5bZJLVdW1krw8yX2TPG3VDFX1jE1em14/uarefxTK+a9eVZ1UVVfYYLrrV9Urq+rd0/ObVNV/2acyXbqqbrDDfJfZj/Lsqqp+dZPX5v52flW9a8/jr6rqsVV11T3TXmXVY8UyTq6qV235Oa6zyWt7/v5Vm7x2NG26Lh/txa78Y9WVq+omF1dhVqmqw/bPi17b8/eTL47lTNPcrqruP/3/wKp1rKpuvuBx3araaPCu/bTr5z8e7Pq7VNUlp2PKN0y3HFo17W2r6hVV9b+q6oKq+mBVXbBi+tOr6gVV9bZpn3p+Vb1rzTKqqs6qqv86PT+1qm65ap5pul22l2tX1XdM/790VV3+aJetqu48q+TeoDwnV9WzNi3/3Hy3rarLTv8/q6p+s6o2u0nwkrdcspytvq898+7rMWLbc5BtznWq6jFV9e92K9mxx6Aec6rqz5Is/UJaa3fZ4T3f3lq72YLXr5HkV5L8m9banarqRklu01p78pL3eVtr7eZV9dNJLt1a+7Wqekdr7RtXLPttrbWbzz0/Ocn5rbUbLZn+hUl+urX2fzb8bD+36u+ttd9cMt9dk/xqkqun72CqT96W7hR2nOfWSX47ydcnuWT6bRs+u2ieqnp2kh9P8uX0e+9dIcnjW2u/vuL9X5PkPyb5vdlvXFXvbq3deMU8W/3u0zx3TvIbSS7ZWrtOVX1jkkeuWh+r6puT/H6Sy7XWTq2qmyb5sdbaT+6Zbut1vqp+e808D1pRrkPWyem1d7XWFp6gV9Wvpf8mz55e+sEkl0ny90lu11q789y0H5zKVUlOTfKp6f9XSvJ/WmurTmZfmeSurbVPL5tmg89xXmvtm7acZ9Fr52fx9ztb51eGmW3X5aq6UpIfSnJa5kbeXfU7rln+os/06iR3md7/vCQfT/L61trSfch0IP/5JKe21h5YVddLcoPW2otWzHMgyQMXfJYf2aKsC/fZc3+/IMnzkzy1tfbeZdMdheU8PMnp6Z/5+lX1b5I8r7V22yXTvynJzZO8K31duXGS9yS5YpKfaK29fME8v5bkl5N8LsmfJ7lJkp9trT1zz3Q77evn5t/o8++ynCPcH90jyZ+31i6sXpl28yS/3Fp725Lpz0ny1CQXpu9fb5bkIYu+27l5dvldzkzyhCT/e5rnOun775cuWcb7k/xs+rb15bnP/o9Lpv9A+rHr/CRfmZv+wys+x+9O096htfb11ZvPvby1dotl80zzbbW9VNUDk5yd5CqttetO2/0TWmvffjTLVlXPTHKbqWxPaa2trJCuqtdN7/+FdZ9hbp53Jblp+nb1tPR15p6ttW/d9D32vN+i7WiX72uX853Tk/xCkmun71tXHo82PQfZM89W5zpV9aNJ7j+V56lJ/nDTY/ixaHjN2THmN/bhPZcdKJ6WvgL9wvT8fyX5n0mWnZhXVd0myX2SPGB6bWHNU1U9NMl/TnLpqvrM7OUkX8jqYUGvnOQ9VfWWJJ+96AMsP/HfuBZmj19LcufW2vv2eZ7/nn4C/7z0E5sfSnL9JdPeqLX2maq6T5KXJnlI+sFt6Q4qyWVaa2+pOqTS6ktryvS0bPe7J8kvJrllklcnSWvtHbXmakySxyb5rkw3cW+tvbOqvmXBdLN1/q5JvjrJ7ETsXkn+Ycl7nzv9e9skN5rKnyT3SLLwgFtVP5HkJ5N8XR1aE3v5JK9f8Tm+Y88B6Py5yomz5iecBa6qelKSF0y360hV3SnJ961YRpL88/Ter8ih6/4hJ3NVdcMk/y7JFadKgpkrJLnUojeuqq9Ocq307fFmOVjLeYX0cLnX96wp6zrbrssvSfKm7Dk5O8quOJXpR5P8QWvt4bWmRj59Ozkv/aQpSf42fVteGsiSvDDJXyX5i8ydmO5VVfdKcu8k16mqP5370+WT/N815bpp+n7l96vXsD8lyXNaa5/ZO+ERLuf700/435YkrbW/W1Pz/XdJHjC7T+hU2fPIJA9O8sfpLSv2+s7W2oOr6vuTfCh9P/DaHNwPzJd3azt8/tlybpDkFpn2X0nunOQtSxaz9f5ozsNaa8+rqtsl+Y70beR3k9xqyfQ/0lp7fFV9V/rx8r5JnpHF3+3MLr/LY5LcvrX2N9M8103y4vTteZFPLwtrS3yitfan6yc7xK2m/e7bk6S19qlac+VusvH2Mvmp9OPdm6fl/HVVXf1ol621dlb1K0P3SvK0qmo5eFJ/4YJZLkjy+mk9nj9GrKqM+FJrrVXV9yb57621J1fVA1ZMv4tdvq9dzneelQUhfoVNz0Hm/WK2ONdprf1++np1g/Rg9q6qen2SJ7XWtmr1ciwQyOa01l5zMS7uaq21507haXYD7qUnEEl+JslD008031NVX5dk4QrXWntUkkdV1aNaaw/dokwP22LatNYesc30c/5hy2C16zxprf1NVZ3cWvtykqdOO+xF38klqvfJ+770HecXpx30Kp+cDpQtSarq7kk+tmaebX/3JPlia+3Te4Lf2kvbrbWP7JnnsOXM1vmqekxr7fS5P/1ZVZ27d/ppnqdP8/xE+lWqL03Pn5B+MrzIs9N3/I9K3/nPXNhaW3VienJV3bK19pZpGbfIwYqIZeH31q21B86V96XTlYBV/nh6rHOD9MB0pfSTxJkL06/MLPJdSX44ydckmT94X5hecXKIVbXUG9p2Xb7UqitVO1hUUXRKVV0zyT1zsDJineu21n5gOqlPa+1fas8KvcBlWmv/aYP3fkP6tnq19JPfmQvTr2QsNZ2sPSnJk6rqW9PX7cdW1R8l+aXZSfSRLifJF6aTudn+5bJrpr/+7KR/Kud7q+qGrbULVnxts37IZ6Zffdu7n5m91677+q0+/2w5VfXaJDefnRhX1S+mB5JFZdtlfzQz2yeemeSJrbUXV9Uvr5h+9uV8d5JnTMfidevkLr/LhXvWowvSv7NlXlVVv56+D/v83LIWXulL8vCq+v30Pknz06/aB36xeiub2fp4IBucmG+5vSTJ51trX5h9N9Wbdq473u1ats9M5bh0+jnW9yf5j1X1W621394z+f+eHidl8wqKC6dj/VlJvmUKpEfS93/RvnWX72uX852tQ/wm5yB7bH2uM/3uN5wen0zyziQ/V1U/1lr7wW3KO5pAtkD1S76PSq9tu6jWu7X2dTu83fWWvP7Z6n1gZjuQWydZeql1OnF+zdzzC5Ksa1L00kU1Eq21165Yxtaq6vrptYrXaK3duHr/kLu01pYd2M6tqv+Z5E+y+cFgl3n+Zaole8d0Qv6xLO83+XvpNcTvTPLa6u28l9XgzfxU+hXHG1bV3yb5YPoVzFW2+t0n76mqe6eHk+ul/+5vWDPPR6o3GWjTjvecJKsC7WWr6uum9SpTrdS6E8Arp1/lmQWqy02vHWZqRvDp9NrITDV4l0pyuaq6XFveTPZHkzylqi6XfjL0mSQ/Op2cPmrJPH9XvfnRrJb/Pum11Eu11p4+rSuzK6gfaK19ccF0L0zywqq6TWvtjavec/69kzy9qu7WWnv+uumr6sKsboK1rr3/tuvyM6o3e3lRDt221l3B2cYjkrwsyetaa2+dKpT+es08X6iqS+fgtnLd+fIt8aKq+u7Z1dFlptD74Ry8+rax6QTgzPQa2dPSg8azkvz79KuNF12FP5LlJHluVf1ekitNv8+PpDcBWuY91ZtuPWd6/gNJ3lu9n+Jh6/Lkz6o3d/tckp+YTmT/396Jquq3VhV075Xkudd3/fzXSG/RMfOF6bVVNt4fzfnb6Ts+I8mvTt/Vqn5F51XVy9ObED60+hXLdSf+u/wu51bVS5I8N339v0eSt9Z0VX7BcW92RW++Uq0lucOS979/+gnsJebK37K6Uuq3krwgydWr6r8luXuStX2mt9leJq+pqlkLnzPSW1b82ZrFbF22qrrLVKZ/m+QPktyytfbx6k2l35ve3eEic5UFl5ue//OaMiX9t753+hXSv6+qU7P6KtQudvm+djnf2TbEb3sOkmx5rlNVj02vIP3LJL8yq7hN35Y/sGZZxxx9yBao3lb44emXXO+cvtGe1Fr7rzu817I+ZDdP3+BvnOTdSQ4kuXtrbWGtafVBBw77sVpry3a4s/5BM5dKvxR83t55jvQEsLbsS1VVT128mMX9PI5gnmunN7u7ZHr7+ism+Z0FNXLL5j9lVtu6ZrrLpq8fq2owZ9Nu9btP81wm/arCd6aHkpel1yweduI0N8/Vkjw+vRlOpTeLOact71Nwx/RwecE0/bXT23u/bMUy7p/exOBV0zzfkuQRrbWnrZjnzulXif5Nej+iayd5X2ttZcfcqrpiclGwW6n6AB4Pn8qT9CZYj1iuSK0hAAAgAElEQVQVMKrq25I8Pf0gVUm+Nsn9llVe7FAJMZvvzPQmj/MVPY9cMu0vpVciPGMq032SXHPH/dDSdbmqfirJf0vyTzm4H2g7VkAt6+dw29ba69e9tufvZ6SfVN0off29bZIfbq29esU8F6ZXJHw+/WR3ZV/TPfu+S6afoC7sZzo3zwXp6/yTW2tv2PO331oUTnZZzjTfGZnb7ltrr1gx7aXTT8ZuN730+iS/kx6wLrPoBHIKBZdNb/L25WlfdrnW2j/smW7laMGzq1QryrbV56+qX0i/mvqC6aXvS/I/W2/9sWwZi/ZHv7iqbNO+9Y7pfav/uvpV3G9oi/t1VfpV7gNJLmit/dNUuXatNfvvXX6XRce7mZXHvU1U1Qdaa7sMEnXDJN+e/v2+sm3QamXb7aX6VaQH5NDj3e+3NSer25atqp4+lemwfXxVfXtr7ZV7Xrtx+r54NkDUJ5P80PzVz/22ZN+60/e14L1Xnu9U73N3w/T+jxeF+GXr4p5zkJOmci09B5nm2fhcZ9oe/0uS32ytfXbB36+4yfnCsUQgW6CmzvlVdX5r7RvmX9vhvQ7bgOb+dkp6E6jKkhr5uWnnl32pJHdLb5/84C3K8rVJHtdau9uSv+90AlhVb22t3WI+fNaaAUcuLtWvetww/WTgA21Jh9zaYWCD6WD88PQDbUvyuvQOqKt2OJXe7OCi3z09zK2r+d9KVX1ta+0je1776tba36+Y56vSv6skef8mZareP2pWO/vmVe8/Tf/O9Frbv2it3ayqbp/krNbawnb1U5nulsN/l4UhZldVdV6Se7fWPjA9v356X4KF2/y2lRDT35+Q3mfs9ulXOu6e5C0rPvs7W2s3Xffagvm2+s6mE6ZbttY+uep9N7XkpGGj1xa811WT3Dp9W3nT0SrjkmVVku9Nb/L6kBXTXW7D2vEjXc6vtj3NLxe9diR2/V2OcJmbfv6bp19FSZLXttbevsF7b7s/ekZr7b7rXpv720XnBBe3qrrkiuPXFXNoJdRr0o9FC09Ip8D3623DQWmmeR6THmA2nmea74i2lw2XsWgU3QvXnFNdJ8nHZif7U3C+RmvtQ0umf0OSX2hT36SpEu9XWmvfvGIZWw9GtsrR2jZrt8HFdgrx+2nk9rgfNFlc7PNTrcNfV9V/SO9MfrmjuYCqulQO1pq1JH9VVU9YdtWjtXbenpdeX33wjW18NH3EwWXusudk73enE+h1NfJb9aWqxc1fPp3k3NabhM1P++DWR5RcOJLWmsB02EhV1dsVL+r8vMvABs9Jv/oyC7j3Se9Q/h0r5nnyVKM06+B92fROr6tGRNr66miSD1bV89I7oX9ueu0l6aN9LfNNOXgSf9OqSmvtD1aU65Wtj+T0wgWvLfPF1to/Vh9q96TW2quq6nErpn9h+rpxXtY0V6uqx7XWfqaWjBzZVo+SeolZGJum/V+1+j5/uwzo8s2ttZtUH1XyEdMJzqqO+J+t3un6Oemf516Z60y+wsbf2eRvkvzLBtNtrfpARN+c5EAdOoLeFbJkUKK5eWfr6mxfcup04vnhvTW51fvkvH9unkO05X1p5qdpSf6k+uiGS4NCetOgB2XDkRyPYDlnJNkbvu6097Wqem5r7Z61ZHTOtmAUtNp+oJnZfAem5e9tzr9qX7S3PEs/f1VdofV+PVdJv1r9obm/XaWtb0Z7cpJPpP8u16+q6y+6AjLnkCvz1ZvXrap4fVtV3aK19tY15djpd5mb99XpV4M/ND2/RXolzrLKmKekt7i45/T8vukDVNx1yfS3Tm/K/8H0fcQmI7i+L70f2LYj2l29qv4wvdnqV5K8MX0kz0OG5V/2Pc2sKdvb0ls1zI+s+/dV9Q9JHrjg/CnpAwTNh6kvT68tG5nxsm1uoIjW2qtrfb/OXQYj20odHF34EG11C4enZfvBxd5QVTfaNJBXb5b++PR1rWXJ7z5Nu+sI5xtvj/8aCGSLnZN+UHpQkl9Kr9Hf9QbPy3rt/kF6J91ZO+V7p1+ZusfCNzm0Buik9IPGFVcu+NAQc1KSb8w0YtcSu54ALupLddaK6S+VfiXmedPzu03z3LSqbt9a+5m5aWc7snOzYoNdYpuRqnYZ2OCarbVfmnv+y1X1A2vm+duq+p3W2k9WH5r3xekdnlf5/+bLmenq6Jp5zk/v0P76qrpHa20WSheqfn+66yZ5Rw52vG3p6+neaS+Vvn1cbfoM8ydz11pTrn+q3gb/tUmeVVUfz+p17Gtaa3dc854zs3vs7TJa6rnV28fP+p2dlYOjty2yy4Aus2D8L9WHMP/HJNdcMf290w9oj5+W8/rptXW2+c6S/v2/Ywr+830Ddhr2PoeuZ5dMr8w6JYd2hP9M+hXCVX4nS4YLr6q9w4X/XPrQz4857F1W9KWpQ0fKPCm9D87SpsCTjUZy3HU5tf2IpLP95Tajc2410MycZ6WfuJ2ZPmz2/dID0EpbfP5np3+O85KLbmEx05IsPcmsfj/DH8ieJlXp+5q90+46EvGtkpxVVR9K325WBZldfpeZRyX586ny8lrpg4jcf8X0193T8uURVfWOFdNvs39IckQj2j07yf9IHzAj6SMu/mEOH8nySEaXfUWSP2pTE/uq+s704+RT0/cji0bNPGX+imPrA2OsGpnxgqp6WA4eZ85Kb+K/yk6Dka2w6Bg+32/wUunnkEvvuznZZXCxbUP8pr97svsI57dKcp+q+nDWb4/Hvtaaxz4+0kewWfT6ezd5be5vH0zf+D+Y3hn+5ekjSq1a9v3mHvdJcts105+WfrLxyfSD7J8kOW2Lz3rZJJffYLo3JTl57vkp6bUnJy/7DtJrrV6Q5O3pYeP8JO9as5y37nlee1+b+9vPpo+Sd830ndlV0u/rser9fzN9J3PS9Lhnkt/Y4PP/WvqVu7cmuduO69Vb1vz9bdO/t03voHzn2WtLpn9fpibMGyz7nGk9/PzcOnlBegfhn9pgHTlp+s3vl17pcdUV0z8xvU/HEW2HG3ymr0o/qZ+NtvizSb5qxfRfl35C/i/pV9Bfl+Taa5bxsPSa27ul30ftY+nNio72Z9nqO9uzn7josWL6Z6x6bdF2s+67WbKcP07y7+ae3yjJH03f/TuO0nf11LnHk9JrjK++Zp6tl73NctIr2k5LP3m59txj4f5obls/7HfZoFxb7X/S+yAnc/veLNmnHun3vMNn+cCqbXbJPI/acvprL3oc7d9lmu/b0vtBfizJV6+Z9o2ZOx9I3++/ccX0py56bFCmk9Obm/5Jemj+T+kDSDxnxTyHHaeTvPMo//bnL1vusu01PcTdZe7596b3PVu2jCunDx7ytumzPy7JldaU6/HpFRj3Sr9aedf0+10u+27fv+b9Vp6TzE133pq/vzrJVefW0Vsnec2aeTZe9y/G332rMh3rD33IFqjDb4CX5NBL5nXkN8p8ZnpYe9P0/FbpJ7M/dARFX7SctSPHHcF773pj6A+k91n59PT8iukB4wa1fBCUjW9kOVcbe0b6bzg/UtX/aQtuTFg7DGxQBwcQmJXnpBy82tPaXDvxPTXElX5y/pb0m7GmrRgtcsnV0d9qK9pz16H9+a6Z/h18U2ttYXOkqXnjg1pr667yzM/zX9P7JH5mqjm8eXoH3LXNw1a85xtba7eZe/7e9FGwNq2V27UJx/z8V0m/yrSqo/5s3b90Dv7un04/EK6qmZ7N/1XpV2U/PffaGa21Vyxrnjv3OVZeudrlO9tGbXnD+Wma66df6T0th+5TVw1KdFifvNlrtaSPah0c0W3vclbuj7dRfVj0N7Q1IzkewfvPN9s7TNvTbK+q3p3eH+SX0veRe6dftW/Ztr/hm1prt66ql6WfnP5d+pWJ6677XNuqPgrerE/Uq9uKG4JP0780yT3alv2VqupaOfxYv7SZY/V7ll2vtfbUqQnn5VprH1ww3ZH8Lg9Lr+A7O9PNupP8fGtt4dD/1W+g+/T0MF/pI03+cGvtnUumnzUPrPSrKtdJPz9YOrhSHTqi3ZPbwRHtVvYvmq5cfioHW978QHq4+fXk4PpcVa9rrd2uDg4AU/P/ttUD7bw8ffS/+ZEsz0i/EvjWtqDf1dTC4VnpA0xVko+kD9KxcNCvqaXJ89a9tufvT13wcmvLB8J4YZKfbstHHV40z/xnm119/om2oq9xLR5c7B4r1peTk7yntXbDRX9fMs9Gv/s07c7Ne6f5Z6M2z6bf+Ps7lmiyuNgmN8Db9abIM9+U3iZ3tuKcmuQDsxVy7wpYC/qcpd+NfdVIe9+WPSPHVdX99h5sjuAEcJebeCb9CtE7qreTn42G9StTe+y/WDLPNvfAmL8/1D8k+dbZe2TJzXuT/HySf9u2GDSgtbbNOnDnPc/fnj7S2J2zfrjh+eY7X0o/0V53c8nvnivnx6oPnrG083H6fYLeW71f4nyztVX9ru7eWnvkdIJyh/RmB6tuqrqJvb/PnXZ4j62bcEzr4l3S94nnJfl4Vb2htfazK5Zxevo6X+nNV96V5Mer6nmttZX3PWt9wJS9/bt+Nb3WdlVTyU1s9Z1tGmCPoJlX0psnPyG9H8xGzfyy4zDu6U3hNuoLWlv0c5hzTpL/XFUbjeS4w3K2bbb34+ktIPbeG282/ap9y7b9DX95qkD7+fQTuivkYNO8pbb9nqvq0enHlGdNL51TVd/cWlvVnPJf0o8re4flXtXP+NHprRzem0Obai8bXfXh6dv9DdKv9l0ivZnzbRdMfiS/y1XTKy0/l+SNVfXn6dvOsnuxvSO9yf8VpucrhzBvewZCmE7QD6uo3OP89KtD12m9/+yp6Vfu3pI+gvMys35tP7bn9R/M3PrcWrvd9O8u51b3Th/U5E+m57Pm3SfPLf8QrTfjv3VtPoz9Q3Owm8Wq1+aXsaqZ6SJXTt/vvSWH3nx61XF4vpn2l9LP9xZ+5jnvST8vOmRwsWUTtz4C6weq6tQtws5Gv/tkp+a9U6XNY7Jn1Obs6Rv6r4UrZAvMamr2eRnXXvX3vVd+quq56e37Z31c7p1+uXxhn7Npno1GjqsjH9L4tUnObAdv4nn5JC9urS29K/t01Wa2E39ra23lfaKq6tvTL/tvcyPLjU01bN/XWttqcIPqfaiul0NrZ1Z1It9XVXVWa+2Zy65errhq+a2LXm8r7k03uwpXVY9Kv0Ly7GVXODc1u/qy7VWCDd535Sipc5/lR5N8bWvt4dUH31hYMzet8989O4hPB/UXp9fInrfqatG6Mix4fZv73szmuWkOjlD3V8tqPqdprzr39KIA25aMrlrb33B+7fe/ZJ5dhgtf+pstWcab0vs5/OH00g+m11CvrFSY1su92/2qbWWr5VRVpa+H29SUP6CtGCVtyTwrRwZdMP3T04eu/qfp+VXSm2mvHNBkh8//riTf2Fr7yvT85CRvX/XbLjuOrTp+VW95cZO24Si31ftl3Sy9qdesBcLKdW6X32Vu3susOibtur9f8l4rR6ybKke+kuQOrbWvn459L2+tLRsEY2dTQLxo9OK2wQibOy5n7W1IqupO6RWc90xvfjhzhSQ3aq0tDaNV9TXpFRezwP5X6dvPR5dMv/VxeBe1w+iq0zHvZumV7ZuGxa3KUytGOF0y31ajNh/rXCFbbO0N8GrHG2XO/f3D0/tseqn1xntO8l5VvWnSKhuNHLf3gLXDCeBGN/Gsw0dCmw3L/tXVh2Rf1dRt6xtZbrkz3Hpgg+nk/Zz0jvHvSK/9fWMWDCBQO4wWWYc2czzMkjA6G/Vpq1rG1tprpkqC67XW/qL6/UBWjoKX7W+quo0j6dy/qAnHun3dKVMlwT1zcOSpVa6eQ68ofDF9yOTPTVdOdnHIelGH3vemquoT2eC+N1V1Tnp/yNn68cyqemJr7bcXTd8Ov03D46bKnEMC2Wz7TfK8WjCa4aLtdy5Q/1lV/WR6P9CNbj49XR14TBYP1LFs3/TSqvrOtuA+UktcprX2jLnnz6yqw5qXzVuy3b8hK0ZK3XY5rbVWVS9OsvGQzq21J1e/EetpObT53dKRUtNbaXxDa+38DRdzk1kYm977/1YfpXGdrb/n9CtLs/Vj5QBWU1mePoX4U+ePe2tckH5M2XSb/cL027QkqfWj7O30u1QfnfTJ6QPinDpVsPxYO7y5/ar9/dLa9j0B7qT05uYrK0WT3Go6aX77VP5P1epBMGbLukSSn8hc89P024UsvMpdvSn8PXJw//W06q0Olt7jsXZrEr3wNiQLJv279FYLd0k/Hs1cmN6UdJWnph/LZhXnZ02vnbFo4m2Ow8tC+Nx7HRbGa8fRVScPW/P3RWW8cQ4fkXXRen/J6jeE/uZF5z0rKt63HbX5mCaQLbbJyf+iYVQ3Vttfan1bVd26HdrnbF3Tpr0jx91n1Ty7ngCmj8T3lqp6QfoG/r3pw6rutWgktPmDxqqhk2/Rtr8HxjY7wz/JweYOmzonvVnNm1prt69+Y8pfWTLt/GiRm9rbzGXewjDaWvu96d9HbLGcVNUD03+bq6SPtnit9CZmq04y75l+Reg3Wr9J6jWzoK/ElipJWmvfM/17nR3eY28Tjg9mfROOR6bfhPJ1rbW3Vm9i9dcrpn9WkjdXb/Of9N/q2dMJ2lb36VnhiUl+rh1635snZXXT06Q3Z71Vm26WWb0t/xtzcETXQ2wRYHcZyXBvoJ5fP9YF69um3+h3b/+eVX0B35TkBdVvW7JJc8KXVtVDcmg/h5fMguSSwLjNdn8ky9lqSOfaYqTUObdL8sO1+chpJ1XVlVtrn5qWeZVsdh6x7ed/VJK3TxVks2btq24RkOo3nf+N9JE9r1O9X9UjF9Xgz1WMbdvM8blTJdSVpn3mj2TNKLk7/i6PSx8J80+n8ryzqg5rcTLb36dfITjsxusr3n8+wH0p/er+81dMnyRfrH6lchZGD2SzW8T8bvq51O9Mz+87vfajS6a/T5KbtoP3B3t0+ne3NJBltybRG92GZGpd8M6qevayELnCgdbafD+yp1XV0ia+Wx6Hd2nauevoqrOweI0cvC3AW1prH182ffXmvd+WHshekt6U/nVZvN7v2rx321Gbj23tGBhZ5Fh7pHdu3e9lvDO9nfjbp+e3T+8ou2z696Xv/D40Pb4yvbZ0tMFsP3LcG9KHiZ89/7b0zuubfJ6bp5+oPCjJzdZMe88kV5j+/7D0WvObr5nnqenNA7b5jg8bXWnRa0fwG7519p6z7zW94+uxsA7/Wnqt1yXSr/R+Iv1S/tLvKv1E5u1zrx02ctVRKNedFrz243P/v/Hc+rT0cYRluN9R+iynT+v8OUlOPwrv98d7nh82ItWi1xZMc376gCGz55da9VsmedXc4xXpJ5g32I/1csvv4/3pB/GrT/vKq2bFiJzTPB9MHwRh0xFDP7jiccGSebbe7ndczvvTTy7/d3r/xJUjy2aLkVLn5rn2oseK6X9oKtcvTY/3J7nvPn3P10y/KnGXrBllcJr+vPQrafP7sHcvmfZ+qx5rlnNG+sAEv5HkjA3Ktcvv8ubp3/nPsnTbz4IRdBe9diSP9BPmP02/n+l/S+93dI8N5ttqPzbth6409/xKSf5y3W+/w+d5y/Tvm9Irxr8qyd+smP566aO8vjf9yuoFy9bduXlemV4RfPL0OCurR3K8uI7DW4/unH7e9uH0cQn+YNp2775i+vPTK/jeOT2/RpJXrFnGA9b8/Yw9zy87fa8bjdp8rD9cIVts4xvg1e43ytz2Uusu9w35fFX99/SdwlfSg+YXVsyyy40PZ748LaNlfa3Zf2n9HhjbDAaxy40s/7GqzsrBfgv3Sr/302Gq6nrptbJ7f8dVtfEfraorpV9Ze0VVfSp9h7Xo/Xe98eFs/rVt3ff4ztbag6vq+9MD/F3Ta5GeuWT6z7d+H5bZ8k5ZVd4j8LCq+nxr7S+n5Tw4vTLiCUnSWnv3NN3sKsyl0oPPO9N/85ukX2W8TXZ3TvpB5SLTdvzAbHGz39baudniiufU/OTn05tUPXBa527QptHjWmt7m2rsct+bpFdevHm6Yp0k35cVN/xsrd1+088ws0MTrEXNbz+dfrKxrJb1023xTdxX+Uj6Sfim6+7Xtz0DI1XVpfa+tsfG2/1M2+1K73dtOf27k3x11t8P7yKttQ/XglEDV0z/B1V1bg5eDb3rJsfJHT//genfU9KbMqWt7jP8xdbap+vQm7UvPBa1Nf2il6mqn07yzNbaK7aYbevfJclHpm2sTU3+zsnBVhbz5dnpxuu7NPFrrT2relPmb0/fF39f2+weW1+uquu2PojGbICXw65izV21/HT6wBavmJ6fkdWDhCU7NIme5rlSerh+27SsVVc7n5o+cMhj049Z98/6Jvo/kt4y4bHT+78hq+8nt/VxuPqAbw/I4ecHq45dz9/hnOIX0lsqfXxa7oH0Qdj+aMn0n2utfaWqvlR9sJmPp9+8e6m2vq/lbOCr2fSzViBXSB/Q6V81gWyxbU7+d7pRZra/1Hrhotfaikvo0wb3hPQa1kpvxvFjK05ydjoBrIN9Vp4/LWdln5Uc3BmfmX5TyRdXH0p6la0DabbbGW69s22tzW54+ItT05orZhrGfoFdb3y4TVv3ebNt+8wkz1tworLXa6pqNoLeGemDKezHDu4uSV5Uvf/IHdObBn/v3olmIaGq/jj9itj50/MbpzdjOxKLvoitb/a7g6em1+LPwuTfpje1OWQ47zrYsfmv0k+YZiehr01fp1dqrf1m9VEjZ4Nh3L+t6BQ/nZT8UA4/OVvYbGvHJlgPSP/cswqfb0v/Lq5TVY9sh/YvmnlVVf16+uefP8la1df0giSvrj4E+vw8ywY3eEP6Vdd1r11ky+3+ItuG2PQmXa9Nb6WwSTOcrUdKre1GDZy933uzQ7PcbT5/VT0lvfJl702eVwWy91Tvh3LyVNnxoPTfclWZFg2z/en0ipZfbof3r7xGkrdW1duSPCXJyzYI/7uMYPvj6aNSXit9P/HyJD+1YLpdb7y+SxO/tN6H9P2bTj/5j+nb8gXp+95rZ/FxeFa5dV56sJp59QbLuN/csmZaljSJrt6k+ZWt94d8flW9KHtuQ7LApVtrr6yqan0MgF+sBX1t503TbTPoxS7H4Wek/ybfld70/j5ZEN7n7XhOcdKeyrN/zOpzpHOnY8uT0n/Tf05vOn8kDjl2V9WPJXlE+kBPX5n+vvR3P9YZZXGBWjICYlt8z6vzWmvfVHMjLVXVW9uakYemK0//L30Fuk/6Qf1ZCw4As+k/lF678Klpniul31z2H5I8sLV2WJ+2qnp/ku9p0301qt9348Vtz70kZieAUw3baTl4IvfaJI9oU3+BFZ/lXUluM1dbcdn0m1IuG6HuRekHmTPST3w+l958YOl9M7ZVva37g1prj91w+tnveNFIU7XByHDTcq6RQ08ydr4HRlU9v7V2tz2vvasdbOt+kynIv7S19u+XvM2s3f3/z965x1tXjuv/exX1St6U3ZZDJafaIbSTUMgWOx2cOijsJIftGBFSRA5tOaa9lUIqtVVCVKKis1RvR6IfKmeySaVCb12/P+5nvHPMucYYc4wxx5xrrrd5fT7rs9YcaxyeeXrGc9/3dV/XC4jXdlPi83KKy1XNViAWzc8hPl/fBj7XoNJQGwohmzOJSfqVVdeQ9CMPeOMUbWt4/SKFqUJfqy4h6VLbm6jfI+7Kwc+9Qqzn2UQ/w5b0bjJAedZXLZUpJV1I0HYGPf4KqwiSfkzQh2t/NhS+Vf9h+w/p8QOJAG4X4FwXKP2lYKfgaVQ26u9ftN0DPZXqNbd/iVCszTe3HzY4R46KsiC2LOhNx+xOKGU+hUjInUe8VieX7P+Mou2uVn9srBrYBk2fv6Rr3FCpVFGB3peYwyDmsA9WVTslHZTGc1za9BJiofp7wmh5Th+vIrP1HCKo2ITwePx8VgEq2L/x+9IUktYtWp9U7N9Y9bQN0n1lM2Kuz3rAr/UQVUuN0T81d41GisBpntycqAh9l1jD/JcLetvVQsQrHTfnPmx7WI9iphCcrQ/uTSjrblZxTJs1xUeJJEnGONqZoFC/s2p86diHEW0qpd6edTB475b0U2LtWduuaJoxq5ANIC2wv93ghpxNFL9LFanfMsTzCHql1oQ69IkzCAPOb6dxPocw9DySaJYtWmjf6n6Tw+sorrT9q6QHE1mmwQVgZVklt08+y3bXkOPGIQbRB4dvxi5ExasO/p4mw59KeiMx2ZZSd2AZfWV/IijOZ3FHWcwUZXbuSL9vT+/Tn4j+ilLYfldabNycXovbyVWilEyIc/vfTWSyCif/okCxCTTX7HMl4rnuEAnHUtGFqzRXmGakSZ3iz+Ypkp7nMZn9JvxDoQJnWJYgKVqYHEbQjB9OPyVyWPZvUJmy7nGLbFcqdg2gDQVr7SwYS7gxbfuzpMLFlltQKQcDrwq0bm5viU1oGMQ6xACOTMHjTgTF7DWUNPO7YdN9QmPVwJZo+vy/r5ptAxkc8vD7UqKSKukQ228a2PzsgeTM1epJcL+s5DqW9HsiaFtKeEd9RdIZtt9RsH/j90XSesCbmFtRLKu2fE5hUpzZEawOfNl2Ge21DcWvMRyUtf9JgU+teVs1/VPTvs+y/V2VKBK7muJ6lqQXE727dT6XexLB+puJ/skt6VXmBtFGxAvCCuJgcvdhSXumbWXI5s+/KBgkvyf6bqtQe00haWXbf7e9d3qds4T94ba/VnRM7tg+03VJTy96H0fAzwlhnuUCs4BsAG5ugFdklDlMCjXrqfgI8cURPVpk2cJ0M9uvzo3zO5I+Zvu1CrnxIlwq6TQig2dCbfCSbPLKTVZtF4AZmvas3E6OemL7dzRb3NXFBYoeuuPp980oojw1mWzzx6zvkqpmSxTdGE5RM657nCh3c00JgHwSoI+LXQMjUQDczuwTIgv9OuK1hqjaHlp1gKT1bF9fse2CgsMys99/EEmGxaYAACAASURBVLYNQ81+W2B/gtq2tqRjCVrYKwZ3sv1p4NOSDrX9urond3tlymMU6l6nUG9x1oaCdbaiMp6ZqL44bbsv8Jeyg9Swz0HFvZoZBe2zWbUkVf+OkvRi28PU5bpA4yA2JSI2JBI+5xG0olK6pqSdiDnibOLze4ikvW2X9XhAC9XAlmj6/I8mgrLfU79neBiKaJgrStrUYW6MpCfR671aOrizgp7/H8D/EVSvvW3fmSXzgDkBWcv35evEPfSb1FMy/Cf32xHcpGAilKERxW9ENA18Pk70QPf5pwJFFb1nENWqrJKZTyQPo7i+lhA9WyopYysVzvkpUb+z7bcT1LtKw2fbGc3wdtt9xtGSSr1jifdlMPh6RcG2PA5PAfh7CNGVVRkuUV+0pvhcyb7fB/IeYbW8XxXqvjtT03S9Jm4YeLwPofnwA2raFU0zZpTFAmiMBni5a/wM2M71mmJRGBefRcgGQ3zQtyIqTZe4wNBP0pEVp7QHmj6bLgAHjs2MHCHK5WMxcmwC1aQ8pcn2I2mybXr+rWzPuXG3xWBJvuD/KzOc617nOk3pGpXjanCepxFKl7elDPTGwKdqJj/qXqOIkjgRis4wKEyYNyNu/heNg2rR9DWW9AZCNe0v9BY0domgjdpR40QEYdmi+ALgpKoFmkr6HFxh+inpYEIMIk+ruYV4Xos9YDqqoDgWUYqqmtsbI80VTyDuKXX7u75GqL9dA5xD0BVLe3oVJqlbeaDp3kOo4IpelTxFqkmiphaaPv90f9yLuTTa2rS8gnMWzQtPInrBViWe/y1E796PgG1snzCw//uBLxSNQ9K/FN3P27wvkn7gIebkA/svAV6YfccVbRdfaztna4BBMQoSO+K+RIBbGfik/edQZou2Dfx/ETG/PIxeocFdfo8lXeQKGmDJMbUMmBVsnl2JNdR5uX/dD7jbdqn9jKQVbbfuex62ppD0Q8LW4wMUMJnKqpBqaLqejqkUvirY/2JCSr8W3X7aMauQFaO2AZ6kowiz4TxV4OODwU4B/lA3GEvYlciwf51YQFyQtq1IiceS7cosTsH+rYKxhOuJCfdexPpr45JK1MTgmpSnVBXdfPieAfXUrDIBgVOpJyBQ6/QF17uKCMSPd/QptDUezmO+MjGHAo9XGJ2+jVhoH0NkOpdBxc32y1B0c1b4QT0GWG2AwrKYXIWlCClgeCmwnu0PSFobeFCWOe8QzyBuuiYEFCopHy1R6zXO4W3AI+sGh1WBV8UxJnovqqoCg6jlE1RwTL5/95tKPb2SivwU8wbTiwjKZ5N5uS7e1/QAJ/EQSf9CUCy/lxZfDy05pGnTfXadM2hWLW+D9zXc/4+2vzGOgeTh8Hh7XGK5MLAoPaFg//0BUvUpX7X9ZcX9vM37cnBKFnyHeoI2+wLnSzqHuIdsQdBb26Ipg6IUbs6OaOSfmvB1IqF0GRH0wZB7nAp83QBcTqm7XNI3iCp/PlE/JyCRtDXwPOAhkj6d+9diCiqvhPjM7wj2Qd7n8VaGUz2vl3Q6wQT67pAkVyG1M/2vLLhq6xHW1HQdagpf5XBvN6PbTzVmAVkB3IzzvVEBVaC08pD7Qlwq6XhiIslPuIUf7rRYGuS/Z/iZCvjxkh5K0CizrPR5RPD467LxtYGkDxBl9Z+Ty7BTbfQ8dqRqxP70FsDnE0ahRRTD2pMtvR6OX6afldJP0/GtTvTR5CfcogbZ7YhM/wmS7iYm3hO6rCrVQJ1ewjpYatuSng/8t+3PSyqqeGybfmfKYnnlz7IbzvrpuMEbx62ECmgVPkNk2J5FZAL/CvwPvTlgZEj6DPBIetWb10p6tu0i9bRRUPc1zvAzavDwJZ1ve3P1+gGX/Ytyqk/jY3LIFla1eyeBVZWjm0tah14v6BzLD9t9JteSPkaIQXSKNkGspG2JhfXTSV5M9GfPB3G6QjwlXx0sDGBHfF8ao8Xzv1zScQRlb+j9sSaWzWGSXmb7S+qXikdJibYsqaYwn/4EUbm8keiP+TGRCCpD7fclh8cRBsrPor8/ufCeavv0xFLJKjhvGbH63tV8j6SzBis8RdtyeB0x72e0s/PomUqX4aG2myox56s9iwjxqyWUr1sWEXNQ/v9lAclviSBy+3TODLdS0NKSKq6/oJ2dywbEfe8NwBcUtO0v2z6/YN/svvjPhF3Cd9PjLYmgcM5zSec5XyFKNUyWHrU3XQd4hO2dU8UQ27dLlfLQ35L0GubOE532Qk4Ks4CsAGrG+V5B0upOSoQKhbOq1zW/ULydniIUDOc8V6GIH38k0eifcZZflrZt1fIaZdiJ+CJVeZzNB75M8JUzMYqXEsHMswv2rT3ZukA4QNFDsKrtW6oGpJAj3574jCwBbpR0QZblsf2dguv9gjB6PiiV8N9DZDBLfWZq4IaG+w9VUqqJWyXtQ3wWn55et3sP7pRRghJ1Jp/geKdCcvpdBcecDJws6Sm2m8rrPtnRyH95OtdNCqWvLvEswvcqE1A4iqBGdY1ar3EOtxE3zu9RceO0vXn6XZnxzs+HdY8pQVOfIIhq3/mSlll9AK9X9KrVobGsQgh9dIIRA59/JxajB9v+7bBruUHT/YjvS22M8PzvQ3wWu7o/Qn8fTiZe0vT5f5AIes50KNttSXzPStHkfclhR+DhDe+pKwN/Ju4tG6aKR9t+nZEZFIlGuArwTyn5mFcyfUjphYPi9gn6xXaG4UJJj3OyR6kDDyhoJlZEqRdsE8aR7SuBKxW049ucKIWK9og5Pf+jzBOOnvwTiITt6sTn/BwK1gfZc1C0wGzo6N9HIaz2xaLzKwmnADcVVdgKkiR5+4KmVe66wlcZdkm/98kPiQUqe4+nwJ162n4IE9p/zj1ekxJneaLB9ydEVv0D6e+Xz8OYLyvYdkWdbR1c+6T86zUtP4RB7OC2zlzviWB3MXFzvwb4NdHkXXXM5en3qwhLAQjp2GHXWpdoGF9C9GG8bcj+qxCB2xHp8aMIC4Sy/Z9GUFT+H0E1uB64bgzvyVpEb8gW6fE6hBx62f5XAE/LPX7qsM8wIZd8Vvb+E6qX+w055gfEDeyy9HjN7L3q8LmfAqw78J5+cwpe492Kfka4/py5KG3fnPBEg6DmrFdxjhUI+mH2eGVgtSHXXSF9PlYGHp9+Fg055mqCEnQVITxxI6F01ul70uI1XBH4XsNj1ss/XyKoeVjJvmtU/czD8129g3M8mgjYv0Nk/r9LULi6HOel6feVBBURStYGbd6X3D5fp8E9lUjQ3QCcSlQLvgl8Y4TnWfgdbniOPYn7yN/p3VOuT6/dGwv2v6rqp+Qa2ff3GkJt8Nr0+OqyYyrGK+CaIZ+vpveVi4hEbfZ4VcJXsNPvCUFH/0x6nU8AXjzkPD8eeLzC4Lbc/7J1ypEFP1+oO26CTTZsv+cQweQfCY/fG4AtR/0sLpSfmahHAZTzokqPVyAm3ceV7L8hvcrKd52T6s1niweOOYjItt1BKK9tBLzV9pcG96055qJG0bOIL01GldiFWBCVNoi2vPYmhLHuD6mvujZ2SPoEEbxkvQA7AJu6QLxDLdzulbyrJL2UEE54F7DE1c3HVxOTzlHAvrYv0fCG5R8QFY4TCKpiHbPu44ng7T9sP1bRLHuhS7y2FJ51b03HLGsQdrcKko0h6V+JpvvViBvmTYR3WZXa3DkEHeWz7nkr/dAFXle5Y15KUIk2Jt6bHYD3eKCpf8Tncg5BgbyYyOJtSmQTb4b5/750BRUIxihnQGz70YmCeKLtUgPiovO0ufaQ/dclFgtbELTA01zg6TgfSPP3i1xTwEfSpUQQ+4/0eCXgAhd4Ykq6HpbZUKxDv7/lL91cqXMkDN6/1N93k+FmIiAq82G7klAMHpzDSt9PhYLfocAD0zy5EbC97Q+W7H8moSJ8IJFUuBF4ku2nVlyj9vuSO+ZsYk1wCfVEUBoLKFRB0ldtl/YbNTzXm2wfUmO/K4jPZEZVvSP/fxcLqaxbdc6iY3LH5j3CViBEZ26wXVjxbHlfmeNvWbStLkrWeTcAlxPrg2+4hom8Qn36UfTTaH/mubYQrVHEBiI+95U9X2ogfJUqjtsw1x5ilD7+ecOMsliMIs53qT9RCsDK/FLOIhZ5g3iO7XdIeiGRBXgRQa9rFZBRzPl+JdFD9kli4rmQIXKtLXEUkaHrU7qZArwaeAu9/qMVgdsU7u52Pw2gsds9cG+FCeMLiF6dO5X8fCpwANGjckEKxh5OyCVX4T+cJICLoPBoGaRjNeVi32x7WF/DyJC0GfGZ/Bei725F4K+2VyvaPy2mHq/ipvsyrGL74oGnW6mEaftYhVLZvxHfpRe4mehOHby34/MVQjUtNSSdYHsnlQioVCUJhqDoO/BCkgFxOvdvJQ2jizWVy25zzPOJeeKrxOt0pKQj6iwgJ4C/Er5YZ9Df11rWg3Ev5yhutv9RRrvNAi5JRxBqfKelx1sT89mkMTg3LSJ6Y/I2CdcTc8GWtt9ScI6ltistMQpwBGmRDWD7KkXvWmFARnxe/kYkr15KJIqGKfnVfl9y2L/G2PNoJKCgkF4/3fatkvYj1igfzBJdXQVj6VyHSHoqcxfNRw/s9wSFMNMuRFB2Tfr9HZcoGVcFXDWQFwpZCvyv7SJLlAyN7yvEemOZwFlKMN4x5JgqFN3DN3JFq4SkfWwfmN9m+41p7ZkJm9TxFFuZuUqWuFzJcjXbt0h6FXC07f0VAmVV18h6C08t2FaEbxLfx2lbe7bCLCArgIPznZdorsP5LkPZIjh77bchMsU3V6+X08mkVRyc4UEcPLDfikR2dRJZ99sd3klTBQ/vdXmM7ayH55G2d5T0fNtHpZtyVQM9xE38BoKCcW7K1lX2kDk8SU7MPb6OXo9b2TGlwVjCnsztj2nKxf6epI8SC9M6ql5t8d/AS4jXYBOC8vvoqgOU86JSr+m+ahH0f+n5Zs99B4b4H6nnsfKTgm2dwC2EHVriIOpZamTebttW7tUcRb2NbQyIa/sEjXDMqwiPx9vSuD5C+O5MQ0D2VZr1TP1R0vZO6oQKUZdhwg6D/pbfSuyNSWMweN6IoCpnvTeHEvPx5sTiaxkUfdvQzuy40SJ7oPpQV1q78fvSYq5oKqDwHtsnKtSFn030aR4K1JbarwtJxwCPIOjneT+qowf3tf0TIhjdX9LOaZ+PpPF1ja8Af8t9xlasWF9Bi/sKkRA+UdJvibloLSLB3xZFibPKNQfRj3hgwfbvE0HM3UQldhhOJqrUS6gX+N9L0Zu2EyVm7RnUst+QEHMZxZtwqjALyErgMAvtwjC0LEt7SqKJ3QG8TuFN8reSfUkZps8RHOR1FJLWr7X9+jTeL/ZdNKTcdyGqY+PGeZIOJBo4x7mY7xrH0KteNna7T0HoskBU0i8JtaLs8ZzKVVOKTE0URfLvY64JcVV1NLsRb5LbZsaglGn7Z+p5pxypENLYp2hflXhRDbnEG4DDgQ0k/YbIrL90yDF9KmkpodGpb1lJdfC2IQFGG9Sy1HBq6B4xy1yEIk+cxgbEtu+XFtuPYohtwQjHaGC8d1GeRJsoUmLoPoQnz7CkDIQ89bGJjgTR0zosofDbVCHJS4wPFRCZAFYn7nVZRfy+RG/bXZIGF4NL6NEvoZnZca1FtuaKLSz7F8OTBI3fl4HrrURUv6rmim/QTEAh+8xvQyScT5U0yj2oCpsQAhJDK9aSHkIk7F5I0GjfynisQSDYS8+mZ31xH6L/sIx+WnRfGSbockmq+q2fNl1r+86qY4agjZBXkZXOqwjGxnfT/w+RdIDtL1Scp6mSZcYGOr8GG+i1RPD6YOL7nI35FiKJW4ZvSXqOC8TQFiQ8BY1s0/ZD0Ad/StwMbiGkSm9pea7Shl+igXrF9Pd9gbUq9v0BsDY5oQEKRCsGjvkk8WHeggg8NgY2HsPr9b2Cn06bqcf0Pudfy1cRi4BnEPSPG4mAd5TzFwmtnEP0DtV+H9tcJ21/AHHD3Rb4p/l+vdOYziUWGEcTlZy3DvmOXDXwe1XCeLzqGnuln30JYZO9iP7AJxTsu0/6fi9N3/Xs+/4n4MCOn/ulhOz95cSNdfeur5GuczChJrpLmsteRFTLy/bvbL5L5ysTQNqKyHR/jDDKHXaeVxHVkJvSnHIHcFaXx6TPxpVEAuN9RBb/LeP+HtR8HbcjRAquT4+fQA2hhvQdWbVg+24F29ZIn5fL08/BzI+ox+UDj/cgFrxHEupv16X39r7ARzu87sOBM4kK028Ia5R1x/Qca78vA/8XQSP9rw7HcgrB8LiO6Btcuex728G1TiQ8HYftdw5BaX4XkVAZq9AMLUXP0mfwfkP2eVb6/aKinxHG3FhspeiYNK88IPf4AUSwWHWew4HHdfj671OwrZGgEhG435bm+ZHvXfP9MxP1KICkn1GP8lPnXHOaMNP2VYjFwDq2X6PhjuQ/sP1k5ZrWJV1p+/EV1/5e+jN7k7Ns3kT9wUp6nOYdZe9Nh+cvEjfITGrz72PrJt+K69TyflGJH08Gd9wcm2idNxIZ37cSPRifsf2zkv2zz/1FxM3sT8CPbD+y4hrHEVnZbxCf+W0J5a2HEfTgOZQsSQfaLqzSpf/n6a2toPBx2UQ5EZei925USDqyYLNdIlDT5XyXzlfUeL4HcK7tYf2S+WOuJkRQLnKvv+TDruhvaXnMxvQkyc+zfXndMY4Tip7GZwFnu6aIwJDzjXW+G3LtRwC/tv13Sc8kKIlHO3l4SlrDA9TCRHfaND28xEOk/yW9ATg2d87VgV1sD/Owyii0K9i+teFTGxl135equUI9kZY+2C6sDqb1x78TqsM/Ta/14zyGSkNahzyBYDaUCpQoxCmy55B/Ltm6pVMpc0kXEAFAvr/rv20XeoGpQQ+VpPc7eqYazcU1xly55is5pmh9cCHwTPcLzZztanGaa4iE4vXE+5i9L60ogxVr48cCG9IvrjaH3pr2vZ7o67zay0EwM6MsFqMW5acmykrMRxKl2ewLMMyR/FeJtmiFkMSelIhO5BbXp9BP5YAO/EVaoKjHaaqgUPZ5H0HtM9Gv8AGPpjJY9Fq36W9az/b1FdsuyG1vysVu68fTCu7R4+4A5vi5FeAUNfeieihRCf4rgELh71SigXkJUZkbHFdpMJaQp7e2xe3pxneFok/nd4S6V6dwA7+chC7nuzKsA3xW0sOI9+BcIvi5ouKYv9n+myQkrWz7J5LWr9i/1TFpQTaN9Oo7Pbe3eJTG9SLq0pqEncagumzXSbuTgE0kPZLItJ9MCDY8L13vz2k8G6T3LPuu/Sr9XkvSWq6mwb/a9v/knsNNiR5bGpAp/OouIub78xiPL+AwFL0v+QTCCkSCqbSlgX6q+SKib2iNwZ0kLXb0HC0ifFazHry/0y9y0SXeV2cn2w8b0/XL0LS/q3YPle390++uRdTm0MElPc0DYiQD204cPAb4GfADSScT99TnA1dla8eSROzWI418Loo+9/sDzyQCstPSNc+noN8w4VcEw2jBB2MwC8jKcKlCNvzr9Gd02phSFvVTQHMVvP8k6CQPIYK37xCc5iJki+v1iWzxycSHfzuG99+MA1PRk1GAvOlmExPpuih63o156MRiZjAY+Aqpx8n2G3PbG3GxbWfqYnWCo5EhaVvCr29dYv6p7MGw/YH050mSTiH8fIYpLf4z/TfMO4mevTsK+k9qD73lcXm8nFhcvZGoDq7NEEGXNlDzPsUu5zsoeK2yBYqiJ+rVRJ/Pp6juifh1Csa/Dpwh6SZgWL9bm2OmFT+StCuwYmJQvJlQym2LokXLscQ8ty1xj9mN8ADqGnfbXqpQdjvEobxXVIncC3gN8PHctvy4qwLFFSUpW5wp+kCHqRluSPTPbgF8NAXvV9l+4ZDjukTR+5I3LV5KiEc9v/QEcxOHn0oV1kFl1+OI93qw7y4bR+eGurbPScyIR9k+M1XnSr/3ddkdHYyraX9X7R6qMsZJ7tpdMk8OYe76YNk22x8uOObn6SdDZiVRlZjtOugpOt8OhH/k5bZ3l/RAqpXHrwPOlvQt+u9dM9n75QiLCU75c3LbTDPFq2FopILn8GIYJkyQ7fv+dM5ziUrBrenx+8jJiU4Q85K9GDax294s968H5Rb/AB9UqDxVnb925SqDQ1Xx2XUoMulm8RhgtYGM6WJKBAtsHwwcrJreL7lrNfZha4lPEdTDWhSDNK7XE5QyA+dLOtR2Vbb4WHrZP4jFzXHpNS+zpxiGkT/Duerg36hXHWyLplLeXc93cxZOCuGIpxF9NJcDb2eIimluUfy+RHtajRCq6fSYKcabiD7IvxML6W9T/h7WQVFS4QG2Py9pT4ey3zmS6iiuNcWdKfm4G71g496DO9l+TfrzUEKW/RZJ7yEWlx8Y3H8ApwPHK8RjIJJTw977u4iEzV1E9fHG9DNJFCUwGlVWchVF6FXU5qzvbG+bfk/MZy5VKV9DVOweQSSVD2Ngnkhz/X1prrTXdlwZxfWH6fHqkqoorhdKepztq0v+n8dgUjwTXBk1Kb7ssyLpKQTDas2BAHAxQ8Q/WiZgT6UXxC8C1iN60R5TdVAFiuajO2zfLWmppMXEd3HtinNcn35WYnjyZeoxC8gKMGwyVIGvQ9XuBceLmJAGVfBeUbBv3rywaKxlsrYAD6S/CvSPtG3SmGiFrAVtD+A7kl5Cv4n0t4dcqknlKhtbHw9d1TLu6xPZzPvTnzG9lagylCJloGtzsWnnw9YGTSkGRxPPNwsudyXGumPZAbY/kDJmmW3Ff9rO6Di1khrjgKSnEfSdrDoIlPd5jICmUt6d0mpcLDP+ojSGU4nm/e+7gYmtW1gGtDlmyrCB7X0ZIhndAEUeS1lF4HcKe4nfUkB16wC7ExW4D9m+XtJ69Pwhi7Cf7RMUsuzPIoRghsmyv5MIwl6XHp9BKLNW4RZCBOYTwBEjUtQL0SZxlyjNHySo3acTPXdvtV1WLchXFJcSi9SdKsa0h+3P5x6vSLzm40gUvYHoBfwBgKNnrUjBOM/uyFNThynttUVTiuvmwCsUfUuVPVRjTIrng9iViATXveivbN1CrF9KkZJVRT2HpRVo248bOMfGRLK07BptqJSXJobDEUQV96+EPH/ZmCbC7JkUZqIeLaAGzdEqaFZO268muLKVjuSSdqs6vyvEMiTtS0zKmWzsC4DjGwSTnUDSfxcFJ2O83p70Jvbf0E/bO8L2nMldITN8X3oU0xXpmbH2UepylauD6JdYXgzsbbs0YyTpdHo89GV0VtsfrzjmKbZLJ6WSYwq52LYLJ2qlxl8lwQlFn+J5A1XEkSHpSUSm+xxqUAwkXWN7w2Hbxg1JF436WihsLt7K3Pe+00VgCkbfSAiYbKzoU9zD9tYD+73D9kFlSZ8hyZ4241pMBMmbEwH1jbY3rz7qnou0aFqLSPIcn2XyK/a/P+Hr9zD6A/7S91FBIT6PyEIfQsxh73fyzBoHUpJsbdulJrG5+ehAopp+nGoI4Ch6NNcnPs9DJcYVnmCbEwHDPwhK6Lm2z2r2rCqvUSRys8R2qa2GktBTonhuS1A5z/WAoEOqbB4saXPb5zcY03FEom8PQmHvSOAc22+v/8xqX6tPkEzSvQjlv0IxiKbsjhHGdTVhqpynuF5Vdv9OtMs5cIVtiKRr0zX+nh6vnK4xrBe2NiSta/sXqvZQGzwm/9lbRCSJl9p+R8NrXz0YqOX+V/S5b7J2fhiweMg80TiwnGbMKmTtULviU5IthsgAPdx2ZbZkMOBKixpXUd1yx34oLc62SJt29xgUxBQ83w8DD7a9taQNgadkGbhJBmPpeo1pe25mIt26ckVzLw+APykMP5t4lzXlYjf2YWuJDxFZr0XUoxhcJmkz2xcBSHoyY2g+T9WrK2zfJullROXz4Oxm21FgerPtb3VwnmGo26eYVUAvZcy04vSZ2oKwldiEqJQOM16/R8P2lpLWIpJqn01z//EV3/vTCIGKq6kh/pEWoI9yKPveTM5DsWtIOhvYnlhzLAFulHSB7bJem98k6uFWwEfSQrZSAEeh3ngU0W8lgn2ym+1zy46xfTJwckqybU0k8t5BeFKNBLWgnOeQrc22IRIrg+IuGXYness/TQPRIdu7Kij5VxOJx10Hqxkd4hxJ7wbuI2kroqryzYr9v6CgONdSoB4BjSiuKejZnPjOHKkQxFl1yDWOBi6WlE+Kdy1w9uC0ziv0qC2C7SUDmy6QVEmlVD8tcgXi8zZH+VQtqJTqp9zO+Z/LxXzyCYRlgWXZuaYdswpZCzSJ8ivO8RNCQvQXxIRYKSEqaRMii3W/tO9fgFcWfLEmjjQZHAnsa/vxKQN2eVnmZILjai2DXHCuomxPm8rV4URTex0eenbMOaSeINeUv5Z0se1NFY3dWxLB4o9tb1Cy/6sICubjCN+fVYH3OIl+dIVh4y7Y/8dEAPzLtGkdgre+lBEkdwuucxURwG5EPP/PATvZfkYH584+NzsRN6SvMgEDddWU8k5Vy3fTX1np7LVN1ziFEM05n5AwH8Uc9R4HSY8jAoWdbRcmMtrcl7J5oosxDrlOVh15FVEd2185+4eC/RvLsqe5blcnE22FuM3/DqlEnUR8739O7/P5A1f3qNZCqr69gAhE8xXHW4Ev2y4VaJH0X+nYO4jq3f2BU2w/eWC//yUSHA+mX6Rh2HriUURgcDVhVH8NsFfdCksTSFqBqMQ9J43r28DnsspUwf7HE0H7f6QE5CrAhR7BGqZiXK+lRwM8I42rUIhNwTrZhAgOHy3pwUSw/LSi/XPHbUwvKX5u10lxST8gErDfaLA+yNOSVyDaLD5dVblLzz9DJjRz0uB3RdIzCHbOfxKtORluBb7pAusT9SyaFhGv8ZXEZ2Uj4FKXWBGUjHMic9o4MAvIWkAdeAc1LX+nBeMbbJ+XHm9O+Dd1tmhqC43BW6ujcc0ZQ9v3buC5taZ6Kbw8HkWoA9Xy2QLaHgAAIABJREFU8mjz+kr6DLHIfgnwNqIqdYUL+oXSjWkH2ycM/q9rKHojzqxaWA3sX/g9yeEW2zd1MK7LHPS+9wK/cQgddOLblLvZFMFd0yvUkLqmoNXszUBlpWwuGgcknWS7c8XJhQxJ/0LIcO8A/B+hhniS7ULRCUlvJb7np9Af8JexNJD0SUJc43h6FO3OkwQKethziCBgX4fCXWlA1vIac8437Bop0Xl5xSJ8K9tnjDiuxom7dNwaRFX9rpRcuZ/t3xfstxYR5Gw/+L+K9cRPiPXEWYrS215EgretQEMtpOf0UFfT0DK/xtqeq5OApCuAJxJ0y2xcQz/DRVU1D/QUjjiuNh61mW+d6PUcHuAGtNeCcx5i+025x+s2vYdI+iqwf5awVjAr3ufyVovBwHITgtnSGSV0kphRFtuhqBmxEVosdu7KgrF0/PmSpqU0e5vCxyvjYm9GUGDmG21kkMuQD7zyVK+m2BpYnVzGjKh2VqGxd5l7dIXDFH1rpVxsh6rRO+gJmowTrwPerpCfvxOGyt5Xfk8kXcbo/mAAt0rah6D2PT0FqXNU4NrA9tioYCVoRF0D/ugx9gzVROdy28sBvkDYcTzHQ0yRE/5B+PXtS2++GiZlniV1suZ4pWO67sE4gAgaLkjB2MOB2ibhNXGppM/Ro2a/lCFztHtiP2X4CFE5GQWNKefKURzVoyreLOnuwYA8BWmVwUpBwmNThx8Z6f74cUlVNMLWUDFd9ULbby05pJEC9QjjehRwIHOFr8q+L/+wbUnZuO5bsl/+GsuqagSL6N7E57OyqtYQtT1qM3iIymbLRMTgc/pi9loNXLtqblnfOfaQ7R+mxFQZ8vYNdxJVuz1qj3jKMKuQFUDNfXzGOZZssfkfBK/9f4kP4M6ECWql38UkkMZ4CPBY4IfAmkTFpTQLNqFxfZRQtMtzxH9l+20tztVVtWRP4FUEbU0ELeUIV/S6pcXL4QQv+yZST5DtGyqOaeTlkigyWRY+nykvza6PA+rv1auz/8jV6nSetQgFx0tsnydpHeCZLlelbHONPYmb8q2EitTGwLvqVgsbXKfRZ1XSvwG7AGfRjQ9ZY3T1/VreoBCpeHR6WClSIek6YqE9Rxyq4pi30e9HZUL86FJXm3ZPHRR9Zm8gRDogehQ/4wZqngXn7IIN04ZyfirwFCCrrj+TWHyuR1QyqhQqi84353momQpva6g5XXUrYL80tu+QFKhtn93xuM4H9gc+SfSC705QvAe927L9306wW7YiArlXAscNuXe3qqo1fB7/RPQRPpv4Hn8H2NMjiEW1mY8Hj1EL4RAFBfc2+pMqq9repWT/nSiwx+i6wj8pzAKyArSZQMc4lonSndpC0Te2PjEhDFW3mgTUkCM+5FxzVPYknQHs6P4etS/bfm7Fea4iBE9uS4/vS0iAD52gVc+7LJP8/x5xE89L/p/u8h6yIgqFK7KFY0GLYGLBLOQzGomk5xL8+v2AY7oevxpS1yR9CdgA+BG9iprdvQddKRbS+zgpKHoxjiYnUgHs5hKRCknfAV7gBn1ACrW9TYgeJxFiRVcRdNcTbR80wlPIX2ciSc4UwP4L8Tm+1vY/hhwy7Hxd9Iu3oZx/m+ih+kN6/EDis7AL0YfUaC1SsFhupMI7CtSCrpoYN5UK1B2Ma4ntf1VOKVDD1S+3ItcLN6yKpF4vd0aJr32/n0+0SUTU+a5oSH9XWr+8Dnh62nQuUOo7qp4q9OaEevPHgPd6oNdyoWBGWSxGIx+fcWIe6E61oX7lqDweLWmiGfYi2L6bWAQcOmzfYRWlwWAsYc0sGEv73KRif5W+05KTPE9/V6p2DlZWUkWyrLKS93JZQo+ClPfyKsK/DE56aXKcNCbtWXe+7c0Vtgf57FQllbLt5dLv5wFH2/6RVCydNiKaUtee5Pnn3E/0fV8g+ARBV+wTqSD5HBbgNuCKlMTLB+JV9gUPJXyS/pqusT/hk/R0Yv7oJCCjuVl5Yyh81A4jxC0ErCfptZ6MsmkVGlPOiUrSH3KPb0zb/iypi2RnUxXeUZDRVc93BV01sRLyyKhrq0hax/YvB48ZEX9PSdufSnojYZFTqZqYArAmVL4TFCqO91d4nL2S+C50BkmfLth8M1HlPrnladtUavrmcBULh6xWedFYg3wy/dRBtpbahmAanSpp4ky2rjALyIrRZgIdO9IN5zH0UwyKDIUnhe0q/meCljdxSDrB9k4pM1fEYd4ot28bE+kMd+VvFAoBimET2ZHAD9Qvg/v5iv0hmq0PTpWVBwAvJ0xV5wRk7kn+vxf41EApv6qx/ELm9mIVbRs3mt4IRlrIO/lgeYjtQUdYkqoY6wH7SLof9Xq8muJtwCMbZJUvlLSh7WvGMJZlUPSFrJMFGAN45zivvUBx7/xrZfv/KXpEyvD19NME/0x/f86dRBXrDkWfZ1eYRJLz48CWtn8Gy3qPTgVKAzJJKw9SGge23dDBuIpsKIYZ1J+tUCbN+tV3SNvuy/Ce4yIMzpN3OHqHlyrsFG4kKrCdw/aJ5PrubV9H0NcGcSr99FnS4zWJz2mhZPoI2JO497+ZqK5sCZT6vhYk7SAFPsDb0vPqg+2PparaLQSD6L3DqmotsIhgOGSv8YuJz9jjJW1p+y0dX68MBw88zvd3ZcIhhf1dTdZsA2hsjzHNmAVkxWgzgY4Vkg4jJo8tCUnuHYBK34hxw0mxr+SmtkbxURPBnun3tjX2LaooQUygcwykB7AvcH6iuIoQ6nhN1QG2P6Focs76HOp4w7WprOxg+4BUyn8WUco/FBiUTV6LCDzvI+mJ9Aekqwy5xtiRFlW/tv13hc/QRsRrkC1KCnviphR7ECIK19m+PdFylqleqmH/XAV+BjSRr96MqKxcT03lz6aQtB3xGVyJqFw8geiF2Z64WKd9dMsJGolU2D5KDXrOEo4lEkRZJn074Li08O8yQJ9EkvPWLBhLuI5gBlTh+8xNOi3bZruMBdIELyBogd8jFou3Ac9O9LiyPr03AC+id584ilDYNO384gYTHpcq1FiPIO57f6U6YdcaCmXdDxIS/qcTc/hbbfdV5Dxgk6MwBn4n0Rv14a7HZfuS9Odfyc3Duev3qQYCnwJ+DRxHzJEvAR5BeMp+gaCA5o9fkVAU3pLRhWGqsBHwNKdWDEmHEv2Tm9OrMjbFDYMbFIqk+xJ9+fdi4D5h+4v5/T1EOGQATdZseexE2GN8zPZfFPYYezc8x9Rg1kNWgBRl70Dw6NcgFueez2pUjiub/V4V+JbtLYYePP6xnQo83/bS9Hgt4NQqLva0QQ1MpAeO+ydiQQvj47ofSQRN6xE0kxWBs4dw3bNG6gMJL5/jinjhknYDXkH0kVxCf0B61KRppxro1VM0RW9CfBdPA04GHmP7eZMc1yRQh4Nf8zxfIyrptahramjB0XJMS4jEwNnu9dFcPbgIm6EHNRSpUIExMhU9Z7njNqGnkHaBhysPNoZaCBO1uMahxGLxBCLw25HwLzwT+kVqcomoLxFiPvlE1GEu6bVtOa5WfXqJRrhpei4Xu8TuIO1bVFnIqjcfdIXAQwp8+lR4O0wOLeuXk/RC4rnvRfTBFSpDKtQP9yWShx8n7kMT70kfnI9VICWfe26FMvMKdc0X2R6b6rTCtmTT7BqSViM+L+sX3fPTPqsQTIp1bL9aNcy31dAeJbGPXk/MXybmr8MGWyNm6GFWISvGyQQt4DIKnMjnCXek37crDAn/BDxoHseTx9eBE1PWc23ixvP26kPGhxJqwTIU9QXZPkQhHfsw+r2b5qhOSdrA9k/UU8DMPiPrJApj1wo/bSortUr5to8CjpL0YtsnlQ1A0m5p35Gg5r16d9temm7mh6T3qVNjzSlCV31UjahrXQZeFbjT9s0Dhd1ZNrACKfD6RPqZA82VMv84zXrOsutcSjsLj9pIdK5nq6ZZeUssAv4AZGbufySUibdjLoX+uUQi6qH0v763EP6NXaJxn55CPe6jwNnEvHCIpL1tf6XkGt8i+mmOS49fQjAcfk8Y3Ze2F5QExcfQHV09u59uQwSgg/MAAArVx32JZNJBwB5uIcA1Rtye3pfsPdgByIKLsrnsr8DVCgGwvHpxVV9nUxxEMBzOJj4rTwc+nL5rZ5YccyTx2csMl39DUB5LAzKa26McTX/v+q7E52rHwR0r1mzj6OWeWswCsmI81Pa/z/cgBnBKohh8lAgUTVAX5x22j0hUma8TAc1rbV84j+O5H4CkDxC0mGOIL/ZLKQliJR1D0A+uoNcoamJSGcTbgFcTC6A5l6djDx+HOMllucd/IgLyDEU3z0al/KpgLGFPIvveCmrfq3enpF0Ibn+2qOjEH2wK0UmA0kXgPAb8SNKuhDfgo4i+jXmbI5YTDIq0NO05mxgkfRg4yP2KtG+zvV9X13CB6X3FvrUSUR2hTZ/evoTYzo0ACkPhM+kFA4N49kB1/Wr1lP1e1mLMXYrsnKIwor4DeF16LkVVkiuBXxHB6qbApvnAreMgpg1eSvRJfYaYqy8CXqbojX1jyTFfZcy99LY/L+k04jUDeLd7voV7lyRsH2F753RvJSV6h73n+ycKdV17lMfa3jD3+HuSCmnQnkwP99RjFpAV40JJj3POoG6+YfsD6c+TFM2+i8ZZBq8DSXkPNAHrEAHNZpI2s12Y2Z0gth+gERwq6UqgyGdkE2BD1+Dw2n51+j0tCphzJlKH9PVXc49/x2g9G6PeoPO9evkK4rBevd0JifgP2b5e0npEADrDANS+MXoSeBOxyPw7UbX5NtFIP0N7DL7HjY2RJ4itbS+rPDkUaZ9HWD90ArWT1r9A0ueBB9veWtKGhC3JMKGlJmjTp7fCAEXxT1SLFawoaVPbFwNIehI9EYw24imdVa9tv0vRR3az7bsk3QY8v2DXPbq8bgfoL+dHlbes0ni+pH1sHzhwzFEpWb0B8dxGtmIoQrq/lykqFiVs25hv7048j3uTs0ehPOC8LK0DL0rXeDI15yOFWnVevK5rhc2pxKyHLIfcQuZehAHgdYypyb3BmCqbiiuyE2NHol6Uwvb7JzWWIki6EPgf4MvE+7oL8AbbTy3Y90TgzWliG3beqXpPuuo9msQ11LJXLx27OiH9PK+G4+OCCrzuGh7/INu/0wR6wmaYfxT0uHRujNwVFP6LT8rGkhaDl9p+TIfXaGPA/C2CvrWvwyPwXoQUfKe9jWrYpyfpo4RYw/+mTTsDV9kuVCNNAdgXCNl2EYmuVxHegtvYPqHheDu7p6Qqbd5b6hyil2hoX1ia8/9SJ1HaYlyVSXdJr/CAUMWQ8815zVLS4bPkrBgIBtHErBiK+sgkPYdIkOXNt3e3Xep7K+laN7BHkfRjQlkyC6bWAa4lEgSF62lJ2xPMowcTyp/rAj/ucp6YZswCshzKFjIZ5mNBoxB0KIM9QfPWhQZFs/LBxGRj4ALgLUWceYV3zxMI5cp8OX77gn2n6j2ZUEDW2Ciy5Dz/UbTdBb16af+zge2JJMkSYpK+wPZeRftPM4b1zy2PkPRNqvs553y/ZqgH9RsNr0ioj86rGnAZJL2TqC5kc+fuwDfckfF0ukYbA+bGx0wKkl5ML4g7z/bXqvZPx6wGMCp7ZtTk0MC5PkdUVTIq9cuBu2y/amC/9wInOPqzVyb64p5ALOB3tV3WD9V2XOcBKxM9dsd28JoVBT4/Abb1gBWDOxSNqTGuwvWBGppvp3XPR13THqXNejoxmJ5FqFM+UdKWhPhPoVz+8oYZZTGHacwgN+HFzxcUDas7ur8/4Mu2nzuf40qBVxE1ogjva3DeaXtPOqdAFOCCjs7zpNzfiwjZ+sso7tUDWM3hpfYqYsG5f8q2LxhoNK+7JtdpLGYzAXxsHq55T8Gyakmigq0raaVxUKJGhe2PpMXWs9OmD9j+dseXaSOtf1tamGbHbEaoE847HL1ttfrbUgDzYpIoVdYO5BJlaIVI0nfdU+a7P/BM219Px3USjCU8aaB14LvpszCInenRmHcj5sk1CRuHoygXqGgF21so+llfSXhEXgwc6fY+YUVzbxsrhrEjlwg8tWBbGZrao3zQ9ssHrnvM4LYB3Gn7T5JWkLSC7e9J+lS9Z7XwMQvIphySXmb7SwP9Wsvg+e/TAljTPV+orD/gn+dzQNCsp8D2OS3O/wBgf3qyrucT3kqlEsNtIekh9Pw/AHCSs+7i5jl4Q89d44D0u6xpuRHc7+uSLQS+XHHIvRSCJDsRFIuFiLb9c43gFmI240b+ezWJXorlCZKeRiSKBn1/Hg6F3m3XET1R36Bf0W0a7hEAlxOVEqe/u0Yb/9C9CFXgR0i6gAgAdhjD2GqhIqkyTG3uZCKQXMLwXiCA/fMVN4fw0/40Nxavg7skPcL2zwEUFghF6on/yFETn0skde8CfpyopJ3D9k8l7Uf0Nn0aeKIimn23m7ceFPVZX6oQ3MhbMVyStT20uEYbLJtnR0wONhW666MZpvdwmBXSXxSWTucBx0q6kdxctrxjFpBNP+6bfk+zCs1dCrn3X8KyUvU0cGGPIPUUANi+SuEJMycgG7gRrkQsHG4bUlX4MnAuEchA3PyPp5cF7gSSPkJkD6+hXwGy0l+oIZre0LvCbQSvvgwHEAIQF9i+JN3MfzqRkXUE2wcDB2uE/rmGaCJmMxFI2gY4jFwvhaSJ9lIsQHweeCvxnSyV/85lnbcHPkmIP0zV/ULNZdwbw0Ok9VVs3fEIYGvCruXFhPfVvK2L3F5trqkydJFAyLie996Ewt51xHu/LgVGzMDfFdL3fyDMr/PWOat0PaiUoN2dkOM/A9jO9mUKW6Hv01wd8cSCbU2sGFqjQcI2nxxcQi8gG5octP0LSY8HMu/b82zPqXRK2oewjriPpFty1/gHkTCpwveA1QhV55elv+fN/3fSmPWQzTAyJP078UU7h/jybQG8ZgyUlKbjatUfkDJkzwc2s/2uiv3mNIxrDGa3CkPGjTzG5vyi5zKm6+R7ilYE/oXoGyh9nZcXNO2fG+E6tcVsJoVp6KVYaJD0A9tPrrHfNUQS6HTgmYP/t/3n7kfXDCkhsJUHZNxdYg48pjEUiS5cZXsjSZsTdLmPAe+t87pPEyQdTvg01lKGlvQFwmv1f9KmNwBr2H5Fx+NagaC6LSEEHiCq43PuZQoVvqOIKuWnnJSlFcIYL7e9S8djO4ewDvqK7TsG/vdy28cMbGuj4jlsDHOUGVucozBh64r+3DbJQUl7EnY/WRD5QuDwsvNIOtD2Pg2vsT/Bhvkzkdw+0fYfmpxjIWMWkC0QpFLzHkQZOC8HOhWiHpL+iZh4oUaD6CSgUNB6I/Gl3jj1FOxhe+uax1cKWUj6BCECkilY7QBsartTU+z0PHZ0MhYdB5re0Ee4zjNyD5cCv7D964r9O78Jzhck5W9cy/rnbHdKkVIDMZtJIUuO5B4LuDi/bYaAeobzOxFJi6/SLzR02cD+byZU7NajZ1IPAxTH+cRgoiot1K/sOnk1ZAxFoguXO8QDDgSutn3csHl/GpGC8kcSNM2h/T2pivgeemyOM4ien87pYV28npIe2OXCXCGCc4ztXRsc01jFs8Y5RxbkapuwTdXIDelfT5YmBxW920/JPiPpM/T9is/Y04u2Z5W7IWPbiAgyXwz82nanrKNpxYyyuHBwDPATglt9AEGP+/F8DkjSBg5FpGxCyRYD6yQK42Vlx04ItXsK1C9lvwLhS1ZkXpnHq4nyf5ZJW5FoEn8tHbjLpwW8gduJZtpBQ8YujTI3B3ZPtJKxWT3YPkfSWoSJpQkKWxVq006nHS3659pe5wYqxGy6yMrWRe57VdhLMYkxLEAMGs5vkvt7jvG87U8Dn5Z0qO3XjXtwLXG6pG/TL+N+2oTHUJR9/o2kzwJbAR9R9NJW+X1NK2olGTOkRfWkWAlnKRQjv5rrERuKND++GNiVYFI8uKsBOURw1lYzEZxVbF+sfv/kNh5veXRhwH0d0WJROyBLlahnEgHZacTn53zKxbUgxpqnTt9F9fj3zv29iLjnL2Fg/irBjcDvCf+9edcjmBRmAdnCwSNt7yjp+Q6zweOIxsf5xF7Aa4gFRH6iFQULh0kiZWA3sV3aUzCAvOHjUuAGhig0jsD3r4vMq2YJ0Xg+TmwNrE6PH34uQWnpFAq1xPcC36XXS3KA7S+UHDKOm+C0YFj/3LiwIzCRgIz+71VRL8UMA3AynJf08NQXtQyKHsqy46Y1GMP23ik4zzzSDncNGfeOUbR43IkQK/iYQ9jiQfQvJKcakhbbvoWayn2SPmX7LSqxo6iiuY2A1xJrhaWS/kaFQInCn+75RBD2RKIX8gV02y+d4XqaieC0UfEchtYUtRETtjsAjyc893aX9EB6hvJlOJIwOM++ty8g+lwLYbvPRFvS2kClYqKk1xPfyTWJnrxXu6bM/vKAWUC2cJCZKP4llZp/zzxnDmy/Jv35POD19NQGzyNoZvMG23dLegfRnzSUhuEWUvaS9rD9+dzjFYH93JEhtlMDegoo/+ZQnMqus3IX18jhBYSR6FeJG+YxRHWqaxGKvYEnOilRKpQqLyRMTYswjpvgvKCsf24+hjKpC7X5Xs2wDF8BBulMJzJcqWyqkOarM1OgOQlVuTLMse6wfTu5Mdn+HQtrfjkO2JZI2pn+77aBwQA+Y3NMzI6ibuIyJZm3IIyKDyGSdj+zffaYhvbz9FNXBKeNiucwjDIXj5KwvSOtkZZKWkxUpNauOsD2JxS+oFlSZXfbTdRSf03c86qwNkGvv6LBeZcbzAKyhYPDFTKl7yG+fKumv6cBRxEqPZ9Oj3clSt87zduIAmdKejvRHJrPgM1pcpf0UOImsMyIE9izqr8J+LdExdgDeACRQWosn18DZxFc/6yH7D7ETatLkYY9CBGTjB/+EUJpquuA7E/0Z3NvTdvKUHQTfFnHY5oU8ougof1zY8TEG4envQd2miBpA+J1Wm2ASr2Y3Gu3UJDoYXdLWs0jmu9WQROy7pgm2N42/a5Vabe9JP0ex32qEBrieZbDhsBNRCvGj9PnZmxzVYvEqQcZN5JGZTgUKTPWHcwoCdtL0/twBBHQ/ZW438+BpDVyD29IP8v+V7SeSv/LKngQQe8T6Ld9KXpOjURAljfMRD0WCCStmH3hpg2SrrG94bBtk4bCwLCIljGH9qMwtz6OXgbxZcBLbW815Bo7E0pVtwG72u7KQDl/jTnKkEXbRrzG1YSB59/S40XAJV033Us6GngcIbNvgp5yVfoppYvUpJ1OPQb65y6x/ft5GMPERQsknUj0wO5KrgfW9p6THMdCgKTnExXr7enPfN9KeDNdOC8DGwGSTiYoaGfQnxzrrA9W0un0rDuW3SttD/bkLTfI9W8XoqyPW9K2hKrkoMdd5+bxJfevwjkoJSN2IXoM/49QZnxsl4IeuWutCbyDuUmiwlaLIgEOSUtsl1asNQFRKkkXAc92Ev1S+Hh9xzVVdRUiUIttX1Xy/2wdJWAdImgWcH/gl2XJAEm75R4uBW4Yx/poecKsQrZwcH264RxPZJumKZK+TNJmti8CMvnaS4ccMwlsyFwq5WEl+65p+8jc4y9KekvVySU9ivDLOIkoxb883WhuH3nk/bhN0sbZzVXSvwJ3DDmmKRrxw0dARhPJcHL6XUgZkfRh4CAn4/FUJX6b7f3GMLaxokX/3LjQOis7AqaxB3YqYftk4GRJT7FdmLVegPgq46crNvXiWh5QFWxW9XF/CngRoSw57rVEbc8z2z8B9gf2T/e5XQkj5V/XDTAa4FhiPbUt8J/AbkRvax9GrFhPQpRqkXMKzLb/KqnSt03SWbb/Le1/w+C2PLKAS9IRwNdsn5Yeb02sEwqR5vmVgEenTdc2elb3QMwCsoWDDYiJ4w3AF1I/ypdtnz+/wwKip+FCSb9Mj9cBrk1VF7tjpb4GKKJSHkUxlfJPkl5GTwVsF6qpdADfBN5o+0yF6sRehHLcY6oPa4y3ACdK+i2xkF8LeEmXF+iAH14X19juCwgk7Ti4LYetbb87N86bFL40Cy4go3n/XCsMy8ra/nCX16uJqeuBnVZIeoftg4BdJc3xXuqyqjQp5BZnGxCBwrWur25XFxdKepzHbN0xTUh9eW3wK+CHE0rsXqqwiMl7ni0ZdlCiVy5JbQdbDNu/BR5g+/OS9kwUznMkFSm/rk+sve5Pv0jRrYTSchUmIUpVO2GbmC+rAP+UkpvZwBYDDxlync1sL3u+tr8l6aCynSU9k1hv3ZCus7bCnH0cAi3LBWYB2QJBqrqcAJyQvkgHE/1KK87rwALTmpV87ABt8nsKv5YivJLol/oksWC4EHjFkPNv6lC4It3YPp4C5a5xFbGQWWasyRikmdOEPm6rgn2YW6Ep2pZhRUkrO3msKFS4uhY0mRSa9s+1xTRaBRT1wL53HsczzcjsTKaBZdAJUhLls0R1XMB6kl5r+1sdXmYi1h3TCEn3JrzoMu+nswm/rDtLDnkHcJrCWyuvzFemMDgK3kR8748n7q1nEEFZHyQNmw+6Xshnr83vJG1D2PasMbjTiBXrSYhSNUnYvjbt/2AiKM4UsW9leL/4byXtR0+N8aX0+x4O4uPAc2xfC8sShf/LAhMlmiRmAdkCgsJUd2ciALqU+RfNAMD2L+Z7DCVoQqU8ANjN9k1p3zUIEYYq0YGlkt4DrGP71YnC+Gjg/3X2DALfT9z1H2YbJF3GXAW2qUWiNzwPeIikT+f+tZjqjOGxhI9NRifdnci6LUT8jKCF9vXPSdoLOl0MTZ1VgO3PpT/PYa7y2ww52M6SOufbHubTt1DwCWBL2z8DSIvUU4EuA7KJWHdMKQ4lvKg+kx6/PG17Vcn+HyKEHBYBK41zYB7ieSbpEIdHY5Ea8n3piWYd0PHQPihpNeBtRDCyGHhrxf6XS3oDzYSJJiFKVTtha/tg4OAU/H7K9i1pDbMxJaJCtsarAAAd30lEQVQeOexC0EmztoZz07Yy3DsLxtK1/19KHMxQgllAtkAg6QbgcqJKtrdrSLnP0IhKuVEWjBH//LOkYcIHRxJZpqekx78hKj2ndDF4hQDEQ4D7pLHk6QWVHPEpxG+JYHh7+ukqt1JxE7T9EUlXEiqTAB+w/e2xjXK8aNQ/NwKmzipAQxTwZijEFxTqr5cQ/XbnLmA63q1ZMJZwHTW9sxpgUtYd04gn2X587vF307xZhgfbfuy4B1UTT4N+8RVJ9yP6s3cHvkx1r1wr2M7u0zcDdaifxxDCRM8lJ0w05BrXAXW9UNuiTcJ2B9sHSNqc6DP8GBHAP7nsAIeaYhMRpkslfY7+itpyU/UfB2YB2cLBRhk9bobaaEKlXEHS6gMVsmHfj0fY3jnr87B9uwbKEiPiuQRt8qFEhjnDrcC7iw6YVti+ErhS0rG2m1ZrLieyv05/L0i4I3+6GhiHX86oOJmeAt7fh+w7A2D7Ganv6knAM4FTJa1qew6tagHgUkmnEQlFE+bkl2QiCba7EPyYlHXHNOIuSY/IKqoKA/EqVebTJD3H9ncmM7x6SPfdvYj56ihg43yitONrrUn0gD2M/iRRWcWrtjBRxnoo2J5dY2Q2xIgJ2+yzsQ1whO1TJVVS2hPl8O3Mfb3KhGNeR9yLsp7X8+hVcGcowCwgWzj4R4ty+T0aDamUHwe+r5DnhlgwfGjIMf9IPU1ZJeIRdLjYdPiMHCXpxbZP6uq884yfqsBbxgVWBACSdgI+SvREZMqEe9v+ylhHOQa0uKG1hd29X86ouCcq4I2ElL3eIv3cn6i8L1RlykXAH4BnpMd/JPwUtyPmzy4CMtEfhNzFBE3Q5xl7Ez3S1xHPeV2iulSG1wFvl/R3opdqbLL3dSHpo4Ty4+HA4/LKgWPCycT36Uyqg9cMTYSJMtbD+kRCJbOv2A64uNVo52KUhO1vJH0W2Ar4SGIwDOtLP5FQqf4cNV6v1Pf9iYGxLYOkk2y/eNh57kmY+ZAtEGjm4zN2SNqQnkzwd22XCYBk+29FqP1tSBg1Pw14he2zxzC2bZgbjC84updCWTDDIiLwXcN2YUN3ot1sZfvG9HhN4MwBes6CQHouhzHXJ2mo4ljD6zT2yxk3JB0OHLKAKXcTh6SlxGflQOC0MagSLldIVYnd6PW4vAD4ou1Pzd+oJoe0qF7WR5QJIU07lDzJJN1NJDSX0u8fOpZgUQ29PBW2JScBGxHtCqsC77VdZqWDpHOBbTKqYqJinmr76WXHNEWbhK1CFv/fCduDn0p6EBEEl1ZMu76HaB78MKcds4BsgSA3aV1le6PUHHme7c3me2z3ZKQAYzPipnGR7f/L/e8xtn/UwTUOIygIWxLZqR2Ai23vMeq5pwFVE72kq50zp5a0AnClOzasngTGHRSp55dzEJExz7CY6Dvt2o6hNhTqpo8k6JP3KAW8tpB0fyLJ83Qiy3430S/ynnkdWAtoAga56Tob07PuOM/jse6YOqi5ymLm6fgo+pN8nUuSa4gVgaRX2P5i19cdhkTRu9DJV2tM17iWaDfJVIJXBq6yvX71kY2vM/aEraT3ATcSCY+8MuefW55vTuLwno4ZZXHhYObjM4VweEqdWvLvY+hGCfGpKQi/yvb7JX2cbtXJJoa0YMqwArAJ1fPQ6ZK+Tc8fbmdgbDfQMeObkl5PRze0AozilzNubD3P119wsP2XREFbm6AlPZXopVyImIgVgydj3TGNaKSymKo9exKfqyuIpOL3KTeSHgWfSYHIF4Fjbd+c/+d8BGMJewLvrkvbVIks/5DA52jgYklfS+d/PvE6dIayhG2X10jYLf3OJ/vMTDW3M8wCsoWDzMdnP3o+PgsuU3oPQ1f9C5nJ4+2SHkx4Vz2oo3NPGnm1rKWEaWSpfYPtvVPjf5b1Ptz218r2n3KM9Ybm0fxyxgJJi5MY0TjUxZZrpGDsJ0Sfy6GEWftCpS1OnRXDcoamKot7ElXXi2xvmarrYzGMt72FwhLmlYTR88XAkbbPGMf1GoyrqbptXtl6EZH8Gqay+CFJ3yL6QE18h7uu2k4kYWu76z7ke0p/Z23MArIFAvd8fM6lYAGncEBfqP5Myyu64gOfkuhLB9GTjP9cxf5TC9t15IUBkLQi0S+2Jd00/c8rxnBDK8NrJM2piM2TANBxxMJlCfF9yN+EZ9nVajzS9t1l/5S0j+0DJzmgETB1VgzLGZqqLP7N9t8kIWll2z+R1CmNLo/Up7QfIXv+aeCJiuj83R0pbNaGpA3S8y1kr6Qqa9H2Pul9SR8D6liw3EXQjZ1+d42JJWwTO2tD+qmRR1fsfx/Cp/Xagn+/s/sRLmzMArLlB3uycA1zZ6jGx4j+gC0IWkmWMV9wUBhx7k+v1+Ec4IBBGguA7bsk3S1ptaL/LxRIepbt76ZK3xyMYUGS98FbBLyQ8IGbOGxvm37Pt8rjgkNVMJawIyH4sRAwjVYMyxOaqiz+OiX5vg6cIekmoIkqcW2kfsHdCYn1M4DtbF+WgofvM/lk217Aawi2xhzxEOrTNlchKJ+lkLQnQRc/KZ3/S5IOt92lFcNEEraS9ifsNzYk2ga2Bs4naJlF+29HrF1WAtaT9ATiXr89QJWAyD0VM1GP5QQzxZrpg6SLuhBdkXQCQfnKDBZ3BVazXUr1m1ZIOokwsMySBy8HHm+7MFiRdDLwROJGvowyYvvNRftPIyS93/b+ko4s+LfHXblKQijn237qOK9TYxwTERG4p2ChzPnp87eD7RM0XoPcezTaqixKegawGnD6OCixks4hAoSv2L5j4H8vt31M19esOa77AK8n6PAmJTpt/61k/6vpBXArAmsSAcZ/V1zjKuAp7nnj3ZcQ5ulMzCg9jyxhO/R5jHCdq4HHA5fbfrykBwJfsr1Vyf5LiOD27GyeGhTpmqEfswrZ8oNZZD1hSHoacIXt2yS9jBDwONjJ/6xDBczH2t4w9/h7SbVuIeIR7vceeb+kKyr2/yoLnK5oe//0uypjPU7a8aOYZwGgCYsI3FOwIOZ823dLegdwQrYwnaFbSFrEQHAh6bCqRXmihD+QqFYCrAX8suNxrQj8pizomq9gLOEo4BaCQgmR6Dya8p7mbXN/LwX+YHtYH+QkvPGOIhK2dZ9HW/wtfZeXSlpMKC6uXbH/nbZvHugbXRBz1nxhFpAtP5g1SE4ehwKPl/R44G1EFvBoeuanXeEySZvZvghA0pMJLv5CxB2SNrd9PiwLau8o29n2UZJWAjYgJvNrF7CwwTB0QjuWdCu9fi0TiqzzzdefmIjAPQgLac4/U9LbgePpr3R3pTB6T8fRxKI8o8LtSqj87li0s6Q3EdTxP9DrazLhsdUZEu18bUkrTeG8XSvRKWmN9OdgVXexpGGf4SOBHySVRQhvvM+3HnExxp6wTf1+VyVq5BEENfKvRFKtDD+StCuwYhJ1eTNwYZfjWt4wC8gWCCStZ/v6im0XzMOw7ulYatuSng/8t+3PS+rMGyxHkbg3cKGkX6bH6xLqawsR/wkcnXrJAG6ipz44B5KeR0hl/5xYgK4n6bW2F6Ts/xB0ssBuoR42CUxUROAeghPnewANsDMxd71+YPtM1KUbNF2U7wmsn2xbxo3rgQskfYP+YPwTE7h2FeomOosEiTJUChPZ/oSks+mpBI9DZXHsCdu0ztnU9l+AwySdDiy2fVXFYW8C9iUsXo4jBFA+0OW4ljfMArKFg5OY62n1FeBfAWy/ceIjmuFWSfsALwOennoluvQJ2nb4LgsLtq8kqoqL0+Nb8v8voO19AtjS9s/S/x9B+L4tjwFZZ3SO1Ej/MHJz/KTVzAYwMRGBhQ5Jh1DxWcj6J20vpArjhszt1zlsXke0fKHpovxXwKSEkn6eflYA5j1Z1DTROYogkaTNgB9lyo2SFkt6su0ftD1n7tyTTtheJulJti+xfUON/bexvS8RlGVj3pGFlUiaKGaiHlOORO15DKGgk/cvWgzsbfsx8zKwGZC0FkENucT2eZLWAZ5ZJQM7QzUkXWZ749zjS2w/KfdYwMX5bcsLuhJpkPQFgnr0I3J0pHmSvZ+DcYsILHRIyirGTyMCmePT4x2Ba2z/57wMbAQkYaJbgGPTpgUrTDSNkPRjQtAj6wFbB7iW6HUy8PRU3cj2/3za/1T6Ternu2o1dkhat+r/WQ94ybGNhIkkXQ5s7LTQTknbS/P3uLYY5Xm0vN5PgEcSibTb6BlpF9JcB+/lZdtm6GFWIZt+rE9USu4PbJfbfishpzrDPMH274kKTvb4l5RIwM5QG4O0kEslnQacQCwsdgQuUZKQn+eqTyNMkHa82QB9aV6RGvt/ZHsDANvnzPOQphpZhVjS64DNM+EASYcRlaWFiOVJmGga8e8V/xPwXfoZNr9MPyuln7FB0prAO4jEcj6QmRdBn7aBSkthImXBWLr23ZI6WXd3HXDVwHPr7CRpa+B5wEMkfTr3r8XMzOArMQvIphy2TwZOlvQU21UNlDNMCJLOt715Tjxh2b+IjNHitN/qtm+al0EuXAyW7BcRjeeZUMofgfsQyQmzsBQYJ0U7/r6kDW1PxYI3NfZfK2mdlLSYoR5WJxYxmWjAqmnbQsTyJEw0dRi2ONeA1B3wVdtXj3FIeRxLVHm3JXqIdyPm8YWGNsJE10l6Mz3f0NcD141xjGNDgwDwt8R3e3t6vmgQRYS3dj2u5QmzgGzh4E+SzgIeaPuxqUdke9sfnO+B3dNge/P0exgf/izmLsBnqEa/Ru4QqfiFgBzteDX1m0MvJpcx7hBHE0HZ7wk6UiW1ZEJYnVDdupj+xv7t529IU4//Ai6X9D3iPXw68L55HVF7/Cu9PhdIlLqsD2aeP5v3BAwmuj6j8C37InCs7XH2kz0gCV7tmarj50i6ZIzXGxfaCBP9JyFHvx/xHpxFmFIvt0h94ldKOraGLcAMOcwCsoWDI4gess8C2L5K0nHALCCbXiwkWeqJoCltT9KjieziQk5ETJp2/HnCcPtqej1k841F9IvUCPjIPI1lQcD2kZK+BTw5bXpnokkvRFRR6maYMGxvkebW3YElKVHyRdvfGcPl7ky/fydpG6KCskbF/tOKxsJEtm8EXjKJwU0hfippjkiF7Zmyaglmoh4LBJm4Qb7xX9IVtp8w32OboRizBta5KGn0XWL7X0v2P4eUiMh97n9o+7HjH223mBTtWNL3bT9l3NdpgpL3/apZZaQciWb2UuDhtg9IokFr2b54noc2wwJDmWBQ6u98AVHFuYVIlLy7y95cSdsSvY9rEz5pi4H32/5GV9eYNOoKEy0nCcVWkPSA3MNFRP/3GrbfO09DmnrMKmQLB/+XJL8ztZ4dgN/N75BmmKEeRqDtrWL74oEWiIVKg5gU7fjyVD3/Jv0KahPvt0vCFK8HHi4p71lzP2beicPwGaLC+SzgAKKiehLRxzLDDE3wb/kHae7ZHdgGOAPYzvZlkh5MCFV0NlfYPiX9eTOwZVfnnTSSQMWXbV/YQJjoHsts8lyPu09JWgLMArISzAKyhYM3AIcDG0j6DWG2+LL5HdIMQzCjLPbQlra3PCUiJnVzvg8RiD0nt22+BFCOIzzjDgTeldt+q+0/Fx8yQ8KTbW+cpLOxfZOksSrizbB8ouC7dghBbX637Tty+/1W0n5dXjupLL6aub6IU2HD0QBLgP1S39jXiOBsmDDN8pRQbARJeUbECsAmzGKOSsxenAUC29cBz5Z0X2AF27fO95hmGIp/G77LPQMjqIUWJSJeOo4xTgBjvzknCtJVtj/Z5XnbIokF3AzsMt9jWYC4M72fWTJiTaanJ3CGBQzbz6j43zEdX+5kgrJ4JnBXx+eeGJIdxVGS1gBeDHwkKcc+quKw5Smh2BQfz/29FLgBmPkOVmAWkC0QSNpr4DHEQmeJ7SvmZVAzVGJWAShEbdpeMtHcxPbykogY+805SczvAkxFQDbDSPg0kYl/oKQPATsQam0zzNAKmapl2f/H1NO5iu13juG884VHAhsA6wI/HrLv8pRQbATbC5aeOl+YiXosECRq0yZEXwgE/esqggZwou2D5mloM8xQG01FOiRdanuTSY5xXJD0cOLm/FTgJtLNuWuDT0mfBO5NeP/kJeYv6/I6M4wfqffy3wj681n/v717j7W0Ous4/v1NaQChQFEgKpaLqTTDrR1GOxRKLZUGSdDa0FS5pBEvIW0qhmgiaQxKscVGjQnRtkQgpcy0hbRcTKtAbC04TEEYaCmTqUZbWhNNJQUZkJv4+Mf7bmZ7Zs6ZOTN77/fd7/l+kpOZtfbZez8QOGc/az3rWVW1qw+A0qKSHNX+9QPtn6PdsAsAqur3dnjS3r/nVcB9VfWlSb/2LCX5GE0DlH8FPgvcVlVPLfK9ly2Y2p+mbO9ZgKr6symG2gttU48rgNNpFgH+AbhyJ2fL1DIhmxNJ7gHOqapn2vGBwBdp2gk/VFWru4xP2h3L7Raa5GrgCXZMLuZu93Hsl/T4L+eJ73K391YtVFV15qTeQ7OR5HTg9W0L/MOAAxdeGyEt1866Lk6rK3CSbcABNOdaX2L7vYgHTfq9pinJ+4FngKN31fU0yRXtX4+jacJzO80/97nAA1U1+PP/Se4G7gFuaqcuAH62qn6uu6j6zZLF+XE4Yx3TaH6wHVFVzyV5YZHnSH2z3LK997Z/fmBsroB5vMtkbft1B80v5wtpdrkvSTKxXW5LRYah/VC3luZD3Q00u543Aad1GZcGIUlOq6qN7eAtNItEE1dVr5nG63bgRHaz62lV/SG8spC+ZlRqn+QPaBbSV4IfraoPj42vSvLeRb9bJmRzZD1wf5Lb2/G5wIb2bM2WJK+tqie7C0/aLcuqqa+qY2YV2AwcSfPLebTLfQXNL+czaDp4TSQhS3IE8BHgx6rq55OsBk6tqusm8fqamV8C3gRshlc64A3lw6269WvA9UkObsdPARPtepjkDVW1dUG3vVfMYQn1nnQ9PQIYv6fsxXZuJbgryS8DN7fj84A7O4yn9yxZnCNJ1rJ9dXTjeMtVLyHWPFhu2V6S/WjusRrVod8LfKKqnp9NxJOTZCtwYlW91I73Bb5eVW9Y7OLWPXyfv6HZUflQVZ2cZB/g4ao6cRKvr9lI8kBV/czoZ3u7+LbJy7Q1KaOErO2GOj7/vrar4N689rVV9ZttCfX4B81RyeJclVAnuZ/m/O8/tv8/HgbctdTP7SQfoukseGs79S7gc1X10akH3LGxUtVRZ9hXztAxhyWrs2BCNhCT/EAnTctYc5pR2d6SzWmS3ExTGjKqQz8fOKSq3jOrmCclye/T7HqM73LfQdMe+Nqqmkj3reWe01M/Jfkd4PXAWTT3uF0MbKiqazoNTIM3yQXeJPuz46Lax+dtUS3JBTQl9GuAT9F2Pa2qW3bxvDXAW9vhPVX18FQD1dwyIRsId8g0D5bbnCbJlt2ZmxdL7XJP8D3+nuaenLvbldx1wB8vdfeQ+inJWTQXfAe4s6ru7jgkrQAT3rG/GXia5tgFNItqB1fV3N1JZdfT5WmvtTma/38h+Bc6C6jnPEMmaZaW25xmc5J1VfU1gCRvBiaexMxKm4BNO/7LaHbejk2yETiMZjVXcyTJMcC9oyQsyf5Jjq6q73QbmVaASa7Un7BgAe0rSbZM8PVnpqq2Alu7jmMeJLkeOAl4jO1liwWYkC3ChGw40nUA0m5YsjnNTr7/FOC+JN9tx68DvjV2wekZi90Fs4JtoTmz8N805Z63Af/UaUTaE7fQnFkZebmd26GrmzRhk/w8MahFNe22dfNaydIVE7LheEfXAUi7UlUfbptOjMr2Lhkr29vZGaqzl3i5AF+mqenXdjfSlAh9pB2fT3MB7Nydu1vh9qmqVzq0VdWLu9HVTdqlJMcsvM9uwdzGCbzHaNHs1WxfVCvgKNxlWgk2JVldVXO5G9oFz5BJmls2s9nR0M7drVTtxarXVNUd7fgXgd+qKhfftFd2duY8yUNVdcoE3+OopR6vqscn9V7qnyRvoymd/w+aYwqj7pp2iV2EO2SS5pkrSjuyRGgYLgHWJ/mLdvw94KIO49Gca5tSHA8cnOTdYw8dBOw3yfcy4VrxrqP5efUo28+QaQkmZJI0LEueu3OFcj5U1b8A69pOpIw6k0p74Tiaq0YOoTm/O7IN+I1OItJQ/edod1+7x5JFSXPLksUdWSo0DO2lvVcAZ7RTXwWuXHiJr7RcSU6tqk1dx6HhSvKXNIn/XzPWWdm294szIZM0t5IcWlU/6DoOadKSfB74Js0ltNCU/5xcVe9e/FnSriX5KeDjNFeOnNDeF/ULVXVVx6FpIJLcsJPpqqqLZx7MnDAhkySpZ5I8UlVv3NWctFxJvgr8LvDJUYVBkm9W1QndRiatXKu6DkCSJO3guSSnjwZJTgOe6zAeDccPVdUDC+b+p5NINEhJjkxya5Lvt1+fT3Jk13H1mU09JEnqn0uAG9uzZABPAu/rMB4NxxNJfpK2S22S84B/7zYkDcwNwAa23395YTt3VmcR9Zwli5Ik9UiSVcB5VXVzkoMAqurpjsPSQCQ5FrgWeAtNov9t4MKq+k6XcWk4LLlePhMySZJ6JsmDVbW26zg0XEkOAFZV1bauY9GwJPk7mh2xz7RTvwL8qhfbL86ETJKknklyNfAE8Dng2dG8XUW1t5JctpPp/wIeqqpHZh2Phqe9fuUa4FSa0tj7gA9W1fc6DazHTMgkSeqZJN/eyXRV1bEzD0aDkmQDsJbmjihoLov+BnA0cEtVfayj0DQQST4F/HZVPdmODwX+xLb3izMhkyRJWiGS3AOcU1XPtOMDgS8CZ9Pskq3uMj7NvyQPj65UWGpO29llUZKknkmyH/B+4HSakp97gU9U1fOdBqYhOBx4YWz8Es0l0c8leWGR50jLsSrJaxfskJlzLMF/OZIk9c+NwDaacxgA5wOfZnsbaWlPrQfuT3J7Oz4X2NA2+dgy/kFa2kN/CmxKcks7fg/wRx3G03uWLEqS1DNJtiwsHdvZnLQnkqwFTmuHG6vqwbHHNlfVmm4i01AkWQ2c2Q6/XFVbuoyn79whkySpfzYnWVdVXwNI8mbgwV08R9otbQK22H9PmWUsGqY2ATMJ200mZJIk9c8pwH1JvtuOXwd8K8mjNN0WT+ouNA2cpVPSjJmQSZLUP2cv9aDnfCRpOEzIJEnqmap6fKnHk2wGPOejabBkUZqxVV0HIEmSls0PzZqWd3QdgLTSmJBJkjR/POejqaiqH3Qdg7TSmJBJkiRJUkdMyCRJmj+WLErSQHgxtCRJPZTkZOCt7fDeqvr62GOHWlomScPgDpkkST2T5FJgPXB4+3VTkg+OHjcZk6ThcIdMkqSeSfIN4NSqerYdHwBs8kJoSRoed8gkSeqfAC+PjV/Gc2OSNEheDC1JUv/cANyf5NZ2/C7g+g7jkSRNiSWLkiT1UJI1wOnt8N6qerjLeCRJ02FCJklSzyT5dFVdtKs5SdL88wyZJEn9c/z4IMmrgFM6ikWSNEUmZJIk9USSy5NsA05K8nT7tQ34PnB7x+FJkqbAkkVJknomyUer6vIlHj++qh6bZUySpOkwIZMkac4k2VxVa7qOQ5K09yxZlCRp/ngnmSQNhAmZJEnzx/IWSRoIEzJJkiRJ6ogJmSRJ8+fFrgOQJE2GCZkkST2T5MoF41clWT8aV9W62UclSZoGEzJJkvrnJ5JcDpBkX+ALwD93G5IkaRpsey9JUs8kCbAeeBR4O/ClqvrzbqOSJE2DCZkkST2RZPxusVcDnwQ2AtcBVNXmLuKSJE2PCZkkST2R5CtLPFxVdebMgpEkzYQJmSRJkiR1xKYekiT1TJJLkxyUxl8l2ZzknV3HJUmaPBMySZL65+Kqehp4J/DDwEXA1d2GJEmaBhMySZL6J+2f5wA3VtVjY3OSpAExIZMkqX8eSnIXTUJ2Z5LXAP/bcUySpCmwqYckST2TZBXwRprW9/sCPwL8eFVd02lgkqSJMyGTJKlnkvw6cClwJPAIsA7YZNt7SRoeSxYlSeqfS4GfBh6vqrcDbwKe6jYkSdI0mJBJktQ/z1fV8wBJ9q2qrcBxHcckSZqCfboOQJIk7eDfkhwC3AbcneRJ4PGOY5IkTYFnyCRJ6rEkbwMOBv62ql7sOh5J0mSZkEmSJElSRzxDJkmSJEkdMSGTJEmSpI6YkEmSJElSR0zIJEmSJKkjJmSSJEmS1JH/AzxUC0jdU3vDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAKtCAYAAABIeK0AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm4LFddL/zvLwkzhEHiABgCvAwilyEGZBJFFEUEFEFAQEUkKooovioIyuBVkQteEUUMk0xelUlEQEFkRoaEBML4Xg04AYIoEJHZ9f6xqtl9dvburu59ThbJ+XyeZz/ndO9aXdW9q6vqu6aq1loAAAA4/x0zegMAAACOVgIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIAIZAADAIMcdiRe94hWv2E466aQj8dIAAABf9s4444x/a62dsG65IxLITjrppJx++ulH4qUBAAC+7FXVP8xZTpdFAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQQQyAACAQY4bvQEAwIXXSQ9+yVblPvDo2x/mLQH48qSFDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYJBZgayqfraq3lVV76yq/1NVFz/SGwYAAHBhtzaQVdWVk/x0klNaa9dLcmySux/pDQMAALiwm9tl8bgkl6iq45JcMskHj9wmAQAAHB3WBrLW2r8keWySf0zyoSSfaK29/EhvGAAAwIXdnC6Ll09ypyRXS3KlJJeqqnvtsdypVXV6VZ3+0Y9+9PBvKQAAwIXMnC6L35bk/a21j7bWPp/kBUluvnuh1tpprbVTWmunnHDCCYd7OwEAAC505gSyf0xy06q6ZFVVktskec+R3SwAAIALvzljyN6c5HlJ3pbk7KnMaUd4uwAAAC70jpuzUGvt4UkefoS3BQAA4Kgyd9p7AAAADjOBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYBCBDAAAYJBZgayqLldVz6uq91bVe6rqZkd6wwAAAC7sjpu53OOT/GVr7S5VddEklzyC2wQAAHBUWBvIquqySW6V5IeTpLX2uSSfO7KbBQAAcOE3p8vi1ZJ8NMnTq+rMqnpKVV3qCG8XAADAhd6cLovHJTk5yQNaa2+uqscneXCSX15eqKpOTXJqkpx44omHezsBAIALqZMe/JKty37g0bc/jFty/pvTQvbPSf65tfbm6fHz0gPaIVprp7XWTmmtnXLCCScczm0EAAC4UFobyFprH07yT1V17emp2yR59xHdKgAAgKPA3FkWH5DkOdMMi+ckuc+R2yQAAICjw6xA1lo7K8kpR3hbAAAAjiqzbgwNAADA4SeQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADCKQAQAADDI7kFXVsVV1ZlX9xZHcIAAAgKPFJi1kD0zyniO1IQAAAEebWYGsqq6S5PZJnnJkNwcAAODoMbeF7LeT/EKS/z6C2wIAAHBUOW7dAlX13Uk+0lo7o6q+ZcVypyY5NUlOPPHEw7aBAABH2kkPfslW5T7w6Nsf5i0BjjZzWshukeSOVfWBJH+c5Fur6tm7F2qtndZaO6W1dsoJJ5xwmDcTAADgwmdtIGutPaS1dpXW2klJ7p7kb1pr9zriWwYAAHAh5z5kAAAAg6wdQ7astfbqJK8+IlsCAABwlNFCBgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMMjaQFZVX1tVr6qqd1fVu6rqgefHhgEAAFzYHTdjmS8k+bnW2tuq6jJJzqiqV7TW3n2Etw0AAOBCbW0LWWvtQ621t03/PzfJe5Jc+UhvGAAAwIXdRmPIquqkJDdK8uYjsTEAAABHkzldFpMkVXXpJM9P8jOttU/u8ftTk5yaJCeeeOJh28DD6aQHv2Srch949O0P85YAjOV4yJc7++iXh23/DskF529hX2O0WS1kVXWR9DD2nNbaC/ZaprV2WmvtlNbaKSeccMLh3EYAAIALpTmzLFaSpyZ5T2vtt478JgEAABwd5rSQ3SLJvZN8a1WdNf181xHeLgAAgAu9tWPIWmuvT1Lnw7YAAAAcVTaaZREAAIDDRyADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYRCADAAAYpFprh/1FTznllHb66acf9tc9qJMe/JLRmwAAABxGH3j07Udvwp6q6ozW2inrltNCBgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMIhABgAAMMisQFZV31lV76uqv6uqBx/pjQIAADgarA1kVXVskt9Lcrsk101yj6q67pHeMAAAgAu7OS1kN0nyd621c1prn0vyx0nudGQ3CwAA4MJvTiC7cpJ/Wnr8z9NzAAAAHMBxh+uFqurUJKdOD/+zqt53uF77fHLFJP+mnHJfxutU7ugsN2Kdyh2d5UasU7mjs9yIdSp3IS5Xv7nFK54/rjprqdbayp8kN0vyV0uPH5LkIevKXdB+kpyunHJfzutU7ugsd0HaVuUu2OUuSNuq3AW73AVpW5W7YJe7oPzM6bL41iTXrKqrVdVFk9w9yZ/PKAcAAMAKa7sstta+UFU/leSvkhyb5GmttXcd8S0DAAC4kJs1hqy19tIkLz3C2zLaacop92W+TuWOznIj1qnc0VluxDqVOzrLjVinckdnuQuEmvplAgAAcD6bM4YMAACAI0AgAwC+LFTV5UdvA8D5TSDjAquqLjbnOeDwqqpjq+qxo7fjwqiq/sfobRjslefnyqrqh87P9QHs5agNZFV18h4/16iqw3az7H3We2xVXamqTlz8rFn+fA8dVfXAOc8dpnUdW1Xv3bL438587rCpqltU1aWm/9+rqn6rqubd9G+Qqrp8VV1/wzKX3GI9J1fVT1fVA6rq5E3Lb7iuY6vqVUdyHbvWd/E9nrviEVjPFVb9zHyNb9vjucN60dla+2KSWx7O15xrm+/gQQNkVd2yqu4z/f+EqrrahuU3+Q4+sareUlX3r6rLbryxG9rrvWz6/g6zWrvAFsenFfY9t53f1wnV3auqfmV6fGJV3WRNmVvMee4wbd+Bj09brPMg1wjZa7vW7d9VdbGq+oGq+qWq+pXFzwbrvERVXXub7d3GlsfEYRU/21yTHA2O2kk9qupNSU5O8o70E8D1krwryWWT/ERr7eW7ln/Qqtdrrf3WjHU+IMnDk/xrkv/eKdr23TGr6m2ttZPXPbdP2QcmeXqSc5M8JcmNkjx493ubuc4zW2s3mrHOOyf5zSRfmf65Vvp7PH5FmRcleUBr7R/Xvf60/FcnuXKSZyf5geycwI9P8qTW2nXWlD82ye2TnJSlmUZn/g3fkeQGSa6f5A/TP9fvb6198z7L33nV67XWXrBmfWckeVqSP2qt/ce67Vsq9+okd0x/f2ck+UiSN7TWVu7HVXXz9Pd06dbaiVV1gyQ/1lq7/5pyv5LkrkkW7+d7kjy3tfY/15R7TJL/meTTSf4y/XP92dbas1e/w6SqXpnkzq21T6xbdqnMxvvnVO7sJPdrrb1pevx9SX6jtXatNeV+NckjW2tfmB4fn+TxrbX77LP8+5O0abtOTPIf0/8vl+QfW2trL5Sr6rXpx7L/N8ml0/+en22t3WWPZc+d1renNd/b30//Hj43yaeWyqzcp5fKb/U93PQ7uFTuTa21m87Ztl3lHp7klCTXbq1dq6qulL5vr7zo3fY7OJW9ZpIfSf9OvSXJ01trr5hRbq/X/kSSM1prZ+1TZq/j/RmttW9Ys65LJvm5JCe21u43bfO1W2t/sW4717zuvue3bY9Pa9a377lt0+uEpXJ7Hfc/keTs1tpHVmzL76dfG3xra+3rqnfffHlr7cYryhzkGuFZSX5qcQydLuKf1lq7zT7LLx+fdmuttauvWNfW11CbXiPsKvuGJLdrrX1yenzdJH/aWrveijJ/mel7k+SLS9v4uBnru0OSxya5aGvtalV1wySPaq3dcUWZrc5LS+U3PiZW1euSXGxa/jlzz6NVdfUkj09ys/R99W/Tz9nnrCn36mxwPDwc19wXNEe0NejL3AeT3HdxT7XpS/qoJL+QflG5+0B7menfaye5cXZujn2H9BPmHA9MP2F9bN2CS6HjElV1oxwaOubWDv5Ia+3xVfUdSS6f5N5JnpXzvrfFOu+RHnCuVlXLN/++TJJ/n7nOxyS5Q2vtPTOXz7Rt76qqt+TQC7v9DmDfkeSHk1wlyeOy89l8MskvzVjfi5N8JsnZ2QnGc32htdaq6k5Jfre19tSquu+K5e+w4nctOwFmP3dLcp8kb62q09MD9svb+pqUy7bWPllVP5rkma21h08H7XX+d/rn++dJ0lp7e1Xdaka5eya5QWvtM0lSVY9OclZ62Frltq21X6iq703ygSR3TvLa9LC9zn8mObuqXpFD95ufXlFmm/0z6d+Lp00nlSsl+Yok3zqj3HFJ3ly9deWrkvxukifst/AicFXVk5O8cLrlSKrqdukhd45vTr9QXlyA/0pr7f/ss77LTK//q0k+lH58qPS/59esWc/Fk3wsh34Oc/bphW2/h5t+BxfOnI5rmwbI702vzHrbtPwHq+oyq4sk2f47mNba/62qhyU5PcnvJLlRVVWSX1qzvadMPy+eHn93epj48ap6bmvtMYsFq+o6Sb4+yWV3BYjj0/+26zw9/cLqZtPjf0n/bA8UyNbY9vi0yqpj6abXCQv3Tf9cFq3435L+WV2tqh7VWnvWPuW+sbV2clWdmSSttf+oqovutWBV3SzJzZOcsOvi9fj0e8bO8fr049OD0q83fj792LGnORVCK8z5zuxn02uEZb+e5MVVdfv067dnph/fVrlKa+07t9zWRyS5SZJXT9t4Vq1vcd72vLSw8TGxtfZNSxU/Z0yf7ZyKnz9K8nvpx8UkuXuS/5PkG9eU2/R4eJD95QLpaA5k11q+wXVr7d1VdZ3W2jn9vHeo1tojky/VPp/cWjt3evyIJC+Zuc5/Sq91mWM5dCzXBJybeaEj2Qkq35XkWa21d9Veb27HG9Mvyq6YHnSW1znrQiLJv25xUPnlTRZurT1jqtm7R2vtORuuK+kH222by8+tqockuVeSW1XVMUkusmJb92wJmau19ndJHlpVv5x+cfW0JF+sqqent7TsF5SPq6qvSfL9SR664Tr/addu8sX9ll3ywfSLuM9Mjy+WfoG2zuIYdPv0VodPrN5FD/GCzL/4X9hm/0xr7eyq+rX0wHJuklu11v55RrmHVNVfJ3lzemvXraa/6To3ba3db+l1Xja1Js5x+fQLgr9PP35ctapqTYi/Y2vtBkuPf7+q3p5k3246B923s/33cKPv4JJtA+TnpoudliQ1dQ2aYavvYPWuPPdJ/068Iv1C7W1Ty9zfrtneq6Sfn/5zeq2Hp5+fbpUeCJb3oWunH1Mul0Mrjs5Ncr+sd43W2t2miry01v5rzfllrpVhYsvj07Y2uk5YclySr2ut/WuSVNVXpQeBb0yvcNovkH2+esvxYl87IftXVlw0vQX8uBx68frJJOdpDd9La+0Pqupd6cHx35LcqLX24Tllp9a7a2YpvLfWXrtiXY+c87r72OgaYdd6X1JVF0kPz5dJ8r2ttf9vTbE3VtX/aK2dvcUqP7/HeWxdBepW56Uli2PivZN809xj4pYVP5fcVaHw7Kr6+RnbuNHx8ID7ywXS0RzI3jV1D/jj6fHdkry7+visz68o91VJPrf0+HPTc3Ock+TVVfWSJJ9dPLlX02tr7RlJnlFV39dae/7M19/tjKp6eZKrJXnIVKu7b010a+0fkvxDdmo8t3F6Vf1Jkj/Loe9x34uI1tprNl1Ja+2/q+pnk2wTyF5WVbdta7pu7uNu6a0l922tfbj6GMD/ta7QdEL+9SRXaq3dbqppvVlr7akzyi4u0L4ryfPT3/Mtk/xNkhvuU+yRSf4qyetba2+duhn837XvLvmn6t2C2nQSe2CSfU8UVfWE9JPNJ9K/U6+YHn975rUc/0X18QGfTvIT0wXIZ9aUSfKlYH6J9C5T75tTJlvsn0lSVU9Nco30LiHXmrb7Ca2131tT7lbpJ7pHJfkfSZ5QVfdtrX1wzXZ+cDpRLloK75keeud4U5JHt9aeNn0+v5nkDem16fv5VFXdM/142JLcI0s10Xupqqukt/Ytuu69LskD5wTVybbfw62+gwcIkH9aVX+Q5HJVdb/0GuWnzCj3qPTv4Bs2/A4+YXr9X2qtfXrx5NQy97A1Zb8yS/t1+rnsq1prn66q5efTWntRkhdV1c1aa9uMvf3ctH8twsM1dq37SNjo+DTTNVf8btvrhK9dhLHJR6bn/r2qVpX7nSQvTPKVUwXQXbJPGJnOm6+pqj+czt2ZLsQv3abueetU1b2n1//B9GPbS6vqPq21t68p96Ppn/1V0lvib5peWbC210D18bj3TW+dXQ5zP7Jfmdbaa6p3p7xma+2vq3eXXRncl85NC5dNr6T6qapa15Pilkl+uHoXzc9mpwvhnAqkd1XVDyQ5dmqB+un0yu5VtjovLVkcE39k7jHxABU/L6uqB2fnXHG39P3mCtM271dJvNHxsKp+Z9X2r/n7XSAdzWPILpHk/tkZmP6GJE9Mvxi85KKGcY9yD01P+C+cnvqeJH/SWvuNGet8+F7Pr6oJqKrLpddSL7plvCa9P/Lalrbp4HzDJOe01j5eVV+R5MqttZWtXXXouJKLpte0fKrN6M88tdzs1vY62NYBxq9M5R+dXqv3Jzm0G8PK7pXVu8c9O31Sm89nw/7a26iql6V38Xloa+0G1QeFn9laWzmwtvoYso8neWqS57fWPrv0uxe01vYco1ZVt2itvWHdc3uUu2J6//BvS/9cXp5+kb1nN9taM1nEVLGw0nQg/0Rr7YtT68Nl5tTS1nZ99Wfvn7vK/Ux6i+Ti4vOySX6rtbayW0j1biA/3Fp79/T4zkl+va0f53iF9PGmt0r/jrw2/b2t7TpcVSe2XWMtqupWq2qvq+qk9L/7Lab1vSHJz7TWPrCizCvSu68sakvvleSerbVvX7eNU/mtvodV9ZuttV9c99we5a6V5PfTA8r1pguSO7Y14xynst+e5LbTNv5VmzGe6yC2qGhYlPvl9K5EL5qeukN6977HJTmttXaerlpV9Yz07/jHp8eXT/K4Gd+Jb0/ysCTXTT9O3CJ9X3/1Jtu8x+uuGkO2fHw6Jv0Cb9/j08z1rRpDtu11whPTx4A+d3rqLuk9ZH4+yV+01m69Ynuuk+Q26fvaK9e1nFTVHyX58fSWwremd1l8fGttTkXhnyU5tU3j2qpPIHJaa22/ir5FubPTh268qbV2w2mbf32/89Guss9N8t70APGo9Mqm97TWVk2ucr8kpya5QmvtGlPQeVLbZ6zbVGbrc1PtMyHGIviuMoXFh2bpeJHkV9vUnX+fMludl3a9xnkCa5t6cu2z/GtMMGnxAAAgAElEQVTSryueu1zxM/3u3m2fbrVTSN1PayvGEW7icFxbXOC01vxs+JM+yPeB08+Ntih/yQ2WfX56a8fVp5+HJ3nBzLKVfpH0K9PjE5PcZMNtrfTQ+egj+Hn+avpJ7zLpJ5OfSL/4XFfu/Xv8nDOz3PUzVUhsuK13Tq/V+UR615Bzk3xyRrm3Tv+eufTcWTPKXX2P5642o9zb5jw3+id9POTD0i8Ckl5b/d0zy56RXuu5/Jm+8whu6yXSx4BuUubYPZ77ig3KX2qL7XzlnOcOw+dxnv13zj69tOxW38N99u13zCj3mvSunBvtL+ktCF+767lTZ5S7VvoU7u+cHl8/ycNmlLtDkvclef/0+IZJ/nyDz+fGS+enU2Ysf+ac5/Yp+xXpNezfneSKh2m/Ol+PU0difdN58y7pY97+9/T/tft5+tCCtc/t+v1Z07/3TA/eF5nzfVjxehedsczifHZWkotN/3/XzNc/c/r3HdO/F0kPdivfY3rl8PJ39+wt3tvlk1x/5rI3SPJT088NjuQ+eBj2t/ulh/G/nx5f80gc8w+4jVsdD4+mn6Ouy2JV/Wlr7funGp7ztM60fZqkq+r41gckXiF98oEPLP3uCm1ezfXN0mskLp1k7gxR12itfd/S40dW1Z6zZe3hiZlmbEqviTo3PeDtO2PTbq1/c/5sat178Lrlt+zGtPH4lWnbth1g/E/pB4Vtmoe3HXz7qamFctHCctPMG0/4vPQKgN3P7TkDWh1woPdUU7fX92Jdbfli9q3d5dbVli0mBlh0p9tkYoC9+urv2SW3qn6htfaYPbqxLLZzZfeH5da49IH5a1vjptf9YvXB5Id0z0n/Pq5a35dmk8vMY8XUFeiSSa44tXIsTwR05X3K7Pl5LG3/qs/lY1V1r/QB3Unv5rhJS8VG38Oq+on0iptr1KGDwS+T9V2Ckl4R9pZd+8sXZpR7QJK7V9VPtdYWkzT8eJLT1pR7cnqLyB8kSWvtHVNrxroWuUdk80kBlr0t/Xt0XLJ3i+kux1TV5ds0i+t0jlt7bVA7t7b40PTviVPL8T+0aVbRw612Zni7afp+O2uGty3Ws9V1wtLvW5LnVR8ysPgsL5/1k2N9/a7tODb7HOuXXKR6983vSZ/Q4fM1jXdcp/bpPpjeLXeVf5567/xZkldU1X+kD3eYY9Fl8+NVdb0kH07varvKZ1trn1t8d6ceJnPf46uza3a/qlo522n1Garvl51ue8+uqtNaa/tOyLRU9lV7bVtrbd/unAdpvZ/8ZPox483Tuv5vVe35me63T2dmt8yp9e1B6S34p9b82VW3Oh5WH8bwi+kt8ctdXOdMqnWBctQFsiQ/M/373RuW+6OpzBk577SvLb31ap3fzuYzRH26qm7ZWnt90rudpY+3mWP2jE3L6tAZt45Jn7Vr1rie9AvsP0qfrjnpLXRPTx9TtJ+Nx69M23mR9Na0xWf46iR/0Fpb1Uc/2RnL97KsGcu3h20H3z4o/e9+jerT8J6QFQOva/sZ0A460Hv5oHrx9O5Pc8YunbKr3F2TzLkvzUEmBtikr/7ib3Z6Zp7Id3lEznuRvPY7X1VPSg9Jt04PWHfJvLF128wm92Ppx7crpR+nlmcf/d19ypw+/XuL9BPen0yP75rk3WvW9yPplS//e3r8hvQxCXNt+j38oyQvS/IbObRy6Nw5FWJJ/q36OKdFpchdshMmVvmXJHdK8tyqel7rXcHm7KPbBsBtJgVIktSht1b54rSdLb02ej+PS/K3U1eyRcvOr81Y3ROzz5TwVbXvlPBz3saK3207w9um69v2OqG/YNWPpfds+Ux6JdHi77DnMaP6hAy/lD6r8ieXtulzWR/8/yC9gvjtSV47dV2bNYYsvbvxe9OPNV/qPriuUGtt8fk/Ygogl02/bckcp00VRr+cfny7dNZUvqaPlVt8Pt+eXjHz4jVlFraZ7fS+6ddPn0p6l+j08L82kKXfbmTh4km+L+u/99tW3ixsEli32qeXbFuJuu3x8Dnp56Xbp1eE/VCSj26ywRcYo5vozu+fTN0TsqYbwBFa95unf5eb3d++pswN0g+0H5h+zsz8Jvc3p7eKLN7zCZnRFSX9C7f4eXJ6f+ivnLnOjbsxpd+H6EXp48E+ml7rdtKMdT0lyTPSWwC/ddrep8wo9/C9fma+v8enHxzukd598c7p98KaU/a49JB1vSQXWbPsnab387Fdf4/fSXLzGeu66mHaZ49J8sYty54xY5k3pncFXOyj10jylpmvf8n0C8e3pgeLX0ty8TVlbpw+/vPM9OnWz8687m5vmv5d/u7OKfeOXf9eOsnrZpTb+FixtNwDtvhbvSnJcUuP13YjOgz71lbfw/Su1+f5mVHu6kn+Osl/pV9EvH7mcWbRxeri03fwuUneO6Pcy6b9ebFv3yXJy2aUe2r6+Jp3pHc9ekL6eJk5n+nfZYMusUvlvj473bOuO7PMC5J8/dLj66a33l89K475WdMtL32c0Mrv067nZn0vVrzm7+7x3IGuE9K7tW/chTP93oZbv5el1zlu5nIbdx+clpt1HjpcP+nnoftN373nTf+f1dV5OsZ/Tfo4xxvvtx/tUebiS48vni26SC6VX3lOy5ZDGpaWfUx6oH9veuX3C5P82oxyX53eeniHJF89c12n77Gta7+DBzgenrH7b7b4vC5sP0djC9lFp1r1m9ceN29sM2a1qao7ZqlVps2/EebsGaJ2dTd7ZpLFVMufSh/QPGca+tkzNi1rB5vOeuNuTK1PHHCnLdZ143ZoV8e/mbo6rtQONp3q8ekXdLddfsnsMyPRXvvY5FrVZ3ras1w7+AxoF6uq03Lem+5u2sx/zazvTrLcfSnZaVWdc3x5eHrN6tdW1XMyTQwwZ8Naa/+VXlmwybT+z06vidz03lfbzJyV7LRm/1f12as+lvX390oOMJtca+0JU1eg3V08nrmi2OXT9+1FS9Olp+f2VQe4qfe0Pdt+D1+SnV4KF0+fRfZ92dXda4/1nZPk26pPHHNMWzHgfZfTp/KfSXKfqvrJrO9GlvRuRKcluU5V/Uv6mLl7zSj3gPR9+rPpLUIvTx9nO8cmt1b5ktZvifLRTPvLjG6OyfZTwq/sltdWt3bOnuGtZt5YtrX2U3v8+qDXCX+ffp7YSOu3ydhoOvmpm+jDs2vir8zbD7bpPpj0FpKHVdW1068x/ri1dvqaMovtvVz6rI4n5dBz077do1tr/51eOfzkOevYZTG73yYzDj89/f5sy5O3rZ0ROflSl9+FY9L37cuuKbZt6/3Cg9Nb9c5O7ynx0qyZCXZqMfyV9NmaK30G4Ee11p62Zl3bzq667fFwsY9+qHr3/w9mXu+bC5yjbpbFqrplerP892fn5s4Lra0fK/Po9Fr2xXTr90hP62vvDVZ7z2D303udgGpnRsbFjahfNJW5Q3pty5wdeeMZm6YyW/fTn7pLPCE7U+e/If09nufkXgcbv5KqeluSu7bW/n5pu5/X9p+h67dbaz9TVS/ea71t3k0mN1I7syd9ZXoT/99Mj2+d3vK0Z/eBOviYp7cneVL6ifNL9+lprZ2xptxi5stFF5sPJ3lIW3PrhanbysIX0ltzH9tmzBJXfWzdTad1vqm19m9rlt/z77ew6u9YVa9vrd1yv9+vKLfxzFlTuV9O/z7cJr2rVUtvxV1ZMbLPsWLWbHLTseNb0gPZS5PcLv1iZFUX2fukd8t81bS+WyV5RFs9E9lZrc+w9r3p3WAelOS1uypJVm3nq7LhWIt9XufkJPdvrf3omuW+mD4V9EPadOKrFTP6HS6bBsCqulpr7f27nrtxa+2tM8o+Nf2csfbWKktl7pjebfFK6dOzXzV91ruVAbf6NN3/nkOnhL9i+r2QXt9au/Gu5b/ULS87YaUydctrrT1kxvt7/4pft7Y0ZrX2mdV4aeFVsxsf9DrhRpku6nPo32HdcXvP6eRXfSeq6vlJ3pneWyTpn/8N2rwZD380fVz59aftvXT6JGBPWld2Kn+F9C55d09vpV51C4FFmTemt8gfUim25lhzi/Tj01XTQ9xivNNhmdFvn3WenJ3ZNV/XWjtzZrn3Z+cc+oX04PGoNg072afM1dPDys3T71f5/vQZa2eNy5uOMZ9prX1xenxs+mQr+1YKVNX70ls5PzY9/or0a5Jrr1nXbdPPhcuzq96n7YyvnbOtmxwPvzt9LoKvTT+XHp9+bprbZfUC46gLZAvV7wU0q8ZjV7l3JLnhVGOz2PHPbDPuT1FbTEVe/UbUt287N6K+TJKXtNbWjSdJVT2rtXbvdc/tUe5N6RePi1auu6d3gzpIP/291vNDq36/6gA9lb9N+knknPSD31Wz4sBQVd/QWjujqr55n/WtvR9abXnvpeqDu3+otfah6fHXJPnD1tp37LP8HVprL97vM5rx2ZzRWptTiz/UdKI9q7X2qall9eT0KZv3PREt/f3unN7lYtEic4/0MX4/u6LsbablXpnt7veyter3Lrp4m3HLigOu5+z0rs5ntn6Lha9K8uy2Zjr6qQXv3uktcZdM8sE1NfPvbH0A+lPSK0L+sqrevkEgW94/vzTWorX2C3PK73qts9v6W0i8I70l70ZJ7tb6PaFWTXl+oIkdpr/39+W8LQHrJnR5W/rEQf8yPb5Vkt9b9/6mZfcMIWvCx9vTu3z/dWvtRlV16yT3autv6bDtlPC/MSd8fTk4wHXCW9K7xM4OHVO5jaeTX1SMrHvuSKg+Tf7d0nu4vKe1doc1RbaqBKl+r8qfzXkrGOdUUM2+71kdOnnbeexVeX44LCphlsPKXhUzK8q/Kcm3tZ0bwl86yctba/vee3IKxt/SWvvc9Pii6T2+Vt2vclF2o0rUqcwD06/Xzk1v6Tw5yYPbmrGmdd7bclwhvbJ39i0BLiiOxi6LSZLW2lOrdwk6KYeeLFd161m4XHa69qxril72hJx3xry9nlt2kBtRbzNjU7L9ndg36sa0++Q0HUSy34l8j/KvrGmGn+mp97Wl+3TtsfwZ078b34h6ydOz+aQlSZ82e7kLwr+mj33Z01Ltz3+11p67/LuquuseRRa/W5xIXlxV90/vTrIcPPY8odShXQ732p63rfr9tgfb9JmlblB9FsEHpXcLeWaSPUPztC2vmdb5uNba8mQiL66qdd1m7pPkOuljJRYXSqu6nG7dGjeVPzZ9MPJJ2Zn1bmWLxbTMQboDfrr1G6d/oaqOz3RT2jXr2+ZGr1vf1DvZs7X2DdOF7Ep1aFe0Y9L3tTkTz3yhtfYLVXW3JK+rqh/M6skyFvdF2nYQ/IvSu42dkc1umPxj6TPb3iH9vf1G+k3h11oVvFb4fGvtY1V1TFUd01p7VVX99ox1fTq9Ze1xe/z6PMfw6t0Z35s+Ocp5jjfrjjFLrzOrO24dhhvLHuA64SJtxSx+K3ymtfaZqkpVXay19t7q3QJX2Xrir9qi++BU7jHp3fjOSW8h/dXFBfMMz6p+X7G/yIxz0+QTrbWXzXz986wv8ycu2T1528LKSVmSpPYfnpBkbaXf85Oc3KZJRCb7zqa8h4svXze11v6zeq+OVf4uvVvmi9Lf252SvGNxfN3vHFVVr2z9/m8v2eO5VX6ktfb4qvqO9Ntl3Dv9b7PuGuH6y/vWVJG2ZyXaBd1RG8iq6lnpAwzPyk6NS0u/GFzlN5KcWb27zaJrz8rp4OtgU5E/M8lb6tC+zH+4Zn0HmbEp2f5O7Ely2+mi53vTu63dOf2mtvteSE4n2Gel9wuu6mMZfrAtjU/Yp9zFs1ND29Ivsp7U9ulGtl9N98KcVs4kJ7TWnr70+A+r3zR4nVdW1V9lp9XxbukTDKzzkOzcXHTVcwu7ZwFdDtKrTih7XVQtl1vXjWzbg+0XWmutqu6U3grw1KpaWTO/5FJVdfU2daWtPjX4pdaUuXFb0yVjl8dO/+7ZGjej/IvTQ8qmY9Y2/h4tOX260Hpy+v7wn+nhapUHZqdm/taLmvlVBVprD54uzBY39f5UNhgLWucda3FK5lVwLc8e+oX0C4OVXWoXq0yS1tqfVNW70i++VlWKfGj6d+503rtdpbX2nZsWan2cy0+nf3c+k17zvXJWsTpYd+yPT5Vhr03ynKr6SObNcru7G9liXfsdYx6UfnPfvY41c44x+3bHzd7n7ZXds+c4wHXCy6rq1PTv/9zQkWw3nfxPJHlG9bFkSe/y9sNryiy8NHt0H5zhA+kVRie11v6wqk6sqmu11ubMIPu59K7DD83OvrrnuWkpuL+qqv5XesXZ8uc5J8T/P621u1bVnVprz6g+e+Hr9lqwTUMI2na31FnVOrhnpV9tP5vybp+qqpMXn0f13gfrQvnfTz8Li5vJX2aPZRfXWxvdVmX3S0z/flf6bJfvqpo1o/JWt+W4IDqauyy+J302qY0/gOrdzRb949/SWvvwmuW/Of0k8uPp43oWzk3y4tbaygGm00Hpm6aHr23z+zJv1TWkDnAn9tqiG9PUdP7QNnU1rKpvSe+msbLpvKr+NP0zXFyk/kCSy7XW9mxBqj6+LemDS5MeGJLeytVaa3Pus/bK9Jag5UlL7jOjdijTxfWiq+lrW2svXLHs7dIPXN+fnanIk37wu25r7Sbr1nd+qqp3tNauX1WPT+/28MJa0R1sqdxr0luA7pP+2XwkfcamOd2zvjO9gmG5y+qPtdb+akWZpyf5X621dVO67y53+q7WuD2f26PcO2YG/d3lDtQdcOl1TkpyfGtt5SRAVfXW1tqNq9/j8Btba5+tqne19eOItu1lsDjOLCoPPp9+kbdyrMWu8sf31c0ei/ANy61y0wXsnfbb3toZT3meX03rPX7N+k5L8oTW2tkzt293mLpu+sD+/0jWjo3cujt29W5Sn04PxfdMD8XPaWu6g9UBupFtq7bsjnuA9W11nbDPOXTluXOP1/jmTNPJt6lb2Zrlj59WMnfK+626D07lfj/TPU5ba183XaC/vO0aN7hP2XOS3KTN6+a2alxSazPGm1bVW1prN6k+/OP+6eOi37LmOuY8LT4zW4E2MlVEfk/6TIfLYxXPTZ8oZc7EUamqG6dXoH8w/fj01endsg9cKbG0jgdm57Yq/5KdVsNz08eA/t6a8k9PD25XS/8OH5t+rbCyFbB6T4Zfyk4l9F3TZ5B81v6lLpgulClzpnem77SbzGSzcML073HpszCtbI6eToavqapPt9Yes/y76t3PVgayqdZjVneOXeU2nrFp+v22N1xOtuvGdKm2NO6rtfbq6SJhneu11q679PhVVbXvhfaipruqvn1XUPjF6uM21gayHHrvpZY+097cWSnfmF6j37L+XlQfTJ/d7Y45tKb33PSLoJVq7+4Tn0ifuvcja8puOkNfkpxRfZzc1ZI8pPpYxzk1rndLD9L3ba19uKpOTK89XWsKKddM74KY9KnI13UNu2mSs6YLps9m5+J6XWjapjUu6TXlt22b35PpQN0B69CZYF+T9bOyblwzf4DWg4VfTL/Y/GT1yU9OzoyZ6arqlPRKkctMjz+Rvv/s2V21qr61tfY3Sa66VCmzsG/36NbanjXFG7hl+qyM52TevvbYfZ5fawpjxyY5tbV2z7nlpjJ/0Vq7dfr3deUYp1227kZ2gCC/TXfcg9xYdqvrhE3PobX3mKVFkL90VtxQuqp+Pclj2s4Ym8sn+bnW2sNmrHqb7oPJlvc4nfxdZs5AOe2XWT72LtSM+0BOZt/37DC0Ai1e5/Y575i184wdbTuzKd9q93VZ9RboWVpvVb9ODh2+sef9WGvL1vTW2uOTPL6qfiXJb+86bs+ZCfq+SW6Y5JzW7zd6hcy4dmqtPbP6UITF9/XOm1aoXlAczS1kr0rfOd6SQw9E68aEPC19PMe7sjQGpc0YYLhXbdS2NVRz1BYzNi2VPUjN9xWy043pkuk19Pu2Ilbvjvm2HNpi9Q1t5+aT+5V7dvo9ZN40Pf7GJD/ZWvvBNeXOmpZ7w/T4Fund5Y7YIOiq+v70oPHq9IP8NyX5+dba89aUu8h+B9Y15V6SPtPlIuh+S3qwu1p6K8SetUu1xQx9U7ljsnOw/Xj1Qb9XXrTMVNXXtz26oNbS7FBVda30cPWyVe95n7D5JasqR/a4IF+UWRc+Nm6Nm8p9b3oL7jHprUCzWlemsht9j5bKbT0T7FR+Vs38tq0HS+UXraq3TJ/W/bHpM7ytnDyo+uQcP9lae930+JZJnrhf0KmqR7Z+M9in7/HrWcfu6XW+ModeYK2cFn7a1y6fpd4NST6+bl+bsR1/21q72T6/e316q8XaFpWlMq9Mv8jZaLKZaT87Nht2I9svyLcZY7qq6onpteV3T/Jz6YH6rLbiVi1TRdGfpN+w90s3lm2t/eKM9W10nbAI//sdo/Y7NtWhrcUnpreKVvp49X9cFfBqj54Ic68rqt/C4deSfDxL3QdXtR5N5d6cPgzjrVMwOyG9hWzt2J7pfP/16eemWTNQ7nPtdNgnrtqnFSjpN9p+cmvtd2e8xpPSQ92t06eev0t6i9y+XfG3vTbcZn+rA05udoDj9sYTeB1tjuYWskdsWe6mu1pl1qqd7mdXrkMHGh+feXcq39bG40KS7Wq+9zow1E734FZV/55+Yf/Fpd8vZnx8XXr4Wxw8XpveErXONyR5Y1UtLoxOTPK+msaKraiJvm+Sp9VOn/uPZ01NTR1wGvr0/vI3XrROTSewv04fuLvKTarqEdl8ut/jknxda+1fp/V9Vfrf7xvTP9/9mvvvkp0uQfeZyq0dt9T6rKNvW3r8sRx6/7lnZe/Ja16b5Jum2siXp9/k+W7pXaf2s3Ff/aXt2urg37ZrjUuS30oPxmfPCS5rvkfJive25Lty6Eywz0i/EfasQLbuhLzkIL0Mkp1jy+3TL3ZeUlX/c065RRhLktba66tq3+Noa+3h079b3V+x9pkWPmvue5beFelH0/9mlf4deHJ6C/tBrBpbck765Ch/nqVxYG31JDL/meTsqnrFrjLrjmmLC7DlbrtzxoKdki2DfGvt/tN/n1RVf5kZ3XHTb5T91Kp6YNvprbL2FgKTR2y4id+cfmuTvY5R+x6bFoGrqp6c5IWttZdOj2+Xvh+tcmz1CUA+O5W5RJKLzdzen0sfY7W2++Aue93jdE6LXNJb4f9szoJ1GMZY1QYTlyy1Aj2gtbbt9/TmU2B5R2vtkVX1uPSbIu+1bQeZXyDZYn9rO90Ybzi93+XteWB6j4pVtj1uL0/g9XPpYXXlBF5Hm6M2kLXWXjNdbC6PBVvZlWvyt1V13bZZk+mBup8dwDYzNiXbnTBXHRiSPtHDw3LobITfUH2q7R9Kr01a9ElOdmqmVtl4wPzknel3tj8p/b45H0/f7lVj8xazMs26+eUejtm1f30svdVknadmj3EaM3ztIoxNPjI99+9VtarFbeMuQTPt9/es1rsv/P/tnXmYLEWV9n/vZVdkcVxnEERUGERAFgEBFcddxAVxPgUHlXEENxRXxkEQVMQRv1H8ZFFEEFBhkAEX3JAdlH1VGBV13FEG4Yoo2/v9cSJvZ1VXZWVlVVZV347f8/TTndkZGdHVVZFxTpzznr2IXY6PaEBx76YL6zGwJXMP9c0UocqDdo1/AVw/xGep0YKuB02VYIfhIcAPFMqItaMMSvxK0tHEnHCYQia+zmfivNTuC8yJDp2rJADQvUOjmgWCKziEiC7okIWvMc69CAfenWkchxGhPaMaZFXvpSJRfwl9kvN78GXmv68Gvl+dwskaMJIhL+nvKAmJqEe4VxeNC8sOu06oa/xL2tO9JfC3tf260v3OUgjnVHESIRpV7AC/hvqhp7XDB8vYPknSFczVOH2x69U4XYEQLKobVrshoXq4Fp1z4lLgdT1bzKeJcMn9ktZyZxjoK2x/qkbbQkzjz2l9cyvwyD7XrkyEUK5I5+f1DsLIrWREZ9OeRK3LMq/uca6bpvN2WcDrkx5OwGtRsGgNMs0PITtC0sAQMsKiv0TSb6mZg2L7GuAaSSe7QfjZCDRRbIIGD8w6E4OkY7seREcR9aAeQ6ehM1BiNvX1c80VbzRwUfdirA9nEEbYlUBl/bBSX41k6Et8Q/NVFuvkXzTN0zhX0leZS4TdNZ17IPG396OJQl8d+i3wlLyEuxMLWKg3uZN2OA+kM1fqYLdQ56vJrnHiZuJ1P4sahXpH3c1JDK0E25CDRmz/csKp8lFHmOsj6VQF7UchbNJdc+tJ9N6hGTUXrJEsPPHal50o91HP0dQYJ9l7SQ9wRVHYLtbq4ykfiGrmynTR2JBPRu0/Aj+g83NYZZB9IM0Vb2eusGwtR+gI64RB7Etvo+nXkv6NuaiE3RlQ0sH2YcmJ9cx06hAPCKUucSeRU1s7fLB0zY2EnHxtHOHX60la2TXCaj2XY7Wd7abPoVU9fAmC17kkUuHIkXsdUWdvEF9Nz9B/J9YYJp6n8yjt2H6uSfRGE2eTpFcQedvrp530ggdRkatYoum8vVShAP4qIipmCVF+JpNYzDlk1wDP6g4h8wAVM0k/JuR7uws+DvwwpZCnQ5mfXNxatflS37UVm9Qwv67mOHrFSh9pe58G93ofobhTeHdfDJxqu3L7XEnBbtj+UtvGeYCSdqVUUNoVKoulNk3zNEQYYUV/FwGnDbPrqZoKfTXv1fM1UhS9fQdhTB+mSNR+a50FgaTTCOdBsbB5FbCZK4qoNkXN1daGLtSb2o1kbGpIJdimKPKkHmf7O4o8txVcU/VwhD57Jvh3nxtjf98h5pZDCWPiFiL8eJAK7H6EF7qjZIntOsZc1X2rillvR+yqr2573RQe9HrPhfr1atNrTqujkDp0rkxq1yh3JbW9iahLNExdt8Y0XSfUuG/P11eRN1r+3J8PvN8jFCRWdc7hnj1Ou8bOf2MknQD8PSGwUSusVkMUd+7R9m2EY7G2cIki7WHTYr5PO3vXeoDqbFywChEAACAASURBVI/7rEIYhJXzdnpfvYv5f19l+G+/50up/bznTJqz1yfms7KjbinxN7aSRiPpEYQheJntCxQCXk9v87220FjMBtl1LklrJ2t9oNx21eRWo88Licn2/xLb768hQtl6Kv40RX2qzBcMmtxHeWAOos6Dfoh73UQswP+SjlcjkkYrwzI1pBx1ajMWGXpFGGA5jn3Q/6KX7K8HTdRNSR6zLwJnuLNI5aj3/Z7tbcd1v3TPq90lxNLr3Jj6OhV4izuLe7dGE2NTIxb3HpbkMf4X4MG2N0gOp6M8ZmnoHv02SvBvuqhLu8p/IXZIasvCp7bFDj6EE6ZuyZKyobsasGJh6EraxPb1fdp9nzCMzizm2X4OqJKnfAc66zKtQeTpVf4fNZfcX3xfnRDk2bGq3SiknebdXCqCW6PN8cC+7gw/O7zmYr7ROqHGfSudeMkhc/84nBsDDPh9e+2Odp8bJ02cVGn+vZF4vy4r7mx74E6uGgiXKGqerQccnU69HviF7bfX6O9a4hn6Jds/GXR9atNYeGYhoWZpQouGRRuySPMQsqsUhQW7Cz7Wye1YzfbZkpR21A5SxGGP1SCjszjwPMUmwjvSl3EYXlW3H+O9fk0srAo58FUIZaRB7AC8WsNJn48qQ/964P1prPcXfTI4LHOoPA1JF9reQfNrKNVV9zuc+Cwcqkh8/yIhi10puZ525HYHHmP74OT9eoRTodB+xlhTz2DiLkk7ONWtUqg4DSqG2ZRGYVbqLS18O/FeOrridd3A9q6l4/cr1EGrGLW497C8EXgy8H0A2z9SKBG2gkZP8P88sah7DqVF3aBGXY6JYWThG5UsKRu6RJjsOkR49z+ke/Y0xkp9/kKdQjD9ck8vJsLSH0Lne2cpg8skwNy8WydXZqS5SXNiSn8mQuzOpn6I3aaFMZauvU1SXadg03XCIHqGrirqSX2WzpIOr/Vo9aSqnrlN84iaD2YurHb1dFzHuK5d3LkHTYRL3k0YYUXkzreJXeA6vJB4n5wi6X7C0DrF1aqsowjPoMgz/ADx/PsGoQT+NtvzBLl6fP6W/Yp6a4RGqL3w3+WGRWuQ2X5neqgX3stjXCOEDFiNeBA8u3w76iXb/zV52H4k6U2E8bD6EMOuhRsqNo1hMV+HceZQ3A7coFAHM5FkeqmSkmXFQ/p5w3bkuTzA04E7ndQiUyhDHUWrdxB104ZSs0oepQ8Bf2v7eZI2BrazfWyfce6QvjfKmyk9DFYgFvCvIxYIg/73nyIVCiUWu0uB05jzhvXjJOKBtTMlz2DN4e4NnJC8ySLi319ds+2wHNSw3c1E3cLygm4p8Hgir+BVfdo1MTaPtH2KWgzf6+Kvtu8uFv+SVmS8DpduRk3wH2pRN6H5sBejGLq/UJQssaSViFylnkZncgr+HNhOEU70ZOLvvMn1wpa+opq5Mqm/WnOTpLVt39Z1usgxvoLOArp1WFK+Z4ogqbX2GWGdMIiL+pw/FniDO0s6HEcssMdGaXf0MWqWRzRK35sQzpEHp+M/AP/kHmVRShS5939M7X8L1P1MDC1c4lCoPTJ9DUX6XH0E+EiKGjgAOIxq1cTGwjOJZ9t+l6LMys+AlxLhrvMMsqZrgzHQVGl68WB7UX4Ru0Srlo5XAx7dcp9bEwbYOsQk+2VCVamt/q6rc67Bfdceoe0nx/j37Vn11dJr+j0iP6M4Xh24uEa7bwAPaNDfWUSY5DXpeMW6/0NSYdr080OA9Wu2Wy31eRrwUyK8c1CbK9P3q0rnrqnR7or0/drSucuGfI3WIHLdxv7/HsP7Zd7fUpwDbqhotzlwDfFw/RmhALppzf/BlRP62z5CSOnfSDhDTgc+OIF+t2vY7tL0/Xxgk/SZuHna75Ee4/x++n5V+r5i+fMxoO1DCCfH74hctxMJ73tVm72IyInPETuAPyN2ZaraLCHkvYvjVYA1x/T313r/EjXeKj8T6bp/Su/RQ9LXjcCravbRaJ0APJwwrs5KxxsTxcsHtbuqx7mRPs997rkhUW/yEkLZtfjaggiPbfP9fTGwU+n46Qx4hhLlI9YmcutuTu/t19fs73Tgv4nww08UXwPabE/siv136u+nw8wVRLjjuwgHwqVEoe6q63cmQqE3IeqzXQHsMkR/16fvnwGem36ufP4S0VPzvlr8v1/Xdbyk+9xi/1q0O2SE+lw5Kfu+dK7So6/OOmIFtwOXOxSB+mK72IL+EzUqlI+BoRWbanI2vWtKoQE1P2y/aQz9F/ccKnxoTKzqUoiF7T8pxAwGsT9RM+37DKdm9RDHrsf+6fp7JQ2Uv09x+lsRD97jCHndE5kT+ejX7hTCU/4N4JPAeU71rAZwT9pVK5KgH0o9ieHGnkFFwvSupPdasVPjwSpvtRnDLsnqktZ1CldJoZzFrniVuM4PCYNnA2JH6HZid7sqlOzWlIuwfpfXGxiPKE8X7yEW89cR4T1ft913h2SM/EsK6+vAg3OCjlHkDx1A7LKszoBw8fSevsH2RlXXjZnzJP0rsJqkZwFvIELkB+LYga8rKV7wLuBJTjlxiqLuFxM74/36uV/S/yOULXGIbIxLaKNvFIWkc4mw8RWJRestki5yhYqe7RMkXc5cyO5LXSpb02dHrqDROoEwbo8jdgUgFvZfIoy0Ks7TECUd0vjXB37jzlzqh9v+Wbqk1y78FxwFnX/idlMUevFA28tyo22fq8jTrGJN5tZMhfrhvZI2tz0olLt23bMSTcvNFHmcKwGnEPmOA6MVbH81/Xg7IZIzLF+VdCMRRbFPev5WphkAXyv9vCrhfLiJwfUVm9Ir/PfrLfW1IFnMBtmKLqkNOkJvVq7RblWiOGxZTvynRF2inWy/tbtBnzySZbSwUCp4BSEiUoRYnJ/OjUpV2GGTmh/NBhE5YPNeV7erWnmnpC2KB6OkLamXt3Q0UV9q2NflzrRAKgydbYlJexAvIRZLVwLY/rWkOqEKxxL1Vno+hCQ9y/a3e/yqV6HQA2r011iSmihfcDvx0GxFdc2jhVlB/F0XSvoJ8blZH3hDWoBUORTKpRnq5EVCFOrcgggHqsonGxdvdiT/LzPC1LIgQOKrpZ9XJd7rAx1NtosckPMYkLtZanOfpJvKRvUEmGfoMiB/RX0K1hcMcPzcSoR9Fiyls6h7P85WKMd+2cnlPSaq7rWm7Tsk/TNwgu0DFSIK1TcMA6xf7dC+DkaarxMaOdKYK+lQOAqKXON+JR1ggNHo3jmHK0t6JRGuOk8oyPVy4ptys6QDiHkKoqbfIKNlS8LBWDgmdiacU3tLOtV231ptgxy3kk5zZ74uNC83AxF+eVNFf3sWY+rj4F9GDYdtcd17Uh7Z7WnO+jPwolKf857b7hKmSUZ/XzXWUXGE/5aVn8cV/rvcsJgNst9L2sX2mQCKYnV18ns2Bbb3XA7RkUQewg7EA7QXHx3DeIfGoeC3r8ao2FTcuuJ3TWp+NGWrcr+EBP4wcddNeCtwqqRfEw/LRxCenkGs1PB12Y/w5m8g6SIiH2lgwUjgbtuWVBhygzyQAHhw/ZrDiFCO7naNCoWO6Blcx3bT4uDjZt6iTpEv+kfgcYQTByI/p/BcVsmfD/23pYXj9yQ9xXbfPDxJR9h+8zD37sPEBQEAbJ9WPpb0BeDCftdL2sP2iepTs8eDC0OvTeSqXkqnTHcrjrS0I/1pKvKxelDkWG1PhMcVSrC70ccQKb0ePwa+L+kMYm5/EfVEPV5PzE/3SipUKOvsGg+iKtdmRUVJh5czt/s0KlUOxqbrhKaOtHO7jg0Dd/2bGI17Ezup3fmYRZ9tGmSvJQSuij4uSOeqWAfYoohOSREgXyNCGK8gogma0ss5c45CaXGocjPpmr7GWKJcg+6lxPt4bUJ8rTEuKTY7hIjKYkQ9n9td7a+UtM0oYxhEmrtPG3jhImUxG2R7AydJ+mQ6/iX9E+zLrE2EuhST6wMJ2ef7JPXz0r/P9j9IOswTlDFVO4pNg/h8CieqXfOjKZ4vO/0fake1stznZQq1t0Ja/ybXK/Z9lqR/Yb46Z+XrkibJp6X+NER/p6TQl7XS/+O1DLfA60c/dbDP234VpUKhpXO9rh/Fo19wsaQneojyBS0y73UpwrocktPXDHm/xn9blTGWqAxbHYRGLyw6bh5HdYJ/4YzotctZZ2enzk7vyChqH1V9JvoKO5Q87vsAOziJcihqhfUTLilej5+kr4LK0PtSnw9SCGQ8jnoql3Wp2kk6GPgmcGGaix8D/GjE/qreA03XCW+nmSOtrDi4KrETNMixNbTR6BALulDS5e4jENUWKZKg1s5PiYfRGQVxDxGWeVfFuqv2kHqcKwyTrbquG4dSbflZcQdhKJ1F5NK1VTh+3n27HFRLiF3IcaS0dPczFVXHhciiNcgc9SG2VR/p1fK2chcfIWR3zyXeUE8FPpR2IL7Tp7tHKpSvdpH0Rbo+HHW8Lg1pS7GpatK4m1Ddei9zH0JTM0RoqEF01l1aQkyerbynJT3D9nd7hHc8XlKdEI8iVHT/0rm+r0uvMJJh+rP9UUX+yR2EMfe+PqGGw9Jv8dIRd67IvamqC3V5xe8qKS1cVwReI+lm6pcvaIt+r0vTsK4mpRkmxahy6SNResAX4Vy/JWSqe2K7qCX0Hdsd6nYK9cpKbJ+nHgWwm46/gp3T9zem7+WQrrrvnbWJsN/CMF49nZuHBxQnH0QKG9yX2L24GtiWeG+MWoeu72tr+1Tm0gVw5OcsCzeTtL/tQ8fYX6N1gu0rmjjSbHeEGkv6KGGAVtHUaIRwoL6FzgL0R9V0+jVC0uMJ1eFH05lnXmXsnMTcLi7Ert7Jad3VLxS1MR6y3Mywty/9fBQRXfEYOsvp1CqL07DPggeVzt9LOIvHvnvl6ak6LjgWbWHoQaiicGMKmSgKAV9mu9KrIOllRE7ADsBldBo0HjARNUY9CkJW/V2lazYAfmn7r5KeThhwJ3iusOaD++3spMXxkz2kvHsT1Fk0+V5CHeyjNUIGmvT1fke+wnE9fm3XKDI64P4dMd6lfh5G5Ad8Nx3vRChS7UwFkvYCzrc9qve4+74d7x9FjsS/Eupjf2buvX03ESO+//y7jDyG9ap+75Adnij9PlfJeHgg8f6sHdbV728cx99WZw4YB5Iusb1d2/3UpdffXXM+nGgB7KbzdrruNUSJhnOYcxge1Me5WLQ5h965uJXPpeQY2Rr4nu3NU+TAh1xRvLwOo7w/m7Rtoz81KA7c5/5rE2uMx1Zcs77tn5aNxuJcjft/hhCgKBegv8/2Pzcdc40+ryEMkQ7BjEGRO5K2Ym53/yLbjZ16Xfft9XnrGWUzIHR0lP6OtL1PvzZj6LPX3Lc18ex+NHOG8aw4/RYli3aHrAYdu0CSNrJ9Y2lX5hfp+yMkPaJql8tR+O4/JR1g+5C+HUpPcHUtjmE5T0MqNiVOA7aS9FjgGCKE5WTg+aldVVjS0DU/mtKyF6u7rwPT97bUMTtivIt+FKp5G9v+TTp+JKHgNYh1gaMlPZp48J0PXOAKRSpFztO2ti+uuO/PygfJG32opEObGF+KGnK7lYz9tYEv2n5OvzZloyTt+j7O9nEKZamx1/WrSc9d46ZhXS0blW2FxXQzzjC2DiTtwpxX/1zP5SL2unY7wqnx0K4wnTWot9M10QLYgCRtX+zmpeiKJXUaEVEaZzEXcvVu278d0PQdpZ9XJXac6tQh+4vtv0hC0irp+bjh4Gat0uS9PcpuZ7/+mhQH7g5bXYEIdRxkBJxGKb8q8Z9URygUbG17s9Lxd5PB1Cb32m5S3+tyGkZWKJQn1+3jrO21u17Ov6obOlr0Nc8Y7jo3rwZdm8ZY4mc9zp1IfPavp2UBtkw9skHWn26P4X6El/TwPtcM3OWqMsYSn6e/2lMTmig2QQiA3KsoMniE7SMkXVWzzzuJkM5zGE7efWgk7UuEYC4l8qO2AN5j+1st9FUpyOHBwgADu+hz/lGFMZb4HWFsVVIYkOlB9DrgnYSIRFV4ToeUdZ9renq/be+fjKkOw8P2+QOG+tDCGEvX31Z3sav50v4rUUPafxiSMdWXknOi525Ji2FdA+kXZkXLohslWgm/kPRhYmfmpHRqX4WQyb/2abIyYaivSGce2R3Uy+uZdAHsvYDPaq7g+W0MFj3AtiV93aGeVisPLLXr3pm4SCFgMohfKsqc/BfwbUm3EYWmR2UUh0GT/8tQsuZ1+nOz4sAwF7YKYRT/zn2KdKcdyScAa6ozxH0N6jtD7pO0QbGLp8jJG+X1qMNXJL2BUOVtNc8cQNILCWG1lYm8182Bg51EeXqtFxqGjhacxvx13DID2WMs/aP+qQ2kvr6cvve67ve2a5XTyEyGbJD1pzvP61/Sj0cC33BI7x5AfPAGGVqN+hwD53Yd11Fsgqgp9QpCRa1QYFqpZp9Nan405bW2Py7pOcDfEOEWnwfGbpAxt5DbkFgMFmIGLyQKP45KVQ5Sd+2OfrmKy1DUn9ueWIheRXjC+iX3d/c3dM5TH8PjEgY7Ku5TZ52u9ai/qGoq7T8MVzCXr7QusTgWoU72P8D6qe9+i4l9mQvr2qkI6xrzGDuQ9ETgBEJxVJJ+TxRKvz6N9XNt9j8Bng9s7lQfT9LxxHu8p0HmqLN0nqTPNdx5PE8N64I1IRlImyWDDNt11PkKrpS0tedqXg6ky+lQ5OKuWWOcL0k/HpQccGsS9QtHZRRnxaR2fwf2l+ayf0xf9xH13ioZ8v25IWHArZW+F2NZShRSrsM7CEXBQnb+0bRfI3XP9P2dpXOt5JknDiJ2uM8FsH21onbbMDyAeLb1ZUwG8rAU67OeqQ1Uq2UemEJWz6bTMG5TYTNTQTbI+jNvWznxb476IjsQi82PEkbaOORCx+11baLYBDEh7w18MMWmr89cgnklto9XSO4+Pp2qqwrYhOIB9Hwix+0GFW7sMeOUAC/pfCI8ZGk6PojOAovj7vdNaXLfMZ2qW7vjpYSH9WtEovYljuKtgyikrO+TdBc1c55obni8l1D7Oi/1tSOxE12HRtL+w2B7/XTvTwOn2/56On4eUah5ENMI6zoa2M+p+KoiD/QYOmsVTYI2F8drMSdcUWk8SPoPR33ITxbvlTIeLF8/dF2wUUiG2IGkkMz02Ti4pmG2DbC7pJ8T0Qp1xGDKTod7iPCmvYYZs8dYXLhqp6Qcytnn3Kk9mg2iyqgaOvwsXVMUBz6VmsWBh8X2GcAZKax9v66w78MJh9gg/gbYhDDEXgxsRz15/sYUc2o/1L/WZVPusX1719Kgcq3VMHS0bCCXSwksJaJUxs6IqQ2vIcqxrMRcyGLbJQ8yFSxaUY8UavFPzFf6qQytU0rIlHQocJ3tk9UjSbPhmFpNtpe0CvBN208fos3aRNhcLfW0tPg7nnioC3gU4Z0fFLo2NArhi78jdik2IybOc23XiZ1v2udNwKaFcZNe02ttVy6y02L8r/3OSfpyv3DAEca6BrFLtgNRj+gWp0LH40bSZba3lnQ1sI1DEOYG20+o0fYhxI4ahEH3h9Lv+uZVSnoHESL5LOBQIqzrZNtHjPr39OjrOs8vpDnvXI92pxMPvrcSDpzbiJp0zx/3GEt9XtOVF9Lz3Jj6ejipAC1wqe1bSr/bxL2L0o7a5yuAD9MpXPEe21/qc/2WnlO9m8cwxkTaTVqn7nzYBEmnEXkdZaGFzerMD2ogBiPp5fSI+nB76r+N6fWMHPW5qWqRql79XTHoGSNpQ7cgLtWnr14iEbXWJJKutb1pcjAfQjiY32e71XpUA8Y01nWQpGOJXaD3EPmRbyHm4L17XFsIpJQ/R5Whoz3usZ3tOsbw2JD0Q9t/XzpeAtxQPtejzU2D1i2ZybKYd8i+DnyP8HoOk9D4K4VQxrOAw9KCfGDCdU3uHnzJSAzcdgdQSPrvQrw/rgBukXSR6xU2Phx4dvEwUkjcfoF6CcbDshewOXCz7T8rCnEuC7eoWsyPwAnApWmhDeFV7KtgVuIS5seVLzvXvdiSdKHtHTS/hkddlb5NiN2mpxEhSL+gXsjiUIIJJRrnkyQDrF8fffMq3Z60fy9+rQgDPTEd706Nmi0thnVVcXNaWJdl08fuoU8L+X8nQoEEHCHpnQ4RI9owxtJ9v5DmqMIQ7BCu6P7cpxDAxrs4febDi22/rdlfMJANbO9aOn5/cnQMxPbPJW3G3I76BbYHiTS0GfUxFjS6MEtfehljo4af2b5J0gvSPco5tSOr9PVgiaS1HfW9CqdB3bVdkS/2AuDTtr8m6QMtjHEYxr2z/mYiEuOvhDjZN+mfZlLken3WzVVUb5V0NlEnbRNJmwK72G7zdW2S2nCxpI1tj71sQKYZi9kgW7WmgdHNy4HnEvLqf0xbw+8c0GYZkv4OWI/OXbnz0/dt+7VrQsNtd4A1k7f0n4lQwAMVMr51WKnsGbT935Lq5p8NhSOH5MrS8a1AuVj0uEVSsP1BSWcxt+B5je2+gieSHkHs4q0m6UnMPWzWIAzkfv3skL43zYn6MKGs+AlCNrlW2Kh6CyZs7wEKii0aHpXhRMSC89vpeDVJj7b9szH0280riDCy04nP1PnM1ZarxTjDugbwWuD9ROiJCUO8jbyQ9xIqbbcAKFQuv0Msalolheac2efXPT/3ippjBzE3/xbOjUG5K6PMh024S9IOjuK9xbjvqtNQIXT0OubCjk6UdMyAXeNZXJR3M6owy7CMFH6mKMj9ACKX5zNpjOPINe7F4cAlkopwzd2AD9Zs26aDuSnjDtt6ge33EvMVAJJ2o3d46xJFvujj1UPIy/XEuz5NrAmPTm2ulXQy0NpnypHa8BLmHKl1Uhu2JQTYZrHW5aJkMYcsvo3IsfoqE1D6SX0eRngufsDcQ9AenMPQtL9G2+7JkHs2sfPzXtuXFaENNdp+lthxLO8krOAR63Q1oW7YRoP7zpNad5+aL5L2BF5N7FKVJXvvAI73lBJoJZ3W5YUvzl9Lp2DCCsBV/f73qq9C2HScVfUALweeYvvudLwyUZ9m617XjzCGFYDDbL9j4MUzgKTdHAV0K8+NoZ+OkM0UJnPNoDDOtun3uZd0I/A25tc/urX72q52jefDJqQdrhMIp4aIXLlX19jpKj6/29m+Mx0/kMgf7TtWSV8FfkUsyrcgjL9L3UKI66hIWq8q/LKF/hqFn5VCAYvvqwNn2d5xYOMGSNqYOQGl79bd9VAUOX8ukX7xo+RgfqJbUCquSwshi7XDXBX5vS8mQsyP6v69axRT11z4/rJ5SNLVtjdv/EfUQD2K1zvluldcP49Jfr4ynSzmHbK7iXCb9zLnkWlT6Qfig76h64krjMwIH6yDiW39i9Li4zFA3QLD+xB1e4pcvAuATzUcx6iM3dugIaXWHQVZj5e0q+3Txj2eEah6n9cWTKCmCmFLrFgYYwAOafKVx92J7fuSEb5Q2J/53t9e50blGz3CZM4acx9N6Pe5v912k/GNMh8OTTK8NlPkgGL7jiGai07Z8vsYHAI2UtTHhPmceguzDCw705Cm4Wd/Sd//LOlvifn0kS2NkWSADR16ZvvPlEQc0s7zb/q3GB0NyKemd82sJv08jxD8+jtJnyj9ag361NlL0T2HJUO671whaU/3L7b+B0kbkOYhSS+j/dd0WfF6YAMiKucoKhRLs+E1eyxmg+ztwGNdEhCYADcTC/iJGGRNSZ70U0vHNxPJsJWknYTP2t4dGLUu16zSVGr9IkVy8d/afl7yaG5n+9gWx1pFv0XrocBVKeywEEzoG67o0VUIB1GVV/l7SbvYPjP1+SKgrc/zVZLOJD4Xy4qGTmuHsxdNFiCjYPudKb+mMFbrKoBOi3Mk/TuxAC1HRVSKVzSdD5uSwsZ2JQlOKanDuV7+0XHA99WZ41o5x0xjUT4CTYtYN6Vp+NlXFDm1/048K5zulRkyn3oEfk1EpexCOA4LlhI75X2p4bjZl/65428kVG03kvQr4KdEpFCbTLp4faYFFrNB9mPgz5PoSNIRxIT8ZyJmt7vuw9iLJo+CQojjSIb0CqadhPUkrVzeuZgibYyhqdT6cemriGP/b+BLDFgsTRoPEEyoYFvby3IrbJ8l6SODGkk6213J0+Vzrs6r3Bs4SdInCePxF4RyahusSuQnlj3xsyYR3HgB0gRJh9l+N6XXoHSuFRTWyTq2f1FxWb/PfSFSsVXpnBlQK6/pfDgCZxDS41cwpPPO9sfS57cwkjtyXFUSf1iIuHkR66Y8wPal6pRMr2MA3gjcZ/u05HzbgsnV55xJ1DCfuilpp/kaSSfVSdUYkqpd5xcTonHnEPl4dwLPVKhz1hLnacCki9dnWmAxG2R3EsbRObRvHBW5Q1fQPxF9lhglKfVm4iF5Jp07CWPfMZN0IlFj6wLbN3b/fsBivimnKJKg10phAq+lnufzIQ4ls/3T2O6VdN+gRi3S84FSMobO7HGuiqFUCCWtSjyEH6IorVB+OP9dnT/A9k+AbVN+Brb/NKBJY5zqvcwypQXIya4QcemXP9iAZwHdxtfzepwbG8kZ8nWgb55av8+97Z0adjvpJP11bD+3aeO049dv1+9sxix0NEk0v4j1ltQoYj0CTcPPDrB9qmZYuXIKPIfIp16HzgiapfQp6j4mftQnzHWU9JQqY2er9HUm8VzbA7gW2FvSqbYHOiobcJ4mWLw+0w6L2SD7LybksSpijdNuyl9s35eOVwBWmcQYhqSpVxDgJ+lrCZ1qWG1wLKF2eER6aF4FnG/742116OZS63cqZPmLB/u2tFyAU9JqwLruXQ/n3V3XjmoglVUIYbAK4euJxOm/JRwVRX93AJ+s0V8x7mXS0kOGdg2FpHWAI5jLFbwA2Nf2L8fd16hUGWOJkfJkJe1DPPAfo061wQdRKpTb4m7MlZK2tn1ZnYsl7WH7RPVQTYNazqJR5sMmXCzpibava+HebRbrngTlnNV7iXCwoYpYhrabzAAAIABJREFUD0nT8LOFoFw5UaaYT13eEV+VUKGsFKOqQdXnaB1gi8JBmPLOv0aE/18BtGGQTbR4faYdFq1BZvv4JADw+HTqphoLmVE5G3gmoe4IsBrwLaK+yiwxtFdQ0udtvwr4Y5sGURnb50g6nwiv24kIYXsC0Er/yYD+TvK0D1vvaj/CY7aBpIuIEgRtyDUDIOmFhFd2ZWB9SZsDBzspenq+ilbZQCp712sZSA41xX0lrQnc7wp1p3T9x4GPS3qzGxZy1mSlpY8jatjslo73SOee1VJ/bTJqKMvJhHjHocRCoGCpO1U129qN2QbYXdLPiV34QXLNRVhxUwfRpJP0dwBerT5y1CMaugs6jKnIWZ0gTcPPZlFOflY4W9LHmJNoP494NrXioPR8FdX/kHQF8L4RbntRxe8eRmeo8T1EuPNdktrSD3iI7U9TitZRKEZOpDh5ZjwsWoNM0tOJpMyfEQ+8RymUc85vsdtVy2FVtv+kkCedNXp5BfcY0GZLhZrUayWdQJcHyS2UE0i5eA8kEoIvoFQTqQ1Sjtz9ktZs8PDYgAjnehSRiL4N7X7+DiKSfM8FsH21om5XT0Y1kCRtDXyWtOiVdDvw2h45H93cL2kt239M7dYGXmG7jjLnUzwnLf1+SYfTnsrfQ20fVzr+nKS3ttTXTJPe+7czuA5bW7sxzxnmYttFqGGlZLWk/W0f2uNXk07Sf96A3y/osMNRSDv5byCM1qLG3lG2/1LZsDlNw88WknLlpDkWuJ54jQBeRTi3xiXm0YGk8mdlCfH/rHz2Sno48CH6iHDZflNF85MIYZ0z0vELgZNThFRbRZgvkHSA7VPS+N9O7Jht3FJ/mRZYtAYZUUzx2UU4V0rc/gIRk94Wd0raIsX4I2lLahb8nCQOFbFnpglkyaDdjsRRxELhMXSGoEF75QSuJf5fmxALxD9KusR2m6/pn4DrJH2bzhy5QbmHRU7B2sSOTts5BffYvr0rzKqvd1zSM2x/l/DsznswerCa4LHAG2xfkO63A/GQHVSr6XW2/1+pn9tSbl4dg6z4PxfS0rfSnrT0rZL2YE7i/RV0FiFfSEwqbK2V3RjbP1ePWoBjuPVuxK4fAF0hjt27JLvSkpKsB8tRj/L/W+ghiycQOUeF0+iVRCHw3fq2GI1G4WdeWMqVk2aDrhzW90tqS+wCYq1XcC/hhH9570uX8TkainDZPkTSWcyFt+9tu9ARaMuR83TgGEXB64cDPyQcspkFxGI2yFYq59bY/m9JK7Xc51uBUyX9mngwPgL4Py33OTSSPgR8pGvX4u22/61fG9ufAD4h6Ujb+1Tce2x5Jbbflu75ICJZ+DjiNW0zL+/LNFPWm3ROwQ2SXgmsIOlxRF24iyuufxrwXcKb100dNcH7CmMMwPaFkurk2awgSbaLcLAViDDLOnxV86Wl24qbfy2xCPy/qZ+LgZkU+pC0b3fYcNe51kQ3JoGGrAU4zK27josQxw2JsOgz0jWvor3Q2DpUGrppvn4Upee756T9B4nzzDqb2C57/c+R1NauA0wn/Gx55y5JO9i+EEDS9rTomG4o5jOSCFcywC4feOGYsP0bSd8gStTcD7zHLYpcZdpBaR206JD0WeKNW1aFW8H2a1vsc5XU54bp1E3EDtRMTewqVZgvnetZ2b7Bvcdyn3SvNxGiHlsSXq8LCMXF747j/hX9rgxsRCyMbnINiX9JXwV+ReQUbEE8gC61vVlLY3wA4d17NrGI/CZwSFuhPZL+g8iJ/ALxuvwjURz1ROhf60lRF2o9koIdkcv2C9tvH7L/VYiQ4FbyECSt2mJY1Fjp9Rnr9ZmewDha6TN5058EXFncP4WtDtqNHXTfnnNTylN9QREpkBxAX7P91O5rJ0HVHCrpEMI59RPmDDe7vcLJE0WhrPtJ299Lx9sAb7TdSrkLSQcQtSfL4WdnErsuxzhqbmaGQNJmxE5noY55G7Cn7Wv7txqpv78hBKeKMNcLiZy1vhEOitIRuwLftr2FQoTrMNtPa2OMoyLpO4Sq8VsIZ8yxhMDZOyobZmaKxWyQrULkBhT1Wi4APtWmcdRnoTQ2A2VcKJTTti5eC4Va3+W2nzCGe49tkSbpHcT/7QqPv85Ivz6fTxgPPyEMnfWB13tAIclkID0XuM5RtPGRwBM9X1xjqqirKG1x3gOUCxXlI2BuESjm1ND6LgglLSGMsMJz/23gM05KpH3aVOYa1AivHBpJPwZ+RzL6gQvbMv6aIukVRAjXDsQYC9YgdjAnujsi6cEt5Y5eavvJxdyZQqsvGYNB1nNuknQTsGlpPlwFuNb2ht3XToKqOTSN9Yl1nEQLEUk/JBya/5NOrUs4Nu+lWthllD63Ym739aJS+FlmSNJ8/7K0+7QGgO07Wu7z24Tqb9n5/nTbz6xoswUREbEJke/20DTuVozGUZH0Ytv/VTpeEdjf9iFTHFZmSBalQZbCok6YlHdLcwURTyQWTGVJ8aNsbzSJcdRF0rsJT2AhYvAa4MyKBOZh7j1WAzT9Lx9Op/HwP/1bjNzfjcDOtn+cjjcgvOUz8T+U9BUqQpqcVBYr2n+DuaK0y4wi24f3bcSyMLKOrlK7NiToj6v4tdva5Za0LrEjuz3wfEJRdPM2+mqCpPUIB8E89UPCgJiI06JtkiPmccRu86FEOOnJbqjWWbrvv9r+UI/z7yVyToqSDi8GvuTeAiCtU2XoSjoN2MctihtNk/Qe70uN/LvMlJF0ue2tBl85tv6ut71J17nrbPetZZiuWZEw/sVkVLhHIn02Hmf7O8mJvqLr5f9nZoRFaZABSLoQeMYkPImS9iTCSLaiM654KfC5Njz6oyLpuYREP8S2/TfHdN9xhyweROxc3J9Ot+IlLfV5me2tS8ciQg+3rmg2MSRVhlTYPm9A+3kPr5r9lkMMVwV2Bn7YzziSdIrtl0u6jh4GZJv/wyYo6pDtSOTabQb8L7FLNpVFeRVpx+gu2/crxIo2As6a9QXFICStUtqlehalcFzXqAUo6SNEMee7gG8QgjNvs31iZUOWecx3TIfn276q2V/RLmk35wzCq78s2mOQI2ahoLnyKpXnMrOLpA8DfyBEMsrCWGPfTU/9fYzI+TwlnXoZ8OSqcL4+URi3ExEuM+fsUAhh/QvwYNsbKPLGj5p0VERmNBazQXYC8PdEPHh5UmhFOSv1OemCiI1RyL4+mVgsXzquSWjMIYs/BrapigUfN5KOJHKeTiFem92I8JnvQDvhck1pmOt2DHCERyxKm8K6vmn76X1+/0hHInJPj3cdT3eT3ICmSLofuAz4kO0zBl0/TRQ1dnYE1ibq5VwG3L3Q811KIYqNFuCSrra9uaSXEA6D/QjjqpU8zmkg6QYipPo65pxUAx0xC4Vuh17axbjWnUIfmRlGUV+vG9tuQ4kZSUuJ8jjF56FQSi36XaNHm68B2xHKqhAqhlcQEQgH2/58G2NtSsqrfTLwfc/l1Q7cBczMFotOZbH0MN+FUExbQvOCoUNh+zRJLyCKF69aOj/2sK5RkPRyQrnuXMIDfYSkd9r+z4o2D666Z8n7NU6PzS8Ir9UkWZXYkSt2on5PiFm8kHpqhBMhvc+OopTrJmlgrhsDitIOwQMIyeieOGSgRw0x+iKRG1BIKO9OeF375gaMwJOI1+aVkt4D/Ag4z6kuzYwh23+WtBeRF/sRtSsrPSlWViiHPqWXB7uGM6R43r0AONXzy0IsD/zZoXi7XKFQu/tXYDVJdzAX9n83USMus0DwhIt7226yvlsR+Hvbv4NlDuoTiDI15xOlFmaJv9q+u5jPkqNice62LGAWnUHGXAHj/2GulslEkHQUsVDdiZDnfhnTlU/ux3spFVlW1Pn5DtDXICO8R4WIQzfL6pCNIyxBc/WBbgbOTd6scnhOa7uctiulztW/uOykORzYqTvXjcGFkwcVpe1JV+jhCkQSdF9HQ/JaVuW6zfNa9uCRXUnLH5D0jzXaDY3tayT9hDBwdyQKxD6NGnVppoAkbUcYqHulcytMcTzjYm/ib1qL+eUZ6jhDvppyQO8C9knz2oJQzhyCCyQdSkR+lOfEniqnC4U0px4q6VDb+097PJnmKMoL7UPUcoNw/B7dZki1pE2ZL1RVNV88qjDGErekc/8raRZDv8+TVDgsnkUUT//KlMeUGZJFF7Io6S3EZLA+IRO67Fe0uG2e+r7W9qal76sTuR07Dmw8Qbq3uhXKSNfMyvZ3DwGJDmy/f1Jj6WbcoiUjjKNxrptClrh4T15g+5oabcqhh/cCv6sjIqGQ6f4N4XEUseB+pO331Wg7dG5AUyRdTtS3u5i58gozKSAg6anAOwhFuMMkPQZ4qwcXL18QSNqr6c5k2sm/3fZ9CuXTNWz/drwjnB6aUzstYy8/svc9Sw3YPn/SY8k0Q9JniNqBx6dTryJUYP+5pf4+S+SL3kBnrnlf8SdJnyIUPE9Np3YFfgm8E/iqm9U2a420RtuLzjI3n/FiW+AvcBadQVagAQWMW+rz+7a3kfQ94KXArcANth87yXEMQlEbalOiphRETalrbQ8sKJsW/rsD6zsq1q8LPML2LO4Ejp1x5sg17L8I5XoWPXLdbL9hQPt9gdcxt9vwEqLeTiu7yZKu6c7h6XWuT9siN6BQg1yBAbkBI4zzobZ/X/H7PW0f3+/3mfEi6SnM93ifUKPdJsDGdIaMD2yXmQ0UKrIFqxJ5M1csLwbnYmCUOb9hfz8YNscwrWNeylxZpIuA07KBk2mTxRiyCMCkjbHEVyWtBXyECPGDCF2cKWy/My3si8noGNunV7Up8SnCC/UM4BBCSfI0YOwqhIr6IrvZ/mM6Xhv4ou3njLuvIZj2hF0O5eqV6zaIvQihlDsBJB0GXEJ74b13StqdyAcz8ApKIjtVDMoNkPQE2zeMPkSoMsYS+zLn8Z0qKRTvXczPVV0uFq2SPg9sAFzNnDFuIsejqt2BRHL+xsDXifDcCwe1WwhI2sP2iaVw7g7aDOOeJLY7QlUlPQr4jykNJ9OM+yRtYPsnAGkHv2/dyTFwiaSNbf+gzsWKUjrfSbtgMy3Cpj4qxQUNcr8zU2TRGmRT4qNEuOSOxCL3AuDIqY6oi67JqIlAxTZJCe0qANu3KdT+2uChhTFW6uthLfVVl6mqBAzKcauB6Hw43ke7f9MrgY+nLxOeyFeO6d6fByYVPjpL6hAnEeImOxN5V3sSBvnywlbAxg281S8jShZcZfs1KVF/oOT9AuGB6ftEBKpmiF8SasmZhcM7gXMk3UzMm+sRtU7b4gTCKPstNYSqUjjz/ZLWtD1p0bBh2Tl9f2P6XoiN7MH0ncOZIckG2WQ5ntgxKlSwXklMFi+f2oi6GMNkdE8y6gzLvPX3VzdpzH2S1nUqBJ3ymKY9CZ06+JL2kbQqsdvVvUsyqGjyccD3JZWL4LYmXGH7Z8CLWrr9JI2kab/vyvyN7WMl7euQOz9P0mXTHtQYuR54BJF7OAxFbbZ7Ja1BStQf++imgO2j0/ep5c9OAklHMPdZWwJsDixowZLFhu2zFXWyNkynbnKqL9gSxxJ5ah2lIAbwJ+C6FIVTLos0U3m4RR6zpGd1pUq8W9KVwHumM7JME7JBNlk26YplPkdSrW30CTPKZPQJ4HTgYZI+SHil/62VUYYa5IWSziMW3zsSxRFbQ1Fo90jg4bY3SepNu9j+AIDtD7XZ/xB8HrgReA6hdrg78MNBjWx/TNK5zIWrvsYtFsEd9HqOyCSNpFnaIStUwH6jKH/wa6CyLMUC4yHADyRdynDFjy9PIeOfJkLG/0REKix4JFVK3c/aQnIELi/9fC/wBdsXTWswmfqod7FlgMdKarOG5+9tnzlkmy8zIyVsaiJJ2xefhZRju2TKY8oMyaIV9ZgGkk4EPmn7e+l4G+CNtv9puiPrRNKevc7XFS2QtBFRb0zA2bYHGgJNkfQQYNt0+D3bf2irr9TfeUTIxdGeK8B4ve1N2ux3WApxkZKi50qEMuC2NdquTewclAUTWvFCt/l6jlPxUtL6tn/a75ykT9p+0zj6GhVJOxPh0I8icv/WAA6yvVzIIEt6Wq/zHqL4saRHEwqL145pWFOlNGdvT+TIfSkd7wb8wPbeUxlYC6QQ+Menw5vcolx6ZnxIOq7rVLH4LEIIB0VvNO33U0SpjK/Q6cCpNLgkrQasa/umNsY1TiRtCXwWWJN4PW8DXtvWczvTDnmHbAKUEi9XAi6W9D/peD1iF2OmsH18euhtRIzzJtt3V7VRZ2HoW5hTaETSgz2G+mN9WAX4X+K9vHHytLUpgfwA25eqs6DsQHn3KVAsUv6YlOV+CwzMr1PI0L+aqLdVPDBNiLS0QZuvZ+V7dkhOY34+2n8CWwLMijGW2A240Pb1wE7ps/lRlpO6NMMYXhAOIts3SppnnEvaYnlYtBTOMkn7ADs4lZxQ1L68YJpjGyeSnk6E/v+MWHg+KimcZtn7GafIb5b0djprlhq4XdLmttsoYL8aYYg9uzwcKnbAJL2QmDNXBtaXtDlwcI1d+Klg+wpgM0lrpuNZz33L9CAbZJNh58GXzA6Sng8cTSzKRUxIr7ddVVS4XBh6XcJDI8Iz9T9E3bdxj/MwQpK/o74I0ObD+Q+KIstFjtzLGD6XZRIck3a6DiCKxK4ODKztReQzbjDIAB8jjV9PSdsDV9u+U9IehMH08SKuvs5uYI0+NiLy8NbsCrlZg1Ju3oyxaZfYzf9KmlophnEh6ULbO2h+UfHCw96vzMF+RCjz4b3a0Z6zYRqsTbw3CwfY6unc8sLhwLOLXYsU8vwFkmMksyDYkhDmOZP4DO4MXAvsLelU2x8ZZ2cNha4OIkoqnJvucXVSg5xJJK1C1Ep7NLBi4eC0ffAUh5UZkmyQTQDPaAHZCj4G7GT7xwBpwfw1oK9BZnv9dO2ngdNtfz0dP48QhmiDFwMbtpwQ3M0bgWOAjST9CvgpoWg0U9guyimcBwzzILmeMKJvGfugetPr9dy9ZtsjCa/gZsDbiRISJzAn9T8ONiQWDGvRWVJgKVGvbRZZImlt27fBst3rBT/X294hfR9KSdB2kVf6fOANRH6kmUGV2zHwYeAqRYFoAU8lFpfLCyuVQ8hs/3cKx84sHNYBtrD9J1hWjuJrxHv1CqIs0NiQtA4Rur19OnUBsK/tX1Y0u8f27V2RG22Jk42DM4DbiddvkuuhzBhZ8A/pTCssLYyxxM3EArQO29petlC1fZaksU6wJW4mwkAnNgHZvhl4pqQHAkts131dJkq3x6w4X8NjdiixoLue4QQTmoxxCbCV7aav5722LelFRG7msZL2GucYbZ8BnCFpO9sLRQDicELmuVD83A344BTHMyscD9zBDKvcjort4ySdBWyTTr3b9m+L32uMtfmmxOWSPsNcuYLd6RT6yMw+D6PzmX0PIep0l6Q2nuXHAScT8yCEA/U44FkVbW6Q9EpghaQI+Rbg4hbGNi7Wsf3caQ8iMxrZIMv04nJJXwdOITzJuwGXFSFbA5Jhfy3p3+h8YP66pXH+Gbha0tl0Gg9jVxRTn4KrpdCAWSu82tRjdjxwGMNJBDciSZC/CzjFqRD1kCyVtD/xgH1qMvDa8pbfmt5nbahBjhXbJ0i6nLlQvJe6ZlHU5ZyFonI7EskAO6PPrydZm68N9iF21Ys5/gLgU9MbTqYBJxGlVYr36AuBk5NTro3P40NtlwVFPifprQPavJlQcf4rERL7TeCQFsY2Li6W9ETb1017IJnmZJXFzDx6qCGVqVRDSuFRBxLhBxD5XO9vQ9RjVDXIIfs6MP24IbA1Ef8O8TC51PZMhS02VSqUdJntrdsYU5/+Pgz8gVCFK5dYGPh+kfQIYpfjMtsXSFoXeLrtE1oY54JQ18z0RwtE5bZNCvXVaY+jLSSdZnvXaY8jU42krZgLIbzIdmu7nMmRdhxzQmOvIMq5/ENbfU6a5Fh6LBHyP7D4dWY2yQZZphUkPYiYEP40xTGM/eEs6XzgBUVoXfo7v2b7qdUtJ4ukY4AjhvWYSfoYMaGfSeeuY1uy9z+lR70w2zOVQF0YquUFraSrbW8+7bFlqulSud2QEBlapnLbtWu2XKMxloKYRZZ3gzMzPJLWI3LItiM+9xcDb7b9i4o2WwH/yvyQ/5k0cNLfOI8FqF+wqMkhi5l5aIRivZKeSORlPDgd/wHYM0lwT5o2FvUPp1NO/e50btbYAXh1MniG8ZgVi5myQmGbSnQbM19o4aiqBiOo7Y3CQlHXzMxnQancZkYie5gz3RxMrEHKIkcfBarqnp1ERES0Hro/CpLWsH0H9XP8MzNMNsgyvfg0KTwLwPa1kk4G6uTLHA3sZ/scWFY35hjgKe0MtZI2Hs4nAJdKOp0wAF4EfK6FfkbleU0a2d6p6vep5s84Q0J7CS0cT4XQQlO1vREZRQ0yM0Wyl7iDSZWzyGRmhU0LYwxqlwH5ve0zB1wzC5xMOJzKZYcKTDtO6UxLZIMs04tRivU+sDDGAGyfm5J1lwtsfzCpmO1ITHivsX3VlIe1jAl4zPYlDKZxsVCEFl4MfB04B1hC5Ls9U9IVbqeYaSYzNIpJe3fgMbYPTnmVj7B9KYynNt+Mo8GXZBYZTcqAHJjUPLsFw6oEzSaO7Z3T98o6r8uBuuqiIBtkmV6MEp51s6QDCDUvCAW8m8c/xFq09XC+jwhjMLMXztC2x2zcr+mVkrbtElqYRRnrregsZroHLRYzzWQa8iliTnoGEaq1FDiNECJaLpC0GrBuuR5ZiXdPejyZmadJGZDXABsReafFM97ATBlkQ7DQ1VUXBVnUIzOPVJG+CDO8jRSeVSf0R9LawPvpLMJ4kO0/tjTccr+Psn1t6dyzbX9rzP3sSxQEPo1YmL8EOMb2EePsZ1YZtyiApB8yJ7QAsC5wE7EjOzMqUUnM5fmlYqarE8VMnwtcsZiEITKzS/H57BKfucb2ZtMe2ziQ9EIi/2dl2+tL2hw4uI06iZnlB0kbM5cH/d1BZUAk3WR7w/ZHNhmy2M3CIO+QZToYQ7HeDYBHEWFdKwL/QEyEY19YSzoX2CX1cwVwi6SLbO8HMG5jLLEXsE1RN0vSYcAlhIrTTJGM1McBqxbnbJ8/6m1HbN/NQilmOelipplME+6RtAJz0Q0PZfZ28UfhIODJwLkAtq+WVBmulckkA2yYUPiLJW28HNVvzDsvC4BskGU6GEOx3pOAdwDX0/5CYE3bd0j6Z+AE2wdKunZgq9EQEbJYcB8zmLeQXpN9gXWAqwnVxEsYoJYoaX3bP604d9E4x7mABBcmXcw0k2nCJ4DTgYdJ+iDwMuDfpjuksXKP7du78pvzYjMzbrYFru6nUlzOSctkxkU2yDK9+I6kd9CgWC+hTvSV1kbWyYqSHkko8r13Qn0eRyzMT0/HLwaOnVDfw7AvkTfyPds7SdoI+FCNdqcxP9b8P4EtAWy/aayjXCDYPiSJuRShuHuXiplmtcXMTGD7JElXEJEJAl5s+4dTHtY4uUHSK4EVJD0OeAtRVyqTGSeDIjfOZmHlZGV11QVANsgyvfhHwuv4hq7zdQQhJqlOdDDwTeBC25el3LcftdDPMmx/LIVK7pBOzZTKYom/2P6LJCStYvtGSX1j4pPB9gRgTUkvLf1qDUohj4uZZIDNouBIJgMsU5C7BfhC6dxKtu+Z3qjGypsJ59tfCQGjbwKHTHVEmeWOGpEbMxUVI2l74Grbd0ragzAWP178HYtAXXW5IIt6ZOaRVKzmFeu1fVeNticS6kQ3UFInsl1VhHHBIGlb4IYir07SGsDf2/7+dEfWSdrBew3wViJM8TZgJdvP73P9i4jdvl0IJcGCpcAXbWcvdCYz40j6GZHDexuxaFwL+C3wO+B1tq+Y3uhGR9Jutk8ddC6TaZNxi1uNSkrV2IzI1f8c8Bng5bafNs1xZYYjG2SZeUg6hSjWe1I69UoiX6tvsd5S24mpE0lalRDZeAKdwhWtGX+SrgK2cPrgJBGUy2dpcu5G0tOANYFv2K4MXZC0ne1LJjOyTCYzTiR9GvhP299Mx88GdiVCrT9ue5tpjm9Uei2EZ21xnFn+mbX3XEld9X3Ar2wfO2tjzAwmhyxmejFKsd5JqhN9HrgReA4Rvrg70Ha+hFzyYiQRlJn6HCWVtRtsbwRg+7whmt8q6WxCQXATSZsCu9j+QBtjzWQyY2Vb268rDmx/S9JHbb9e0irTHNgoSHoe8Hzg7yR9ovSrNYgSGZnMJJmpkEVgqaT9ifqYT02O4pWmPKbMkCyZ9gAyM8mVKTQPGLpYb6FOdJOkayVd16Ly4WNtHwDcaft44AVA2x7gmyW9RdJK6Wtfplf4uie27wNukrRug+afBvYnZN1Jdd3+zxiHl8lk2uM3kt4tab309S7gd8lJs5Dl739NPIP+QpQ4Kb7OJBxymcwk+YdpD6CLfyTyKvey/VtCXfnfpzukzLDkkMXMPEYp1itpvV7n25A3l3Sp7Senor1vIHIlLrVdR3ykaZ8PI6Sln0Hk150NvNX2LW312YT0mjwJuJROpczKAqqSLrO9dVdh2attb97qgDOZzMhIeghwIHOiQxcB7wduB9a1/eNpjW0cSFrRdt4Ry2Qyyx0zFWqVmRkaF+udcF2pY1Lx4wMIT+nqwPva7DAZXgthx2hVYOfSsYDDarT7g6QNmCss+zLgN+MfXiaTGTe2/0AoEfZiQRtjiR9JmudFbtMJl8nMKpIutL2DpKV01uMr6qatMaWhZRqQd8gymSGQ9HjgSGY8x6pP8vu1Vbub6ZrHAMcATyGU2n4K7L6ACjhnMosWSQ8F3sV8oaPKgvALBUl/UzpcFdgNeLDtVh1xmUwm0zbZIMssWFKS+q7Aoynt9to+uMU+zwPeCRxdCum73vYmbfU5DJL2IcI3HwP8pPSrBwEX2d5jQPv90o+rETmmdxLhTlfYvnr8I85kMuNC0reALwFRrX+6AAAFXElEQVTvAPYG9gR+b/vdUx1Yi0i6wvaW0x5HJpPJjEIOWcwsZM4gGQuUilC3zANsXyp1iCzNUk7DycBZwKHAe0rnl9r+3xrtt0pfZxJhD3sA1wJ7SzrV9kfGPN5MJjM+/iZJXu+b1FXPk3TZtAc1LiSVd/2XEHNVXsdkMpkFT57IMguZdWw3zndryEznWNm+nTBSX9HwFusQddb+BCDpQOBrwFMJwzcbZJnM7HJP+v4bSS8g1AkfPMXxjJvDSz/fC/wMGFgfM5PJZGadbJBlFjIXS3qi7esm2OcbiRyrjST9ipRjNcH+2+ZhdO423kPky90laVK7kJlMphkfkLQm8HbgCKJO19umO6TxYXunaY8hk8lk2iDnkGUWHJKuI3aoVgQeR9QB+ytzykKbpuvWtn3bmPrcr+tUOccK2x8bRz/TRtIBwEuIcFCAFxLhi4cDx9henozPTCazgEiiHoWsv4ELgYNt3zrVgWUymcyIZIMss+DoV+usoFAE7KU0OEKfB6YfNwS2JgwWEQbLpYPEMhYSkrYCtk+HF9muWxQ8k8lMEUnrE7L3j6ZT6Kiy/uBCQdK3gfOBE9Op3YGn237m9EaVyWQyo5MNssxyS7m48RjveT7wAttL0/GDgK/Zfuo4+8lkMplhkXQNcCxwHXB/cT4JfCx4einaSrrO9hOnNaZMJpMZBzmHLLM804a34eHA3aXju9O5TCaTmTZ/sf2JaQ+iRb4l6f8Ap6TjlwHfnOJ4MplMZizkHbLMcss4QxZL93wvoep1ejr1YuBLtg8dZz+ZTCYzLJJeSeTVfouSOI/tK6c2qDEiaSnwQOZ2/5bl8RL5w2tMZWCZTCYzItkgyyy3tBGymO67BbBjOjzf9lXj7iOTyWSGRdKhwKuIovCF0WLbz5jeqDKZTCYziGyQZZZbJD24ZjHkTCaTWfBI+jGwse27B168QJG0KfNFS748tQFlMpnMGMg5ZJnllmyMZTKZRcb1wFrALdMeSBtI+iywKXADpR1AIBtkmUxmQZMNskwmk8lklg/WAm6UdBmdOWTLhew9sK3tjac9iEwmkxk32SDLZDKZTGb54MDBlyxoLpG0se0fTHsgmUwmM05yDlkmk8lkMpmZR9LTgDOB3xI7gCJESzad6sAymUxmRLJBlslkMpnMAkbShbZ3SLLw5Yd6YbAsF3LwSbRkP+YXvv751AaVyWQyYyAbZJlMJpPJZGYeSZfY3m7a48hkMplxkw2yTCaTyWQyM4+kTxHCJV+hU7QkqyxmMpkFTRb1yGQymUwmsxBYjTDEnl06l2XvM5nMgifvkGUymUwmk8lkMpnMlFgy7QFkMplMJpPJDELSOpJOl3RL+jpN0jrTHlcmk8mMSjbIMplMJpPJLASOI2Tv/zZ9fSWdy2QymQVNDlnMZDKZTCYz80i62vbmg85lMpnMQiPvkGUymUwmk1kI3CppD0krpK89gFunPahMJpMZlbxDlslkMplMZuaRtB5wBLAdoa54MfBm27+Y6sAymUxmRLJBlslkMplMZuaRdDzwVtu3peMHAx+1/drpjiyTyWRGI4csZjKZTCaTWQhsWhhjALb/F3jSFMeTyWQyYyEbZJlMJpPJZBYCSyStXRykHbIVpzieTCaTGQt5IstkMplMJrMQOBy4RNKp6Xg34INTHE8mk8mMhZxDlslkMplMZkEgaWPgGenwu7Z/MM3xZDKZzDjIBlkmk8lkMplMJpPJTImcQ5bJZDKZTCaTyWQyUyIbZJlMJpPJZDKZTCYzJbJBlslkMplMJpPJZDJTIhtkmUwmk8lkMplMJjMlskGWyWQymUwmk8lkMlPi/wPiNa5/tcSylwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -745,7 +1533,7 @@ "width = 1\n", "\n", "plt.bar(indexes, values, width)\n", - "plt.xticks(indexes + width * 0.5, labels, rotation=90)\n", + "plt.xticks(indexes, labels, rotation=90)\n", "plt.show()" ] }, @@ -758,16 +1546,16 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'uniform_'" + "'clone'" ] }, - "execution_count": 75, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -778,833 +1566,864 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'[CLS] FunctionDef arguments arg self arg optimizer Assign Attribute optimizer Name Name With withitem Call Attribute name scope Name Attribute name Attribute class Name Assign Attribute iterations Name Call Attribute variable Name Num keyword Str keyword Str'" + "'[CLS] FunctionDef arguments arg self arg args If Call Name Attribute data Name Name Expr Call Attribute update Attribute data Name Starred Name Raise Name'" ] }, - "execution_count": 76, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "snippet = pd.read_csv(path+'keras_cls_split_magret_tk_val.txt', header=None)\n", + "snippet = pd.read_csv(path+'sparse_fname2_split_magret_tk_val.txt', header=None)\n", "snippet.loc[10][0]" ] }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 130, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Label = binary_accuracy\n", - "Pred =\n", - " 0. __init__\n", - " 1. call\n", - " 2. get_config\n", - " 3. batch_flatten\n", - " 4. test_build_repr\n", - " 5. to_yaml\n", - " 6. cosine_proximity\n", - "\n", - "Label = on_train_end\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. cumprod\n", - " 4. conv1d_args_preprocessor\n", - " 5. tmpdata\n", - " 6. random_normal\n", - "\n", - "Label = on_epoch_end\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. from_config\n", - " 3. random_uniform\n", - " 4. int_shape\n", - " 5. update_sub\n", - " 6. _check_test_data\n", - "\n", - "Label = __call__\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. update_sub\n", - " 4. hard_sigmoid\n", - " 5. test_ovo_fit_on_list\n", - " 6. activity_regularizer\n", - "\n", - "Label = __call__\n", + "[CLS] FunctionDef arguments arg config arg custom objects NameConstant Return Call Name Name keyword Call Name keyword Name keyword Str\n", + "Label = deserialize\n", + "Pred =\n", + "---- 0. deserialize (1.0)\n", + " 1. model_from_config (0.0)\n", + " 2. from_config (0.0)\n", + " 3. unpickle_model (0.0)\n", + " 4. model_from_yaml (0.0)\n", + " 5. clear_session (0.0)\n", + " 6. call (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg model For Name callback Attribute callbacks Name Expr Call Attribute set model Name Name\n", + "Label = set_model\n", + "Pred =\n", + " 0. set_params (0.867)\n", + " 1. on_train_begin (0.015)\n", + " 2. __setstate__ (0.013)\n", + " 3. clone_model (0.008)\n", + " 4. pickle_model (0.008)\n", + " 5. __init__ (0.006)\n", + " 6. __enter__ (0.004)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg logs Assign Name monitor value Call Attribute get Name Attribute monitor Name If Compare Name Is NameConstant Expr Call Attribute warn Name BinOp Str Mod Tuple Attribute monitor Name Call Attribute join Str Call Name Call Attribute keys Name Name Return Name\n", + "Label = get_monitor_value\n", + "Pred =\n", + " 0. on_train_begin (0.961)\n", + " 1. on_train_end (0.01)\n", + " 2. __init__ (0.004)\n", + " 3. on_epoch_end (0.002)\n", + " 4. on_batch_begin (0.001)\n", + " 5. _wait_queue (0.001)\n", + " 6. on_batch_end (0.001)\n", + "\n", + "[CLS] FunctionDef arguments arg grad Return Compare Attribute name Call Name Name Eq Str\n", + "Label = is_indexed_slices\n", + "Pred =\n", + " 0. _get_available_gpus (0.06)\n", + " 1. print_tensor (0.052)\n", + " 2. stop_gradient (0.041)\n", + " 3. from_config (0.031)\n", + " 4. update_add (0.03)\n", + " 5. binary_accuracy (0.027)\n", + " 6. update (0.023)\n", + "\n", + "[CLS] FunctionDef arguments arg cls arg config If Compare Str In Name Expr Call Attribute pop Name Str Return Call Name keyword Name Name\n", + "Label = from_config\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. random_normal\n", - " 5. from_config\n", - " 6. test_ovo_fit_on_list\n", + "---- 0. from_config (1.0)\n", + " 1. name_scope (0.0)\n", + " 2. batchnorm_args_preprocessor (0.0)\n", + " 3. deserialize (0.0)\n", + " 4. model_from_config (0.0)\n", + " 5. MobileNetV2 (0.0)\n", + " 6. AtrousConvolution1D (0.0)\n", "\n", - "Label = __call__\n", + "[CLS] FunctionDef arguments arg self arg minval arg maxval arg seed UnaryOp USub Num Num NameConstant Assign Attribute minval Name Name Assign Attribute maxval Name Name Assign Attribute seed Name Name\n", + "Label = __init__\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. from_config\n", - " 5. random_normal\n", - " 6. zeros_like\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. init_pool_generator (0.0)\n", + " 4. _get_executor_init (0.0)\n", + " 5. predict_proba (0.0)\n", + " 6. to_yaml (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg self arg shape arg dtype NameConstant Return Call Attribute truncated normal Name Name Attribute mean Name Attribute stddev Name keyword Name keyword Attribute seed Name\n", "Label = __call__\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. selu\n", - " 4. softmax\n", - " 5. from_config\n", - " 6. test_ovo_fit_on_list\n", - "\n", - "Label = he_normal\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. from_config\n", - " 3. call\n", - " 4. update_sub\n", - " 5. softmax\n", - " 6. compute_mask\n", - "\n", - "Label = hinge\n", - "Pred =\n", - " 0. __init__\n", - " 1. call\n", - " 2. sqrt\n", - " 3. batch_flatten\n", - " 4. get_config\n", - " 5. test_omp_reaches_least_squares\n", - " 6. deserialize\n", - "\n", - "Label = get\n", - "Pred =\n", - " 0. __init__\n", - " 1. int_shape\n", - " 2. clip\n", - " 3. random_normal\n", - " 4. call\n", - " 5. get_config\n", - "---- 6. get\n", + "---- 0. __call__ (0.995)\n", + " 1. truncated_normal (0.001)\n", + " 2. transform (0.0)\n", + " 3. constant (0.0)\n", + " 4. random_normal_variable (0.0)\n", + " 5. forward (0.0)\n", + " 6. random_uniform (0.0)\n", "\n", - "Label = __init__\n", + "[CLS] FunctionDef arguments arg self Return Dict Str Str Str Attribute mean Name Attribute stddev Name Attribute seed Name\n", + "Label = get_config\n", "Pred =\n", - "---- 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. from_config\n", - " 4. softmax\n", - " 5. squared_hinge\n", - " 6. conv1d_args_preprocessor\n", - "\n", + "---- 0. get_config (1.0)\n", + " 1. _updated_config (0.0)\n", + " 2. _preprocess_conv3d_kernel (0.0)\n", + " 3. dropped_inputs (0.0)\n", + " 4. cell (0.0)\n", + " 5. infer_outputs (0.0)\n", + " 6. serialize_keras_object (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg seed NameConstant Expr Str Return Call Name keyword Num keyword Str keyword Str keyword Name\n", + "Label = glorot_normal\n", + "Pred =\n", + " 0. he_normal (0.209)\n", + " 1. lecun_normal (0.198)\n", + " 2. lecun_uniform (0.198)\n", + " 3. glorot_uniform (0.193)\n", + " 4. he_uniform (0.19)\n", + " 5. _postprocess_conv3d_output (0.0)\n", + " 6. _preprocess_conv2d_input (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg x Assign Name output Call Attribute dot Name Name Attribute W Name If Attribute bias Name AugAssign Name output Add Attribute b Name Assign Name output Call Attribute max Name Name keyword Num Return Name\n", "Label = call\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - "---- 2. call\n", - " 3. normalize_padding\n", - " 4. std\n", - " 5. conv1d_args_preprocessor\n", - " 6. expand_dims\n", - "\n", - "Label = ask_to_proceed_with_overwrite\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. plot_model\n", - " 5. gradients\n", - " 6. update_sub\n", - "\n", - "Label = validate_file\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. squared_hinge\n", - " 3. decode_predictions\n", - " 4. _jaccard\n", - " 5. update_sub\n", - " 6. test_one_hot_encoder_pandas\n", - "\n", - "Label = __iter__\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. _merge_function\n", - " 3. VGG16\n", - " 4. is_keras_tensor\n", - " 5. model_from_json\n", - " 6. test_checksubparams_negative_subpopulation\n", - "\n", - "Label = NASNetMobile\n", - "Pred =\n", - " 0. __init__\n", - " 1. decode_predictions\n", - " 2. preprocess_input\n", - " 3. get_config\n", - " 4. call\n", - " 5. int_shape\n", - " 6. wrap_future_result\n", - "\n", + " 0. __call__ (0.554)\n", + "---- 1. call (0.434)\n", + " 2. recurrent_conv (0.001)\n", + " 3. max (0.0)\n", + " 4. trainable_weights (0.0)\n", + " 5. _get_noise_shape (0.0)\n", + " 6. _merge_function (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg args If Call Name Attribute data Name Name Expr Call Attribute update Attribute data Name Starred Name Raise Name\n", + "Label = update\n", + "Pred =\n", + " 0. h5wrapper (0.323)\n", + " 1. __contains__ (0.099)\n", + " 2. __setattr__ (0.055)\n", + " 3. close (0.04)\n", + " 4. __init__ (0.024)\n", + " 5. InceptionV3 (0.02)\n", + " 6. preprocess_input (0.02)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg sequence arg use multiprocessing arg shuffle NameConstant NameConstant Expr Call Attribute init Call Name Name Name Name Name Assign Attribute shuffle Name Name\n", + "Label = __init__\n", + "Pred =\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. predict_proba (0.0)\n", + " 3. preprocess_input (0.0)\n", + " 4. score (0.0)\n", + " 5. init_pool_generator (0.0)\n", + " 6. random_normal_variable (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg n arg values NameConstant Expr Call Attribute update Name BinOp Attribute seen so far Name Add Name Name\n", + "Label = add\n", + "Pred =\n", + " 0. set_params (0.157)\n", + " 1. on_batch_begin (0.083)\n", + " 2. save (0.034)\n", + " 3. _logcosh (0.032)\n", + " 4. on_epoch_begin (0.028)\n", + " 5. forward (0.021)\n", + " 6. get (0.019)\n", + "\n", + "[CLS] FunctionDef arguments arg path Str Expr Str Assign Name path Call Name Name keyword Str keyword Str With withitem Call Name Name Name f Return Call Attribute load Name Name\n", + "Label = get_word_index\n", + "Pred =\n", + "---- 0. get_word_index (0.999)\n", + " 1. model_from_yaml (0.0)\n", + " 2. is_sparse (0.0)\n", + " 3. noised (0.0)\n", + " 4. moving_average_update (0.0)\n", + " 5. handle_value (0.0)\n", + " 6. l1_l2 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg args arg kwargs Return Call Attribute decode predictions Name Starred Name keyword Name Name\n", "Label = decode_predictions\n", "Pred =\n", - " 0. __init__\n", - "---- 1. decode_predictions\n", - " 2. preprocess_input\n", - " 3. get_config\n", - " 4. int_shape\n", - " 5. get_output_at\n", - " 6. concatenate\n", + "---- 0. decode_predictions (1.0)\n", + " 1. DenseNet201 (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. DenseNet121 (0.0)\n", + " 4. InceptionResNetV2 (0.0)\n", + " 5. VGG16 (0.0)\n", + " 6. InceptionV3 (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg args arg kwargs Return Call Attribute preprocess input Name Starred Name keyword Name Name\n", "Label = preprocess_input\n", "Pred =\n", - " 0. __init__\n", - "---- 1. preprocess_input\n", - " 2. decode_predictions\n", - " 3. get_config\n", - " 4. call\n", - " 5. int_shape\n", - " 6. wrap_future_result\n", + "---- 0. preprocess_input (1.0)\n", + " 1. decode_predictions (0.0)\n", + " 2. Xception (0.0)\n", + " 3. __init__ (0.0)\n", + " 4. DenseNet121 (0.0)\n", + " 5. _init_subclassed_network (0.0)\n", + " 6. ResNet50 (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg self arg kwargs Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute supports masking Name NameConstant\n", "Label = __init__\n", "Pred =\n", - "---- 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. _preprocess_conv3d_kernel\n", - " 5. random_normal\n", - " 6. update_sub\n", - "\n", - "Label = minimum\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. from_config\n", - " 5. random_normal\n", - " 6. batch_flatten\n", - "\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. predict_proba (0.0)\n", + " 4. to_yaml (0.0)\n", + " 5. score (0.0)\n", + " 6. init_pool_generator (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg inputs Assign Name output Subscript Name Index Num For Name i Call Name Num Call Name Name AugAssign Name output Add Subscript Name Index Name Return Name\n", + "Label = _merge_function\n", + "Pred =\n", + "---- 0. _merge_function (1.0)\n", + " 1. call (0.0)\n", + " 2. get_uid (0.0)\n", + " 3. get_updates_for (0.0)\n", + " 4. compute_mask (0.0)\n", + " 5. __call__ (0.0)\n", + " 6. trainable_weights (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg inputs Return Call Attribute concatenate Name Name keyword Attribute axis Name\n", + "Label = _merge_function\n", + "Pred =\n", + " 0. call (1.0)\n", + " 1. __call__ (0.0)\n", + " 2. compute_mask (0.0)\n", + " 3. _get_noise_shape (0.0)\n", + "---- 4. _merge_function (0.0)\n", + " 5. step (0.0)\n", + " 6. argmin (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg inputs arg kwargs Expr Str Return Call Call Name keyword Name Name\n", + "Label = add\n", + "Pred =\n", + " 0. average (0.343)\n", + " 1. maximum (0.326)\n", + " 2. minimum (0.323)\n", + " 3. h5wrapper (0.0)\n", + " 4. predict_generator (0.0)\n", + " 5. concatenate (0.0)\n", + " 6. ResNet50 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg inputs arg kwargs Expr Str Return Call Call Name keyword Name Name\n", + "Label = subtract\n", + "Pred =\n", + " 0. average (0.343)\n", + " 1. maximum (0.326)\n", + " 2. minimum (0.323)\n", + " 3. h5wrapper (0.0)\n", + " 4. predict_generator (0.0)\n", + " 5. concatenate (0.0)\n", + " 6. ResNet50 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg inputs arg kwargs Expr Str Return Call Call Name keyword Name Name\n", + "Label = multiply\n", + "Pred =\n", + " 0. average (0.343)\n", + " 1. maximum (0.326)\n", + " 2. minimum (0.323)\n", + " 3. h5wrapper (0.0)\n", + " 4. predict_generator (0.0)\n", + " 5. concatenate (0.0)\n", + " 6. ResNet50 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg inputs arg axes arg normalize arg kwargs NameConstant Expr Str Return Call Call Name keyword Name keyword Name keyword Name Name\n", + "Label = dot\n", + "Pred =\n", + " 0. average (0.345)\n", + " 1. maximum (0.325)\n", + " 2. minimum (0.32)\n", + " 3. h5wrapper (0.0)\n", + " 4. predict_generator (0.0)\n", + " 5. concatenate (0.0)\n", + " 6. ResNet50 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg inputs Return Call Attribute relu Name Name keyword Attribute alpha Name\n", "Label = call\n", "Pred =\n", - " 0. __init__\n", - "---- 1. call\n", - " 2. get_config\n", - " 3. softmax\n", - " 4. selu\n", - " 5. batch_flatten\n", - " 6. _weighted_percentile\n", + "---- 0. call (1.0)\n", + " 1. __call__ (0.0)\n", + " 2. step (0.0)\n", + " 3. _get_noise_shape (0.0)\n", + " 4. dropped_inputs (0.0)\n", + " 5. _merge_function (0.0)\n", + " 6. trainable (0.0)\n", "\n", - "Label = get_config\n", + "[CLS] FunctionDef arguments arg self arg inputs Return Call Attribute softmax Name Name keyword Attribute axis Name\n", + "Label = call\n", "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. call\n", - " 4. _preprocess_padding\n", - " 5. cumprod\n", - " 6. batch_flatten\n", + "---- 0. call (1.0)\n", + " 1. __call__ (0.0)\n", + " 2. _get_noise_shape (0.0)\n", + " 3. step (0.0)\n", + " 4. compute_mask (0.0)\n", + " 5. dropped_inputs (0.0)\n", + " 6. get_losses_for (0.0)\n", "\n", - "Label = get_config\n", + "[CLS] FunctionDef arguments arg self arg layer arg kwargs Expr Call Attribute init Call Name Name Name Name keyword Name Assign Attribute supports masking Name NameConstant\n", + "Label = __init__\n", "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. call\n", - " 4. _preprocess_padding\n", - " 5. cumprod\n", - " 6. batch_flatten\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. predict_proba (0.0)\n", + " 3. preprocess_input (0.0)\n", + " 4. to_yaml (0.0)\n", + " 5. score (0.0)\n", + " 6. random_normal_variable (0.0)\n", "\n", - "Label = set_weights\n", + "[CLS] FunctionDef arguments arg self arg input shape Assign Name child input shape BinOp Tuple Subscript Name Index Num Add Subscript Name Slice Num Assign Name child output shape Call Attribute compute output shape Attribute layer Name Name Assign Name timesteps Subscript Name Index Num Return BinOp Tuple Subscript Name Index Num Name Subscript Name Slice Num\n", + "Label = compute_output_shape\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. compute_mask\n", - " 3. call\n", - " 4. batch_flatten\n", - " 5. int_shape\n", - " 6. VGG16\n", + "---- 0. compute_output_shape (1.0)\n", + " 1. _get_noise_shape (0.0)\n", + " 2. range_less_than (0.0)\n", + " 3. _to_snake_case (0.0)\n", + " 4. foldl (0.0)\n", + " 5. infer_outputs (0.0)\n", + " 6. init_pool_generator (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg self If Call Name Attribute forward layer Name Str Return BinOp Attribute trainable weights Attribute forward layer Name Add Attribute trainable weights Attribute backward layer Name Return List Name\n", "Label = trainable_weights\n", "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. non_trainable_weights\n", - " 4. call\n", - " 5. _equal_similarities_and_preferences\n", - " 6. format\n", - "\n", + "---- 0. trainable_weights (1.0)\n", + " 1. non_trainable_weights (0.0)\n", + " 2. get_weights (0.0)\n", + " 3. weights (0.0)\n", + " 4. trainable (0.0)\n", + " 5. next_sample (0.0)\n", + " 6. updates (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self If Call Name Attribute forward layer Name Str Return BinOp Attribute updates Attribute forward layer Name Add Attribute updates Attribute backward layer Name Return List Name\n", + "Label = updates\n", + "Pred =\n", + "---- 0. updates (0.999)\n", + " 1. state_updates (0.0)\n", + " 2. get_updates_for (0.0)\n", + " 3. non_trainable_weights (0.0)\n", + " 4. _uses_dynamic_learning_phase (0.0)\n", + " 5. stateful (0.0)\n", + " 6. get_weights (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self Assign Name config Dict Str Str Str Str Attribute return sequences Name Attribute return state Name Attribute go backwards Name Attribute stateful Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = get_config\n", "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. _preprocess_padding\n", - " 4. call\n", - " 5. batch_flatten\n", - " 6. selu\n", + "---- 0. get_config (1.0)\n", + " 1. stop_gradient (0.0)\n", + " 2. _updated_config (0.0)\n", + " 3. serialize_keras_object (0.0)\n", + " 4. infer_outputs (0.0)\n", + " 5. process_layer (0.0)\n", + " 6. cell (0.0)\n", "\n", - "Label = _pooling_function\n", + "[CLS] FunctionDef arguments arg self arg pool size arg strides arg padding arg data format arg kwargs Num NameConstant Str Str Expr Call Attribute init Call Name Name Name Name Name Name Name keyword Name Attribute legacy pooling1d support Name\n", + "Label = __init__\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. from_config\n", - " 5. random_normal\n", - " 6. selu\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. predict_proba (0.0)\n", + " 4. score (0.0)\n", + " 5. to_yaml (0.0)\n", + " 6. random_normal_variable (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg self arg data format arg kwargs NameConstant Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute data format Name Call Attribute normalize data format Name Name Assign Attribute input spec Name Call Name keyword Num Attribute legacy global pooling support Name\n", "Label = __init__\n", "Pred =\n", - "---- 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. test_ovo_fit_on_list\n", - " 5. compute_mask\n", - " 6. squared_hinge\n", - "\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. predict_proba (0.0)\n", + " 4. score (0.0)\n", + " 5. random_normal_variable (0.0)\n", + " 6. _get_executor_init (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg inputs arg states Assign Name constants Subscript Name Slice UnaryOp USub Attribute num constants Name Assign Name states Subscript Name Slice UnaryOp Attribute num constants Name Return Call Attribute call Attribute cell Name Name Name keyword Name keyword Name\n", + "Label = step\n", + "Pred =\n", + "---- 0. step (1.0)\n", + " 1. _step (0.0)\n", + " 2. function (0.0)\n", + " 3. call (0.0)\n", + " 4. pickle_model (0.0)\n", + " 5. one_hot (0.0)\n", + " 6. _merge_function (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self Assign Name config Call Attribute get config Call Name Name Name Assign Subscript Name Index Str Attribute output padding Name Return Name\n", "Label = get_config\n", "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. call\n", - " 4. batch_flatten\n", - " 5. get_variable_shape\n", - " 6. cumprod\n", + "---- 0. get_config (1.0)\n", + " 1. infer_outputs (0.0)\n", + " 2. stop_gradient (0.0)\n", + " 3. _updated_config (0.0)\n", + " 4. _preprocess_conv3d_kernel (0.0)\n", + " 5. _get_noise_shape (0.0)\n", + " 6. process_layer (0.0)\n", "\n", - "Label = __init__\n", + "[CLS] FunctionDef arguments arg self arg inputs Return Call Attribute spatial 3d padding Name Name keyword Attribute padding Name keyword Attribute data format Name\n", + "Label = call\n", "Pred =\n", - "---- 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. test_ovo_fit_on_list\n", - " 5. conv1d_args_preprocessor\n", - " 6. selu\n", + "---- 0. call (1.0)\n", + " 1. _pooling_function (0.0)\n", + " 2. _get_noise_shape (0.0)\n", + " 3. compute_mask (0.0)\n", + " 4. __call__ (0.0)\n", + " 5. step (0.0)\n", + " 6. _merge_function (0.0)\n", "\n", - "Label = state_size\n", + "[CLS] FunctionDef arguments arg self Assign Name config Dict Str Str Attribute cropping Name Attribute data format Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", + "Label = get_config\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. softmax\n", - " 3. non_trainable_weights\n", - " 4. call\n", - " 5. test_float_class_labels\n", - " 6. conv1d_args_preprocessor\n", - "\n", + "---- 0. get_config (1.0)\n", + " 1. stop_gradient (0.0)\n", + " 2. infer_outputs (0.0)\n", + " 3. _updated_config (0.0)\n", + " 4. dropped_inputs (0.0)\n", + " 5. process_layer (0.0)\n", + " 6. serialize_keras_object (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg inputs arg mask If Call Name Name Name Assign Name mask Subscript Name Index Num Assign Name output mask IfExp Attribute return sequences Name Name NameConstant If Attribute return state Name Assign Name state mask ListComp NameConstant comprehension Name Attribute states Name Return BinOp List Name Add Name Return Name\n", + "Label = compute_mask\n", + "Pred =\n", + "---- 0. compute_mask (1.0)\n", + " 1. call (0.0)\n", + " 2. get_index (0.0)\n", + " 3. _step (0.0)\n", + " 4. not_equal (0.0)\n", + " 5. _get_noise_shape (0.0)\n", + " 6. compute_output_shape (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg cls arg config arg custom objects NameConstant ImportFrom alias Assign Name cell Call Name Call Attribute pop Name Str keyword Name Assign Name num constants Call Attribute pop Name Str NameConstant Assign Name layer Call Name Name keyword Name Assign Attribute num constants Name Name Return Name Name\n", + "Label = from_config\n", + "Pred =\n", + "---- 0. from_config (1.0)\n", + " 1. name_scope (0.0)\n", + " 2. deserialize (0.0)\n", + " 3. batchnorm_args_preprocessor (0.0)\n", + " 4. MobileNetV2 (0.0)\n", + " 5. __init__ (0.0)\n", + " 6. predict_generator (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self Assign Name layer losses Attribute losses Call Name Name Name If Call Name Attribute cell Name Name Return BinOp Attribute losses Attribute cell Name Add Name Return Name Name\n", + "Label = losses\n", + "Pred =\n", + "---- 0. losses (1.0)\n", + " 1. get_losses_for (0.0)\n", + " 2. get_config (0.0)\n", + " 3. _reshape_sequence (0.0)\n", + " 4. permute_dimensions (0.0)\n", + " 5. states (0.0)\n", + " 6. __call__ (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg inputs arg mask arg training arg initial state NameConstant NameConstant NameConstant Assign Attribute dropout mask Attribute cell Name NameConstant Assign Attribute recurrent dropout mask Attribute cell Name NameConstant Return Call Attribute call Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = call\n", "Pred =\n", - " 0. __init__\n", - "---- 1. call\n", - " 2. get_config\n", - " 3. softmax\n", - " 4. test_ovo_fit_on_list\n", - " 5. conv1d_args_preprocessor\n", - " 6. noised\n", + "---- 0. call (1.0)\n", + " 1. compute_mask (0.0)\n", + " 2. _get_noise_shape (0.0)\n", + " 3. step (0.0)\n", + " 4. _merge_function (0.0)\n", + " 5. _init_subclassed_network (0.0)\n", + " 6. argmin (0.0)\n", "\n", - "Label = from_config\n", + "[CLS] FunctionDef arguments arg self arg inputs arg mask arg training arg initial state NameConstant NameConstant NameConstant Assign Attribute dropout mask Attribute cell Name NameConstant Assign Attribute recurrent dropout mask Attribute cell Name NameConstant Return Call Attribute call Call Name Name Name Name keyword Name keyword Name keyword Name\n", + "Label = call\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - "---- 2. from_config\n", - " 3. softmax\n", - " 4. call\n", - " 5. batch_flatten\n", - " 6. update_sub\n", - "\n", - "Label = from_config\n", + "---- 0. call (1.0)\n", + " 1. compute_mask (0.0)\n", + " 2. _get_noise_shape (0.0)\n", + " 3. step (0.0)\n", + " 4. _merge_function (0.0)\n", + " 5. _init_subclassed_network (0.0)\n", + " 6. argmin (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg arg args arg kwargs Return Call Attribute concatenate Name List Call Attribute bias initializer Name Tuple Attribute units Name Starred Name keyword Name Call Call Attribute Ones Name Tuple Attribute units Name Starred Name keyword Name Call Attribute bias initializer Name Tuple BinOp Attribute units Name Mult Num Starred Name keyword Name\n", + "Label = bias_initializer\n", + "Pred =\n", + "---- 0. bias_initializer (1.0)\n", + " 1. DenseNet169 (0.0)\n", + " 2. InceptionV3 (0.0)\n", + " 3. wrapper (0.0)\n", + " 4. constant (0.0)\n", + " 5. compute_output_shape (0.0)\n", + " 6. VGG19 (0.0)\n", + "\n", + "[CLS] FunctionDef arguments Assign Name stddev Call Attribute sqrt Name BinOp Attribute rate Name Div BinOp Num Sub Attribute rate Name Return BinOp Name Mult Call Attribute random normal Name keyword Call Attribute shape Name Name keyword Num keyword Name\n", + "Label = noised\n", + "Pred =\n", + "---- 0. noised (0.752)\n", + " 1. ctc_create_skip_idxs (0.143)\n", + " 2. softsign (0.006)\n", + " 3. std (0.005)\n", + " 4. _logcosh (0.004)\n", + " 5. transform (0.004)\n", + " 6. l2_normalize (0.003)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg rate arg noise shape arg seed arg kwargs NameConstant NameConstant Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute rate Name Name Assign Attribute noise shape Name Name Assign Attribute seed Name Name Assign Attribute supports masking Name NameConstant\n", + "Label = __init__\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - "---- 2. from_config\n", - " 3. softmax\n", - " 4. is_shutting_down\n", - " 5. call\n", - " 6. int_shape\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. predict_proba (0.0)\n", + " 4. init_pool_generator (0.0)\n", + " 5. to_yaml (0.0)\n", + " 6. random_normal_variable (0.0)\n", "\n", - "Label = get_config\n", + "[CLS] FunctionDef arguments arg self arg mask value arg kwargs Num Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute supports masking Name NameConstant Assign Attribute mask value Name Name\n", + "Label = __init__\n", "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. _preprocess_padding\n", - " 4. call\n", - " 5. cumprod\n", - " 6. batch_flatten\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. predict_proba (0.0)\n", + " 4. random_normal_variable (0.0)\n", + " 5. to_yaml (0.0)\n", + " 6. score (0.0)\n", "\n", + "[CLS] FunctionDef arguments arg self arg input shape Assert BoolOp And Name Compare Call Name Name GtE Num Assert Subscript Name Index UnaryOp USub Num Assign Name output shape Call Name Name Assign Subscript Name Index UnaryOp Num Attribute units Name Return Call Name Name\n", "Label = compute_output_shape\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - "---- 2. compute_output_shape\n", - " 3. non_trainable_weights\n", - " 4. batch_flatten\n", - " 5. _merge_function\n", - " 6. default_double_backwards_fn\n", - "\n", - "Label = get_uid\n", + "---- 0. compute_output_shape (1.0)\n", + " 1. build (0.0)\n", + " 2. _get_noise_shape (0.0)\n", + " 3. size (0.0)\n", + " 4. reshape (0.0)\n", + " 5. __init__ (0.0)\n", + " 6. _to_snake_case (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return Call Attribute asarray Name Name keyword Name\n", + "Label = cast_to_floatx\n", + "Pred =\n", + " 0. softplus (0.204)\n", + " 1. permute_dimensions (0.175)\n", + " 2. reshape (0.037)\n", + " 3. batch_get_value (0.029)\n", + " 4. softmax (0.028)\n", + " 5. transform (0.024)\n", + " 6. __call__ (0.022)\n", + "\n", + "[CLS] FunctionDef arguments Expr Str If Compare Name Eq Str Return Str Return Str\n", + "Label = image_dim_ordering\n", + "Pred =\n", + " 0. _preprocess_padding (0.314)\n", + " 1. _convert_dtype_string (0.109)\n", + " 2. _convert_string_dtype (0.058)\n", + " 3. set_image_dim_ordering (0.055)\n", + " 4. is_placeholder (0.039)\n", + " 5. unpack_singleton (0.037)\n", + " 6. maximum (0.025)\n", + "\n", + "[CLS] FunctionDef arguments arg x If Call Name Name Attribute Function Attribute cntk py Name Return Call Attribute eval Name If BoolOp Or Call Name Name Attribute Constant Attribute variables Name Call Name Name Attribute Parameter Attribute variables Name Return Attribute value Name Raise Call Name BinOp Str Mod Call Name Name\n", + "Label = eval\n", + "Pred =\n", + " 0. get_value (0.98)\n", + "---- 1. eval (0.007)\n", + " 2. is_tensor (0.001)\n", + " 3. int_or_none (0.001)\n", + " 4. is_placeholder (0.0)\n", + " 5. set_value (0.0)\n", + " 6. ctc_create_skip_idxs (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x Assign Name shape Call Name Name Return Call Name Name\n", + "Label = ndim\n", + "Pred =\n", + " 0. reshape (0.796)\n", + " 1. _is_explicit_shape (0.034)\n", + " 2. _reshape_batch (0.027)\n", + " 3. zeros (0.008)\n", + " 4. size (0.007)\n", + " 5. print_layer_summary (0.006)\n", + " 6. model_from_yaml (0.005)\n", + "\n", + "[CLS] FunctionDef arguments arg reference arg indices If Compare Call Name GtE Num Return Call Attribute gather Attribute ops Name Name Name Assign Name num classes Subscript Attribute shape Name Index Num Assign Name one hot matrix Call Attribute one hot Attribute ops Name Name Name Return Call Attribute times Name Name Name keyword BinOp Call Name Attribute shape Name Sub Num\n", + "Label = gather\n", + "Pred =\n", + "---- 0. gather (0.976)\n", + " 1. one_hot (0.004)\n", + " 2. ctc_create_skip_idxs (0.002)\n", + " 3. save (0.001)\n", + " 4. _generate_dropout_mask (0.001)\n", + " 5. range_less_than (0.001)\n", + " 6. _reshape_batch (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg axis UnaryOp USub Num Assign Name axis List Name Assign Name axis Call Name Name Name Assign Name output Call Attribute argmax Attribute ops Name Name keyword Subscript Name Index Num Return Call Name Name Name\n", + "Label = argmax\n", + "Pred =\n", + "---- 0. argmax (0.966)\n", + " 1. argmin (0.031)\n", + " 2. expand_dims (0.0)\n", + " 3. classification_error (0.0)\n", + " 4. squeeze (0.0)\n", + " 5. softmax (0.0)\n", + " 6. cumsum (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg axis UnaryOp USub Num Return Call Attribute softmax Name Name keyword Name\n", + "Label = softmax\n", + "Pred =\n", + "---- 0. softmax (0.999)\n", + " 1. argmin (0.0)\n", + " 2. expand_dims (0.0)\n", + " 3. argmax (0.0)\n", + " 4. concatenate (0.0)\n", + " 5. cumprod (0.0)\n", + " 6. l2_normalize (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg input arg shape arg name Str Expr Call Attribute init Call Name Name Name List Name keyword NameConstant keyword Name Assign Attribute from shape Name Attribute shape Name Assign Attribute target shape Name Name\n", + "Label = __init__\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. slice\n", - " 3. call\n", - " 4. random_uniform\n", - " 5. squeeze\n", - " 6. project\n", - "\n", + "---- 0. __init__ (1.0)\n", + " 1. on_train_begin (0.0)\n", + " 2. preprocess_input (0.0)\n", + " 3. compute_output_shape (0.0)\n", + " 4. random_normal_variable (0.0)\n", + " 5. predict_proba (0.0)\n", + " 6. build (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg self Return List Call Attribute output variable Name Attribute target shape Name Attribute dtype Subscript Attribute inputs Name Index Num List\n", + "Label = infer_outputs\n", + "Pred =\n", + "---- 0. infer_outputs (1.0)\n", + " 1. reset_states (0.0)\n", + " 2. compute_output_shape (0.0)\n", + " 3. get_config (0.0)\n", + " 4. eval (0.0)\n", + " 5. states (0.0)\n", + " 6. call (0.0)\n", + "\n", + "[CLS] FunctionDef arguments Expr Str Assign Name explicitly on cpu Call Name Str Assign Name gpus available Compare Call Name Call Name Gt Num Return BoolOp And UnaryOp Not Name Name\n", + "Label = _has_nchw_support\n", + "Pred =\n", + " 0. has_seq_axis (0.156)\n", + " 1. normalize (0.035)\n", + " 2. output (0.033)\n", + " 3. deserialize (0.024)\n", + " 4. _normalize_device_name (0.021)\n", + " 5. validate_file (0.02)\n", + " 6. handle_value (0.019)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg dtype Expr Str Return Call Attribute convert to tensor Name Name keyword Name\n", + "Label = _to_tensor\n", + "Pred =\n", + " 0. ones_like (0.217)\n", + " 1. zeros_like (0.189)\n", + " 2. sqrt (0.033)\n", + " 3. softplus (0.027)\n", + " 4. cast (0.027)\n", + " 5. map_fn (0.023)\n", + " 6. _convert_string_dtype (0.022)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return Call Attribute eval Call Name Name keyword Call Name\n", + "Label = eval\n", + "Pred =\n", + "---- 0. eval (0.999)\n", + " 1. _get_dynamic_axis_num (0.0)\n", + " 2. infer_outputs (0.0)\n", + " 3. count_params (0.0)\n", + " 4. has_seq_axis (0.0)\n", + " 5. ctc_create_skip_idxs (0.0)\n", + " 6. _get_available_devices (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg axis arg keepdims NameConstant NameConstant Expr Str Return Call Attribute reduce min Name Name Name Name\n", "Label = min\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. update_sub\n", - " 3. call\n", - " 4. random_normal\n", - " 5. batch_flatten\n", - " 6. stop_gradient\n", - "\n", - "Label = sign\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. min\n", - " 3. call\n", - " 4. test_k_means_copyx\n", - " 5. preprocess_input\n", - " 6. batch_flatten\n", - "\n", - "Label = binary_crossentropy\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. _compute_class_weight_dictionary\n", - " 4. assert_grid_iter_equals_getitem\n", - " 5. test_deterministic_vocabulary\n", - " 6. __add__\n", - "\n", - "Label = gradients\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. from_config\n", - " 3. call\n", - " 4. test_non_positive_precomputed_distances\n", - " 5. softmax\n", - " 6. random_uniform\n", - "\n", - "Label = batch_get_value\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. activity_regularizer\n", - " 3. call\n", - " 4. softmax\n", - " 5. update_sub\n", - " 6. noised\n", - "\n", - "Label = batch_set_value\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. _get_current_tf_device\n", - " 4. sqrt\n", - " 5. hard_sigmoid\n", - " 6. compute_mask\n", - "\n", - "Label = _get_dynamic_axis_num\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. decode_predictions\n", - " 3. int_shape\n", - " 4. call\n", - " 5. test_base_chain_fit_and_predict_with_sparse_data_and_cv\n", - " 6. selu\n", - "\n", - "Label = _get_available_gpus\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. decode_predictions\n", - " 4. get\n", - " 5. softmax\n", - " 6. int_shape\n", - "\n", - "Label = eye\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. random_normal\n", - " 4. softmax\n", - "---- 5. eye\n", - " 6. logsumexp\n", - "\n", - "Label = min\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. sqrt\n", - " 4. logsumexp\n", - " 5. softmax\n", - " 6. update_sub\n", - "\n", - "Label = std\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. update_sub\n", - " 4. model\n", - " 5. softmax\n", - " 6. _preprocess_conv3d_input\n", - "\n", - "Label = any\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. logsumexp\n", - " 4. softmax\n", - " 5. selu\n", - " 6. batch_flatten\n", - "\n", - "Label = logsumexp\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - "---- 3. logsumexp\n", - " 4. softmax\n", - " 5. batch_flatten\n", - " 6. sqrt\n", - "\n", - "Label = reshape\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. logsumexp\n", - " 4. test_fit\n", - " 5. test_ovo_fit_on_list\n", - " 6. predict_generator\n", - "\n", - "Label = permute_dimensions\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. logsumexp\n", - " 4. decode_predictions\n", - " 5. softmax\n", - " 6. _preprocess_conv3d_input\n", - "\n", - "Label = batch_get_value\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. int_shape\n", - " 4. softmax\n", - " 5. cosine_proximity\n", - " 6. random_normal\n", - "\n", + "---- 0. min (0.986)\n", + " 1. max (0.004)\n", + " 2. sum (0.002)\n", + " 3. mean (0.001)\n", + " 4. prod (0.001)\n", + " 5. logsumexp (0.0)\n", + " 6. in_test_phase (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return Call Attribute reshape Name Name List UnaryOp USub Num\n", + "Label = flatten\n", + "Pred =\n", + " 0. reshape (0.591)\n", + "---- 1. flatten (0.134)\n", + " 2. expand_dims (0.095)\n", + " 3. tile (0.024)\n", + " 4. handle_value (0.008)\n", + " 5. convert_nested_time_distributed (0.006)\n", + " 6. softplus (0.006)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Assign Name x Call Attribute reshape Name Name Call Attribute stack Name List UnaryOp USub Num Call Name Subscript Call Name Name Slice Num Return Name\n", + "Label = batch_flatten\n", + "Pred =\n", + " 0. _reshape_batch (0.473)\n", + " 1. repeat (0.204)\n", + " 2. slice (0.011)\n", + " 3. _normalize_device_name (0.011)\n", + " 4. _canonical_to_params (0.01)\n", + " 5. tile (0.01)\n", + " 6. reshape (0.009)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return Call Attribute eval Name keyword Call Name\n", + "Label = get_value\n", + "Pred =\n", + " 0. eval (0.991)\n", + " 1. count_params (0.002)\n", + " 2. get_variable_shape (0.0)\n", + " 3. update (0.0)\n", + " 4. softsign (0.0)\n", + " 5. std (0.0)\n", + " 6. Xception (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return Call Attribute sigmoid Attribute nn Name Name\n", "Label = sigmoid\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. int_shape\n", - " 4. softmax\n", - " 5. eval\n", - " 6. logsumexp\n", - "\n", - "Label = dropout\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. noised\n", - " 4. update_sub\n", - " 5. int_shape\n", - " 6. random_normal\n", - "\n", - "Label = _preprocess_padding\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. eye\n", - " 5. stop_gradient\n", - " 6. test_ovr_fit_predict_svc\n", - "\n", - "Label = random_uniform\n", - "Pred =\n", - " 0. __init__\n", - " 1. call\n", - " 2. get_config\n", - " 3. random_normal\n", - " 4. test_ovo_fit_on_list\n", - "---- 5. random_uniform\n", - " 6. temporal_padding\n", - "\n", - "Label = foldl\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. zeros_like\n", - " 5. from_config\n", - " 6. preprocess_input\n", - "\n", - "Label = _is_explicit_shape\n", - "Pred =\n", - " 0. __init__\n", - " 1. int_shape\n", - " 2. clip\n", - " 3. call\n", - " 4. _get_current_tf_device\n", - " 5. model_from_json\n", - " 6. on_train_begin\n", - "\n", - "Label = is_tensor\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. int_shape\n", - " 4. softmax\n", - " 5. normalize_padding\n", - " 6. from_config\n", - "\n", - "Label = ones_like\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. zeros_like\n", - " 3. call\n", - " 4. min\n", - " 5. sqrt\n", - " 6. softmax\n", - "\n", - "Label = count_params\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. compute_mask\n", - " 3. call\n", - " 4. set_floatx\n", - " 5. X_64bit\n", - " 6. foldr\n", - "\n", - "Label = std\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. zeros_like\n", - " 4. sqrt\n", - " 5. softmax\n", - " 6. logsumexp\n", - "\n", - "Label = argmin\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. zeros_like\n", - " 4. _preprocess_conv3d_input\n", - " 5. int_shape\n", - " 6. equal\n", + " 0. tanh (0.525)\n", + " 1. softplus (0.335)\n", + " 2. softsign (0.104)\n", + " 3. ctc_create_skip_idxs (0.003)\n", + " 4. gather (0.002)\n", + " 5. is_placeholder (0.001)\n", + " 6. softmax (0.001)\n", + "\n", + "[CLS] FunctionDef arguments arg x Expr Str Return BoolOp And Call Name Name Str Attribute theano placeholder Name\n", + "Label = is_placeholder\n", + "Pred =\n", + "---- 0. is_placeholder (0.996)\n", + " 1. get_json_type (0.0)\n", + " 2. sparse_top_k_categorical_accuracy (0.0)\n", + " 3. has_seq_axis (0.0)\n", + " 4. softsign (0.0)\n", + " 5. _get_available_gpus (0.0)\n", + " 6. ctc_create_skip_idxs (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg shape arg dtype arg name NameConstant NameConstant Expr Str If Compare Name Is NameConstant Assign Name dtype Call Name Return Call Name Call Attribute ones Name Name Name Name\n", + "Label = ones\n", + "Pred =\n", + "---- 0. ones (0.998)\n", + " 1. ones_like (0.0)\n", + " 2. zeros (0.0)\n", + " 3. random_binomial (0.0)\n", + " 4. constant (0.0)\n", + " 5. _preprocess_conv2d_input (0.0)\n", + " 6. _preprocess_conv3d_input (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg name NameConstant Expr Str Return Call Attribute copy Name keyword Name\n", + "Label = identity\n", + "Pred =\n", + "---- 0. identity (0.802)\n", + " 1. zeros_like (0.115)\n", + " 2. ones_like (0.009)\n", + " 3. repeat (0.003)\n", + " 4. map_fn (0.003)\n", + " 5. _logcosh (0.003)\n", + " 6. softplus (0.003)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg decrement Return Tuple Name BinOp Name Sub Name\n", + "Label = update_sub\n", + "Pred =\n", + "---- 0. update_sub (0.992)\n", + " 1. shape (0.0)\n", + " 2. in_test_phase (0.0)\n", + " 3. update_add (0.0)\n", + " 4. next_sample (0.0)\n", + " 5. on_train_end (0.0)\n", + " 6. get_index (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg x arg axis arg keepdims NameConstant NameConstant Expr Str Return Call Attribute sum Name Name keyword Name keyword Name\n", + "Label = sum\n", + "Pred =\n", + "---- 0. sum (0.894)\n", + " 1. prod (0.025)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2. std (0.014)\n", + " 3. min (0.014)\n", + " 4. logsumexp (0.013)\n", + " 5. max (0.013)\n", + " 6. mean (0.012)\n", "\n", + "[CLS] FunctionDef arguments arg start arg stop arg step arg dtype NameConstant Num Str Expr Str Return Call Attribute arange Name Name keyword Name keyword Name keyword Name\n", "Label = arange\n", "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. temporal_padding\n", - " 3. concatenate\n", - " 4. call\n", - " 5. activity_regularizer\n", - " 6. update_sub\n", - "\n", - "Label = __call__\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. preprocess_input\n", - " 5. from_config\n", - " 6. int_shape\n", - "\n", + " 0. map_fn (0.387)\n", + " 1. truncated_normal (0.065)\n", + " 2. slice (0.064)\n", + " 3. predict_generator (0.033)\n", + " 4. evaluate_generator (0.026)\n", + " 5. eye (0.014)\n", + " 6. _wait_queue (0.014)\n", + "\n", + "[CLS] FunctionDef arguments arg predict arg Y Assign Tuple Name log probs Name mask Call Name Name Call Name Name Assign Name common factor Call Attribute max Name Name Assign Name total log prob BinOp Call Attribute log Name Call Attribute sum Name Subscript Call Attribute exp Name BinOp Name Sub Name Index Call Attribute nonzero Name Add Name Return UnaryOp USub Name\n", + "Label = ctc_cost\n", + "Pred =\n", + " 0. mean_absolute_error (0.124)\n", + " 1. compute_mask (0.069)\n", + " 2. mean_squared_error (0.067)\n", + " 3. predict_proba (0.052)\n", + " 4. handle_value (0.051)\n", + " 5. categorical_hinge (0.037)\n", + " 6. in_top_k (0.029)\n", + "\n", + "[CLS] FunctionDef arguments arg fn arg elems arg initializer arg name NameConstant NameConstant Expr Str If Compare Name Is NameConstant Assign Name initializer Subscript Name Index UnaryOp USub Num Assign Name elems Subscript Name Slice UnaryOp Num Return Subscript Call Attribute foldr Name Lambda arguments arg x arg acc Call Name Name Name Name Name keyword Name Index Num\n", "Label = foldr\n", "Pred =\n", - " 0. __init__\n", - " 1. call\n", - " 2. sqrt\n", - " 3. preprocess_input\n", - " 4. temporal_padding\n", - " 5. random_normal\n", - " 6. decode_predictions\n", - "\n", - "Label = __init__\n", - "Pred =\n", - "---- 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. decode_predictions\n", - " 4. squared_hinge\n", - " 5. softmax\n", - " 6. is_keras_tensor\n", - "\n", - "Label = state_updates\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. softmax\n", - " 4. int_shape\n", - " 5. test_k_means_random_init_not_precomputed\n", - " 6. test_float_class_labels\n", - "\n", - "Label = trainable_weights\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. non_trainable_weights\n", - " 4. save\n", - " 5. stop_gradient\n", - " 6. test_sparse_and_verbose\n", - "\n", - "Label = summary\n", - "Pred =\n", - " 0. __init__\n", - " 1. call\n", - " 2. get_config\n", - " 3. softmax\n", - " 4. test_ovo_fit_on_list\n", - " 5. sqrt\n", - " 6. VGG16\n", - "\n", - "Label = layers\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. _merge_function\n", - " 4. batch_flatten\n", - " 5. softmax\n", - " 6. int_shape\n", - "\n", - "Label = predict_proba\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. sqrt\n", - " 3. call\n", - " 4. update_sub\n", - " 5. warnings_to_stdout\n", - " 6. softmax\n", - "\n", - "Label = pickle_model\n", - "Pred =\n", - " 0. __init__\n", - " 1. update\n", - " 2. get_config\n", - " 3. _pairwise\n", - " 4. get_context\n", - " 5. int_shape\n", - " 6. mean_absolute_error\n", - "\n", - "Label = get_input_shape_at\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. from_config\n", - " 3. softmax\n", - " 4. create_mv\n", - " 5. _merge_function\n", - " 6. test_polynomial_feature_array_order\n", - "\n", - "Label = get_output_mask_at\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. from_config\n", - " 3. softmax\n", - " 4. create_mv\n", - " 5. _merge_function\n", - " 6. test_polynomial_feature_array_order\n", - "\n", - "Label = input\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. _merge_function\n", - " 3. softmax\n", - " 4. compute_mask\n", - " 5. VGG16\n", - " 6. int_shape\n", - "\n", - "Label = output\n", - "Pred =\n", - " 0. get_config\n", - " 1. __init__\n", - " 2. _merge_function\n", - " 3. compute_mask\n", - " 4. softmax\n", - " 5. VGG16\n", - " 6. int_shape\n", - "\n", - "Label = get_config\n", - "Pred =\n", - "---- 0. get_config\n", - " 1. __init__\n", - " 2. softmax\n", - " 3. call\n", - " 4. squared_hinge\n", - " 5. batch_flatten\n", - " 6. _preprocess_padding\n", - "\n", - "Label = evaluate_generator\n", - "Pred =\n", - " 0. __init__\n", - " 1. get_config\n", - " 2. call\n", - " 3. random_normal\n", - " 4. temporal_padding\n", - " 5. tmpdata\n", - " 6. update_sub\n", + "---- 0. foldr (0.996)\n", + " 1. foldl (0.002)\n", + " 2. clip (0.0)\n", + " 3. ctc_step (0.0)\n", + " 4. ones (0.0)\n", + " 5. map_fn (0.0)\n", + " 6. ask_to_proceed_with_overwrite (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg path arg x arg data format arg file format arg scale arg kwargs NameConstant NameConstant NameConstant If Compare Name Is NameConstant Assign Name data format Call Attribute image data format Name Return Call Attribute save img Name Name Name keyword Name keyword Name keyword Name keyword Name\n", + "Label = save_img\n", + "Pred =\n", + " 0. truncated_normal (0.048)\n", + " 1. get_word_index (0.033)\n", + " 2. random_normal_variable (0.031)\n", + " 3. ones (0.031)\n", + " 4. ask_to_proceed_with_overwrite (0.03)\n", + " 5. set_image_dim_ordering (0.022)\n", + " 6. random_uniform_variable (0.022)\n", + "\n", + "[CLS] FunctionDef arguments arg self arg x arg batch size arg verbose Num Num Expr Str Assign Name proba Call Attribute predict Name Name keyword Name keyword Name If Compare Subscript Attribute shape Name Index UnaryOp USub Num Gt Num Return Call Attribute argmax Name keyword UnaryOp Num Return Call Attribute astype Compare Name Num Str\n", + "Label = predict_classes\n", + "Pred =\n", + " 0. predict_proba (0.997)\n", + " 1. predict_generator (0.0)\n", + " 2. predict (0.0)\n", + " 3. on_train_end (0.0)\n", + " 4. argmax (0.0)\n", + " 5. handle_value (0.0)\n", + " 6. update_sub (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg json string arg custom objects NameConstant Expr Str Assign Name config Call Attribute loads Name Name ImportFrom alias Return Call Name Name keyword Name\n", + "Label = model_from_json\n", + "Pred =\n", + " 0. model_from_yaml (0.992)\n", + " 1. model_from_config (0.001)\n", + " 2. get (0.0)\n", + " 3. truncated_normal (0.0)\n", + " 4. _reshape_batch (0.0)\n", + " 5. is_all_none (0.0)\n", + " 6. any (0.0)\n", + "\n", + "[CLS] FunctionDef arguments arg layer arg node index Expr Str Return BinOp BinOp Attribute name Name Add Str Call Name Name Name\n", + "Label = _node_key\n", + "Pred =\n", + " 0. _make_node_key (0.983)\n", + " 1. get_input_shape_at (0.001)\n", + " 2. get_output_shape_at (0.001)\n", + " 3. get_output_at (0.001)\n", + " 4. get_input_mask_at (0.001)\n", + " 5. get_output_mask_at (0.001)\n", + " 6. get_input_at (0.001)\n", "\n" ] } @@ -1612,20 +2431,21 @@ "source": [ "pred_str = []; score = 0; rank = []\n", "for idx, r in enumerate(preds):\n", - " #print(snippet.loc[idx][0])\n", + " print(snippet.loc[idx][0])\n", " print(\"Label =\", labels_str[idx])\n", " preds_ = []\n", " print(\"Pred =\")\n", " correct = False\n", + " \n", " for i in range(7):\n", " p = vocab_label_df.loc[r[i]][0] \n", " if p==labels_str[idx]:\n", " score +=1\n", " rank.append(i+1)\n", - " print(\"---- {}. {}\".format(i,p))\n", + " print(\"---- {}. {} ({})\".format(i,p,np.around(probs[idx][r[i]],3)))\n", " correct = True\n", " else:\n", - " print(\" {}. {}\".format(i,p))\n", + " print(\" {}. {} ({})\".format(i,p,np.around(probs[idx][r[i]],3)))\n", " preds_.append(p)\n", " if correct == False:\n", " rank.append(i)\n", @@ -1635,36 +2455,56 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.around(probs[idx][r[i]],3)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.38333333333333336" + "0.68" ] }, - "execution_count": 78, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "score/len(labels)" + "score/len(preds)" ] }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.20202020202020202" + "0.3712871287128713" ] }, - "execution_count": 79, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1675,7 +2515,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1684,16 +2524,16 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 84, "metadata": {}, "outputs": [], "source": [ - "m = io.mmread('../sparse/adj/0_sparse_fname2_split_magret_adj.mtx').toarray()" + "m = io.mmread('../sparse/adj/1_sparse_fname2_split_magret_adj.mtx').toarray()" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ @@ -1702,22 +2542,22 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 40, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGDBJREFUeJzt3V+srWdd4PHvbw40GHQs1E7DUGbKxEbSi6GYEwLRGIWo+CfTXhiicSaNIemNM8HEiYPeGCea6I3KhTFpAO2FCgRl2hgjNhXjzE31IDgCdQZsIBQLrRXin0lkWp+5OIvxTOfUtc7ea5299zmfT9Lstd699ruevrDJl2et9duz1goA4Hr3T056AQAAp4EoAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQ1Quu5pN9zUvPrdte8cKr+ZQAwHXsU5/53/3FXz47uzz2WFE0M2+q3l6dq96x1vrpf+zxt73ihf3BB15xnKcEANjZa7/9Mzs/9sgvn83MueoXqu+o7qi+b2buOOr5AABO0nHeU/Ta6pNrrcfWWl+q3l3dtZ9lAQBcXceJopdXl+5JPb459v+YmXtn5sLMXHjq6WeP8XQAAIdz8E+frbXuW2udX2udv/mmc4d+OgCAIzlOFH22uvRd07dujgEAnDnHiaI/rG6fmVfOzA3V91YP7mdZAABX15E/kr/WemZm/n31gS5+JP9da62P7W1lR/Tt//zOY5/jA3/+kavyPADAYf3P9fTOjz3WnKK11m9Vv3WccwAAnAb+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQHXNO0Wm0j8GLBjMCwPXHThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQnbI5RbvMB9plDtFxz2FOEQBcf+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoTtnwxl1sG6y4j+GOAMD1x04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJ2yOUW7zBjaNqdo2/f3tY5t9rEOAODqsVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKA6ZcMbr6WBh/sYRHlaXEv/LgDwfOwUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANUpm1N0Wuwyc2eX2T3HPcc+1rGP+UFmEAFwPbBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrzxyLYNNLwawx13WQcAsBs7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlTtHB7DI/aB+zjACA/bBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrzxYHYZzLjLgMd9PM9x7WOdAHDabd0pmpl3zcyTM/PRS469dGYemplPbL6+5LDLBAA4rF1ePvvl6k3POfa26uG11u3Vw5v7AABn1tYoWmv9fvWXzzl8V3X/5vb91d17XhcAwFV11Dda37LWemJz+3PVLc/3wJm5d2YuzMyFp55+9ohPBwBwWMf+9Nlaa1XrH/n+fWut82ut8zffdO64TwcAcBBHjaLPz8zLqjZfn9zfkgAArr6jRtGD1T2b2/dUD+xnOQAAJ2PrnKKZ+bXqm6uvmZnHqx+vfrp678y8pfp09eZDLvIsOkuzfc7SWgHgULZG0Vrr+57nW2/c81oAAE6MP/MBAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDvMKeJs22Uw4wf+/CPHPgcAnHV2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnKIjOy2zffbxPNvOse3fdR/PAQAnzU4RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDK8MYjM4zwyuwyAHIfQyT95wLAUdkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzitjBLrN/dpkhdNxzmEEEwCHZKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneyJ5sG6y4j+GOAHBIdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypwi9mTbHKJtc4z28Rz7eh4Ark92igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3sidXY2jiLs9xNYZIAnBtslMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUcY3ZNodo2xyjXc4BwLXJThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwRq4zuwxm3Dbg0XBHgGvT1p2imXnFzHxwZj4+Mx+bmbdujr90Zh6amU9svr7k8MsFADiMXV4+e6b64bXWHdXrqh+cmTuqt1UPr7Vurx7e3AcAOJO2RtFa64m11h9tbv919Wj18uqu6v7Nw+6v7j7UIgEADu2K3mg9M7dVr6keqW5Zaz2x+dbnqlue52funZkLM3PhqaefPcZSAQAOZ+compmvrH69+qG11l9d+r211qrW5X5urXXfWuv8Wuv8zTedO9ZiAQAOZacompkXdjGIfmWt9Rubw5+fmZdtvv+y6snDLBEA4PB2+fTZVO+sHl1r/ewl33qwumdz+57qgf0vDwDg6thlTtE3VP+u+pOZ+fIAlx+rfrp678y8pfp09ebDLBGurm1ziLbNMdrlHACcPlujaK3136p5nm+/cb/LAQA4Gf7MBwBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFDtNrwRuMQugxm3DXg03BHg9LFTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTmFMFBbJtDtG2O0S7nAGC/7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMb4QTsctgxm0DHg13BNgvO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RnFrb5hBtm2O0yzkA+Ad2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3wpm1y2DGbQMeDXcE+Ad2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCK4pm2bQ7RtjtEu5wC4VtgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQGd4I17VdBjNuG/BouCNwrbBTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTmFAFbbJtDtG2O0S7nADgN7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwSOaZfBjNsGPBruCJwGW3eKZuZFM/MHM/PHM/OxmfmJzfFXzswjM/PJmXnPzNxw+OUCABzGLi+f/V31hrXWq6s7qzfNzOuqn6l+bq31tdUXqrccbpkAAIe1NYrWRX+zufvCzT+rekP1vs3x+6u7D7JCAICrYKc3Ws/MuZn5SPVk9VD1Z9UX11rPbB7yePXy5/nZe2fmwsxceOrpZ/exZgCAvdspitZaz6617qxurV5bvWrXJ1hr3bfWOr/WOn/zTeeOuEwAgMO6oo/kr7W+WH2wen1148x8+dNrt1af3fPaAACuml0+fXbzzNy4uf0V1bdWj3Yxjr5n87B7qgcOtUgAgEPbZU7Ry6r7Z+ZcFyPqvWut35yZj1fvnpmfrD5cvfOA6wTOsG1ziLbNMdrlHADHtTWK1lr/vXrNZY4/1sX3FwEAnHn+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQ7Ta8EeCgdhnMuG3Ao+GOwHHZKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4qAM2LbHKJtc4x2OQdwfbNTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrwRuEbsMphx24BHwx3h+manCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjMKQKuI9vmEG2bY7TLOYCzy04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDK8EaA/2uXwYzbBjwa7ghnl50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDKnCOCKbJtDtG2O0S7nAE6GnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQB7tctgxm0DHg13hJNhpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCozCkCuOq2zSHaNsdol3MAV85OEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAyvBGgFNnl8GM2wY8Gu4IV27nnaKZOTczH56Z39zcf+XMPDIzn5yZ98zMDYdbJgDAYV3Jy2dvrR695P7PVD+31vra6gvVW/a5MACAq2mnKJqZW6vvqt6xuT/VG6r3bR5yf3X3IRYIAHA17LpT9PPVj1R/v7l/U/XFtdYzm/uPVy+/3A/OzL0zc2FmLjz19LPHWiwAwKFsjaKZ+e7qybXWh47yBGut+9Za59da52++6dxRTgEAcHC7fPrsG6p/MzPfWb2o+qfV26sbZ+YFm92iW6vPHm6ZAACHtXWnaK31o2utW9dat1XfW/3uWuv7qw9W37N52D3VAwdbJQDAgR1nTtF/qt49Mz9Zfbh6536WBMA22+YQbZtjtMs54HpzRVG01vq96vc2tx+rXrv/JQEAXH3+zAcAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQHW94IwCn1C6DGbcNeDTckeuNnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqcI4Lq1bQ7RtjlGu5wDzhI7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAXgeuwxm3Dbg0XBHzhI7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThEAx7BtDtG2OUa7nAOuFjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxsBOKBdBjNuG/BouCNXi50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDKnCIATtm0O0bY5RrucA3ZhpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQGV4IwCn3C6DGbcNeDTckV3YKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4oAuAZsm0O0bY7RLufg2menCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZXgjANeBXQYzbhvwaLjjtW+nKJqZT1V/XT1bPbPWOj8zL63eU91Wfap681rrC4dZJgDAYV3Jy2ffsta6c611fnP/bdXDa63bq4c39wEAzqTjvKforur+ze37q7uPvxwAgJOxaxSt6ndm5kMzc+/m2C1rrSc2tz9X3XK5H5yZe2fmwsxceOrpZ4+5XACAw9j1jdbfuNb67Mz8s+qhmfnTS7+51lozsy73g2ut+6r7qs6/+kWXfQwAwEnbaadorfXZzdcnq/dXr60+PzMvq9p8ffJQiwQAOLStUTQzL56Zr/ry7erbqo9WD1b3bB52T/XAoRYJAHBou7x8dkv1/pn58uN/da312zPzh9V7Z+Yt1aerNx9umQBwWNvmEG2bY7TLOTjdtkbRWuux6tWXOf509cZDLAoA4GrzZz4AABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAave/fQYA17VdBjNuG/BouOPpZqcIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAoC92TaHaNsco13OweHYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCABXzS6DGbcNeDTc8XDsFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUUAcKpsm0O0bY7RLufg8uwUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG8EgDNll8GM2wY8Gu54eXaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMqcIgC45mybQ7RtjtEu57gW2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3ggA151dBjNuG/B4LQ53tFMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAQCXsW0O0bY5Rruc47SxUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDK8EQA4gl0GM24b8HjahjvutFM0MzfOzPtm5k9n5tGZef3MvHRmHpqZT2y+vuTQiwUAOJRdXz57e/Xba61XVa+uHq3eVj281rq9enhzHwDgTNoaRTPz1dU3Ve+sWmt9aa31xequ6v7Nw+6v7j7UIgEADm2XnaJXVk9VvzQzH56Zd8zMi6tb1lpPbB7zueqWy/3wzNw7Mxdm5sJTTz+7n1UDAOzZLlH0gurrq19ca72m+tue81LZWmtV63I/vNa6b611fq11/uabzh13vQAAB7FLFD1ePb7WemRz/31djKTPz8zLqjZfnzzMEgEADm9rFK21Pld9Zma+bnPojdXHqwerezbH7qkeOMgKAQCugl3nFP2H6ldm5obqseoHuhhU752Zt1Sfrt58mCUCAGfRtjlE2+YY7XKOfdopitZaH6nOX+Zbb9zvcgAAToY/8wEAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUuw9vBADYq10GM24b8LjP4Y52igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIA4BTbNodo2xyj1377/9r5uewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoatZaV+/JZp6qPn3Joa+p/uKqLeD64Jrun2u6f67p/rmm++ea7t9JXNN/uda6eZcHXtUo+v+efObCWuv8iS3gGuSa7p9run+u6f65pvvnmu7fab+mXj4DAEgUAQBUJx9F953w81+LXNP9c033zzXdP9d0/1zT/TvV1/RE31MEAHBanPROEQDAqXBiUTQzb5qZ/zEzn5yZt53UOs6ymXnXzDw5Mx+95NhLZ+ahmfnE5utLTnKNZ8nMvGJmPjgzH5+Zj83MWzfHXdMjmpkXzcwfzMwfb67pT2yOv3JmHtn8/r9nZm446bWeNTNzbmY+PDO/ubnvmh7DzHxqZv5kZj4yMxc2x/zuH8PM3Dgz75uZP52ZR2fm9af9mp5IFM3MueoXqu+o7qi+b2buOIm1nHG/XL3pOcfeVj281rq9enhzn908U/3wWuuO6nXVD27+e+maHt3fVW9Ya726urN608y8rvqZ6ufWWl9bfaF6ywmu8ax6a/XoJfdd0+P7lrXWnZd8ZNzv/vG8vfrttdarqld38b+vp/qantRO0WurT661Hltrfal6d3XXCa3lzFpr/X71l885fFd1/+b2/dXdV3VRZ9ha64m11h9tbv91F3+BX55remTror/Z3H3h5p9VvaF63+a4a3qFZubW6ruqd2zuT67pIfjdP6KZ+erqm6p3Vq21vrTW+mKn/JqeVBS9vPrMJfcf3xzj+G5Zaz2xuf256paTXMxZNTO3Va+pHsk1PZbNyzwfqZ6sHqr+rPriWuuZzUP8/l+5n69+pPr7zf2bck2Pa1W/MzMfmpl7N8f87h/dK6unql/avMz7jpl5caf8mnqj9TVsXfxooY8XXqGZ+crq16sfWmv91aXfc02v3Frr2bXWndWtXdwlftUJL+lMm5nvrp5ca33opNdyjfnGtdbXd/FtHT84M9906Tf97l+xF1RfX/3iWus11d/2nJfKTuM1Pako+mz1ikvu37o5xvF9fmZeVrX5+uQJr+dMmZkXdjGIfmWt9Rubw67pHmy2zj9Yvb66cWZesPmW3/8r8w3Vv5mZT3XxrQdv6OJ7N1zTY1hrfXbz9cnq/V0MeL/7R/d49fha65HN/fd1MZJO9TU9qSj6w+r2zaclbqi+t3rwhNZyrXmwumdz+57qgRNcy5myeV/GO6tH11o/e8m3XNMjmpmbZ+bGze2vqL61i+/V+mD1PZuHuaZXYK31o2utW9dat3Xxfzt/d631/bmmRzYzL56Zr/ry7erbqo/md//I1lqfqz4zM1+3OfTG6uOd8mt6YsMbZ+Y7u/i6+LnqXWutnzqRhZxhM/Nr1Td38a8Of7768eq/VO+t/kX16erNa63nvhmby5iZb6z+a/Un/cN7NX6si+8rck2PYGb+dRffTHmui/8n7L1rrf88M/+qi7scL60+XP3btdbfndxKz6aZ+ebqP661vts1PbrNtXv/5u4Lql9da/3UzNyU3/0jm5k7u/hhgBuqx6ofaPO/A53Sa2qiNQBA3mgNAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq+j9d+uO2wfnQ1QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGD1JREFUeJzt3W+s7Hdd4PH3Zy8QDLpCa7fpUnZhYyPpg6WYmwaiMQpR8U+kDwzRuJvGNOkTd4OJGxd9Ytxook9UHhiTBtA+UKFBWYgxIqkYd5+gF6krUHfBBkJLS2uF+GcT2dbvPjjDeu1enLn3zNxzzr2vV9Kcmd/MmfmeHz3Nm+/MfM6stQIAuN79s5NeAADAaSCKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBU9byr+WRfc8O59fKXPf9qPiUAcB371Gf+T3/xl8/OLvc9VhTNzBuqt1bnqrettX7mn7r/y1/2/P7w/S87zlMCAOzszm//zM73veKXz2bmXPWL1XdUt1ffPzO3X+njAQCcpOO8p+jO6pNrrUfWWl+s3lm9cT/LAgC4uo4TRS+tLt6TenRz7B+ZmXtn5sLMXHjq6WeP8XQAAIdz8E+frbXuW2udX2udv+nGc4d+OgCAK3KcKHqsuvhd07dujgEAnDnHiaI/qm6bmVfMzAuq76vet59lAQBcXVf8kfy11jMz8x+q93f0kfx3rLU+treVXaFv/5d3nPQS9ub9n31o6322/bz7eAwAOKv+13p65/sea07RWuu3q98+zmMAAJwG/swHAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUB1zTtFpdJYGHm57nn08h8GMALAbO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAdcrmFO0yU2eXGULHfYyrNdvHDCEAOD3sFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqE7Z8MZdbBt4uI/hjgDA9cdOEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCdwTlF2+YQbZtjtI/n2MU+1gEAXD12igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVGdweONZGYq4ywDIs/KzAMD1wE4RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJ3BOUVXwy7zg3aZQwQAnB12igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVGdweOO2oYm7DF7ch308z2n5WQAAO0UAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKdsTtG2uT11bc3u2faz7HI+jvscAMARO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAAKpTNrzRoEEA4KRs3SmamXfMzJMz89GLjt0wMx+YmU9svr7ksMsEADisXV4++5XqDc859pbqwbXWbdWDm+sAAGfW1ihaa/1B9ZfPOfzG6v7N5furu/a8LgCAq+pK32h981rr8c3lJ6qbv9wdZ+bembkwMxeeevrZK3w6AIDDOvanz9Zaq1r/xO33rbXOr7XO33TjueM+HQDAQVxpFH1uZm6p2nx9cn9LAgC4+q40it5X3b25fHf13v0sBwDgZGydUzQzv159c/U1M/No9RPVz1QPzMw91aerN+1jMe//7ENb73M9zTLax8+6yzm9GuvYxba1nqX/7a+lnwXgerE1itZa3/9lbnr9ntcCAHBi/JkPAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoNphTtHVZKDd6bSPAZC7uJb+97+WfhaA64WdIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKA6ZXOK2L9d5uXsYw6RuTwAnHV2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3soN9DIA03BGA085OEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCZU8SebJtDtG2O0S6PAQCHZKcIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBleOM177QMTdzlOXZZ6z6eBwAuxU4RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJlTdM273ub27GPW0TbX2zkFuF7YKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneyCmybSjiPgYzGrwIwJdjpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCozCniGrOPWUdmGQFcn+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG/kOrPLYMZdBjzu43kAOF227hTNzMtm5oMz8/GZ+djMvHlz/IaZ+cDMfGLz9SWHXy4AwGHs8vLZM9WPrLVur15T/dDM3F69pXpwrXVb9eDmOgDAmbQ1itZaj6+1/nhz+a+rh6uXVm+s7t/c7f7qrkMtEgDg0C7rjdYz8/Lq1dWHqpvXWo9vbnqiuvnLfM+9M3NhZi489fSzx1gqAMDh7BxFM/OV1W9UP7zW+quLb1trrWpd6vvWWvettc6vtc7fdOO5Yy0WAOBQdoqimXl+R0H0q2ut39wc/tzM3LK5/ZbqycMsEQDg8Hb59NlUb68eXmv93EU3va+6e3P57uq9+18eAMDVscucom+o/n31pzPzpQEuP179TPXAzNxTfbp602GWCEfM/gHgkLZG0Vrrv1fzZW5+/X6XAwBwMvyZDwCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKDabXgjZ9j7P/vQ1vsYiviP7eN87HLer8Y6ANidnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqfommfWzdm1j1lH2/j3A+Af2CkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3ggHsW0o4j4GMxq8CLBfdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypwiOLX2MevILCOA3dkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQGd4IZ9Yugxl3GfC4j+cBuBbYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4rgRJj9A3D62CkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3gjXtH0MiXz/Zx86+HMAnAZ2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCJgi21ziLbNMdrlMQBOAztFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxuBY9plMOO2AY+GOwKnwdadopl54cz84cz8ycx8bGZ+cnP8FTPzoZn55My8a2ZecPjlAgAcxi4vn/1d9bq11quqO6o3zMxrqp+tfn6t9bXV56t7DrdMAIDD2hpF68jfbK4+f/PPql5XvXtz/P7qroOsEADgKtjpjdYzc25mHqqerD5Q/Xn1hbXWM5u7PFq99Mt8770zc2FmLjz19LP7WDMAwN7tFEVrrWfXWndUt1Z3Vq/c9QnWWvettc6vtc7fdOO5K1wmAMBhXdZH8tdaX6g+WL22evHMfOnTa7dWj+15bQAAV80unz67aWZevLn8FdW3Vg93FEffu7nb3dV7D7VIAIBD22VO0S3V/TNzrqOIemCt9Vsz8/HqnTPzU9VHqrcfcJ3AGbZtDtG2OUa7PAbAcW2NorXW/6hefYnjj3T0/iIAgDPPn/kAAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqt2GNwIc1C6DGbcNeDTcETguO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RcEZsm0O0bY7RLo8BXN/sFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqAxvBK4Ruwxm3Dbg0XBHuL7ZKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4qA68i2OUTb5hjt8hjA2WWnCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZXgjwP+zy2DGbQMeDXeEs8tOEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCZUwRwWbbNIdo2x2iXxwBOhp0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0Ae7XLYMZtAx4Nd4STYacIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpArjqts0h2jbHaJfHAC6fnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQCnzi6DGbcNeDTcES7fzjtFM3NuZj4yM7+1uf6KmfnQzHxyZt41My843DIBAA7rcl4+e3P18EXXf7b6+bXW11afr+7Z58IAAK6mnaJoZm6tvqt62+b6VK+r3r25y/3VXYdYIADA1bDrTtEvVD9a/f3m+o3VF9Zaz2yuP1q99FLfODP3zsyFmbnw1NPPHmuxAACHsjWKZua7qyfXWh++kidYa9231jq/1jp/043nruQhAAAObpdPn31D9T0z853VC6t/Xr21evHMPG+zW3Rr9djhlgkAcFhbd4rWWj+21rp1rfXy6vuq31tr/UD1wep7N3e7u3rvwVYJAHBgx5lT9J+rd87MT1Ufqd6+nyUBsM22OUTb5hjt8hhwvbmsKFpr/X71+5vLj1R37n9JAABXnz/zAQCQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTHG94IwCm1y2DGbQMeDXfkemOnCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjMKQK4bm2bQ7RtjtEujwFniZ0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0AfBm7DGbcNuDRcEfOEjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQGVOEQDHsG0O0bY5Rrs8BlwtdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSGNwJwQLsMZtw24NFwR64WO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RACds2xyibXOMdnkM2IWdIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAleGNAJxyuwxm3Dbg0XBHdmGnCAAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjMKQLgGrBtDtG2OUa7PAbXPjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxsBuA7sMphx24BHwx2vfTtF0cx8qvrr6tnqmbXW+Zm5oXpX9fLqU9Wb1lqfP8wyAQAO63JePvuWtdYda63zm+tvqR5ca91WPbi5DgBwJh3nPUVvrO7fXL6/uuv4ywEAOBm7RtGqfndmPjwz926O3bzWenxz+Ynq5kt948zcOzMXZubCU08/e8zlAgAcxq5vtP7GtdZjM/Mvqg/MzJ9dfONaa83MutQ3rrXuq+6rOv+qF17yPgAAJ22nnaK11mObr09W76nurD43M7dUbb4+eahFAgAc2tYompkXzcxXfely9W3VR6v3VXdv7nZ39d5DLRIA4NB2efns5uo9M/Ol+//aWut3ZuaPqgdm5p7q09WbDrdMADisbXOIts0x2uUxON22RtFa65HqVZc4/nT1+kMsCgDgavNnPgAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBq9799BgDXtV0GM24b8Gi44+lmpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCozCkCgL3ZNodo2xyjXR6Dw7FTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMrwRAK6aXQYzbhvwaLjj4dgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigDgVNk2h2jbHKNdHoNLs1MEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAyvBEAzpRdBjNuG/BouOOl2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKnOKAOCas20O0bY5Rrs8xrXIThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwRgC47uwymHHbgMdrcbijnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqcIALiEbXOIts0x2uUxThs7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAYArsMtgxm0DHk/bcMeddopm5sUz8+6Z+bOZeXhmXjszN8zMB2bmE5uvLzn0YgEADmXXl8/eWv3OWuuV1auqh6u3VA+utW6rHtxcBwA4k7ZG0cx8dfVN1dur1lpfXGt9oXpjdf/mbvdXdx1qkQAAh7bLTtErqqeqX56Zj8zM22bmRdXNa63HN/d5orr5Ut88M/fOzIWZufDU08/uZ9UAAHu2SxQ9r/r66pfWWq+u/rbnvFS21lrVutQ3r7XuW2udX2udv+nGc8ddLwDAQewSRY9Wj661PrS5/u6OIulzM3NL1ebrk4dZIgDA4W2NorXWE9VnZubrNodeX328el919+bY3dV7D7JCAICrYNc5Rf+x+tWZeUH1SPWDHQXVAzNzT/Xp6k2HWSIAcBZtm0O0bY7RLo+xTztF0Vrroer8JW56/X6XAwBwMvyZDwCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKDafXgjAMBe7TKYcduAx30Od7RTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTmFAEAp9i2OUTb5hjd+e3/e+fnslMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKCqWWtdvSebear69EWHvqb6i6u2gOuDc7p/zun+Oaf755zun3O6fydxTv/1WuumXe54VaPo/3vymQtrrfMntoBrkHO6f87p/jmn++ec7p9zun+n/Zx6+QwAIFEEAFCdfBTdd8LPfy1yTvfPOd0/53T/nNP9c07371Sf0xN9TxEAwGlx0jtFAACnwolF0cy8YWb+58x8cmbeclLrOMtm5h0z8+TMfPSiYzfMzAdm5hObry85yTWeJTPzspn54Mx8fGY+NjNv3hx3Tq/QzLxwZv5wZv5kc05/cnP8FTPzoc3v/7tm5gUnvdazZmbOzcxHZua3Nted02OYmU/NzJ/OzEMzc2FzzO/+MczMi2fm3TPzZzPz8My89rSf0xOJopk5V/1i9R3V7dX3z8ztJ7GWM+5Xqjc859hbqgfXWrdVD26us5tnqh9Za91evab6oc2/l87plfu76nVrrVdVd1RvmJnXVD9b/fxa62urz1f3nOAaz6o3Vw9fdN05Pb5vWWvdcdFHxv3uH89bq99Za72yelVH/76e6nN6UjtFd1afXGs9stb6YvXO6o0ntJYza631B9VfPufwG6v7N5fvr+66qos6w9Zaj6+1/nhz+a87+gV+ac7pFVtH/mZz9fmbf1b1uurdm+PO6WWamVur76retrk+OaeH4Hf/Cs3MV1ffVL29aq31xbXWFzrl5/Skouil1Wcuuv7o5hjHd/Na6/HN5Seqm09yMWfVzLy8enX1oZzTY9m8zPNQ9WT1gerPqy+stZ7Z3MXv/+X7hepHq7/fXL8x5/S4VvW7M/Phmbl3c8zv/pV7RfVU9cubl3nfNjMv6pSfU2+0voato48W+njhZZqZr6x+o/rhtdZfXXybc3r51lrPrrXuqG7taJf4lSe8pDNtZr67enKt9eGTXss15hvXWl/f0ds6fmhmvuniG/3uX7bnVV9f/dJa69XV3/acl8pO4zk9qSh6rHrZRddv3Rzj+D43M7dUbb4+ecLrOVNm5vkdBdGvrrV+c3PYOd2Dzdb5B6vXVi+emedtbvL7f3m+ofqemflUR289eF1H791wTo9hrfXY5uuT1Xs6Cni/+1fu0erRtdaHNtff3VEknepzelJR9EfVbZtPS7yg+r7qfSe0lmvN+6q7N5fvrt57gms5Uzbvy3h79fBa6+cuusk5vUIzc9PMvHhz+Suqb+3ovVofrL53czfn9DKstX5srXXrWuvlHf238/fWWj+Qc3rFZuZFM/NVX7pcfVv10fzuX7G11hPVZ2bm6zaHXl99vFN+Tk9seOPMfGdHr4ufq96x1vrpE1nIGTYzv159c0d/dfhz1U9U/7V6oPpX1aerN621nvtmbC5hZr6x+m/Vn/YP79X48Y7eV+ScXoGZ+bcdvZnyXEf/J+yBtdZ/mZl/09Euxw3VR6p/t9b6u5Nb6dk0M99c/ae11nc7p1duc+7es7n6vOrX1lo/PTM35nf/is3MHR19GOAF1SPVD7b570Cn9JyaaA0AkDdaAwBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAqv4vlI/iad5MicIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1735,7 +2575,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 87, "metadata": {}, "outputs": [ { @@ -1744,7 +2584,7 @@ "2" ] }, - "execution_count": 41, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -1755,7 +2595,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -1764,7 +2604,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -1773,32 +2613,176 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ "G = nx.from_numpy_matrix(m)\n", - "shuffled_adj = nx.adjacency_matrix(G, nodelist=shuffle_idx).todense()" + "#shuffled_adj = nx.adjacency_matrix(G, nodelist=shuffle_idx).todense()" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "emb_len = len(snippet.loc[1][0].split(' '))\n", + "emb_len" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "G = nx.from_numpy_matrix(m[:emb_len,:emb_len])" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "edges = list(G.edges(0))\n", + "G.remove_edges_from(edges)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJCCAYAAAA2m0iOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG0NJREFUeJzt3X+s5Xdd5/HXe2dAEyQCpSJTiqhLSNAsI5lU3UWDi3ZKQ6ga1m1jVlQ2FVcSSXZjcE3QuP+sa9TExUi60oCGrWTVarMWh66aoIn8KM0ARX60kBo6U1to3SKLG2197x9zZnPn9tzOmzl3zrn3zuOR3Nxzvt/POd/P/fZ77332+z33THV3AAA4v3+y6QkAAOwXwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ4c3PYFlnv2sQ/2CK5+y6WkAAJeI+z77D/n8I4/X+cbtyXB6wZVPyQdOXLnpaQAAl4irjn92NM6lOgCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMrRROVXVNVX2yqu6tqjctWf8VVfWuxfr3V9ULVtkeAMAmXXA4VdWhJL+W5JVJXpzkhqp68bZhr0vyN939T5P8SpJfuNDtAQBs2ipnnK5Kcm93f6a7/z7Jbye5btuY65K8Y3H7d5K8oqrO++/AAADsRauE0xVJtv7DLvcvli0d092PJXk0yWUrbBMAYGP2zIvDq+rGqrqzqu783MOPb3o6AABPsEo4nUpy5Zb7z1ssWzqmqg4n+eokDy97su6+qbuPdfexyy87tMK0AAAujlXC6YNJXlhVX19VT01yfZLbto25LclrF7dfk+RPurtX2CYAwMYcvtAHdvdjVfWGJCeSHEpyc3d/rKp+Psmd3X1bkrcl+a2qujfJIzkTVwAA+9IFh1OSdPftSW7ftuzNW27/3yT/apVtAADsFXvmxeEAAHudcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIZWegNM9rbjR45uegqQJDlx+uTatrXO4/6gfl1wKfpUL/2ndJ/AGScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwdHjTE+DiOXH65Nq2dfzI0bVt66B+XetmP67uoH5dwM6ccQIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhi44nKrqyqr606r6y6r6WFX95JIxL6+qR6vq5OLjzatNFwBgcw6v8NjHkvz77r6rqp6e5ENVdUd3/+W2cX/W3a9aYTsAAHvCBZ9x6u4Huvuuxe2/TfLxJFfs1sQAAPaaXXmNU1W9IMm3JHn/ktXfXlUfrqp3V9U37cb2AAA2YZVLdUmSqvqqJL+b5I3d/YVtq+9K8nXd/cWqujbJ7yd54Q7Pc2OSG5Pk+VesPK2x40eOrm1bJ06fXNu21m2dX9s6/5sdZPYjwJdvpTNOVfWUnImmd3b3721f391f6O4vLm7fnuQpVfXsZc/V3Td197HuPnb5ZYdWmRYAwEWxyl/VVZK3Jfl4d//yDmO+djEuVXXVYnsPX+g2AQA2aZVrYv8iyb9J8tGqOnud5j8meX6SdPdbk7wmyY9X1WNJ/i7J9d3dK2wTAGBjLjicuvvPk9R5xrwlyVsudBsAAHuJdw4HABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwdHjTE7iUHD9ydK3bO3H65Fq3BwAHnTNOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYOjwpidwKTlx+uRat3f8yNG1bm9d1r0f1+Wg/vcCOEiccQIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABhaOZyq6r6q+mhVnayqO5esr6r61aq6t6o+UlUvXXWbAACbsFv/5Mp3dffnd1j3yiQvXHx8a5JfX3wGANhX1nGp7rokv9lnvC/JM6rquWvYLgDArtqNcOok76mqD1XVjUvWX5Hks1vu379YBgCwr+zGpbqXdfepqvqaJHdU1Se6+71f7pMsouvGJHn+Fbt1BREAYPesfMapu08tPj+U5NYkV20bcirJlVvuP2+xbPvz3NTdx7r72OWXHVp1WgAAu26lcKqqp1XV08/eTnJ1kru3DbstyQ8t/rru25I82t0PrLJdAIBNWPWa2HOS3FpVZ5/rv3f3H1XV65Oku9+a5PYk1ya5N8mXkvzIitsEANiIlcKpuz+T5CVLlr91y+1O8hOrbAcAYC/wzuEAAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGPKv6a7R8SNHNz0F9rATp0+udXuOR4AvnzNOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYOjwpicAX67jR46ubVsnTp9c27YA2PuccQIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhi44nKrqRVV1csvHF6rqjdvGvLyqHt0y5s2rTxkAYDMOX+gDu/uTSY4mSVUdSnIqya1Lhv5Zd7/qQrcDALBX7Nalulck+XR3/9UuPR8AwJ6zW+F0fZJbdlj37VX14ap6d1V90y5tDwBg7S74Ut1ZVfXUJK9O8tNLVt+V5Ou6+4tVdW2S30/ywh2e58YkNybJ869YeVp70onTJ9e6veNHjq51ewfRQd6H6zweD/J+BC4tu3HG6ZVJ7uruB7ev6O4vdPcXF7dvT/KUqnr2sifp7pu6+1h3H7v8skO7MC0AgN21G+F0Q3a4TFdVX1tVtbh91WJ7D+/CNgEA1m6la2JV9bQk35Pkx7Yse32SdPdbk7wmyY9X1WNJ/i7J9d3dq2wTAGBTVgqn7v4/SS7btuytW26/JclbVtkGAMBe4Z3DAQCGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADB3e9AQ27cTpk2vb1vEjR9e2LTifdR6P6/w+Wyff03DpccYJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADB3e9AQ27fiRo5ueAgCwTzjjBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMDQKp6q6uaoeqqq7tyx7VlXdUVX3LD4/c4fHvnYx5p6qeu1uTRwAYN2mZ5zenuSabcvelOSPu/uFSf54cf8cVfWsJD+b5FuTXJXkZ3cKLACAvW4UTt393iSPbFt8XZJ3LG6/I8n3Lnno8SR3dPcj3f03Se7IEwMMAGBfWOU1Ts/p7gcWt/86yXOWjLkiyWe33L9/sQwAYN/ZlReHd3cn6VWeo6purKo7q+rOzz38+G5MCwBgV60STg9W1XOTZPH5oSVjTiW5csv95y2WPUF339Tdx7r72OWXHVphWgAAF8cq4XRbkrN/JffaJH+wZMyJJFdX1TMXLwq/erEMAGDfmb4dwS1J/iLJi6rq/qp6XZL/nOR7quqeJN+9uJ+qOlZVv5Ek3f1Ikv+U5IOLj59fLAMA2HcOTwZ19w07rHrFkrF3Jvm3W+7fnOTmC5odAMAe4p3DAQCGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADA0egPMg+zE6ZNr29bxI0fXti3YSw7qsb/Onx/rdlD/m62T3y8HkzNOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYOjwpiewacePHN30FAD2nBOnT256Cvue3y8HkzNOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMDQecOpqm6uqoeq6u4ty36xqj5RVR+pqlur6hk7PPa+qvpoVZ2sqjt3c+IAAOs2OeP09iTXbFt2R5Jv7u5/luRTSX76SR7/Xd19tLuPXdgUAQD2hvOGU3e/N8kj25a9p7sfW9x9X5LnXYS5AQDsKbvxGqcfTfLuHdZ1kvdU1Yeq6sZd2BYAwMYcXuXBVfUzSR5L8s4dhrysu09V1dckuaOqPrE4g7XsuW5McmOSPP+KlaYFsBbHjxxd27ZOnD65tm2t2zr3I6zqgs84VdUPJ3lVkh/s7l42prtPLT4/lOTWJFft9HzdfVN3H+vuY5dfduhCpwUAcNFcUDhV1TVJfirJq7v7SzuMeVpVPf3s7SRXJ7l72VgAgP1g8nYEtyT5iyQvqqr7q+p1Sd6S5Ok5c/ntZFW9dTH2SFXdvnjoc5L8eVV9OMkHkvxhd//RRfkqAADW4LwvJuruG5YsftsOY08nuXZx+zNJXrLS7AAA9hDvHA4AMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGDo8KYnAMDec/zI0bVt68Tpk2vb1jq/Lg4mZ5wAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDA0OFNTwCAS9vxI0fXtq0Tp0+ubVvr/LpYH2ecAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhs4bTlV1c1U9VFV3b1n2c1V1qqpOLj6u3eGx11TVJ6vq3qp6025OHABg3SZnnN6e5Joly3+lu48uPm7fvrKqDiX5tSSvTPLiJDdU1YtXmSwAwCadN5y6+71JHrmA574qyb3d/Znu/vskv53kugt4HgCAPWGV1zi9oao+sriU98wl669I8tkt9+9fLFuqqm6sqjur6s7PPfz4CtMCALg4LjScfj3JNyY5muSBJL+06kS6+6buPtbdxy6/7NCqTwcAsOsuKJy6+8Hufry7/zHJf8uZy3LbnUpy5Zb7z1ssAwDYly4onKrquVvufl+Su5cM+2CSF1bV11fVU5Ncn+S2C9keAMBecPh8A6rqliQvT/Lsqro/yc8meXlVHU3SSe5L8mOLsUeS/EZ3X9vdj1XVG5KcSHIoyc3d/bGL8lUAAKzBecOpu29YsvhtO4w9neTaLfdvT/KEtyoAANiPvHM4AMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIbO+waYACx34vTJtW3r+JGja9vWQbbO/bjO42PdLuXj0RknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMHR40xMA2K+OHzm66SnARpw4fXLTU9h1Vx3/0micM04AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwNDh8w2oqpuTvCrJQ939zYtl70ryosWQZyT53919dMlj70vyt0keT/JYdx/bpXkDAKzdecMpyduTvCXJb55d0N3/+uztqvqlJI8+yeO/q7s/f6ETBADYK84bTt393qp6wbJ1VVVJfiDJv9zdaQEA7D2rvsbpO5I82N337LC+k7ynqj5UVTc+2RNV1Y1VdWdV3fm5hx9fcVoAALtvcqnuydyQ5JYnWf+y7j5VVV+T5I6q+kR3v3fZwO6+KclNSXLsJV/ZK84LADbq+JEnvPT3ojlx+uTatrVu69qPn+qHR+Mu+IxTVR1O8v1J3rXTmO4+tfj8UJJbk1x1odsDANi0VS7VfXeST3T3/ctWVtXTqurpZ28nuTrJ3StsDwBgo84bTlV1S5K/SPKiqrq/ql63WHV9tl2mq6ojVXX74u5zkvx5VX04yQeS/GF3/9HuTR0AYL0mf1V3ww7Lf3jJstNJrl3c/kySl6w4PwCAPcM7hwMADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABg6vOkJAAD7y/EjR9e2rROnT65lO1cd/9JonDNOAABDwgkAYEg4AQAMCScAgCHhBAAwJJwAAIaEEwDAkHACABgSTgAAQ8IJAGBIOAEADAknAIAh4QQAMCScAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAIeEEADAknAAAhoQTAMCQcAIAGBJOAABDwgkAYKi6e9NzeIKq+lySv/oyH/bsJJ+/CNPZr+yPc9kf57I/zmV/nMv+OJf9ca6Duj++rrsvP9+gPRlOF6Kq7uzuY5uex15hf5zL/jiX/XEu++Nc9se57I9zXer7w6U6AIAh4QQAMHSQwummTU9gj7E/zmV/nMv+OJf9cS7741z2x7ku6f1xYF7jBABwsR2kM04AABfVvgunqrqmqj5ZVfdW1ZuWrP+KqnrXYv37q+oF65/lelTVlVX1p1X1l1X1sar6ySVjXl5Vj1bVycXHmzcx13Wpqvuq6qOLr/XOJeurqn51cXx8pKpeuol5rkNVvWjLf/eTVfWFqnrjtjEH+vioqpur6qGqunvLsmdV1R1Vdc/i8zN3eOxrF2PuqarXrm/WF88O++MXq+oTi++HW6vqGTs89km/t/ajHfbHz1XVqS3fE9fu8Ngn/V20H+2wP961ZV/cV1Und3jsgTs+dtTd++YjyaEkn07yDUmemuTDSV68bcy/S/LWxe3rk7xr0/O+iPvjuUleurj99CSfWrI/Xp7kf256rmvcJ/clefaTrL82ybuTVJJvS/L+Tc95TfvlUJK/zpn3Kblkjo8k35nkpUnu3rLsvyR50+L2m5L8wpLHPSvJZxafn7m4/cxNfz0XaX9cneTw4vYvLNsfi3VP+r21Hz922B8/l+Q/nOdx5/1dtB8/lu2Pbet/KcmbL5XjY6eP/XbG6aok93b3Z7r775P8dpLrto25Lsk7Frd/J8krqqrWOMe16e4Huvuuxe2/TfLxJFdsdlZ73nVJfrPPeF+SZ1TVczc9qTV4RZJPd/eX+8ay+1p3vzfJI9sWb/0Z8Y4k37vkoceT3NHdj3T33yS5I8k1F22ia7Jsf3T3e7r7scXd9yV53tontiE7HB8Tk99F+86T7Y/F79EfSHLLWie1B+23cLoiyWe33L8/TwyF/z9m8cPg0SSXrWV2G7S4JPktSd6/ZPW3V9WHq+rdVfVNa53Y+nWS91TVh6rqxiXrJ8fQQXR9dv6BdykdH0nynO5+YHH7r5M8Z8mYS/U4+dGcOSO7zPm+tw6SNywuXd68w6XcS/H4+I4kD3b3PTusv2SOj/0WTixRVV+V5HeTvLG7v7Bt9V05c3nmJUn+a5LfX/f81uxl3f3SJK9M8hNV9Z2bntCmVdVTk7w6yf9YsvpSOz7O0WeuMfjT4iRV9TNJHkvyzh2GXCrfW7+e5BuTHE3yQM5cniK5IU9+tulSOT72XTidSnLllvvPWyxbOqaqDif56iQPr2V2G1BVT8mZaHpnd//e9vXd/YXu/uLi9u1JnlJVz17zNNemu08tPj+U5NacOaW+1eQYOmhemeSu7n5w+4pL7fhYePDs5dnF54eWjLmkjpOq+uEkr0ryg4uYfILB99aB0N0Pdvfj3f2PSf5bln+dl9rxcTjJ9yd5105jLpXjI9l/4fTBJC+sqq9f/F/09Ulu2zbmtiRn/wLmNUn+ZKcfBPvd4prz25J8vLt/eYcxX3v2NV5VdVXO/Dc/kCFZVU+rqqefvZ0zL3q9e9uw25L80OKv674tyaNbLtscVDv+n+KldHxssfVnxGuT/MGSMSeSXF1Vz1xcqrl6sezAqaprkvxUkld395d2GDP53joQtr3m8fuy/Ouc/C46SL47ySe6+/5lKy+l4yPJ/vqrukX/XJszfz326SQ/s1j28znzTZ8kX5kzlyTuTfKBJN+w6TlfxH3xspy5zPCRJCcXH9cmeX2S1y/GvCHJx3Lmrz7el+Sfb3reF3F/fMPi6/zw4ms+e3xs3R+V5NcWx89Hkxzb9Lwv8j55Ws6E0FdvWXbJHB85E4wPJPmHnHkdyuty5jWPf5zkniT/K8mzFmOPJfmNLY/90cXPkXuT/Mimv5aLuD/uzZnX65z9GXL2r5KPJLl9cXvp99Z+/9hhf/zW4mfDR3Imhp67fX8s7j/hd9F+/1i2PxbL3372Z8aWsQf++NjpwzuHAwAM7bdLdQAAGyOcAACGhBMAwJBwAgAYEk4AAEPCCQBgSDgBAAwJJwCAof8HKO88SNbMcDsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,10))\n", + "plt.imshow(m[:emb_len,:emb_len])" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['[CLS]',\n", + " 'FunctionDef',\n", + " 'arguments',\n", + " 'arg',\n", + " 'self',\n", + " 'arg',\n", + " 'model',\n", + " 'For',\n", + " 'Name',\n", + " 'callback',\n", + " 'Attribute',\n", + " 'callbacks',\n", + " 'Name',\n", + " 'Expr',\n", + " 'Call',\n", + " 'Attribute',\n", + " 'set',\n", + " 'model',\n", + " 'Name',\n", + " 'Name']" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "snippet.loc[1][0].split(' ')" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAI/CAYAAADURrXPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XecXHX1//HXSSMJSBpEOhuKCF8QQUKRNBCBWAiICEgxWJCgIgIqikj/iV8bIhJsELpKjVIEFULIF1AUUKoIJKG3dEhPzu+P8xl2dnJnd2d2du/uzPv5eNzHZO+9c+9nNrs7Zz6f8zkfc3dEREREpOv1yrsBIiIiIo1KgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhIThSIiYiIiOREgZiIiIhITvrk3QCRHsVsCDACWAtYBszEfV6+jRIRkZ5KgZhIa8wMGAOcAIwChgCLi84YiNk8YAZwITAdd+/ydoqISI9kes8QKcNsPDAZGAasDVgrZzvwNjAHmIT77Z3fQBER6ekUiImUMhsEXAIcAAys4gqLgalEQLaglk0TEZH6okBMpJjZcGKYcVOgfweutBR4ARiF++u1aJqIiNQfzZqUumNm48zMi7an2vnEQUQQ1kTHgjDS85uAGem6bdzaTilp85QO3l9ERHoABWJSz+4BzgIuyjpoZh82s6vNbKaZLe4Hc7aErY6CvqUJXtOIBLFx7bzxUuCH0HdX2GogvGFmy83sFTP7p5ldZGZjS55yX2rrT9v74kREpOfTrEmpZ9Pc/czSnWb2LuAK4EAiZrrr/fDQPvDx56H3bcBVwMnAD6u46VvAWOAhYAOwQ8CegBv+Aa8DOwLHAoOJQBEAd78PuM/MmoCvVnFbERHpgRSISUMxs17AdcB+wN3AkQ6vADOBvhDFwS4Bnq7yHhcQQdi+wB+BfvF7tjswAne3qEW2bUdeh4iI1AcFYtJoDieCsGeAj7v728Qw4bDCCWsRXVLLqrzBfelxEtCvefcwYDQw3aMA7H1rPFFERBqOcsSk0RybHn/o7m+nf59A1AlrYa0qb1CI6Ep61NZO9xEREXmHAjFpGGZWGCIE+GvRoVG0Xqy1Ioemx9OB44FbgVfi+qNqdQ8REakPCsSkkQylebTwRaCwduSQWt7kY8TUxwFEWf6PARsBG8K7B5j93szG1PJ+IiLScykQk0Y3gpZrR9bECcDLwM3AN4APA4uApXAIcI+ZnV3re4qISM+jQEwayVxgefr3xumx2lSwNg0EJgDfB+4E5sCCUfAjYBVwupm9v7PuLSIiPYMCMWkY7r4SeCB9+aH0WO3kyIqtBXYvXANcm3bt3VX3FhGR7kmBmDSaX6bHU8xsIFE/LHNh706I0AYAzxGjlFDDCQIiItIzKRCTRnMtcAewNTDVYk3IecUnLAd+TlTWr8YlNHe7lZhrsAGRJwYwvcpbiIhInVBBV2ko7r7azA4BriRSuJ7bA+aPAnoDs4C7gDeAUzKe/xQwscy1NwPOBv5EFHNtAvYENiV61x6A1cC/iQr+F7r7gzV5USIi0mMpEJOG4+6LgAPNbF9g4iOw1yOAE2Um9gGOBvbPeO5rwOVlrrsjEYj9L1FC/y9Ez9hNwErAIta7BbjU3W+p3SsSEZGeSoGYNCx3vxO4EzMjcsU2L3fuOCJQa4/3EMOaJUObs0lrTVbRVBERqVPKEZN6doaZuZk91epZERxNohPqiSWLgUmtBWFmdoqZOREQiohIg1CPmNSjWcBZRV+/2eYz3G/HbCpwEJHAXytLgam4397GeffRss2P1LANIiLSTZlGSkQSs0HAg0Sefd8aXHEFERSOxH1BDa4nIiJ1RkOTIgURLI0igqelHbza0nSdUQrCRESkHAViIsXcXwdGEpMdq80ZWwzcSPSEvV6rpomISP3R0KRIOWbjgcnAMGBtWq+E78DbwBwiMb+tnDAREREFYiKtitIWo4ETiGHLocASIvAyYtmiucAM4ELgXpWoEBGR9lIgJlIJs8HAFsBaRMH853Cfn2+jRESkp1IgJiIiIpITJeuLiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5ESBmIiIiEhOFIiJiIiI5KRP3g0QkU5gNgQYAawFLANm4j4v30aJiEgpBWIi9cDMgDHACcAoYAiwuOiMgZjNA2YAFwLTcfcub6eIiLRg+lss0sOZjQcmA8OAtQFr5WwH3gbmAJNwv73zGygiIuUoEBPpqcwGAZcABwADq7jCYmAqEZAtqGXTRESkfRSIifREZsOJYcZNgf4duNJS4AVgFO6v16JpIiLSfpo1KdLTRE/YDKCJKoKwKcTY5ZT4sn+6zgzMBpnZvmZ2n5nNNzM3s5tr0mYREcmkZH2RnmcysBnQt0bX6wts+i+4AtgXmA9cCiwEnqrRPUREJIMCMZGeJBLzJxBlKWqp/wOwP9APONndr6nx9UVEJIOGJkV6iihRMZnqEvPb9FoEYfSClzvj+iIisiYFYiLdmJkdYGZ/NbNXesGyDWGzscDFJefNBb4FbAsMAAYBHwLubMc9phE5Y2ekr1fD3Sk/zM1sXC1eh4iIZFMgJtJNmdmxRHmJ7YA/ToTnPgq2BLis6LzZwAeA84H1geOAQ4EnibHGX7VxnyYiCBubvh4flzwrbbNq8FJERKQM5YiJdF9fBJYDO7r765i9VjjwZtFJnyEip2uBw4r2zwfGEaX2DwDeXeYmTcCZabsH+Bqse5v7mTVov4iItEE9YiLd20pgRVo7ckhh53rp8V9E8HQwLYMwgMFEl9ZS4IYKbtgH3oXZ4KpbLCIi7aYeMZHu62rgR8ATW8Jd34cVY6Hv+kUn3J8eFxA9WqXeSI9PVnDT1bFI+BbAQxW2V0REKqRATKSbcvcfm9mbwPHPwWGHQC8jcrl+AOxCLBgJ8Oe0lfNW5bevdXkMERHJoKFJkW7M3a9w993vgr2mwtufA6YD+xG9XYPSeT8lVvMut122xpXbtKzDjRcRkTapR0ykB9gLHgX6HQCsJsreTwd2T8fvJZLya6FX9IY9V6PLiYhIK9QjJtJNmdleFkVcwX0eMA+gsDL3QGJ4cjRwIxGcZXm06DntsRIW4T6/mjaLiEhl1CMm0n3dBLxlZg8Asz4NC/4Lwx8k6obtk066Btgb+BxwIbAbMWPyReDfwGNEUv/wdt50fsRuIiLSBdQjJtJ9nQo8COwMHP972GAZrP4+cDfNK35vAvwTOA/oTUy1vBC4j1gZ/BfADhXc9J7Kql2IiEgHmLvn3QYRaY8YppwJbN6Jd5kNjEB/GEREuoR6xER6igiOJgGLO+kOi4FJCsJERLqOAjGRnsT9dmL9yaU1vvJSYGq6voiIdBENTYr0NGaDiNyxJppTxTpiBbG490jcF9TgeiIi0k7qERPpaSJYGkUETx3tGVuarjNKQZiISNdTICbSE7m/DowkSlxUmzO2mChBNjJdT0REupiGJkV6OrPxwGRgGLA2YOVOXQ30iqUn5xCJ+coJExHJkQIxkXoQpS1GEysdjQKGAkuIpSbNYcBr0Pc+WL0TfGQE3KnZkSIi+VNlfZF6EEHV9LSB2WBgC2LdyGUGz20ItxPLUw50BWEiIt2CcsRE6pH7fNwfwv3+9DifKHsBMCHPpomISDMNTYo0CDPbFniCyA/bwN1X5twkEZGGpx4xkcbxFPAMkdS/R85tERERFIiJNIyUF6bhSRGRbkSBmEhjeScQs5hpKSIiOVKOmEgDMbM+wKvE8OR27v5kzk0SEWlo6hETaSApQf+W9KWGJ0VEcqZATKTxKE9MRKSb0NCkSIMxs3WAN4F+wEbu/mrOTRIRaVjqERNpMO7+FvAXYk3Kj+XcHBGRhqZATKQxtRyeNBuC2c6Y7ZEeh+TXNBGRxqGhSZEGNNBsw5Hw8omwagLM7QWDgcXFpwDzgBnAhcB0LRIuIlJ7CsREGo3ZeGDyYti0P/Rqo1vcgbeJZZEm4X575zdQRKRxKBATaRRmg4BLgAOIHq9KLSaGNCfhvqCWTRMRaVQKxEQagdlwYphxU6B/B660FHgBGIX767VomohII1MgJlLvoifsQaAJ6FuDK64AZgEj1TMmItIxmjUpUv8mA5tRmyCMdJ1N03VFRKQDFIiJ1LNIzJ8ArFXjK/cHJqTri4hIlTQ0KVKvzAyYCWzeiXeZDYxQaQsRkeqoR0ykzpjZRDO7YSC8NAA2XxfYE7gq49xxRHn95cDZwDZE19nEonMWACcCmxDdYO8Ffgw8F8/dfATc1kkvRUSk7vXJuwEiUnOTgcfHwfIdiQJgtwFHAf8Bzsl4wsFENv944EBgeNq/FNgbeAjYCTiCCMzOA+5N52wL23bKq5DGESs5jCA+BywDZuI+L99GiXQNBWIi9Wd7d38Ws9cKO5YTQdb5wHHAxiVPmA08BqxXsv8HRBB2GHAN0XsGcBqwc/r3YHh3TVsv9S+GzccAJwCjgCGUruxgppUdpCFoaFKkzqQgbAjx5gZAP+BLwErgrxnPOYc1gzCAy4k/Et+jOQiDmDJ5Yvp3X+iH2eAaNF0aQUzwmAncAhxEdMD2BQYVbX3T/oPSeTM1MUTqlQIxkTpjZps1wSXvgd4DiQDKiOFHgJcynrNrxr6FwLNE71lTxvFR6XE1rAK26EibpQGYDcLsWuB6YgLJOrSM7zOflc7bHLges2tSXTyRuqGhSZE6YmZbAH+fDUNGge9PdC/0JiqwXk4k4JTaIGPfwvRYbtyxsD+NF9W6PIbUk5KVHaYAxwCX0XJiSFN6nJV9lYFED9kumGllB6kb6hETqS8nAcPGwNn3wlsXEsOOZwL7tfKkrG6JddPjaxnHiven52bFd9INmdlpZuZp26bMOWem4+PKHJ+Sjje144aDiCCsiY4tr0V6fhMwo9qesTSr2M1sYgfbIlITCsRE6stWABPgUkoW9r6nwgutS4w3vkR2D8WM9NgrOtyeq/DykgOLJPnP805HJl/ogtuusbLDQcCT6bEKWtlB6ooCMZH6MgvgZHg/8M70/zuAX1dxsaOB1cC3aH7nhlj1+4L07xWwHPf51TRWuty+RI/S5cCrwGfMrF+n3a3Myg6DiHp0HUj20soOUjcUiInUl4uJahXX7QfLvgF8hChd8ckqLvYNIqL7LfAB4FRgUtpXSNZfGG/o0jMUesB+BVxNTJZt0TFlZrOAM9KXdxcNY3o67sBn0vGZRcdnFV1jmpn5Mph8NgwsLRQ8hRjSnlKmkQuALxMTRfoD2xE1LErqVwy8Ay5L9z4z6zpmNqu0XURqGjQ/10uHWc2sj5kdb2YPmNlCM1tsZg+b2ZfNTO+bUlNK1hepI+7+bzPbCzj3Lhh5H7AjcCMwGPhdhdcbANwNfJeY6vYTourmt4HRwM3As/CPGjVfOpGZvRs4AHja3e8zs4XAycCxtPzRuICo6zuW6DmbVXKps9LxHYGfAoXe0DV6RQ+CTR5izULBrVkO7JMudlj6+gbgq0RB4p8XndunOZWxvaakS08ApgKPFB2bD2BmfYE/EmmV/yFK6C0F9gJ+BuxG1EcWqQkFYiJ1xt3vA/bOWmuytCLmtHZcbzDRG3Fhyf5fpcf/wF+qa6l0sWOI/KopAO7+mJn9E9jLzLZy92fS/gss6sKNBaa4+7Tii7j7man3aEfgAnefVe6GL0LvrELBrXmFyE18jObxzLOAkUR376FEJViAXhUm/7v7lPi1YAJws7tPyTjtNCIIuwg40d1XAZhZb+CXwGfN7Hp3n1rJvUXKURerSL2KSuSTaFmxvGIvZ+x7Hjgb3GCVR++BdGNFSfqrgSuKDk0hRgk7JWm/XKHgtnyPlkllQ4HT078vK9pvbdchq0gadvwKMdz+tUIQBpD+fTLxeeaIWt5XGpt6xETqmfvtmE0l8oCqKh1wMLCCyBEbTIxT3QIsjjfB77h7Vqwm3cvewJbAHe5eXNP3GuBHwEQz+467r6jFzfpCnxVkFwpuSx/ggxn7x6XHhzOODep4WYyC9xBx33+B76Tes1JL0PqqUkMKxETq3yRgF2K2XN/WT13TUcCVRJ7OAqLM+fthyfNw7AvuV9WwndJ5jk2PU4p3uvtcM/sjEW9PIFIBO2wg9F9AdqHgtqxH1EMpVbjWgoxjGxUt59VBw9Lj1jRPWMiyTo3uJ6KhSZG6576AmOQ4i0g6rsjxwP3Am8AKWDoP/vt/0KQgrGcws/WJXHmAa0tmCjrNq18dm32FyvVK7y3VjBu+SayZVaowNbe45EXhDax3LKeapdI1UAtx3k3ubq1sIyq8rkhZ6hETaQTur2M2kiiCOYGSYq/ttJiYKHl8Cu6kZ/gMEaj8k5azBIsdAOxjZiPcfSbNsVBW5xRtHV8duWhVWQncR8zKLTYtPe5UtK/QDTY3IxXNzLYi4rbS2Zyttf2pdP7uZta3VkO1Iq1Rj5hIo3BfgPuniZJis4G3WHMiZcunxPG30vmfxP0IBWE9TiER/3h3/3zWBvyC6MD6fDp3TnrcrMw1Wz2+uIqe12LfouWaWXOBc9O/jyna/16ifsUrMMZiPUsAzGwAa070LSjbdndfSZSo2BC4MF2nBTPb0My2a+dLEWmTxcQqEWkokYU8GjiBGLYcSiQhO2ArYZ03oddceHg7OBG4F/2x6HHSWpF3A4+6+/taOa+JWKbqVSJA2ZqoIPEGUfh1HoC7n5vO3w/4E/AskT64CJjv7hel49OAseV+YKZQftHv5UQh1/lEN90KInHtFWKYvLiOGMCp8Pb3YW1igu9NxEjPh9PXWwAr3L2p6LUOAV4kOt+upHnU82fuviDVEbs+3f4l4K70ODx9X/YETnP388u8PJGKKBATEYi6UVsQVQOWbQ2jn4nCnte7+yH5Nk6qZWZXA58Gvuru5XqICufeSQQwn3D3m8zsSOAUYBvSrER3t6LzTyJ627Yghj5nFwKeokDMyUgVm0L5QAzgX0TR4JuJnLEtiBknX1nzYr4abuwdRYW/QKxB+SqxGMSZwBOp3U3FTzKz/Ylk/B2IIA5gRKEmWir3cWRq3k5Ecv4bRF2+24Ar3f2F0tclUg0FYiKyBjPbEniGGBUaXlxPSaRdzMYSlU46c4bhW8BHcZ/eifcQ6VTKERORLM8RsyyHEktLilRqOs35WJ1lDnBvJ99DpFMpEBORNXh0lReWLvpQnm2RHqpGKzu0YjEwSbmL0tMpEBORcv6aHvfJtRXSc7nfTiyu3aFZlBmWAlPT9UV6NOWIiUimVA7gNeJNb4i71/rNVBqB2aC34PF+sHG5qqsVWkEMm49UKRWpB+oRE5FM7v46MYGtP7BHzs2RHspgk61g3VnAiigZ0RFLiSBslIIwqRcKxESkNRqelKqlXtVbXoN3jYKbe8N1VJ8zthi4kegJe71mjRTJmQIxEWlNIWFfgZhUxMz6EwVWm4AH34AjelW4sgNa2UEagHLERHqCqAY+glRwFZiJ+7zOv62tQ9QS6w0Mc/fSdftE1pAKol5FFJN9AdjV3V8tPoFWVnYABhA/dzOIpYq0soPULQViIt1RvFGNofmNaggth3QGEsvOFN6opnfWG5WZTSfeNA9y95s74x5SX8zsu8BZRG/WKHf/VxtPaLGyA/AcCvqlQSgQE+luzMYDk4FhxPIraywRU8SBt4nClpM6Yzp/0Zvqz939y7W+vtQXMzsMuBZYDUxw91tybpJIt6YcMZHuwmwQZtcSCw5vTiwN01oQRjq+Tjr/esyuwWxQjVumwq7SLma2O7GUJMDJCsJE2qYeMZHuIGaXzSAWLe7fgSstJXJyRtVqZpmZ9SXyddYBNnX3F2txXakvZrY58HdgOPALYJLrDUakTeoRE+kgM/O0zU4zxbLOmZXO6ZNxcBARhDXRsSCM9PwmYEatesbcfQUwLX2pXrFGYTYEs50x2yM9Dil/qq1LLPA9nOhB/YqCMJH2USAmUjubASdW8bzJ6bl9a9SOvkTP2uQaXQ80PFn/zAyzsZjdgNlrxKoKdwG3p8fXMHstHR+bJpSQPlz8FtgeeAo4JAXvItIOGpoU6SAzc2IGoxNlHrZy9zdLzplF5HH1dfeVRQfGEzlhAzuhaYuJ2ksdTuA3s+2BR4FXgI3V21FnOjBBxGB/YnbvHGA3d3+2k1srUlfUIyZSG4uBc4BBwBnteoaZXQJXHgwDtyAKJ60L7EkUYMoyjniHXAGcDWxJjEVuA/yq6LxLgB1gYH+41cxeNLOzzCzz993MdjOz683sVTNbbmYvmNkvzGyjotMeJ3pINgS2bdfrk+6vgxNEVsDN18AJg2A5cKCCMJHKKRATqZ2fA88CXzSzrdtx/pivwbDZRMGwE4HDiBLiRwGnt/LEw4BfEuOEnwPmA8cS09VOAk4Ddga+ACsHxO/5d4Gvl17HzD4L/B8wHrgbuAD4B/B54B9mthlA6gHT8GQPY2bTUo9t8b5xZubrm/0AeBA4EBg4jrYjsFJ9od+BwCyY6/B0Ldpc1M4pKa+yqZbXFelu1kwcFpGquPsKMzuVWE/v+8An2njKCY+Cb1Xy/reciIrOB44DNs544vPAY8Dg9PXJwHuBr6V9/25+Xp/T4MENo6PtFDP7UWFo1MzeQ3SezQLGuvtLheub2YeAO4GfAgel3X8FjiCWO/pZG69Nurlj4LPAu+hgbuKA2IYRE0RGagkikcqoR0ykhtz9euB+4CAzG9XG6aNKgzCAfsCXgJU0r7hd6nyagzCIkuSjiJ6x02kRvNkGsBvwR2C9loeYRLwJf7U4CEuv46/AH4CPm9m70u5Cc8Zlzv6UHqV/DKN35wkiIg1Bf0xFau9k4D7gh8DumWdEKYAhzxNdZ38lermWlJz2Uunzkl0y9hUSuj6w5qGh68KbC+PfmxCjnwB7pMexZjYy45LDickH7wH+6e7Pm9nT6etdgAfKNE+6sa/Drj8AesX/bS31ByZgNr4zVngQqVfqEROpMXe/n0h+3s3MDi1z2ohnYOnOxNjgBkRS1neITP/PpJOWlXlyVoGwPuWPLdk45gFAyx6QYenx6+m2pdsH0/F1ip5T6BXbp5I6U9I2M9vVzH5nZi+Z2TIze8XM7jSzTxWdM9HMbjCz58xsiZktNLP/M7Mj23uTD0UaYVnLiJ/DwgrzWxLrWy3POPdm4EgiMl87toHvg5t7mZ3QyuSQgWb2TTP7h5ktMrO3zOxJM7vQzN7djpewY/oeLTSzD7d1vkh3px4xkc7xLWAC8D0zuynj+Fo/hLXmAJcBE0sOXgtcXru2eN/s3o9CLs8gd1/Y5lXM7Ex4eXtgr0j+/y6lC5GbdclC5PXGzL5ADOutIoaE/0v0SO4CHA/8Pp06mZjBOp0oJTIM+AhwpZlt4+6tzfEAGNOnOSjP9Ckig/+TRNQ+FTiTmMHxB1qOpZ9KfJrfjRjzXgD8Ffp65BaOJOadFL/OIcSkkB2B/wCXEjHelsAxwI3E7NxMKXfxRqJ8xhh3f6SN1yvS7SkQE+kE7v6MmV0MfBX4SsYpy55NPdIHZxy8p7bNsRXxBl/qAWIkczRwa+tXiDpT34X1HOjV3LNW2gE3nEju3xeYg1mnLEReT8xsO+BiYCEw2t0fLzm+SdGX25eWiDCzfkTR1VPN7JLSfL8SJ/RqY/WGJ4lIr9C9eR6wF1E2/ypaRla3EhFUsVXAx2D2n+BIM7vI3f9WdPjnRBB2CfAld19d9DrWoZXh0tTrdynwDDDe3WeXO1ekJ9HQpEjnOZvInz+NlsN7ADO3SL9/00oO3AH8urbtGPByFJwcwJaLAAAgAElEQVQtdRFRkuwnaQZlC2bWb1uz/YvrTBms3Y4/Gl2xEHk9mUR8KD6nNAgDKF7bM6tOl7svJwKcPrRdWmSUtVGl4nSagzCIqO176d+XlpxbGoQB9AY7q/nnfb/Cfov1VA8levJOKQ7C0ut4y8vMuEyzka8A/gbsqSBM6ol6xEQ6ibvPNbP/B/xvxsF5XzSbPwWGHkIMA21ElKT4EzE89LsatWMpvL0gAq7S9j2V6ohdCjxuZn8iakH1BTYzGLM83lBXUf0amAOJHrJdMKvZQuR1pjCho82ew1TX7ZtEwLUZUT2iWFa1k8KTh9Ayxso0NmPfKKKr6uGS/XOAHwC3Ac8R44VJIf+wuD0jiQ8f09296NQ2/YSodXYDcKS7L63guSLdngIxkc51IZHj01R6YGeYdhccdDrYrUS5ih2JBJjB1CYQWw3cEpc7Oe16r5ndU1iiyN2vMrN/peN7EUOKb/eGVw+HXhOj96SWC5GrztSaCpVIWhtSxMy2AP5OBFP3EnXeFhCBchMxx2OtVi4xgsjpa7V3Mitbvg9R+6Q4ip5PRFYzgV2Bo4Gh6dw3YfnPoxJLcXva9TozjEmPtygIk3qkQEykg9y97FCPuy8j3gCzXLgn7HvXmsOW8dyMfdNaaceUtBVbCct/HW98hTZMBr5mZlcAV7n7bHd/lNL5AmbXEOXJavU3orjO1KdrdM2yUjX2mcDl7j6xs+/XQfPT48bEotnlnET0NB3j7lOKD5jZ4TRPti2ntSDtHa8RXW3FVgJv0jLL/9fEN/gMIpm/2IzmQKxY8eusxIFEr+1vzKyvu/+qrSeI9CTKERPJz3RidKfT9INXdo9Unp2JIZ7XiWoD5wKzzOweM/ucFedwRWL+BNr5xl2B5jpTUqxQj62t78tW6fGGjGNZI4qlylVDaSFrosgMotttp6J9z6THrMkm07ILxf6d6KQdY2Zrt6ctyQtEr9h/gF+Y2ZcqeK5It6dATCQvMTw4iZYlIGppMTDpTHd394fd/SSiN+IjRIWMpcQb3K+BV83sd33MPuoxo21gJ7VpIDAZs0qXNaxnk4lOp9PTDMoWimZNzkqP40qO70eUoWvLTNrx/3oOLWd2LCVqsUDUlyhoSo/TSp7/MPCDjCDe3d8AfkssHP/D0jpjZraOlZnU4e6vEMHmo8BFZnZy1nkiPZECMZEu1qIoJ9w4EPp9EFZflXHuOCJJazkxBXMb4h1uYtE5C4gFwzchupzeC/wQVj4MfzG4zcymFM5N60x+EzicSAf6LPFe2h/41JZwSy/YbAotNaXtLWI9y02JLPH3E0U9ISKJ84Ct08W2JKZlZhgGjDaz/czsNjN7MxUwfdbMfmBmg0ufYGaz0rZ2Ouf59JxnUnFQKzr3TCLoAPhMWji6sE1M55iZfcbM7jOzN8xsqZm9YGZ3tFKEt1O4+xNEHuEg4GEz+72ZnWdml5jZP4Er06kXEz8K15nZVWb2v2Z2G5Hkf307bjSP7NmzLWwL/A9wApE4uD3RZfdRWpauKOSEnUgsqvrN9LgbsE/Eb1m+TCyFehwxQeSC9DquA16mZadbSfP9DSKP8R9EIHdaW69FpCdQjphI1ystyrnBTDjyKOj1H6JHotTBRJHN8UTCzPC0fymwN/AQ8Q52BDAfVp8HvU5r44NWKuJ6GXBZmo13xHj47tNlkvNXAB8G5hLjlsuJbrWDiazxi4naAuOJYPE6ooDa+kTNgiJrHxffg+3S5W4hhkzfB5wCfMTM9sgoMtuXqO6xERF8rEzfjvOJNp+VzptGJIZ/FfgXzbEiQKEA6HlER89MoljqAqKnZiRwCLWbtNou7v4rM3uMeP3jiNf1JhG0/Dqd828z24sYVv4o8ff7X0T8M581vs2ZZnjMYi3bI/l74mfwaiIy2pjIATu15EkbETMGTiWGLu8gPgT8HHx3uPvGjKFWd59nZh8k4rdDgWOJUc8XiDywJ1prfJqJ/CHi//9cM+vfjiK2It2bu2vTpq0LN2DL0n33w8Z7wuI+4C+Ce9rGRs6+7wD+RtH+wnZ2On4Y+OrYt8Th6WOjs+oN4viUkvtPi1/9Ndv2iwhI/LKS+2ye7vMx8KVF+6en/UPAdwGfV3Ts2ajo7+8vudZd6TnEepyDS9o2MR37Scn+WWn/bcCAov3DiSBkPtC3aH9T1msvOj4HeBEYmHFsvbx/Rjptg7EOi0p/jmq8LfKoep//69WmrQdsGpoUAbpy3UTPKMq5u/tLs+HYlcCdGcv6nUOUDyh1OdHt9T3AIifsRmDkL2LplwsqapjZkD6xZGBZF9Ay+Wc0MR1zHrF4efGY4hbAnkRttOKy/hemx1FwkrvPLzqEx2zAR4jOvSwnuPuSovNfJ1bhGUSM3FZiBRkrDrj7mxVepyfp9Aki6fr3dvI9ROqGhialMUVO0RgiFWYUUZupS9ZNbKso52VwzTGRCzOMVNpi14zrLASeBTYBb4LngdLlhGZU2LQRqyMILC0SCkSQlVVJfSNifO8DGcc2JsYPX6W5ZsH9xBjjHDjGzPbPeFo/YH0zG+buxUHDAnd/JuP8F9JjJcHz1cTI6RNm9ntisuD9Xu81ztwds0lETllnTMhYTPwcao1RkXZSICaNJ62bSAQ6a9Oc+tLp6ya2pyjnvTCb6GgaPS9KFaz37ui9WUIMtxkwYF4Mx62/KKb1b5fx5ld28eQyWi1XUa4KaJ9WjheOFZf1n0MEZ09GflBr1qFl7838MuetTI9l1ynM8DWiGPwxRJrTqcDKlPx+cpmArz64347ZVIeDrOPFeostBaZ29HdEpNEoEJPGEVPjLwEOoP29AYV1E9ch1k2cSnzir7bnpH1FOSOomv5vs8eBsb0iKNyCCJaWAc81RU2mBQtg7TI9EFlF0iGeh5n1JTq0tgG2+SjsOar2tcPWMAhYFflku+D+UGffL4u7ryJGWi9IayCOAg4jEvX/x8z+x6MYb72aNAf2XRf6l1ZdrdIKomdyUm0uJ9I4FIhJY4g32xlE5YU8102srihn5FK1CFocMLPngCYza3L3WSXPGpUe+5rZrqSAiyjoCjG6+c734v9oWTm9s+wO3Ao2Gvp1YiJRIferzV6ylGd2I3Cjmf2VmIi6PfDPzmtevgzGrw/DZgBbwIo+2QVY22spEYSN6sAHFJGGpWR9qX/REzaDGPqr5bqJra7ZV8as9DiueGcFRTlLXUH8Hp9vZtuY2cfN7BSLJYrOSOd8mqgscQVwGs3pWv2J9K3pwK/mwyVdUbPha+lxBvzYzDYqPZ5qhe1eur9C84hYtXS1HsxsLTPbM2N/X6I0FnRekd3cpdc+5Q1gXzitT+SLVft635kgUuUHE5GGpx4xaQSTiTfkjnzqL9aRdRMvJvKSrjOz64lSTdsD+xMlnMrWgkpFS4fTsmdrW2Ko8tBWnruKmLz4H+BponbZ/yNGCR8iaje9Bxg/Gl66p/K1ACuyF3AE+NWwB/Ccmd0O/JcY/t2c6BmcQXxPquLub5nZ34jCsVcTr3sV8AdiYsMMM3uG6PWaTQSlHya+n39w9yervXd3ZmZbEbNM1wImz4bvpQT+cnmTWRx4m8jf63DepEijUyAm9a0r1k2s4I3I21eUs4+ZvY8ItjYHSEHFNpTPmYcINHql69ydtp8BF7n7icUnmtk9wA+ImaNjiWrlH147gp9T2/t6qrEUVqVpjr2J/5cDiTf3RUSP4S+Ba2pwq6OI9TX3J1YSMKJ22JPErNW9gA+m+y8iJqFOIgqL1h0zGwrcSgRbtxOlQCK3MBL4RxAVSQoziYdSMkGEKMBbmEl8r2ZHinSc6feowUW9rBE0J4HPJJZC6fmiB2kmKZjpJDHDscJfpLTO3qZET9Q2Jdsaw2lFFhA9W6XbM8X1tdI9vkAENce5+y/a2zC64Hu2Dox8Gz5JBEiji44tIirhXwv8xd1XZF1AKmNmaxEzdMcQ1fpHufuiNp40mJIJIpTUfRORjlMg1mjaUz8r8mtqXj+rK5nZxI3gmH4w+lWwvsAORHfHkSXnjiOKSC0j1sq5muiWORyYks5ZQCRcXU+sO9NE1F44AN7eOoZyLnf3iRntKBQaLQwlFv69NWXqdRHlGJ6leSixOOB6w0v+P8xsI3d/uWTfZsT/4YbA5qXHWxW9iJ1ZZ+qTxb2IaVHrQ4lveXE5sjmpHb8F7k0zHaVCaUj7cqKH8GVgN3d/Md9WiUiBArFG0kB5IGa2ZGtY+kEYvCHxIm4DXgK+Q8v1HMcRgdjHaF7PcXjaTiamhO1J83qOHyYCs+uIiDYtZHgTsW5jadBVroQERJ2v4iCrEHTNrKQnyMwKNVL/SQxLNqWXMxD4lruf395rFV30GmKGaK3rTN2Ee9m8OjPbmigjcTiRr1XwMpFDdy3wYGkwKuWZ2RnEcpFvE0sP5VIyRESyKRBrBNXVzyq2mEjw7Uj9rC5lZlt6rGVYWB+b5USQNZ3o8SpkpI8jArEdgLtYcymhc4DvEtHBNTRHry8AOxM9ZK1YQiSilw4lPl2rKu5mdjzR27E1kUP2FvAwkRt2Y5UXHUTEpU3UZpLDCuLbPrI9P0OpF2cHmoOypqLDzxG9ZNe6+2M1aFvdMrMjgSuJ2nET3P2WnJskIiUUiNW72tTPglQryOLN/h53H1d9k6yJyEPKHM6rich9e42SIOJG4GBinObotG8cEYjdTGT1l9oqNfZZWkYDAOcRPWz94O3lUYqrdCjxRXdf3eHXk4ca/+wQdaYqLnGQgrLdiKDsUGCDosOPEUHZb7PW8GxkZjYG+AvxO3CCu/8s5yaJSAbNmqxnLetndbRXo1A/iz6VLSWTi0tgj4fB7yFqFSwpOf5SxnNaW89xU9YMwqC5Yup6cNdL7gdU2dzuyf11zEYSw9kTqL439Wbg+Gp7U9Mw5APAA2Z2MjHL8zAi2X97YgbquWb2IDF0+Xt3z/ovbhhmtg3xfe8LXKggTKT7UiBWjZ4z07Az6mexbXNl9m7FzNYhYqaRfeCS1dBvNLFQ5CAiepxF9IZlrV2zQca+hemxXKJXYX9PCE6rEsHTp7tLfmFK2L8LuMvMvkyk7B1OlKAYmbYfmdl0Iii7wd3bGD2uL2a2HlGmYgjwR2JZLRHpphSItUd7Zhqada+Zhp1XP4vBsF6l9bM6qmhdxE2J4LL0cTPi/wWIaYc/B44vuc61RCCWeY+MfYUlf8qtnl3Yv7J5SZ361A3rTLn7ciLguNXMBhJ12Q5Lj2PTdpGZ/Zn4r5/q7gvLXa8emFl/oidsSyJP8NOabSrSvSkQa0v5noDSwprDiVlm+wJzMKu6J6A4h4rIFf8+UXyyH3A/cJK7P2Zm6xNpSh8ngpBHgW84TEttHggxw+98Ij9qNvFuuSvwdWCfjPsvTzecQlS/3Ag4Ajg9He8VRUMnY/ZO/Swz60NUdDga2I742foP8Bvg4tbypFIO0HpkB1eFf29I20tyLSNykYYCQw+PBOUWz7mnjQuUWpcopDQrbU0lx2ekx3mRIF/f0kLkaetWdabcfTExkfW6VDLkQCIo+zAxR2M8sNTMbiVyym4trbvW06XadJcRk3xfBD7m7vX/cynSwykQK6e6mYZGLNOyDnA9Zh2dadhErBH4JBEXNRHB3jQz2wP4EzF69jsi+DgMuP0aOOrTETgyn/ir/AQxZnMiMcvv90TEOBn4YtENHfgUMUVyS+DLRGB2KRHlFRlG9I5MT71VfwT2I4Kva4gE7b2Iyu57mtnZNAdV26dr7GtmT9O+ZHAnShi8QKR9PV/078LjG+7uZnYJ8MW7YeEnYHDhAncAv27jJlmOJub+f4s1Z01ekP69JL5NjSVjIfLuIM1GvRy4PH1Y+STxuzGGmKtxMLDIzG4mgrI/10nh2LOI1/kW8NGKaseJSH7cXVvpBsMdnnZY4uAd2Jak6wyv5P5EwOVpO63k2Olp/1wiUOxVdOwowA+D/zqsdvBj03WOBV9d1LanwdcF7wc+s2j/1en83cGXFO2fA75FOjY29q32KLbZl1hGxolY51RiVPAPwCNEQObt2OYRS/3cQqzH+C2iI25M+n70q+D79z5gWV9YdQT418HHgxv4oel+ZxS9trFpX7n/x8Xg70/n7AT+TfDjwIeCH9jc/ktz/7nV1tbPxSZEvtSDJT97c4BfEBNoe+fdTnfHYYjDzg57pMchbby2iem1rAT2z7392rRpa/eWewO6w9ZWkHBZx4Kx5SkYG1RBewqB2MzSNwaiR6mQDP2ukmO9gRWj4p6+DHwg+DopkCpt23fS6zuraN8+ad9dGedf1jIQ89ciL2pVOwOtRUSS9RQif8iJJVe2K30dNfo//eB68NDg9Pr3BL8J/O4qAjEHnwf+FfANieB1G/Afgt8X/w8OXJD3z7G2in4+tiYqjzxe8nP6UvpgsSupvE+XbGAOYx1ucHgt/d2YX7QtT/tvSOdZ0WvZm6jT5sCkvL+32rRpq2xTHTHAzArfhLM+DwdvCNv2KpoFdyDw/o7dos2K4iXtaSKCsJvd/aCSY32IP7qPuPtOpc/tbfbSFrDRf4mhxPcRQ5MzSk8kVoTem3h9N6V9w4jhzKWsOdVyFjFVdCyRhLYcWA98UYzWLSUKbS4o2hamx+OB59x9h5LX13l1xNKN6OR1E38Gc06Ib1v713OUbiPlJ25PzLw8jPgRL+iawrEdmJFq8Wt5P5Gz+iN3P6XT2ikinUI5YkU88rG+Tu1LEfQHJlQx03CN3DJ3XxnvHWseA+gDtjz+WFvhhA3LXLywvzi7egGRbJZV76K0vENvWPQJOOly+BXxGrcrcyuIvLmu5e6YTaIG6ya+TExaKDYLlnwzJgSsJHLkpIfx+CT6KPComZ1G9IQdTqRKbgF8G/i2mT1OzLysXeHYDuahroYbboDVx8DaC+Oz1Ddq0i4R6VJtzUJrNO/MNGzNK8CXSIlLwPrAJ4iF/kpNIf5yToGBU2GKmU0zswVFvXDV6m1m25rZfmb2BTM7x8wuNxjm6RN1YVrnq628juLzCv+eS3S5lSq9Tm9YvVVzrdSb3N1a2UaUXq9LROA7leixq9rBwC7ExIZvAofAqvdCvyXx33+6KzG6x/PwN3c/kZhAsjfxIWMe8D9E4dhnzOzvZvY1M9u4lcu1LlYteJDokK7qQ0IvGDAe1v43LL0FvuY9dQUHkQanQKylYW2dMJN4Q76YmFV4MjFV8Fbgg0SmeZbrgYNh+AbR2XQJMdOxnML/y/pmdqiZfd3MfmZmU83s4XRsFDEZ8k/AL4l8l6M9YkMgVpweSGTAZ9UUuDs97ly0b2eiiydrKHPamrvsuFjSZz6we5o92R1NIiY5Vj0z7ijiP+4G4MfAnWCrY0mjg72aRbWlW3P3Ve5+t7sfS3QGfwy4ipiROJL4MXghfbA6LhVRbZ+WK160mC38F+JT1LntvNQAYDPo/VH4c7puj2JmR5rZI2a2yMzczH6Yd5tEuppyxGjOETsj41gTMR2pYD8iw/xc4LSi/fcR0/sGEbW6CuNwU4BjiD+ut4KPhxstdm3WyrYJbQ8bO/AMzaUcngee7wXnbwrrz0onHUt8pP8yUUei4FngA0RV2v/QnBhzDTFVcQ8is77wLjGXGLN5luYcMSKwGW4xE+10IsA8yUvqM5nZhsSsryfS1010RY5Yy0Z0i3UTpePa0Zt8jLtP6aR7lxaOLRRMXgn8mcgpu9nLFI41s62A/x4Dqy7NSIH4C1H47Bzik1UFKspDLdO2q4hf/4LVxCSbN4nh278Q+XJzq71Hyf1GAfcC/yWGVpcA97n7nbW4vkhPoUCM1v+wFwUdvEhzIaxnWDOP6ijiI3PxgtJTiKirkBD/GvgGrSfjFnuTqEH6fMn2IGUW3jazWZvCps+nXrW5RLL+U8SqyXvRXEdsEXARLavPe2rrH4gevwlEtHU90Q3wh5bfk9dw3yD1hF1P5Lq8RMRwLxFFbrdOTTit0HOUSyAWNx5EzusmSscVT64pc8rN7v5IF7RjEPGzdDgRPxUCq6VEJ/kahWOvNPvs0fCbz5Fd024x8Qu+Pu3ons9++icrzEN9R1EgdhPw77T7XcSfvdFEz+AC4CvufmU19yi53/nESP9u7v73jl5PpKdSsn6RtkLSwpjgaLKT2fcmArGHaQ7ECgoLSg8BGwxL5q8ZXBVvvYnY6dasQCUl65e1LN4IBgA2lJhS9T2isv6PaVlZf9/SaxPlyc8ngsiLiKT+Y4Dv0qIryUkjmO6+wswOBI4kOhA/RnQKvkEEXKcDV7fa6K7QzdZNlI5x9zNzvv8C4ArgilQ49mAiKBtNc+HYt1Lh2Gu3gz9fD2e3ds2BwHurb9JASla8qNKN7n5V8Y40W/sLRGmPy81sqbtf14F7QPP8F+VXSmPLu35Gd9hoRx0pB78ynXdKmeO3p+MTM2pvXZq+XgULl8POnfqaos7QorZeTwe3RQ5j8v6/68D3yBzGOFzv8Gqq07Qg1WxakL5+NR0fU1y3SVu+2zu/r+07dwawssyxz6drHVmy/0Wi03tt4EfEh6NlxBDaKZT5WQB2JzqbXyWGKpcX2gr4Zq0UN74y/V79OX19Tsbv3FPgR6Zadn3T49Hgz2T8XhLZE07kkh5K9KIvJj5QXANsmNH+q7K+HyXnfCGd8yKwVsbxI4gO80IVnCeImaf9Mr7vWdsmef98adPW1Zt6xCpQzSzEgkKXSy9Y3asTFuIuMZ34g9uZJSPmEPkdPZO7003XTZRuoR+REzUcuI0oXHwQ8APiZ+S84pPN7DhiRYkVxAj+M+m5exId6MuOge3mEL3MOxHj+AXva6MxDxC9128RY6HvJbrMr0w3+yvvTLpZm1iU/an01BOItWj/QARIexC9djua2U4eC6dX4lKic3wTYiWCOwoHzKyQlfE8kaqwgJjDdB6wt5nt57EA+UPEsPIngB2IXrZCTl1dL8oukkWBWAUK1VNnEB93S795WbMQMxjxRt953GtWP6uMxcQwXf0kGHbTdROlPDM7M2P3LK9Nov6mxITjvT3leJnZOcQs4ZPN7PwUVGBm7yPiq/nAKHd/sqSdmwIvngZvzoahFxF/I7Ian2U1Ed0sIpLODi06djWRD3A0kU1v8fdlFM2B2H7ALu7+eGqLETO2DyFSCG5sZzOAmE1qZjOIyQq7kgIxM/t8asZ1wNHu/k65mPR9+w5wHPBzd38IeChNXNgB+LG7v1hJO0TqicpXVGATIiN3Fs2LPRf8jejvH0J8bG7FAKJid+eqUf2sDEuBqShXSvJ3RsY2sYbX/4oXJdq7+6tE4d4hxCSUgklEXueZpUFYet4LDoP7RuJ7xQrTCkfTMgiDGAfcnVin6f7m3UPXbe51/0khCEttcWIiNTSnrlbqpfS4ftG+rxJDsZ8vDsKSs4gg9QhEZA3qEavQJcRYw9eJMha7ELUMriOi2sto86/t3C4c8ppENLGJ7PkFlVpBvNxJNbiWSIe4e3tnH1djjrvPytj/QnocUrRv9/TY2oeTEURPcsW1vgrdtHuXOb43MXT5MDEOCCzZEIakMb5/ZDwl6zVUovB9dwAzexexTNRrwEllJhMtBbat8n4idU2BWEtOG6UltiD+sp1LJI5MA9YF9ifqio1s+/pZtVI7h/sColZPretnqXSD1LtyH5ZWpsfiGmCD0+NLlFd1XmgVS5V53+b2Zb2OrNdQicJsxzfS49D0+G6yyzGW3ldEimhokvhk7ZF4+nZ7zt+YqH0wm+iLf5MoLpUVhE0koq+J8eXbwIUda22FoujoSKI20OIqr7KYyCUZiYqYSs+ymkiNyvpbNzhjXzUKwU5rSx5VnRdaxSQhWxGTC2rOzHoTo6QQGRnQHCs+6K0vc9ZdV94QyZUCsWaFmYadKZ+Zhu4LiIrbnyTix7dou2yap/NmE0Uij1BPmPRA84i/c1lB0i41uscD6XF8K+fMBAYWuqAqiZIKk4SmlTmeMUlowCvxujvD54jv5YukGcceqRb/AXawmH0sIhVQIFYQSayTqL7XqC35zzSMBPsRxNIsNxI5HSuIKeML0uOKtP/GdN4IJeZLD1ao2P6F4p1mti8xc7AWLiZiqzPNbI16rGa2Me7zgHmFMbznK7j4GGArIhC7ueTYb4kk/W2JuhTJ3IU1npltZn1SiY4LiQ9pJ7p78T1+TKQ+/MYy1rw0s6FmtlPpfhFRjlhL7rdjNpWY+NiRfKpS3WemoepnSWP5DXAycHoKBJ4kynDtTwzXH9zRG7j7o2b2FaKExSMWf0OeJVZuGEmsNLYPMGMQHLQL2N1E2Yn3EJ+GDySy3bP0IpZN2zc19kBgG6I+xVQiR/UK3klurUUe6idSaQmIumSbEfHgBsQw7Ofc/YbiJ7j7L83sA8TytmPN7E4i3hxK/H0ZTfOytyJSRIHYmhprpqHqZ0kdc/dXzWws8L9EHuheRJX5DxHxTIcDsXSfyWb2b6Ly/l7Eh7k3iVpkv0ynXQjsezWscxIx2ecaInJqonwgBjEb8kFiktBdRHXW9YBPE9VVi2ppFPJQS1cvq8RBaVtNpCe8SeSD3Uks+p057OnuXzSzW4EvEpV+BhPpGLOJ7/9VWc8TaXRa9DuL2XBqP9NQSe4ijSzqOswENu/Eu8wm0gn0h12kh1COWBbNNBSRWuvkPFTvDnmoIlIxBWLlaKahiNRaJ614sQSYBq9Z+cmVItJNaWiyPWJIYTSxgO4oIgF1Cc0FYAcQCbkziPyMe/WpVEQyxazCB6lRHuoqWPUc9NoFbCH8E/iEu1cyMVNEcqRArBqaaSgiHVHjPNTD4NjfwaVEeZo3gE+5+7QOt1NEOp0CMRGRPETP2GRgAjCwiissJkqLHY/7AjMbClxLzJhcBZwE/Mz1R16kW1MgJiKSJ7PxREA2jKjb1dp6t06UqJhDJOa3qE2YliD6f8A30q4rgS+6+5JaN1tEakOBmIhI3mqch2pmnwIuI3raHgIOUt6YSDFnURQAACAASURBVPekQExEpLupQR6qmb2PKMGzBVGU9RDljYl0PwrERETqVEbe2MnAhcobE+k+VEdMRKROuftc4CPA94HewAXA5WY2INeGicg71CMmItIASvLGHibyxmbn2yqREmZDiDIshWH5mZRZ37ReKBATEWkQZrYDUfKikDf2KXe/O99WSUOLiSpjaJ6oMoSWy4ANBObRPFFler0VTFcgJiLSQFLe2DXAfkTe2CnAT5U3Jl2uhqVbejIFYiIiDSbVGzsXODXtugo4VvXGpEtEMeNLgAOovpjxVCIg6/HrOSsQExFpUGZ2CDAF5Y1JV6nx8l7AKNxfr0XT8qJZkyIiDcrdrwN2B54FdgL+aWZ759sqqVvREzaDWPC+I0EY46C/wdbAjHRdzGycmbmZndnBlnYpBWIiIg3M3R8FRgJ3ELk6d5rZ1yySqEWqZmbvNbOfmdljZragD8zdCLb+KPT9DTElsgY2JfLMeiwFYiIiDc6jPMBHge8R9cZ+DFxpZtXk74hgZt8FHge+DCzcAaadDKvGA08Bnwf2rM2t+gMTUuJ/j6RATEREcPdV7v5t4BBidtoRwAwza8qzXdLzmNm3gbOAl4DdHfb8N+z4/dQT9izwR+BdtbvlQGByTw1oemq7RUSkE7j79bTMG/uH8sakvVLgfiawAviIu/+NqBM2rPi8jwF/Kvp6CnAwUeBuALAu0WN2VftvPWwSvK/KZudKgZiIiLTg7o8ReWN/It5A/2xmJylvTNrhGKAvcEP6OYIo1rp26YlrFf17EjCbiNhOBA5LXx8FnN6++649NmK5HqdP3g0QEZHux93n/f/27jxKrqrq+/h3ZyYEkhAMhikJM4giQwQlIUEUDAIBBFRAGR5Fgoj44gAiD2EQcEAxKgEHCAjhUUMiIKMCIURBEVHmOQmDQCQjGTrpJPv9Y5+ib1dX9VRVXd3Vv89atar73lv33qr0ojb77LOPmR0CXAScA1wO7GFmp7j7yuZfLd3Y6PR8b962ZoP4J4Ft87atAcYDlwGnAls0f10bBO9vw312GsqIiYhIQUXqxv6iujFpxrD0/BqQWztycEsvyg/CAPoAXwbW0jiqK6ZXWcvOOo4CMRERaVZe3dgHibqxA6p7V9JFjKTx2pEFvUIEXTsRlfeWHrmxxtdbcaH1ZeuI0bE0NCkiIi1y9yfNbBRwIzFidI+ZfQP4sdaplIw3gJ1pGEns28yxALwMfIhY2XsMcCAwkOijMg+4ji4aYbWSMmIiItIqqd/YocAlxPfH5cAN6jcmGXPScy5j2mIM9SNiJe9fA7OAyURh4iRiZfpap0BMRERaLdWNnQscRdSNHYvqxqTBtUTrik+Z2S7AXIos7J2L0F5Mz4WmPD7Qhgv3aEX2rTNSICYiIm3m7jcDexPfo7m6sY9V966k2tx9HpHM6gPcblGHvzj/uLuI8W2IhSchsmFZdwO/asO118I7bTi801AgJiIi7eLuTxHlPXcS/cbuNrOz1G+se3P3S4Dzga2BR94HPb8KnEssbbQDEYTloqbTiKjtaOB44JvAwemYo9pw2SXwRHneQcdSICYiIu2WqRv7LvGd8kPgRtWNdW/ufiGwK/CzV2DZtcAPgNuJFNmvaCgm+wBwP/CRtH8KsAyYQfQPa6UVD8DNZbr9DmWa7CIiIuVgZkcC1xNd1P8NHOHuc6t7V1Jtk8zsLPjvRnnLHJXZfGAkXTCoUUZMRETKwt1n0FA3thuqG+v2zGyLC+CPx8CQFZW7zEpgYlcMwkAZMRERKTMzG0T0GzsYWE+U/fyozf3Goiv7SGI23GpgLjEUKp1cqhM8AbiCaAu25Cl4dmf4oEG/Ml6qDpiJ+7FlPGeHUiAmIiJlZ2Y9idlz30mbbgK+0Ow6lfHlvR+xSPRoYmmc7PH9iRl4c4h2U7O7ahaklpnZlsAvaJgY+UfgSx7tTh4hJkr2LsOl6omer6NwX1qG81WFAjEREamYVDd2HTCA5urGzMYTddpDiBqz5mZeOvGlvpAYkrqzzLct7ZCyYCcCPyZlwYig+oZ3s6FmQ4lAeitKy4zVAa8Co3FfUMJ5qk41YiIiUjGZurEXKFQ3ZjYQs5uA6cBwImBrqf2FpeOGA9Mxm4bZwArcvrRSyoLdAVxDBGF/BN7n7r9pNCQdQdMoYCatWIOyiJXEpMpRXT0IA2XERESkAxSoG/vWcrh+Q2VHOl4Za+9SFuwkIgu2MTF0fAZwY4s1gcqCAsqIiYhImZjZLDPzvG3j0rYziX5jFwM9esIPBsBbHvVCpRZv9yPOM6e9mTEzm2pmXpNLNZkZZmMxuxmzt4C3gPuIRrz3AW9h9lbaP5ZWNuQ1s62ILNiviSDsNiILdkOrJmZEMDUS+CSR4XqLqPtaBixNz/Vp+4x03MhaCsIAelX7BkREpHtw9/XAeWb2zx3g5mfArDxF2xDn2YrIsHTZGXRlVzzrlB+wDgWOAA4EFmJWNOuUsmAnE+t157JgXwGmtXlmbBw/Oz0gMqfb0JCtexn3JW06ZxejQExERDqUQ91+MdRU7qWQ+gETMBtfa1mTNovM4FXAYRRZdLvQq4jauwFE7d0txDDguzMSUxbsl8BBadOtwKnu/kZZ7juCrn+WdI4u1vZEgZiIiHScyKZM6VG50pj+wBTMumSX9bIoz8zE/kSGbC/MRhv8F/gfIgu2EaVkwcqtNW1PzDpt2xPViImIdENm9iEz+62ZvW5mq83sDTO7x8yOyRxzopndbGYvm9kqM1tmZn8xs+NLuPR+ZJa6WU00GsulL7YFLgDWFHjhH4hFoXcgxtg2BPYkvlnXNz50CDAmvYf+ZvYtM/uHmb1jZsvN7Bkzm2xmm7V0s2a2W/qMlpnZxzPbx5jZbWb2Wvr83jSzh83s/NZ/FBUQmbA5lLH2bg08vCn8mciEbQTcAuzi7i0X5FdaDL3OJWZpHkEMsfYmhl5zj940DL3+EZibXtcpKCMmItLNmNkXibqhdcTQ0gvEF9VewGnA79KhU4CniPqdN4gA52DgN2a2o7uf147Ln0HEUAAcQ3T4PIr4tryF6AL7j3Rj2bHLs4nswd7AFkQ1933AV9M5ftNw6IbAGWb2BLGe9G7Ac0RrhTVEvHcSDQXiBZnZAemYFcB+7v6vtP0TxPrUy9Jtvg5sAuxMfH4XtOUDyVwvF9S8Auzo7nUFjplHtO3o7e5rC5xmCrA1Zay9Ww8jfwIjj4NFRBbspk4QgFVk6LUq3F0PPfTQQ49u8gB2IWaiLSJmuOXv3zLz87YF9vcB7k3n2CJv36z4Wmm0bRxRDzbJ3fGYKeljY5tvD74I3NNjFfg+ad/1me0O/mLe7w6+Dvzz6fiHG+97E5iWrj0F6JF3XwOAgZnfp6ZjR6TfjyeCtqeB4XmvvTkdu1uBz2fTEv5tPPM4u8gx89L+Xk32w3iHFfmfUTkeq2DtP+HYav/9pvc51OF5h1Ulvq9V6TxDq/l+NDQpItK9TCRGQy5y96fyd7r7a5mfXyqwfw3w83SOA9p05SiiHpzddF7ehn7Apenna/Jevm2BU/YgMmIAd2e2vxUZqk8Tmbyve8zYfJe7L/cimRAzOxu4HvgbsK+7zy/yjlblb3D3t4sc21qLiSD5bDPbtNWvSrV3tD471Cb9oOfucElrW1tUTAWGXimh7Uk5KBATEele9knPLc4qNLOtzeznZvasma1MfbacyAhBjBC2xUjyuqmPLXDQaKAn8Fje9oXE8OQHaGi/b0SdGMT4YM7fImPXA5jt7ivacI8/JmLBGcDHvfBsuxtzlzGzq8zs06mzfDmsBC4iaptaXW/2SbjkcNhiG2ADoqfEvsANRY4fR3x29cCFRJDbD9iRKATLuQp4fzrnFrD1HnCNmRWMHcxsbzObnurl1pjZq2Z2tZlt3pr3kPv7au7x2/jbK+vQKw1tT6pCNWIiIt3LoPT8enMHmdk2wN+JhNWDwD1EWdY6IotwAlFf3xZNji9ULd8L2BTItshfQqyLMxf4EPB5IuXVK+37CVH4n/NWxA4AB5rZo0SdV6HH8vS8Yzo+t/zS88DOZtboeHevd/cZZnYIcBbRT+tLAOk657j7n1rzYTTj58DpwJfMbLK7v9DSC/4M33w/9NgPGEYErXcAnyOK4y4q8rrPEGm/g4mIZDpwSvr5cWKR0EOI1OetYI/FWpLPAt/LnsfMTiYW+l4dh/IqsD3wBeBQM9vH3V9p5fsvWGO3D2w3Co6k7X93Lalq2xMFYiIi3UuuOeYWxBdqMf+PKM4/yd2nZneY2WeJQKytVudveItIb2StBd4msjo5vyKCsPOJYv6sh4hALGtgQ51/k+HQFgxIz+ekRyNmVk/jAO4pIvO2MbA7cJeZ/RZ4jeYDv0IPANy9Pg2P/p4IeI5s6aafgMU7ZGajQhS4jQcuA06lcPryFeBJGqLzs4CdgK+lbY9nXjcJ2DZq+r5uZpd7mixgZjsQybN5wFh3fzfITxMe7iH+iY5o6X0AuPukJhtjSHQuDQF2uVWt7YkCMRGR7uVhYnbkeJoPxLZLzzcX2FdoRLE15pJXw/QAkbXJmkOk3XbPbHsxPX+qwEkfKHyD9cQI50IikOlJQ9eL3GNA5udDiM4YdxMZl72JL/3/ErFh7rjeRIwyiOI+28y+lmxuZq/SEJwdYWYPExmmFUQiEGKFgneAFTvD+iebdsqnD/BlYmbpvUQWMd9lNH4j2xBDw/cDl9M4eBsEHAp+XSQstwBytXMTic/lq9kgDMDd7zWzW4ms2Ebu/k4rP4d8jdqezCX+PnoQQ9jDMweuIP7Anyfe97i0/UQiw/cS0QrlF0TkuClwNDAJhgyMtiezc+dKs1QhRsQnEX9LWwDfLRgwtoMCMRGR7mUKkSA5z8zudvenszvNbMtUsD8vbRpHrCGY238QMdzUdu6LU2PNoblNFxERUC5lVUdDGuqkzEtHpOdZRM1SzmM0FPdnbRYF7/cSyx0dB3w5W7BvZgOAnrmCfTMbQgRip7r7PDN7D9E76wNEsf/laWmfvsTw5VPEkFY2sDuD6Dj/23RrhQK+5oLBHkQmL7/ebO/0yPrf3A/90s1cld7wKzSdRVBsHHqvAttyBV17Fti3WQSlfdI95gKxD6fnsWY2qsDLhhKB8A7Ao0VupSWN2p6MJLKkRxP/wA/QENCcRvwfxiQagrCsrxGR1jHABCLyvgJ4EAbMgjMHZAKxpA8Rz25CZPeWEbFgWSgQExHpRtz9aTM7jfjefsyil9ILRLZhFPElsz9wJREL/d7MpgP/AXYFPkH0Gft0O29hDjFEZRCNt95H4z5iLxGrO2czZZ8HfkCsHH4/UXz0AtGd80gi8sm+zXSd09M9nwqMM7O7iRG7kUTAdBgR2zXh7v81s/2J7+kfmlk/d/8uUGdmFxNZkb8QAesaIm75KBGcTCxS5F9UCvLWE7M896EhQPsBkYG8ghgp/CEREHyXyC5uOBB2Ggf7LSHSOQcS6bGe6eauo8CYcFJoqmCvZvZZBCUA95vZMuAdGmK3b7TwNg9MAfA7mccyYJVnhgPNbFL+C8+BgzYGOzuz7SgiFTeFmH17KfFeryf+gIs1ufsL8C8asmiXEgHdDOB78PEC9XTDiDYmY9s48aN1qt4PRA899NBDjw5/EFmMm4ma+DVEoHUXcFTmmI8QmYDFxJfmHOBw8nuDNRw/i5b7iI11eCfXR6wO/FzwEeB9wEeCT0rb8/s+PQV+KPh7wPuD7wH+S/C56VwnNBz7jkcDVohg5lwiiFmZ3sfTRGAzNHOfU8n0Ects35j47nai5QdEMuUmIhZcTgQTTxLB0XtK+Ddx4LW8bdulf5+XiSBoHnl9xIZHHOrXFvjMpqXP5vy87bnPv1B/rRPSvrkF9p3duNdZuR7riNrFZo8bWLi/me8GbuA/Bd8w/X38p5n3dWGBfS+B90h/hw6DMp9/7vNu0jOuXA9LFxIREam8hqLr4S0dWoL5QJdbazK1Bnnd3bfM234F0S7t60Rn++FkOuv3NfvzGjhgGbH+UNapwNU0neQwjhjOK/QBnUhklubSMCSc87+w/qIYQj2ISCxtRASgnyZmOz6btm2cnjdqxe/N9gPbnfi/gWJFec8RQ6zLiTTrHUTattj7eoAoOMs3gvjDuQ/G7u8+G96tEdsM6O8V+nvS0KSIiHQcd8dsItEpoRLNR1cSy9Z0qSCsBRcSs1TPpcmymrAm5jIcMAs4NLP9bqKOqpzWRvnZhsAad18ALEhDiUcS5VqHuPvz2deYWR9gb3d/sNA5zaw3EZAtTJs+QiZQ2wve3y9GIQsGbDsQhXx/JZaNOLCF91BsgdH3EoHYXBiyf+NdCyoVhIECMRER6Wjud6Z1/o6g9O7oWXXALVShF1QlufsiM7sE+H6RQ67sBV88GnocRRRsPUmMMx9Dk/q5km5lYcwF2Dnv/p5NfcSuAZ4ys7uISYu9ie4kY4jZpzsVPKl7PbAo17Tf3R9qdIDZHkS/toJ/K5cRQdimxKSFS4mItZi3aGgal/Vmeh7ZEBC+e4vNnK5k6qwvIiLVMJFoyVBfpvPVp/NNLNP5OpvJNMxkbcTdHz8TvrIPrLudKF5fRhSfn1ree1jxSPR/LXQPNxATFm4kElSnE+t1bkdkP08r4bpN2p7k/JWYProjEXzuSAzDzmnmZIXanbxM/PGMAPaPesIOoxoxERGpDrOhxHfmVpSWGasjvkdHE8Nl3U8N1N6lGjncvel6lmZvkWl7AjGD5INEhuvh9PO/iT4fQ4kCtk0yx59I1IgNIXpo5D6o9TTMmjwXll/s/m6pXa6PmLuPKOnNNUNDkyIiUh3uC4i+U1OIlk7tqRlbSfTnPI0ii3h3CzVUe1eofcUpsHAYDD2cCLggxipfIVKFuW27EY1oTycCr1sLnH/fdPyniRYddxMB3J7A2VDq8lRtpoyYiIhUn9l4IiAbQhSDN82KNHCigfpCIjioqZqwkphNo8y1d6ujncitA90PL9c5C8llxJpzLRFg/ZTo8HoY0Xsu35HATOBHRANXaNxZfyaxuPk84g/uaOACWD4QPkmaMZnuaR5UNiOmQExERDqHGF4bA5zxXzh8IPTsCct7Rp8pI5YcWkQMZ04GHqyx2ZGlMxsIPEKUO/Uu9XRriGBlb3hzCRzs7o+Ves52KcPQ64kUb8uRVKXtiYYmRUSkc4gvwNlm9iiwfBDUvwgHDIkm8auBl3Ff0vxJujn3pZiNpky1dz3h9QPgrSXRUuJBMzvG3e8oy722RQ0NvebTrEkREelsdgZYAs8Pcf877g/h/k8FYa0UExZGESNwK9t5lpXAjJ6w52uxdNMNxJDxbWZW5smYrRRD0LcQkzPKqaptTxSIiYhIZ/O+9PxkVe+iK3NfivuxxJKM84nG8y1lezwdNx84CvfjcF/q7quJ5T4vIuKGKWb2fTOrRgxRc21PFIiJiEhnkwvEnqrqXdSCyPKMJNZRn0F0e6gnWo0tTc/1afuMdNzI/OyQh/8lJiuuJRb4/j8z26CD3knuRpYCo4nStTZlxqaSFhNt2FSXzjO6mjNuVawvIiKdipndDhwMfMrdZ1T7fmqO2SBgG6Av7ai9M7OPEQvGb0z0VJ3g7m9X4labuYmB1EjbEwViIiLSqZjZfGJpnJ3c/blq3480ZWa7Eutrb0WsdXmwu79QhRvp8m1PFIiJiEinYWYbEcNlq4EB7r62yrckRZjZ5sBtwB5EcDPB3f/ShhMMJoZNc5m5ubgvbs+NkNqeEMOWmxCLkztdoO2JAjEREek0zGxvYsWaf7v7B1s6XqrLzAYA/0fUlq0GTnD3wuuMR8C0Hw0B02Aaz+rsT6xclAuYZrcrYCpx6LWjKRATEZFOw8xOBn4NTHP346p9P9IyM+tFBE65mYdnA9/3bIBRA0OIlaJZkyIi0pnsmp41Y7KLSMPHXwa+njZdBlxlZr0wG4jZTUQj1uHAAJoPwkj7B6Tjp2M2LRXn1yQFYiIi0pmodUUXlNpbXE4s21gHnLIV3L0OHgUOB/pPJSKsqXmvHUHRJYcghiuPAB7BbGiZb7tTUCAmIiKdiZq5VoCZnWtmnh47FjlmUto/rsj+qWn/iGLXcffpwEcHwcI/w0fXR61WqQuQ9yNitTntzYyZ2Ynp3k8s8V7KToGYiIh0ChZF1lsQM97mVvl2aoZFkfwXaOis/8VKXs/dH3oJ/jocvHdmGPII4Jn03A69iVYZU8pxj52JAjEREeksctmwZ9x9fVXvpLYcSGSUrgPeBE4wsz4Vu5rZ+E3ggL55tWADgZ3Sczv1Ayakwv+aoUBMREQ6C9WHVUYuA/ZL4EZgU/ISU2Y2Dzg//Xp/ZhjT034HTkj752b2z8ucY5aZ+WqYciH035HoH3Fi2j+VwjViOUuB04mUaD9gF2IqZl5vh/53w7Xp2pMKncfM5uXfF3Bt+vXa7HvLDrOaWS8zO83MHjazZWa20sweM7PTK7muZq9KnVhERKSNVB9WZma2GXAY8Ly7/9XMlgFnAacA2X5fVxBF9WOJzNm8vFNdkPbvBvwEyPXlatKf6wjY8p/A+PSC1lTYrwE+lk72mfT7zcBXgeeAn2eO7RVLK7XF1HTqCcAtwL8y+5YAmFlvojntQemS04hJB/sDPwX2Bj7Xxuu2igIxERHpLJQRK7+TiPqqqQDu/qSZPQrsb2bbufuLafsVqUZvLDDV3WdlT+Luk1L2aDfgCnefV+yCr0HPJ4m0W2u9QVT1P0lk0SAiv1HAlcCniU6wAD3aWPzv7lOjTI4JwB/cfWqBw84lgrCfAWe6+zoAM+sJ/AI42cymu/stbbl2a2hoUkREOgv1ECujTJH+euD6zK6pxChhRYr2L6JtQVjOpTQEYRDrFJ2Xfr42s91a7kPWJmnY8StE/dzXckEYQPr5LGKEtCINhpURExGRqjOzIcBmREf1V6p8O7Xio8C2wN3u/npm+zTgcuBEM/uOu9eX42K9oVc98KF2vLYX8JEC28el58cK7BtYeluMnB2IuO8F4Dspe5ZvFbBzma7XiAIxERHpDHLDkk9rxmTZnJKep2Y3uvsiM7sN+BQxXDe9HBfrD/2WAu9tx2s3BXoW2J4719IC+zaPtSrLYUh63p6GCQuFDCjT9RrR0KSIiHQGKtQvIzN7D1ErD3BT3kxBJ4IwaAjWStYjxRTtGTd8G1hXYPub6Tnb8iIXuPSEYi04BrXx8rk4b6a7WzOPkW08b6soIyYiIp2B6sPK6wQiUHmUxrMEsw4DPmZmI919Lg2xUKHkFC3tXx+1aO2yFvgrMCZv+6z0vHtmWy4NtqhAKZqZbUfEbfmzOZu792fT8fuYWe9yDdW2ljJiIiLSGWjGZHnlCvFPc/cvFHoAVxMJrC+kYxem562LnLPZ/Suj3UO7nQOszvy+CLg4/XxSZvtORP+KN2A/y6w/aWYbEK3HCil672nR8p8Cw4DJ6TyNmNkwM9ullW+lTZQRExGRzkCBWJmktSJ3AJ5w9783c+ivibYNJ5nZ+cD9RFbrUjPbFVgM4O65eOhe4BvAL83sZuAdYIm7/wygPhJb7TKMCMJ2JdJ09UTh2hvAaTS0roDoxTERVnwv4rHHzGwmEc98HPhPeuR7CFgJnJkmhuRGPX/q7kuJyZ67AacCh5rZfcDrRBu07YF9ic/q6fa+x2LM3Vs+SkREpEJSVuMtYBkwyPXFVBIzuxE4FviquxfLEOWOvYcIYI5095lmdjzwdWBH0qxEd7fM8f+PyLZtQwx9znf3EWnfLGCsR6uHJqViU4nM1rU0dNuHWHsJ4N/At4E/EDVj2wATib4SeSfz9TCjJ/wj3ctWRGD1f8AkUrCUu6/MvX+CKMZ/P7Bh2jwy1xMttfs4Pt3e7kRx/n+JdU/vAH7j7q/mv69SKRATEZGqMrOPEtmWh9y9UBcD6SrMxgJ/pEIzDJPlwCdxn13Ba3QY1YiJiEi1aViydsymoR6rUhYCD1b4Gh1GgZiIiFSbArFaEcNsE4l6rEpYCUykhobzFIiJiEi1KRCrJe53EotrlzSLsoA64JZ0/pqhGjEREamaVCC9iGjCubm7v1HlW5JyMBsIPELU4vcuwxnrgXnAKGKWY81QRkxERKppGBGELaahpYB0dREsjSaCp1IzY3XpPKNrLQgDBWIiIlJd7w5Lqm1FjXFfAIwCZtL+mrGVwAwiE7agXLfWmSgQExGRalJ9WC1zX4r7scBRwHyi9URLAben4+YDR+F+XC1mwnLUWV9ERDqW2WBgJND3E7Dfw8ASLfZd29zvxGwksZzkGcSw5SbAKhoawG5A1AvOIZYqerCWZkcWo2J9ERGprCjI34+GL+DBpKGq5TCgD/R0WNw3ltiZDMzuDl/A3Z7ZIKKBfl9ihaOXcc9frLvmKRATEZHKMRsPTAGGEMvKNFn6JsOBFUTDzom11qZApBAFYiIiUn7RvuAqYg3n/u04w0qiF9XEWq4PElEgJiIi5RWLeM8hFmPuV8KZ6oBXibYFNTljTkSzJkVEpHwiEzaHaORZShDGVOhnsP2V8Hg6r0jNUSAmIiLlNAXYmvJ0UwegX8yum1Ku84l0JgrERESkPKIwfwIxC65sekRQNyGdX6SmKBATEZGS9TQ7bAzMGAb9+wKbA2OBK/OOWwScA+xMNI0aCBwA3JN33DjgpPTzSYBBf4M7zMzNbERF3oRIFahYX0RESmJmpwBXbwZ+GNimwALgcaIfxSPpuPlEgDWP6Oq5J9Gr4o/EIpNXA19Mx04F/kBMm5wAfBBYB2tuh2mPwde8G/abktqkQExEREpiZo/2gg++BrZZXp+wt4FN08/jgNnANOAzmWOWpH3PEUHaZmn7VCIbdi1wYmxyYAbuR5X7PYhUi4YmRUSkZH2gR58CzVpzQdi/gQeAT9E4CAMYBFxA9Kq4ufnLGNGZX6RmaK1JEREpyRCYsRD22IUIssYC+wLvyRzzUHpeCkwqcI7/pudnWZ1sOQAAE71JREFUWr7cJpgN6o5L4UhtUiAmIiIleRvuvAa+/QvoPxm4gkhdjQV+AOxFrFkE8Kf0KGZ5y5dbRaxP+M8Sblmk09DQpIiIlKrvyVD/MBFw3Q78D1EPdhCR7cp1Y/0JUehV7HFty9dyytweQ6SaFIiJiEipVud+GAQcDPySKLBfRARk+6T9D7bhpD3T87rGmy17PZGuToGYiIiUZBfYYn2Bhb1zi0P2J4YnxwAzgGuKnOeJzGsAhqTnVxoftgHwcvvvVqRzUfsKEREpiZktGQYbfQR6jCDGDh8k+oftSRTq9wZeAz4KvADsBuxNZNBeI3qOPZmOzWXPFgNbEsXMnwPeC6yB5RfBlu6+tGPenUhlKRATEZGSmNmpo+G812HzN4mVvocDnwUmAhtljn0H+CnRpuI5YtjxvcAuROPW44ANM8ffRbS2eIJo/pqMdPd5lXk3Ih1LgZiIiJTObCzRJH9ABa+yHPgk7rMreA2RDqVATERESmdmwFwiGVYp84GR6ItLaoiK9UVEpHQRHE0EVlboCiuBiQrCpNYoEBMRkfJwv5NYp7uuzGeuA25J5xepKRqaFBGR8jEbSEyYHEFMlixVPbEW+Cg0U1JqkDJiIiJSPhEsjSaCp1IzY3XpPKMVhEmtUiAmIiLl5b4AGAXMpP01YyuJ/q+j0vlEapKGJkVEpHLMxgNTiEb5GxJLFBXjRLuwhURhvmrCpOYpEBMRkcqK1hZjgDPehgkbQ68esLxX9HM1YtmiRcAcYDLwoGZHSnehQExERDqEmfUEVgyEvn+F0bvAemIB75dxX1Ll2xOpCgViIiLSIcxsBNH09Q1337y6dyPSOahYX0REOsr26fmFqt6FSCeiQExERDqKAjGRPArERESkoygQE8mjQExERDqKAjGRPArERESkoygQE8mjWZMiIlJxZtYLWAX0Avq7+6oq35JIp6CMmIiIdIQRRBD2qoIwkQYKxEREpCNoWFKkAAViIiLSERSIiRSgQExERDqCAjGRAhSIiYhIR1AgJlKAAjEREekICsREClD7ChERqSgz60O0roBoXbG6mvcj0pkoIyYiIpW2DfF9M19BmEhjCsRERKTSNCwpUoQCMRERqTQFYiJFKBATEZFKUyAmUoQCMRERqTQFYiJFKBATEZFK2yE9KxATyaP2FSIiUjFmtgGwElgHbODu9VW+JZFORRkxERGppG3T88sKwkSaUiAmIiKVpPowkWYoEBMRkUpSICbSDAViIiJSSQrERJqhQExERCpJMyZFmtGr2jcgIiI1xmwwMBLo+yHY5XlgiQIxkYLUvkJEREpjZsB+wBnAaGAwsNLBlsLG/YHesMBgDjAZmI2+fEQABWIiIlIKs/HAFGAIsCFgzRztwApgITAR9zsrf4MinZsCMRERaTuzgcBVwGFA/3acYSVwCxGQLS3nrYl0JQrERESkbcyGEsOMWwH9SjhTHfAqMBr3BeW4NZGuRrMmRUSk9SITNgcYQWlBGOn1Iwze6m32YGm3ZSPMzM1saon3JNKhFIiJiEhbTAG2BnqX6Xy9AXZuaHMh0q0oEBMRkdaJwvwJQN9yn3oQbJrOL9KtKBATEZGWRYuKKbSvML9FPeL7aEq6jki3oUBMRKQbyNZQmdm2ZjbdzBaa2Ttmdo+Z7ZqOe4+Z/cLM3jCzOjN7xMz2J/qEDcmdbylwDrAjUeg1GDgI+HOR668BLgK2JdJpI4HvAKsbHzYEGJO5515mdpqZPWxmy8xspZk9Zmanm5m+v6QmqLO+iEj3MgL4G/AMMDX9fgQwy8w+DNwFLAN+C2wCfAa482m4b5foE8YSYF/gaWAUcCbwNvA74EAibfalzAUdOIboVbEtcDoRmF0DPNH43jYkmsLONrPewG1EfPccMI2YZbk/8FNgb+BzJX8aIlWmQExEpHsZC3zH3b+b22Bm5wEXEgHa74DT3H192vcn4Pqfw9ifp2at3yKCsFOIRmK5scRvAXsRkdRBRIQHcBMRhO0D3E/DVMsLiEAuw4jO/ADnptP8DDjT3del++kJ/AI42cymu/stpXwYItWm1K6ISPcyD7gsb9t16bkv8I1cEJZMA9Y+BRtAZLJuAAYAl9K4jf72RBC2Brg+s/3a9HwJjftdbAKc1/T+Nnk11qr8CvAm8LVcEAaQfj6LSLQd19wbFekKlBETEele/pUNbJL/pOfn3f2d7A53X9fHbNGrsClgzxEt8fclAql8HwUuBh7LbPsn8X/9owscP67pplVTY/hxE2Kh8O8Uqd9fBexcaIdIV6JATESke2mynJC7r03BTsGlhnrA+rUp+ZU7YFiRk+e2L8m74CYUbjz23qabfEEEfRBJtvOLXAoiMSfSpWloUkREmuUxDAjAwPT8ZpFj38g7LvfzIqC+wPEFzmMDYXH6eaa7WzOPkW15HyKdkQIxERFp1lpYaykjtiPRSOzfNM565dyfnvfIbNsDWE+si5RvVtNNGxwO96XT75NmT4rULAViIiLSrPWwfn3EUvQhKuTfoWmh/UvAZGIIMttX4qT0fC7RfyJnEVFPlmfRXu4LiRYVw4DJZrZB/kFmNszMdmnH2xHpVFQjJiIiLVodMdQGgF0GPEj0lXiEqKzP9RF7J23Pjhl+lmhKdiuwK7FGUj0wnWhf8VLDoU5D4uwiYDfgVOBQM7sPeB0YStSO7UvEdk+X+a2KdChlxEREpEXLosnrCojC+4eAbwILgR8Bvwc+RHSDPS3vtZb2X0Ck1X5GBGUnEcFbxgoiqYa71wOHA58nGroeQrSt+ATx3XUecGMZ36JIVZi7t3yUiIh0bzGtci4wvIJXmQ+MRF9M0o0oIyYiIi2L4Ggi0UasElYCExWESXejQExERFrH/U5itaK6lg5tozrglnR+kW5FQ5MiItJ6ZgOXw1N9YIs+5TljPbHs0ijcCzaUFallyoiJiEirGYzcFgbNA+ohf6mktqojgrDRCsKku1IgJiIirWJmWwN3LIANx8D0njHpsV01Y+sjCJtBZMIWlPM+RboSBWIiItIiMxsM3Ek0WZ21AI7v4X4scBQx23E5maWQivA6qJ8HnASP4n6cMmHS3alGTEREmmVmfYG7gbHAU8Bod1+SPQAYA5wBjCZaja0iAjMjGsEuAubMhhvHwY0e2/Z297934FsR6XQUiImISFFm1oNonPoZ4D/Ah939lRZeNAjYBugLrAZeJhO4mdmlwNnE0pQHuL6IpBtTICYiIkWZ2feBbxCrF41x93+X4ZyDgZeBQcBB7n5PqecU6apUIyYiIgWZ2elEELYW+FQ5gjAAd18MXJp+vSxl3US6JWXERESkCTM7AriZqPE60d2vK/P5+wMvAJsDn3H335bz/CJdhf4vREREGjGzDwPTiCDsvHIHYQDuvhKYlH692Mx6l/saIl2BMmIiIrUuarJG0lA8P5cYHixwqO0A/BUYAvwKOKVSxfRm1ouYhbkDMNHdr6rEdUQ6MwViIiK1JtpJ7EdDO4nBNG682h9YDMwBJgOzcXczGwo8RMx4vAOY4O5rK3yrRxONYd8Etk2ZMpFuQ4GYiEgtMRsPTCEyWhsSw4vFOLACWPgGnLk5fBsYBTwKjHP35ZW/XTPgEWBP4NvufmkLLxGpKQrERERqgdlA4CrgMCLj1SZ1sG4m9PwyzF8M+7j7m2W/xyLM7GPAn4ClwDbuvqijri1SbQrERES6uhhSnANsBfRr72nqAIN5fWHvjl7/0cz+BHwM+IG7fzNvZ6tr3ES6GgViIiJVYma5/wC/Auzo7nUFjpkHDAd6F6zXikzYI8AIoBwzD+uBecRi3B22DqSZ7UW8j7p+sP0q2JY21rh11L2KlJPaV4iIVN/WwJntfO2U9PpytX/oTWTWppTpfK3i7v8Afv8J6PcqPAP8ETgCGJruaWDm0TttPyIdNzfVxol0OQrERESqazGxIPbZZrZpm14ZwccEYsiunPoBEzo0uDEb+Db0nw5sCgOIR3MTDUj7BxAZw+mYTUsZQpEuQ4GYiEh1rQQuIjI957f2RT3MTjwEpm8D/TcANgb2BW4ocvw4ImqpBy4kxv36ATsCv8wcdxXwfmAD6D8MbjOzC4otQWRme5vZdDN708zWmNmrZna1mW3e2veRTjQUeGQIHLBhm17YSH8iQ/ZIOp9Il6AaMRGRKkk1Yq8ThejPEEOM73P3FzLHzKNAjVhPs9W7Qa8PQI9hwEKi8dfrwHeIyC5rHPAAcCTwN+BgYnxvOrAAuBZ4HLgOOIQoyroFfF7Eb2e7+/fy7v1k4BdE8fytwKvA9sSszbeImZevtOJDqIkaN5H2UiAmIlIluUDM3bc0s6OA3wMz3f3IzDHzKBCIPWZ21+5wIJnhuzXAeGA2EYlskbnWOCIQ24voEzEobX8Z2IloODaIqH7PvW4x+HCofweWAcNy10/d95+kIXB6d7KBmR0A3APc6u5HtGKywTQiPizn8GodMBP3Y8t4TpGK0NCkiEgn4O7Tia72R5jZ6JaO3x12J6+Gqg/wZWAtcG+R111GQxAG0UJ/NLAEOI/GwdtgsENhHbBp3q6JNM5evTvZwN3vJTJkh5rZRs2+iVqqcRNpp17VvgEREXnXWcQ6jz8E9il6lNng+TD4+0TA9QqwKu+Q14u8dK8C23IFXXsW2DeiIUjaEpiffv5w5pA6okP/JDPbhKh5Gwr0JNaQLPYejJiZ2ebms63UH5iC2Ui1tpDOTBkxEZFOwt0fIsq29jazTxc77scweg/odRXwXuALRF3Y+cAJ6ZjVRV5baEphr2b2WdRcQeMM2JDMz/2ADYiA7RvpNj6S9g0o9h4+CZccDltsk15cgckGbAFb7wHXVHyygUgJlBETEelcziGG6y41s5mFDvg5nLAI7FrgxLx9NxEF9xWWLYJvabJBwRP8Gb75fuixH5CdbPA54DmaTjbI+QxNJxuckn7OTjY4ALgV7LH4iJ4FWjvZ4AvEsGrrJhuIlEiBmIhIJ+LuL5rZlcBXga8UOmZxGk38VIF9D1Tw3jIeJjOS6e71ZnY2Mdnge0TxfbOegMU7NM6svTvZ4DLgVBoXpeW8QswSyNW5nUVMNvha2vZ45nWTgG3BF8HXzezyvMkGVxFzGsa6+7sjuZnJBj8h2mGIVJSGJkVEOp8Lifr5cykwvLc6MjzMytt+N/CrMt9Ij8ItJX5Gw5BlL2gy2WCcmY0pelKzwTvEaGQj5Z5sMAg4NOrXik02+Go2CEvvo/WTDUTKQBkxEZFOxt0XmdklwPcL7V8BV/SBk44GjiLSY08CdwHHAL8t472sjXkAjfqsuvuzaWjvN8BmZnYb8DzwWjrkT8BLRLKqkJHzYNUPoHelJxu8NwLGvhSebDDWzEYVeFl2ssGjRW5FpCwUiImIdE6TgdOIRqeNuPvjt5rNugLG3U5kkHYDZhBZoDIGYr4w4qSdC9zDDWb2G2KW5AeInmYriJ5jGwO/K3bSq2DkubDREmBMeuFAIvKZR9R5lWuyQeZLrtBkg28Uu8ek6GQDkXJRICYiUiXuXnQtRXdfTRTBF3QYTDosFrxuEiwU6tUwq5n7mJoeBay4Gk692n12My9f7O7Dc7+Y2XbA08DxZnZxoRdcBsd0kskGA919WeUvJ1KcasRERLqm2cRkw0paCDzYlhe4+4vAlUQQWXCywRspI9URkw2K1Lg9nJ6L17GJdBAFYiIiXVE0KZ1IDA1WwkpgYjuboTY72WANvAgdM9lgbdPyM2iYbPDjNIOyETPr0+xkA5EyUiAmItJVud8J3EJ0ty+nOuCWdP42c/dFwCXE2uFDChxyZS9YfzRwPPBNoi/YeGLyQRnlatzy7+9Z4GSi/u4pM7vNzC43s8lm9gfgDRr3iRWpGAViIiJd20SiGWl9Swe2Un0638QSzzOZqL1vwt0fPxO+sg+su51Y52gZMdng1BIvmmfFI9H/tdA93EBMtLyRmGxwOhEXbkf0iT2tvLciUphpCS4RkS7ObCgwB9iKWPmnveqIIGw07gvKcWtFRcv9ucDwlg4twXxAa01Kp6aMmIhIVxdB0yhgJu2vGVtJJKVGVTwIg85e4ybSYZQRExGpJWbjidG+IUQj1qItMohOFyuI2ZET21sTVhKzacRSQqVk8vLVATNxP7aM5xSpCAViIiK1Job9xgBnECsAbULMHnQiMNsAWEQMZ04GHqxa5shsIPAIUThfqNVEW9UTtWmjcF/awrEiVadATESk1pkNIpZl7Es0rX8Z9yXVvamMrljjJlImCsRERKT6IjM2BZgA9G/HGVYCfwBOUyZMuhIFYiIi0nl0tRo3kRIpEBMRkc6lK9W4iZRIgZiIiHRunb3GTaQECsREREREqkQNXUVERESqRIGYiIiISJUoEBMRERGpEgViIiIiIlWiQExERESkShSIiYiIiFSJAjERERGRKlEgJiIiIlIlCsREREREqkSBmIiIiEiVKBATERERqRIFYiIiIiJVokBMREREpEoUiImIiIhUiQIxERERkSpRICYiIiJSJQrERERERKpEgZiIiIhIlSgQExEREakSBWIiIiIiVaJATERERKRKFIiJiIiIVIkCMREREZEqUSAmIiIiUiUKxERERESqRIGYiIiISJUoEBMRERGpEgViIiIiIlWiQExERESkShSIiYiIiFSJAjERERGRKlEgJiIiIlIlCsREREREqkSBmIiIiEiVKBATERERqRIFYiIiIiJVokBMREREpEoUiImIiIhUiQIxERERkSpRICYiIiJSJf8f+2YVaonKVvQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,10))\n", + "pos = nx.spring_layout(G) # positions for all nodes\n", + "# nodes\n", + "nx.draw_networkx_nodes(G, pos, node_size=700)\n", + "# edges\n", + "nx.draw_networkx_edges(G, pos, width=2)\n", + "# labels\n", + "nx.draw_networkx_labels(G, pos, labels=dict(zip(range(emb_len),snippet.loc[1][0].split(' '))), font_size=20, font_family='sans-serif')\n", + "\n", + "plt.axis('off')\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 51, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJCCAYAAAA2m0iOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG/pJREFUeJzt3X+M5Pdd3/HXu76LIwdD7BhMznYJUDdSQOSITge0AYUGfI4VxYBSagsVA6mOUCIRqRUKRQqI/lOKAIkGYRliJaDUWAUMVnHYuAHJIJEfF2vtOMSxHcvIvjM22NQmhPxw+PSPnav21rO+Nzu739ndezyk1c58v9+Zz2e++525p78zu64xRgAAOLt/tuwJAADsFcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE0Hlj2BeS65+LzxiisOTjLWA/deMMk4wP7zL7/ps5ON5bUKdtbn8vf5wvh8nW27XRlOr7jiYD6ycsUkYx07dHiScYD9Z2VldbKxvFbBzvrw+GBrO2/VAQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBpoXCqqqur6lNV9VBVvWPO+vOr6tbZ+g9X1SsWGQ8AYJm2HE5VdV6SX03yhiSvSnJ9Vb1qw2ZvSfK3Y4x/keSXk/z8VscDAFi2Rc44HU3y0Bjj4THGF5L8dpJrN2xzbZL3zi7/TpLXV9VZ/z8wAAC70SLhdFmSR9ddf2y2bO42Y4znkjyT5GULjAkAsDS75sPhVXW8qk5U1Ym/fupLy54OAMDzLBJOJ5Ncse765bNlc7epqgNJviLJU/PubIxx0xjjyBjjyFe+7LwFpgUAsDMWCaePJrmyqr62ql6U5Lokt2/Y5vYkN8wuvznJH48xxgJjAgAszYGt3nCM8VxVvS3JSpLzktw8xvhEVf1ckhNjjNuTvDvJb1XVQ0mezlpcAQDsSVsOpyQZY9yR5I4Ny9657vLnkvzbRcYAANgtds2HwwEAdjvhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANC30BzB3ygP3XpBjhw5PMtbKqdVJxkky2WPa7/zMAM4dU73mHz322dZ2zjgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApgPLnsCyHTt0eLKxVk6tTjZWMu1jm9J+fVyOD4Dnm+q16oHxVGs7Z5wAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKYth1NVXVFVf1JVf1FVn6iqn5izzeuq6pmqWp19vXOx6QIALM+BBW77XJL/NMa4u6ouTPKxqrpzjPEXG7b70zHGGxcYBwBgV9jyGacxxuNjjLtnl/8uySeTXLZdEwMA2G225TNOVfWKJN+c5MNzVn9bVd1TVe+vqm/YjvEAAJZhkbfqkiRV9WVJfjfJ28cYz25YfXeSrxljfKaqrkny+0mu3OR+jic5niQvzgWLTmtXOnbo8KTjrZxanWysqR/bVOxDdospj8XE8QibWeiMU1UdzFo0vW+M8Xsb148xnh1jfGZ2+Y4kB6vqknn3Nca4aYxxZIxx5GDOX2RaAAA7YpHfqqsk707yyTHGL22yzVfPtktVHZ2N99RWxwQAWKZF3qr710n+fZKPV9Xpc8j/Jck/T5Ixxo1J3pzkx6rquST/kOS6McZYYEwAgKXZcjiNMf4sSZ1lm3cleddWxwAA2E385XAAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNB5Y9AXbOsUOHJxtr5dTqZGNN+bimHGs/26/Hx5T26+OCvcYZJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANB0YNkTWLaVU6uTjXXs0OHJxpralI/Nzwxguc7l12FnnAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJoWDqeqeqSqPl5Vq1V1Ys76qqpfqaqHqureqnrNomMCACzDdv0vV75zjPE3m6x7Q5IrZ1/fkuTXZt8BAPaUKd6quzbJb441H0ry0qp6+QTjAgBsq+0Ip5HkA1X1sao6Pmf9ZUkeXXf9sdkyAIA9ZTveqnvtGONkVX1Vkjur6v4xxl3/1DuZRdfxJHlxLtiGaQEAbK+FzziNMU7Ovj+Z5LYkRzdscjLJFeuuXz5btvF+bhpjHBljHDmY8xedFgDAtlsonKrqJVV14enLSa5Kct+GzW5P8oOz36771iTPjDEeX2RcAIBlWPStukuT3FZVp+/rf44x/qiq3pokY4wbk9yR5JokDyX5bJIfXnBMAIClWCicxhgPJ3n1nOU3rrs8kvz4IuMAAOwG/nI4AECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJq243/yu6cdO3R42VPYMSunVicba8r9OOVY+3UfTm0/PzbYDaZ8rUrO7ee0M04AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCg6cCyJ3AuWTm1Oul4xw4dnnS8/WjKfTj18TElxyLnoimf055j03HGCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBo2nI4VdUrq2p13dezVfX2Ddu8rqqeWbfNOxefMgDAchzY6g3HGJ9KcjhJquq8JCeT3DZn0z8dY7xxq+MAAOwW2/VW3euTfHqM8ZfbdH8AALvOdoXTdUlu2WTdt1XVPVX1/qr6hm0aDwBgclt+q+60qnpRkjcl+ak5q+9O8jVjjM9U1TVJfj/JlZvcz/Ekx5Pkxblg0WntSscOHV72FAB2nZVTq5ONNeXrsNf8/Wk7zji9IcndY4wnNq4YYzw7xvjM7PIdSQ5W1SXz7mSMcdMY48gY48jBnL8N0wIA2F7bEU7XZ5O36arqq6uqZpePzsZ7ahvGBACY3EJv1VXVS5J8d5IfXbfsrUkyxrgxyZuT/FhVPZfkH5JcN8YYi4wJALAsC4XTGOPvk7xsw7Ib111+V5J3LTIGAMBu4S+HAwA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaDqw7AmwP6ycWl32FHbEsUOH9+VYU5vy+NjP+3G/mvJn5lhkUc44AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKYDy54A+8OxQ4eXPQV2sSmPj5VTq5ONxd7jtYpFOeMEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQ1Aqnqrq5qp6sqvvWLbu4qu6sqgdn3y/a5LY3zLZ5sKpu2K6JAwBMrXvG6T1Jrt6w7B1JPjjGuDLJB2fXz1BVFyf5mSTfkuRokp/ZLLAAAHa7VjiNMe5K8vSGxdcmee/s8nuTfM+cmx5LcucY4+kxxt8muTPPDzAAgD1hkc84XTrGeHx2+a+SXDpnm8uSPLru+mOzZQAAe862fDh8jDGSjEXuo6qOV9WJqjrxxXx+O6YFALCtFgmnJ6rq5Uky+/7knG1OJrli3fXLZ8ueZ4xx0xjjyBjjyMGcv8C0AAB2xiLhdHuS078ld0OSP5izzUqSq6rqotmHwq+aLQMA2HO6f47gliR/nuSVVfVYVb0lyX9L8t1V9WCS75pdT1UdqarfSJIxxtNJ/muSj86+fm62DABgzznQ2WiMcf0mq14/Z9sTSf7Duus3J7l5S7MDANhF/OVwAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADTV2v+fd3c58uoXj4+sXHH2DQEAtsHRY4/mxD2fq7Nt54wTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaDqw7AnM88C9F+TYocPLnsaet3JqdbKx/Lw4F035HJua5zQvZD/++/LAeKq1nTNOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAEDTWcOpqm6uqier6r51y36hqu6vqnur6raqeukmt32kqj5eVatVdWI7Jw4AMLXOGaf3JLl6w7I7k3zjGOObkjyQ5Kde4PbfOcY4PMY4srUpAgDsDmcNpzHGXUme3rDsA2OM52ZXP5Tk8h2YGwDArrIdn3H6kSTv32TdSPKBqvpYVR3fhrEAAJbmwCI3rqqfTvJckvdtsslrxxgnq+qrktxZVffPzmDNu6/jSY4nyYtzwSLTYubYocPLngKwTaZ+Pq+cWp1sLK9Vi5vy55Wc2z+zLZ9xqqofSvLGJD8wxhjzthljnJx9fzLJbUmObnZ/Y4ybxhhHxhhHDub8rU4LAGDHbCmcqurqJD+Z5E1jjM9uss1LqurC05eTXJXkvnnbAgDsBZ0/R3BLkj9P8sqqeqyq3pLkXUkuzNrbb6tVdeNs20NVdcfsppcm+bOquifJR5L84Rjjj3bkUQAATOCsn3EaY1w/Z/G7N9n2VJJrZpcfTvLqhWYHALCL+MvhAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmg4sewLAcqycWp1srGOHDk82Fttjyp+ZY3Fx+/Vx7UbOOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAICmA8ueALAcxw4dnmyslVOrk4015eNiezgW2UuccQIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGg6azhV1c1V9WRV3bdu2c9W1cmqWp19XbPJba+uqk9V1UNV9Y7tnDgAwNQ6Z5zek+TqOct/eYxxePZ1x8aVVXVekl9N8oYkr0pyfVW9apHJAgAs01nDaYxxV5Knt3DfR5M8NMZ4eIzxhSS/neTaLdwPAMCusMhnnN5WVffO3sq7aM76y5I8uu76Y7Nlc1XV8ao6UVUnvpjPLzAtAICdsdVw+rUkX5/kcJLHk/ziohMZY9w0xjgyxjhyMOcvencAANtuS+E0xnhijPGlMcY/Jvn1rL0tt9HJJFesu375bBkAwJ60pXCqqpevu/q9Se6bs9lHk1xZVV9bVS9Kcl2S27cyHgDAbnDgbBtU1S1JXpfkkqp6LMnPJHldVR1OMpI8kuRHZ9seSvIbY4xrxhjPVdXbkqwkOS/JzWOMT+zIowAAmMBZw2mMcf2cxe/eZNtTSa5Zd/2OJM/7UwUAAHuRvxwOANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKaz/gFMYBorp1YnHe/YocP7cix4IVMei1M+p6d+ju3nx3Y2zjgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApgPLngDsZiunVicb69ihw5ONBWfj2F/clI9ryp9Xsn9/Zh3OOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATQfOtkFV3ZzkjUmeHGN842zZrUleOdvkpUn+7xjj8JzbPpLk75J8KclzY4wj2zRvAIDJnTWckrwnybuS/ObpBWOMf3f6clX9YpJnXuD23znG+JutThAAYLc4aziNMe6qqlfMW1dVleT7k/yb7Z0WAMDus+hnnL49yRNjjAc3WT+SfKCqPlZVx1/ojqrqeFWdqKoTX8znF5wWAMD267xV90KuT3LLC6x/7RjjZFV9VZI7q+r+McZd8zYcY9yU5KYk+fK6eCw4L/axlVOrk4117NDzProHSzHlcZ849rfDfn6t2s+P7Wy2fMapqg4k+b4kt262zRjj5Oz7k0luS3J0q+MBACzbIm/VfVeS+8cYj81bWVUvqaoLT19OclWS+xYYDwBgqc4aTlV1S5I/T/LKqnqsqt4yW3VdNrxNV1WHquqO2dVLk/xZVd2T5CNJ/nCM8UfbN3UAgGl1fqvu+k2W/9CcZaeSXDO7/HCSVy84PwCAXcNfDgcAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANBUY4xlz+F5vrwuHt9Sr59krJVTq5OMkyTHDh2ebCxg53n9gJ031fPs6LFHc+Kez9XZtnPGCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADTVGGPZc3ieqvrrJH/5T7zZJUn+Zgems1fZH2eyP85kf5zJ/jiT/XEm++NM+3V/fM0Y4yvPttGuDKetqKoTY4wjy57HbmF/nMn+OJP9cSb740z2x5nsjzOd6/vDW3UAAE3CCQCgaT+F003LnsAuY3+cyf44k/1xJvvjTPbHmeyPM53T+2PffMYJAGCn7aczTgAAO2rPhVNVXV1Vn6qqh6rqHXPWn19Vt87Wf7iqXjH9LKdRVVdU1Z9U1V9U1Seq6ifmbPO6qnqmqlZnX+9cxlynUlWPVNXHZ4/1xJz1VVW/Mjs+7q2q1yxjnlOoqleu+7mvVtWzVfX2Ddvs6+Ojqm6uqier6r51yy6uqjur6sHZ94s2ue0Ns20erKobppv1ztlkf/xCVd0/ez7cVlUv3eS2L/jc2os22R8/W1Un1z0nrtnkti/4b9FetMn+uHXdvnikqlY3ue2+Oz42NcbYM19Jzkvy6SRfl+RFSe5J8qoN2/zHJDfOLl+X5NZlz3sH98fLk7xmdvnCJA/M2R+vS/K/lz3XCffJI0kueYH11yR5f5JK8q1JPrzsOU+0X85L8ldZ+zsl58zxkeQ7krwmyX3rlv33JO+YXX5Hkp+fc7uLkzw8+37R7PJFy348O7Q/rkpyYHb55+ftj9m6F3xu7cWvTfbHzyb5z2e53Vn/LdqLX/P2x4b1v5jknefK8bHZ114743Q0yUNjjIfHGF9I8ttJrt2wzbVJ3ju7/DtJXl9VNeEcJzPGeHyMcffs8t8l+WSSy5Y7q13v2iS/OdZ8KMlLq+rly57UBF6f5NNjjH/qH5bd08YYdyV5esPi9a8R703yPXNueizJnWOMp8cYf5vkziRX79hEJzJvf4wxPjDGeG529UNJLp98YkuyyfHR0fm3aM95of0x+3f0+5PcMumkdqG9Fk6XJXl03fXH8vxQ+P/bzF4Mnknysklmt0SztyS/OcmH56z+tqq6p6reX1XfMOnEpjeSfKCqPlZVx+es7xxD+9F12fwF71w6PpLk0jHG47PLf5Xk0jnbnKvHyY9k7YzsPGd7bu0nb5u9dXnzJm/lnovHx7cneWKM8eAm68+Z42OvhRNzVNWXJfndJG8fYzy7YfXdWXt75tVJ/keS3596fhN77RjjNUnekOTHq+o7lj2hZauqFyV5U5L/NWf1uXZ8nGGsvcfgV4uTVNVPJ3kuyfs22eRceW79WpKvT3I4yeNZe3uK5Pq88Nmmc+X42HPhdDLJFeuuXz5bNnebqjqQ5CuSPDXJ7Jagqg5mLZreN8b4vY3rxxjPjjE+M7t8R5KDVXXJxNOczBjj5Oz7k0luy9op9fU6x9B+84Ykd48xnti44lw7PmaeOP327Oz7k3O2OaeOk6r6oSRvTPIDs5h8nsZza18YYzwxxvjSGOMfk/x65j/Oc+34OJDk+5Lcutk258rxkey9cPpokiur6mtn/xV9XZLbN2xze5LTvwHz5iR/vNkLwV43e8/53Uk+Ocb4pU22+erTn/GqqqNZ+5nvy5CsqpdU1YWnL2ftQ6/3bdjs9iQ/OPvtum9N8sy6t232q03/S/FcOj7WWf8acUOSP5izzUqSq6rqotlbNVfNlu07VXV1kp9M8qYxxmc32abz3NoXNnzm8Xsz/3F2/i3aT74ryf1jjMfmrTyXjo8ke+u36mb9c03Wfnvs00l+erbs57L2pE+SF2ftLYmHknwkydcte847uC9em7W3Ge5Nsjr7uibJW5O8dbbN25J8Imu/9fGhJP9q2fPewf3xdbPHec/sMZ8+Ptbvj0ryq7Pj5+NJjix73ju8T16StRD6inXLzpnjI2vB+HiSL2btcyhvydpnHj+Y5MEk/yfJxbNtjyT5jXW3/ZHZ68hDSX542Y9lB/fHQ1n7vM7p15DTv5V8KMkds8tzn1t7/WuT/fFbs9eGe7MWQy/fuD9m15/3b9Fe/5q3P2bL33P6NWPdtvv++Njsy18OBwBo2mtv1QEALI1wAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmv4fv36SWS5yKqcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJCCAYAAAA2m0iOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHBRJREFUeJzt3X+M7fVd5/HXe7kUQmUtFMVeYK262KQaGZubq+5WU7eVS0lT1HRdiFlRu7nWtYlNdmPqmlTj/rOuURO3RoItaTVdJKuiZKVO2WqCJpb2lgyUWgqUYMq9CBVcsKKt1M/+Medu5g5n7rw7Z+ac+fF4JCdzzvf7Pef7Od/5nnOffL9nDjXGCAAAm/tnix4AAMBeIZwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0HRo0QOY5pKLzxmvvOLcRQ9j2z10/wWLHgIsxDd+y/NzW5fXGQfRPF9j8zav1/Q/5O/yxfGF2my52o3/y5UjV50/Prp8xaKHse2OHV5a9BBgIZZPrcxtXV5nHETzfI3N27xe0/eMD+e58cym4eRUHQBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACaZgqnqrqmqj5dVY9U1TunzD+vqm6bzL+nql45y/oAABZpy+FUVeck+bUkb0zy6iQ3VNWr1y321iR/M8b4l0l+JckvbHV9AACLNssRp6NJHhljPDrG+GKS305y3bplrkvy/sn130ny+qra9OvMAQB2o1nC6bIkn11z+/HJtKnLjDFeSPJskpfPsE4AgIXZNR8Or6rjVXWiqk587ukvLXo4AAAvMks4nUxyxZrbl0+mTV2mqg4l+cokT097sDHGzWOMI2OMI1/18nNmGBYAwM6YJZw+luTKqvq6qnpJkuuT3LFumTuS3Di5/pYkfzzGGDOsEwBgYQ5t9Y5jjBeq6u1JlpOck+SWMcYnq+rnk5wYY9yR5L1JfquqHknyTFbjCgBgT9pyOCXJGOPOJHeum/auNdf/Icm/nWUdAAC7xa75cDgAwG4nnAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgKaZvgAToOPY4aVFD4FdbPnUytzWZV/cHgd5OzriBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJoOLXoA0zx0/wU5dnhp0cPYdsunVua6vv24DWEz83ydeY1tD9uRvcQRJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgacvhVFVXVNWfVNVfVNUnq+onpyzzuqp6tqpWJpd3zTZcAIDFOTTDfV9I8p/GGPdW1YVJPl5Vd40x/mLdcn86xnjTDOsBANgVtnzEaYzxxBjj3sn1v03yqSSXbdfAAAB2m235jFNVvTLJtya5Z8rs76iq+6rqg1X1TduxPgCARZjlVF2SpKq+IsnvJnnHGOO5dbPvTfK1Y4zPV9W1SX4/yZUbPM7xJMeT5PxcMOuwdqVjh5fmur7lUytzW9e8nxtsxL7I2Xhf3B4HeTvOdMSpqs7NajR9YIzxe+vnjzGeG2N8fnL9ziTnVtUl0x5rjHHzGOPIGOPIuTlvlmEBAOyIWf6qrpK8N8mnxhi/vMEyXzNZLlV1dLK+p7e6TgCARZrlVN2/TvLvk3yiqk4fs/svSf5FkowxbkryliQ/XlUvJPn7JNePMcYM6wQAWJgth9MY48+S1CbLvDvJu7e6DgCA3cQ3hwMANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGg6tOgBsHOOHV6a27qWT63MbV3zfF5wUO3X1/R+fV9kfhxxAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE01xlj0GF7kn9fF49vq9YseBrvU8qmVua3r2OGlua0LDiqv6dnNcxsm+3M73jM+nOfGM7XZco44AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANM0cTlX1WFV9oqpWqurElPlVVb9aVY9U1f1V9ZpZ1wkAsAiHtulxvnuM8dcbzHtjkisnl29L8uuTnwAAe8o8TtVdl+Q3x6qPJHlZVb1iDusFANhW2xFOI8mHqurjVXV8yvzLknx2ze3HJ9MAAPaU7ThV99oxxsmq+uokd1XVg2OMu7/cB5lE1/EkOT8XbMOwAAC218xHnMYYJyc/n0pye5Kj6xY5meSKNbcvn0xb/zg3jzGOjDGOnJvzZh0WAMC2mymcquqlVXXh6etJrk7ywLrF7kjyQ5O/rvv2JM+OMZ6YZb0AAIsw66m6S5PcXlWnH+t/jjH+qKreliRjjJuS3Jnk2iSPJHk+yY/MuE4AgIWYKZzGGI8muWrK9JvWXB9JfmKW9QAA7Aa+ORwAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATdvxP/mFuTp2eGlu61o+tTK3dc3zecFuYt9nL3HECQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQdWvQAYDc7dnhpbutaPrUyt3Ul+/e5eV7ATnLECQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBo2nI4VdWrqmplzeW5qnrHumVeV1XPrlnmXbMPGQBgMQ5t9Y5jjE8nWUqSqjonyckkt09Z9E/HGG/a6noAAHaL7TpV9/oknxlj/OU2PR4AwK6zXeF0fZJbN5j3HVV1X1V9sKq+aZvWBwAwd1s+VXdaVb0kyZuT/PSU2fcm+doxxuer6tokv5/kyg0e53iS40lyfi6YdViw5xw7vDTX9S2fWpnbuub93ID9Y17vVUePPd9abjuOOL0xyb1jjCfXzxhjPDfG+Pzk+p1Jzq2qS6Y9yBjj5jHGkTHGkXNz3jYMCwBge21HON2QDU7TVdXXVFVNrh+drO/pbVgnAMDczXSqrqpemuR7kvzYmmlvS5Ixxk1J3pLkx6vqhSR/n+T6McaYZZ0AAIsyUziNMf4uycvXTbtpzfV3J3n3LOsAANgtfHM4AECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApkOLHsA03/gtz2d5eWUu6zp2eGku64HNLJ+azz5/2jz3/Xk+t3k+L+8fsPPm9Tp7aDzdWs4RJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANB0aNEDmOah+y/IscNLix7Gtls+tTLX9e3Hbbif7eff1zyf2zxfZ/v5dzZPfmfsJY44AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANLXCqapuqaqnquqBNdMurqq7qurhyc+LNrjvjZNlHq6qG7dr4AAA89Y94vS+JNesm/bOJB8eY1yZ5MOT22eoqouT/GySb0tyNMnPbhRYAAC7XSucxhh3J3lm3eTrkrx/cv39Sb53yl2PJblrjPHMGONvktyVFwcYAMCeMMtnnC4dYzwxuf5XSS6dssxlST675vbjk2kAAHvOtnw4fIwxkoxZHqOqjlfViao68Y/5wnYMCwBgW80STk9W1SuSZPLzqSnLnExyxZrbl0+mvcgY4+YxxpExxpFzc94MwwIA2BmzhNMdSU7/ldyNSf5gyjLLSa6uqosmHwq/ejINAGDP6X4dwa1J/jzJq6rq8ap6a5L/luR7qurhJG+Y3E5VHamq9yTJGOOZJP81yccml5+fTAMA2HMOdRYaY9ywwazXT1n2RJL/sOb2LUlu2dLoAAB2Ed8cDgDQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAICm1hdgsj2OHV5a9BDYxZZPrSx6CDtmnvv+PNc1z9/Zfn7/2M/Pjf3HEScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQdGjRAwBWHTu8tOgh8GWa5+9s+dTK3NaV2B9hI444AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNm4ZTVd1SVU9V1QNrpv1iVT1YVfdX1e1V9bIN7vtYVX2iqlaq6sR2DhwAYN46R5zel+SaddPuSvLNY4xvSfJQkp8+y/2/e4yxNMY4srUhAgDsDpuG0xjj7iTPrJv2oTHGC5ObH0ly+Q6MDQBgV9mOzzj9aJIPbjBvJPlQVX28qo5vw7oAABbm0Cx3rqqfSfJCkg9ssMhrxxgnq+qrk9xVVQ9OjmBNe6zjSY4nyfm5YJZhsQDLp1bmtq5jh5fmti7YLea933tNw3RbPuJUVT+c5E1JfnCMMaYtM8Y4Ofn5VJLbkxzd6PHGGDePMY6MMY6cm/O2OiwAgB2zpXCqqmuS/FSSN48xnt9gmZdW1YWnrye5OskD05YFANgLOl9HcGuSP0/yqqp6vKremuTdSS7M6um3laq6abLs4aq6c3LXS5P8WVXdl+SjSf5wjPFHO/IsAADmYNPPOI0xbpgy+b0bLHsqybWT648muWqm0QEA7CK+ORwAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAEDToUUPYNGWT63MbV3HDi/NbV3zNs/n5nfG2dg/tofXNEzniBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoOrToASzascNLix7Cjlk+tTK3dc1zO+7n3xmzs3/sPfP8ne3X90XmxxEnAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCApk3DqapuqaqnquqBNdN+rqpOVtXK5HLtBve9pqo+XVWPVNU7t3PgAADz1jni9L4k10yZ/itjjKXJ5c71M6vqnCS/luSNSV6d5IaqevUsgwUAWKRNw2mMcXeSZ7bw2EeTPDLGeHSM8cUkv53kui08DgDArjDLZ5zeXlX3T07lXTRl/mVJPrvm9uOTaVNV1fGqOlFVJ/4xX5hhWAAAO2Or4fTrSb4hyVKSJ5L80qwDGWPcPMY4MsY4cm7Om/XhAAC23ZbCaYzx5BjjS2OMf0ryG1k9LbfeySRXrLl9+WQaAMCetKVwqqpXrLn5fUkemLLYx5JcWVVfV1UvSXJ9kju2sj4AgN3g0GYLVNWtSV6X5JKqejzJzyZ5XVUtJRlJHkvyY5NlDyd5zxjj2jHGC1X19iTLSc5JcssY45M78iwAAOZg03AaY9wwZfJ7N1j2VJJr19y+M8mLvqoAAGAv8s3hAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGja9Asw2buOHV6a27qWT63MbV3zfF7A/rJf3xeZH0ecAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQFONMRY9hhc5ctX546PLVyx6GADAAXH02Gdz4r5/qM2Wc8QJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGg6tNkCVXVLkjcleWqM8c2TabcledVkkZcl+b9jjKUp930syd8m+VKSF8YYR7Zp3AAAc7dpOCV5X5J3J/nN0xPGGP/u9PWq+qUkz57l/t89xvjrrQ4QAGC32DScxhh3V9Urp82rqkryA0n+zfYOCwBg95n1M07fmeTJMcbDG8wfST5UVR+vquNne6CqOl5VJ6rqxOee/tKMwwIA2H6dU3Vnc0OSW88y/7VjjJNV9dVJ7qqqB8cYd09bcIxxc5Kbk+TIVeePGcfVduzwiz6atW8sn1pZ9BB2xH7+nQFsxX59v0/m957/0Hi6tdyWjzhV1aEk35/kto2WGWOcnPx8KsntSY5udX0AAIs2y6m6NyR5cIzx+LSZVfXSqrrw9PUkVyd5YIb1AQAs1KbhVFW3JvnzJK+qqser6q2TWddn3Wm6qjpcVXdObl6a5M+q6r4kH03yh2OMP9q+oQMAzFfnr+pu2GD6D0+ZdirJtZPrjya5asbxAQDsGr45HACgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQNOhRQ9gmofuvyDHDi8tehh7nm3I2SyfWpnbuuyLsL/M8zU9r/eqo8eeby3niBMAQJNwAgBoEk4AAE3CCQCgSTgBADQJJwCAJuEEANAknAAAmoQTAECTcAIAaBJOAABNwgkAoEk4AQA0CScAgCbhBADQJJwAAJqEEwBAk3ACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACahBMAQJNwAgBoqjHGosfwIlX1uSR/+WXe7ZIkf70Dw9mrbI8z2R5nsj3OZHucyfY4k+1xpv26Pb52jPFVmy20K8NpK6rqxBjjyKLHsVvYHmeyPc5ke5zJ9jiT7XEm2+NMB317OFUHANAknAAAmvZTON286AHsMrbHmWyPM9keZ7I9zmR7nMn2ONOB3h775jNOAAA7bT8dcQIA2FF7Lpyq6pqq+nRVPVJV75wy/7yqum0y/56qeuX8RzkfVXVFVf1JVf1FVX2yqn5yyjKvq6pnq2plcnnXIsY6L1X1WFV9YvJcT0yZX1X1q5P94/6qes0ixjkPVfWqNb/3lap6rqresW6Zfb1/VNUtVfVUVT2wZtrFVXVXVT08+XnRBve9cbLMw1V14/xGvXM22B6/WFUPTl4Pt1fVyza471lfW3vRBtvj56rq5JrXxLUb3Pes/xbtRRtsj9vWbIvHqmplg/vuu/1jQ2OMPXNJck6SzyT5+iQvSXJfklevW+Y/Jrlpcv36JLctetw7uD1ekeQ1k+sXJnloyvZ4XZL/veixznGbPJbkkrPMvzbJB5NUkm9Pcs+ixzyn7XJOkr/K6veUHJj9I8l3JXlNkgfWTPvvSd45uf7OJL8w5X4XJ3l08vOiyfWLFv18dmh7XJ3k0OT6L0zbHpN5Z31t7cXLBtvj55L8503ut+m/RXvxMm17rJv/S0nedVD2j40ue+2I09Ekj4wxHh1jfDHJbye5bt0y1yV5/+T67yR5fVXVHMc4N2OMJ8YY906u/22STyW5bLGj2vWuS/KbY9VHkrysql6x6EHNweuTfGaM8eV+seyeNsa4O8kz6yavfY94f5LvnXLXY0nuGmM8M8b4myR3JblmxwY6J9O2xxjjQ2OMFyY3P5Lk8rkPbEE22D86Ov8W7Tln2x6Tf0d/IMmtcx3ULrTXwumyJJ9dc/vxvDgU/v8ykzeDZ5O8fC6jW6DJKclvTXLPlNnfUVX3VdUHq+qb5jqw+RtJPlRVH6+q41Pmd/ah/ej6bPyGd5D2jyS5dIzxxOT6XyW5dMoyB3U/+dGsHpGdZrPX1n7y9smpy1s2OJV7EPeP70zy5Bjj4Q3mH5j9Y6+FE1NU1Vck+d0k7xhjPLdu9r1ZPT1zVZL/keT35z2+OXvtGOM1Sd6Y5Ceq6rsWPaBFq6qXJHlzkv81ZfZB2z/OMFbPMfjT4iRV9TNJXkjygQ0WOSivrV9P8g1JlpI8kdXTUyQ35OxHmw7K/rHnwulkkivW3L58Mm3qMlV1KMlXJnl6LqNbgKo6N6vR9IExxu+tnz/GeG6M8fnJ9TuTnFtVl8x5mHMzxjg5+flUktuzekh9rc4+tN+8Mcm9Y4wn1884aPvHxJOnT89Ofj41ZZkDtZ9U1Q8neVOSH5zE5Is0Xlv7whjjyTHGl8YY/5TkNzL9eR60/eNQku9PcttGyxyU/SPZe+H0sSRXVtXXTf4r+vokd6xb5o4kp/8C5i1J/nijN4K9bnLO+b1JPjXG+OUNlvma05/xqqqjWf2d78uQrKqXVtWFp69n9UOvD6xb7I4kPzT567pvT/LsmtM2+9WG/6V4kPaPNda+R9yY5A+mLLOc5OqqumhyqubqybR9p6quSfJTSd48xnh+g2U6r619Yd1nHr8v059n59+i/eQNSR4cYzw+beZB2j+S7K2/qpv0z7VZ/euxzyT5mcm0n8/qiz5Jzs/qKYlHknw0ydcvesw7uC1em9XTDPcnWZlcrk3ytiRvmyzz9iSfzOpffXwkyb9a9Lh3cHt8/eR53jd5zqf3j7Xbo5L82mT/+USSI4se9w5vk5dmNYS+cs20A7N/ZDUYn0jyj1n9HMpbs/qZxw8neTjJ/0ly8WTZI0nes+a+Pzp5H3kkyY8s+rns4PZ4JKuf1zn9HnL6r5IPJ7lzcn3qa2uvXzbYHr81eW+4P6sx9Ir122Ny+0X/Fu31y7TtMZn+vtPvGWuW3ff7x0YX3xwOANC0107VAQAsjHACAGgSTgAATcIJAKBJOAEANAknAIAm4QQA0CScAACa/h92jpmsDqnW8gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1817,7 +2801,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -1826,22 +2810,22 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 53, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGNhJREFUeJzt3V2s7Wdd4PHvb0oLgi+lyDQMrQMTO5JeSDEnDERiFKKiEuHCEI2TNIakN84EEycOemOcaDLeqFwYkwbQXqhAqggxxkoqRuemWAQRqCNIILS2lBEIvmTKi89c7MV4rKesdfbea7+c8/kkZK+3/V/P/re7+fKstX571loBAFzt/s1pLwAA4CwQRQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqnrSST7Z199wzXrOzdc+4f1/9f6nnuBqrg7/8Zv/cetjnHcArlT/t3/o8+ux2eWxR4qimXl59frqmuoNa63/+ZUe/5ybr+3d99z8hPd/97+77SjL4RLuued9Wx/jvANwpbpv3bvzYw/98tnMXFP9cvU91a3VD83MrYc9HgDAaTrKe4peWH1krfXRtdbnqzdXrzyeZQEAnKyjRNGzq09cdP3BzW3/wszcMTP3z8z9n/rbLx3h6QAA9mfvnz5ba9251rqw1rrwzGdcs++nAwA4lKNE0UPVxe+avmlzGwDAuXOUKPrT6paZee7MXFf9YPWO41kWAMDJOvRH8tdaX5yZ/1Ld08FH8t+01vrgV/qev3r/U7/ix7/v+Zuz8fHxs7IOjp9/tgA8kSPNKVpr/V71e8e0FgCAU+PPfAAAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAADVEecUHbddhuZtG753HIP3juMYhgSeTc45AE/EThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQnbE5RbvYNmfmpOYDncS8pJNyJf0sAHBYdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFTncHjjNrsMGjyOYYUnMdDwpAZRGs4IAHaKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjO2JyiszKX56TWwfE7jhlUAFyd7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKjO2PDG4xisdxyDF3dZx0kMCTRo8F8yVBOAfbJTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFRnbE7RLk5iPtAutj3PLjN1jvocV5qz8s8WgKuTnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAANU5HN5ogN/ZdByDF/2zBeA02SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqnM4p+g4bJups4ttM3WOY+bOLus8K7N9tq3jPP0sAFyd7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKiu0uGN52VI4C7rPI5BlCfhvJxzAK5eW3eKZuZNM/PozHzgottumJl3zsyHN1+fvt9lAgDs1y4vn/1a9fLH3fa66t611i3VvZvrAADn1tYoWmv9cfXpx938yuquzeW7qlcd87oAAE7UYd9TdONa6+HN5UeqG5/ogTNzR3VH1VN66iGfDgBgv4786bO11qrWV7j/zrXWhbXWhWt78lGfDgBgLw4bRZ+cmWdVbb4+enxLAgA4eYeNondUt28u3169/XiWAwBwOubg1a+v8ICZ36y+vfr66pPVT1e/U721+obq49Wr11qPfzP2v3Lh+U9Z777n5iMuGfbLTCWAK8d9694+tz49uzx26xut11o/9AR3veyyVgUAcIb5Mx8AAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAdfg/CHsof/X+p+59MN49f/O+rY+5mobz7XI+tjlP52vbz3uefhYATpadIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKA64TlFJ8Ecmsu37ZydldlPZ2UdAFyZ7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKiuwOGN58m2YYRnZRDhLus4iZ/lrJwPAK5MdooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypyiU7Vt7s622T+7HOOkXEk/CwBXJztFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxv35jiGFV5Jwwx3+Vm2nbOTOgYAVyc7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlTtGhXU3zcI5j5tIuth3jpNYBwNXJThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwxku62oYEnpVBlMexjrPyswBw/tgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAAKozNqforMwHutpm2ZyVn/c41rHtGGfl3zEAzh47RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqpq11ok92dfODes/zctO7PngMLYNeDTcEeD8uG/d2+fWp2eXx27dKZqZm2fmXTPzoZn54My8dnP7DTPzzpn58Obr04+6cACA07LLy2dfrH58rXVr9aLqR2fm1up11b1rrVuqezfXAQDOpa1RtNZ6eK31Z5vLf1c9UD27emV11+Zhd1Wv2tciAQD27bL+IOzMPKd6QXVfdeNa6+HNXY9UNz7B99xR3VH1lJ562HUCAOzVzp8+m5mvrn6r+rG11ucuvm8dvFv7ku/YXmvduda6sNa6cG1PPtJiAQD2ZacomplrOwiiX19r/fbm5k/OzLM29z+renQ/SwQA2L9dPn021RurB9Zav3DRXe+obt9cvr16+/EvDwDgZGydUzQzL6n+pPqL6p82N/9UB+8remv1DdXHq1evtT79lY5lThFXgm1zjMosI4Cz4nLmFG19o/Va639VT3QwhQMAXBH8mQ8AgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgusw/CAvsNphx24BHwx0Bzh47RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThHsxbY5RNvmGO1yDACOl50iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y1wKnYZzLhtwKPhjgDHy04RAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUJlTBGfWtjlE2+YY7XIMAP6ZnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjXBu7TKYcduAR8MdAf6ZnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgMqcIrmjb5hBtm2O0yzEArhR2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVIY3wlVtl8GM2wY8Gu4IXCnsFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUXAFtvmEG2bY7TLMQDOAjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxuBI9plMOO2AY+GOwJnwdadopl5ysy8e2b+fGY+ODM/s7n9uTNz38x8ZGbeMjPX7X+5AAD7scvLZ49VL11rPb+6rXr5zLyo+vnqF9da31h9pnrN/pYJALBfW6NoHfj7zdVrN/9b1Uuruze331W9ai8rBAA4ATu90XpmrpmZ91WPVu+s/rr67Frri5uHPFg9+wm+946ZuX9m7v9Cjx3HmgEAjt1OUbTW+tJa67bqpuqF1fN2fYK11p1rrQtrrQvX9uRDLhMAYL8u6yP5a63PVu+qXlxdPzNf/vTaTdVDx7w2AIATs8unz545M9dvLn9V9Z3VAx3E0Q9sHnZ79fZ9LRIAYN92mVP0rOqumbmmg4h661rrd2fmQ9WbZ+Znq/dWb9zjOoFzbNscom1zjHY5BsBRbY2itdb7qxdc4vaPdvD+IgCAc8+f+QAASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq3YY3AuzVLoMZtw14NNwROCo7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThFwTmybQ7RtjtEuxwCubnaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUhjcCV4hdBjNuG/BouCNc3ewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJU5RcBVZNscom1zjHY5BnB+2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3gjw/+0ymHHbgEfDHeH8slMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAVyWbXOIts0x2uUYwOmwUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDK8EeBY7TKYcduAR8Md4XTYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqc4oATty2OUTb5hjtcgzg8tkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQGd4IcObsMphx24BHwx3h8u28UzQz18zMe2fmdzfXnzsz983MR2bmLTNz3f6WCQCwX5fz8tlrqwcuuv7z1S+utb6x+kz1muNcGADASdopimbmpur7qjdsrk/10uruzUPuql61jwUCAJyEXXeKfqn6ieqfNtefUX12rfXFzfUHq2df6htn5o6ZuX9m7v9Cjx1psQAA+7I1imbmFdWja633HOYJ1lp3rrUurLUuXNuTD3MIAIC92+XTZ99aff/MfG/1lOprq9dX18/Mkza7RTdVD+1vmQAA+7V1p2it9ZNrrZvWWs+pfrD6w7XWD1fvqn5g87Dbq7fvbZUAAHt2lDlF/71688z8bPXe6o3HsyQAttk2h2jbHKNdjgFXm8uKorXWH1V/tLn80eqFx78kAICT5898AAAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANXRhjcCcEbtMphx24BHwx252tgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigCuWtvmEG2bY7TLMeA8sVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAyvBGAJ7DLYMZtAx4Nd+Q8sVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAXAE2+YQbZtjtMsx4KTYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCMAe7TKYcduAR8MdOSl2igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIATtm2OUTb5hjtcgzYhZ0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0AnHG7DGbcNuDRcEd2YacIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAuAKsG0O0bY5RrscgyufnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQBcBXYZzLhtwKPhjle+naJoZj5W/V31peqLa60LM3ND9ZbqOdXHqlevtT6zn2UCAOzX5bx89h1rrdvWWhc2119X3bvWuqW6d3MdAOBcOsp7il5Z3bW5fFf1qqMvBwDgdOwaRav6g5l5z8zcsbntxrXWw5vLj1Q3XuobZ+aOmbl/Zu7/Qo8dcbkAAPux6xutX7LWemhm/m31zpn5y4vvXGutmVmX+sa11p3VnVVfOzdc8jEAAKdtp52itdZDm6+PVm+rXlh9cmaeVbX5+ui+FgkAsG9bo2hmnjYzX/Ply9V3VR+o3lHdvnnY7dXb97VIAIB92+Xlsxurt83Mlx//G2ut35+ZP63eOjOvqT5evXp/ywSA/do2h2jbHKNdjsHZtjWK1lofrZ5/idv/tnrZPhYFAHDS/JkPAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoNr9b58BwFVtl8GM2wY8Gu54ttkpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigDg2GybQ7RtjtEux2B/7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwSAE7PLYMZtAx4Nd9wfO0UAAIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAZU4RAJwp2+YQbZtjtMsxuDQ7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAeBc2WUw47YBj4Y7XpqdIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAypwgArjjb5hBtm2O0yzGuRHaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUhjcCwFVnl8GM2wY8XonDHe0UAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJU5RQDAJWybQ7RtjtEuxzhr7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKgMbwQADmGXwYzbBjyeteGOO+0Uzcz1M3P3zPzlzDwwMy+emRtm5p0z8+HN16fve7EAAPuy68tnr69+f631vOr51QPV66p711q3VPdurgMAnEtbo2hmvq76tuqNVWutz6+1Plu9srpr87C7qlfta5EAAPu2y07Rc6tPVb86M++dmTfMzNOqG9daD28e80h146W+eWbumJn7Z+b+L/TY8awaAOCY7RJFT6q+pfqVtdYLqn/ocS+VrbVWtS71zWutO9daF9ZaF67tyUddLwDAXuwSRQ9WD6617ttcv7uDSPrkzDyravP10f0sEQBg/7ZG0VrrkeoTM/NNm5teVn2oekd1++a226u372WFAAAnYNc5Rf+1+vWZua76aPUjHQTVW2fmNdXHq1fvZ4kAwHm0bQ7RtjlGuxzjOO0URWut91UXLnHXy453OQAAp8Of+QAASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq3Yc3AgAcq10GM24b8Hicwx3tFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUUAwBm2bQ7RtjlGL/zuf9z5uewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoatZaJ/dkM5+qPn7RTV9f/Z8TW8DVwTk9fs7p8XNOj59zevyc0+N3Guf036+1nrnLA080iv7Vk8/cv9a6cGoLuAI5p8fPOT1+zunxc06Pn3N6/M76OfXyGQBAoggAoDr9KLrzlJ//SuScHj/n9Pg5p8fPOT1+zunxO9Pn9FTfUwQAcFac9k4RAMCZcGpRNDMvn5n/PTMfmZnXndY6zrOZedPMPDozH7jothtm5p0z8+HN16ef5hrPk5m5eWbeNTMfmpkPzsxrN7c7p4c0M0+ZmXfPzJ9vzunPbG5/7szct/n9f8vMXHfaaz1vZuaamXnvzPzu5rpzegQz87GZ+YuZed/M3L+5ze/+EczM9TNz98z85cw8MDMvPuvn9FSiaGauqX65+p7q1uqHZubW01jLOfdr1csfd9vrqnvXWrdU926us5svVj++1rq1elH1o5t/L53Tw3useula6/nVbdXLZ+ZF1c9Xv7jW+sbqM9VrTnGN59Vrqwcuuu6cHt13rLVuu+gj4373j+b11e+vtZ5XPb+Df1/P9Dk9rZ2iF1YfWWt9dK31+erN1StPaS3n1lrrj6tPP+7mV1Z3bS7fVb3qRBd1jq21Hl5r/dnm8t918Av87JzTQ1sH/n5z9drN/1b10uruze3O6WWamZuq76vesLk+Oaf74Hf/kGbm66pvq95Ytdb6/Frrs53xc3paUfTs6hMXXX9wcxtHd+Na6+HN5UeqG09zMefVzDynekF1X87pkWxe5nlf9Wj1zuqvq8+utb64eYjf/8v3S9VPVP+0uf6MnNOjWtUfzMx7ZuaOzW1+9w/vudWnql/dvMz7hpl5Wmf8nHqj9RVsHXy00McLL9PMfHX1W9WPrbU+d/F9zunlW2t9aa11W3VTB7vEzzvlJZ1rM/OK6tG11ntOey1XmJestb6lg7d1/OjMfNvFd/rdv2xPqr6l+pW11guqf+hxL5WdxXN6WlH0UHXzRddv2tzG0X1yZp5Vtfn66Cmv51yZmWs7CKJfX2v99uZm5/QYbLbO31W9uLp+Zp60ucvv/+X51ur7Z+ZjHbz14KUdvHfDOT2CtdZDm6+PVm/rIOD97h/eg9WDa637Ntfv7iCSzvQ5Pa0o+tPqls2nJa6rfrB6xymt5Urzjur2zeXbq7ef4lrOlc37Mt5YPbDW+oWL7nJOD2lmnjkz128uf1X1nR28V+td1Q9sHuacXoa11k+utW5aaz2ng/92/uFa64dzTg9tZp42M1/z5cvVd1UfyO/+oa21Hqk+MTPftLnpZdWHOuPn9NSGN87M93bwuvg11ZvWWj93Kgs5x2bmN6tv7+CvDn+y+unqd6q3Vt9Qfbx69Vrr8W/G5hJm5iXVn1R/0T+/V+OnOnhfkXN6CDPzzR28mfKaDv5P2FvXWv9jZv5DB7scN1Tvrf7zWuux01vp+TQz3179t7XWK5zTw9ucu7dtrj6p+o211s/NzDPyu39oM3NbBx8GuK76aPUjbf470Bk9pyZaAwDkjdYAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKCq/wds2UJurWFiSgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAJCCAYAAADOe7N5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGPFJREFUeJzt3V+srWdd4PHvb9oCgiIUmYahODARJVxIMScIkRiFqDga4cIQjZM0hqQ3zgQTJw56Y5xoojcqF8akAbQXKhCUgRgjkorRuSkWQQTqADYQipQyFoJ/MoXiMxd7MR6Z1rXO3mvtP+d8Pkmz13r32u96znu6m2+fvdZvz1orAIBr3b856wUAAJwHoggAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQFXXn+aTfd2N161nPuOGE53jw+9//J5Wc/594zf/49bHuB5X5lq6XgDU/+kf+sJ6aHZ57Jzk13zMzMuq11bXVa9ba/3Cv/b4S8973Hr3O55x7Oer+p5/d8uJvv4iecffvG/rY1yPK3MtXS8A6q51Z59fD+4URcf+8dnMXFf9avW91XOrH56Z5x73fAAAZ+kkryl6QfXRtda9a60vVG+sXr6fZQEAnK6TRNHTq09cdv++zbF/YWZum5m7Z+buz/ztl07wdAAAh3Pwd5+ttW5fa11aa1166lOuO/TTAQAcy0mi6JPV5a+avnlzDADgwjlJFP1Z9eyZedbMPKb6oert+1kWAMDpOvacorXWwzPzn6t3dPSW/DestT64t5Vxod4+vu3t8qf1Z7lI1wyA8+VEwxvXWr9f/f6e1gIAcGb8mg8AgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgOuGcoiv14fc//sTD9c7LkMDz4rxcj2vtugNw9bFTBACQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSnPKdoH7bNw9k2t2eXc1wkF+XPclp/L+dlbhMAF4+dIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAA1QUc3rjNLsP5DPi7MvsYvLiPvxcAOCQ7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBVs9Y6tSd74ty4vnVeemrPd1z7mMtzrTmN2U/+XgC4UnetO/v8enB2eaydIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAVV1/1gs4j3YZAHgawwovkmvtzwvA1cdOEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCZU3Rs2+bybJtjdJHOAQDXAjtFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqwxsPZpeBiNsGKxqquH+GWQLwaOwUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANUpzyn6xm/+x97xjkefE3M1zYfZxzycfZzjarqm++B6APBo7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhOeXjjh9//+BMPz9s20PC8DOfbxzp2Ocd5uR7nZR0AcFxbd4pm5g0z88DMfOCyYzfOzDtn5iObj08+7DIBAA5rlx+f/Ub1sq849prqzrXWs6s7N/cBAC6srVG01vqT6sGvOPzy6o7N7TuqV+x5XQAAp+q4rym6aa31qc3t+6ubHu2BM3NbdVvV43r8MZ8OAOCwTvzus7XWqta/8vnb11qX1lqXbuixJ306AICDOG4UfXpmnla1+fjA/pYEAHD6jhtFb69u3dy+tXrbfpYDAHA2tr6maGZ+u/qO6utm5r7qZ6pfqN48M6+qPl698pCLvNxFmXezbW7PLnb5s257zC7rOK2ZSgBwnm2NorXWDz/Kp16657UAAJwZv+YDACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqI7/C2HZ4rwMM9xlHdsGPJ6XPwsAHJKdIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKC6RucUmcvzL2378267XrucAwDOOztFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACqcza88bSGBF5NwwpPYxDlLucwEBOAi85OEQBAoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCdszlF+5hls48ZQxdpps55WevVNPsJgGuTnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAANU5G964D7sMANw2SNAQwf3bx98LABySnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgqllrndqTXXre49a73/GMU3s+OA5zqgCuHnetO/v8enB2eaydIgCARBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAVV1/1gu43D6G5r3jb953LtbB/vm7BeCQ7BQBACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAA1SnPKfrw+x9/8DkxF2kOzba5Oxfpz3JebLtmu8w6ct0Brk12igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDVrrVN7sifOjetb56Wn9nxwHIZqAlw97lp39vn14Ozy2K07RTPzjJl518x8aGY+ODOv3hy/cWbeOTMf2Xx88kkXDgBwVnb58dnD1U+stZ5bvbD6sZl5bvWa6s611rOrOzf3AQAupK1RtNb61Frrzze3/666p3p69fLqjs3D7qhecahFAgAc2hX9QtiZeWb1/Oqu6qa11qc2n7q/uulRvua26raqx/X4464TAOCgdn732cx8dfU71Y+vtT5/+efW0au1H/EV22ut29dal9Zal27osSdaLADAoewURTNzQ0dB9Jtrrd/dHP70zDxt8/mnVQ8cZokAAIe3y7vPpnp9dc9a65cu+9Tbq1s3t2+t3rb/5QEAnI6tc4pm5sXVn1Z/Wf3T5vBPd/S6ojdXX199vHrlWuvBf+1c5hRxNdg2x6jMMgI4L65kTtHWF1qvtf5n9WgnUzgAwFXBr/kAAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAqiv8hbDAboMZtw14NNwR4PyxUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBU5hTBQWybQ7RtjtEu5wBgv+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG+EM7HLYMZtAx4NdwTYLztFAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQGVOEZxb2+YQbZtjtMs5APhndooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSGN8KFtctgxm0DHg13BPhndooAABJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAypwiuKptm0O0bY7RLucAuFrYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCNe0XQYzbhvwaLgjcLWwUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBU5hQBW2ybQ7RtjtEu5wA4D+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG8ETmiXwYzbBjwa7gicB1t3imbmcTPz7pn5i5n54Mz87Ob4s2bmrpn56My8aWYec/jlAgAcxi4/Pnuoesla63nVLdXLZuaF1S9Wv7zW+obqs9WrDrdMAIDD2hpF68jfb+7esPlnVS+p3rI5fkf1ioOsEADgFOz0QuuZuW5m3lc9UL2z+uvqc2uthzcPua96+qN87W0zc/fM3P3FHtrHmgEA9m6nKFprfWmtdUt1c/WC6jm7PsFa6/a11qW11qUbeuwxlwkAcFhX9Jb8tdbnqndVL6qeNDNffvfazdUn97w2AIBTs8u7z546M0/a3P6q6ruqezqKox/cPOzW6m2HWiQAwKHtMqfoadUdM3NdRxH15rXW783Mh6o3zszPVe+tXn/AdQIX2LY5RNvmGO1yDoCT2hpFa633V89/hOP3dvT6IgCAC8+v+QAASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAACq3YY3AhzULoMZtw14NNwROCk7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEBlThFwQWybQ7RtjtEu5wCubXaKAAASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUhjcCV4ldBjNuG/BouCNc2+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJU5RcA1ZNscom1zjHY5B3Bx2SkCAEgUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFAZ3gjw/+wymHHbgEfDHeHislMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAVyRbXOIts0x2uUcwNmwUwQAkCgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoDK8EWCvdhnMuG3Ao+GOcDbsFAEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVOUUAp27bHKJtc4x2OQdw5ewUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG8EOHd2Gcy4bcCj4Y5w5XbeKZqZ62bmvTPze5v7z5qZu2bmozPzppl5zOGWCQBwWFfy47NXV/dcdv8Xq19ea31D9dnqVftcGADAadopimbm5ur7qtdt7k/1kuotm4fcUb3iEAsEADgNu+4U/Ur1k9U/be4/pfrcWuvhzf37qqc/0hfOzG0zc/fM3P3FHjrRYgEADmVrFM3M91cPrLXec5wnWGvdvta6tNa6dEOPPc4pAAAObpd3n31b9QMz8x+rx1VPrF5bPWlmrt/sFt1cffJwywQAOKytO0VrrZ9aa9281npm9UPVH621fqR6V/WDm4fdWr3tYKsEADiwk8wp+m/VG2fm56r3Vq/fz5IA2GbbHKJtc4x2OQdca64oitZaf1z98eb2vdUL9r8kAIDT59d8AAAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAANXJhjcCcE7tMphx24BHwx251tgpAgBIFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpzigCuWdvmEG2bY7TLOeAisVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKAyvBGAR7HLYMZtAx4Nd+QisVMEAJAoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVOYUAXAC2+YQbZtjtMs54LTYKQIASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUBneCMAB7TKYcduAR8MdOS12igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIAzti2OUTb5hjtcg7YhZ0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0AnHO7DGbcNuDRcEd2YacIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAuAqsG0O0bY5Rrucg6ufnSIAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJXhjQBcA3YZzLhtwKPhjle/naJoZj5W/V31perhtdalmbmxelP1zOpj1SvXWp89zDIBAA7rSn589p1rrVvWWpc2919T3bnWenZ15+Y+AMCFdJLXFL28umNz+47qFSdfDgDA2dg1ilb1hzPznpm5bXPsprXWpza3769ueqQvnJnbZubumbn7iz10wuUCABzGri+0fvFa65Mz82+rd87MX13+ybXWmpn1SF+41rq9ur3qiXPjIz4GAOCs7bRTtNb65ObjA9VbqxdUn56Zp1VtPj5wqEUCABza1iiamSfMzNd8+Xb13dUHqrdXt24edmv1tkMtEgDg0Hb58dlN1Vtn5suP/6211h/MzJ9Vb56ZV1Ufr155uGUCwGFtm0O0bY7RLufgfNsaRWute6vnPcLxv61eeohFAQCcNr/mAwAgUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKh2/91nAHBN22Uw47YBj4Y7nm92igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIA2Jttc4i2zTHa5Rwcjp0iAIBEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACV4Y0AcGp2Gcy4bcCj4Y6HY6cIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAoBzZdscom1zjHY5B4/MThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgMrwRgC4UHYZzLhtwKPhjo/MThEAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQmVMEAFedbXOIts0x2uUcVyM7RQAAiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKsMbAeCas8tgxm0DHq/G4Y52igAAEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIDKnCIA4BFsm0O0bY7RLuc4b+wUAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoDG8EAI5hl8GM2wY8nrfhjjvtFM3Mk2bmLTPzVzNzz8y8aGZunJl3zsxHNh+ffOjFAgAcyq4/Pntt9QdrredUz6vuqV5T3bnWenZ15+Y+AMCFtDWKZuZrq2+vXl+11vrCWutz1curOzYPu6N6xaEWCQBwaLvsFD2r+kz16zPz3pl53cw8obpprfWpzWPur256pC+emdtm5u6ZufuLPbSfVQMA7NkuUXR99S3Vr621nl/9Q1/xo7K11qrWI33xWuv2tdaltdalG3rsSdcLAHAQu0TRfdV9a627Nvff0lEkfXpmnla1+fjAYZYIAHB4W6NorXV/9YmZ+abNoZdWH6reXt26OXZr9baDrBAA4BTsOqfov1S/OTOPqe6tfrSjoHrzzLyq+nj1ysMsEQC4iLbNIdo2x2iXc+zTTlG01npfdekRPvXS/S4HAOBs+DUfAACJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQLX78EYAgL3aZTDjtgGP+xzuaKcIACBRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqMwpAgDOsW1ziLbNMXrB9/zjzs9lpwgAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQFWz1jq9J5v5TPXxyw59XfW/T20B1wbXdP9c0/1zTffPNd0/13T/zuKa/vu11lN3eeCpRtH/9+Qzd6+1Lp3ZAq5Crun+uab755run2u6f67p/p33a+rHZwAAiSIAgOrso+j2M37+q5Frun+u6f65pvvnmu6fa7p/5/qanulrigAAzouz3ikCADgXziyKZuZlM/O/ZuajM/Oas1rHRTYzb5iZB2bmA5cdu3Fm3jkzH9l8fPJZrvEimZlnzMy7ZuZDM/PBmXn15rhrekwz87iZeffM/MXmmv7s5vizZuauzff/m2bmMWe91otmZq6bmffOzO9t7rumJzAzH5uZv5yZ983M3ZtjvvdPYGaeNDNvmZm/mpl7ZuZF5/2ankkUzcx11a9W31s9t/rhmXnuWazlgvuN6mVfcew11Z1rrWdXd27us5uHq59Yaz23emH1Y5t/L13T43uoesla63nVLdXLZuaF1S9Wv7zW+obqs9WrznCNF9Wrq3suu++antx3rrVuuewt4773T+a11R+stZ5TPa+jf1/P9TU9q52iF1QfXWvdu9b6QvXG6uVntJYLa631J9WDX3H45dUdm9t3VK841UVdYGutT621/nxz++86+gZ+eq7psa0jf7+5e8Pmn1W9pHrL5rhreoVm5ubq+6rXbe5Prukh+N4/ppn52urbq9dXrbW+sNb6XOf8mp5VFD29+sRl9+/bHOPkblprfWpz+/7qprNczEU1M8+snl/dlWt6Ipsf87yveqB6Z/XX1efWWg9vHuL7/8r9SvWT1T9t7j8l1/SkVvWHM/Oembltc8z3/vE9q/pM9eubH/O+bmae0Dm/pl5ofRVbR28t9PbCKzQzX139TvXja63PX/451/TKrbW+tNa6pbq5o13i55zxki60mfn+6oG11nvOei1XmRevtb6lo5d1/NjMfPvln/S9f8Wur76l+rW11vOrf+grflR2Hq/pWUXRJ6tnXHb/5s0xTu7TM/O0qs3HB854PRfKzNzQURD95lrrdzeHXdM92Gydv6t6UfWkmbl+8ynf/1fm26ofmJmPdfTSg5d09NoN1/QE1lqf3Hx8oHprRwHve//47qvuW2vdtbn/lo4i6Vxf07OKoj+rnr15t8Rjqh+q3n5Ga7navL26dXP71uptZ7iWC2XzuozXV/estX7psk+5psc0M0+dmSdtbn9V9V0dvVbrXdUPbh7mml6BtdZPrbVuXms9s6P/dv7RWutHck2PbWaeMDNf8+Xb1XdXH8j3/rGtte6vPjEz37Q59NLqQ53za3pmwxtn5j929HPx66o3rLV+/kwWcoHNzG9X39HRbx3+dPUz1f+o3lx9ffXx6pVrra98MTaPYGZeXP1p9Zf982s1frqj1xW5pscwM9/c0Yspr+vof8LevNb67zPzHzra5bixem/1n9ZaD53dSi+mmfmO6r+utb7fNT2+zbV76+bu9dVvrbV+fmaeku/9Y5uZWzp6M8BjqnurH23z34HO6TU10RoAIC+0BgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAVf1fnj9MnXMxMnQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/notebook/Inspect Predictions - Var Naming.ipynb b/notebook/Inspect Predictions - Var Naming.ipynb index e35baca..e48ad15 100644 --- a/notebook/Inspect Predictions - Var Naming.ipynb +++ b/notebook/Inspect Predictions - Var Naming.