-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathGame_Board.py
277 lines (227 loc) · 8.81 KB
/
Game_Board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import print_function
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import logging
import random
from collections import deque
import itertools
import logging
from six import StringIO
import sys
import random
from collections import deque
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = itertools.tee(iterable)
next(b, None)
return zip(a, b)
class IllegalMove(Exception):
pass
class Game2048Env(gym.Env):
metadata = {'render.modes': ['human', 'ansi']}
def __init__(self):
# Definitions for game. Board-matrix must be square.
self.size = 4
self.w = self.size
self.h = self.size
squares = self.size * self.size
# Maintain own idea of game score, separate from rewards.
self.score = 0
# Members for gym implementation:
##self.action_space = spaces.Discrete(4)
# Suppose that the maximum tile is as if you have powers of 2 across the board-matrix.
##self.observation_space = spaces.Box(0, 2**squares, (self.w * self.h, ), dtype=np.int)
# Guess that the maximum reward is also 2**squares though you'll probably never get that.
##self.reward_range = (0., float(2**squares))
# Initialise the random seed of the gym environment.
self.seed()
# Reset the board-matrix, ready for a new game.
self.reset()
def seed(self, seed=None):
"""Set the random seed for the gym environment."""
self.np_random, seed = seeding.np_random(seed)
return [seed]
# Implementation of gym interface:
def step(self, action):
"""Perform one step of the game. This involves moving and adding a new tile."""
logging.debug("Action {}".format(action))
score = 0
done = None
try:
score = float(self.move(action))
self.score += score
assert score <= 2**(self.w*self.h)
self.add_tile()
done = self.isend()
reward = float(score)
except IllegalMove as e:
logging.debug("Illegal move")
done = False
reward = -5. # No reward for an illegal move. We could even set a negative value to penalize the agent.
#print("Am I done? {}".format(done))
observation = self.Matrix
# info (dictionary):
# - can be used to store further information to the caller after executing each step/movement in the game
# - it is useful for testing and for monitoring the agent (via callback functions) while it is training
info = {"max_tile": self.highest()}
# Return observation (board-matrix state), reward, done and info dictionary
return observation, reward, done, info
def reset(self):
"""Reset the game board-matrix and add 2 tiles."""
self.Matrix = np.zeros((self.h, self.w), np.int)
self.score = 0
logging.debug("Adding tiles")
self.add_tile()
self.add_tile()
return self.Matrix
def render(self, mode='human'):
"""Rendering for standard output of score, highest tile reached and
board-matrix of game."""
outfile = StringIO() if mode == 'ansi' else sys.stdout
s = 'Score: {}\n'.format(self.score)
s += 'Highest: {}\n'.format(self.highest())
npa = np.array(self.Matrix)
grid = npa.reshape((self.size, self.size))
s += "{}\n".format(grid)
outfile.write(s)
return outfile
# Implementation of game logic for 2048:
def add_tile(self):
"""Add a tile with value 2 or 4 with different probabilities."""
val = 0
if self.np_random.random_sample() > 0.8:
val = 4
else:
val = 2
empties = self.empties()
assert empties
empty_idx = self.np_random.choice(len(empties))
empty = empties[empty_idx]
logging.debug("Adding %s at %s", val, (empty[0], empty[1]))
self.set(empty[0], empty[1], val)
def get(self, x, y):
"""Get the value of one square."""
return self.Matrix[x, y]
def set(self, x, y, val):
"""Set the value of one square."""
self.Matrix[x, y] = val
def empties(self):
"""Return a list of tuples of the location of empty squares."""
empties = list()
for y in range(self.h):
for x in range(self.w):
if self.get(x, y) == 0:
empties.append((x, y))
return empties
def highest(self):
"""Report the highest tile on the board-matrix."""
highest = 0
for y in range(self.h):
for x in range(self.w):
highest = max(highest, self.get(x, y))
return highest
def move(self, direction, trial=False):
"""Perform one move of the game. Shift things to one side then,
combine. directions 0, 1, 2, 3 are up, right, down, left.
Returns the score that [would have] got."""
if not trial:
if direction == 0:
logging.debug("Up")
elif direction == 1:
logging.debug("Right")
elif direction == 2:
logging.debug("Down")
elif direction == 3:
logging.debug("Left")
changed = False
move_score = 0
dir_div_two = int(direction / 2)
dir_mod_two = int(direction % 2)
shift_direction = dir_mod_two ^ dir_div_two # 0 for towards up left, 1 for towards bottom right
# Construct a range for extracting row/column into a list
rx = list(range(self.w))
ry = list(range(self.h))
if dir_mod_two == 0:
# Up or down, split into columns
for y in range(self.h):
old = [self.get(x, y) for x in rx]
(new, ms) = self.shift(old, shift_direction)
move_score += ms
if old != new:
changed = True
if not trial:
for x in rx:
self.set(x, y, new[x])
else:
# Left or right, split into rows
for x in range(self.w):
old = [self.get(x, y) for y in ry]
(new, ms) = self.shift(old, shift_direction)
move_score += ms
if old != new:
changed = True
if not trial:
for y in ry:
self.set(x, y, new[y])
if changed != True:
raise IllegalMove
return move_score
def combine(self, shifted_row):
"""Combine same tiles when moving to one side. This function always
shifts towards the left. Also count the score of combined tiles."""
move_score = 0
combined_row = [0] * self.size
skip = False
output_index = 0
for p in pairwise(shifted_row):
if skip:
skip = False
continue
combined_row[output_index] = p[0]
if p[0] == p[1]:
combined_row[output_index] += p[1]
move_score += p[0] + p[1]
# Skip the next thing in the list.
skip = True
output_index += 1
if shifted_row and not skip:
combined_row[output_index] = shifted_row[-1]
return (combined_row, move_score)
def shift(self, row, direction):
"""Shift one row left (direction == 0) or right (direction == 1), combining if required."""
length = len(row)
assert length == self.size
#assert direction == 0 or direction == 1
# Shift all non-zero digits up
shifted_row = [i for i in row if i != 0]
# Reverse list to handle shifting to the right
if direction:
shifted_row.reverse()
(combined_row, move_score) = self.combine(shifted_row)
# Reverse list to handle shifting to the right
if direction:
combined_row.reverse()
assert len(combined_row) == self.size
return (combined_row, move_score)
def isend(self):
"""Check if the game is ended. Game ends if there is a 2048 tile or
there are no legal moves. If there are empty spaces then there must
be legal moves."""
if self.highest() == 2048:
return True
for direction in range(4):
try:
self.move(direction, trial=True)
# Not the end if we can do any move
return False
except IllegalMove:
pass
return True
def get_board(self):
"""Get the whole board-matrix, useful for testing."""
return self.Matrix
def set_board(self, new_board):
"""Set the whole board-matrix, useful for testing."""
self.Matrix =new_board