forked from uw-cryo/skysat_stereo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathba_skysat.py
executable file
·266 lines (255 loc) · 13.7 KB
/
ba_skysat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#! /usr/bin/env python
import os
import sys
import glob
import subprocess
import argparse
from distutils.spawn import find_executable
from pygeotools.lib import iolib,malib
import geopandas as gpd
import numpy as np
from datetime import datetime
import pandas as pd
# Usage: ba_skysat.py -mode full_video,full_triplet,quick_transform_pc_align,general_ba -t pinhole,rpc -img image_folder -cam optional (rpc might not require it) -ba_prefix out_ba -overlap-list -init_transform -gcp gcp_folder or file
# TODO:
# Keep other passed arguments flexible for extending as general purpose, like gcp_list. Others which go into ba_opt can be checked with None construct when variables are initailized in main command
# maybe put all arguments and check if os.path.abspath can be done during runtime from the get_ba_opts function
def run_cmd(bin, args, **kw):
# Note, need to add full executable
# from dshean/vmap.py
binpath = find_executable(bin)
if binpath is None:
msg = ("Unable to find executable %s\n"
"Install ASP and ensure it is in your PATH env variable\n"
"https://ti.arc.nasa.gov/tech/asr/intelligent-robotics/ngt/stereo/" % bin)
sys.exit(msg)
# binpath = os.path.join('/opt/StereoPipeline/bin/',bin)
call = [binpath, ]
print(call)
call.extend(args)
print(call)
# print(type(call))
# print(' '.join(call))
try:
code = subprocess.call(call, shell=False)
except OSError as e:
raise Exception('%s: %s' % (binpath, e))
if code != 0:
raise Exception('ASP step ' + kw['msg'] + ' failed')
def get_ba_opts(ba_prefix, camera_weight=0, overlap_list=None, overlap_limit=None, initial_transform=None, input_adjustments=None, flavor='general_ba', session='nadirpinhole', gcp_transform=False,num_iterations=2000,lon_lat_limit=None,elevation_limit=None):
ba_opt = []
ba_opt.extend(['-o', ba_prefix])
ba_opt.extend(['--min-matches', '4'])
ba_opt.extend(['--disable-tri-ip-filter'])
ba_opt.extend(['--force-reuse-match-files'])
ba_opt.extend(['--ip-per-tile', '4000'])
ba_opt.extend(['--ip-inlier-factor', '0.2'])
ba_opt.extend(['--ip-num-ransac-iterations', '1000'])
ba_opt.extend(['--skip-rough-homography'])
ba_opt.extend(['--min-triangulation-angle', '0.0001'])
ba_opt.extend(['--save-cnet-as-csv'])
ba_opt.extend(['--individually-normalize'])
ba_opt.extend(['--camera-weight', str(camera_weight)])
ba_opt.extend(['-t', session])
ba_opt.extend(['--remove-outliers-params', '75 3 5 6'])
# How about adding num random passes here ? Think about it, it might help if we are getting stuck in local minima :)
if session == 'nadirpinhole':
ba_opt.extend(['--inline-adjustments'])
if flavor == '2round_gcp_1':
ba_opt.extend(['--num-iterations', str(num_iterations)])
ba_opt.extend(['--num-passes', '3'])
elif flavor == '2round_gcp_2':
ba_opt.extend(['--num-iterations', '0'])
ba_opt.extend(['--num-passes', '1'])
# gcp_transform=True
if gcp_transform:
ba_opt.extend(['--transform-cameras-using-gcp'])
# maybe add gcp arg here, can be added when function is called as well
if initial_transform:
ba_opt.extend(['--initial-transform', initial_transform])
if input_adjustments:
ba_opt.extend(['--input-adjustments', input_adjustments])
if overlap_limit:
ba_opt.extend(['--overlap-limit',str(overlap_limit)])
if overlap_list:
ba_opt.extend(['--overlap-list', overlap_list])
if lon_lat_limit:
ba_opt.extend(['--lon-lat-limit',str(lon_lat_limit[0]),str(lon_lat_limit[1]),str(lon_lat_limit[2]),str(lon_lat_limit[3])])
if elevation_limit:
ba_opt.extend(['--elevation-limit',str(elevation_limit[0]),str(elevation_limit[1])])
return ba_opt
def getparser():
parser = argparse.ArgumentParser(
description='Script for performing bundle adjustment, with several custom flavors built-in based on recent use-cases')
ba_choices = ['full_video', 'full_triplet',
'transform_pc_align', 'general_ba']
parser.add_argument('-mode', default='full_video', choices=ba_choices,