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 142, "metadata": {}, "outputs": [ { @@ -396,7 +396,7 @@ "[10 rows x 1156 columns]" ] }, - "execution_count": 5, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" } @@ -408,7 +408,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 143, "metadata": {}, "outputs": [ { @@ -417,7 +417,7 @@ "(39552, 1156)" ] }, - "execution_count": 6, + "execution_count": 143, "metadata": {}, "output_type": "execute_result" } @@ -428,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 144, "metadata": {}, "outputs": [ { @@ -514,7 +514,7 @@ "9 call" ] }, - "execution_count": 7, + "execution_count": 144, "metadata": {}, "output_type": "execute_result" } @@ -526,7 +526,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 145, "metadata": {}, "outputs": [ { @@ -535,7 +535,7 @@ "(618, 5)" ] }, - "execution_count": 8, + "execution_count": 145, "metadata": {}, "output_type": "execute_result" } @@ -547,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 146, "metadata": {}, "outputs": [ { @@ -556,7 +556,7 @@ "618" ] }, - "execution_count": 9, + "execution_count": 146, "metadata": {}, "output_type": "execute_result" } @@ -567,7 +567,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ @@ -576,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 148, "metadata": {}, "outputs": [], "source": [ @@ -600,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 149, "metadata": {}, "outputs": [ { @@ -609,7 +609,7 @@ "(618, 64, 7)" ] }, - "execution_count": 12, + "execution_count": 149, "metadata": {}, "output_type": "execute_result" } @@ -620,7 +620,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 150, "metadata": { "scrolled": true }, @@ -631,7 +631,7 @@ "(618, 5)" ] }, - "execution_count": 13, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -642,7 +642,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 151, "metadata": {}, "outputs": [], "source": [ @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 152, "metadata": { "scrolled": true }, @@ -1286,7 +1286,7 @@ " ['shape', '[PAD]', '[PAD]', '[PAD]']]" ] }, - "execution_count": 15, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } @@ -1297,7 +1297,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 153, "metadata": {}, "outputs": [ { @@ -1306,7 +1306,7 @@ "'[PAD]'" ] }, - "execution_count": 16, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } @@ -1317,7 +1317,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 154, "metadata": {}, "outputs": [ { @@ -1326,7 +1326,7 @@ "(618, 1)" ] }, - "execution_count": 17, + "execution_count": 154, "metadata": {}, "output_type": "execute_result" } @@ -1338,7 +1338,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 155, "metadata": {}, "outputs": [ { @@ -1349,3161 +1349,2535 @@ "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute input layers Name Assign Name input tensor Call Name keyword Attribute batch input shape Name keyword Attribute dtype Name keyword Attribute sparse Name keyword Attribute name Name Expr Call Attribute append Name Name Assign Name newly created input layer Subscript Attribute keras history Name Index Num Assign Subscript Name Index Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['tensor', 'tensor', 'tensor', 'tensor']\n", + " 2. ['input', 'input', 'input', 'input']\n", "\n", "1\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Name In Name Expr Call Attribute append Name Subscript Name Index Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['g', 'value', 'value', 'value']\n", + " 2. ['layer', 'data', 'data', 'data']\n", "\n", "2\n", "[CLS] If Compare Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute exp Name BinOp Name Sub Call Attribute max Name Name keyword Name keyword NameConstant Assign Name s Call Attribute sum Name Name keyword Name keyword NameConstant Return BinOp Name Div Name Raise Call Name BinOp Str Mod Name\n", "Label = ['e', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "new e\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['p', 'log', 'log', 'log']\n", + " 2. ['v', 't', 't', 't']\n", "\n", "3\n", "[CLS] BinOp Name Sub Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Name keyword NameConstant\n", "Label = ['max', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "random max\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['random', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['scan', 'normal', 'normal', 'normal']\n", + " 2. ['convolution', 'spec', 'spec', 'spec']\n", "\n", "4\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Assign Name alpha Num Assign Name scale Num Return BinOp Name Mult Call Attribute elu Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'format', 'format', 'format']\n", + " 2. ['negative', 'true', 'true', 'true']\n", "\n", "5\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg custom objects NameConstant Return Call Name Name keyword Call Name keyword Name keyword Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['config', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'config', 'config', 'config']\n", + " 2. ['cls', 'string', 'string', 'string']\n", "\n", "6\n", "[CLS] If Call Name Name If Call Name Name Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute format Str keyword Attribute name Attribute class Name Return Name Raise Call Name Str Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['warn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pop', 'params', 'params', 'params']\n", + " 2. ['extend', 'function', 'function', 'function']\n", "\n", "7\n", "[CLS] If Call Name Name Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute format Str keyword Attribute name Attribute class Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['warn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pop', 'params', 'params', 'params']\n", + " 2. ['append', 'config', 'config', 'config']\n", "\n", "8\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute equal Name Call Attribute flatten Name Name Call Attribute cast Name Call Attribute argmax Name Name keyword UnaryOp USub Num Call Attribute floatx Name Call Attribute floatx Name\n", "Label = ['cast', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cast cast\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cast', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mean', 'true', 'true', 'true']\n", + " 2. ['equal', 'mean', 'mean', 'mean']\n", "\n", "9\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred arg k Num Return Call Attribute mean Name Call Attribute in top k Name Name Call Attribute argmax Name Name keyword UnaryOp USub Num Name keyword UnaryOp Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", "Pred =\n", - "y y\n", - "true true\n", - "true [PAD]\n", - "true [PAD]\n", " 0. ['y', 'true', 'true', 'true']\n", + " 1. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['true', 'train', 'train', 'train']\n", "\n", "10\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg model For Name callback Attribute callbacks Name Expr Call Attribute set model Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'model', 'model', 'model']\n", + " 2. ['layer', 'weights', 'weights', 'weights']\n", "\n", "11\n", "[CLS] If Name Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name Assign Attribute stateful metrics Name Call Name\n", "Label = ['stateful', 'metrics', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "metrics metrics\n", - "metrics [PAD]\n", - "metrics [PAD]\n", " 0. ['stateful', 'metrics', 'metrics', 'metrics']\n", + " 1. ['metrics', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['append', 'stateful', 'stateful', 'stateful']\n", "\n", "12\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name target Subscript Attribute params Name Index Str Assign Name target Subscript Attribute params Name Index Str\n", "Label = ['use', 'steps', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs use\n", - "[PAD] steps\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'sequences', 'sequences', 'sequences']\n", + " 2. ['stateful', 'function', 'function', 'function']\n", "\n", "13\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute log values Name Tuple Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['extend', 'dim', 'dim', 'dim']\n", "\n", "14\n", "[CLS] Call Name BinOp Str Mod Tuple BinOp Name Add Num Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute best Name Name Name\n", "Label = ['monitor', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "monitor monitor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['monitor', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['float32', 'size', 'size', 'size']\n", + " 2. ['warn', 'weights', 'weights', 'weights']\n", "\n", "15\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg logs NameConstant If BoolOp And Compare Attribute stopped epoch Name Gt Num Compare Attribute verbose Name Num Expr Call Name BinOp Str Mod BinOp Attribute stopped epoch Name Add Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'epoch', 'epoch', 'epoch']\n", + " 2. ['path', 'format', 'format', 'format']\n", "\n", "16\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg root arg path arg field arg headers arg send as json Str Str Str NameConstant NameConstant Expr Call Attribute init Call Name Name Name Assign Attribute root Name Name Assign Attribute path Name Name Assign Attribute field Name Name Assign Attribute headers Name Name Assign Attribute send as json Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'name', 'name', 'name']\n", + " 2. ['path', 'fn', 'fn', 'fn']\n", "\n", "17\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg schedule arg verbose Num Expr Call Attribute init Call Name Name Name Assign Attribute schedule Name Name Assign Attribute verbose Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'weights', 'weights', 'weights']\n", + " 2. ['path', 'format', 'format', 'format']\n", "\n", "18\n", "[CLS] If Compare Name NotEq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Str Assign Name embeddings freq Num\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['warn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pop', 'format', 'format', 'format']\n", + " 2. ['update', 'data', 'data', 'data']\n", "\n", "19\n", "[CLS] If Compare Name Eq Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Num Assign Attribute update freq Name Name\n", "Label = ['update', 'freq', '[PAD]', '[PAD]']\n", "Pred =\n", - "data update\n", - "[PAD] freq\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['type', 'data', 'data', 'data']\n", + " 2. ['embeddings', 'format', 'format', 'format']\n", "\n", "20\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name List Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stack', 'kernel', 'kernel', 'kernel']\n", + " 2. ['transpose', 'dims', 'dims', 'dims']\n", "\n", "21\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name NotIn List Str Str Str Expr Call Attribute warn Name BinOp Str Mod Attribute mode Name Name Assign Attribute mode Name Str\n", "Label = ['mode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mode mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mode', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['merge', 'mode', 'mode', 'mode']\n", + " 2. ['verbose', 'format', 'format', 'format']\n", "\n", "22\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Str Mod Tuple Attribute monitor Name Call Attribute join Str Call Name Call Attribute keys Name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['warn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['update', 'function', 'function', 'function']\n", + " 2. ['post', 'weight', 'weight', 'weight']\n", "\n", "23\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Tuple Name IfExp Compare Name In Name Subscript Name Index Name Str comprehension Name k Attribute keys Name\n", "Label = ['logs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k logs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['k', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'values', 'values', 'values']\n", + " 2. ['result', 'key', 'key', 'key']\n", "\n", "24\n", "[CLS] If Compare Name IsNot NameConstant Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Name Assign Attribute on train begin Name Lambda arguments arg logs NameConstant\n", "Label = ['on', 'train', 'begin', '[PAD]']\n", "Pred =\n", - "on on\n", - "[PAD] train\n", - "[PAD] begin\n", - "[PAD] [PAD]\n", " 0. ['on', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['initial', 'begin', 'begin', 'begin']\n", + " 2. ['end', 'batch', 'batch', 'batch']\n", "\n", "25\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg x Assign Name regularization Num If Attribute l1 Name AugAssign Name regularization Add Call Attribute sum Name BinOp Attribute l1 Name Mult Call Attribute abs Name Name If Attribute l2 Name AugAssign Name regularization Call Attribute sum Name BinOp Attribute l2 Name Call Attribute square Name Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['l1', 'sum', 'sum', 'sum']\n", + " 2. ['xs', 't', 't', 't']\n", "\n", "26\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Dict Str Str Attribute max value Name Attribute axis Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'value', 'value', 'value']\n", + " 2. ['model', 'config', 'config', 'config']\n", "\n", "27\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg w Return BinOp Name Div BinOp Call Attribute epsilon Name Add Call Attribute sqrt Name Call Attribute sum Name Call Attribute square Name Name keyword Attribute axis Name keyword NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'true', 'true', 'true']\n", + " 2. ['a', 'sum', 'sum', 'sum']\n", "\n", "28\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute square Name Name keyword Attribute axis Name keyword NameConstant\n", "Label = ['sum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sum sum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sum', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reduce', 'sum', 'sum', 'sum']\n", + " 2. ['mean', 'function', 'function', 'function']\n", "\n", "29\n", "[CLS] If Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name config Dict Str Str Call Name Name Dict Return Call Name Name If Call Name Name Return Name Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['string', 'types', '[PAD]', '[PAD]']\n", "Pred =\n", - "string string\n", - "[PAD] types\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['string', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cell', 'types', 'types', 'types']\n", + " 2. ['data', 'tensor', 'tensor', 'tensor']\n", "\n", "30\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg shape arg dtype NameConstant Return Call Attribute constant Name Num keyword Name keyword Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'value', 'value', 'value']\n", + " 2. ['x', 'size', 'size', 'size']\n", "\n", "31\n", "[CLS] Return Dict Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute stddev Name Attribute seed Name\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mean', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['random', 'normal', 'normal', 'normal']\n", + " 2. ['truncated', 'uniform', 'uniform', 'uniform']\n", "\n", "32\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str AugAssign Name scale Div Call Name Num Name If Compare Attribute mode Name Str AugAssign Name scale Call Name Num Name AugAssign Name scale Call Name Num BinOp Call Name BinOp Name Add Name Num\n", "Label = ['mode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mode mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mode', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['merge', 'mode', 'mode', 'mode']\n", "\n", "33\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Num Name keyword Name keyword Attribute seed Name\n", "Label = ['truncated', 'normal', '[PAD]', '[PAD]']\n", "Pred =\n", - "truncated truncated\n", - "[PAD] normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['truncated', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['random', 'normal', 'normal', 'normal']\n", + " 2. ['uniform', 'uniform', 'uniform', 'uniform']\n", "\n", "34\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Subscript Name Slice UnaryOp USub Num AugAssign Name num rows Mult Name\n", "Label = ['dim', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "a dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['a', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['s', 'out', 'out', 'out']\n", + " 2. ['i', 'size', 'size', 'size']\n", "\n", "35\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Expr Call Attribute seed Attribute random Name Attribute seed Name\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['random', 'normal', 'normal', 'normal']\n", + " 2. ['activation', 'uniform', 'uniform', 'uniform']\n", "\n", "36\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute prod Name Subscript Name Slice UnaryOp USub Num\n", "Label = ['receptive', 'field', 'size', '[PAD]']\n", "Pred =\n", - "y receptive\n", - "[PAD] field\n", - "[PAD] size\n", - "[PAD] [PAD]\n", " 0. ['y', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'shape', 'shape', 'shape']\n", + " 2. ['batch', 'size', 'size', 'size']\n", "\n", "37\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute square Name BinOp Name Sub Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mean', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sum', 'sum', 'sum', 'sum']\n", + " 2. ['reduce', 'mean', 'mean', 'mean']\n", "\n", "38\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute abs Name BinOp Name Sub Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mean', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sum', 'normal', 'normal', 'normal']\n", + " 2. ['max', 'function', 'function', 'function']\n", "\n", "39\n", "[CLS] BinOp Num Mult Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mean', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['max', 'normal', 'normal', 'normal']\n", + " 2. ['sum', 'sum', 'sum', 'sum']\n", "\n", "40\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred Assign Name pos Call Attribute sum Name BinOp Name Mult Name keyword UnaryOp USub Num Assign Name neg Call Attribute max Name BinOp BinOp Num Sub Name Name keyword UnaryOp Num Return Call Attribute maximum Name Num BinOp BinOp Name Name Add Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "y y\n", - "[PAD] true\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['y', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'true', 'true', 'true']\n", + " 2. ['self', 'train', 'train', 'train']\n", "\n", "41\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Num BinOp BinOp Name Sub Name Add Num\n", "Label = ['maximum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "maximum maximum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['maximum', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['ndim', 'dims', 'dims', 'dims']\n", + " 2. ['clip', 'shape', 'shape', 'shape']\n", "\n", "42\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute binary crossentropy Name Name Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mean', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sum', 'mean', 'mean', 'mean']\n", + " 2. ['any', 'sum', 'sum', 'sum']\n", "\n", "43\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred Assign Name y true Call Attribute l2 normalize Name Name keyword UnaryOp USub Num Assign Name y pred Call Attribute l2 normalize Name Name keyword UnaryOp Num Return UnaryOp Call Attribute sum Name BinOp Name Mult Name keyword UnaryOp Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", "Pred =\n", - "y y\n", - "[PAD] true\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['y', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'true', 'true', 'true']\n", + " 2. ['u', 'train', 'train', 'train']\n", "\n", "44\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute switch Name Call Attribute greater equal Name Name Name BinOp BinOp Name Mult Name Div Name Name\n", "Label = ['g', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "new g\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['all', 'element', 'element', 'element']\n", + " 2. ['v', 't', 't', 't']\n", "\n", "45\n", "[CLS] BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Gt Num\n", "Label = ['clipnorm', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "clipvalue clipnorm\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['clipvalue', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dynamic', 'axes', 'axes', 'axes']\n", + " 2. ['delta', 'data', 'data', 'data']\n", "\n", "46\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name ListComp Call Attribute sum Name Call Attribute square Name Name comprehension Name g Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['items', 'sum', 'sum', 'sum']\n", + " 2. ['sum', 'list', 'list', 'list']\n", "\n", "47\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'shape', 'shape', 'shape']\n", + " 2. ['name', 'tensor', 'tensor', 'tensor']\n", "\n", "48\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute variable Name Num keyword Str keyword Str\n", "Label = ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "iterations iterations\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cudnn', 'size', 'size', 'size']\n", + " 2. ['name', 'iterations', 'iterations', 'iterations']\n", "\n", "49\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['decay', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['lr', 'decay', 'decay', 'decay']\n", + " 2. ['gain', 'size', 'size', 'size']\n", "\n", "50\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Sub BinOp BinOp Name Mult Name Div BinOp Call Attribute sqrt Name Name Add Attribute epsilon Name\n", "Label = ['new', 'p', '[PAD]', '[PAD]']\n", "Pred =\n", - "p new\n", - "[PAD] p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['p', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 't', 't', 't']\n", + " 2. ['t', 'p', 'p', 'p']\n", "\n", "51\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Name Mult Call Attribute sqrt Name BinOp Name Add Attribute epsilon Name Div Call Attribute sqrt Name BinOp Name Attribute epsilon Name\n", "Label = ['update', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "p update\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['p', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 't', 't', 't']\n", + " 2. ['lr', 'p', 'p', 'p']\n", "\n", "52\n", "[CLS] Dict Str Str Str Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute lr Name Attribute rho Name Call Name Call Attribute get value Name Attribute decay Name Attribute epsilon Name\n", "Label = ['get', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['get', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'value', 'value', 'value']\n", + " 2. ['cast', 'function', 'function', 'function']\n", "\n", "53\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute variable Name Num keyword Str keyword Str\n", "Label = ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "iterations iterations\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cudnn', 'size', 'size', 'size']\n", + " 2. ['name', 'iterations', 'iterations', 'iterations']\n", "\n", "54\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult BinOp Num Div BinOp Num Add BinOp Attribute decay Name Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['lr', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "lr lr\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['lr', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['decay', 'decay', 'decay', 'decay']\n", + " 2. ['t', 't', 't', 't']\n", "\n", "55\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", - "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", + "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['decay', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['lr', 'decay', 'decay', 'decay']\n", + " 2. ['gain', 'size', 'size', 'size']\n", "\n", "56\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Call Attribute cast Name Attribute iterations Name Call Attribute floatx Name Add Num\n", "Label = ['t', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "t t\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['t', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['lr', 't', 't', 't']\n", + " 2. ['decay', 'decay', 'decay', 'decay']\n", "\n", "57\n", "[CLS] BinOp Name Mult BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Sub Call Attribute pow Name Attribute beta 2 Name Name Div BinOp Num Call Attribute pow Name Attribute beta 1 Name Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pow', 't', 't', 't']\n", + " 2. ['maximum', '1', '1', '1']\n", "\n", "58\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Sub Call Attribute pow Name Attribute beta 2 Name Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pow', 't', 't', 't']\n", + " 2. ['maximum', '1', '1', '1']\n", "\n", "59\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg lr arg beta 1 arg beta 2 arg epsilon arg decay arg kwargs Num Num Num NameConstant Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'value', 'value', 'value']\n", + " 2. ['lr', 'format', 'format', 'format']\n", "\n", "60\n", "[CLS] BinOp Num Div BinOp Num Add BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['decay', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['lr', 'decay', 'decay', 'decay']\n", + " 2. ['gain', 't', 't', 't']\n", "\n", "61\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute beta 1 Name Mult Name Add BinOp BinOp Num Sub Attribute beta 1 Name Name\n", "Label = ['m', 't', '[PAD]', '[PAD]']\n", "Pred =\n", - "m m\n", - "[PAD] t\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['m', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['lr', 't', 't', 't']\n", + " 2. ['t', '1', '1', '1']\n", "\n", "62\n", "[CLS] BinOp Name Sub BinOp BinOp Name Mult Name Div BinOp Name Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'names', 'names', 'names']\n", + " 2. ['momentum', 'dim', 'dim', 'dim']\n", "\n", "63\n", "[CLS] BinOp BinOp Name Mult Name Div BinOp Name Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['momentum', 'nodes', 'nodes', 'nodes']\n", + " 2. ['value', 'names', 'names', 'names']\n", "\n", "64\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult BinOp Num Sub BinOp Num Call Attribute pow Name Call Attribute cast to floatx Name Num BinOp BinOp Name Add Num Attribute schedule decay Name\n", "Label = ['beta', '1', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] 1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['beta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['decay', '1', '1', '1']\n", + " 2. ['pow', 't', 't', 't']\n", "\n", "65\n", "[CLS] BinOp BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Name Add BinOp BinOp Num Sub Attribute beta 1 Name Name\n", "Label = ['beta', '1', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] 1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['beta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['momentum', '1', '1', '1']\n", + " 2. ['lr', 't', 't', 't']\n", "\n", "66\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute beta 2 Name Mult Name Add BinOp BinOp Num Sub Attribute beta 2 Name Call Attribute square Name Name\n", "Label = ['v', 't', '[PAD]', '[PAD]']\n", "Pred =\n", - "v v\n", - "t t\n", - "t [PAD]\n", - "t [PAD]\n", " 0. ['v', 't', 't', 't']\n", + " 1. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['lr', '2', '2', '2']\n", "\n", "67\n", "[CLS] BinOp Name Div BinOp Num Sub Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute beta 2 Name Name\n", "Label = ['pow', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "pow pow\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['pow', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sqrt', '1', '1', '1']\n", + " 2. ['maximum', 't', 't', 't']\n", "\n", "68\n", "[CLS] Dict Str Str Str Str Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute lr Name Call Name Call Attribute get value Name Attribute beta 1 Name Call Name Call Attribute get value Name Attribute beta 2 Name Attribute epsilon Name Attribute schedule decay Name\n", "Label = ['get', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['get', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cast', 'value', 'value', 'value']\n", + " 2. ['output', 'function', 'function', 'function']\n", "\n", "69\n", "[CLS] Assign Subscript Name Index Str Call Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str\n", "Label = ['lower', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "toarray lower\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['toarray', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['keys', 'shape', 'shape', 'shape']\n", + " 2. ['as', 'size', 'size', 'size']\n", "\n", "70\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Str Tuple Attribute input dim Name\n", "Label = ['input', 'dim', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "[PAD] dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['return', 'dim', 'dim', 'dim']\n", + " 2. ['stateful', 'spec', 'spec', 'spec']\n", "\n", "71\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Attribute nb feature Name Attribute output dim Name keyword Str keyword Str keyword Attribute b regularizer Name keyword Attribute b constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['bias', 'weight', 'weight', 'weight']\n", + " 2. ['b', 'bias', 'bias', 'bias']\n", "\n", "72\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg init arg activation arg weights arg W regularizer arg b regularizer arg activity regularizer arg W constraint arg b constraint arg bias arg input dim arg kwargs Str NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'format', 'format', 'format']\n", + " 2. ['model', 'bias', 'bias', 'bias']\n", "\n", "73\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Name Name keyword Attribute init Name keyword Str keyword Attribute W regularizer Name keyword Attribute W constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['init', 'weight', 'weight', 'weight']\n", + " 2. ['pooling', 'function', 'function', 'function']\n", "\n", "74\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs ImportFrom alias If Compare Str In Name Assign Name rate Call Attribute pop Name Str Assign Name rate Num Assign Subscript Name Index Str Name Expr Call Attribute warn Name Str Return Call Name Starred Name keyword Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'args', 'args', 'args']\n", + " 2. ['cls', 'format', 'format', 'format']\n", "\n", "75\n", "[CLS] If Compare Call Name Name NotEq Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute name Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['states', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outputs', 'nodes', 'nodes', 'nodes']\n", + " 2. ['inputs', 'layers', 'layers', 'layers']\n", "\n", "76\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'name', 'name', 'name']\n", + " 2. ['[PAD]', 'list', 'list', 'list']\n", "\n", "77\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'name', 'name', 'name']\n", + " 2. ['[PAD]', 'list', 'list', 'list']\n", "\n", "78\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Tuple Name Attribute units Name Str Call Name Attribute shape Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'shape', 'shape', 'shape']\n", + " 2. ['batch', 'size', 'size', 'size']\n", "\n", "79\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Dict Str Str Str Str Str Str Attribute return sequences Name Attribute return state Name Attribute go backwards Name Attribute stateful Name Attribute unroll Name Attribute implementation Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['config', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'sequences', 'sequences', 'sequences']\n", + " 2. ['last', 'config', 'config', 'config']\n", "\n", "80\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute kernel size Name Index Num keyword Attribute padding Name keyword Subscript Attribute strides Name Index Num keyword Subscript Attribute dilation rate Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "output [PAD]\n", " 0. ['conv', 'output', 'output', 'output']\n", + " 1. ['deconv', 'length', 'length', 'length']\n", + " 2. ['conv2d', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "81\n", "[CLS] Tuple Subscript Name Index Num Subscript Name Index Num Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['filters', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "filters filters\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['filters', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['units', 'dim', 'dim', 'dim']\n", + " 2. ['n', 'size', 'size', 'size']\n", "\n", "82\n", "[CLS] If Compare Call Name Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Subscript Name Slice Num Add Str\n", "Label = ['str', 'val', '[PAD]', '[PAD]']\n", "Pred =\n", - "str str\n", - "[PAD] val\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['str', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['line', 'val', 'val', 'val']\n", + " 2. ['data', 'state', 'state', 'state']\n", "\n", "83\n", "[CLS] If BoolOp Or Compare Name Lt BinOp Call Name Subscript Name Slice Num Sub Num Name AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Str\n", "Label = ['signature', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info signature\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['info', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'shape', 'shape', 'shape']\n", + " 2. ['output', 'out', 'out', 'out']\n", "\n", "84\n", "[CLS] If Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name AugAssign Name signature Add BinOp BinOp Str Name Str If Call Name Name Attribute ndarray Name Assign Name str val Str Assign Name str val Call Name Name If Compare Call Name Name Gt Num Assign Name str val BinOp Subscript Name Slice Num Str AugAssign Name signature Name\n", "Label = ['string', 'types', '[PAD]', '[PAD]']\n", "Pred =\n", - "string string\n", - "[PAD] types\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['string', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['is', 'types', 'types', 'types']\n", + " 2. ['function', 'tensor', 'tensor', 'tensor']\n", "\n", "85\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg new arg Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp Str Add Name Str Name Str Name Str\n", "Label = ['old', 'arg', '[PAD]', '[PAD]']\n", "Pred =\n", - "value old\n", - "[PAD] arg\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['value', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'name', 'name', 'name']\n", + " 2. ['dim', 'names', 'names', 'names']\n", "\n", "86\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword List Str Str Str keyword List Tuple Str Str\n", "Label = ['legacy', 'dropout', 'support', '[PAD]']\n", "Pred =\n", - "legacy legacy\n", - "support dropout\n", - "support support\n", - "support [PAD]\n", " 0. ['legacy', 'support', 'support', 'support']\n", + " 1. ['support', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['x', 'conv2d', 'conv2d', 'conv2d']\n", "\n", "87\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pop Name Str Assign Name length NameConstant\n", "Label = ['length', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "length length\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['length', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'length', 'length', 'length']\n", + " 2. ['[PAD]', 'size', 'size', 'size']\n", "\n", "88\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "output kernel\n", - "[PAD] size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['filter', 'shape', 'shape', 'shape']\n", + " 2. ['noise', 'size', 'size', 'size']\n", "\n", "89\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Call Attribute pop Name Str\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "size size\n", - "size [PAD]\n", - "size [PAD]\n", " 0. ['kernel', 'size', 'size', 'size']\n", + " 1. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['filter', 'kernel', 'kernel', 'kernel']\n", "\n", "90\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] List Subscript Name Index Num Subscript Name Index Num Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pattern', 'shape', 'shape', 'shape']\n", + " 2. ['data', 'kernel', 'kernel', 'kernel']\n", "\n", "91\n", "[CLS] If BoolOp And Compare Str In Name Compare Str Name Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Call Attribute pop Name Str Call Attribute pop Name Str Assign Subscript Name Index Str Name Expr Call Attribute append Name Tuple Str Str\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'size', 'size', 'size']\n", + " 2. ['new', 'kernel', 'kernel', 'kernel']\n", "\n", "92\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword List Str Str keyword List Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str keyword Dict Str Dict Str Str Str Str Str NameConstant keyword Name\n", "Label = ['legacy', 'deconv2d', 'support', '[PAD]']\n", "Pred =\n", - "legacy legacy\n", - "support deconv2d\n", - "support support\n", - "support [PAD]\n", " 0. ['legacy', 'support', 'support', 'support']\n", + " 1. ['conv2d', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['support', 'conv2d', 'conv2d', 'conv2d']\n", "\n", "93\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pop Name Str If Compare Name Eq Str Assign Subscript Name Index Str NameConstant Expr Call Attribute append Name Tuple Str Str Expr Call Attribute warn Name Str keyword Num\n", "Label = ['value', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'size', 'size', 'size']\n", + " 2. ['init', 'kernel', 'kernel', 'kernel']\n", "\n", "94\n", "[CLS] If Call Name Subscript Name Index Num Tuple Name Name Assert Call Name Subscript Name Index Num Name Assert Compare Str In Name Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name params Name Name Assign Subscript Name Index Str Name Return Tuple List Name Name List\n", "Label = ['opt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer opt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'size', 'size', 'size']\n", + " 2. ['n', 'layer', 'layer', 'layer']\n", "\n", "95\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Name NotIn Name Raise Call Name BinOp Str Mod Tuple Name Name Name\n", "Label = ['device', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k device\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['k', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'length', 'length', 'length']\n", + " 2. ['a', 'input', 'input', 'input']\n", "\n", "96\n", "[CLS] If Compare Name In Name AugAssign Subscript Name Index Name Add Num AugAssign Name [MASK] [MASK] [MASK] [MASK] BinOp Str Mod Subscript Name Index Name\n", "Label = ['n', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info n\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['info', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['idx', 'dim', 'dim', 'dim']\n", + " 2. ['i', 'data', 'data', 'data']\n", "\n", "97\n", - "[CLS] Return BinOp Tuple BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Sub Attribute start Name Add Attribute base shape Name\n", + "[CLS] Return BinOp Tuple BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Sub Attribute start Name Add Attribute base shape Name\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Label = ['end', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "end end\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['end', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['start', 'dim', 'dim', 'dim']\n", + " 2. ['max', 'end', 'end', 'end']\n", "\n", "98\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Tuple Name Assign Subscript Name Slice Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inbound', 'shape', 'shape', 'shape']\n", + " 2. ['trainable', 'input', 'input', 'input']\n", "\n", "99\n", "[CLS] BoolOp And Name Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Eq Num Call Name Subscript Name Index Num Name\n", "Label = ['version', 'info', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape version\n", - "[PAD] info\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['keras', 'size', 'size', 'size']\n", + " 2. ['args', 'format', 'format', 'format']\n", "\n", "100\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Str Name In Attribute data Name Assign Name val Call Attribute loads Name Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['format', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['join', 'format', 'format', 'format']\n", + " 2. ['data', 'data', 'data', 'data']\n", "\n", "101\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Call Attribute count params Name Name comprehension Name p Call Name Name\n", "Label = ['sum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sum sum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sum', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['extend', 'sum', 'sum', 'sum']\n", + " 2. ['zeros', 'weights', 'weights', 'weights']\n", "\n", "102\n", "[CLS] If Compare Call Name Name Gt Num For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Call Name Name Assign Name fields List Str Str Str Subscript Name Index Name Expr Call Name Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['key', 'i', 'i', 'i']\n", + " 2. ['o', 'list', 'list', 'list']\n", "\n", "103\n", "[CLS] If UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute W OK Name Assign Name datadir base Call Attribute join Attribute path Name Str Str\n", "Label = ['access', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "save access\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['save', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['exists', 'scope', 'scope', 'scope']\n", + " 2. ['load', 'types', 'types', 'types']\n", "\n", "104\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg file hash arg algorithm arg chunk size Str Num Expr Str If BoolOp Or Compare Name Is Str BoolOp And Compare Name Str Compare Call Name Name Num Assign Name hasher Str Assign Name hasher Str If Compare Call Name Call Name Name Name Name Eq Call Name Name Return NameConstant Return NameConstant\n", "Label = ['fpath', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self fpath\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'fn', 'fn', 'fn']\n", + " 2. ['fname', 'id', 'id', 'id']\n", "\n", "105\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return BoolOp And Compare Attribute stop signal Name IsNot NameConstant UnaryOp Not Call Attribute is set Attribute stop signal Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stop', 'signal', 'signal', 'signal']\n", + " 2. ['variables', 'stop', 'stop', 'stop']\n", "\n", "106\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg sequence arg use multiprocessing arg shuffle NameConstant NameConstant Expr Call Attribute init Call Name Name Name Name Name Assign Attribute shuffle Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'fn', 'fn', 'fn']\n", + " 2. ['index', 'array', 'array', 'array']\n", "\n", "107\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg workers Expr Str Return Lambda arguments arg seqs Call Attribute Pool Name Name keyword Name keyword Tuple Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['seqs', 'out', 'out', 'out']\n", + " 2. ['model', 'fn', 'fn', 'fn']\n", "\n", "108\n", "[CLS] While NameConstant Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Num If BoolOp Or Compare Attribute unfinished tasks Attribute queue Name Eq Num Call Attribute is set Attribute stop signal Name Return\n", "Label = ['sleep', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append sleep\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'running', 'running', 'running']\n", + " 2. ['expand', 'tasks', 'tasks', 'tasks']\n", "\n", "109\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg workers Expr Str Return Lambda arguments arg seqs Call Attribute Pool Name Name keyword Name keyword Tuple Name Attribute random seed Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['seqs', 'out', 'out', 'out']\n", + " 2. ['model', 'format', 'format', 'format']\n", "\n", "110\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Expr Call Attribute add Name Str\n", "Label = ['backend', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "backend backend\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['backend', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['image', 'size', 'size', 'size']\n", + " 2. ['device', 'format', 'format', 'format']\n", "\n", "111\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Num If Compare Name Str Assign Name pad BinOp Name Sub Num\n", "Label = ['pad', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "pad pad\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['pad', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'pad', 'pad', 'pad']\n", + " 2. ['axes', 'size', 'size', 'size']\n", "\n", "112\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num Name keyword Tuple Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'shape', 'shape', 'shape']\n", + " 2. ['value', 'value', 'value', 'value']\n", "\n", "113\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute zeros Name BinOp Tuple Name Add Name keyword Attribute float32 Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'train', 'train', 'train']\n", + " 2. ['dtype', 'placeholder', 'placeholder', 'placeholder']\n", "\n", "114\n", "[CLS] If Call Name Name Name If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute build Name\n", "Label = ['built', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs built\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['built', 'inputs', 'inputs', 'inputs']\n", + " 2. ['layers', 'metadata', 'metadata', 'metadata']\n", "\n", "115\n", "[CLS] If Call Name Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute join Str ListComp Call Name Name comprehension Name ishape Attribute input shapes Name Assign Name inputlabels Str\n", "Label = ['inputlabels', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputlabels inputlabels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputlabels', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cache', 'inputlabels', 'inputlabels', 'inputlabels']\n", + " 2. ['is', 'config', 'config', 'config']\n", "\n", "116\n", "[CLS] keyword Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "117\n", "[CLS] If Compare Name In Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Name Assign Name fn Call Attribute get Name Name If Compare Name Is NameConstant Raise Call Name BinOp BinOp BinOp Str Add Name Str Name\n", "Label = ['fn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "fn fn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['fn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['metric', 'fn', 'fn', 'fn']\n", + " 2. ['index', 'name', 'name', 'name']\n", "\n", "118\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add BinOp Str Mult BinOp Attribute width Name Sub Name\n", "Label = ['bar', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info bar\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['info', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'size', 'size', 'size']\n", + " 2. ['bar', 't', 't', 't']\n", "\n", "119\n", "[CLS] If Compare Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Str Mod Tuple BinOp Name FloorDiv Num BinOp BinOp Name Num Num BinOp Name Num If Compare Name Num Assign Name eta format BinOp Str Tuple BinOp Name Num BinOp Name Num Assign Name eta format BinOp Str Name\n", "Label = ['eta', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "eta eta\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['eta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dim', 'format', 'format', 'format']\n", + " 2. ['format', 'data', 'data', 'data']\n", "\n", "120\n", "[CLS] If Compare Name Gt Attribute [MASK] [MASK] [MASK] [MASK] Name AugAssign Name info Add BinOp Str Mult BinOp Name Sub Attribute total width Name\n", "Label = ['total', 'width', '[PAD]', '[PAD]']\n", "Pred =\n", - "verbose total\n", - "[PAD] width\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['verbose', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['min', 't', 't', 't']\n", + " 2. ['delta', 'updates', 'updates', 'updates']\n", "\n", "121\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Num Assign Name fpath Call Attribute join Attribute path Name Name BinOp Str Add Call Name Name Assign Tuple Subscript Name ExtSlice Slice BinOp BinOp Name Sub Num Mult Num BinOp Name Num Slice Slice Slice Subscript Name Slice BinOp BinOp Name Num Num BinOp Name Num Call Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "chunk i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['chunk', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'out', 'out', 'out']\n", + " 2. ['i', 'dir', 'dir', 'dir']\n", "\n", "122\n", "[CLS] With withitem Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Str Name imgpath Assign Name x train Call Attribute reshape Call Attribute frombuffer Name Call Attribute read Name Attribute uint8 Name keyword Num Call Name Name Num Num\n", "Label = ['open', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "open open\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['open', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'test', 'test', 'test']\n", + " 2. ['device', 'train', 'train', 'train']\n", "\n", "123\n", "[CLS] Attribute [MASK] [MASK] [MASK] [MASK] Call Attribute frombuffer Name Call Attribute read Name Attribute uint8 Name keyword Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['transpose', 'train', 'train', 'train']\n", + " 2. ['dimshuffle', 'test', 'test', 'test']\n", "\n", "124\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Lt Tuple Num Assign Name d Call Attribute load Name Name Assign Name d Call Attribute load Name Name keyword Str Assign Name d decoded Dict For Tuple Name k Name v Call Attribute items Name Assign Subscript Name Index Call Attribute decode Name Str Name Assign Name d Name\n", "Label = ['version', 'info', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs version\n", - "[PAD] info\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'spec', 'spec', 'spec']\n", + " 2. ['recurrent', 'updates', 'updates', 'updates']\n", "\n", "125\n", "[CLS] If UnaryOp Not Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Call Name Name comprehension Name x Name\n", "Label = ['num', 'words', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] words\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['num', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['gpus', 'words', 'words', 'words']\n", + " 2. ['words', 'tensors', 'tensors', 'tensors']\n", "\n", "126\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Str Expr Str Assign Name path Call Name Name keyword Str keyword Str Assign Name f Call Name Name Assign Name data Call Attribute load Name Name Expr Call Attribute close Name Return Name\n", "Label = ['path', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "path path\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['path', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'format', 'format', 'format']\n", + " 2. ['model', 'metadata', 'metadata', 'metadata']\n", "\n", "127\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] ListComp BinOp List Name Add ListComp BinOp Name Name comprehension Name w Name comprehension Name x Name If Name Assign Name xs ListComp ListComp BinOp Name Name comprehension Name w Name comprehension Name x Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "xs xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['xs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['padding', 'shape', 'shape', 'shape']\n", + " 2. ['w', 'val', 'val', 'val']\n", "\n", "128\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp ListComp IfExp Compare Name LtE Lt Name Name Name Name comprehension Name w Name comprehension Name x Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "xs xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['xs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['w', 'xs', 'xs', 'xs']\n", + " 2. ['bad', 'tensors', 'tensors', 'tensors']\n", "\n", "129\n", "[CLS] ListComp ListComp Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Compare Name LtE Lt Name Name comprehension Name x Name\n", "Label = ['w', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w w\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['w', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['s', 'ndim', 'ndim', 'ndim']\n", + " 2. ['xs', 'axes', 'axes', 'axes']\n", "\n", "130\n", "[CLS] If BoolOp And UnaryOp Not Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute FunctionType Name UnaryOp Call Name Attribute build fn Name Attribute MethodType Name Expr Call Attribute append Name Attribute call Attribute build fn Name Expr Call Attribute append Name Attribute build fn Name\n", "Label = ['build', 'fn', '[PAD]', '[PAD]']\n", "Pred =\n", - "build build\n", - "[PAD] fn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['build', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['fn', 'fn', 'fn', 'fn']\n", + " 2. ['is', 'build', 'build', 'build']\n", "\n", "131\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name output Call Name Attribute metrics names Attribute model Name Name If Compare Name Eq Str Return Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['i', 'name', 'name', 'name']\n", + " 2. ['n', 'names', 'names', 'names']\n", "\n", "132\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute preprocess input Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'args', 'args', 'args']\n", + " 2. ['f', 'metadata', 'metadata', 'metadata']\n", "\n", "133\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute VGG19 Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'args', 'args', 'args']\n", + " 2. ['f', 'metadata', 'metadata', 'metadata']\n", "\n", "134\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute decode predictions Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'args', 'args', 'args']\n", + " 2. ['f', 'metadata', 'metadata', 'metadata']\n", "\n", "135\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute DenseNet121 Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'args', 'args', 'args']\n", + " 2. ['f', 'metadata', 'metadata', 'metadata']\n", "\n", "136\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute decode predictions Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'args', 'args', 'args']\n", + " 2. ['f', 'metadata', 'metadata', 'metadata']\n", "\n", "137\n", "[CLS] If Compare Name Eq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name If Compare Name Num Expr Call Attribute append Name Name If Compare Name NotEq Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name Expr Call Attribute append Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['is', 'tensor', 'tensor', 'tensor']\n", "\n", "138\n", "[CLS] If Compare Name Eq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name If Compare Name NotEq Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name Expr Call Attribute append Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['is', 'tensor', 'tensor', 'tensor']\n", "\n", "139\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] NameConstant Assign Name output shape Subscript Subscript Name Index Num Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'shape', 'shape', 'shape']\n", + " 2. ['num', 'size', 'size', 'size']\n", "\n", "140\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp List BinOp Name Sub Num Add Call Name Call Name BinOp Name Num\n", "Label = ['dims', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes dims\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dims', 'dims', 'dims', 'dims']\n", + " 2. ['ins', 'size', 'size', 'size']\n", "\n", "141\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] NameConstant Assign Name output shape Subscript Subscript Name Index Num Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'shape', 'shape', 'shape']\n", + " 2. ['num', 'size', 'size', 'size']\n", "\n", "142\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Subscript Name Index Num comprehension Name s Name Compare Name IsNot NameConstant\n", "Label = ['batch', 'sizes', '[PAD]', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "[PAD] sizes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['batch', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'shape', 'shape', 'shape']\n", + " 2. ['filter', 'states', 'states', 'states']\n", "\n", "143\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Call Name Name NotEq Num Raise Call Name Str Return BinOp Subscript Name Index Num Sub Subscript Name Index Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['variable', 'pad', 'pad', 'pad']\n", + " 2. ['x', 'nodes', 'nodes', 'nodes']\n", "\n", "144\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Subscript Attribute axes Name Index Name Mod Call Attribute ndim Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['update', 'axes', 'axes', 'axes']\n", + " 2. ['axes', 'i', 'i', 'i']\n", "\n", "145\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name Mod Call Attribute ndim Name Subscript Name Index Name\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'axes', 'axes', 'axes']\n", + " 2. ['ndim', 'ndim', 'ndim', 'ndim']\n", "\n", "146\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Expr Str Return Call Call Name keyword Name Name\n", "Label = ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'inputs', 'inputs', 'inputs']\n", + " 2. ['f', 'list', 'list', 'list']\n", "\n", "147\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Call Name Attribute alpha Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'config', 'config', 'config']\n", + " 2. ['layer', 'value', 'value', 'value']\n", "\n", "148\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "149\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute shared axes Name Assign Subscript Name Index BinOp Name Sub Num Num Assign Subscript Attribute param broadcast Name Index BinOp Name Num NameConstant\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['v', 'axes', 'axes', 'axes']\n", + " 2. ['axes', 'i', 'i', 'i']\n", "\n", "150\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Call Name Name If Compare Name NotIn Attribute shared axes Name Assign Subscript Name Index Name Subscript Name Index Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axes', 'axes', 'axes', 'axes']\n", + " 2. ['o', 'i', 'i', 'i']\n", "\n", "151\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Attribute axis Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'value', 'value', 'value']\n", + " 2. ['layer', 'config', 'config', 'config']\n", "\n", "152\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute cast to floatx Name Name\n", "Label = ['max', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype max\n", - "[PAD] value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['w', 't', 't', 't']\n", + " 2. ['result', 'dtype', 'dtype', 'dtype']\n", "\n", "153\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] If Call Name Attribute layer Name Str Return Attribute updates Attribute layer Name Return List Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'layer', 'layer', 'layer']\n", + " 2. ['cls', 'weights', 'weights', 'weights']\n", "\n", "154\n", "[CLS] Dict Str Str Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Attribute layer Name Call Attribute get config Attribute layer Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'scope', 'scope', 'scope']\n", + " 2. ['from', 'format', 'format', 'format']\n", "\n", "155\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get shape tuple Name Tuple UnaryOp USub Num Name Num\n", "Label = ['inner', 'input', 'shape', '[PAD]']\n", "Pred =\n", - "inner inner\n", - "mask input\n", - "mask shape\n", - "mask [PAD]\n", " 0. ['inner', 'mask', 'mask', 'mask']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['depthwise', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "156\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get shape tuple Name Tuple UnaryOp USub Num Name Name Num Subscript Name Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['output', 'shape', 'shape', 'shape']\n", + " 1. ['inner', 'mask', 'mask', 'mask']\n", + " 2. ['new', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "157\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple UnaryOp USub Num Name Name Num Subscript Name Slice Num\n", "Label = ['get', 'shape', 'tuple', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] shape\n", - "[PAD] tuple\n", - "[PAD] [PAD]\n", " 0. ['get', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'shape', 'shape', 'shape']\n", + " 2. ['expand', 'dims', 'dims', 'dims']\n", "\n", "158\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg value Assign Attribute trainable Name Name Assign Attribute trainable Attribute forward layer Name Name Assign Attribute trainable Attribute backward layer Name Name Attribute setter Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'layer', 'layer', 'layer']\n", + " 2. ['model', 'value', 'value', 'value']\n", "\n", "159\n", "[CLS] Return BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute forward layer Name Add Call Attribute get weights Attribute backward layer Name\n", "Label = ['get', 'weights', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] weights\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['get', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['initial', 'weights', 'weights', 'weights']\n", + " 2. ['state', 'layer', 'layer', 'layer']\n", "\n", "160\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant Return BinOp BinOp Name Add Name Call Attribute copy Name Name\n", "Label = ['merge', 'mode', '[PAD]', '[PAD]']\n", "Pred =\n", - "merge merge\n", - "[PAD] mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['merge', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['return', 'mode', 'mode', 'mode']\n", + " 2. ['mode', 'state', 'state', 'state']\n", "\n", "161\n", "[CLS] If BoolOp And Compare Name Is NameConstant Compare Name NameConstant Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['get', 'for', 'for', 'for']\n", + " 2. ['init', 'list', 'list', 'list']\n", "\n", "162\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Call Name Name FloorDiv Num Add Num\n", "Label = ['pivot', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "num pivot\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['num', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'axes', 'axes', 'axes']\n", + " 2. ['y', 'spec', 'spec', 'spec']\n", "\n", "163\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp UnaryOp Not Attribute merge mode Name List NameConstant NameConstant NameConstant\n", "Label = ['output', 'mask', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mode', 'mode', 'mode', 'mode']\n", + " 2. ['state', 'state', 'state', 'state']\n", "\n", "164\n", "[CLS] BinOp BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Add Name Name\n", "Label = ['get', 'updates', 'for', '[PAD]']\n", "Pred =\n", - "get get\n", - "for updates\n", - "for for\n", - "for [PAD]\n", " 0. ['get', 'for', 'for', 'for']\n", + " 1. ['init', 'losses', 'losses', 'losses']\n", + " 2. ['call', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "165\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Return BinOp Attribute losses Attribute forward layer Name Add Attribute losses Attribute backward layer Name\n", "Label = ['forward', 'layer', '[PAD]', '[PAD]']\n", "Pred =\n", - "forward forward\n", - "[PAD] layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['forward', '[PAD]', '[PAD]', '[PAD]']\n", - "\n", + " 1. ['call', 'layer', 'layer', 'layer']\n", + " 2. ['layer', 'losses', 'losses', 'losses']\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "166\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['mean', 'list', 'list', 'list']\n", "\n", "167\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Call Name keyword Tuple NameConstant Name comprehension Name dim Name\n", "Label = ['state', 'spec', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] spec\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['states', 'spec', 'spec', 'spec']\n", + " 2. ['input', 'dim', 'dim', 'dim']\n", "\n", "168\n", "[CLS] Dict Str Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Attribute go backwards Name Attribute stateful Name\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['return', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stateful', 'sequences', 'sequences', 'sequences']\n", + " 2. ['scale', 'size', 'size', 'size']\n", "\n", "169\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['mean', 'list', 'list', 'list']\n", "\n", "170\n", "[CLS] If BoolOp And Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute built Name Return List Attribute kernel Name Attribute recurrent kernel Name Attribute bias Name\n", "Label = ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reset trainable\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['reset', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stateful', 'after', 'after', 'after']\n", + " 2. ['use', 'bias', 'bias', 'bias']\n", "\n", "171\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice Attribute units Name\n", "Label = ['recurrent', 'kernel', 'z', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "kernel kernel\n", - "kernel z\n", - "kernel [PAD]\n", " 0. ['recurrent', 'kernel', 'kernel', 'kernel']\n", + " 1. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['reset', 'i', 'i', 'i']\n", "\n", "172\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice Attribute units Name BinOp Attribute units Name Mult Num\n", "Label = ['kernel', 'r', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] r\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'f', 'f', 'f']\n", + " 2. ['bias', 'r', 'r', 'r']\n", "\n", "173\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute units Name Mult Num BinOp Attribute units Name Num\n", "Label = ['bias', 'r', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] r\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'c', 'c', 'c']\n", + " 2. ['input', 'i', 'i', 'i']\n", "\n", "174\n", "[CLS] If BoolOp Or Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Assign Name h Subscript Name Index Num\n", "Label = ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['return', 'state', 'state', 'state']\n", + " 2. ['state', 'sequences', 'sequences', 'sequences']\n", "\n", "175\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "176\n", "[CLS] ExtSlice Slice Slice BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Num BinOp Attribute units Name Num\n", "Label = ['units', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "units units\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['units', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['filters', 'kernel', 'kernel', 'kernel']\n", + " 2. ['gain', 'c', 'c', 'c']\n", "\n", "177\n", "[CLS] If BoolOp Or Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Assign Name h Subscript Name Index Num Assign Name c Subscript Name Index Num\n", "Label = ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reset', 'state', 'state', 'state']\n", + " 2. ['run', 'sequences', 'sequences', 'sequences']\n", "\n", "178\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name output Call Attribute transpose Name Name Tuple Num Num Num Assign Name output Subscript Name Index UnaryOp USub Num\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['return', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['use', 'sequences', 'sequences', 'sequences']\n", + " 2. ['reset', 'state', 'state', 'state']\n", "\n", "179\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pooling function Name keyword Name keyword BinOp Attribute pool size Name Add Tuple Num keyword BinOp Attribute strides Name Tuple Num keyword Attribute padding Name keyword Attribute data format Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outputs', 'shape', 'shape', 'shape']\n", + " 2. ['x', 'size', 'size', 'size']\n", "\n", "180\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "output [PAD]\n", " 0. ['conv', 'output', 'output', 'output']\n", + " 1. ['deconv', 'length', 'length', 'length']\n", + " 2. ['resize', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "181\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Return Tuple Subscript Name Index Num Name Name Subscript Name Index Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "format format\n", - "format [PAD]\n", - "format [PAD]\n", " 0. ['data', 'format', 'format', 'format']\n", + " 1. ['type', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['mode', 'data', 'data', 'data']\n", "\n", "182\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "183\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "conv conv\n", - "output output\n", - "output length\n", - "output [PAD]\n", + "Pred =\n", " 0. ['conv', 'output', 'output', 'output']\n", + " 1. ['deconv', 'length', 'length', 'length']\n", + " 2. ['resize', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "184\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv output length Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['len', 'dim3', '[PAD]', '[PAD]']\n", "Pred =\n", - "cols len\n", - "[PAD] dim3\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cols', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['rows', 'length', 'length', 'length']\n", + " 2. ['length', 'dim', 'dim', 'dim']\n", "\n", "185\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name output Call Attribute pooling function Name keyword Name keyword Attribute pool size Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'function', 'function', 'function']\n", + " 2. ['layer', 'size', 'size', 'size']\n", "\n", "186\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Attribute pool size Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name\n", "Label = ['pooling', 'function', '[PAD]', '[PAD]']\n", "Pred =\n", - "pooling pooling\n", - "[PAD] function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['pooling', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['add', 'function', 'function', 'function']\n", + " 2. ['constant', 'weight', 'weight', 'weight']\n", "\n", "187\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg pool size arg strides arg padding arg data format arg kwargs Tuple Num Num Num NameConstant Str NameConstant Expr Call Attribute init Call Name Name Name Name Name Name Name keyword Name Attribute legacy pooling3d support Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'size', 'size', 'size']\n", + " 2. ['x', 'function', 'function', 'function']\n", "\n", "188\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format arg kwargs Str Expr Call Attribute init Call Name Name Name Name keyword Name Assign Attribute supports masking Name NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'format', 'format', 'format']\n", + " 2. ['model', 'size', 'size', 'size']\n", "\n", "189\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format arg kwargs NameConstant Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute data format Name Call Attribute normalize data format Name Name Assign Attribute input spec Name Call Name keyword Num Attribute legacy global pooling support Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'format', 'format', 'format']\n", + " 2. ['layer', 'layer', 'layer', 'layer']\n", "\n", "190\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Attribute data format Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'config', 'config', 'config']\n", + " 2. ['cls', 'format', 'format', 'format']\n", "\n", "191\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Attribute data format Name Eq Str Return Call Attribute mean Name Name keyword List Num Num Return Call Attribute mean Name Name keyword List Num Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'format', 'format', 'format']\n", + " 2. ['seqs', 'size', 'size', 'size']\n", "\n", "192\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Attribute data format Name Eq Str Return Call Attribute max Name Name keyword List Num Num Return Call Attribute max Name Name keyword List Num Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'format', 'format', 'format']\n", + " 2. ['x', 'data', 'data', 'data']\n", "\n", "193\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "194\n", "[CLS] Raise Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str ListComp Attribute shape Name comprehension Name spec Attribute state spec Name Attribute state size Attribute cell Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['format', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['join', 'size', 'size', 'size']\n", + " 2. ['state', 'format', 'format', 'format']\n", "\n", "195\n", "[CLS] Assign Subscript Name Index Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Subscript Name Index Name keyword Attribute padding Attribute cell Name keyword Subscript Attribute strides Attribute cell Name Index Name keyword Subscript Attribute dilation rate Attribute cell Name Index Name\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "output [PAD]\n", " 0. ['conv', 'output', 'output', 'output']\n", + " 1. ['deconv', 'length', 'length', 'length']\n", + " 2. ['conv2d', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "196\n", "[CLS] If BoolOp And Compare Name Is NameConstant Compare Name NameConstant Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['get', 'for', 'for', 'for']\n", + " 2. ['init', 'list', 'list', 'list']\n", "\n", "197\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs arg mask arg training arg initial state arg constants NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['step', 'function', 'function', 'function']\n", + " 2. ['inputs', 'size', 'size', 'size']\n", "\n", "198\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['states', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outputs', 'layers', 'layers', 'layers']\n", + " 2. ['layers', 'uid', 'uid', 'uid']\n", "\n", "199\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg states Assign Name constants Subscript Name Slice UnaryOp USub Attribute num constants Name Assign Name states Subscript Name Slice UnaryOp Attribute num constants Name Return Call Attribute call Attribute cell Name Name Name keyword Name keyword Name\n", "Label = ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['num', 'inputs', 'inputs', 'inputs']\n", + " 2. ['constants', 'constants', 'constants', 'constants']\n", "\n", "200\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name state shape BinOp Subscript Name Slice Num Add Subscript Name Slice Num\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['return', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stateful', 'state', 'state', 'state']\n", + " 2. ['reverse', 'shape', 'shape', 'shape']\n", "\n", "201\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Add Tuple Name BinOp Attribute filters Name Mult Num\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['bias', 'size', 'size', 'size']\n", + " 2. ['filters', 'shape', 'shape', 'shape']\n", "\n", "202\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice Slice Slice Attribute filters Name\n", "Label = ['kernel', 'i', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'i', 'i', 'i']\n", + " 2. ['bias', 'f', 'f', 'f']\n", "\n", "203\n", "[CLS] Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name ExtSlice Slice Slice Slice Slice BinOp Attribute filters Name Mult Num\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'kernel', 'kernel', 'kernel']\n", + " 2. ['bias', 'size', 'size', 'size']\n", "\n", "204\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice Slice Slice BinOp Attribute filters Name Mult Num\n", "Label = ['recurrent', 'kernel', 'o', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "kernel kernel\n", - "kernel o\n", - "kernel [PAD]\n", " 0. ['recurrent', 'kernel', 'kernel', 'kernel']\n", + " 1. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['bias', 'c', 'c', 'c']\n", "\n", "205\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute filters Name Mult Num BinOp Attribute filters Name Num\n", "Label = ['bias', 'c', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'c', 'c', 'c']\n", + " 2. ['kernel', 'f', 'f', 'f']\n", "\n", "206\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute filters Name Mult Num\n", "Label = ['bias', 'o', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] o\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'c', 'c', 'c']\n", + " 2. ['kernel', 'f', 'f', 'f']\n", "\n", "207\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute kernel i Name Attribute bias i Name keyword Attribute padding Name\n", "Label = ['input', 'conv', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "[PAD] conv\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'conv', 'conv', 'conv']\n", + " 2. ['outputs', 'i', 'i', 'i']\n", "\n", "208\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['init', 'losses', 'losses', 'losses']\n", + " 2. ['get', 'list', 'list', 'list']\n", "\n", "209\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['mean', 'list', 'list', 'list']\n", "\n", "210\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Assign Name outputs Call Attribute conv1d Name Name Attribute kernel Name keyword Subscript Attribute strides Name Index Num keyword Attribute padding Name keyword Attribute data format Name keyword Subscript Attribute dilation rate Name Index Num\n", "Label = ['rank', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "rank rank\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['rank', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'transpose', 'transpose', 'transpose']\n", + " 2. ['ndim', 'format', 'format', 'format']\n", "\n", "211\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Call Name Name Assign Name new dim Call Attribute conv output length Name Subscript Name Index Name Subscript Attribute kernel size Name Index Name keyword Attribute padding Name keyword Subscript Attribute strides Name Index Name keyword Subscript Attribute dilation rate Name Index Name Expr Call Attribute append Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dim', 'dim', 'dim', 'dim']\n", + " 2. ['o', 'length', 'length', 'length']\n", "\n", "212\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "213\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'generator', 'generator', 'generator']\n", + " 2. ['fit', 'loop', 'loop', 'loop']\n", "\n", "214\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute output padding Name\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['strides', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['rank', 'padding', 'padding', 'padding']\n", + " 2. ['pow', 'size', 'size', 'size']\n", "\n", "215\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Name keyword Attribute kernel initializer Name keyword Str keyword Attribute kernel regularizer Name keyword Attribute kernel constraint Name\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['depthwise', 'kernel', 'kernel', 'kernel']\n", + " 2. ['[PAD]', 'weight', 'weight', 'weight']\n", "\n", "216\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Tuple Name h axis Name w axis Tuple Num Num Assign Tuple Name h axis Name w axis Tuple Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mode', 'format', 'format', 'format']\n", + " 2. ['type', 'data', 'data', 'data']\n", "\n", "217\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Name output shape Tuple Name Attribute filters Name Name Name Assign Name output shape Tuple Name Name Name Attribute filters Name\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mode', 'format', 'format', 'format']\n", + " 2. ['merge', 'data', 'data', 'data']\n", "\n", "218\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv2d transpose Name Name Attribute kernel Name Name Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name keyword Attribute dilation rate Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'out', 'out', 'out']\n", + " 2. ['cols', 'outputs', 'outputs', 'outputs']\n", "\n", "219\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute bias add Name Name Attribute bias Name keyword Attribute data format Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'bias', 'bias', 'bias']\n", + " 2. ['conv', 'out', 'out', 'out']\n", "\n", "220\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute output padding Name\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['strides', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['rank', 'padding', 'padding', 'padding']\n", + " 2. ['pow', 'size', 'size', 'size']\n", "\n", "221\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'bias', 'bias', 'bias']\n", + " 2. ['use', 'i', 'i', 'i']\n", "\n", "222\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['bias', 'weight', 'weight', 'weight']\n", + " 2. ['parameter', 'bias', 'bias', 'bias']\n", "\n", "223\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute deconv length Name Name Name Name Attribute padding Name Name\n", "Label = ['out', 'height', '[PAD]', '[PAD]']\n", "Pred =\n", - "out out\n", - "[PAD] height\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['out', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['width', 'out', 'out', 'out']\n", + " 2. ['output', 'width', 'width', 'width']\n", "\n", "224\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Name output shape Tuple Name Attribute filters Name Name Name Name Assign Name output shape Tuple Name Name Name Name Attribute filters Name\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1. ['mode', 'format', 'format', 'format']\n", + " 2. ['merge', 'data', 'data', 'data']\n", "\n", "225\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "length [PAD]\n", " 0. ['deconv', 'length', 'length', 'length']\n", + " 1. ['conv', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['append', 'output', 'output', 'output']\n", "\n", "226\n", "[CLS] Assign Subscript Name Index Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "length [PAD]\n", " 0. ['deconv', 'length', 'length', 'length']\n", + " 1. ['conv', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['stateful', 'output', 'output', 'output']\n", "\n", "227\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "length [PAD]\n", " 0. ['deconv', 'length', 'length', 'length']\n", + " 1. ['conv', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['append', 'output', 'output', 'output']\n", "\n", "228\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'name', 'name', 'name']\n", + " 2. ['encode', 'generator', 'generator', 'generator']\n", "\n", "229\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp Compare Attribute data format Name Eq Str Num UnaryOp USub Num\n", "Label = ['channel', 'axis', '[PAD]', '[PAD]']\n", "Pred =\n", - "data channel\n", - "[PAD] axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['format', 'format', 'format', 'format']\n", + " 2. ['tf', 'data', 'data', 'data']\n", "\n", "230\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'bias', 'bias', 'bias']\n", + " 2. ['use', 'i', 'i', 'i']\n", "\n", "231\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name keyword Num keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'name', 'name', 'name']\n", + " 2. ['encode', 'generator', 'generator', 'generator']\n", "\n", "232\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute depthwise kernel Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute dilation rate Name keyword Attribute data format Name\n", "Label = ['depthwise', 'conv2d', '[PAD]', '[PAD]']\n", "Pred =\n", - "conv2d depthwise\n", - "[PAD] conv2d\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['conv2d', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['separable', 'conv2d', 'conv2d', 'conv2d']\n", + " 2. ['conv3d', 'transpose', 'transpose', 'transpose']\n", "\n", "233\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name outputs Call Attribute bias add Name Name Attribute bias Name keyword Attribute data format Name\n", "Label = ['use', 'bias', '[PAD]', '[PAD]']\n", "Pred =\n", - "use use\n", - "bias bias\n", - "bias [PAD]\n", - "bias [PAD]\n", " 0. ['use', 'bias', 'bias', 'bias']\n", + " 1. ['reset', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['outputs', 'after', 'after', 'after']\n", "\n", "234\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Call Name Num BinOp Num Add Attribute rank Name\n", "Label = ['spatial', 'axes', '[PAD]', '[PAD]']\n", "Pred =\n", - "spatial spatial\n", - "axes axes\n", - "axes [PAD]\n", - "axes [PAD]\n", " 0. ['spatial', 'axes', 'axes', 'axes']\n", + " 1. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['new', 'rank', 'rank', 'rank']\n", "\n", "235\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name output Call Attribute repeat elements Name Name Subscript Attribute size Name Index Num keyword Num Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'size', 'size', 'size']\n", + " 2. ['model', 'function', 'function', 'function']\n", "\n", "236\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Return Call Attribute resize images Name Name Subscript Attribute size Name Index Num Subscript Attribute size Name Index Num Attribute data format Name Attribute interpolation Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'size', 'size', 'size']\n", + " 2. ['seqs', 'format', 'format', 'format']\n", "\n", "237\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute size Name Index Num Subscript Attribute size Name Index Num Attribute data format Name Attribute interpolation Name\n", "Label = ['resize', 'images', '[PAD]', '[PAD]']\n", "Pred =\n", - "resize resize\n", - "[PAD] images\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['resize', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'length', 'length', 'length']\n", + " 2. ['deconv', 'output', 'output', 'output']\n", "\n", "238\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Str keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'params', 'params', 'params']\n", + " 2. ['encode', 'list', 'list', 'list']\n", "\n", "239\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute normalize tuple Name Subscript Name Index Num Num Str\n", "Label = ['dim3', 'padding', '[PAD]', '[PAD]']\n", "Pred =\n", - "width dim3\n", - "[PAD] padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['width', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dim2', 'cropping', 'cropping', 'cropping']\n", + " 2. ['height', 'padding', 'padding', 'padding']\n", "\n", "240\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg cropping arg data format arg kwargs Tuple Tuple Num Num Tuple Num Num Tuple Num Num NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'format', 'format', 'format']\n", + " 2. ['args', 'size', 'size', 'size']\n", "\n", "241\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Tuple Name Name Tuple Name Name Tuple Name Name\n", "Label = ['normalized', 'cropping', '[PAD]', '[PAD]']\n", "Pred =\n", - "args normalized\n", - "[PAD] cropping\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['args', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'shape', 'shape', 'shape']\n", + " 2. ['legacy', 'input', 'input', 'input']\n", "\n", "242\n", "[CLS] BinOp Str Mod Tuple Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name\n", "Label = ['input', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "length length\n", - "length [PAD]\n", - "length [PAD]\n", " 0. ['input', 'length', 'length', 'length']\n", + " 1. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['outputs', 'uid', 'uid', 'uid']\n", "\n", "243\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute local conv1d Name Name Attribute kernel Name Attribute kernel size Name Attribute strides Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outputs', 'out', 'out', 'out']\n", + " 2. ['conv', 'output', 'output', 'output']\n", "\n", "244\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name NotEq Str Raise Call Name BinOp Str Add Name\n", "Label = ['padding', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['padding', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'names', 'names', 'names']\n", + " 2. ['shape', 'padding', 'padding', 'padding']\n", "\n", "245\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv output length Name Name Subscript Attribute kernel size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['output', 'row', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cols output\n", - "[PAD] row\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['cols', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['rows', 'length', 'length', 'length']\n", + " 2. ['output', 'dim', 'dim', 'dim']\n", "\n", "246\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute local conv2d Name Name Attribute kernel Name Attribute kernel size Name Attribute strides Name Tuple Attribute output row Name Attribute output col Name Attribute data format Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'out', 'out', 'out']\n", + " 2. ['x', 'size', 'size', 'size']\n", "\n", "247\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['axis', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'layers', 'layers', 'layers']\n", + " 2. ['name', 'shape', 'shape', 'shape']\n", "\n", "248\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Attribute gamma Name Call Attribute add weight Name keyword Name keyword Str keyword Attribute gamma initializer Name keyword Attribute gamma regularizer Name keyword Attribute gamma constraint Name Assign Attribute gamma Name NameConstant\n", "Label = ['scale', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "gamma scale\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['gamma', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['use', 'weight', 'weight', 'weight']\n", + " 2. ['center', 'gamma', 'gamma', 'gamma']\n", "\n", "249\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Name keyword Str keyword Attribute beta initializer Name keyword Attribute beta regularizer Name keyword Attribute beta constraint Name\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['beta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['depthwise', 'kernel', 'kernel', 'kernel']\n", + " 2. ['bias', 'weight', 'weight', 'weight']\n", "\n", "250\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Str keyword Attribute moving mean initializer Name keyword NameConstant\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['parameter', 'weight', 'weight', 'weight']\n", + " 2. ['zeros', 'function', 'function', 'function']\n", "\n", "251\n", "[CLS] BinOp Name Div BinOp Name Sub BinOp Num Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['rank', 't', 't', 't']\n", + " 2. ['sqrt', 'dims', 'dims', 'dims']\n", "\n", "252\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['mean', 'list', 'list', 'list']\n", "\n", "253\n", "[CLS] Return Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Attribute cells Name Index UnaryOp USub Num Index Num\n", "Label = ['state', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'size', 'size', 'size']\n", + " 2. ['output', 'state', 'state', 'state']\n", "\n", "254\n", "[CLS] IfExp Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute cells Name Slice UnaryOp USub Num Attribute cells Name\n", "Label = ['reverse', 'state', 'order', '[PAD]']\n", "Pred =\n", - "reverse reverse\n", - "state state\n", - "state order\n", - "state [PAD]\n", " 0. ['reverse', 'state', 'state', 'state']\n", + " 1. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['return', 'order', 'order', 'order']\n", "\n", "255\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Slice Num Assign Name input shape Subscript Name Index Num\n", "Label = ['constants', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "input constants\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mask', 'shape', 'shape', 'shape']\n", + " 2. ['shape', 'input', 'input', 'input']\n", "\n", "256\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute cells Name If Call Name Name Name AugAssign Name weights Add Attribute non trainable weights Name\n", "Label = ['cell', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cell cell\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cell', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'layer', 'layer', 'layer']\n", + " 2. ['state', 'dim', 'dim', 'dim']\n", "\n", "257\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs NameConstant Assign Name losses List For Name cell Attribute cells Name If Call Name Name Name Assign Name cell losses Call Attribute get losses for Name Name AugAssign Name losses Add Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cell', 'losses', 'losses', 'losses']\n", + " 2. ['cls', 'function', 'function', 'function']\n", "\n", "258\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] If Compare Attribute states Name Is NameConstant If Call Name Attribute state size Attribute cell Name Name Assign Name num states Num Assign Name num states Call Name Attribute state size Attribute cell Name Return ListComp NameConstant comprehension Name Call Name Name Return Attribute states Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cls', 'size', 'size', 'size']\n", + " 2. ['states', 'function', 'function', 'function']\n", "\n", "259\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant If Call Name Attribute state size Attribute cell Name Name Assign Name num states Num Assign Name num states Call Name Attribute state size Attribute cell Name Return ListComp NameConstant comprehension Name Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['states', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['state', 'size', 'size', 'size']\n", + " 2. ['tile', 'spec', 'spec', 'spec']\n", "\n", "260\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Tuple Subscript Name Index Num Name comprehension Name dim Name\n", "Label = ['state', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'shape', 'shape', 'shape']\n", + " 2. ['output', 'input', 'input', 'input']\n", "\n", "261\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num\n", "Label = ['input', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "mask input\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['mask', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'shape', 'shape', 'shape']\n", + " 2. ['inputs', 'mask', 'mask', 'mask']\n", "\n", "262\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute cell Name Str Return ListComp Call Attribute tile Name Name List Num Name comprehension Name dim Attribute state size Attribute cell Name Return List Call Attribute tile Name Name List Num Attribute state size Attribute cell Name\n", "Label = ['state', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'size', 'size', 'size']\n", + " 2. ['bn', 'dim', 'dim', 'dim']\n", "\n", "263\n", "[CLS] If Call Name Name Name If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant Assign Name initial state Subscript Name Slice Num Assign Name initial state Subscript Name Slice Num UnaryOp USub Attribute num constants Name If Compare Call Name Name Eq Num Assign Name initial state NameConstant Assign Name inputs Subscript Name Index Num\n", "Label = ['num', 'constants', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] constants\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['num', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['initial', 'constants', 'constants', 'constants']\n", + " 2. ['constants', 'function', 'function', 'function']\n", "\n", "264\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Tuple Name Name Str Call Name Attribute shape Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'shape', 'shape', 'shape']\n", + " 2. ['batch', 'size', 'size', 'size']\n", "\n", "265\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'names', 'names', 'names']\n", + " 2. ['batch', 'nodes', 'nodes', 'nodes']\n", "\n", "266\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'names', 'names', 'names']\n", + " 2. ['shape', 'dim', 'dim', 'dim']\n", "\n", "267\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Assign Subscript Name Index Str Attribute num constants Name\n", "Label = ['num', 'constants', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] constants\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['num', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['constants', 'constants', 'constants', 'constants']\n", + " 2. ['initial', 'function', 'function', 'function']\n", "\n", "268\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "269\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Name If UnaryOp Not Attribute trainable Name Return Attribute weights Attribute cell Name Return Attribute non trainable weights Attribute cell Name\n", "Label = ['cell', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cell cell\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cell', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['trainable', 'layer', 'layer', 'layer']\n", + " 2. ['forward', 'weights', 'weights', 'weights']\n", "\n", "270\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Assign Name h Call Attribute bias add Name Name Attribute bias Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['bias', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'bias', 'bias', 'bias']\n", + " 2. ['use', 'i', 'i', 'i']\n", "\n", "271\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice BinOp Attribute units Name Mult Num\n", "Label = ['kernel', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'o', 'o', 'o']\n", + " 2. ['h', 'c', 'c', 'c']\n", "\n", "272\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute recurrent dropout Name keyword Name keyword Num\n", "Label = ['ones', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones ones\n", - "[PAD] like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ones', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'like', 'like', 'like']\n", + " 2. ['dropout', 'dropout', 'dropout', 'dropout']\n", "\n", "273\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dot Name Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice BinOp Num Mult Attribute units Name\n", "Label = ['matrix', 'inner', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent matrix\n", - "[PAD] inner\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'h', 'h', 'h']\n", + " 2. ['kernel', 'kernel', 'kernel', 'kernel']\n", "\n", "274\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult Subscript Name ExtSlice Slice Slice BinOp Num Attribute units Name\n", "Label = ['recurrent', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['h', 'kernel', 'kernel', 'kernel']\n", + " 2. ['kernel', 'h', 'h', 'h']\n", "\n", "275\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dot Name BinOp Name Mult Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice BinOp Num Attribute units Name\n", "Label = ['recurrent', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'h', 'h', 'h']\n", + " 2. ['h', 'kernel', 'kernel', 'kernel']\n", "\n", "276\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'normal', 'normal', 'normal']\n", + " 2. ['fit', 'initializer', 'initializer', 'initializer']\n", "\n", "277\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['init', 'losses', 'losses', 'losses']\n", + " 2. ['get', 'list', 'list', 'list']\n", "\n", "278\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['init', 'normal', 'normal', 'normal']\n", + " 2. ['get', 'initializer', 'initializer', 'initializer']\n", "\n", "279\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg config If BoolOp And Compare Str In Name Compare Subscript Name Index Str Eq Num Assign Subscript Name Index Str Num Return Call Name keyword Name Name\n", "Label = ['cls', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cls cls\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cls', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'data', 'data', 'data']\n", + " 2. ['prefix', 'format', 'format', 'format']\n", "\n", "280\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name List Call Attribute bias initializer Name Tuple Attribute units Name Starred Name keyword Name Call Call Attribute Ones Name Tuple Attribute units Name Starred Name keyword Name Call Attribute bias initializer Name Tuple BinOp Attribute units Name Mult Num Starred Name keyword Name\n", "Label = ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate concatenate\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['bias', 'initializer', 'initializer', 'initializer']\n", + " 2. ['stack', 'weight', 'weight', 'weight']\n", "\n", "281\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice BinOp Attribute units Name Mult Num BinOp Attribute units Name Num\n", "Label = ['kernel', 'c', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'o', 'o', 'o']\n", + " 2. ['h', 'c', 'c', 'c']\n", "\n", "282\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Call Attribute ones like Name Name Attribute dropout Name keyword Name keyword Num\n", "Label = ['dropout', 'mask', '[PAD]', '[PAD]']\n", "Pred =\n", - "dropout dropout\n", - "[PAD] mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dropout', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'mask', 'mask', 'mask']\n", + " 2. ['mask', 'dropout', 'dropout', 'dropout']\n", "\n", "283\n", "[CLS] If BoolOp And Compare Num Lt Attribute [MASK] [MASK] [MASK] [MASK] Name Num Compare Attribute recurrent dropout mask Name Is NameConstant Assign Attribute recurrent dropout mask Name Call Name Call Attribute ones like Name Subscript Name Index Num Attribute recurrent dropout Name keyword Name keyword Num\n", - "Label = ['recurrent', 'dropout', '[PAD]', '[PAD]']\n", + "Label = ['recurrent', 'dropout', '[PAD]', '[PAD]']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Pred =\n", - "recurrent recurrent\n", - "dropout dropout\n", - "dropout [PAD]\n", - "dropout [PAD]\n", " 0. ['recurrent', 'dropout', 'dropout', 'dropout']\n", + " 1. ['dropout', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['reset', 'mask', 'mask', 'mask']\n", "\n", "284\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Attribute recurrent dropout Name keyword Name keyword Num\n", "Label = ['ones', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones ones\n", - "[PAD] like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ones', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'like', 'like', 'like']\n", + " 2. ['set', 'dropout', 'dropout', 'dropout']\n", "\n", "285\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute recurrent activation Name BinOp Name Add Call Attribute dot Name Name Attribute recurrent kernel f Name\n", "Label = ['f', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i f\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['c', 'i', 'i', 'i']\n", + " 2. ['o', 'c', 'c', 'c']\n", "\n", "286\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Add Call Attribute dot Name Name Attribute recurrent kernel o Name\n", "Label = ['recurrent', 'activation', '[PAD]', '[PAD]']\n", "Pred =\n", - "activation recurrent\n", - "[PAD] activation\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['activation', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['recurrent', 'activation', 'activation', 'activation']\n", + " 2. ['append', 'i', 'i', 'i']\n", "\n", "287\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name ExtSlice Slice Slice Attribute units Name BinOp Num Mult Attribute units Name\n", "Label = ['z1', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent z1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'r', 'r', 'r']\n", + " 2. ['kernel', 'kernel', 'kernel', 'kernel']\n", "\n", "288\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "289\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'name', 'name', 'name']\n", + " 2. ['encode', 'losses', 'losses', 'losses']\n", "\n", "290\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute sqrt Name BinOp Attribute rate Name Div BinOp Num Sub Attribute rate Name\n", "Label = ['stddev', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "rate stddev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['rate', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stddev', 't', 't', 't']\n", + " 2. ['y', 'axes', 'axes', 'axes']\n", "\n", "291\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "292\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name input shape Call Attribute shape Name Name If Compare Attribute data format Name Eq Str Assign Name noise shape Tuple Subscript Name Index Num Subscript Name Index Num Num Num Assign Name noise shape Tuple Subscript Name Index Num Num Num Subscript Name Index Num Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'format', 'format', 'format']\n", + " 2. ['layer', 'shape', 'shape', 'shape']\n", "\n", "293\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Num Num Subscript Name Index Num\n", "Label = ['noise', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "noise noise\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['noise', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['filter', 'shape', 'shape', 'shape']\n", + " 2. ['new', 'size', 'size', 'size']\n", "\n", "294\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Name Raise Call Name Str\n", "Label = ['unknown', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "steps unknown\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['steps', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'epoch', 'epoch', 'epoch']\n", + " 2. ['do', 'per', 'per', 'per']\n", "\n", "295\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "296\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "297\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg n arg kwargs Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute n Name Name Assign Attribute input spec Name Call Name keyword Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'spec', 'spec', 'spec']\n", + " 2. ['layer', 'format', 'format', 'format']\n", "\n", "298\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg input shape Return Tuple Subscript Name Index Num Attribute n Name Subscript Name Index Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'format', 'format', 'format']\n", + " 2. ['layer', 'size', 'size', 'size']\n", "\n", "299\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Return Call Attribute repeat Name Name Attribute n Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'nodes', 'nodes', 'nodes']\n", + " 2. ['y', 'format', 'format', 'format']\n", "\n", "300\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute placeholder Name keyword Name comprehension Name shape Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['weight', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['xs', 'placeholder', 'placeholder', 'placeholder']\n", + " 2. ['data', 'shape', 'shape', 'shape']\n", "\n", "301\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['items', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'config', 'config', 'config']\n", + " 2. ['backend', 'list', 'list', 'list']\n", "\n", "302\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str If Call Name Subscript Subscript Name Index Str Index Name Name Assign Name arg dict Subscript Subscript Name Index Str Index Name If BoolOp And Compare Str In Name Compare Subscript Name Index Str Eq Str Assign Subscript Subscript Name Index Str Index Name Call Attribute array Name Subscript Name Index Str\n", "Label = ['key', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x key\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['k', 'config', 'config', 'config']\n", + " 2. ['layer', 'data', 'data', 'data']\n", "\n", "303\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Name Attribute units Name keyword Attribute kernel initializer Name keyword Str keyword Attribute kernel regularizer Name keyword Attribute kernel constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "add add\n", - "weight weight\n", - "weight [PAD]\n", - "weight [PAD]\n", + "Pred =\n", " 0. ['add', 'weight', 'weight', 'weight']\n", + " 1. ['compile', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['pooling', 'kernel', 'kernel', 'kernel']\n", "\n", "304\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Attribute units Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['bias', 'weight', 'weight', 'weight']\n", + " 2. ['parameter', 'bias', 'bias', 'bias']\n", "\n", "305\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return Call Attribute asarray Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'value', 'value', 'value']\n", + " 2. ['tensor', 'tensor', 'tensor', 'tensor']\n", "\n", "306\n", "[CLS] BoolOp And Call Name Name Compare Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute cntk py Name Is NameConstant\n", "Label = ['Function', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "function Function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['function', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'function', 'function', 'function']\n", + " 2. ['parameter', 'value', 'value', 'value']\n", "\n", "307\n", "[CLS] If Compare Name Eq Str Return Attribute [MASK] [MASK] [MASK] [MASK] Name Return Attribute float32 Name\n", "Label = ['float16', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype float16\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['float64', 'dtype', 'dtype', 'dtype']\n", + " 2. ['float32', 'tensor', 'tensor', 'tensor']\n", "\n", "308\n", "[CLS] BoolOp Or Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute variables Name Call Name Name Attribute Parameter Attribute variables Name\n", "Label = ['Constant', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "constant Constant\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['constant', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['parameter', 'normal', 'normal', 'normal']\n", + " 2. ['variable', 'dim', 'dim', 'dim']\n", "\n", "309\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Subscript Attribute shape Name Index Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['[PAD]', 'size', 'size', 'size']\n", "\n", "310\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute input Name keyword Name keyword Call Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "input x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outputs', 'input', 'input', 'input']\n", + " 2. ['output', 'spec', 'spec', 'spec']\n", "\n", "311\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index BinOp Name Add Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['is', 'sparse', 'sparse', 'sparse']\n", "\n", "312\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'seed', 'seed', 'seed']\n", + " 2. ['[PAD]', 'value', 'value', 'value']\n", "\n", "313\n", "[CLS] For Name Name If Compare Name Is NameConstant Raise Call Name Str\n", @@ -4512,101 +3886,81 @@ "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['bernoulli', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "uniform bernoulli\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['uniform', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['normal', 'normal', 'normal', 'normal']\n", + " 2. ['randint', 'uniform', 'uniform', 'uniform']\n", "\n", "315\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'seed', 'seed', 'seed']\n", + " 2. ['[PAD]', 'value', 'value', 'value']\n", "\n", "316\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute parameter Name Name keyword Call Attribute uniform Attribute initializer Name Name keyword Name keyword Name keyword Name\n", "Label = ['p', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "v p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['v', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'out', 'out', 'out']\n", + " 2. ['out', 't', 't', 't']\n", "\n", "317\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute parameter Name keyword Name keyword Call Attribute normal Attribute initializer Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['p', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "v p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['v', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 't', 't', 't']\n", + " 2. ['parameter', 'out', 'out', 'out']\n", "\n", "318\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['normal', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "uniform normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['uniform', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['normal', 'normal', 'normal', 'normal']\n", + " 2. ['randint', 'uniform', 'uniform', 'uniform']\n", "\n", "319\n", "[CLS] For Name Attribute [MASK] [MASK] [MASK] [MASK] Name If BoolOp Or Compare Name Eq Attribute InferredDimension Name Compare Name Attribute FreeDimension Name Raise Call Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['tensor', 'shape', 'shape', 'shape']\n", + " 2. ['value', 'tensor', 'tensor', 'tensor']\n", "\n", "320\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Call Name BinOp Call Name Name Sub Num\n", "Label = ['permutation', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output permutation\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['permutation', 'shape', 'shape', 'shape']\n", + " 2. ['i', 'dim', 'dim', 'dim']\n", "\n", "321\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] List BinOp Call Name Name Sub Num BinOp Call Name Name Num\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'axes', 'axes', 'axes']\n", + " 2. ['pattern', 'dims', 'dims', 'dims']\n", "\n", "322\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp IfExp Compare Name Is NameConstant Attribute InferredDimension Name Name comprehension Name Name\n", "Label = ['new', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'shape', 'shape', 'shape']\n", + " 2. ['result', 'value', 'value', 'value']\n", "\n", "323\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name IfExp Compare Name GtE Num Name BinOp Name Add Call Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['update', 'shape', 'shape', 'shape']\n", + " 2. ['extend', 'value', 'value', 'value']\n", "\n", "324\n", "[CLS] Call Name ListComp Num comprehension Name Call Name BinOp Call Name Name Sub Call Name Name\n", @@ -4615,71 +3969,57 @@ "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name rep Call Name Name If BoolOp And Compare Name GtE Name Compare Subscript Name Index Name IsNot NameConstant Assign Name tmp BinOp List Name Mult Name Assign Name x Call Attribute splice Name Starred Name keyword BinOp Name Sub Name AugAssign Name i Add Num\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['w', 't', 't', 't']\n", + " 2. ['a', 'size', 'size', 'size']\n", "\n", "326\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute all axes Attribute Axis Name\n", "Label = ['axis', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'axes', 'axes', 'axes']\n", + " 2. ['a', 'axis', 'axis', 'axis']\n", "\n", "327\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute element select Name Name Call Name Name Call Name Name\n", "Label = ['any', 'matrix', '[PAD]', '[PAD]']\n", "Pred =\n", - "result any\n", - "[PAD] matrix\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['result', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['all', 'matrix', 'matrix', 'matrix']\n", + " 2. ['out', 'out', 'out', 'out']\n", "\n", "328\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg increment Assign Name result BinOp Name Add Name Return Call Attribute assign Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'test', 'test', 'test']\n", + " 2. ['size', 'size', 'size', 'size']\n", "\n", "329\n", "[CLS] If BoolOp And Compare Call Name Name Eq Call Name Name Compare Subscript Call Name Name Index Num Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name List Num\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "gamma beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['gamma', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mean', 'shape', 'shape', 'shape']\n", + " 2. ['var', 'img', 'img', 'img']\n", "\n", "330\n", "[CLS] BoolOp Or Call Name GeneratorExp Compare Name Eq Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name Attribute shape Name Call Name GeneratorExp Compare Name Attribute FreeDimension Name comprehension Name Attribute shape Name\n", "Label = ['InferredDimension', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inferreddimension InferredDimension\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inferreddimension', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['freedimension', 'shape', 'shape', 'shape']\n", + " 2. ['ndim', 'spec', 'spec', 'spec']\n", "\n", "331\n", "[CLS] Call Name GeneratorExp Compare Name Eq Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name Attribute shape Name\n", "Label = ['InferredDimension', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "freedimension InferredDimension\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['freedimension', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inferreddimension', 'shape', 'shape', 'shape']\n", + " 2. ['ndim', 'spec', 'spec', 'spec']\n", "\n", "332\n", "[CLS] BinOp Call Name ListComp UnaryOp USub Num comprehension Name Call Name BinOp Name Sub Name Add Name\n", @@ -4688,2881 +4028,2317 @@ "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Name comprehension Name i Call Name Name\n", "Label = ['current', 'layout', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape current\n", - "[PAD] layout\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['result', 'list', 'list', 'list']\n", "\n", "334\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs arg initial states arg go backwards arg mask arg constants arg unroll arg input length NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['step', 'function', '[PAD]', '[PAD]']\n", "Pred =\n", - "step step\n", - "function function\n", - "function [PAD]\n", - "function [PAD]\n", " 0. ['step', 'function', 'function', 'function']\n", + " 1. ['batch', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['function', 'step', 'step', 'step']\n", "\n", "335\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute ops Name Name Name Name BinOp Name Add Num\n", "Label = ['slice', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "slice slice\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['slice', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dims', 'slice', 'slice', 'slice']\n", + " 2. ['activation', 'dims', 'dims', 'dims']\n", "\n", "336\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute element select Attribute ops Name Name Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['update', 'slice', 'slice', 'slice']\n", + " 2. ['set', 'shape', 'shape', 'shape']\n", "\n", "337\n", "[CLS] If BoolOp And Compare Name Is NameConstant UnaryOp Not Call Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute shape Name Index Num\n", "Label = ['num', 'time', 'step', '[PAD]']\n", "Pred =\n", - "input num\n", - "[PAD] time\n", - "[PAD] step\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'length', 'length', 'length']\n", + " 2. ['mask', 'size', 'size', 'size']\n", "\n", "338\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Call Name Name Eq Num Expr Call Attribute append Name Call Attribute broadcast as Attribute sequence Name Name Name Expr Call Attribute append Name Name\n", "Label = ['c', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['s', 'i', 'i', 'i']\n", + " 2. ['o', 'o', 'o', 'o']\n", "\n", "339\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name new states Call Name Name BinOp Call Name Name Add Call Name Name\n", "Label = ['new', 'output', '[PAD]', '[PAD]']\n", "Pred =\n", - "output new\n", - "[PAD] output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'length', 'length', 'length']\n", + " 2. ['outputs', 'shape', 'shape', 'shape']\n", "\n", "340\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute element select Name Name Name Name comprehension Tuple Name n Name s Call Name Name Name\n", "Label = ['new', 'states', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n", - "[PAD] states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'states', 'states', 'states']\n", + " 2. ['initial', 'p', 'p', 'p']\n", "\n", "341\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute swapaxes Name Name Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'shape', 'shape', 'shape']\n", + " 2. ['pool', 'out', 'out', 'out']\n", "\n", "342\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute transpose Name Name Tuple Num Num Num Num BinOp Tuple UnaryOp USub Num Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['transpose', 'kernel', 'kernel', 'kernel']\n", + " 2. ['append', 'shape', 'shape', 'shape']\n", "\n", "343\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Name keyword Name keyword List NameConstant Name Name keyword Subscript Attribute shape Name Index Num\n", "Label = ['convolution', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "convolution convolution\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['convolution', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['scan', 'transpose', 'transpose', 'transpose']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2. ['rnn', 'normal', 'normal', 'normal']\n", "\n", "344\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute reshape Name Call Attribute transpose Name Name Tuple Num Num Num Num BinOp Tuple UnaryOp USub Num Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['depthwise', 'kernel', '[PAD]', '[PAD]']\n", "Pred =\n", - "depthwise depthwise\n", - "[PAD] kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['depthwise', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'kernel', 'kernel', 'kernel']\n", + " 2. ['recurrent', 'img', 'img', 'img']\n", "\n", "345\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg output shape arg strides arg padding arg data format Tuple Num Num Num Str NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'size', 'size', 'size']\n", + " 2. ['kernel', 'shape', 'shape', 'shape']\n", "\n", "346\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute clip Name Name Call Name BinOp Num Sub Call Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'dimensions', 'dimensions', 'dimensions']\n", + " 2. ['out', 'axes', 'axes', 'axes']\n", "\n", "347\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute one hot Name Name Subscript Attribute shape Name Index Name keyword Name\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "targets target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['targets', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['result', 'counter', 'counter', 'counter']\n", + " 2. ['feed', 'dict', 'dict', 'dict']\n", "\n", "348\n", "[CLS] If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Expr Call Attribute append Name Name Expr Call Attribute append Name Name\n", "Label = ['arguments', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape arguments\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'out', 'out', 'out']\n", + " 2. ['ndarray', 'axes', 'axes', 'axes']\n", "\n", "349\n", "[CLS] If Compare Name In Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Expr Call Attribute append Name Name Raise Call Name BinOp Str Mod Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['extend', 'params', 'params', 'params']\n", "\n", "350\n", "[CLS] If Compare Call Name Name Gt Num Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute combine Name ListComp Attribute output Name comprehension Name Name\n", "Label = ['unrelated', 'updates', '[PAD]', '[PAD]']\n", "Pred =\n", - "input unrelated\n", - "[PAD] updates\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['metrics', 'updates', 'updates', 'updates']\n", + " 2. ['unrelated', 'spec', 'spec', 'spec']\n", "\n", "351\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute arguments Attribute loss Name If Compare Name In Name Assign Subscript Name Index Name Subscript Name Index Name Raise Call Name BinOp Str Mod Attribute name Name\n", "Label = ['argument', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "key argument\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['key', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'name', 'name', 'name']\n", + " 2. ['argument', 'config', 'config', 'config']\n", "\n", "352\n", "[CLS] If Compare Subscript Name Index Num Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Assign Subscript Name Index Name Subscript Name Index Num Assign Name prefix shape Call Name Name Assign Name x Call Attribute splice Name Call Attribute constant Name keyword Num keyword Name Name keyword Name Assign Name base shape Attribute shape Name\n", "Label = ['prefix', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "x prefix\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['xs', 'shape', 'shape', 'shape']\n", + " 2. ['w', 'value', 'value', 'value']\n", "\n", "353\n", "[CLS] Assert Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Eq BinOp Num Sub IfExp Compare Name Gt Num Num Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'shape', 'shape', 'shape']\n", + " 2. ['[PAD]', 'axes', 'axes', 'axes']\n", "\n", "354\n", "[CLS] If BoolOp Or Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute variables Name Call Name Name Attribute Constant Attribute variables Name Expr Call Attribute append Name Attribute value Name Expr Call Attribute append Name Call Name Name\n", "Label = ['Parameter', '[PAD]', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "parameter Parameter\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['parameter', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['constant', 'value', 'value', 'value']\n", + " 2. ['function', 'spec', 'spec', 'spec']\n", "\n", "355\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg message Str Return Call Attribute user function Name Call Name Name keyword Lambda arguments arg x NameConstant keyword Lambda arguments arg x Call Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'function', 'function', 'function']\n", + " 2. ['pool', 'test', 'test', 'test']\n", "\n", "356\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Subscript Name Index BinOp Name Add Name\n", "Label = ['condition', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "slice condition\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['slice', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['result', 'shape', 'shape', 'shape']\n", + " 2. ['output', 'length', 'length', 'length']\n", "\n", "357\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format If Compare Name Eq Str Assign Name x Call Attribute transpose Name Name Tuple Num Num Num Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'format', 'format', 'format']\n", + " 2. ['a', 'data', 'data', 'data']\n", "\n", "358\n", "[CLS] If Call Name Name Str Return Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Return Num\n", "Label = ['dynamic', 'axes', '[PAD]', '[PAD]']\n", "Pred =\n", - "in dynamic\n", - "[PAD] axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['in', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['tile', 'shape', 'shape', 'shape']\n", + " 2. ['get', 'like', 'like', 'like']\n", "\n", "359\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Subscript Name ExtSlice Slice Slice Index Name Index Name Tuple UnaryOp USub Num Num Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['extend', 'kernel', 'kernel', 'kernel']\n", + " 2. ['set', 'shape', 'shape', 'shape']\n", "\n", "360\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Subscript Name ExtSlice Slice Index Name Index Name Slice Tuple UnaryOp USub Num Num Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'shape', 'shape', 'shape']\n", + " 2. ['extend', 'kernel', 'kernel', 'kernel']\n", "\n", "361\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute as shape Call Attribute data Name BinOp Tuple Name Add Attribute target shape Name\n", "Label = ['result', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape result\n", - "shape [PAD]\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['shape', 'shape', 'shape', 'shape']\n", + " 1. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['input', 'mask', 'mask', 'mask']\n", "\n", "362\n", "[CLS] BinOp Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Mult Call Attribute prod Name Call Attribute asarray Name Attribute target shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['arange', 'kernel', 'kernel', 'kernel']\n", + " 2. ['num', 'shape', 'shape', 'shape']\n", "\n", "363\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name List Name keyword NameConstant keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['init', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['call', 'transpose', 'transpose', 'transpose']\n", + " 2. ['encode', 'shape', 'shape', 'shape']\n", "\n", "364\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Subscript Attribute inputs Name Index Num Slice Num Attribute dtype Subscript Attribute inputs Name Index Num List Name\n", "Label = ['output', 'variable', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "variable variable\n", - "variable [PAD]\n", - "variable [PAD]\n", " 0. ['output', 'variable', 'variable', 'variable']\n", + " 1. ['filters', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['get', 'value', 'value', 'value']\n", "\n", "365\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg state arg root gradients Return Call Attribute Value Attribute cntk py Name Call Attribute data Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'value', 'value', 'value']\n", + " 2. ['layer', 'size', 'size', 'size']\n", "\n", "366\n", "[CLS] FunctionDef arguments Expr Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get default graph Name If Compare Name NotIn Name Assign Name phase Call Attribute placeholder with default Name NameConstant keyword Tuple keyword Str Assign Subscript Name Index Name Name Return Subscript Name Index Name\n", "Label = ['graph', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "phase graph\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['phase', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['learning', 'graph', 'graph', 'graph']\n", + " 2. ['g', 'phase', 'phase', 'phase']\n", "\n", "367\n", "[CLS] If UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute environ Name Str Assign Name config Call Attribute ConfigProto Name keyword NameConstant Assign Name num thread Call Name Call Attribute get Attribute environ Name Str Assign Name config Call Attribute ConfigProto Name keyword Name keyword NameConstant\n", "Label = ['get', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['get', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['encode', 'fn', 'fn', 'fn']\n", + " 2. ['lower', 'size', 'size', 'size']\n", "\n", "368\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return Call Attribute eval Call Name Name keyword Call Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'shape', 'shape', 'shape']\n", + " 2. ['a', 'kernel', 'kernel', 'kernel']\n", "\n", "369\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute transpose Name Name keyword Name List Subscript Name Index UnaryOp USub Num UnaryOp Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['concatenate', 'format', 'format', 'format']\n", + " 2. ['stack', 'sum', 'sum', 'sum']\n", "\n", "370\n", "[CLS] If Call Name ListComp Call Name Name Tuple Name Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp BinOp Str Add Str Str Call Name Name\n", "Label = ['a', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "a a\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['a', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'input', 'input', 'input']\n", + " 2. ['m', 'list', 'list', 'list']\n", "\n", "371\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp Compare Subscript Name Index Num Eq BinOp Call Name Name Sub Num NameConstant NameConstant\n", "Label = ['adj', 'x', '[PAD]', '[PAD]']\n", "Pred =\n", - "adj adj\n", - "[PAD] x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['adj', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['num', 'pad', 'pad', 'pad']\n", + " 2. ['new', 'size', 'size', 'size']\n", "\n", "372\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis arg keepdims NameConstant NameConstant Expr Str Return Call Attribute reduce max Name Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'devices', 'devices', 'devices']\n", + " 2. ['axis', 'list', 'list', 'list']\n", "\n", "373\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name keyword Name keyword Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'shape', 'shape', 'shape']\n", + " 2. ['mean', 'function', 'function', 'function']\n", "\n", "374\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Expr Str Return Call Attribute not equal Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'train', 'train', 'train']\n", + " 2. ['a', 'true', 'true', 'true']\n", "\n", "375\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Expr Str Return Call Attribute greater equal Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'train', 'train', 'train']\n", + " 2. ['a', 'true', 'true', 'true']\n", "\n", "376\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute nn Name Name Name Name keyword Name keyword Name\n", "Label = ['fused', 'batch', 'norm', '[PAD]']\n", "Pred =\n", - "max fused\n", - "[PAD] batch\n", - "[PAD] norm\n", - "[PAD] [PAD]\n", " 0. ['max', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['avg', 'conv2d', 'conv2d', 'conv2d']\n", + " 2. ['separable', 'transpose', 'transpose', 'transpose']\n", "\n", "377\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name If Compare Call Name Name Gt Num Assign Name beta Call Attribute reshape Name Name UnaryOp USub Num\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['beta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['gamma', 'beta', 'beta', 'beta']\n", + " 2. ['broadcast', 'gamma', 'gamma', 'gamma']\n", "\n", "378\n", "[CLS] If Compare Name Lt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Subscript Name Index Num If Name AugAssign Name axis Mod Name Assign Name axis Num\n", "Label = ['rank', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axis rank\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axis', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'axis', 'axis', 'axis']\n", + " 2. ['gamma', 'shape', 'shape', 'shape']\n", "\n", "379\n", "[CLS] If Call Name ListComp Call Name Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Return Call Attribute sparse concat Name Name Name Return Call Attribute concat Name ListComp Call Name Name comprehension Name x Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'shape', 'shape', 'shape']\n", + " 2. ['w', 'test', 'test', 'test']\n", "\n", "380\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg shape Expr Str Return Call Attribute reshape Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'train', 'train', 'train']\n", + " 2. ['a', 'input', 'input', 'input']\n", "\n", "381\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg pattern Expr Str Return Call Attribute transpose Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'true', 'true', 'true']\n", + " 2. ['a', 'img', 'img', 'img']\n", "\n", "382\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Subscript Name Index Name keyword Name\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "normal split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['normal', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['parameter', 'normal', 'normal', 'normal']\n", + " 2. ['add', 'weight', 'weight', 'weight']\n", "\n", "383\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Assign Name x Call Attribute reshape Name Name Call Attribute stack Name List UnaryOp USub Num Call Name Subscript Call Name Name Slice Num Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'train', 'train', 'train']\n", + " 2. ['y', 'true', 'true', 'true']\n", "\n", "384\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg padding arg data format Tuple Tuple Num Num Tuple Num Num Tuple Num Num NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'size', 'size', 'size']\n", + " 2. ['padding', 'padding', 'padding', 'padding']\n", "\n", "385\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute outputs Name Add List Attribute updates op Name Attribute fetches Name\n", "Label = ['fetches', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs fetches\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'shape', 'shape', 'shape']\n", + " 2. ['size', 'kernel', 'kernel', 'kernel']\n", "\n", "386\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp List Num Num Add Call Name Call Name Num Name\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['axes', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dims', 'axes', 'axes', 'axes']\n", + " 2. ['ins', 'shape', 'shape', 'shape']\n", "\n", "387\n", "[CLS] If Compare Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Eq BinOp Name Sub Num Assign Name mask Call Name Name\n", "Label = ['get', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['get', 'shape', 'shape', 'shape']\n", + " 1. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['mask', 'mask', 'mask', 'mask']\n", "\n", "388\n", "[CLS] UnaryOp USub Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Mult Call Attribute log Name Name Name\n", "Label = ['reduce', 'sum', '[PAD]', '[PAD]']\n", "Pred =\n", - "reduce reduce\n", - "sum sum\n", - "sum [PAD]\n", - "sum [PAD]\n", " 0. ['reduce', 'sum', 'sum', 'sum']\n", + " 1. ['sum', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['log', 'reduce', 'reduce', 'reduce']\n", "\n", "389\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg level arg noise shape arg seed NameConstant NameConstant Expr Str Assign Name retain prob BinOp Num Sub Name If Compare Name Is NameConstant Assign Name seed Call Attribute randint Attribute random Name Num Return Call Attribute dropout Attribute nn Name BinOp Name Mult Num Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['seed', 'mask', 'mask', 'mask']\n", + " 2. ['kernel', 'true', 'true', 'true']\n", "\n", "390\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'seed', 'seed', 'seed']\n", + " 2. ['[PAD]', 'value', 'value', 'value']\n", "\n", "391\n", "[CLS] If BoolOp And Compare Call Name Name Eq Str Compare Call Name Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute version Name Str Index Num Lt Call Name Str Assign Name x Call Attribute cast Name Name Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['split', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['encode', 'size', 'size', 'size']\n", + " 2. ['dimshuffle', 'dtype', 'dtype', 'dtype']\n", "\n", "392\n", "[CLS] BoolOp And Compare Call Name Name Eq Str Compare Call Name Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute version Name Str Index Num Lt Call Name Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['split', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['encode', 'list', 'list', 'list']\n", + " 2. ['dimshuffle', 'format', 'format', 'format']\n", "\n", "393\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str If Compare Name Eq Str Assign Name padding Str If Compare Name Str Assign Name padding Str Raise Call Name BinOp Str Add Call Name Name Return Name\n", "Label = ['padding', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['padding', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'padding', 'padding', 'padding']\n", + " 2. ['[PAD]', 'pad', 'pad', 'pad']\n", "\n", "394\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult BinOp Subscript Name Index Num Sub Num\n", "Label = ['left', 'pad', '[PAD]', '[PAD]']\n", "Pred =\n", - "h left\n", - "[PAD] pad\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['h', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['left', 'pad', 'pad', 'pad']\n", + " 2. ['d', 'size', 'size', 'size']\n", "\n", "395\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute convolution Attribute nn Name keyword Name keyword Name keyword Tuple Name keyword Tuple Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pool', 'shape', 'shape', 'shape']\n", + " 2. ['kernel', 'x', 'x', 'x']\n", "\n", "396\n", "[CLS] If Call Name Name Tuple Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute stack Name Name\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['output', 'shape', 'shape', 'shape']\n", + " 1. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['mask', 'input', 'input', 'input']\n", "\n", "397\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Subscript Call Attribute shape Name Name Index Num Add Call Name Subscript Name Slice Num Assign Name output shape Call Attribute stack Name Call Name Name\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['output', 'shape', 'shape', 'shape']\n", + " 1. ['size', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['state', 'size', 'size', 'size']\n", "\n", "398\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute atrous conv2d transpose Attribute nn Name Name Name Name Subscript Name Index Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['w', 'img', 'img', 'img']\n", + " 2. ['conv', 'out', 'out', 'out']\n", "\n", "399\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Num Assign Name strides BinOp BinOp Tuple Num Add BinOp Name Mult Num Tuple Num Assign Name spatial start dim Num Assign Name strides BinOp Tuple Num Num BinOp Name Num\n", "Label = ['spatial', 'start', 'dim', '[PAD]']\n", "Pred =\n", - "spatial spatial\n", - "[PAD] start\n", - "[PAD] dim\n", - "[PAD] [PAD]\n", " 0. ['spatial', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'dim', 'dim', 'dim']\n", + " 2. ['num', 'dims', 'dims', 'dims']\n", "\n", "400\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Num Num Add BinOp Name Mult Num\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['strides', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['padding', 'size', 'size', 'size']\n", + " 2. ['dims', 'shape', 'shape', 'shape']\n", "\n", "401\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute transpose Name Name Tuple Num Num Num Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'kernel', 'kernel', 'kernel']\n", + " 2. ['image', 'shape', 'shape', 'shape']\n", "\n", "402\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", - "Pred =\n", - "output output\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['volume', 'shape', 'shape', 'shape']\n", + " 2. ['filter', 'size', 'size', 'size']\n", "\n", "403\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['filter', 'shape', 'shape', 'shape']\n", + " 2. ['noise', 'size', 'size', 'size']\n", "\n", "404\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv3d transpose Attribute nn Name Name Name Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 'img', 'img', 'img']\n", + " 2. ['recurrent', 'array', 'array', 'array']\n", "\n", "405\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute max pool Attribute nn Name Name Name Name keyword Name keyword Name If Compare Name Str Assign Name x Call Attribute avg pool Attribute nn Name Name Name Name keyword Name keyword Name Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pool', 'x', 'x', 'x']\n", + " 2. ['assign', 'out', 'out', 'out']\n", "\n", "406\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute transpose Name Name Tuple Num Num Num Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'kernel', 'kernel', 'kernel']\n", + " 2. ['image', 'shape', 'shape', 'shape']\n", "\n", "407\n", "[CLS] If Compare Call Name Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Num Num Num Num Subscript Name Index Num Assign Name new shape BinOp Tuple Num Add Name\n", "Label = ['new', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'shape', 'shape', 'shape']\n", + " 2. ['filter', 'size', 'size', 'size']\n", "\n", "408\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['seed', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'seed', 'seed', 'seed']\n", + " 2. ['[PAD]', 'value', 'value', 'value']\n", "\n", "409\n", "[CLS] Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute range Name Subscript Name Index Num Num Lt Call Attribute fill Name Name Name\n", "Label = ['expand', 'dims', '[PAD]', '[PAD]']\n", "Pred =\n", - "expand expand\n", - "dims dims\n", - "dims [PAD]\n", - "dims [PAD]\n", " 0. ['expand', 'dims', 'dims', 'dims']\n", + " 1. ['float32', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['concatenate', 'shape', 'shape', 'shape']\n", "\n", "410\n", "[CLS] If Name Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name log prob Call Attribute ctc greedy decoder Name keyword Name keyword Name Assign Tuple Name decoded Name log prob Call Attribute ctc beam search decoder Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['decoded', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decoded decoded\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['decoded', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['l', 'fn', 'fn', 'fn']\n", + " 2. ['stop', 'out', 'out', 'out']\n", "\n", "411\n", "[CLS] If Call Name Name Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Return Name\n", "Label = ['dense', 'from', 'sparse', '[PAD]']\n", "Pred =\n", - "sparse dense\n", - "tensor from\n", - "tensor sparse\n", - "tensor [PAD]\n", " 0. ['sparse', 'tensor', 'tensor', 'tensor']\n", + " 1. ['ones', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['to', 'to', 'to', 'to']\n", "\n", "412\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg ndim arg dtype arg sparse arg name NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'shape', 'shape', 'shape']\n", + " 2. ['value', 'ndim', 'ndim', 'ndim']\n", "\n", "413\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return BoolOp And Call Name Name Str Attribute theano placeholder Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['value', 'placeholder', 'placeholder', 'placeholder']\n", + " 2. ['self', 'function', 'function', 'function']\n", "\n", "414\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg dtype arg name NameConstant NameConstant Expr Str If Compare Name Is NameConstant Assign Name dtype Call Name Return Call Name Call Attribute zeros Name Name Name Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'shape', 'shape', 'shape']\n", + " 2. ['size', 'size', 'size', 'size']\n", "\n", "415\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Num keyword Name keyword Name keyword Name keyword Name\n", "Label = ['normal', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "normal normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['normal', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['uniform', 'normal', 'normal', 'normal']\n", + " 2. ['randint', 'uniform', 'uniform', 'uniform']\n", "\n", "416\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg indices Expr Str Assign Name y Subscript Name Index Name If BoolOp And Call Name Name Str Call Name Name Str Assign Attribute keras shape Name BinOp Attribute keras shape Name Add Subscript Attribute keras shape Name Slice Num Return Name\n", "Label = ['reference', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x reference\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'shape', 'shape', 'shape']\n", + " 2. ['a', 'train', 'train', 'train']\n", "\n", "417\n", "[CLS] BoolOp Or Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Compare Attribute dtype Name Eq Str\n", "Label = ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype dtype\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'dtype', 'dtype', 'dtype']\n", + " 2. ['monitor', 'format', 'format', 'format']\n", "\n", "418\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis arg keepdims NameConstant NameConstant Return Call Attribute var Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'dtype', 'dtype', 'dtype']\n", + " 2. ['inputs', 'shape', 'shape', 'shape']\n", "\n", "419\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis UnaryOp USub Num Return Call Attribute argmin Name Name keyword Name keyword NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'true', 'true', 'true']\n", + " 2. ['a', 'size', 'size', 'size']\n", "\n", "420\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Assign Name z Call Attribute neq Name Name Name If Call Name Name Str Assign Attribute keras shape Name Attribute keras shape Name If Call Name Name Str Assign Attribute keras shape Name Attribute keras shape Name Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'shape', 'shape', 'shape']\n", + " 2. ['y', 'train', 'train', 'train']\n", "\n", "421\n", "[CLS] Return Tuple Name Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Pow Num\n", "Label = ['inv', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cast inv\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cast', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['arange', 'shape', 'shape', 'shape']\n", + " 2. ['pow', 'dims', 'dims', 'dims']\n", "\n", "422\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute bn Attribute nnet Name Name Name Name Name Name Name Name\n", "Label = ['batch', 'normalization', 'test', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "normalization normalization\n", - "normalization test\n", - "normalization [PAD]\n", " 0. ['batch', 'normalization', 'normalization', 'normalization']\n", + " 1. ['is', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['dnn', 'test', 'test', 'test']\n", "\n", "423\n", "[CLS] BoolOp And Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Compare Attribute ndim Name Gt Num\n", "Label = ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ndim ndim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['max', 'ndim', 'ndim', 'ndim']\n", + " 2. ['data', 'format', 'format', 'format']\n", "\n", "424\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute dnn Attribute cuda Attribute sandbox Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Str Name\n", "Label = ['dnn', 'batch', 'normalization', 'test']\n", "Pred =\n", - "dnn dnn\n", - "[PAD] batch\n", - "[PAD] normalization\n", - "[PAD] test\n", " 0. ['dnn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dimshuffle', 'batch', 'batch', 'batch']\n", + " 2. ['split', 'normalization', 'normalization', 'normalization']\n", "\n", "425\n", "[CLS] If Compare Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute hstack Attribute basic Name Name keyword Str Raise Call Name Str Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['out', 'out', 'out', 'out']\n", + " 2. ['conv', 'output', 'output', 'output']\n", "\n", "426\n", "[CLS] If Call Name Name Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute uses learning phase Name Assign Attribute uses learning phase Name NameConstant\n", "Label = ['uses', 'learning', 'phase', '[PAD]']\n", "Pred =\n", - "uses uses\n", - "learning learning\n", - "learning phase\n", - "learning [PAD]\n", " 0. ['uses', 'learning', 'learning', 'learning']\n", + " 1. ['learning', 'phase', 'phase', 'phase']\n", + " 2. ['phase', '[PAD]', '[PAD]', '[PAD]']\n", "\n", "427\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index UnaryOp USub Num Is NameConstant AugAssign Name output shape Add Tuple NameConstant AugAssign Name output shape Tuple BinOp Subscript Attribute keras shape Name Index UnaryOp Num Mult Name\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['keras', 'shape', 'shape', 'shape']\n", + " 1. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['return', 'size', 'size', 'size']\n", "\n", "428\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num BinOp BinOp Subscript Name Index Num Add Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['filter', 'shape', 'shape', 'shape']\n", + " 2. ['volume', 'size', 'size', 'size']\n", "\n", "429\n", "[CLS] ExtSlice Slice Slice Subscript Name Index Num BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Slice\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'size', 'size', 'size']\n", + " 2. ['[PAD]', 'shape', 'shape', 'shape']\n", "\n", "430\n", "[CLS] If Call Name Name Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Attribute keras shape Name Index Num BinOp Subscript Attribute keras shape Name Index Num Add Call Name Name Subscript Attribute keras shape Name Index Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['keras', 'shape', 'shape', 'shape']\n", + " 1. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['output', 'keras', 'keras', 'keras']\n", "\n", "431\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Call Name NameConstant Call Name Name BinOp Subscript Name Index Num Add Name Call Name Name BinOp Subscript Name Index Num Name Call Name NameConstant\n", "Label = ['indices', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output indices\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['new', 'shape', 'shape', 'shape']\n", + " 2. ['indices', 'size', 'size', 'size']\n", "\n", "432\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num\n", "Label = ['h', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['w', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['h', 'shape', 'shape', 'shape']\n", + " 2. ['d', 'keras', 'keras', 'keras']\n", "\n", "433\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num IsNot NameConstant Assign Name w BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num Assign Name w NameConstant\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['keras', 'shape', 'shape', 'shape']\n", + " 1. ['input', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['shape', 'size', 'size', 'size']\n", "\n", "434\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num\n", "Label = ['w', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w w\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['w', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['h', 'shape', 'shape', 'shape']\n", + " 2. ['d', 'keras', 'keras', 'keras']\n", "\n", "435\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Subscript Name Index Num Index Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "shape [PAD]\n", " 0. ['keras', 'shape', 'shape', 'shape']\n", + " 1. