-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
148 lines (115 loc) · 4.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import time
from datetime import datetime, timedelta
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.Dataloader as dataloader
from dataset import DataSet
from model import Down1d, Up1d, Bottleneck, AudioUnet
from utility import avg_sqrt_l2_loss
from io import load_h5
import librosa
default_opt = {'alg': 'adam', 'lr': 1e-4, 'b1': 0.99, 'b2': 0.999, 'num_layers': 4, 'batch_size': 128}
class Solver(object):
def __init__(self, config):
self.config = config
# self.data_loader = data_loader make separate function for dataloader
self.train_path = self.config['train_path']
self.eval_path = self.config['eval_path']
self.epoch = self.config['epoch']
self.batch_size = self.config['batch_size']
self.log_dir = self.config['log_dir']
self.num_layers = self.config['num_layers']
self.alg = self.config['alg']
self.lr = self.config['lr']
self.betas = (self.config['b1'], self.config['b2'])
self.model_save_dir = self.config['model_save_dir']
self.model_save_step = self.config['model_save_step']
def build_model(self):
self.device = torch.device("cuda:0" if torch.cuda.is_avaialble() else "cpu")
self.model = AudioUnet(self.num_layers)
#Data Parallel
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
model = model.to(self.device)
if self.alg = "adam":
self.optimizer = torch.optim.Adam(self.model.parameters(), self.lr, betas=self.betas)
else
raise ValueError('Invalid Optimizer: ' + self.alg)
def print_network(self):
"""Print out the network information"""
num_params = 0
for p in self.model.parameters():
num_params += p.numel()
print(self.model)
print("The number of parameters: {}".format(num_params))
def build_tensorboard(self):
"""Build a tensorboard SummaryWriter"""
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(self.logdir)
def train(self):
build_model()
build_tensorboard()
load_dataset()
data_loader = dataloader(self.train_dataset, self.batch, shuffle=True, num_workers=4)
#train Loops
start_time = time.time()
for epoch in range(self.epoch):
for X, Y in data_loader:
self.model.train()
X, Y = X.to(self.device), Y.to(self.device)
output = self.model(X)
tr_l2_loss, tr_l2_snr = avg_sqrt_l2_loss(Y, output)
self.optimizer.zero_grad()
tr_l2_loss.backward()
self.optimizer.step()
end_time = time.time()
# print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, num_epochs, tr_l2_loss.data[0]))
tr_l2_loss, tr_l2_snr = self.eval_err(self.train_dataset, n_batch=self.batch_size)
va_l2_loss, va_l2_snr = self.eval_err(self.eval_dataset, n_batch=self.batch_size)
print("Epoch {} of {} took {:.3f}s ({} minibatches)".format(epoch, self.epoch, end_time-start_time, len(self.train_dataset//self.batch_size)))
print("Training l2_loss/segsnr:\t\t{:.6f}\t{:.6f}".format(tr_l2_loss, tr_l2_snr))
print("Validation l2_loss/segsnr:\t\t{:.6f}\t{:.6f}".format(va_l2_loss, va_l2_snr))
#Add Scalar to Summary Writer
writer.add_scalar('tr_l2_loss', tr_l2_loss, epoch)
writer.add_scalar('tr_l2_snr', tr_l2_snr, epoch)
writer.add_scalar('va_l2_snr', va_l2_snr, epoch)
#checkpoint the model
if (epoch+1) % self.model_save_step == 0:
model_path = os.path.join(self.model_save_dir, '{}-model.ckpt'.format(epoch+1))
torch.save(self.model.state_dict(), model_path)
print('Saved Model checkpoints into {}'.format(self.model_save_dir))
torch.save(self.model.state_dict(), './AudioUnet.pth')
def eval_err(self, dataset, n_batch=128):
"""Error Evaluation loops"""
batch_iterator = dataloader(dataset, n_batch, shuffle=True, num_workers=4)
l2_loss, snr = 0, 0
tot_l2_loss, tot_snr = 0, 0
self.model.eval()
for bn, X, Y in enumerate(batch_iterator):
output = self.model(X)
l2_loss, l2_snr = avg_sqrt_l2_loss(Y, output)
tot_l2_loss += l2_loss.item()
tot_snr += l2_snr.item()
return tot_l2_loss / (bn+1), tot_snr / (bn+1)
def load_dataset(self):
"""Load the dataset"""
X_train, Y_train = load_h5(args.train)
X_val, Y_val = load_h5(args.val)
# determine super-resolution level
n_dim, n_chan = Y_train[0].shape
self.r = Y_train[0].shape[1] / X_train[0].shape[1]
assert n_chan == 1
self.train_dataset = DataSet(X_train, Y_train)
self.eval_dataset = DataSet(X_val, Y_val)
def load_model(self, resume_training=True, epoch):
if resume_training:
model_path = os.path.join(self.model_save_dir, '{}-model.ckpt'.format(epoch))
self.model.load_state_dict(torch.load(model_path))
else:
self.model = AudioUnet(self.num_layers)
model = model.to(self.device)
self.model.load_state_dict(torch.load('./AudioUnet.pth'))
model.eval()