help='bundle adjust workflow to implement (default: %(default)s)')
session_choices = ['nadirpinhole', 'rpc']
parser.add_argument('-t', default='nadirpinhole', choices=session_choices,
help='choose between pinhole and rpc mode (default: %(default)s)')
parser.add_argument('-ba_prefix', default=None,
help='output prefix for ba output', required=True)
parser.add_argument('-img', default=None,
help='directory containing images', required=True)
parser.add_argument(
'-cam', default=None, help='directory containing cameras, if using pinhole. RPC model expects information in GDAL header')
# parser.add_argument('-gcp',default=None,help='list of gcps',nargs='+',required=False)
parser.add_argument('-gcp', default=None,
help='folder containing list of gcps', required=False)
parser.add_argument('-initial_transform', default=None,
help='.txt file produced by pc_align, which can be used to translate cameras to that position')
parser.add_argument('-input_adjustments', default=None,
help='ba_prefix from previous ba_run if using RPC or not using inline adjustments with pinhole')
parser.add_argument('-overlap_list', default=None,
help='list containing pairs for which feature matching will be restricted to')
parser.add_argument('-overlap_limit', default=20,
help='default overlap limit for video sequence over which feature would be matched (default: %(default)s)')
parser.add_argument('-frame_index',default=None,help='subsampled frame_index.csv produced by preprocessing script (default: %(default)s)')
parser.add_argument('-num_iter',default=2000,help='defualt number of iterations (default: %(default)s)')
parser.add_argument('-dem',default=None,help='DEM to filter match points after optimization')
parser.add_argument('-bound',default=None,help='Bound shapefile to limit extent of match points after optimization')
return parser
def main():
parser = getparser()
args = parser.parse_args()
img = args.img
img_list = sorted(glob.glob(os.path.join(img, '*.tif')))
if len(img_list) < 2:
img_list = sorted(glob.glob(os.path.join(img, '*.tiff')))
#img_list = [os.path.basename(x) for x in img_list]
if os.path.islink(img_list[0]):
img_list = [os.readlink(x) for x in img_list]
if args.cam:
cam = os.path.abspath(args.cam)
if 'run' in os.path.basename(cam):
cam_list = sorted(glob.glob(cam+'-*.tsai'))
else:
cam_list = sorted(glob.glob(os.path.join(cam, '*.tsai')))
cam_list = cam_list[:len(img_list)]
session = args.t
if args.ba_prefix:
ba_prefix = args.ba_prefix
if args.initial_transform:
initial_transform = os.path.abspath(initial_transform)
if args.input_adjustments:
input_adjustments = os.path.abspath(input_adjustments)
if args.overlap_list:
overlap_list = os.path.abspath(args.overlap_list)
if args.gcp:
gcp_list = sorted(glob.glob(os.path.join(args.gcp, '*.gcp')))
ba_prefix = os.path.abspath(args.ba_prefix)
mode = args.mode
if args.bound:
bound = gpd.read_file(args.bound)
geo_crs = {'init':'epsg:4326'}
if bound.crs is not geo_crs:
bound = bound.to_crs(geo_crs)
lon_min,lat_min,lon_max,lat_max = bound.total_bounds
if args.dem:
dem = iolib.fn_getma(args.dem)
dem_stats = malib.get_stats_dict(dem)
min_elev,max_elev = [dem_stats['min']-500,dem_stats['max']+500]
if mode == 'full_video':
frame_index = args.frame_index
df = pd.read_csv(frame_index)
gcp = os.path.abspath(args.gcp)
df['dt'] = [datetime.strptime(date.split('+00:00')[0],'%Y-%m-%dT%H:%M:%S.%f') for date in df.datetime.values]
delta = (df.dt.values[1]-df.dt.values[0])/np.timedelta64(1, 's')
# i hardocde overlap limit to have 40 seconds coverage
overlap_limit = np.int(np.ceil(40/delta))
print(f"Calculated overlap limit as {overlap_limit}")
img_list = [glob.glob(os.path.join(img,f'*{x}*.tiff'))[0] for x in df.name.values]
cam_list = [glob.glob(os.path.join(cam,f'*{x}*.tsai'))[0] for x in df.name.values]
gcp_list = [glob.glob(os.path.join(gcp,f'*{x}*.gcp'))[0] for x in df.name.values]
#also append the clean gcp here
print(os.path.join(gcp,'*clean*_gcp.gcp'))
gcp_list.append(glob.glob(os.path.join(gcp,'*clean*_gcp.gcp'))[0])
round1_opts = get_ba_opts(