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['input', 'size', 'size', 'size']\n", "\n", "436\n", "[CLS] GeneratorExp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name comprehension Name i Call Name Attribute ndim Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['keras', 'shape', 'shape', 'shape']\n", + " 2. ['ndim', 'axes', 'axes', 'axes']\n", "\n", "437\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Attribute shape Call Attribute get value Name keyword NameConstant keyword NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'value', 'value', 'value']\n", + " 2. ['variable', 'spec', 'spec', 'spec']\n", "\n", "438\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute function Name Name Name keyword Name keyword NameConstant keyword Str keyword Name keyword Name\n", "Label = ['function', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "function function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['function', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pool', 'function', 'function', 'function']\n", + " 2. ['dtype', 'shape', 'shape', 'shape']\n", "\n", "439\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assert Call Name Name Tuple Name Name Return Call Attribute function Name Starred Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'function', 'function', 'function']\n", + " 2. ['inputs', 'value', 'value', 'value']\n", "\n", "440\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute switch Name Subscript Name Index Name Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'value', 'value', 'value']\n", + " 2. ['update', 'scope', 'scope', 'scope']\n", "\n", "441\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name Call Attribute scan Name Name keyword List Name Name keyword BinOp List Name Add Name keyword Name keyword Name\n", "Label = ['results', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ret results\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ret', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['results', 'mask', 'mask', 'mask']\n", + " 2. ['last', 'out', 'out', 'out']\n", "\n", "442\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Assign Name states Subscript Name Slice Num Assign Name outputs Name Assign Name states List\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inputs', 'state', 'state', 'state']\n", + " 2. ['initial', 'outputs', 'outputs', 'outputs']\n", "\n", "443\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute stack Name Starred ListComp Subscript Name Index Name comprehension Name states at step Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sqrt', 'shape', 'shape', 'shape']\n", + " 2. ['extend', 'function', 'function', 'function']\n", "\n", "444\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute squeeze Name Subscript Name Index UnaryOp USub Num comprehension Name state Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "state states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['state', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'state', 'state', 'state']\n", + " 2. ['constants', 'shape', 'shape', 'shape']\n", "\n", "445\n", "[CLS] If Compare Name Lt Name Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Sub Name For Name Call Name Name Assign Name condition Call Name Name\n", "Label = ['ndim', 'diff', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape ndim\n", - "[PAD] diff\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axes', 'shape', 'shape', 'shape']\n", + " 2. ['masks', 'axes', 'axes', 'axes']\n", "\n", "446\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult Call Attribute cast Name Call Attribute gt Name Name Name Call Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'test', 'test', 'test']\n", + " 2. ['new', 'dtype', 'dtype', 'dtype']\n", "\n", "447\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute to one hot Attribute extra ops Name Name keyword Subscript Attribute shape Name Index UnaryOp USub Num\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "targets target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['targets', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'length', 'length', 'length']\n", + " 2. ['last', 'hot', 'hot', 'hot']\n", "\n", "448\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis NameConstant Assign Name square sum Call Attribute sum Name Call Attribute square Name Name keyword Name keyword NameConstant Assign Name norm Call Attribute sqrt Name Call Attribute maximum Name Name Call Name Return BinOp Name Div Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'sum', 'sum', 'sum']\n", + " 2. ['self', 'true', 'true', 'true']\n", "\n", "449\n", "[CLS] If Compare Name Lt Num Try Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Str ExceptHandler Name Return Call Attribute zeros like Name Name keyword Str\n", "Label = ['zeros', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones zeros\n", - "[PAD] like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ones', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['zeros', 'like', 'like', 'like']\n", + " 2. ['max', 'normal', 'normal', 'normal']\n", "\n", "450\n", "[CLS] Index Tuple Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Name Index Num Name\n", "Label = ['arange', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "arange arange\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['arange', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'subtensor', 'subtensor', 'subtensor']\n", + " 2. ['transpose', 'function', 'function', 'function']\n", "\n", "451\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Str If Compare Name Str Assign Name th padding Str Raise Call Name Str Call Name Name\n", "Label = ['th', 'padding', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding th\n", - "padding padding\n", - "padding [PAD]\n", - "padding [PAD]\n", " 0. ['padding', 'padding', 'padding', 'padding']\n", + " 1. ['th', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['tf', 'pad', 'pad', 'pad']\n", "\n", "452\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Try Return Call Name Name ExceptHandler Name Return NameConstant\n", "Label = ['value', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['value', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'value', 'value', 'value']\n", + " 2. ['seed', 'list', 'list', 'list']\n", "\n", "453\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name GeneratorExp Call Name Name comprehension Name v Name\n", "Label = ['filter', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "filter filter\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['filter', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['image', 'shape', 'shape', 'shape']\n", + " 2. ['volume', 'tensor', 'tensor', 'tensor']\n", "\n", "454\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name GeneratorExp Call Name Name comprehension Name v Name\n", "Label = ['filter', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "filter filter\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['filter', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['image', 'shape', 'shape', 'shape']\n", + " 2. ['volume', 'tensor', 'tensor', 'tensor']\n", "\n", "455\n", "[CLS] BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'size', 'size', 'size']\n", + " 2. ['kernel', 'pad', 'pad', 'pad']\n", "\n", "456\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['keras', 'shape', 'shape', 'shape']\n", + " 2. ['[PAD]', 'size', 'size', 'size']\n", "\n", "457\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name ExtSlice Slice Slice Slice BinOp BinOp BinOp Subscript Attribute shape Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num Slice Slice\n", "Label = ['conv', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "out out\n", - "out [PAD]\n", - "out [PAD]\n", " 0. ['conv', 'out', 'out', 'out']\n", + " 1. ['pool', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['expected', 'width', 'width', 'width']\n", "\n", "458\n", "[CLS] BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'size', 'size', 'size']\n", + " 2. ['kernel', 'format', 'format', 'format']\n", "\n", "459\n", "[CLS] Slice BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'size', 'size', 'size']\n", + " 2. ['kernel', 'kernel', 'kernel', 'kernel']\n", "\n", "460\n", "[CLS] ExtSlice Slice Slice Slice Slice Slice BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'size', 'size', 'size']\n", + " 2. ['kernel', 'out', 'out', 'out']\n", "\n", "461\n", - "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dimshuffle Name Tuple Num Num Num Num Num\n", + "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dimshuffle Name Tuple Num Num Num Num Num\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Label = ['conv', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "x conv\n", - "[PAD] out\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pool', 'out', 'out', 'out']\n", + " 2. ['conv', 'kernel', 'kernel', 'kernel']\n", "\n", "462\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg strides arg padding arg data format arg dilation rate Num Str NameConstant Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'size', 'size', 'size']\n", + " 2. ['self', 'function', 'function', 'function']\n", "\n", "463\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['keras', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'shape', 'shape', 'shape']\n", + " 2. ['noise', 'size', 'size', 'size']\n", "\n", "464\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg strides arg padding arg data format arg dilation rate Tuple Num Num Str NameConstant Tuple Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'size', 'size', 'size']\n", + " 2. ['a', 'format', 'format', 'format']\n", "\n", "465\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg output shape arg strides arg padding arg data format arg dilation rate Tuple Num Num Str NameConstant Tuple Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'size', 'size', 'size']\n", + " 2. ['kernel', 'length', 'length', 'length']\n", "\n", "466\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute AbstractConv2d gradInputs Attribute abstract conv Attribute nnet Name keyword NameConstant keyword Name keyword Name keyword Name keyword UnaryOp Not Name keyword Name\n", "Label = ['op', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "op op\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['op', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['result', 'updates', 'updates', 'updates']\n", + " 2. ['new', 'gradinputs', 'gradinputs', 'gradinputs']\n", "\n", "467\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Attribute shape Call Attribute eval Name\n", "Label = ['pointwise', 'kernel', 'shape', '[PAD]']\n", "Pred =\n", - "kernel pointwise\n", - "[PAD] kernel\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['depthwise', 'shape', 'shape', 'shape']\n", + " 2. ['recurrent', 'kernel', 'kernel', 'kernel']\n", "\n", "468\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp BoolOp And Compare Subscript Name Index Num Gt Num Compare BinOp Subscript Name Index Num Mod Num Eq Num BinOp Subscript Name Index Num Sub Num BinOp Subscript Name Index Num Num\n", "Label = ['w', 'pad', '[PAD]', '[PAD]']\n", "Pred =\n", - "h w\n", - "pad pad\n", - "pad [PAD]\n", - "pad [PAD]\n", " 0. ['h', 'pad', 'pad', 'pad']\n", + " 1. ['w', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['d', 'out', 'out', 'out']\n", "\n", "469\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Name keyword Name keyword NameConstant keyword Name keyword Str\n", "Label = ['pool', '2d', '[PAD]', '[PAD]']\n", "Pred =\n", - "pool pool\n", - "[PAD] 2d\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['pool', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['function', '3d', '3d', '3d']\n", + " 2. ['pooling', 'weight', 'weight', 'weight']\n", "\n", "470\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pool 3d Name Name keyword Name keyword Name keyword NameConstant keyword Name keyword Str Raise Call Name Str Name\n", "Label = ['pool', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "pool pool\n", - "out out\n", - "out [PAD]\n", - "out [PAD]\n", " 0. ['pool', 'out', 'out', 'out']\n", + " 1. ['out', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['conv', 'pool', 'pool', 'pool']\n", "\n", "471\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dimshuffle Name Tuple Num Num Num Num Num\n", "Label = ['pool', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "x pool\n", - "[PAD] out\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pool', 'out', 'out', 'out']\n", + " 2. ['conv', 'kernel', 'kernel', 'kernel']\n", "\n", "472\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name BinOp Tuple Num Subscript Name Index Num Subscript Name Slice Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['kernel', 'input', 'input', 'input']\n", "\n", "473\n", "[CLS] If Compare Name Eq Str If Compare Call Name Name Num AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name Tuple Num Num Num Subscript Name Index Num AugAssign Name x Call Name Name BinOp Tuple Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['kernel', 'x', 'x', 'x']\n", "\n", "474\n", "[CLS] If Compare Name Eq Str If Compare Call Name Name Num AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name Tuple Num Num Subscript Name Index Num AugAssign Name x Call Name Name BinOp Tuple Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'shape', 'shape', 'shape']\n", + " 2. ['a', 'out', 'out', 'out']\n", "\n", "475\n", "[CLS] BinOp BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Name Index Num Mult Num Add Num\n", "Label = ['arange', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "arange arange\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['arange', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'normal', 'normal', 'normal']\n", + " 2. ['reshape', 'subtensor', 'subtensor', 'subtensor']\n", "\n", "476\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name skip idxs BinOp BinOp Call Attribute arange Name BinOp BinOp Subscript Attribute shape Name Index Num Sub Num FloorDiv Num Mult Num Add Num Assign Name non repeats Call Attribute neq Name Subscript Name Index Name Subscript Name Index BinOp Name Num Return Subscript Name Index Call Attribute nonzero Name\n", "Label = ['Y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "y Y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['y', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'train', 'train', 'train']\n", + " 2. ['path', 'true', 'true', 'true']\n", "\n", "477\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute exp Name BinOp Subscript Name Slice Name Sub Name\n", "Label = ['p', 'prev', '[PAD]', '[PAD]']\n", "Pred =\n", - "log p\n", - "[PAD] prev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['log', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['out', 'log', 'log', 'log']\n", + " 2. ['output', 't', 't', 't']\n", "\n", "478\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute inc subtensor Name Subscript Name Index BinOp Name Add Num Subscript Name Index Name\n", "Label = ['p', 'prev', '[PAD]', '[PAD]']\n", "Pred =\n", - "p p\n", - "[PAD] prev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['p', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['result', 'p', 'p', 'p']\n", + " 2. ['i', 'values', 'values', 'values']\n", "\n", "479\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Compare Name Lt Call Attribute dimshuffle Name Num Str BitAnd Subscript Compare Name Call Attribute dimshuffle Name Num Str ExtSlice Slice UnaryOp USub Num Slice UnaryOp Num\n", "Label = ['mask', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['strides', 'out', 'out', 'out']\n", + " 2. ['h', 'kernel', 'kernel', 'kernel']\n", "\n", "480\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Assign Name elems Subscript Name Slice Num\n", "Label = ['initializer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "fn initializer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['fn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['initializer', 'fn', 'fn', 'fn']\n", + " 2. ['args', 'size', 'size', 'size']\n", "\n", "481\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Lambda arguments arg x arg acc Call Name Name Name Name Name keyword Name\n", "Label = ['foldl', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "foldr foldl\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['foldr', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['foldl', 'nodes', 'nodes', 'nodes']\n", + " 2. ['sort', 'foldr', 'foldr', 'foldr']\n", "\n", "482\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name Subscript Name ExtSlice Index BinOp BinOp Name Mult Name Add Name Slice Slice\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['extend', 'params', 'params', 'params']\n", + " 2. ['set', 'weights', 'weights', 'weights']\n", "\n", "483\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg x arg data format arg file format arg scale arg kwargs NameConstant NameConstant NameConstant If Compare Name Is NameConstant Assign Name data format Call Attribute image data format Name Return Call Attribute save img Name Name Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['path', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self path\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'format', 'format', 'format']\n", + " 2. ['cls', 'data', 'data', 'data']\n", "\n", "484\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp BinOp BinOp BinOp Name Add Str Attribute name Name Str Call Name Attribute name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['warn', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['append', 'names', 'names', 'names']\n", + " 2. ['pop', 'params', 'params', 'params']\n", "\n", "485\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp BinOp BinOp BinOp Name Add Str Attribute name Name Str Call Name Attribute name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['warn', 'names', 'names', 'names']\n", + " 2. ['keys', 'scope', 'scope', 'scope']\n", "\n", "486\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name BoolOp Or Call Name Attribute call Name Str Call Name Name Str\n", "Label = ['compute', 'previous', 'mask', '[PAD]']\n", "Pred =\n", - "name compute\n", - "[PAD] previous\n", - "[PAD] mask\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['uses', 'learning', 'learning', 'learning']\n", + " 2. ['dynamic', 'phase', 'phase', 'phase']\n", "\n", "487\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name nodes by depth Name layers Name layers by depth Call Name Attribute inputs Name Attribute outputs Name\n", "Label = ['nodes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs nodes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inbound', 'layer', 'layer', 'layer']\n", + " 2. ['node', 'index', 'index', 'index']\n", "\n", "488\n", "[CLS] If BoolOp And UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name UnaryOp Attribute stateful Name Return List\n", "Label = ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "trainable trainable\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reset', 'sequences', 'sequences', 'sequences']\n", + " 2. ['inputs', 'format', 'format', 'format']\n", "\n", "489\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Call Name ListComp BoolOp And Call Name Name Str Attribute stateful Name comprehension Name layer Attribute layers Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'layer', 'layer', 'layer']\n", + " 2. ['cls', 'names', 'names', 'names']\n", "\n", "490\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] ListComp NameConstant comprehension Name Call Name Call Name Name Assign Name masks Call Name Name\n", "Label = ['masks', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "masks masks\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['masks', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['output', 'masks', 'masks', 'masks']\n", + " 2. ['ndim', 'shape', 'shape', 'shape']\n", "\n", "491\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Call Name Name Str Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['input', 'layers', '[PAD]', '[PAD]']\n", "Pred =\n", - "layers input\n", - "[PAD] layers\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layers', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'layers', 'layers', 'layers']\n", + " 2. ['outputs', 'uid', 'uid', 'uid']\n", "\n", "492\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Attribute name Name Add BinOp Str Mod Tuple Name Name\n", "Label = ['shape', 'key', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] key\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dim', 'key', 'key', 'key']\n", + " 2. ['eta', 'format', 'format', 'format']\n", "\n", "493\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str If Compare Str NotIn Name Assign Subscript Name Index Str Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['call', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['function', 'axes', 'axes', 'axes']\n", + " 2. ['init', 'kernel', 'kernel', 'kernel']\n", "\n", "494\n", "[CLS] BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant\n", "Label = ['activity', 'regularizer', '[PAD]', '[PAD]']\n", "Pred =\n", - "activity activity\n", - "[PAD] regularizer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['activity', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['attrs', 'regularizer', 'regularizer', 'regularizer']\n", + " 2. ['clipvalue', 'function', 'function', 'function']\n", "\n", "495\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name y Name mask Call Name Name Name Name Assign Subscript Name Index Call Name Call Name Name Tuple Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['a', 'x', 'x', 'x']\n", + " 2. ['val', 'train', 'train', 'train']\n", "\n", "496\n", "[CLS] If BoolOp And Call Name Name Str Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Attribute keras shape Name Expr Call Attribute append Name Name Assign Name output shapes NameConstant\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'shape', 'shape', 'shape']\n", + " 2. ['inputs', 'shapes', 'shapes', 'shapes']\n", "\n", "497\n", "[CLS] BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute arguments Name\n", - "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'names', 'names', 'names']\n", + " 2. ['val', 'name', 'name', 'name']\n", "\n", "498\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg node data If Compare Name NotIn Name Assign Subscript Name Index Name List Name Expr Call Attribute append Subscript Name Index Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'data', 'data', 'data']\n", + " 2. ['self', 'layer', 'layer', 'layer']\n", "\n", "499\n", "[CLS] Dict Str Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Name Name Call Attribute backend Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'config', 'config', 'config']\n", + " 2. ['axis', 'scope', 'scope', 'scope']\n", "\n", "500\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Eq Attribute name Name Return Attribute name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['module', 'format', 'format', 'format']\n", + " 2. ['mode', 'scope', 'scope', 'scope']\n", "\n", "501\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name depth Call Attribute items Name If Compare Name NotIn Name Assign Subscript Name Index Name List Expr Call Attribute append Subscript Name Index Name Name\n", "Label = ['node', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer node\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['chunk', 'layer', 'layer', 'layer']\n", + " 2. ['inbound', 'dict', 'dict', 'dict']\n", "\n", "502\n", "[CLS] If Name For Name [MASK] [MASK] [MASK] [MASK] Attribute input tensors Name If Compare Name NotIn Name Raise Call Name BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute name Name Str Call Name Name For Name x Attribute output tensors Name Expr Call Attribute append Name Name Expr Call Attribute append Name Attribute name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'x', 'x', 'x']\n", + " 2. ['a', 'layer', 'layer', 'layer']\n", "\n", "503\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp Str Add Name Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Str\n", "Label = ['count', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound count\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inbound', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['count', 'nodes', 'nodes', 'nodes']\n", + " 2. ['get', 'names', 'names', 'names']\n", "\n", "504\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Name Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Str\n", "Label = ['count', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound count\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inbound', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['count', 'nodes', 'nodes', 'nodes']\n", + " 2. ['get', 'names', 'names', 'names']\n", "\n", "505\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add BinOp BoolOp Or Name List List Attribute history Name\n", "Label = ['callbacks', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "callbacks callbacks\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['callbacks', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['info', 'values', 'values', 'values']\n", + " 2. ['args', 'tensor', 'tensor', 'tensor']\n", "\n", "506\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Name Call Attribute toarray Subscript Name Index Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['i', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['o', 'i', 'i', 'i']\n", + " 2. ['k', 'axes', 'axes', 'axes']\n", "\n", "507\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['l', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['o', 'weights', 'weights', 'weights']\n", + " 2. ['w', 'o', 'o', 'o']\n", "\n", "508\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Num\n", "Label = ['val', 'outs', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "[PAD] outs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['val', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['y', 'outs', 'outs', 'outs']\n", + " 2. ['mask', 'shape', 'shape', 'shape']\n", "\n", "509\n", "[CLS] If Name If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Subscript Attribute inbound nodes Name Index UnaryOp USub Num NotEq Num Raise Call Name Str Assign Attribute outputs Name List Subscript Attribute output tensors Subscript Attribute inbound nodes Name Index UnaryOp Num Index Num Assign Attribute inputs Name Call Attribute get source inputs Name Subscript Attribute outputs Name Index Num\n", "Label = ['output', 'tensors', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] tensors\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['output', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inbound', 'tensors', 'tensors', 'tensors']\n", + " 2. ['state', 'layers', 'layers', 'layers']\n", "\n", "510\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index UnaryOp USub Num Gt Num Return Call Attribute argmax Name keyword UnaryOp Num Return Call Attribute astype Compare Name Num Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['dynamic', 'size', 'size', 'size']\n", + " 2. ['kernel', 'shape', 'shape', 'shape']\n", "\n", "511\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Dict Str Str Attribute name Name Call Attribute deepcopy Name Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['config', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'config', 'config', 'config']\n", + " 2. ['metric', 'p', 'p', 'p']\n", "\n", "512\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str Assign Name build input shape Call Attribute get Name Str Assign Name layer configs Subscript Name Index Str Assign Name name Name build input shape NameConstant Assign Name layer configs Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cls name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['cls', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'layer', 'layer', 'layer']\n", + " 2. ['embeddings', 'names', 'names', 'names']\n", "\n", "513\n", "[CLS] Assign Subscript Name Index Str ListComp Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str comprehension Name layer Name\n", "Label = ['encode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "encode encode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['encode', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['decode', 'name', 'name', 'name']\n", + " 2. ['pop', 'weights', 'weights', 'weights']\n", "\n", "514\n", "[CLS] Assign Subscript Name Index Str Call Attribute [MASK] [MASK] [MASK] [MASK] Call Attribute backend Name Str\n", "Label = ['encode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "encode encode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['encode', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['split', 'config', 'config', 'config']\n", + " 2. ['dimshuffle', 'list', 'list', 'list']\n", "\n", "515\n", "[CLS] If Call Name Name Str If Compare Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str Index UnaryOp USub Num Eq Str Assign Name name BinOp BinOp Call Name Attribute name Name Add Str Call Name Name Assign Name name Call Name Attribute name Name Assign Name name BinOp Str Call Name Name\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['split', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['encode', 'name', 'name', 'name']\n", + " 2. ['get', 'size', 'size', 'size']\n", "\n", "516\n", "[CLS] Compare Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str Index UnaryOp USub Num Eq Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['split', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['encode', 'format', 'format', 'format']\n", + " 2. ['dimshuffle', 'size', 'size', 'size']\n", "\n", "517\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Call Name Attribute name Name Add Str Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'input', 'input', 'input']\n", + " 2. ['batch', 'name', 'name', 'name']\n", "\n", "518\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] List For Name value Name Expr Call Attribute append Name Call Name Name Return Name\n", "Label = ['deserialized', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "data deserialized\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['axis', 'metrics', 'metrics', 'metrics']\n", + " 2. ['weights', 'weights', 'weights', 'weights']\n", "\n", "519\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute decode Subscript Name Index Str Str Assign Name original backend NameConstant\n", "Label = ['original', 'backend', '[PAD]', '[PAD]']\n", "Pred =\n", - "original original\n", - "[PAD] backend\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['original', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'fn', 'fn', 'fn']\n", + " 2. ['overwrite', 'names', 'names', 'names']\n", "\n", - "520\n", + "520\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Assign Name weights Attribute weights Name If Name Expr Call Attribute append Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['cell', 'weights', 'weights', 'weights']\n", + " 2. ['v', 'layer', 'layer', 'layer']\n", "\n", "521\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str Call Name Name Call Name Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['format', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['join', 'size', 'size', 'size']\n", + " 2. ['[PAD]', 'list', 'list', 'list']\n", "\n", "522\n", "[CLS] If Compare Call Name Name NotEq Call Name Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Name Str Attribute name Name Str Call Name Call Name Name Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'dim', 'dim', 'dim']\n", + " 2. ['ndarray', 'name', 'name', 'name']\n", "\n", "523\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg custom objects NameConstant Expr Str If Call Name Name Name Raise Call Name Str ImportFrom alias Return Call Name Name keyword Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['config', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['identifier', 'string', 'string', 'string']\n", + " 2. ['name', 'config', 'config', 'config']\n", "\n", "524\n", "[CLS] BinOp Str Mod Tuple Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str ListComp Name comprehension Name x Name\n", "Label = ['join', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "join join\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['join', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['format', 'weight', 'weight', 'weight']\n", + " 2. ['add', 'nodes', 'nodes', 'nodes']\n", "\n", "525\n", "[CLS] While Compare BinOp Str Mod Tuple Name Name In Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute extend Name ListComp Call Attribute decode Name Str comprehension Name n Subscript Attribute attrs Name Index BinOp Str Tuple Name Name AugAssign Name chunk id Add Num\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['args', 'size', 'size', 'size']\n", "\n", "526\n", "[CLS] comprehension Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute attrs Name Index BinOp Str Mod Tuple Name Name\n", "Label = ['n', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k n\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['k', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['m', 'length', 'length', 'length']\n", + " 2. ['s', 'id', 'id', 'id']\n", "\n", "527\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Tuple Name w Name val Call Name Call Name Name Name If BoolOp And Call Name Name Str Attribute name Name Assign Name name Call Name Attribute name Name Assign Name name BinOp Str Add Call Name Name Expr Call Attribute append Name Call Attribute encode Name Str\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'name', 'name', 'name']\n", + " 2. ['sw', 'layer', 'layer', 'layer']\n", "\n", "528\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name In List Str Str Assign Name weights Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'format', 'format', 'format']\n", + " 2. ['mode', 'weights', 'weights', 'weights']\n", "\n", "529\n", "[CLS] Assert BoolOp And Compare Subscript Name Index Num Eq Attribute [MASK] [MASK] [MASK] [MASK] Name Compare Subscript Name Slice Num Tuple Subscript Attribute kernel size Name Index Num Num\n", "Label = ['filters', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "filters filters\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['filters', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['kernel', 'kernel', 'kernel', 'kernel']\n", + " 2. ['output', 'format', 'format', 'format']\n", "\n", "530\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str If Compare Attribute data format Name Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['[PAD]', 'data', 'data', 'data']\n", "\n", "531\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['type', 'format', 'format', 'format']\n", + " 2. ['format', 'data', 'data', 'data']\n", "\n", "532\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['type', 'format', 'format', 'format']\n", + " 2. ['format', 'data', 'data', 'data']\n", "\n", "533\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name List Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num keyword UnaryOp USub Num\n", "Label = ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate concatenate\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['identity', 'weight', 'weight', 'weight']\n", + " 2. ['sum', 'kernel', 'kernel', 'kernel']\n", "\n", "534\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name Str Call Name Call Attribute prod Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'size', 'size', 'size']\n", + " 2. ['start', 'dim', 'dim', 'dim']\n", "\n", "535\n", "[CLS] Assign Subscript Name Index Num Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Name\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "convert reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['convert', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'kernel', 'kernel', 'kernel']\n", + " 2. ['unbroadcast', 'spec', 'spec', 'spec']\n", "\n", "536\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['[PAD]', 'data', 'data', 'data']\n", "\n", "537\n", "[CLS] Assign Subscript Name Index Num Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "transpose transpose\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'kernel', 'kernel', 'kernel']\n", + " 2. ['arange', 'shape', 'shape', 'shape']\n", "\n", "538\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "transpose transpose\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['reshape', 'kernel', 'kernel', 'kernel']\n", + " 2. ['arange', 'shape', 'shape', 'shape']\n", "\n", "539\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg func arg n gates Expr Str Return Call Attribute hstack Name ListComp Call Name Name comprehension Name k Call Attribute hsplit Name Name Name\n", "Label = ['kernels', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self kernels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['path', 'format', 'format', 'format']\n", + " 2. ['k', 'metrics', 'metrics', 'metrics']\n", "\n", "540\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Call Attribute reshape Attribute T Name Attribute shape Name keyword Name\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['k', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 't', 't', 't']\n", + " 2. ['x', 'mask', 'mask', 'mask']\n", "\n", "541\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Mult Subscript Name Index Num Num\n", "Label = ['tile', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "expand tile\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['expand', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['maximum', 'dims', 'dims', 'dims']\n", + " 2. ['float32', 'shape', 'shape', 'shape']\n", "\n", "542\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Subscript Name Index Num Lambda arguments arg k Attribute T Name Name\n", "Label = ['recurrent', 'kernels', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] kernels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['recurrent', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['conv', 't', 't', 't']\n", + " 2. ['num', 'mask', 'mask', 'mask']\n", "\n", "543\n", "[CLS] If Compare Name Eq Tuple Num BinOp Name Mult Name Assign Name [MASK] [MASK] [MASK] [MASK] Str If Compare Name Tuple BinOp Name Name Assign Name source Str Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['source', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "source source\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['source', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'size', 'size', 'size']\n", + " 2. ['padding', 'shape', 'shape', 'shape']\n", "\n", "544\n", "[CLS] If Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name original backend Call Attribute decode Subscript Attribute attrs Name Index Str Str Assign Name original backend NameConstant\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['args', 'size', 'size', 'size']\n", "\n", "545\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Name Str Attribute name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'names', 'names', 'names']\n", + " 2. ['shape', 'dim', 'dim', 'dim']\n", "\n", "546\n", "[CLS] If Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name original keras version Call Attribute decode Subscript Attribute attrs Name Index Str Str Assign Name original keras version Str\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'size', 'size', 'size']\n", + " 2. ['args', 'format', 'format', 'format']\n", "\n", "547\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute append Call Attribute setdefault Name Attribute name Name List Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['stateful', 'dict', 'dict', 'dict']\n", + " 2. ['name', 'scope', 'scope', 'scope']\n", "\n", "548\n", "[CLS] ListComp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name comprehension Name weight name Name\n", "Label = ['asarray', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "asarray asarray\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['asarray', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['concatenate', 'values', 'values', 'values']\n", + " 2. ['prod', 'shape', 'shape', 'shape']\n", "\n", "549\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name Str Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'dim', 'dim', 'dim']\n", + " 2. ['ndarray', 'scope', 'scope', 'scope']\n", "\n", "550\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Subscript Name Index Name Call Attribute format Str Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'name', 'name', 'name']\n", + " 2. ['[PAD]', 'format', 'format', 'format']\n", "\n", "551\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Name Index Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['extend', 'value', 'value', 'value']\n", + " 2. ['update', 'shape', 'shape', 'shape']\n", "\n", "552\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Add ListComp BinOp Str Name comprehension Name n Name\n", "Label = ['callback', 'metrics', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight callback\n", - "[PAD] metrics\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['weight', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'names', 'names', 'names']\n", + " 2. ['dim', 'metrics', 'metrics', 'metrics']\n", "\n", "553\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['l', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['o', 'weights', 'weights', 'weights']\n", + " 2. ['w', 'o', 'o', 'o']\n", "\n", "554\n", "[CLS] If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute evaluate generator Name Name Name keyword Num Assign Name val outs Call Attribute evaluate Name Name Name keyword Name keyword Name keyword Num\n", "Label = ['val', 'outs', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "[PAD] outs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['val', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['outs', 'outs', 'outs', 'outs']\n", + " 2. ['y', 'val', 'val', 'val']\n", "\n", "555\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index BinOp Str Add Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['l', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['w', 'weights', 'weights', 'weights']\n", + " 2. ['o', 'l', 'l', 'l']\n", "\n", "556\n", "[CLS] If Compare Name Is NameConstant If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Raise Call Name Str\n", "Label = ['steps', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "steps steps\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['steps', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['epoch', 'epoch', 'epoch', 'epoch']\n", + " 2. ['do', 'per', 'per', 'per']\n", "\n", "557\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute shape Subscript Name Index Num Index Num If Call Name Name Name Assign Name batch size Subscript Attribute shape Subscript Call Name Call Attribute values Name Index Num Index Num Assign Name batch size Subscript Attribute shape Name Index Num\n", "Label = ['batch', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "size size\n", - "size [PAD]\n", - "size [PAD]\n", " 0. ['batch', 'size', 'size', 'size']\n", + " 1. ['size', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['mask', 'shape', 'shape', 'shape']\n", "\n", "558\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Subscript Name Index Name comprehension Name out Name keyword Name\n", "Label = ['average', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate average\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['sum', 'weight', 'weight', 'weight']\n", + " 2. ['extend', 'values', 'values', 'values']\n", "\n", "559\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute float64 Name Subscript Subscript Name Index UnaryOp USub Num Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['pop', 'size', 'size', 'size']\n", + " 2. ['update', 'shape', 'shape', 'shape']\n", "\n", "560\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute float64 Name Subscript Subscript Name Index UnaryOp USub Num Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mean', 'size', 'size', 'size']\n", + " 2. ['keys', 'shape', 'shape', 'shape']\n", "\n", "561\n", "[CLS] If Compare Name Gt Num If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name keyword Name Assign Name enqueuer Call Name Name keyword Name keyword Name Expr Call Attribute start Name keyword Name keyword Name Assign Name output generator Call Attribute get Name If Name Assign Name output generator Call Name Name Assign Name output generator Name\n", "Label = ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "enqueuer enqueuer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['val', 'enqueuer', 'enqueuer', 'enqueuer']\n", + " 2. ['progbar', 'metrics', 'metrics', 'metrics']\n", "\n", "562\n", "[CLS] If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name keyword Name Assign Name enqueuer Call Name Name keyword Name keyword Name\n", "Label = ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "enqueuer enqueuer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['val', 'enqueuer', 'enqueuer', 'enqueuer']\n", + " 2. ['progbar', 'outs', 'outs', 'outs']\n", "\n", "563\n", "[CLS] If Compare Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword Name\n", "Label = ['progbar', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "progbar progbar\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['progbar', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['mask', 'shape', 'shape', 'shape']\n", + " 2. ['input', 'out', 'out', 'out']\n", "\n", "564\n", "[CLS] If UnaryOp Not Name Assign Name [MASK] [MASK] [MASK] [MASK] Str Assign Name name BinOp BinOp Name Add Str Call Name Call Attribute get uid Name Name\n", "Label = ['prefix', '[PAD]', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "prefix prefix\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", " 0. ['prefix', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'name', 'name', 'name']\n", + " 2. ['fn', 'fn', 'fn', 'fn']\n", "\n", "565\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg node index Expr Str Return BinOp BinOp Attribute name Name Add Str Call Name Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['layer', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'name', 'name', 'name']\n", + " 2. ['cls', 'layer', 'layer', 'layer']\n", "\n", "566\n", "[CLS] If Compare Name IsNot NameConstant With withitem Call Attribute [MASK] [MASK] [MASK] [MASK] Name Str Expr Call Attribute add loss Name Call Name Name\n", "Label = ['name', 'scope', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] scope\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['device', 'scope', 'scope', 'scope']\n", + " 2. ['backend', 'config', 'config', 'config']\n", "\n", "567\n", "[CLS] BoolOp And Compare Name IsNot NameConstant Compare Name Gt Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['max', 'ndim', '[PAD]', '[PAD]']\n", "Pred =\n", - "delta max\n", - "[PAD] ndim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['delta', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inferreddimension', 'batch', 'batch', 'batch']\n", + " 2. ['min', 't', 't', 't']\n", "\n", "568\n", "[CLS] Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute max ndim Name Str Call Name Call Attribute ndim Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'ndim', 'ndim', 'ndim']\n", + " 2. ['ndim', 'value', 'value', 'value']\n", "\n", "569\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute min ndim Name Str Call Name Call Attribute ndim Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['ndim', 'ndim', 'ndim', 'ndim']\n", + " 2. ['batch', 'dtype', 'dtype', 'dtype']\n", "\n", "570\n", "[CLS] BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute min ndim Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'ndim', 'ndim', 'ndim']\n", + " 2. ['start', 'axes', 'axes', 'axes']\n", "\n", "571\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'names', 'names', 'names']\n", + " 2. ['batch', 'nodes', 'nodes', 'nodes']\n", "\n", "572\n", "[CLS] If BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant With withitem Call Attribute name scope Name Str Assign Name regularization losses ListComp Call Attribute activity regularizer Name Name comprehension Name x Call Name Name Expr Call Attribute add loss Name Name keyword Call Name Name\n", "Label = ['activity', 'regularizer', '[PAD]', '[PAD]']\n", "Pred =\n", - "activity activity\n", - "[PAD] regularizer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['activity', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['activation', 'regularizer', 'regularizer', 'regularizer']\n", + " 2. ['run', 'losses', 'losses', 'losses']\n", "\n", "573\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name If Compare Name IsNot NameConstant If Call Name Name Name If Call Name GeneratorExp Compare Name NameConstant comprehension Name m Name Raise Call Name BinOp BinOp BinOp Str Add Attribute name Name Str Call Name Name Raise Call Name BinOp BinOp BinOp Str Attribute name Name Str Call Name Name Return NameConstant\n", "Label = ['supports', 'masking', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound supports\n", - "[PAD] masking\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inbound', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['built', 'nodes', 'nodes', 'nodes']\n", + " 2. ['trainable', 'tensor', 'tensor', 'tensor']\n", "\n", "574\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp Str Add Attribute name Name Str\n", "Label = ['inbound', 'nodes', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound inbound\n", - "nodes nodes\n", - "nodes [PAD]\n", - "nodes [PAD]\n", " 0. ['inbound', 'nodes', 'nodes', 'nodes']\n", + " 1. ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['built', 'names', 'names', 'names']\n", "\n", "575\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str If Compare Call Name Attribute inbound nodes Name NotEq Num Raise Call Name BinOp BinOp BinOp Str Add Attribute name Name Str Str Return Call Attribute get node attribute at index Name Num Str Str Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layer', 'nodes', 'nodes', 'nodes']\n", + " 2. ['model', 'data', 'data', 'data']\n", "\n", "576\n", "[CLS] Call Name ListComp Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name node Attribute inbound nodes Name\n", "Label = ['input', 'shapes', '[PAD]', '[PAD]']\n", "Pred =\n", - "is input\n", - "[PAD] shapes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['is', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inbound', 'nodes', 'nodes', 'nodes']\n", + " 2. ['input', 'keras', 'keras', 'keras']\n", "\n", "577\n", "[CLS] Call Name ListComp Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name node Attribute inbound nodes Name\n", "Label = ['output', 'shapes', '[PAD]', '[PAD]']\n", "Pred =\n", - "is output\n", - "[PAD] shapes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['is', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['inbound', 'nodes', 'nodes', 'nodes']\n", + " 2. ['input', 'keras', 'keras', 'keras']\n", "\n", "578\n", "[CLS] BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name Str Call Name Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['batch', 'name', 'name', 'name']\n", + " 2. ['[PAD]', 'list', 'list', 'list']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "579\n", "[CLS] If Call Name Name Str Assign Subscript Name Index Str Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['batch', 'input', 'shape', '[PAD]']\n", "Pred =\n", - "dtype batch\n", - "[PAD] input\n", - "[PAD] shape\n", - "[PAD] [PAD]\n", " 0. ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['function', 'shape', 'shape', 'shape']\n", + " 2. ['keras', 'function', 'function', 'function']\n", "\n", "580\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg dtype arg shape arg ndim arg max ndim arg min ndim arg axes NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'value', 'value', 'value']\n", + " 2. ['max', 'ndim', 'ndim', 'ndim']\n", "\n", "581\n", "[CLS] IfExp Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Str Add Call Name Attribute dtype Name Str\n", "Label = ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype dtype\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'dtype', 'dtype', 'dtype']\n", + " 2. ['decay', 'size', 'size', 'size']\n", "\n", "582\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name outbound layer Attribute name Attribute outbound layer Name Assign Name outbound layer NameConstant\n", "Label = ['outbound', 'layer', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful outbound\n", - "[PAD] layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['arguments', 'layer', 'layer', 'layer']\n", + " 2. ['inputs', 'weights', 'weights', 'weights']\n", "\n", "583\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg optimizer arg loss arg metrics arg loss weights arg sample weight mode arg weighted metrics arg target tensors arg kwargs NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'weights', 'weights', 'weights']\n", + " 2. ['args', 'format', 'format', 'format']\n", "\n", "584\n", "[CLS] BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['states', 'layers', 'layers', 'layers']\n", + " 2. ['layers', 'uid', 'uid', 'uid']\n", "\n", "585\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layers', 'layers', 'layers', 'layers']\n", + " 2. ['states', 'tensor', 'tensor', 'tensor']\n", "\n", "586\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['states', 'layers', 'layers', 'layers']\n", + " 2. ['layers', 'uid', 'uid', 'uid']\n", "\n", "587\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['layers', 'layers', 'layers', 'layers']\n", + " 2. ['states', 'tensor', 'tensor', 'tensor']\n", "\n", "588\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Name Str Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['output', 'names', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "names names\n", - "names [PAD]\n", - "names [PAD]\n", " 0. ['output', 'names', 'names', 'names']\n", + " 1. ['count', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['inbound', 'nodes', 'nodes', 'nodes']\n", "\n", "589\n", "[CLS] Call Name BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['states', 'layers', 'layers', 'layers']\n", + " 2. ['layers', 'uid', 'uid', 'uid']\n", "\n", "590\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Name Assign Name target NameConstant\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "target target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['target', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['idx', 'axes', 'axes', 'axes']\n", + " 2. ['axes', 'shape', 'shape', 'shape']\n", "\n", "591\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Call Name Name keyword BinOp Name Add Str keyword Call Attribute is sparse Name Subscript Attribute outputs Name Index Name keyword Call Attribute dtype Name Subscript Attribute outputs Name Index Name\n", "Label = ['placeholder', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "add placeholder\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['add', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['placeholder', 'weight', 'weight', 'weight']\n", + " 2. ['variable', 'target', 'target', 'target']\n", "\n", "592\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Eq Str Assign Name weight Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str Expr Call Attribute append Name Str Assign Name weight Call Attribute placeholder Name keyword Num keyword BinOp Name Str Expr Call Attribute append Name NameConstant\n", "Label = ['get', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound get\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['inbound', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'nodes', 'nodes', 'nodes']\n", + " 2. ['backend', 'placeholder', 'placeholder', 'placeholder']\n", "\n", "593\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str\n", "Label = ['weight', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['weight', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['target', 'placeholder', 'placeholder', 'placeholder']\n", + " 2. ['g', 'weight', 'weight', 'weight']\n", "\n", "594\n", "[CLS] If Compare Name Eq Str Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str Expr Call Attribute append Name Str Expr Call Attribute append Name Call Attribute placeholder Name keyword Num keyword BinOp Name Str Expr Call Attribute append Name NameConstant\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'weight', 'weight', 'weight']\n", + " 2. ['extend', 'placeholder', 'placeholder', 'placeholder']\n", "\n", "595\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['append', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['set', 'weight', 'weight', 'weight']\n", + " 2. ['user', 'placeholder', 'placeholder', 'placeholder']\n", "\n", "596\n", "[CLS] BoolOp Or Compare Subscript Name Index UnaryOp USub Num Eq Num Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name Attribute binary crossentropy Name\n", "Label = ['loss', 'functions', '[PAD]', '[PAD]']\n", "Pred =\n", - "values loss\n", - "[PAD] functions\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['values', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['shape', 'fn', 'fn', 'fn']\n", + " 2. ['fn', 'i', 'i', 'i']\n", "\n", "597\n", "[CLS] If Compare Name IsNot NameConstant AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name keyword NameConstant\n", "Label = ['all', 'inputs', '[PAD]', '[PAD]']\n", "Pred =\n", - "new all\n", - "[PAD] inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['new', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'shape', 'shape', 'shape']\n", + " 2. ['additional', 'value', 'value', 'value']\n", "\n", "598\n", "[CLS] If Call Name GeneratorExp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name comprehension Name v Name If UnaryOp Not Call Name GeneratorExp Call Attribute is tensor Name Name comprehension Name v Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name\n", "Label = ['is', 'tensor', '[PAD]', '[PAD]']\n", "Pred =\n", - "is is\n", - "[PAD] tensor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['is', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['ndarray', 'tensor', 'tensor', 'tensor']\n", + " 2. ['run', 'keras', 'keras', 'keras']\n", "\n", "599\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name feed input names Attribute feed input names Name Assign Name feed input shapes NameConstant Assign Name feed input names Attribute feed input names Name Assign Name feed input shapes Attribute feed input shapes Name\n", "Label = ['is', 'graph', 'network', '[PAD]']\n", "Pred =\n", - "trainable is\n", - "[PAD] graph\n", - "[PAD] network\n", - "[PAD] [PAD]\n", " 0. ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'updates', 'updates', 'updates']\n", + " 2. ['input', 'names', 'names', 'names']\n", "\n", "600\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg x arg y arg batch size arg epochs arg verbose arg callbacks arg validation split arg validation data arg shuffle arg class weight arg sample weight arg initial epoch arg steps per epoch arg validation steps arg kwargs NameConstant NameConstant NameConstant Num Num NameConstant Num NameConstant NameConstant NameConstant NameConstant Num NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['self', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['model', 'format', 'format', 'format']\n", + " 2. ['path', 'data', 'data', 'data']\n", "\n", "601\n", "[CLS] If Compare Call Name Name Eq Num Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name val y Name val sample weight Name Raise Call Name BinOp Str Mod Call Name Name\n", "Label = ['val', 'x', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "x x\n", - "x [PAD]\n", - "x [PAD]\n", " 0. ['val', 'x', 'x', 'x']\n", + " 1. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 2. ['sample', 'val', 'val', 'val']\n", "\n", "602\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp BinOp Name Add Name Name List Num\n", "Label = ['val', 'ins', '[PAD]', '[PAD]']\n", "Pred =\n", - "ins val\n", - "[PAD] ins\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['ins', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['val', 'ins', 'ins', 'ins']\n", + " 2. ['pattern', 'size', 'size', 'size']\n", "\n", "603\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name val y Tuple Call Name Name Num Name Call Name Name Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "val y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['val', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['x', 'x', 'x', 'x']\n", + " 2. ['y', 'test', 'test', 'test']\n", "\n", "604\n", "[CLS] If BoolOp And Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Index Num Gt Name Compare BinOp Subscript Attribute shape Subscript Name Index Num Index Num Mod Name NotEq Num Raise Call Name BinOp BinOp BinOp BinOp Str Add Call Name Subscript Attribute shape Subscript Name Index Num Index Num Str Call Name Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'size', 'size', 'size']\n", + " 2. ['keras', 'layers', 'layers', 'layers']\n", "\n", "605\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Call Name Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Index Num Str Call Name Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['args', 'size', 'size', 'size']\n", + " 2. ['[PAD]', 'shape', 'shape', 'shape']\n", "\n", "606\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg generator arg steps arg max queue size arg workers arg use multiprocessing arg verbose NameConstant Num Num NameConstant Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "model self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['model', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['self', 'format', 'format', 'format']\n", + " 2. ['path', 'model', 'model', 'model']\n", "\n", "607\n", "[CLS] Try Assign Name [MASK] [MASK] [MASK] [MASK] ListComp IfExp Compare Attribute name Attribute class Subscript Name Index Name Eq Str Attribute values Subscript Name Index Name Subscript Name Index Name comprehension Name x Name ExceptHandler Name Raise Call Name BinOp BinOp BinOp Str Add Subscript Attribute args Name Index Num Str Call Name Name\n", "Label = ['data', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['data', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['config', 'data', 'data', 'data']\n", + " 2. ['new', 'layer', 'layer', 'layer']\n", "\n", "608\n", "[CLS] ListComp IfExp Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str Attribute values Name Name comprehension Name x Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['name', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['data', 'format', 'format', 'format']\n", + " 2. ['[PAD]', 'data', 'data', 'data']\n", "\n", "609\n", "[CLS] BoolOp And Compare Subscript Name Index Name IsNot NameConstant UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name\n", "Label = ['is', 'tensor', '[PAD]', '[PAD]']\n", "Pred =\n", - "is is\n", - "[PAD] tensor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['is', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['get', 'sparse', 'sparse', 'sparse']\n", + " 2. ['array', 'tensor', 'tensor', 'tensor']\n", "\n", "610\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name ref dim Call Name Name Name If BoolOp And Compare Name NotEq Name Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Name Str Subscript Name Index Name Str Call Name Name Str Call Name Name\n", "Label = ['dim', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dim dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['dim', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['chunk', 'dim', 'dim', 'dim']\n", + " 2. ['w', 'layer', 'layer', 'layer']\n", "\n", "611\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute append Name Call Attribute get Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['x', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'config', 'config', 'config']\n", + " 2. ['o', 'scope', 'scope', 'scope']\n", "\n", "612\n", "[CLS] BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name y Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'shape', 'shape', 'shape']\n", + " 2. ['name', 'spec', 'spec', 'spec']\n", "\n", "613\n", "[CLS] Call Name BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name w Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'spec', 'spec', 'spec']\n", + " 2. ['name', 'shape', 'shape', 'shape']\n", "\n", "614\n", "[CLS] BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name w Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['[PAD]', 'format', 'format', 'format']\n", + " 2. ['name', 'spec', 'spec', 'spec']\n", "\n", "615\n", "[CLS] If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Gt Call Name Attribute shape Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Attribute shape Name Str Call Name Call Name Attribute shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['input', 'shape', 'shape', 'shape']\n", + " 2. ['times', 'layers', 'layers', 'layers']\n", "\n", "616\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute shape Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['name', 'shape', 'shape', 'shape']\n", + " 2. ['axis', 'size', 'size', 'size']\n", "\n", "617\n", "[CLS] Tuple Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Subscript Attribute shape Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", " 0. ['shape', '[PAD]', '[PAD]', '[PAD]']\n", + " 1. ['keras', 'size', 'size', 'size']\n", + " 2. ['kernel', 'shape', 'shape', 'shape']\n", "\n" ] } ], "source": [ - "n=1\n", + "n=3\n", "pred_str = []; score = 0; score_no_pad=0; rank =[]; skipped = 0\n", "for idx in range(618):\n", " print(idx)\n", @@ -7582,7 +6358,7 @@ " for i in range(n):\n", " p = [vocab_label_df.loc[r[msk_idx+j][i]][0] for j in range(4)]\n", " for k,p_ in enumerate(p):\n", - " print(p_, labels_str[idx][k])\n", + " #print(p_, labels_str[idx][k])\n", " if p_==labels_str[idx][k]:\n", " score +=1\n", " if p_ != '[PAD]':\n", @@ -7595,7 +6371,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 156, "metadata": {}, "outputs": [ { @@ -7604,7 +6380,7 @@ "3" ] }, - "execution_count": 19, + "execution_count": 156, "metadata": {}, "output_type": "execute_result" } @@ -7615,16 +6391,16 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 157, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2064" + "2299" ] }, - "execution_count": 20, + "execution_count": 157, "metadata": {}, "output_type": "execute_result" } @@ -7635,7 +6411,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 158, "metadata": { "scrolled": true }, @@ -7648,3401 +6424,1584 @@ "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute input layers Name Assign Name input tensor Call Name keyword Attribute batch input shape Name keyword Attribute dtype Name keyword Attribute sparse Name keyword Attribute name Name Expr Call Attribute append Name Name Assign Name newly created input layer Subscript Attribute keras history Name Index Num Assign Subscript Name Index Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "1\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Name In Name Expr Call Attribute append Name Subscript Name Index Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "2\n", "[CLS] If Compare Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute exp Name BinOp Name Sub Call Attribute max Name Name keyword Name keyword NameConstant Assign Name s Call Attribute sum Name Name keyword Name keyword NameConstant Return BinOp Name Div Name Raise Call Name BinOp Str Mod Name\n", "Label = ['e', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "new e\n", - "p e\n", - "v e\n", - "k e\n", - "e e\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "3\n", "[CLS] BinOp Name Sub Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Name keyword NameConstant\n", "Label = ['max', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "random max\n", - "scan max\n", - "convolution max\n", - "all max\n", - "input max\n", - "rnn max\n", - "in max\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "4\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Assign Name alpha Num Assign Name scale Num Return BinOp Name Mult Call Attribute elu Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "5\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg custom objects NameConstant Return Call Name Name keyword Call Name keyword Name keyword Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config name\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "6\n", "[CLS] If Call Name Name If Call Name Name Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute format Str keyword Attribute name Attribute class Name Return Name Raise Call Name Str Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "7\n", "[CLS] If Call Name Name Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute format Str keyword Attribute name Attribute class Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "8\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute equal Name Call Attribute flatten Name Name Call Attribute cast Name Call Attribute argmax Name Name keyword UnaryOp USub Num Call Attribute floatx Name Call Attribute floatx Name\n", "Label = ['cast', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cast cast\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "9\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred arg k Num Return Call Attribute mean Name Call Attribute in top k Name Name Call Attribute argmax Name Name keyword UnaryOp USub Num Name keyword UnaryOp Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", "Pred =\n", - "y y\n", - "true true\n", - "true [PAD]\n", - "[PAD] [PAD]\n", - "true [PAD]\n", - "[PAD] [PAD]\n", "\n", "10\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg model For Name callback Attribute callbacks Name Expr Call Attribute set model Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "11\n", "[CLS] If Name Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name Assign Attribute stateful metrics Name Call Name\n", "Label = ['stateful', 'metrics', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "metrics metrics\n", - "metrics [PAD]\n", - "[PAD] [PAD]\n", - "metrics [PAD]\n", - "[PAD] [PAD]\n", "\n", "12\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name target Subscript Attribute params Name Index Str Assign Name target Subscript Attribute params Name Index Str\n", "Label = ['use', 'steps', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs use\n", - "name use\n", - "stateful use\n", - "run use\n", - "target use\n", - "arguments use\n", - "return use\n", - "[PAD] steps\n", - "sequences steps\n", - "function steps\n", - "inputs steps\n", - "kernel steps\n", - "length steps\n", - "size steps\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "13\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute log values Name Tuple Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "14\n", "[CLS] Call Name BinOp Str Mod Tuple BinOp Name Add Num Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute best Name Name Name\n", "Label = ['monitor', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "monitor monitor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "15\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg logs NameConstant If BoolOp And Compare Attribute stopped epoch Name Gt Num Compare Attribute verbose Name Num Expr Call Name BinOp Str Mod BinOp Attribute stopped epoch Name Add Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "16\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg root arg path arg field arg headers arg send as json Str Str Str NameConstant NameConstant Expr Call Attribute init Call Name Name Name Assign Attribute root Name Name Assign Attribute path Name Name Assign Attribute field Name Name Assign Attribute headers Name Name Assign Attribute send as json Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "17\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg schedule arg verbose Num Expr Call Attribute init Call Name Name Name Assign Attribute schedule Name Name Assign Attribute verbose Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "18\n", "[CLS] If Compare Name NotEq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Str Assign Name embeddings freq Num\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "19\n", "[CLS] If Compare Name Eq Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Num Assign Attribute update freq Name Name\n", "Label = ['update', 'freq', '[PAD]', '[PAD]']\n", "Pred =\n", - "data update\n", - "type update\n", - "embeddings update\n", - "state update\n", - "delta update\n", - "stopped update\n", - "output update\n", - "[PAD] freq\n", - "data freq\n", - "format freq\n", - "epoch freq\n", - "spec freq\n", - "names freq\n", - "size freq\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "20\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name List Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "21\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name NotIn List Str Str Str Expr Call Attribute warn Name BinOp Str Mod Attribute mode Name Name Assign Attribute mode Name Str\n", "Label = ['mode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mode mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "22\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Str Mod Tuple Attribute monitor Name Call Attribute join Str Call Name Call Attribute keys Name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "23\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Tuple Name IfExp Compare Name In Name Subscript Name Index Name Str comprehension Name k Attribute keys Name\n", "Label = ['logs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k logs\n", - "new logs\n", - "result logs\n", - "key logs\n", - "use logs\n", - "mask logs\n", - "training logs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "24\n", "[CLS] If Compare Name IsNot NameConstant Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Name Assign Attribute on train begin Name Lambda arguments arg logs NameConstant\n", "Label = ['on', 'train', 'begin', '[PAD]']\n", "Pred =\n", - "on on\n", - "[PAD] train\n", - "begin train\n", - "batch train\n", - "end train\n", - "train train\n", - "[PAD] begin\n", - "begin begin\n", - "[PAD] [PAD]\n", "\n", "25\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg x Assign Name regularization Num If Attribute l1 Name AugAssign Name regularization Add Call Attribute sum Name BinOp Attribute l1 Name Mult Call Attribute abs Name Name If Attribute l2 Name AugAssign Name regularization Call Attribute sum Name BinOp Attribute l2 Name Call Attribute square Name Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "26\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Dict Str Str Attribute max value Name Attribute axis Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "27\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg w Return BinOp Name Div BinOp Call Attribute epsilon Name Add Call Attribute sqrt Name Call Attribute sum Name Call Attribute square Name Name keyword Attribute axis Name keyword NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "28\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute square Name Name keyword Attribute axis Name keyword NameConstant\n", "Label = ['sum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sum sum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "29\n", "[CLS] If Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name config Dict Str Str Call Name Name Dict Return Call Name Name If Call Name Name Return Name Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['string', 'types', '[PAD]', '[PAD]']\n", "Pred =\n", - "string string\n", - "[PAD] types\n", - "types types\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "30\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg shape arg dtype NameConstant Return Call Attribute constant Name Num keyword Name keyword Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "31\n", "[CLS] Return Dict Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute stddev Name Attribute seed Name\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "32\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str AugAssign Name scale Div Call Name Num Name If Compare Attribute mode Name Str AugAssign Name scale Call Name Num Name AugAssign Name scale Call Name Num BinOp Call Name BinOp Name Add Name Num\n", "Label = ['mode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mode mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "33\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Num Name keyword Name keyword Attribute seed Name\n", "Label = ['truncated', 'normal', '[PAD]', '[PAD]']\n", "Pred =\n", - "truncated truncated\n", - "[PAD] normal\n", - "normal normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "34\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Subscript Name Slice UnaryOp USub Num AugAssign Name num rows Mult Name\n", "Label = ['dim', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "a dim\n", - "s dim\n", - "i dim\n", - "w dim\n", - "x dim\n", - "m dim\n", - "n dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "35\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Expr Call Attribute seed Attribute random Name Attribute seed Name\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "36\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute prod Name Subscript Name Slice UnaryOp USub Num\n", "Label = ['receptive', 'field', 'size', '[PAD]']\n", "Pred =\n", - "y receptive\n", - "x receptive\n", - "batch receptive\n", - "output receptive\n", - "biases receptive\n", - "inner receptive\n", - "image receptive\n", - "[PAD] field\n", - "shape field\n", - "size field\n", - "mask field\n", - "batch field\n", - "out field\n", - "length field\n", - "[PAD] size\n", - "shape size\n", - "size size\n", - "[PAD] [PAD]\n", "\n", "37\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute square Name BinOp Name Sub Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "38\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute abs Name BinOp Name Sub Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "39\n", "[CLS] BinOp Num Mult Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "40\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred Assign Name pos Call Attribute sum Name BinOp Name Mult Name keyword UnaryOp USub Num Assign Name neg Call Attribute max Name BinOp BinOp Num Sub Name Name keyword UnaryOp Num Return Call Attribute maximum Name Num BinOp BinOp Name Name Add Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", "Pred =\n", - "y y\n", - "[PAD] true\n", - "true true\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "41\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Num BinOp BinOp Name Sub Name Add Num\n", "Label = ['maximum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "maximum maximum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "42\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute binary crossentropy Name Name Name keyword UnaryOp USub Num\n", "Label = ['mean', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "mean mean\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "43\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y pred Assign Name y true Call Attribute l2 normalize Name Name keyword UnaryOp USub Num Assign Name y pred Call Attribute l2 normalize Name Name keyword UnaryOp Num Return UnaryOp Call Attribute sum Name BinOp Name Mult Name keyword UnaryOp Num\n", "Label = ['y', 'true', '[PAD]', '[PAD]']\n", "Pred =\n", - "y y\n", - "[PAD] true\n", - "true true\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "44\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute switch Name Call Attribute greater equal Name Name Name BinOp BinOp Name Mult Name Div Name Name\n", "Label = ['g', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "new g\n", - "all g\n", - "v g\n", - "element g\n", - "w g\n", - "sum g\n", - "select g\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "45\n", "[CLS] BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Gt Num\n", "Label = ['clipnorm', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "clipvalue clipnorm\n", - "dynamic clipnorm\n", - "delta clipnorm\n", - "dtype clipnorm\n", - "num clipnorm\n", - "verbose clipnorm\n", - "min clipnorm\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "46\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name ListComp Call Attribute sum Name Call Attribute square Name Name comprehension Name g Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "47\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "48\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute variable Name Num keyword Str keyword Str\n", "Label = ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "iterations iterations\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "49\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "50\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Sub BinOp BinOp Name Mult Name Div BinOp Call Attribute sqrt Name Name Add Attribute epsilon Name\n", "Label = ['new', 'p', '[PAD]', '[PAD]']\n", "Pred =\n", - "p new\n", - "new new\n", - "[PAD] p\n", - "t p\n", - "p p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "51\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Name Mult Call Attribute sqrt Name BinOp Name Add Attribute epsilon Name Div Call Attribute sqrt Name BinOp Name Attribute epsilon Name\n", "Label = ['update', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "p update\n", - "new update\n", - "lr update\n", - "t update\n", - "v update\n", - "w update\n", - "norm update\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "52\n", "[CLS] Dict Str Str Str Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute lr Name Attribute rho Name Call Name Call Attribute get value Name Attribute decay Name Attribute epsilon Name\n", "Label = ['get', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] value\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "53\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute variable Name Num keyword Str keyword Str\n", "Label = ['iterations', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "iterations iterations\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "54\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult BinOp Num Div BinOp Num Add BinOp Attribute decay Name Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['lr', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "lr lr\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "55\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "56\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Call Attribute cast Name Attribute iterations Name Call Attribute floatx Name Add Num\n", "Label = ['t', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "t t\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "57\n", "[CLS] BinOp Name Mult BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Sub Call Attribute pow Name Attribute beta 2 Name Name Div BinOp Num Call Attribute pow Name Attribute beta 1 Name Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "58\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Sub Call Attribute pow Name Attribute beta 2 Name Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "59\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg lr arg beta 1 arg beta 2 arg epsilon arg decay arg kwargs Num Num Num NameConstant Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "60\n", "[CLS] BinOp Num Div BinOp Num Add BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Call Attribute cast Name Attribute iterations Name Call Attribute dtype Name Attribute decay Name\n", "Label = ['decay', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decay decay\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "61\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute beta 1 Name Mult Name Add BinOp BinOp Num Sub Attribute beta 1 Name Name\n", "Label = ['m', 't', '[PAD]', '[PAD]']\n", "Pred =\n", - "m m\n", - "[PAD] t\n", - "t t\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "62\n", "[CLS] BinOp Name Sub BinOp BinOp Name Mult Name Div BinOp Name Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "value epsilon\n", - "momentum epsilon\n", - "sqrt epsilon\n", - "inputs epsilon\n", - "lr epsilon\n", - "beta epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "63\n", "[CLS] BinOp BinOp Name Mult Name Div BinOp Name Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "momentum epsilon\n", - "value epsilon\n", - "sqrt epsilon\n", - "inputs epsilon\n", - "activation epsilon\n", - "seen epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "64\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult BinOp Num Sub BinOp Num Call Attribute pow Name Call Attribute cast to floatx Name Num BinOp BinOp Name Add Num Attribute schedule decay Name\n", "Label = ['beta', '1', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] 1\n", - "1 1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "65\n", "[CLS] BinOp BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Name Add BinOp BinOp Num Sub Attribute beta 1 Name Name\n", "Label = ['beta', '1', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] 1\n", - "1 1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "66\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute beta 2 Name Mult Name Add BinOp BinOp Num Sub Attribute beta 2 Name Call Attribute square Name Name\n", "Label = ['v', 't', '[PAD]', '[PAD]']\n", "Pred =\n", - "v v\n", - "t t\n", - "t [PAD]\n", - "[PAD] [PAD]\n", - "t [PAD]\n", - "[PAD] [PAD]\n", "\n", "67\n", "[CLS] BinOp Name Div BinOp Num Sub Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute beta 2 Name Name\n", "Label = ['pow', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "pow pow\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "68\n", "[CLS] Dict Str Str Str Str Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute lr Name Call Name Call Attribute get value Name Attribute beta 1 Name Call Name Call Attribute get value Name Attribute beta 2 Name Attribute epsilon Name Attribute schedule decay Name\n", "Label = ['get', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] value\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "69\n", "[CLS] Assign Subscript Name Index Str Call Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str\n", "Label = ['lower', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "toarray lower\n", - "keys lower\n", - "as lower\n", - "get lower\n", - "lower lower\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "70\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Str Tuple Attribute input dim Name\n", "Label = ['input', 'dim', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "[PAD] dim\n", - "dim dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "71\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Attribute nb feature Name Attribute output dim Name keyword Str keyword Str keyword Attribute b regularizer Name keyword Attribute b constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "72\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg init arg activation arg weights arg W regularizer arg b regularizer arg activity regularizer arg W constraint arg b constraint arg bias arg input dim arg kwargs Str NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "73\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Name Name keyword Attribute init Name keyword Str keyword Attribute W regularizer Name keyword Attribute W constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "74\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs ImportFrom alias If Compare Str In Name Assign Name rate Call Attribute pop Name Str Assign Name rate Num Assign Subscript Name Index Str Name Expr Call Attribute warn Name Str Return Call Name Starred Name keyword Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "75\n", "[CLS] If Compare Call Name Name NotEq Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute name Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "76\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "77\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Attribute states Name Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "78\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Tuple Name Attribute units Name Str Call Name Attribute shape Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "79\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Dict Str Str Str Str Str Str Attribute return sequences Name Attribute return state Name Attribute go backwards Name Attribute stateful Name Attribute unroll Name Attribute implementation Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "80\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute kernel size Name Index Num keyword Attribute padding Name keyword Subscript Attribute strides Name Index Num keyword Subscript Attribute dilation rate Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "length length\n", - "output [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "81\n", "[CLS] Tuple Subscript Name Index Num Subscript Name Index Num Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['filters', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "filters filters\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "82\n", "[CLS] If Compare Call Name Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Subscript Name Slice Num Add Str\n", "Label = ['str', 'val', '[PAD]', '[PAD]']\n", "Pred =\n", - "str str\n", - "[PAD] val\n", - "val val\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "83\n", "[CLS] If BoolOp Or Compare Name Lt BinOp Call Name Subscript Name Slice Num Sub Num Name AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Str\n", "Label = ['signature', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info signature\n", - "x signature\n", - "output signature\n", - "f signature\n", - "signature signature\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "84\n", "[CLS] If Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Name AugAssign Name signature Add BinOp BinOp Str Name Str If Call Name Name Attribute ndarray Name Assign Name str val Str Assign Name str val Call Name Name If Compare Call Name Name Gt Num Assign Name str val BinOp Subscript Name Slice Num Str AugAssign Name signature Name\n", "Label = ['string', 'types', '[PAD]', '[PAD]']\n", "Pred =\n", - "string string\n", - "[PAD] types\n", - "types types\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "85\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg new arg Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp Str Add Name Str Name Str Name Str\n", "Label = ['old', 'arg', '[PAD]', '[PAD]']\n", "Pred =\n", - "value old\n", - "x old\n", - "dim old\n", - "self old\n", - "prefix old\n", - "kernel old\n", - "layer old\n", - "[PAD] arg\n", - "name arg\n", - "names arg\n", - "length arg\n", - "batch arg\n", - "weights arg\n", - "dim arg\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "86\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword List Str Str Str keyword List Tuple Str Str\n", "Label = ['legacy', 'dropout', 'support', '[PAD]']\n", "Pred =\n", - "legacy legacy\n", - "support dropout\n", - "[PAD] dropout\n", - "conv2d dropout\n", - "pooling2d dropout\n", - "generator dropout\n", - "conv1d dropout\n", - "spatialdropout1d dropout\n", - "support support\n", - "support [PAD]\n", - "[PAD] [PAD]\n", "\n", "87\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pop Name Str Assign Name length NameConstant\n", "Label = ['length', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "length length\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "88\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "output kernel\n", - "filter kernel\n", - "noise kernel\n", - "volume kernel\n", - "kernel kernel\n", - "[PAD] size\n", - "shape size\n", - "size size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "89\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Call Attribute pop Name Str\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "size size\n", - "size [PAD]\n", - "[PAD] [PAD]\n", - "size [PAD]\n", - "[PAD] [PAD]\n", "\n", "90\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] List Subscript Name Index Num Subscript Name Index Num Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "91\n", "[CLS] If BoolOp And Compare Str In Name Compare Str Name Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Call Attribute pop Name Str Call Attribute pop Name Str Assign Subscript Name Index Str Name Expr Call Attribute append Name Tuple Str Str\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] size\n", - "size size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "92\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword List Str Str keyword List Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str Tuple Str Str keyword Dict Str Dict Str Str Str Str Str NameConstant keyword Name\n", "Label = ['legacy', 'deconv2d', 'support', '[PAD]']\n", "Pred =\n", - "legacy legacy\n", - "support deconv2d\n", - "[PAD] deconv2d\n", - "conv2d deconv2d\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "pooling2d deconv2d\n", - "conv1d deconv2d\n", - "generator deconv2d\n", - "cropping2d deconv2d\n", - "support support\n", - "support [PAD]\n", - "[PAD] [PAD]\n", "\n", "93\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pop Name Str If Compare Name Eq Str Assign Subscript Name Index Str NameConstant Expr Call Attribute append Name Tuple Str Str Expr Call Attribute warn Name Str keyword Num\n", "Label = ['value', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel value\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "94\n", "[CLS] If Call Name Subscript Name Index Num Tuple Name Name Assert Call Name Subscript Name Index Num Name Assert Compare Str In Name Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name params Name Name Assign Subscript Name Index Str Name Return Tuple List Name Name List\n", "Label = ['opt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer opt\n", - "inputs opt\n", - "n opt\n", - "outputs opt\n", - "c opt\n", - "opt opt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "95\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Name NotIn Name Raise Call Name BinOp Str Mod Tuple Name Name Name\n", "Label = ['device', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k device\n", - "x device\n", - "a device\n", - "m device\n", - "dim device\n", - "n device\n", - "v device\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "96\n", "[CLS] If Compare Name In Name AugAssign Subscript Name Index Name Add Num AugAssign Name [MASK] [MASK] [MASK] [MASK] BinOp Str Mod Subscript Name Index Name\n", "Label = ['n', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info n\n", - "idx n\n", - "i n\n", - "line n\n", - "prefix n\n", - "dim n\n", - "w n\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "97\n", "[CLS] Return BinOp Tuple BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Sub Attribute start Name Add Attribute base shape Name\n", "Label = ['end', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "end end\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "98\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Tuple Name Assign Subscript Name Slice Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "99\n", "[CLS] BoolOp And Name Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Eq Num Call Name Subscript Name Index Num Name\n", "Label = ['version', 'info', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape version\n", - "keras version\n", - "args version\n", - "dynamic version\n", - "values version\n", - "version version\n", - "[PAD] info\n", - "size info\n", - "format info\n", - "shape info\n", - "axes info\n", - "spec info\n", - "layers info\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "100\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Str Name In Attribute data Name Assign Name val Call Attribute loads Name Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "101\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Call Attribute count params Name Name comprehension Name p Call Name Name\n", "Label = ['sum', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sum sum\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "102\n", "[CLS] If Compare Call Name Name Gt Num For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Call Name Name Assign Name fields List Str Str Str Subscript Name Index Name Expr Call Name Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "103\n", "[CLS] If UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute W OK Name Assign Name datadir base Call Attribute join Attribute path Name Str Str\n", "Label = ['access', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "save access\n", - "exists access\n", - "load access\n", - "deconv access\n", - "in access\n", - "string access\n", - "get access\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "104\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg file hash arg algorithm arg chunk size Str Num Expr Str If BoolOp Or Compare Name Is Str BoolOp And Compare Name Str Compare Call Name Name Num Assign Name hasher Str Assign Name hasher Str If Compare Call Name Call Name Name Name Name Eq Call Name Name Return NameConstant Return NameConstant\n", "Label = ['fpath', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self fpath\n", - "model fpath\n", - "fname fpath\n", - "uid fpath\n", - "cls fpath\n", - "path fpath\n", - "fpath fpath\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "105\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return BoolOp And Compare Attribute stop signal Name IsNot NameConstant UnaryOp Not Call Attribute is set Attribute stop signal Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "106\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg sequence arg use multiprocessing arg shuffle NameConstant NameConstant Expr Call Attribute init Call Name Name Name Name Name Assign Attribute shuffle Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "107\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg workers Expr Str Return Lambda arguments arg seqs Call Attribute Pool Name Name keyword Name keyword Tuple Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "108\n", "[CLS] While NameConstant Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Num If BoolOp Or Compare Attribute unfinished tasks Attribute queue Name Eq Num Call Attribute is set Attribute stop signal Name Return\n", "Label = ['sleep', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append sleep\n", - "set sleep\n", - "expand sleep\n", - "stop sleep\n", - "update sleep\n", - "is sleep\n", - "reset sleep\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "109\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg workers Expr Str Return Lambda arguments arg seqs Call Attribute Pool Name Name keyword Name keyword Tuple Name Attribute random seed Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "110\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Expr Call Attribute add Name Str\n", "Label = ['backend', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "backend backend\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "111\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Num If Compare Name Str Assign Name pad BinOp Name Sub Num\n", "Label = ['pad', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "pad pad\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "112\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num Name keyword Tuple Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed y\n", - "x y\n", - "value y\n", - "kernel y\n", - "pool y\n", - "normal y\n", - "recurrent y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "113\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute zeros Name BinOp Tuple Name Add Name keyword Attribute float32 Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x y\n", - "y y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "114\n", "[CLS] If Call Name Name Name If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute build Name\n", "Label = ['built', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs built\n", - "built built\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "115\n", "[CLS] If Call Name Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute join Str ListComp Call Name Name comprehension Name ishape Attribute input shapes Name Assign Name inputlabels Str\n", "Label = ['inputlabels', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputlabels inputlabels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "116\n", "[CLS] keyword Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "117\n", - "[CLS] If Compare Name In Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Name Assign Name fn Call Attribute get Name Name If Compare Name Is NameConstant Raise Call Name BinOp BinOp BinOp Str Add Name Str Name\n", + "[CLS] If Compare Name In Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Name Assign Name fn Call Attribute get Name Name If Compare Name Is NameConstant Raise Call Name BinOp BinOp BinOp Str Add Name Str Name\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Label = ['fn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "fn fn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "118\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add BinOp Str Mult BinOp Attribute width Name Sub Name\n", "Label = ['bar', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "info bar\n", - "new bar\n", - "bar bar\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "119\n", "[CLS] If Compare Name Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Str Mod Tuple BinOp Name FloorDiv Num BinOp BinOp Name Num Num BinOp Name Num If Compare Name Num Assign Name eta format BinOp Str Tuple BinOp Name Num BinOp Name Num Assign Name eta format BinOp Str Name\n", "Label = ['eta', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "eta eta\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "120\n", "[CLS] If Compare Name Gt Attribute [MASK] [MASK] [MASK] [MASK] Name AugAssign Name info Add BinOp Str Mult BinOp Name Sub Attribute total width Name\n", "Label = ['total', 'width', '[PAD]', '[PAD]']\n", "Pred =\n", - "verbose total\n", - "min total\n", - "delta total\n", - "dynamic total\n", - "stopped total\n", - "monitor total\n", - "clipvalue total\n", - "[PAD] width\n", - "t width\n", - "updates width\n", - "names width\n", - "nodes width\n", - "epoch width\n", - "axes width\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "121\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Num Assign Name fpath Call Attribute join Attribute path Name Name BinOp Str Add Call Name Name Assign Tuple Subscript Name ExtSlice Slice BinOp BinOp Name Sub Num Mult Num BinOp Name Num Slice Slice Slice Subscript Name Slice BinOp BinOp Name Num Num BinOp Name Num Call Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "chunk i\n", - "name i\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "122\n", "[CLS] With withitem Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Str Name imgpath Assign Name x train Call Attribute reshape Call Attribute frombuffer Name Call Attribute read Name Attribute uint8 Name keyword Num Call Name Name Num Num\n", "Label = ['open', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "open open\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "123\n", "[CLS] Attribute [MASK] [MASK] [MASK] [MASK] Call Attribute frombuffer Name Call Attribute read Name Attribute uint8 Name keyword Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "124\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Lt Tuple Num Assign Name d Call Attribute load Name Name Assign Name d Call Attribute load Name Name keyword Str Assign Name d decoded Dict For Tuple Name k Name v Call Attribute items Name Assign Subscript Name Index Call Attribute decode Name Str Name Assign Name d Name\n", "Label = ['version', 'info', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs version\n", - "input version\n", - "recurrent version\n", - "version version\n", - "[PAD] info\n", - "spec info\n", - "updates info\n", - "kernel info\n", - "regularizer info\n", - "axes info\n", - "dropout info\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "125\n", "[CLS] If UnaryOp Not Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Call Name Name comprehension Name x Name\n", "Label = ['num', 'words', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] words\n", - "words words\n", - "[PAD] [PAD]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", "\n", "126\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Str Expr Str Assign Name path Call Name Name keyword Str keyword Str Assign Name f Call Name Name Assign Name data Call Attribute load Name Name Expr Call Attribute close Name Return Name\n", "Label = ['path', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "path path\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "127\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] ListComp BinOp List Name Add ListComp BinOp Name Name comprehension Name w Name comprehension Name x Name If Name Assign Name xs ListComp ListComp BinOp Name Name comprehension Name w Name comprehension Name x Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "xs xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "128\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp ListComp IfExp Compare Name LtE Lt Name Name Name Name comprehension Name w Name comprehension Name x Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "xs xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "129\n", "[CLS] ListComp ListComp Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Compare Name LtE Lt Name Name comprehension Name x Name\n", "Label = ['w', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w w\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "130\n", "[CLS] If BoolOp And UnaryOp Not Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute FunctionType Name UnaryOp Call Name Attribute build fn Name Attribute MethodType Name Expr Call Attribute append Name Attribute call Attribute build fn Name Expr Call Attribute append Name Attribute build fn Name\n", "Label = ['build', 'fn', '[PAD]', '[PAD]']\n", "Pred =\n", - "build build\n", - "[PAD] fn\n", - "fn fn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "131\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name output Call Name Attribute metrics names Attribute model Name Name If Compare Name Eq Str Return Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "132\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute preprocess input Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "133\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute VGG19 Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "134\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute decode predictions Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "135\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute DenseNet121 Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "136\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Return Call Attribute decode predictions Name Starred Name keyword Name Name\n", "Label = ['args', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "args args\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "137\n", "[CLS] If Compare Name Eq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name If Compare Name Num Expr Call Attribute append Name Name If Compare Name NotEq Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name Expr Call Attribute append Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "138\n", "[CLS] If Compare Name Eq Num Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name If Compare Name NotEq Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name Expr Call Attribute append Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "139\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] NameConstant Assign Name output shape Subscript Subscript Name Index Num Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "140\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp List BinOp Name Sub Num Add Call Name Call Name BinOp Name Num\n", "Label = ['dims', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes dims\n", - "dims dims\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "141\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] NameConstant Assign Name output shape Subscript Subscript Name Index Num Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "142\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Subscript Name Index Num comprehension Name s Name Compare Name IsNot NameConstant\n", "Label = ['batch', 'sizes', '[PAD]', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "[PAD] sizes\n", - "shape sizes\n", - "states sizes\n", - "batch sizes\n", - "keras sizes\n", - "train sizes\n", - "dim sizes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "143\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Call Name Name NotEq Num Raise Call Name Str Return BinOp Subscript Name Index Num Sub Subscript Name Index Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "144\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Subscript Attribute axes Name Index Name Mod Call Attribute ndim Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "145\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name Mod Call Attribute ndim Name Subscript Name Index Name\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "146\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg kwargs Expr Str Return Call Call Name keyword Name Name\n", "Label = ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "147\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Call Name Attribute alpha Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "148\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "149\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute shared axes Name Assign Subscript Name Index BinOp Name Sub Num Num Assign Subscript Attribute param broadcast Name Index BinOp Name Num NameConstant\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "150\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Num Call Name Name If Compare Name NotIn Attribute shared axes Name Assign Subscript Name Index Name Subscript Name Index Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "151\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Attribute axis Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "152\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute cast to floatx Name Name\n", "Label = ['max', 'value', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype max\n", - "w max\n", - "result max\n", - "x max\n", - "momentum max\n", - "init max\n", - "beta max\n", - "[PAD] value\n", - "t value\n", - "dtype value\n", - "1 value\n", - "array value\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "153\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] If Call Name Attribute layer Name Str Return Attribute updates Attribute layer Name Return List Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "154\n", "[CLS] Dict Str Str Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Attribute layer Name Call Attribute get config Attribute layer Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "155\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get shape tuple Name Tuple UnaryOp USub Num Name Num\n", "Label = ['inner', 'input', 'shape', '[PAD]']\n", "Pred =\n", - "inner inner\n", - "mask input\n", - "shape input\n", - "[PAD] input\n", - "length input\n", - "input input\n", - "mask shape\n", - "shape shape\n", - "mask [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "156\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get shape tuple Name Tuple UnaryOp USub Num Name Name Num Subscript Name Slice Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "mask [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "mask [PAD]\n", - "[PAD] [PAD]\n", "\n", "157\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple UnaryOp USub Num Name Name Num Subscript Name Slice Num\n", "Label = ['get', 'shape', 'tuple', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] tuple\n", - "shape tuple\n", - "dims tuple\n", - "subtensor tuple\n", - "tuple tuple\n", - "[PAD] [PAD]\n", "\n", "158\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg value Assign Attribute trainable Name Name Assign Attribute trainable Attribute forward layer Name Name Assign Attribute trainable Attribute backward layer Name Name Attribute setter Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "159\n", "[CLS] Return BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute forward layer Name Add Call Attribute get weights Attribute backward layer Name\n", "Label = ['get', 'weights', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] weights\n", - "weights weights\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "160\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant Return BinOp BinOp Name Add Name Call Attribute copy Name Name\n", "Label = ['merge', 'mode', '[PAD]', '[PAD]']\n", "Pred =\n", - "merge merge\n", - "[PAD] mode\n", - "mode mode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "161\n", "[CLS] If BoolOp And Compare Name Is NameConstant Compare Name NameConstant Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "162\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Call Name Name FloorDiv Num Add Num\n", "Label = ['pivot', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "num pivot\n", - "new pivot\n", - "y pivot\n", - "axes pivot\n", - "batch pivot\n", - "expected pivot\n", - "spatial pivot\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "163\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp UnaryOp Not Attribute merge mode Name List NameConstant NameConstant NameConstant\n", "Label = ['output', 'mask', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] mask\n", - "mode mask\n", - "state mask\n", - "size mask\n", - "mask mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "164\n", "[CLS] BinOp BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Add Name Name\n", "Label = ['get', 'updates', 'for', '[PAD]']\n", "Pred =\n", - "get get\n", - "for updates\n", - "losses updates\n", - "[PAD] updates\n", - "updates updates\n", - "for for\n", - "for [PAD]\n", - "losses [PAD]\n", - "[PAD] [PAD]\n", "\n", "165\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Return BinOp Attribute losses Attribute forward layer Name Add Attribute losses Attribute backward layer Name\n", "Label = ['forward', 'layer', '[PAD]', '[PAD]']\n", "Pred =\n", - "forward forward\n", - "[PAD] layer\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "166\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "167\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Call Name keyword Tuple NameConstant Name comprehension Name dim Name\n", "Label = ['state', 'spec', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] spec\n", - "spec spec\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "168\n", "[CLS] Dict Str Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Attribute go backwards Name Attribute stateful Name\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "sequences sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "169\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "170\n", "[CLS] If BoolOp And Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute built Name Return List Attribute kernel Name Attribute recurrent kernel Name Attribute bias Name\n", "Label = ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reset trainable\n", - "stateful trainable\n", - "use trainable\n", - "run trainable\n", - "trainable trainable\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "171\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice Attribute units Name\n", "Label = ['recurrent', 'kernel', 'z', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "kernel kernel\n", - "kernel z\n", - "[PAD] z\n", - "i z\n", - "r z\n", - "f z\n", - "z z\n", - "kernel [PAD]\n", - "[PAD] [PAD]\n", "\n", "172\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice Attribute units Name BinOp Attribute units Name Mult Num\n", "Label = ['kernel', 'r', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] r\n", - "f r\n", - "r r\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "173\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute units Name Mult Num BinOp Attribute units Name Num\n", "Label = ['bias', 'r', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] r\n", - "c r\n", - "i r\n", - "o r\n", - "h r\n", - "f r\n", - "r r\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "174\n", "[CLS] If BoolOp Or Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Assign Name h Subscript Name Index Num\n", "Label = ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "175\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "176\n", "[CLS] ExtSlice Slice Slice BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Mult Num BinOp Attribute units Name Num\n", "Label = ['units', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "units units\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "177\n", "[CLS] If BoolOp Or Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute return state Name Assign Name h Subscript Name Index Num Assign Name c Subscript Name Index Num\n", "Label = ['stateful', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful stateful\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "178\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name output Call Attribute transpose Name Name Tuple Num Num Num Assign Name output Subscript Name Index UnaryOp USub Num\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "sequences sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "179\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pooling function Name keyword Name keyword BinOp Attribute pool size Name Add Tuple Num keyword BinOp Attribute strides Name Tuple Num keyword Attribute padding Name keyword Attribute data format Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "180\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "length length\n", - "output [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "181\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Return Tuple Subscript Name Index Num Name Name Subscript Name Index Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "format format\n", - "format [PAD]\n", - "[PAD] [PAD]\n", - "format [PAD]\n", - "[PAD] [PAD]\n", "\n", "182\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "183\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "length length\n", - "output [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "184\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv output length Name Name Subscript Attribute pool size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['len', 'dim3', '[PAD]', '[PAD]']\n", "Pred =\n", - "cols len\n", - "rows len\n", - "length len\n", - "output len\n", - "len len\n", - "[PAD] dim3\n", - "length dim3\n", - "dim dim3\n", - "output dim3\n", - "width dim3\n", - "rows dim3\n", - "col dim3\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "185\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name output Call Attribute pooling function Name keyword Name keyword Attribute pool size Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "186\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Attribute pool size Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name\n", "Label = ['pooling', 'function', '[PAD]', '[PAD]']\n", "Pred =\n", - "pooling pooling\n", - "[PAD] function\n", - "function function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "187\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg pool size arg strides arg padding arg data format arg kwargs Tuple Num Num Num NameConstant Str NameConstant Expr Call Attribute init Call Name Name Name Name Name Name Name keyword Name Attribute legacy pooling3d support Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "188\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format arg kwargs Str Expr Call Attribute init Call Name Name Name Name keyword Name Assign Attribute supports masking Name NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "189\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format arg kwargs NameConstant Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute data format Name Call Attribute normalize data format Name Name Assign Attribute input spec Name Call Name keyword Num Attribute legacy global pooling support Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "190\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name config Dict Str Attribute data format Name Assign Name base config Call Attribute get config Call Name Name Name Return Call Name BinOp Call Name Call Attribute items Name Add Call Name Call Attribute items Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "191\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Attribute data format Name Eq Str Return Call Attribute mean Name Name keyword List Num Num Return Call Attribute mean Name Name keyword List Num Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "192\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs If Compare Attribute data format Name Eq Str Return Call Attribute max Name Name keyword List Num Num Return Call Attribute max Name Name keyword List Num Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "193\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "194\n", "[CLS] Raise Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str ListComp Attribute shape Name comprehension Name spec Attribute state spec Name Attribute state size Attribute cell Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "195\n", "[CLS] Assign Subscript Name Index Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Subscript Name Index Name keyword Attribute padding Attribute cell Name keyword Subscript Attribute strides Attribute cell Name Index Name keyword Subscript Attribute dilation rate Attribute cell Name Index Name\n", "Label = ['conv', 'output', 'length', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "output output\n", - "output length\n", - "length length\n", - "output [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "196\n", "[CLS] If BoolOp And Compare Name Is NameConstant Compare Name NameConstant Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "197\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs arg mask arg training arg initial state arg constants NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "198\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "199\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg states Assign Name constants Subscript Name Slice UnaryOp USub Attribute num constants Name Assign Name states Subscript Name Slice UnaryOp Attribute num constants Name Return Call Attribute call Attribute cell Name Name Name keyword Name keyword Name\n", "Label = ['inputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "200\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name state shape BinOp Subscript Name Slice Num Add Subscript Name Slice Num\n", "Label = ['return', 'sequences', '[PAD]', '[PAD]']\n", "Pred =\n", - "return return\n", - "[PAD] sequences\n", - "state sequences\n", - "shape sequences\n", - "sequences sequences\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "201\n", "[CLS] BinOp Attribute [MASK] [MASK] [MASK] [MASK] Name Add Tuple Name BinOp Attribute filters Name Mult Num\n", "Label = ['kernel', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] size\n", - "size size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "202\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice Slice Slice Attribute filters Name\n", "Label = ['kernel', 'i', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] i\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "203\n", "[CLS] Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name ExtSlice Slice Slice Slice Slice BinOp Attribute filters Name Mult Num\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent kernel\n", - "kernel kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "204\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice Slice Slice BinOp Attribute filters Name Mult Num\n", "Label = ['recurrent', 'kernel', 'o', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "kernel kernel\n", - "kernel o\n", - "[PAD] o\n", - "c o\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "o o\n", - "kernel [PAD]\n", - "[PAD] [PAD]\n", "\n", "205\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute filters Name Mult Num BinOp Attribute filters Name Num\n", "Label = ['bias', 'c', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] c\n", - "c c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "206\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute bias Name Slice BinOp Attribute filters Name Mult Num\n", "Label = ['bias', 'o', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] o\n", - "c o\n", - "f o\n", - "i o\n", - "o o\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "207\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute kernel i Name Attribute bias i Name keyword Attribute padding Name\n", "Label = ['input', 'conv', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "[PAD] conv\n", - "conv conv\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", - "208\n", + "208\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "209\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "210\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Assign Name outputs Call Attribute conv1d Name Name Attribute kernel Name keyword Subscript Attribute strides Name Index Num keyword Attribute padding Name keyword Attribute data format Name keyword Subscript Attribute dilation rate Name Index Num\n", "Label = ['rank', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "rank rank\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "211\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Call Name Call Name Name Assign Name new dim Call Attribute conv output length Name Subscript Name Index Name Subscript Attribute kernel size Name Index Name keyword Attribute padding Name keyword Subscript Attribute strides Name Index Name keyword Subscript Attribute dilation rate Name Index Name Expr Call Attribute append Name Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "212\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "213\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "214\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute output padding Name\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "215\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Name keyword Attribute kernel initializer Name keyword Str keyword Attribute kernel regularizer Name keyword Attribute kernel constraint Name\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "216\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Tuple Name h axis Name w axis Tuple Num Num Assign Tuple Name h axis Name w axis Tuple Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "217\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Name output shape Tuple Name Attribute filters Name Name Name Assign Name output shape Tuple Name Name Name Attribute filters Name\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "218\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv2d transpose Name Name Attribute kernel Name Name Attribute strides Name keyword Attribute padding Name keyword Attribute data format Name keyword Attribute dilation rate Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "219\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute bias add Name Name Attribute bias Name keyword Attribute data format Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "220\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute output padding Name\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "221\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "222\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "223\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute deconv length Name Name Name Name Attribute padding Name Name\n", "Label = ['out', 'height', '[PAD]', '[PAD]']\n", "Pred =\n", - "out out\n", - "[PAD] height\n", - "out height\n", - "width height\n", - "height height\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "224\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Name output shape Tuple Name Attribute filters Name Name Name Name Assign Name output shape Tuple Name Name Name Name Attribute filters Name\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "225\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "[PAD] [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "226\n", "[CLS] Assign Subscript Name Index Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "[PAD] [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "227\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Name Name Attribute padding Name Name\n", "Label = ['deconv', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "deconv deconv\n", - "length length\n", - "length [PAD]\n", - "[PAD] [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "228\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "229\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp Compare Attribute data format Name Eq Str Num UnaryOp USub Num\n", "Label = ['channel', 'axis', '[PAD]', '[PAD]']\n", "Pred =\n", - "data channel\n", - "format channel\n", - "tf channel\n", - "output channel\n", - "pad channel\n", - "axis channel\n", - "left channel\n", - "[PAD] axis\n", - "format axis\n", - "data axis\n", - "size axis\n", - "shape axis\n", - "sequences axis\n", - "val axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "230\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Tuple Attribute filters Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "231\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name keyword Num keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "232\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute depthwise kernel Name keyword Attribute strides Name keyword Attribute padding Name keyword Attribute dilation rate Name keyword Attribute data format Name\n", "Label = ['depthwise', 'conv2d', '[PAD]', '[PAD]']\n", "Pred =\n", - "conv2d depthwise\n", - "separable depthwise\n", - "conv3d depthwise\n", - "pool depthwise\n", - "convolution depthwise\n", - "function depthwise\n", - "conv1d depthwise\n", - "[PAD] conv2d\n", - "conv2d conv2d\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "233\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name outputs Call Attribute bias add Name Name Attribute bias Name keyword Attribute data format Name\n", "Label = ['use', 'bias', '[PAD]', '[PAD]']\n", "Pred =\n", - "use use\n", - "bias bias\n", - "bias [PAD]\n", - "[PAD] [PAD]\n", - "bias [PAD]\n", - "[PAD] [PAD]\n", "\n", "234\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Call Name Num BinOp Num Add Attribute rank Name\n", "Label = ['spatial', 'axes', '[PAD]', '[PAD]']\n", "Pred =\n", - "spatial spatial\n", - "axes axes\n", - "axes [PAD]\n", - "[PAD] [PAD]\n", - "axes [PAD]\n", - "[PAD] [PAD]\n", "\n", "235\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name output Call Attribute repeat elements Name Name Subscript Attribute size Name Index Num keyword Num Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "236\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Return Call Attribute resize images Name Name Subscript Attribute size Name Index Num Subscript Attribute size Name Index Num Attribute data format Name Attribute interpolation Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "237\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Subscript Attribute size Name Index Num Subscript Attribute size Name Index Num Attribute data format Name Attribute interpolation Name\n", "Label = ['resize', 'images', '[PAD]', '[PAD]']\n", "Pred =\n", - "resize resize\n", - "[PAD] images\n", - "length images\n", - "output images\n", - "volumes images\n", - "images images\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "238\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name Str keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "239\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute normalize tuple Name Subscript Name Index Num Num Str\n", "Label = ['dim3', 'padding', '[PAD]', '[PAD]']\n", "Pred =\n", - "width dim3\n", - "dim2 dim3\n", - "height dim3\n", - "dim1 dim3\n", - "padding dim3\n", - "cropping dim3\n", - "dim3 dim3\n", - "[PAD] padding\n", - "cropping padding\n", - "padding padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "240\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg cropping arg data format arg kwargs Tuple Tuple Num Num Tuple Num Num Tuple Num Num NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "241\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Tuple Name Name Tuple Name Name Tuple Name Name\n", "Label = ['normalized', 'cropping', '[PAD]', '[PAD]']\n", "Pred =\n", - "args normalized\n", - "data normalized\n", - "legacy normalized\n", - "shape normalized\n", - "attrs normalized\n", - "input normalized\n", - "state normalized\n", - "[PAD] cropping\n", - "shape cropping\n", - "input cropping\n", - "support cropping\n", - "spec cropping\n", - "format cropping\n", - "dim cropping\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "242\n", "[CLS] BinOp Str Mod Tuple Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name\n", "Label = ['input', 'length', '[PAD]', '[PAD]']\n", "Pred =\n", - "input input\n", - "length length\n", - "length [PAD]\n", - "[PAD] [PAD]\n", - "length [PAD]\n", - "[PAD] [PAD]\n", "\n", "243\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute local conv1d Name Name Attribute kernel Name Attribute kernel size Name Attribute strides Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "244\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name NotEq Str Raise Call Name BinOp Str Add Name\n", "Label = ['padding', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "245\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv output length Name Name Subscript Attribute kernel size Name Index Num Attribute padding Name Subscript Attribute strides Name Index Num\n", "Label = ['output', 'row', '[PAD]', '[PAD]']\n", "Pred =\n", - "cols output\n", - "rows output\n", - "output output\n", - "[PAD] row\n", - "length row\n", - "dim row\n", - "output row\n", - "width row\n", - "rows row\n", - "col row\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "246\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute local conv2d Name Name Attribute kernel Name Attribute kernel size Name Attribute strides Name Tuple Attribute output row Name Attribute output col Name Attribute data format Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "247\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['axis', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape axis\n", - "axis axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "248\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Attribute gamma Name Call Attribute add weight Name keyword Name keyword Str keyword Attribute gamma initializer Name keyword Attribute gamma regularizer Name keyword Attribute gamma constraint Name Assign Attribute gamma Name NameConstant\n", "Label = ['scale', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "gamma scale\n", - "use scale\n", - "center scale\n", - "normalize scale\n", - "add scale\n", - "scale scale\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "249\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute add weight Name keyword Name keyword Str keyword Attribute beta initializer Name keyword Attribute beta regularizer Name keyword Attribute beta constraint Name\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "250\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Str keyword Attribute moving mean initializer Name keyword NameConstant\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "251\n", "[CLS] BinOp Name Div BinOp Name Sub BinOp Num Add Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['epsilon', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim epsilon\n", - "rank epsilon\n", - "sqrt epsilon\n", - "value epsilon\n", - "start epsilon\n", - "beta epsilon\n", - "name epsilon\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "252\n", "[CLS] Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "253\n", "[CLS] Return Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Attribute cells Name Index UnaryOp USub Num Index Num\n", "Label = ['state', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] size\n", - "size size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "254\n", "[CLS] IfExp Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute cells Name Slice UnaryOp USub Num Attribute cells Name\n", "Label = ['reverse', 'state', 'order', '[PAD]']\n", "Pred =\n", - "reverse reverse\n", - "state state\n", - "state order\n", - "[PAD] order\n", - "order order\n", - "state [PAD]\n", - "[PAD] [PAD]\n", "\n", "255\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Slice Num Assign Name input shape Subscript Name Index Num\n", "Label = ['constants', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "input constants\n", - "mask constants\n", - "shape constants\n", - "batch constants\n", - "output constants\n", - "state constants\n", - "data constants\n", - "[PAD] shape\n", - "shape shape\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "256\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute cells Name If Call Name Name Name AugAssign Name weights Add Attribute non trainable weights Name\n", "Label = ['cell', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cell cell\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "257\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs NameConstant Assign Name losses List For Name cell Attribute cells Name If Call Name Name Name Assign Name cell losses Call Attribute get losses for Name Name AugAssign Name losses Add Name Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "258\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] If Compare Attribute states Name Is NameConstant If Call Name Attribute state size Attribute cell Name Name Assign Name num states Num Assign Name num states Call Name Attribute state size Attribute cell Name Return ListComp NameConstant comprehension Name Call Name Name Return Attribute states Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "259\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant If Call Name Attribute state size Attribute cell Name Name Assign Name num states Num Assign Name num states Call Name Attribute state size Attribute cell Name Return ListComp NameConstant comprehension Name Call Name Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "260\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Tuple Subscript Name Index Num Name comprehension Name dim Name\n", "Label = ['state', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "261\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num\n", "Label = ['input', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "mask input\n", - "input input\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "262\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute cell Name Str Return ListComp Call Attribute tile Name Name List Num Name comprehension Name dim Attribute state size Attribute cell Name Return List Call Attribute tile Name Name List Num Attribute state size Attribute cell Name\n", "Label = ['state', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "state state\n", - "[PAD] size\n", - "size size\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "263\n", "[CLS] If Call Name Name Name If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Is NameConstant Assign Name initial state Subscript Name Slice Num Assign Name initial state Subscript Name Slice Num UnaryOp USub Attribute num constants Name If Compare Call Name Name Eq Num Assign Name initial state NameConstant Assign Name inputs Subscript Name Index Num\n", "Label = ['num', 'constants', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] constants\n", - "constants constants\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "264\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Tuple Name Name Str Call Name Attribute shape Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "265\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "266\n", "[CLS] BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "267\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Assign Subscript Name Index Str Attribute num constants Name\n", "Label = ['num', 'constants', '[PAD]', '[PAD]']\n", "Pred =\n", - "num num\n", - "[PAD] constants\n", - "constants constants\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "268\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "269\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Name If UnaryOp Not Attribute trainable Name Return Attribute weights Attribute cell Name Return Attribute non trainable weights Attribute cell Name\n", "Label = ['cell', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cell cell\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "270\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant Assign Name h Call Attribute bias add Name Name Attribute bias Name\n", "Label = ['bias', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "bias bias\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "271\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice BinOp Attribute units Name Mult Num\n", "Label = ['kernel', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] h\n", - "o h\n", - "c h\n", - "f h\n", - "h h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "272\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Attribute recurrent dropout Name keyword Name keyword Num\n", "Label = ['ones', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones ones\n", - "[PAD] like\n", - "like like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "273\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dot Name Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice BinOp Num Mult Attribute units Name\n", "Label = ['matrix', 'inner', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent matrix\n", - "x matrix\n", - "kernel matrix\n", - "h matrix\n", - "conv matrix\n", - "w matrix\n", - "output matrix\n", - "[PAD] inner\n", - "h inner\n", - "kernel inner\n", - "o inner\n", - "c inner\n", - "f inner\n", - "r inner\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "274\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult Subscript Name ExtSlice Slice Slice BinOp Num Attribute units Name\n", "Label = ['recurrent', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] h\n", - "kernel h\n", - "h h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "275\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dot Name BinOp Name Mult Name Subscript Attribute recurrent kernel Name ExtSlice Slice Slice BinOp Num Attribute units Name\n", "Label = ['recurrent', 'h', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] h\n", - "h h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "276\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "277\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "278\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "279\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg config If BoolOp And Compare Str In Name Compare Subscript Name Index Str Eq Num Assign Subscript Name Index Str Num Return Call Name keyword Name Name\n", "Label = ['cls', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cls cls\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "280\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name List Call Attribute bias initializer Name Tuple Attribute units Name Starred Name keyword Name Call Call Attribute Ones Name Tuple Attribute units Name Starred Name keyword Name Call Attribute bias initializer Name Tuple BinOp Attribute units Name Mult Num Starred Name keyword Name\n", "Label = ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate concatenate\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "281\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute kernel Name ExtSlice Slice Slice BinOp Attribute units Name Mult Num BinOp Attribute units Name Num\n", "Label = ['kernel', 'c', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel kernel\n", - "[PAD] c\n", - "o c\n", - "c c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "282\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Call Attribute ones like Name Name Attribute dropout Name keyword Name keyword Num\n", "Label = ['dropout', 'mask', '[PAD]', '[PAD]']\n", "Pred =\n", - "dropout dropout\n", - "[PAD] mask\n", - "mask mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "283\n", "[CLS] If BoolOp And Compare Num Lt Attribute [MASK] [MASK] [MASK] [MASK] Name Num Compare Attribute recurrent dropout mask Name Is NameConstant Assign Attribute recurrent dropout mask Name Call Name Call Attribute ones like Name Subscript Name Index Num Attribute recurrent dropout Name keyword Name keyword Num\n", "Label = ['recurrent', 'dropout', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "dropout dropout\n", - "dropout [PAD]\n", - "[PAD] [PAD]\n", - "dropout [PAD]\n", - "[PAD] [PAD]\n", "\n", "284\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Attribute recurrent dropout Name keyword Name keyword Num\n", "Label = ['ones', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones ones\n", - "[PAD] like\n", - "like like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "285\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute recurrent activation Name BinOp Name Add Call Attribute dot Name Name Attribute recurrent kernel f Name\n", "Label = ['f', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i f\n", - "c f\n", - "o f\n", - "h f\n", - "activation f\n", - "recurrent f\n", - "f f\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "286\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Add Call Attribute dot Name Name Attribute recurrent kernel o Name\n", "Label = ['recurrent', 'activation', '[PAD]', '[PAD]']\n", "Pred =\n", - "activation recurrent\n", - "recurrent recurrent\n", - "[PAD] activation\n", - "activation activation\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "287\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name ExtSlice Slice Slice Attribute units Name BinOp Num Mult Attribute units Name\n", "Label = ['z1', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent z1\n", - "x z1\n", - "kernel z1\n", - "bias z1\n", - "r z1\n", - "h z1\n", - "conv z1\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "288\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "289\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "290\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute sqrt Name BinOp Attribute rate Name Div BinOp Num Sub Attribute rate Name\n", "Label = ['stddev', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "rate stddev\n", - "stddev stddev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "291\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "292\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assign Name input shape Call Attribute shape Name Name If Compare Attribute data format Name Eq Str Assign Name noise shape Tuple Subscript Name Index Num Subscript Name Index Num Num Num Assign Name noise shape Tuple Subscript Name Index Num Num Num Subscript Name Index Num Return Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "293\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Num Num Subscript Name Index Num\n", "Label = ['noise', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "noise noise\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "294\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Name Raise Call Name Str\n", "Label = ['unknown', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "steps unknown\n", - "batch unknown\n", - "do unknown\n", - "epoch unknown\n", - "is unknown\n", - "use unknown\n", - "pad unknown\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "295\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "296\n", "[CLS] Return Call Name BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "297\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg n arg kwargs Expr Call Attribute init Call Name Name Name keyword Name Assign Attribute n Name Name Assign Attribute input spec Name Call Name keyword Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "298\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg input shape Return Tuple Subscript Name Index Num Attribute n Name Subscript Name Index Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "299\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Return Call Attribute repeat Name Name Attribute n Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "300\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute placeholder Name keyword Name comprehension Name shape Name\n", "Label = ['xs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight xs\n", - "xs xs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "301\n", "[CLS] BinOp Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Add Call Name Call Attribute items Name\n", "Label = ['items', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "items items\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "302\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str If Call Name Subscript Subscript Name Index Str Index Name Name Assign Name arg dict Subscript Subscript Name Index Str Index Name If BoolOp And Compare Str In Name Compare Subscript Name Index Str Eq Str Assign Subscript Subscript Name Index Str Index Name Call Attribute array Name Subscript Name Index Str\n", "Label = ['key', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x key\n", - "k key\n", - "layer key\n", - "a key\n", - "key key\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "303\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Name Attribute units Name keyword Attribute kernel initializer Name keyword Str keyword Attribute kernel regularizer Name keyword Attribute kernel constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "weight weight\n", - "weight [PAD]\n", - "[PAD] [PAD]\n", - "weight [PAD]\n", - "[PAD] [PAD]\n", "\n", "304\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Tuple Attribute units Name keyword Attribute bias initializer Name keyword Str keyword Attribute bias regularizer Name keyword Attribute bias constraint Name\n", "Label = ['add', 'weight', '[PAD]', '[PAD]']\n", "Pred =\n", - "add add\n", - "[PAD] weight\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "305\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return Call Attribute asarray Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "306\n", "[CLS] BoolOp And Call Name Name Compare Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute cntk py Name Is NameConstant\n", "Label = ['Function', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "function Function\n", - "value Function\n", - "parameter Function\n", - "ndarray Function\n", - "shape Function\n", - "run Function\n", - "is Function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "307\n", "[CLS] If Compare Name Eq Str Return Attribute [MASK] [MASK] [MASK] [MASK] Name Return Attribute float32 Name\n", "Label = ['float16', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype float16\n", - "float64 float16\n", - "float32 float16\n", - "name float16\n", - "monitor float16\n", - "int float16\n", - "unknown float16\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "308\n", "[CLS] BoolOp Or Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute variables Name Call Name Name Attribute Parameter Attribute variables Name\n", "Label = ['Constant', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "constant Constant\n", - "parameter Constant\n", - "variable Constant\n", - "zeros Constant\n", - "uniform Constant\n", - "normal Constant\n", - "function Constant\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "309\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Subscript Attribute shape Name Index Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "310\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute input Name keyword Name keyword Call Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "input x\n", - "outputs x\n", - "output x\n", - "feed x\n", - "inputs x\n", - "cell x\n", - "node x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "311\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index BinOp Name Add Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "312\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "313\n", "[CLS] For Name Name If Compare Name Is NameConstant Raise Call Name Str\n", @@ -11051,118 +8010,51 @@ "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['bernoulli', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "uniform bernoulli\n", - "normal bernoulli\n", - "randint bernoulli\n", - "parameter bernoulli\n", - "[PAD] bernoulli\n", - "pool bernoulli\n", - "convolution bernoulli\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "315\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "316\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute parameter Name Name keyword Call Attribute uniform Attribute initializer Name Name keyword Name keyword Name keyword Name\n", "Label = ['p', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "v p\n", - "value p\n", - "out p\n", - "new p\n", - "parameter p\n", - "beta p\n", - "param p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "317\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute parameter Name keyword Name keyword Call Attribute normal Attribute initializer Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['p', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "v p\n", - "value p\n", - "parameter p\n", - "beta p\n", - "normal p\n", - "new p\n", - "param p\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "318\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['normal', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "uniform normal\n", - "normal normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "319\n", "[CLS] For Name Attribute [MASK] [MASK] [MASK] [MASK] Name If BoolOp Or Compare Name Eq Attribute InferredDimension Name Compare Name Attribute FreeDimension Name Raise Call Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "320\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Call Name BinOp Call Name Name Sub Num\n", "Label = ['permutation', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output permutation\n", - "permutation permutation\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "321\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] List BinOp Call Name Name Sub Num BinOp Call Name Name Num\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "322\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp IfExp Compare Name Is NameConstant Attribute InferredDimension Name Name comprehension Name Name\n", "Label = ['new', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "323\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name IfExp Compare Name GtE Num Name BinOp Name Add Call Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "324\n", "[CLS] Call Name ListComp Num comprehension Name Call Name BinOp Call Name Name Sub Call Name Name\n", @@ -11171,92 +8063,36 @@ "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name rep Call Name Name If BoolOp And Compare Name GtE Name Compare Subscript Name Index Name IsNot NameConstant Assign Name tmp BinOp List Name Mult Name Assign Name x Call Attribute splice Name Starred Name keyword BinOp Name Sub Name AugAssign Name i Add Num\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x i\n", - "w i\n", - "a i\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "326\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute all axes Attribute Axis Name\n", "Label = ['axis', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axis\n", - "axis axis\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "327\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute element select Name Name Call Name Name Call Name Name\n", "Label = ['any', 'matrix', '[PAD]', '[PAD]']\n", "Pred =\n", - "result any\n", - "all any\n", - "out any\n", - "y any\n", - "new any\n", - "output any\n", - "batch any\n", - "[PAD] matrix\n", - "matrix matrix\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "328\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg increment Assign Name result BinOp Name Add Name Return Call Attribute assign Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "329\n", "[CLS] If BoolOp And Compare Call Name Name Eq Call Name Name Compare Subscript Call Name Name Index Num Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name List Num\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "gamma beta\n", - "mean beta\n", - "var beta\n", - "out beta\n", - "val beta\n", - "beta beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "330\n", "[CLS] BoolOp Or Call Name GeneratorExp Compare Name Eq Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name Attribute shape Name Call Name GeneratorExp Compare Name Attribute FreeDimension Name comprehension Name Attribute shape Name\n", "Label = ['InferredDimension', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inferreddimension InferredDimension\n", - "freedimension InferredDimension\n", - "ndim InferredDimension\n", - "kind InferredDimension\n", - "min InferredDimension\n", - "index InferredDimension\n", - "int InferredDimension\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "331\n", "[CLS] Call Name GeneratorExp Compare Name Eq Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name Attribute shape Name\n", "Label = ['InferredDimension', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "freedimension InferredDimension\n", - "inferreddimension InferredDimension\n", - "ndim InferredDimension\n", - "int InferredDimension\n", - "categorical InferredDimension\n", - "float32 InferredDimension\n", - "keras InferredDimension\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "332\n", "[CLS] BinOp Call Name ListComp UnaryOp USub Num comprehension Name Call Name BinOp Name Sub Name Add Name\n", @@ -11265,3164 +8101,1450 @@ "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name ListComp Name comprehension Name i Call Name Name\n", "Label = ['current', 'layout', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape current\n", - "output current\n", - "result current\n", - "axis current\n", - "mask current\n", - "input current\n", - "masks current\n", - "[PAD] layout\n", - "shape layout\n", - "list layout\n", - "train layout\n", - "output layout\n", - "words layout\n", - "tensors layout\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "334\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs arg initial states arg go backwards arg mask arg constants arg unroll arg input length NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['step', 'function', '[PAD]', '[PAD]']\n", "Pred =\n", - "step step\n", - "function function\n", - "function [PAD]\n", - "[PAD] [PAD]\n", - "function [PAD]\n", - "[PAD] [PAD]\n", "\n", "335\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute ops Name Name Name Name BinOp Name Add Num\n", "Label = ['slice', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "slice slice\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "336\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute element select Attribute ops Name Name Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "337\n", "[CLS] If BoolOp And Compare Name Is NameConstant UnaryOp Not Call Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute shape Name Index Num\n", "Label = ['num', 'time', 'step', '[PAD]']\n", "Pred =\n", - "input num\n", - "batch num\n", - "mask num\n", - "data num\n", - "shape num\n", - "random num\n", - "op num\n", - "[PAD] time\n", - "length time\n", - "size time\n", - "shape time\n", - "mask time\n", - "input time\n", - "output time\n", - "[PAD] step\n", - "length step\n", - "size step\n", - "shape step\n", - "mask step\n", - "input step\n", - "output step\n", - "[PAD] [PAD]\n", "\n", "338\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name If Compare Call Name Name Eq Num Expr Call Attribute append Name Call Attribute broadcast as Attribute sequence Name Name Name Expr Call Attribute append Name Name\n", "Label = ['c', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i c\n", - "s c\n", - "o c\n", - "n c\n", - "out c\n", - "key c\n", - "a c\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "339\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name new states Call Name Name BinOp Call Name Name Add Call Name Name\n", "Label = ['new', 'output', '[PAD]', '[PAD]']\n", "Pred =\n", - "output new\n", - "inputs new\n", - "outputs new\n", - "state new\n", - "out new\n", - "i new\n", - "initial new\n", - "[PAD] output\n", - "length output\n", - "shape output\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "340\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute element select Name Name Name Name comprehension Tuple Name n Name s Call Name Name Name\n", "Label = ['new', 'states', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n", - "[PAD] states\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "341\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute swapaxes Name Name Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "342\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute transpose Name Name Tuple Num Num Num Num BinOp Tuple UnaryOp USub Num Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "343\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Name keyword Name keyword List NameConstant Name Name keyword Subscript Attribute shape Name Index Num\n", "Label = ['convolution', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "convolution convolution\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "344\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute reshape Name Call Attribute transpose Name Name Tuple Num Num Num Num BinOp Tuple UnaryOp USub Num Num Add Subscript Attribute shape Name Slice Num\n", "Label = ['depthwise', 'kernel', '[PAD]', '[PAD]']\n", "Pred =\n", - "depthwise depthwise\n", - "[PAD] kernel\n", - "kernel kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "345\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg output shape arg strides arg padding arg data format Tuple Num Num Num Str NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "346\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute clip Name Name Call Name BinOp Num Sub Call Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "347\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute one hot Name Name Subscript Attribute shape Name Index Name keyword Name\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "targets target\n", - "result target\n", - "feed target\n", - "index target\n", - "sample target\n", - "tiled target\n", - "y target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "348\n", "[CLS] If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Expr Call Attribute append Name Name Expr Call Attribute append Name Name\n", "Label = ['arguments', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape arguments\n", - "axis arguments\n", - "ndarray arguments\n", - "out arguments\n", - "ndim arguments\n", - "outputs arguments\n", - "value arguments\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "349\n", "[CLS] If Compare Name In Name Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name Expr Call Attribute append Name Name Raise Call Name BinOp Str Mod Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "350\n", "[CLS] If Compare Call Name Name Gt Num Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute combine Name ListComp Attribute output Name comprehension Name Name\n", "Label = ['unrelated', 'updates', '[PAD]', '[PAD]']\n", "Pred =\n", - "input unrelated\n", - "metrics unrelated\n", - "unrelated unrelated\n", - "[PAD] updates\n", - "updates updates\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "351\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Attribute arguments Attribute loss Name If Compare Name In Name Assign Subscript Name Index Name Subscript Name Index Name Raise Call Name BinOp Str Mod Attribute name Name\n", "Label = ['argument', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "key argument\n", - "layer argument\n", - "argument argument\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "352\n", "[CLS] If Compare Subscript Name Index Num Gt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Assign Subscript Name Index Name Subscript Name Index Num Assign Name prefix shape Call Name Name Assign Name x Call Attribute splice Name Call Attribute constant Name keyword Num keyword Name