ba_prefix, overlap_limit=overlap_limit, flavor='2round_gcp_1', session=session,num_iterations=args.num_iter)
print("Running round 1 bundle adjustment for input video sequence")
if session == 'nadirpinhole':
ba_args = img_list+cam_list
else:
ba_args = img_list
# Check if this command executed till last
print('Running bundle adjustment round1')
#run_cmd('bundle_adjust', round1_opts+ba_args)
if session == 'nadirpinhole':
identifier = os.path.basename(cam_list[0]).split(df.name.values[0])[0]
print(ba_prefix+identifier+f'-{df.name.values[0]}*.tsai')
cam_list = [glob.glob(ba_prefix+identifier+f'-{img}*.tsai')[0] for img in df.name.values]
print(len(cam_list))
ba_args = img_list+cam_list+gcp_list
round2_opts = get_ba_opts(
ba_prefix, overlap_limit = overlap_limit, flavor='2round_gcp_2', session=session, gcp_transform=True)
else:
# round 1 is adjust file
input_adjustments = ba_prefix
round2_opts = get_ba_opts(
ba_prefix, overlap_limit = overlap_limit, input_adjustments=ba_prefix, flavor='2round_gcp_2', session=session)
ba_args = img_list+gcp_list
print("running round 2 bundle adjustment for input video sequence")
run_cmd('bundle_adjust', round2_opts+ba_args)
elif mode == 'full_triplet':
if args.overlap_list is None:
print(
"Attempted bundle adjust will be expensive, will try to find matches in each and every pair")
round1_opts = get_ba_opts(
ba_prefix, flavor='2round_gcp_1', session=session,num_iterations=args.num_iter)
# enter round2_opts here only ?
else:
round1_opts = get_ba_opts(
ba_prefix, overlap_list=overlap_list, flavor='2round_gcp_1', session=session,num_iterations=args.num_iter)
if session == 'nadirpinhole':
ba_args = img_list+ cam_list
else:
ba_args = img_list
print("Running round 1 bundle adjustment for given triplet stereo combination")
run_cmd('bundle_adjust', round1_opts+ba_args)
if session == 'nadirpinhole':
identifier = os.path.basename(cam_list[0]).split(os.path.splitext(os.path.basename(img_list[0]))[0],2)[0]
print(ba_prefix+f'-{identifier}*.tsai')
cam_list = glob.glob(os.path.join(ba_prefix+ f'-{identifier}*.tsai'))
ba_args = img_list+cam_list+gcp_list
round2_opts = get_ba_opts(ba_prefix, overlap_list=overlap_list,
flavor='2round_gcp_2', session=session, gcp_transform=True)
else:
# round 1 is adjust file
input_adjustments = ba_prefix
round2_opts = get_ba_opts(
ba_prefix, overlap_limit, input_adjustments=ba_prefix, flavor='2round_gcp_2', session=session,elevation_limit=[min_elev,max_elev],lon_lat_limit=[lon_min,lat_min,lon_max,lat_max])
ba_args = img_list+gcp_list
print("running round 2 bundle adjustment for given triplet stereo combination")
run_cmd('bundle_adjust', round2_opts+ba_args)
# input is just a transform from pc_align or something similar with no optimization
if mode == 'transform_pc_align':
if session == 'nadirpinhole':
if args.gcp:
ba_args = img_list+cam_list+gcp_list
ba_opt = get_ba_opts(ba_prefix,overlap_list,flavor='2round_gcp_2',session=session,gcp_transform=True)
else:
ba_args = img_list+cam_list+gcp_list
ba_opt = get_ba_opts(ba_prefix,overlap_list,flavor='2round_gcp_2',session=session,gcp_transform=True)
else:
if args.gcp:
ba_args = img_list+gcp_list
ba_opt = get_ba_opts(ba_prefix,overlap_list,initial_transform=initial_transform,flavor='2round_gcp_2',session=session,gcp_transform=True)
else:
ba_args = img_list+gcp_list
ba_opt = get_ba_opts(ba_prefix,overlap_list,initial_transform=initial_transform,flavor='2round_gcp_2',session=session,gcp_transform=True)
print("Simply transforming the cameras without optimization")
run_cmd('bundle_adjust',ba_opt+ba_args,'Running bundle adjust')
# general usecase bundle adjust
if mode == 'general_ba':
round1_opts = get_ba_opts(ba_prefix,overlap_limit=args.overlap_limit,flavor='2round_gcp_1',session=session)
print ("Running general purpose bundle adjustment")
if session == 'nadirpinhole':
ba_args = img_list+cam_list
else:
ba_args = img_list
# Check if this command executed till last
run_cmd('bundle_adjust',round1_opts+ba_args,'Running bundle adjust')
print("Script is complete !")
if __name__=="__main__":
main()