Name keyword Name Assign Name base shape Attribute shape Name\n", "Label = ['prefix', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "x prefix\n", - "xs prefix\n", - "w prefix\n", - "postfix prefix\n", - "idx prefix\n", - "start prefix\n", - "tmp prefix\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "353\n", "[CLS] Assert Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Eq BinOp Num Sub IfExp Compare Name Gt Num Num Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "354\n", "[CLS] If BoolOp Or Call Name Name Attribute [MASK] [MASK] [MASK] [MASK] Attribute variables Name Call Name Name Attribute Constant Attribute variables Name Expr Call Attribute append Name Attribute value Name Expr Call Attribute append Name Call Name Name\n", "Label = ['Parameter', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "parameter Parameter\n", - "constant Parameter\n", - "function Parameter\n", - "variable Parameter\n", - "run Parameter\n", - "placeholder Parameter\n", - "normal Parameter\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "355\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg message Str Return Call Attribute user function Name Call Name Name keyword Lambda arguments arg x NameConstant keyword Lambda arguments arg x Call Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "356\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Subscript Name Index BinOp Name Add Name\n", "Label = ['condition', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "slice condition\n", - "result condition\n", - "output condition\n", - "new condition\n", - "batch condition\n", - "input condition\n", - "index condition\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "357\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg data format If Compare Name Eq Str Assign Name x Call Attribute transpose Name Name Tuple Num Num Num Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "358\n", "[CLS] If Call Name Name Str Return Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Return Num\n", "Label = ['dynamic', 'axes', '[PAD]', '[PAD]']\n", "Pred =\n", - "in dynamic\n", - "tile dynamic\n", - "get dynamic\n", - "string dynamic\n", - "constant dynamic\n", - "ones dynamic\n", - "call dynamic\n", - "[PAD] axes\n", - "shape axes\n", - "like axes\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "359\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Subscript Name ExtSlice Slice Slice Index Name Index Name Tuple UnaryOp USub Num Num Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "360\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Subscript Name ExtSlice Slice Index Name Index Name Slice Tuple UnaryOp USub Num Num Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "361\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute as shape Call Attribute data Name BinOp Tuple Name Add Attribute target shape Name\n", "Label = ['result', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape result\n", - "output result\n", - "input result\n", - "new result\n", - "random result\n", - "result result\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "362\n", "[CLS] BinOp Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Mult Call Attribute prod Name Call Attribute asarray Name Attribute target shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "363\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Name List Name keyword NameConstant keyword Name\n", "Label = ['init', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "init init\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "364\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Subscript Attribute inputs Name Index Num Slice Num Attribute dtype Subscript Attribute inputs Name Index Num List Name\n", "Label = ['output', 'variable', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "variable variable\n", - "variable [PAD]\n", - "[PAD] [PAD]\n", - "variable [PAD]\n", - "[PAD] [PAD]\n", "\n", "365\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg state arg root gradients Return Call Attribute Value Attribute cntk py Name Call Attribute data Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "366\n", "[CLS] FunctionDef arguments Expr Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute get default graph Name If Compare Name NotIn Name Assign Name phase Call Attribute placeholder with default Name NameConstant keyword Tuple keyword Str Assign Subscript Name Index Name Name Return Subscript Name Index Name\n", "Label = ['graph', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "phase graph\n", - "learning graph\n", - "g graph\n", - "training graph\n", - "new graph\n", - "graph graph\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "367\n", "[CLS] If UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute environ Name Str Assign Name config Call Attribute ConfigProto Name keyword NameConstant Assign Name num thread Call Name Call Attribute get Attribute environ Name Str Assign Name config Call Attribute ConfigProto Name keyword Name keyword NameConstant\n", "Label = ['get', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "368\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return Call Attribute eval Call Name Name keyword Call Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "369\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute transpose Name Name keyword Name List Subscript Name Index UnaryOp USub Num UnaryOp Num\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "370\n", "[CLS] If Call Name ListComp Call Name Name Tuple Name Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp BinOp Str Add Str Str Call Name Name\n", "Label = ['a', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "a a\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", "\n", "371\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp Compare Subscript Name Index Num Eq BinOp Call Name Name Sub Num NameConstant NameConstant\n", "Label = ['adj', 'x', '[PAD]', '[PAD]']\n", "Pred =\n", - "adj adj\n", - "[PAD] x\n", - "pad x\n", - "size x\n", - "y x\n", - "t x\n", - "dim x\n", - "dims x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "372\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis arg keepdims NameConstant NameConstant Expr Str Return Call Attribute reduce max Name Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "373\n", "[CLS] Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name keyword Name keyword Name\n", "Label = ['sqrt', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "sqrt sqrt\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "374\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Expr Str Return Call Attribute not equal Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "375\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Expr Str Return Call Attribute greater equal Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "376\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute nn Name Name Name Name keyword Name keyword Name\n", "Label = ['fused', 'batch', 'norm', '[PAD]']\n", "Pred =\n", - "max fused\n", - "avg fused\n", - "separable fused\n", - "conv2d fused\n", - "convolution fused\n", - "conv3d fused\n", - "batch fused\n", - "[PAD] batch\n", - "conv2d batch\n", - "transpose batch\n", - "pool batch\n", - "batch batch\n", - "[PAD] norm\n", - "conv2d norm\n", - "transpose norm\n", - "pool norm\n", - "batch norm\n", - "normalization norm\n", - "pool3d norm\n", - "[PAD] [PAD]\n", "\n", "377\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name If Compare Call Name Name Gt Num Assign Name beta Call Attribute reshape Name Name UnaryOp USub Num\n", "Label = ['beta', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "beta beta\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "378\n", "[CLS] If Compare Name Lt Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Subscript Name Index Num If Name AugAssign Name axis Mod Name Assign Name axis Num\n", "Label = ['rank', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axis rank\n", - "shape rank\n", - "gamma rank\n", - "i rank\n", - "beta rank\n", - "axes rank\n", - "dynamic rank\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "379\n", "[CLS] If Call Name ListComp Call Name Name comprehension Name [MASK] [MASK] [MASK] [MASK] Name Return Call Attribute sparse concat Name Name Name Return Call Attribute concat Name ListComp Call Name Name comprehension Name x Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "380\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg shape Expr Str Return Call Attribute reshape Name Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "381\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg pattern Expr Str Return Call Attribute transpose Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "382\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Name keyword Subscript Name Index Name keyword Name\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "normal split\n", - "parameter split\n", - "add split\n", - "compile split\n", - "shared split\n", - "random split\n", - "append split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "383\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Assign Name x Call Attribute reshape Name Name Call Attribute stack Name List UnaryOp USub Num Call Name Subscript Call Name Name Slice Num Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "384\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg padding arg data format Tuple Tuple Num Num Tuple Num Num Tuple Num Num NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "385\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Attribute outputs Name Add List Attribute updates op Name Attribute fetches Name\n", "Label = ['fetches', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs fetches\n", - "x fetches\n", - "size fetches\n", - "fetches fetches\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "386\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp List Num Num Add Call Name Call Name Num Name\n", "Label = ['axes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "axes axes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "387\n", "[CLS] If Compare Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Eq BinOp Name Sub Num Assign Name mask Call Name Name\n", "Label = ['get', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "get get\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "388\n", "[CLS] UnaryOp USub Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Mult Call Attribute log Name Name Name\n", "Label = ['reduce', 'sum', '[PAD]', '[PAD]']\n", "Pred =\n", - "reduce reduce\n", - "sum sum\n", - "sum [PAD]\n", - "[PAD] [PAD]\n", - "sum [PAD]\n", - "[PAD] [PAD]\n", "\n", "389\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg level arg noise shape arg seed NameConstant NameConstant Expr Str Assign Name retain prob BinOp Num Sub Name If Compare Name Is NameConstant Assign Name seed Call Attribute randint Attribute random Name Num Return Call Attribute dropout Attribute nn Name BinOp Name Mult Num Name Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "390\n", - "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", + "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "391\n", "[CLS] If BoolOp And Compare Call Name Name Eq Str Compare Call Name Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute version Name Str Index Num Lt Call Name Str Assign Name x Call Attribute cast Name Name Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "392\n", "[CLS] BoolOp And Compare Call Name Name Eq Str Compare Call Name Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute version Name Str Index Num Lt Call Name Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "393\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str If Compare Name Eq Str Assign Name padding Str If Compare Name Str Assign Name padding Str Raise Call Name BinOp Str Add Call Name Name Return Name\n", "Label = ['padding', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding padding\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "394\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult BinOp Subscript Name Index Num Sub Num\n", "Label = ['left', 'pad', '[PAD]', '[PAD]']\n", "Pred =\n", - "h left\n", - "left left\n", - "[PAD] pad\n", - "pad pad\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "395\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute convolution Attribute nn Name keyword Name keyword Name keyword Tuple Name keyword Tuple Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "396\n", "[CLS] If Call Name Name Tuple Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute stack Name Name\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "397\n", "[CLS] If Compare Subscript Name Index Num Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Subscript Call Attribute shape Name Name Index Num Add Call Name Subscript Name Slice Num Assign Name output shape Call Attribute stack Name Call Name Name\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "398\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute atrous conv2d transpose Attribute nn Name Name Name Name Subscript Name Index Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "399\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Num Assign Name strides BinOp BinOp Tuple Num Add BinOp Name Mult Num Tuple Num Assign Name spatial start dim Num Assign Name strides BinOp Tuple Num Num BinOp Name Num\n", "Label = ['spatial', 'start', 'dim', '[PAD]']\n", "Pred =\n", - "spatial spatial\n", - "[PAD] start\n", - "dim start\n", - "dims start\n", - "start start\n", - "[PAD] dim\n", - "dim dim\n", - "[PAD] [PAD]\n", "\n", "400\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Tuple Num Num Add BinOp Name Mult Num\n", "Label = ['strides', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "strides strides\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "401\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute transpose Name Name Tuple Num Num Num Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "402\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", - "403\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "403\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "404\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute conv3d transpose Attribute nn Name Name Name Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "405\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute max pool Attribute nn Name Name Name Name keyword Name keyword Name If Compare Name Str Assign Name x Call Attribute avg pool Attribute nn Name Name Name Name keyword Name keyword Name Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "406\n", "[CLS] If BoolOp And Compare Name Eq Str Compare Name Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute transpose Name Name Tuple Num Num Num Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "407\n", "[CLS] If Compare Call Name Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Num Num Num Num Subscript Name Index Num Assign Name new shape BinOp Tuple Num Add Name\n", "Label = ['new', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "new new\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "408\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute randint Attribute random Name Num\n", "Label = ['seed', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "seed seed\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "409\n", "[CLS] Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute range Name Subscript Name Index Num Num Lt Call Attribute fill Name Name Name\n", "Label = ['expand', 'dims', '[PAD]', '[PAD]']\n", "Pred =\n", - "expand expand\n", - "dims dims\n", - "dims [PAD]\n", - "[PAD] [PAD]\n", - "dims [PAD]\n", - "[PAD] [PAD]\n", "\n", "410\n", "[CLS] If Name Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name log prob Call Attribute ctc greedy decoder Name keyword Name keyword Name Assign Tuple Name decoded Name log prob Call Attribute ctc beam search decoder Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['decoded', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "decoded decoded\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "411\n", "[CLS] If Call Name Name Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Return Name\n", "Label = ['dense', 'from', 'sparse', '[PAD]']\n", "Pred =\n", - "sparse dense\n", - "ones dense\n", - "to dense\n", - "is dense\n", - "random dense\n", - "in dense\n", - "where dense\n", - "tensor from\n", - "[PAD] from\n", - "to from\n", - "mask from\n", - "like from\n", - "types from\n", - "uniform from\n", - "tensor sparse\n", - "[PAD] sparse\n", - "to sparse\n", - "mask sparse\n", - "like sparse\n", - "types sparse\n", - "uniform sparse\n", - "tensor [PAD]\n", - "[PAD] [PAD]\n", "\n", "412\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg ndim arg dtype arg sparse arg name NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "413\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str Return BoolOp And Call Name Name Str Attribute theano placeholder Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "414\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg dtype arg name NameConstant NameConstant Expr Str If Compare Name Is NameConstant Assign Name dtype Call Name Return Call Name Call Attribute zeros Name Name Name Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "415\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute random Name keyword Num keyword Name keyword Name keyword Name keyword Name\n", "Label = ['normal', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "normal normal\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "416\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg indices Expr Str Assign Name y Subscript Name Index Name If BoolOp And Call Name Name Str Call Name Name Str Assign Attribute keras shape Name BinOp Attribute keras shape Name Add Subscript Attribute keras shape Name Slice Num Return Name\n", "Label = ['reference', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x reference\n", - "y reference\n", - "a reference\n", - "w reference\n", - "keras reference\n", - "shape reference\n", - "train reference\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "417\n", "[CLS] BoolOp Or Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Compare Attribute dtype Name Eq Str\n", "Label = ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype dtype\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "418\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis arg keepdims NameConstant NameConstant Return Call Attribute var Name Name keyword Name keyword Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "419\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis UnaryOp USub Num Return Call Attribute argmin Name Name keyword Name keyword NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "420\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg y Assign Name z Call Attribute neq Name Name Name If Call Name Name Str Assign Attribute keras shape Name Attribute keras shape Name If Call Name Name Str Assign Attribute keras shape Name Attribute keras shape Name Return Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "421\n", "[CLS] Return Tuple Name Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Name Pow Num\n", "Label = ['inv', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cast inv\n", - "arange inv\n", - "pow inv\n", - "maximum inv\n", - "zeros inv\n", - "transpose inv\n", - "concatenate inv\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "422\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute bn Attribute nnet Name Name Name Name Name Name Name Name\n", "Label = ['batch', 'normalization', 'test', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "normalization normalization\n", - "normalization test\n", - "[PAD] test\n", - "test test\n", - "normalization [PAD]\n", - "[PAD] [PAD]\n", "\n", "423\n", "[CLS] BoolOp And Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Num Compare Attribute ndim Name Gt Num\n", "Label = ['ndim', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ndim ndim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "424\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute dnn Attribute cuda Attribute sandbox Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Call Attribute dimshuffle Name Name Str Name\n", "Label = ['dnn', 'batch', 'normalization', 'test']\n", "Pred =\n", - "dnn dnn\n", - "[PAD] batch\n", - "batch batch\n", - "[PAD] normalization\n", - "batch normalization\n", - "normalization normalization\n", - "[PAD] test\n", - "batch test\n", - "normalization test\n", - "test test\n", "\n", "425\n", "[CLS] If Compare Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute hstack Attribute basic Name Name keyword Str Raise Call Name Str Name\n", "Label = ['output', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "426\n", "[CLS] If Call Name Name Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Attribute uses learning phase Name Assign Attribute uses learning phase Name NameConstant\n", "Label = ['uses', 'learning', 'phase', '[PAD]']\n", "Pred =\n", - "uses uses\n", - "learning learning\n", - "learning phase\n", - "phase phase\n", - "learning [PAD]\n", - "phase [PAD]\n", - "[PAD] [PAD]\n", "\n", "427\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index UnaryOp USub Num Is NameConstant AugAssign Name output shape Add Tuple NameConstant AugAssign Name output shape Tuple BinOp Subscript Attribute keras shape Name Index UnaryOp Num Mult Name\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "428\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Subscript Name Index Num BinOp BinOp Subscript Name Index Num Add Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num\n", "Label = ['output', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "429\n", "[CLS] ExtSlice Slice Slice Subscript Name Index Num BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Slice\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "430\n", "[CLS] If Call Name Name Str Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Attribute keras shape Name Index Num BinOp Subscript Attribute keras shape Name Index Num Add Call Name Name Subscript Attribute keras shape Name Index Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "431\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Tuple Call Name NameConstant Call Name Name BinOp Subscript Name Index Num Add Name Call Name Name BinOp Subscript Name Index Num Name Call Name NameConstant\n", "Label = ['indices', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output indices\n", - "new indices\n", - "indices indices\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "432\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num\n", "Label = ['h', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w h\n", - "h h\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "433\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num IsNot NameConstant Assign Name w BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num Assign Name w NameConstant\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "434\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Subscript Attribute keras shape Name Index Num Add Subscript Subscript Name Index Num Index Num Subscript Subscript Name Index Num Index Num\n", "Label = ['w', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "w w\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "435\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Subscript Name Index Num Index Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "shape shape\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", - "shape [PAD]\n", - "[PAD] [PAD]\n", "\n", "436\n", "[CLS] GeneratorExp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name comprehension Name i Call Name Attribute ndim Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "437\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Attribute shape Call Attribute get value Name keyword NameConstant keyword NameConstant\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self x\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "438\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute function Name Name Name keyword Name keyword NameConstant keyword Str keyword Name keyword Name\n", "Label = ['function', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "function function\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "439\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg inputs Assert Call Name Name Tuple Name Name Return Call Attribute function Name Starred Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "440\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute switch Name Subscript Name Index Name Name Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "441\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name Call Attribute scan Name Name keyword List Name Name keyword BinOp List Name Add Name keyword Name keyword Name\n", "Label = ['results', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "ret results\n", - "results results\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "442\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Assign Name states Subscript Name Slice Num Assign Name outputs Name Assign Name states List\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "443\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute stack Name Starred ListComp Subscript Name Index Name comprehension Name states at step Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "444\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] ListComp Call Attribute squeeze Name Subscript Name Index UnaryOp USub Num comprehension Name state Name\n", "Label = ['states', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "state states\n", - "output states\n", - "constants states\n", - "states states\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "445\n", "[CLS] If Compare Name Lt Name Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Sub Name For Name Call Name Name Assign Name condition Call Name Name\n", "Label = ['ndim', 'diff', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape ndim\n", - "axes ndim\n", - "masks ndim\n", - "axis ndim\n", - "expr ndim\n", - "output ndim\n", - "broadcast ndim\n", - "[PAD] diff\n", - "shape diff\n", - "axes diff\n", - "masks diff\n", - "expr diff\n", - "list diff\n", - "tensors diff\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "446\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Mult Call Attribute cast Name Call Attribute gt Name Name Name Call Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "447\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute to one hot Attribute extra ops Name Name keyword Subscript Attribute shape Name Index UnaryOp USub Num\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "targets target\n", - "input target\n", - "last target\n", - "hot target\n", - "random target\n", - "result target\n", - "to target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "448\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg axis NameConstant Assign Name square sum Call Attribute sum Name Call Attribute square Name Name keyword Name keyword NameConstant Assign Name norm Call Attribute sqrt Name Call Attribute maximum Name Name Call Name Return BinOp Name Div Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "449\n", "[CLS] If Compare Name Lt Num Try Return Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Str ExceptHandler Name Return Call Attribute zeros like Name Name keyword Str\n", "Label = ['zeros', 'like', '[PAD]', '[PAD]']\n", "Pred =\n", - "ones zeros\n", - "zeros zeros\n", - "[PAD] like\n", - "like like\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "450\n", "[CLS] Index Tuple Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Name Index Num Name\n", "Label = ['arange', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "arange arange\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "451\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Str If Compare Name Str Assign Name th padding Str Raise Call Name Str Call Name Name\n", "Label = ['th', 'padding', '[PAD]', '[PAD]']\n", "Pred =\n", - "padding th\n", - "th th\n", - "padding padding\n", - "padding [PAD]\n", - "[PAD] [PAD]\n", - "padding [PAD]\n", - "[PAD] [PAD]\n", "\n", "452\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Try Return Call Name Name ExceptHandler Name Return NameConstant\n", "Label = ['value', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "value value\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "453\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name GeneratorExp Call Name Name comprehension Name v Name\n", "Label = ['filter', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "filter filter\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "454\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name GeneratorExp Call Name Name comprehension Name v Name\n", "Label = ['filter', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "filter filter\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "455\n", "[CLS] BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "456\n", "[CLS] BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "457\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name ExtSlice Slice Slice Slice BinOp BinOp BinOp Subscript Attribute shape Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num Slice Slice\n", "Label = ['conv', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "conv conv\n", - "out out\n", - "out [PAD]\n", - "[PAD] [PAD]\n", - "out [PAD]\n", - "[PAD] [PAD]\n", "\n", "458\n", "[CLS] BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "459\n", "[CLS] Slice BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", - "Pred =\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", + "Pred =\n", "\n", "460\n", "[CLS] ExtSlice Slice Slice Slice Slice Slice BinOp BinOp BinOp Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Add Subscript Name Index Num Sub Num FloorDiv Subscript Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "461\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dimshuffle Name Tuple Num Num Num Num Num\n", "Label = ['conv', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "x conv\n", - "pool conv\n", - "conv conv\n", - "[PAD] out\n", - "out out\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "462\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg strides arg padding arg data format arg dilation rate Num Str NameConstant Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "463\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Num\n", "Label = ['keras', 'shape', '[PAD]', '[PAD]']\n", "Pred =\n", - "keras keras\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "464\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg strides arg padding arg data format arg dilation rate Tuple Num Num Str NameConstant Tuple Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "465\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg kernel arg output shape arg strides arg padding arg data format arg dilation rate Tuple Num Num Str NameConstant Tuple Num Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "466\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute AbstractConv2d gradInputs Attribute abstract conv Attribute nnet Name keyword NameConstant keyword Name keyword Name keyword Name keyword UnaryOp Not Name keyword Name\n", "Label = ['op', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "op op\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "467\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Attribute shape Call Attribute eval Name\n", "Label = ['pointwise', 'kernel', 'shape', '[PAD]']\n", "Pred =\n", - "kernel pointwise\n", - "depthwise pointwise\n", - "recurrent pointwise\n", - "pointwise pointwise\n", - "[PAD] kernel\n", - "shape kernel\n", - "kernel kernel\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", "\n", "468\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] IfExp BoolOp And Compare Subscript Name Index Num Gt Num Compare BinOp Subscript Name Index Num Mod Num Eq Num BinOp Subscript Name Index Num Sub Num BinOp Subscript Name Index Num Num\n", "Label = ['w', 'pad', '[PAD]', '[PAD]']\n", "Pred =\n", - "h w\n", - "w w\n", - "pad pad\n", - "pad [PAD]\n", - "[PAD] [PAD]\n", - "pad [PAD]\n", - "[PAD] [PAD]\n", "\n", "469\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name keyword Name keyword Name keyword NameConstant keyword Name keyword Str\n", "Label = ['pool', '2d', '[PAD]', '[PAD]']\n", "Pred =\n", - "pool pool\n", - "[PAD] 2d\n", - "3d 2d\n", - "weight 2d\n", - "pool 2d\n", - "nodes 2d\n", - "function 2d\n", - "uniform 2d\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "470\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute pool 3d Name Name keyword Name keyword Name keyword NameConstant keyword Name keyword Str Raise Call Name Str Name\n", "Label = ['pool', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "pool pool\n", - "out out\n", - "out [PAD]\n", - "[PAD] [PAD]\n", - "out [PAD]\n", - "[PAD] [PAD]\n", "\n", "471\n", "[CLS] If Compare Name Eq Str Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute dimshuffle Name Tuple Num Num Num Num Num\n", "Label = ['pool', 'out', '[PAD]', '[PAD]']\n", "Pred =\n", - "x pool\n", - "pool pool\n", - "[PAD] out\n", - "out out\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "472\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name BinOp Tuple Num Subscript Name Index Num Subscript Name Slice Num\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "473\n", "[CLS] If Compare Name Eq Str If Compare Call Name Name Num AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name Tuple Num Num Num Subscript Name Index Num AugAssign Name x Call Name Name BinOp Tuple Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "474\n", "[CLS] If Compare Name Eq Str If Compare Call Name Name Num AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name Tuple Num Num Subscript Name Index Num AugAssign Name x Call Name Name BinOp Tuple Num Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "475\n", "[CLS] BinOp BinOp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Attribute shape Name Index Num Mult Num Add Num\n", "Label = ['arange', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "arange arange\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "476\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Assign Name skip idxs BinOp BinOp Call Attribute arange Name BinOp BinOp Subscript Attribute shape Name Index Num Sub Num FloorDiv Num Mult Num Add Num Assign Name non repeats Call Attribute neq Name Subscript Name Index Name Subscript Name Index BinOp Name Num Return Subscript Name Index Call Attribute nonzero Name\n", "Label = ['Y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "y Y\n", - "self Y\n", - "path Y\n", - "x Y\n", - "num Y\n", - "predictions Y\n", - "values Y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "477\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute exp Name BinOp Subscript Name Slice Name Sub Name\n", "Label = ['p', 'prev', '[PAD]', '[PAD]']\n", "Pred =\n", - "log p\n", - "out p\n", - "output p\n", - "y p\n", - "v p\n", - "total p\n", - "result p\n", - "[PAD] prev\n", - "log prev\n", - "t prev\n", - "sum prev\n", - "array prev\n", - "p prev\n", - "exp prev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "478\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute inc subtensor Name Subscript Name Index BinOp Name Add Num Subscript Name Index Name\n", "Label = ['p', 'prev', '[PAD]', '[PAD]']\n", "Pred =\n", - "p p\n", - "[PAD] prev\n", - "p prev\n", - "values prev\n", - "i prev\n", - "log prev\n", - "o prev\n", - "width prev\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "479\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Compare Name Lt Call Attribute dimshuffle Name Num Str BitAnd Subscript Compare Name Call Attribute dimshuffle Name Num Str ExtSlice Slice UnaryOp USub Num Slice UnaryOp Num\n", "Label = ['mask', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "kernel mask\n", - "strides mask\n", - "h mask\n", - "pool mask\n", - "line mask\n", - "metric mask\n", - "out mask\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "480\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Assign Name elems Subscript Name Slice Num\n", "Label = ['initializer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "fn initializer\n", - "initializer initializer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "481\n", - "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Lambda arguments arg x arg acc Call Name Name Name Name Name keyword Name\n", + "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Lambda arguments arg x arg acc Call Name Name Name Name Name keyword Name\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Label = ['foldl', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "foldr foldl\n", - "foldl foldl\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "482\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Name Name Subscript Name ExtSlice Index BinOp BinOp Name Mult Name Add Name Slice Slice\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "483\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg x arg data format arg file format arg scale arg kwargs NameConstant NameConstant NameConstant If Compare Name Is NameConstant Assign Name data format Call Attribute image data format Name Return Call Attribute save img Name Name Name keyword Name keyword Name keyword Name keyword Name\n", "Label = ['path', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self path\n", - "args path\n", - "cls path\n", - "model path\n", - "xs path\n", - "shape path\n", - "dtype path\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "484\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp BinOp BinOp BinOp Name Add Str Attribute name Name Str Call Name Attribute name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "485\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp BinOp BinOp BinOp Name Add Str Attribute name Name Str Call Name Attribute name Name\n", "Label = ['warn', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append warn\n", - "warn warn\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "486\n", "[CLS] Assign Attribute [MASK] [MASK] [MASK] [MASK] Name BoolOp Or Call Name Attribute call Name Str Call Name Name Str\n", "Label = ['compute', 'previous', 'mask', '[PAD]']\n", "Pred =\n", - "name compute\n", - "uses compute\n", - "dynamic compute\n", - "optimizer compute\n", - "clipvalue compute\n", - "axis compute\n", - "dtype compute\n", - "[PAD] previous\n", - "learning previous\n", - "phase previous\n", - "axes previous\n", - "types previous\n", - "train previous\n", - "shape previous\n", - "[PAD] mask\n", - "learning mask\n", - "phase mask\n", - "axes mask\n", - "types mask\n", - "train mask\n", - "shape mask\n", - "[PAD] [PAD]\n", "\n", "487\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name nodes by depth Name layers Name layers by depth Call Name Attribute inputs Name Attribute outputs Name\n", "Label = ['nodes', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs nodes\n", - "inbound nodes\n", - "node nodes\n", - "layer nodes\n", - "input nodes\n", - "layers nodes\n", - "original nodes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "488\n", "[CLS] If BoolOp And UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name UnaryOp Attribute stateful Name Return List\n", "Label = ['trainable', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "trainable trainable\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "489\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Call Name ListComp BoolOp And Call Name Name Str Attribute stateful Name comprehension Name layer Attribute layers Name Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "490\n", "[CLS] If Compare Name Is NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] ListComp NameConstant comprehension Name Call Name Call Name Name Assign Name masks Call Name Name\n", "Label = ['masks', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "masks masks\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "491\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Call Name Name Str Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['input', 'layers', '[PAD]', '[PAD]']\n", "Pred =\n", - "layers input\n", - "input input\n", - "[PAD] layers\n", - "layers layers\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "492\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Attribute name Name Add BinOp Str Mod Tuple Name Name\n", "Label = ['shape', 'key', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] key\n", - "key key\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "493\n", "[CLS] If Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str If Compare Str NotIn Name Assign Subscript Name Index Str Name\n", "Label = ['call', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "call call\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "494\n", "[CLS] BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant\n", "Label = ['activity', 'regularizer', '[PAD]', '[PAD]']\n", "Pred =\n", - "activity activity\n", - "[PAD] regularizer\n", - "regularizer regularizer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "495\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name y Name mask Call Name Name Name Name Assign Subscript Name Index Call Name Call Name Name Tuple Name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", "\n", "496\n", "[CLS] If BoolOp And Call Name Name Str Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Attribute keras shape Name Expr Call Attribute append Name Name Assign Name output shapes NameConstant\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "output shape\n", - "input shape\n", - "inputs shape\n", - "n shape\n", - "axis shape\n", - "outputs shape\n", - "d shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "497\n", "[CLS] BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute arguments Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "498\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg node data If Compare Name NotIn Name Assign Subscript Name Index Name List Name Expr Call Attribute append Subscript Name Index Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "499\n", "[CLS] Dict Str Str Str Str Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Name Name Call Attribute backend Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "500\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Call Name Name Eq Attribute name Name Return Attribute name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "501\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name depth Call Attribute items Name If Compare Name NotIn Name Assign Subscript Name Index Name List Expr Call Attribute append Subscript Name Index Name Name\n", "Label = ['node', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer node\n", - "chunk node\n", - "inbound node\n", - "v node\n", - "n node\n", - "l node\n", - "cls node\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "502\n", "[CLS] If Name For Name [MASK] [MASK] [MASK] [MASK] Attribute input tensors Name If Compare Name NotIn Name Raise Call Name BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute name Name Str Call Name Name For Name x Attribute output tensors Name Expr Call Attribute append Name Name Expr Call Attribute append Name Attribute name Name\n", "Label = ['x', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x x\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "503\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp Str Add Name Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Str\n", "Label = ['count', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound count\n", - "count count\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "504\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Name Str Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Str\n", "Label = ['count', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound count\n", - "count count\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "505\n", "[CLS] AugAssign Name [MASK] [MASK] [MASK] [MASK] Add BinOp BoolOp Or Name List List Attribute history Name\n", "Label = ['callbacks', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "callbacks callbacks\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "506\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Assign Subscript Name Index Name Call Attribute toarray Subscript Name Index Name\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "i i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "507\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "508\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Name Name keyword Name keyword Num\n", "Label = ['val', 'outs', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "[PAD] outs\n", - "outs outs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "509\n", "[CLS] If Name If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Subscript Attribute inbound nodes Name Index UnaryOp USub Num NotEq Num Raise Call Name Str Assign Attribute outputs Name List Subscript Attribute output tensors Subscript Attribute inbound nodes Name Index UnaryOp Num Index Num Assign Attribute inputs Name Call Attribute get source inputs Name Subscript Attribute outputs Name Index Num\n", "Label = ['output', 'tensors', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "[PAD] tensors\n", - "tensors tensors\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "510\n", "[CLS] If Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index UnaryOp USub Num Gt Num Return Call Attribute argmax Name keyword UnaryOp Num Return Call Attribute astype Compare Name Num Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "511\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Dict Str Str Attribute name Name Call Attribute deepcopy Name Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "512\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Str Assign Name build input shape Call Attribute get Name Str Assign Name layer configs Subscript Name Index Str Assign Name name Name build input shape NameConstant Assign Name layer configs Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "cls name\n", - "layer name\n", - "embeddings name\n", - "data name\n", - "model name\n", - "config name\n", - "metric name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "513\n", "[CLS] Assign Subscript Name Index Str ListComp Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str comprehension Name layer Name\n", "Label = ['encode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "encode encode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "514\n", "[CLS] Assign Subscript Name Index Str Call Attribute [MASK] [MASK] [MASK] [MASK] Call Attribute backend Name Str\n", "Label = ['encode', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "encode encode\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "515\n", "[CLS] If Call Name Name Str If Compare Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str Index UnaryOp USub Num Eq Str Assign Name name BinOp BinOp Call Name Attribute name Name Add Str Call Name Name Assign Name name Call Name Attribute name Name Assign Name name BinOp Str Call Name Name\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "516\n", "[CLS] Compare Subscript Call Attribute [MASK] [MASK] [MASK] [MASK] Attribute name Name Str Index UnaryOp USub Num Eq Str\n", "Label = ['split', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "split split\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "517\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp Call Name Attribute name Name Add Str Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "518\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] List For Name value Name Expr Call Attribute append Name Call Name Name Return Name\n", "Label = ['deserialized', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "data deserialized\n", - "axis deserialized\n", - "weights deserialized\n", - "model deserialized\n", - "val deserialized\n", - "metrics deserialized\n", - "p deserialized\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "519\n", "[CLS] If Compare Str In Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute decode Subscript Name Index Str Str Assign Name original backend NameConstant\n", "Label = ['original', 'backend', '[PAD]', '[PAD]']\n", "Pred =\n", - "original original\n", - "[PAD] backend\n", - "fn backend\n", - "names backend\n", - "weight backend\n", - "size backend\n", - "layer backend\n", - "delta backend\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "520\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Assign Name weights Attribute weights Name If Name Expr Call Attribute append Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "521\n", "[CLS] Call Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str Call Name Name Call Name Name\n", "Label = ['format', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "522\n", "[CLS] If Compare Call Name Name NotEq Call Name Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Name Str Attribute name Name Str Call Name Call Name Name Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "523\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg custom objects NameConstant Expr Str If Call Name Name Name Raise Call Name Str ImportFrom alias Return Call Name Name keyword Name\n", "Label = ['config', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "config config\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[PAD] [PAD]\n", "\n", "524\n", "[CLS] BinOp Str Mod Tuple Name Call Attribute [MASK] [MASK] [MASK] [MASK] Str ListComp Name comprehension Name x Name\n", "Label = ['join', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "join join\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "525\n", "[CLS] While Compare BinOp Str Mod Tuple Name Name In Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute extend Name ListComp Call Attribute decode Name Str comprehension Name n Subscript Attribute attrs Name Index BinOp Str Tuple Name Name AugAssign Name chunk id Add Num\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "526\n", "[CLS] comprehension Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute attrs Name Index BinOp Str Mod Tuple Name Name\n", "Label = ['n', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k n\n", - "m n\n", - "s n\n", - "x n\n", - "a n\n", - "chunk n\n", - "l n\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "527\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Tuple Name w Name val Call Name Call Name Name Name If BoolOp And Call Name Name Str Attribute name Name Assign Name name Call Name Attribute name Name Assign Name name BinOp Str Add Call Name Name Expr Call Attribute append Name Call Attribute encode Name Str\n", "Label = ['i', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name i\n", - "layer i\n", - "sw i\n", - "cell i\n", - "o i\n", - "val i\n", - "x i\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "528\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name In List Str Str Assign Name weights Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "529\n", "[CLS] Assert BoolOp And Compare Subscript Name Index Num Eq Attribute [MASK] [MASK] [MASK] [MASK] Name Compare Subscript Name Slice Num Tuple Subscript Attribute kernel size Name Index Num Num\n", "Label = ['filters', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "filters filters\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "530\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str If Compare Attribute data format Name Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "531\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "532\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['data', 'format', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] format\n", - "format format\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "533\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name List Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num Subscript Name Index Num keyword UnaryOp USub Num\n", "Label = ['concatenate', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate concatenate\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "534\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Str Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name Str Call Name Call Attribute prod Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "535\n", "[CLS] Assign Subscript Name Index Num Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Name\n", "Label = ['reshape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "convert reshape\n", - "reshape reshape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "536\n", "[CLS] If Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str Assign Subscript Name Index Num Call Attribute transpose Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "537\n", "[CLS] Assign Subscript Name Index Num Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "transpose transpose\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "538\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Num Tuple Num Num Num Num\n", "Label = ['transpose', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "transpose transpose\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "539\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg func arg n gates Expr Str Return Call Attribute hstack Name ListComp Call Name Name comprehension Name k Call Attribute hsplit Name Name Name\n", "Label = ['kernels', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self kernels\n", - "path kernels\n", - "k kernels\n", - "model kernels\n", - "metrics kernels\n", - "format kernels\n", - "loss kernels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "540\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Return Call Attribute reshape Attribute T Name Attribute shape Name keyword Name\n", "Label = ['kernel', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "k kernel\n", - "self kernel\n", - "x kernel\n", - "tensor kernel\n", - "y kernel\n", - "a kernel\n", - "predictions kernel\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "541\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Num Mult Subscript Name Index Num Num\n", "Label = ['tile', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "expand tile\n", - "maximum tile\n", - "float32 tile\n", - "unbroadcast tile\n", - "cast tile\n", - "filters tile\n", - "arange tile\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "542\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Subscript Name Index Num Lambda arguments arg k Attribute T Name Name\n", "Label = ['recurrent', 'kernels', '[PAD]', '[PAD]']\n", "Pred =\n", - "recurrent recurrent\n", - "[PAD] kernels\n", - "t kernels\n", - "mask kernels\n", - "output kernels\n", - "batch kernels\n", - "state kernels\n", - "out kernels\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "543\n", "[CLS] If Compare Name Eq Tuple Num BinOp Name Mult Name Assign Name [MASK] [MASK] [MASK] [MASK] Str If Compare Name Tuple BinOp Name Name Assign Name source Str Raise Call Name BinOp Str Add Call Name Name\n", "Label = ['source', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "source source\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "544\n", "[CLS] If Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name original backend Call Attribute decode Subscript Attribute attrs Name Index Str Str Assign Name original backend NameConstant\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "545\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Name Str Attribute name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "546\n", "[CLS] If Compare Str In Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name original keras version Call Attribute decode Subscript Attribute attrs Name Index Str Str Assign Name original keras version Str\n", "Label = ['attrs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "attrs attrs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "547\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute append Call Attribute setdefault Name Attribute name Name List Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inputs name\n", - "stateful name\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "548\n", "[CLS] ListComp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name comprehension Name weight name Name\n", "Label = ['asarray', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "asarray asarray\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "549\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name Str Str Call Name Call Name Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "550\n", "[CLS] BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Subscript Name Index Name Call Attribute format Str Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "551\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Tuple Subscript Name Index Name Subscript Name Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "552\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp Name Add ListComp BinOp Str Name comprehension Name n Name\n", "Label = ['callback', 'metrics', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight callback\n", - "batch callback\n", - "dim callback\n", - "callback callback\n", - "[PAD] metrics\n", - "names metrics\n", - "metrics metrics\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "553\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "554\n", "[CLS] If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute evaluate generator Name Name Name keyword Num Assign Name val outs Call Attribute evaluate Name Name Name keyword Name keyword Name keyword Num\n", "Label = ['val', 'outs', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "[PAD] outs\n", - "outs outs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "555\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name o Call Name Name Name Assign Subscript Name Index BinOp Str Add Name Name\n", "Label = ['l', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "l l\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "556\n", "[CLS] If Compare Name Is NameConstant If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name Raise Call Name Str\n", "Label = ['steps', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "steps steps\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "557\n", "[CLS] If Call Name Name Name Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Attribute shape Subscript Name Index Num Index Num If Call Name Name Name Assign Name batch size Subscript Attribute shape Subscript Call Name Call Attribute values Name Index Num Index Num Assign Name batch size Subscript Attribute shape Name Index Num\n", "Label = ['batch', 'size', '[PAD]', '[PAD]']\n", "Pred =\n", - "batch batch\n", - "size size\n", - "size [PAD]\n", - "[PAD] [PAD]\n", - "size [PAD]\n", - "[PAD] [PAD]\n", "\n", "558\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name ListComp Subscript Name Index Name comprehension Name out Name keyword Name\n", "Label = ['average', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "concatenate average\n", - "sum average\n", - "extend average\n", - "asarray average\n", - "zeros average\n", - "add average\n", - "normal average\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "559\n", "[CLS] Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute float64 Name Subscript Subscript Name Index UnaryOp USub Num Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "560\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute float64 Name Subscript Subscript Name Index UnaryOp USub Num Index Name\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "561\n", "[CLS] If Compare Name Gt Num If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name keyword Name Assign Name enqueuer Call Name Name keyword Name keyword Name Expr Call Attribute start Name keyword Name keyword Name Assign Name output generator Call Attribute get Name If Name Assign Name output generator Call Name Name Assign Name output generator Name\n", "Label = ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "enqueuer enqueuer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "562\n", "[CLS] If Name Assign Name [MASK] [MASK] [MASK] [MASK] Call Name Name keyword Name Assign Name enqueuer Call Name Name keyword Name keyword Name\n", "Label = ['enqueuer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "enqueuer enqueuer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "563\n", "[CLS] If Compare Name Eq Num Assign Name [MASK] [MASK] [MASK] [MASK] Call Name keyword Name\n", "Label = ['progbar', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "progbar progbar\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "564\n", "[CLS] If UnaryOp Not Name Assign Name [MASK] [MASK] [MASK] [MASK] Str Assign Name name BinOp BinOp Name Add Str Call Name Call Attribute get uid Name Name\n", "Label = ['prefix', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "prefix prefix\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "565\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] arg node index Expr Str Return BinOp BinOp Attribute name Name Add Str Call Name Name Name\n", "Label = ['layer', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "566\n", "[CLS] If Compare Name IsNot NameConstant With withitem Call Attribute [MASK] [MASK] [MASK] [MASK] Name Str Expr Call Attribute add loss Name Call Name Name\n", "Label = ['name', 'scope', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] scope\n", - "scope scope\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "567\n", "[CLS] BoolOp And Compare Name IsNot NameConstant Compare Name Gt Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['max', 'ndim', '[PAD]', '[PAD]']\n", "Pred =\n", - "delta max\n", - "inferreddimension max\n", - "min max\n", - "where max\n", - "dtype max\n", - "initial max\n", - "num max\n", - "[PAD] ndim\n", - "batch ndim\n", - "t ndim\n", - "ndim ndim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "568\n", "[CLS] Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute max ndim Name Str Call Name Call Attribute ndim Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "569\n", "[CLS] Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute min ndim Name Str Call Name Call Attribute ndim Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "570\n", "[CLS] BinOp BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute min ndim Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "571\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Name Str Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", - "572\n", + "572\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "[CLS] If BoolOp And Call Name Name Str Compare Attribute [MASK] [MASK] [MASK] [MASK] Name IsNot NameConstant With withitem Call Attribute name scope Name Str Assign Name regularization losses ListComp Call Attribute activity regularizer Name Name comprehension Name x Call Name Name Expr Call Attribute add loss Name Name keyword Call Name Name\n", "Label = ['activity', 'regularizer', '[PAD]', '[PAD]']\n", "Pred =\n", - "activity activity\n", - "[PAD] regularizer\n", - "regularizer regularizer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "573\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name If Compare Name IsNot NameConstant If Call Name Name Name If Call Name GeneratorExp Compare Name NameConstant comprehension Name m Name Raise Call Name BinOp BinOp BinOp Str Add Attribute name Name Str Call Name Name Raise Call Name BinOp BinOp BinOp Str Attribute name Name Str Call Name Name Return NameConstant\n", "Label = ['supports', 'masking', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound supports\n", - "built supports\n", - "trainable supports\n", - "layers supports\n", - "ndim supports\n", - "outputs supports\n", - "shape supports\n", - "[PAD] masking\n", - "nodes masking\n", - "tensor masking\n", - "spec masking\n", - "ndim masking\n", - "layers masking\n", - "keras masking\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "574\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Raise Call Name BinOp BinOp Str Add Attribute name Name Str\n", "Label = ['inbound', 'nodes', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound inbound\n", - "nodes nodes\n", - "nodes [PAD]\n", - "[PAD] [PAD]\n", - "nodes [PAD]\n", - "[PAD] [PAD]\n", "\n", "575\n", "[CLS] FunctionDef arguments arg [MASK] [MASK] [MASK] [MASK] Expr Str If Compare Call Name Attribute inbound nodes Name NotEq Num Raise Call Name BinOp BinOp BinOp Str Add Attribute name Name Str Str Return Call Attribute get node attribute at index Name Num Str Str Name\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "576\n", "[CLS] Call Name ListComp Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name node Attribute inbound nodes Name\n", "Label = ['input', 'shapes', '[PAD]', '[PAD]']\n", "Pred =\n", - "is input\n", - "inbound input\n", - "input input\n", - "[PAD] shapes\n", - "nodes shapes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "keras shapes\n", - "tensor shapes\n", - "shapes shapes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "577\n", "[CLS] Call Name ListComp Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name node Attribute inbound nodes Name\n", "Label = ['output', 'shapes', '[PAD]', '[PAD]']\n", "Pred =\n", - "is output\n", - "inbound output\n", - "input output\n", - "class output\n", - "in output\n", - "element output\n", - "add output\n", - "[PAD] shapes\n", - "nodes shapes\n", - "keras shapes\n", - "tensor shapes\n", - "shapes shapes\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "578\n", "[CLS] BinOp BinOp BinOp BinOp BinOp Str Add Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Call Name Name Str Call Name Call Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "579\n", "[CLS] If Call Name Name Str Assign Subscript Name Index Str Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['batch', 'input', 'shape', '[PAD]']\n", "Pred =\n", - "dtype batch\n", - "function batch\n", - "keras batch\n", - "clipvalue batch\n", - "clipnorm batch\n", - "optimizer batch\n", - "predict batch\n", - "[PAD] input\n", - "shape input\n", - "function input\n", - "size input\n", - "spec input\n", - "kernel input\n", - "value input\n", - "[PAD] shape\n", - "shape shape\n", - "[PAD] [PAD]\n", "\n", "580\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg dtype arg shape arg ndim arg max ndim arg min ndim arg axes NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x self\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "581\n", "[CLS] IfExp Attribute [MASK] [MASK] [MASK] [MASK] Name BinOp Str Add Call Name Attribute dtype Name Str\n", "Label = ['dtype', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dtype dtype\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "582\n", "[CLS] If Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name outbound layer Attribute name Attribute outbound layer Name Assign Name outbound layer NameConstant\n", "Label = ['outbound', 'layer', '[PAD]', '[PAD]']\n", "Pred =\n", - "stateful outbound\n", - "arguments outbound\n", - "inputs outbound\n", - "reset outbound\n", - "name outbound\n", - "args outbound\n", - "layer outbound\n", - "[PAD] layer\n", - "layer layer\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "583\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg optimizer arg loss arg metrics arg loss weights arg sample weight mode arg weighted metrics arg target tensors arg kwargs NameConstant NameConstant NameConstant NameConstant NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "584\n", "[CLS] BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "585\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "586\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "587\n", "[CLS] Raise Call Name BinOp BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Name\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "588\n", "[CLS] Call Name BinOp BinOp BinOp Str Add Name Str Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name\n", "Label = ['output', 'names', '[PAD]', '[PAD]']\n", "Pred =\n", - "output output\n", - "names names\n", - "names [PAD]\n", - "[PAD] [PAD]\n", - "names [PAD]\n", - "[PAD] [PAD]\n", "\n", "589\n", "[CLS] Call Name BinOp BinOp Str Add Call Name Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str\n", "Label = ['outputs', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "outputs outputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "590\n", "[CLS] If Compare Name IsNot NameConstant Assign Name [MASK] [MASK] [MASK] [MASK] Subscript Name Index Name Assign Name target NameConstant\n", "Label = ['target', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "target target\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "591\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name keyword Call Name Name keyword BinOp Name Add Str keyword Call Attribute is sparse Name Subscript Attribute outputs Name Index Name keyword Call Attribute dtype Name Subscript Attribute outputs Name Index Name\n", "Label = ['placeholder', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "add placeholder\n", - "placeholder placeholder\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "592\n", "[CLS] If Compare Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name Eq Str Assign Name weight Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str Expr Call Attribute append Name Str Assign Name weight Call Attribute placeholder Name keyword Num keyword BinOp Name Str Expr Call Attribute append Name NameConstant\n", "Label = ['get', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "inbound get\n", - "shape get\n", - "backend get\n", - "weight get\n", - "outputs get\n", - "inputs get\n", - "assign get\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "593\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str\n", "Label = ['weight', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "weight weight\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "594\n", "[CLS] If Compare Name Eq Str Expr Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str Expr Call Attribute append Name Str Expr Call Attribute append Name Call Attribute placeholder Name keyword Num keyword BinOp Name Str Expr Call Attribute append Name NameConstant\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "595\n", "[CLS] Call Attribute [MASK] [MASK] [MASK] [MASK] Name Call Attribute placeholder Name keyword Num keyword BinOp Name Add Str\n", "Label = ['append', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "append append\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "596\n", "[CLS] BoolOp Or Compare Subscript Name Index UnaryOp USub Num Eq Num Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Name Attribute binary crossentropy Name\n", "Label = ['loss', 'functions', '[PAD]', '[PAD]']\n", "Pred =\n", - "values loss\n", - "shape loss\n", - "fn loss\n", - "mean loss\n", - "dynamic loss\n", - "i loss\n", - "version loss\n", - "[PAD] functions\n", - "fn functions\n", - "i functions\n", - "t functions\n", - "dim functions\n", - "data functions\n", - "initializer functions\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "597\n", "[CLS] If Compare Name IsNot NameConstant AugAssign Name [MASK] [MASK] [MASK] [MASK] Add Call Name Name keyword NameConstant\n", "Label = ['all', 'inputs', '[PAD]', '[PAD]']\n", "Pred =\n", - "new all\n", - "x all\n", - "additional all\n", - "output all\n", - "progbar all\n", - "result all\n", - "value all\n", - "[PAD] inputs\n", - "shape inputs\n", - "value inputs\n", - "dim inputs\n", - "size inputs\n", - "output inputs\n", - "out inputs\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "598\n", "[CLS] If Call Name GeneratorExp Call Attribute [MASK] [MASK] [MASK] [MASK] Name Name comprehension Name v Name If UnaryOp Not Call Name GeneratorExp Call Attribute is tensor Name Name comprehension Name v Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Name Str Call Name Name\n", "Label = ['is', 'tensor', '[PAD]', '[PAD]']\n", "Pred =\n", - "is is\n", - "[PAD] tensor\n", - "tensor tensor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "599\n", "[CLS] If UnaryOp Not Attribute [MASK] [MASK] [MASK] [MASK] Name Assign Name feed input names Attribute feed input names Name Assign Name feed input shapes NameConstant Assign Name feed input names Attribute feed input names Name Assign Name feed input shapes Attribute feed input shapes Name\n", "Label = ['is', 'graph', 'network', '[PAD]']\n", "Pred =\n", - "trainable is\n", - "name is\n", - "input is\n", - "inputs is\n", - "built is\n", - "losses is\n", - "layers is\n", - "[PAD] graph\n", - "updates graph\n", - "names graph\n", - "scope graph\n", - "placeholder graph\n", - "input graph\n", - "config graph\n", - "[PAD] network\n", - "updates network\n", - "names network\n", - "scope network\n", - "placeholder network\n", - "input network\n", - "config network\n", - "[PAD] [PAD]\n", "\n", "600\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg x arg y arg batch size arg epochs arg verbose arg callbacks arg validation split arg validation data arg shuffle arg class weight arg sample weight arg initial epoch arg steps per epoch arg validation steps arg kwargs NameConstant NameConstant NameConstant Num Num NameConstant Num NameConstant NameConstant NameConstant NameConstant Num NameConstant NameConstant\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "601\n", "[CLS] If Compare Call Name Name Eq Num Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name val y Name val sample weight Name Raise Call Name BinOp Str Mod Call Name Name\n", "Label = ['val', 'x', '[PAD]', '[PAD]']\n", "Pred =\n", - "val val\n", - "x x\n", - "x [PAD]\n", - "[PAD] [PAD]\n", - "x [PAD]\n", - "[PAD] [PAD]\n", "\n", "602\n", "[CLS] Assign Name [MASK] [MASK] [MASK] [MASK] BinOp BinOp BinOp Name Add Name Name List Num\n", "Label = ['val', 'ins', '[PAD]', '[PAD]']\n", "Pred =\n", - "ins val\n", - "val val\n", - "[PAD] ins\n", - "ins ins\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "603\n", "[CLS] Assign Tuple Name [MASK] [MASK] [MASK] [MASK] Name val y Tuple Call Name Name Num Name Call Name Name Name\n", "Label = ['y', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "val y\n", - "x y\n", - "y y\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "604\n", "[CLS] If BoolOp And Compare Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Index Num Gt Name Compare BinOp Subscript Attribute shape Subscript Name Index Num Index Num Mod Name NotEq Num Raise Call Name BinOp BinOp BinOp BinOp Str Add Call Name Subscript Attribute shape Subscript Name Index Num Index Num Str Call Name Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "605\n", "[CLS] Call Name BinOp BinOp BinOp BinOp Str Add Call Name Subscript Attribute [MASK] [MASK] [MASK] [MASK] Subscript Name Index Num Index Num Str Call Name Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "606\n", "[CLS] arguments arg [MASK] [MASK] [MASK] [MASK] arg generator arg steps arg max queue size arg workers arg use multiprocessing arg verbose NameConstant Num Num NameConstant Num\n", "Label = ['self', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "model self\n", - "self self\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "607\n", "[CLS] Try Assign Name [MASK] [MASK] [MASK] [MASK] ListComp IfExp Compare Attribute name Attribute class Subscript Name Index Name Eq Str Attribute values Subscript Name Index Name Subscript Name Index Name comprehension Name x Name ExceptHandler Name Raise Call Name BinOp BinOp BinOp Str Add Subscript Attribute args Name Index Num Str Call Name Name\n", "Label = ['data', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "data data\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "608\n", "[CLS] ListComp IfExp Compare Attribute [MASK] [MASK] [MASK] [MASK] Attribute class Name Eq Str Attribute values Name Name comprehension Name x Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "609\n", "[CLS] BoolOp And Compare Subscript Name Index Name IsNot NameConstant UnaryOp Not Call Attribute [MASK] [MASK] [MASK] [MASK] Name Subscript Name Index Name\n", "Label = ['is', 'tensor', '[PAD]', '[PAD]']\n", "Pred =\n", - "is is\n", - "[PAD] tensor\n", - "sparse tensor\n", - "tensor tensor\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "610\n", "[CLS] For Tuple Name [MASK] [MASK] [MASK] [MASK] Name ref dim Call Name Name Name If BoolOp And Compare Name NotEq Name Name Raise Call Name BinOp BinOp BinOp BinOp BinOp BinOp BinOp Str Add Name Str Subscript Name Index Name Str Call Name Name Str Call Name Name\n", "Label = ['dim', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "dim dim\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "611\n", "[CLS] For Name [MASK] [MASK] [MASK] [MASK] Name Expr Call Attribute append Name Call Attribute get Name Name\n", "Label = ['name', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "x name\n", - "name name\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "612\n", "[CLS] BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name y Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "613\n", "[CLS] Call Name BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name w Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "614\n", "[CLS] BinOp Str Add Call Name ListComp Attribute [MASK] [MASK] [MASK] [MASK] Name comprehension Name w Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "615\n", "[CLS] If Compare Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Gt Call Name Attribute shape Name Raise Call Name BinOp BinOp BinOp Str Add Call Name Attribute shape Name Str Call Name Call Name Attribute shape Name\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "616\n", "[CLS] BinOp BinOp BinOp BinOp Str Add Call Name Attribute [MASK] [MASK] [MASK] [MASK] Name Str Call Name Attribute shape Name Str\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n", "617\n", "[CLS] Tuple Subscript Attribute [MASK] [MASK] [MASK] [MASK] Name Index Num Subscript Attribute shape Name Index Num\n", "Label = ['shape', '[PAD]', '[PAD]', '[PAD]']\n", "Pred =\n", - "shape shape\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", - "[PAD] [PAD]\n", "\n" ] } ], "source": [ - "n=7; nb_snips = 618\n", + "n=3; nb_snips = 618\n", "pred_str = []; score = [0]*4; score_full_name=0; score_no_pad = 0; rank =[0]*4; skipped = 0\n", "for idx in range(nb_snips):\n", " print(idx)\n", @@ -14447,7 +9569,7 @@ " label_len += 1\n", " for i in range(n):\n", " p = vocab_label_df.loc[r[msk_idx+j][i]][0]\n", - " print(p,l)\n", + " #print(p,l)\n", " if p == l:\n", " score[j] += 1\n", " rank[j] += (i+1)\n", @@ -14465,19 +9587,16 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 159, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[0.49160671462829736,\n", - " 0.6333676622039135,\n", - " 0.8661971830985915,\n", - " 0.9124629080118695]" + "[0.701254275940707, 0.754601226993865, 0.8991228070175439, 0.9138187221396731]" ] }, - "execution_count": 37, + "execution_count": 159, "metadata": {}, "output_type": "execute_result" } @@ -14488,16 +9607,16 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 160, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[0.8682926829268293, 0.9495934959349593, 0.991869918699187, 1.0]" + "[0.832520325203252, 0.9203252032520325, 0.9869918699186991, 0.9983739837398374]" ] }, - "execution_count": 38, + "execution_count": 160, "metadata": {}, "output_type": "execute_result" } @@ -14508,16 +9627,16 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 161, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.8688346883468834" + "0.8237127371273713" ] }, - "execution_count": 39, + "execution_count": 161, "metadata": {}, "output_type": "execute_result" } @@ -14528,16 +9647,16 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 162, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.848780487804878" + "0.791869918699187" ] }, - "execution_count": 40, + "execution_count": 162, "metadata": {}, "output_type": "execute_result" }