-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathwebcam.py
executable file
·96 lines (77 loc) · 3.41 KB
/
webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#
# MIT License
#
# Copyright (c) 2018 Matteo Poggi [email protected]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import tensorflow as tf
import sys
import os
import argparse
import time
import datetime
from utils import *
from pydnet import *
# forces tensorflow to run on CPU
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
parser = argparse.ArgumentParser(description='Argument parser')
""" Arguments related to network architecture"""
parser.add_argument('--width', dest='width', type=int, default=512, help='width of input images')
parser.add_argument('--height', dest='height', type=int, default=256, help='height of input images')
parser.add_argument('--resolution', dest='resolution', type=int, default=1, help='resolution [1:H, 2:Q, 3:E]')
parser.add_argument('--checkpoint_dir', dest='checkpoint_dir', type=str, default='checkpoint/IROS18/pydnet', help='checkpoint directory')
args = parser.parse_args()
def main(_):
with tf.Graph().as_default():
height = args.height
width = args.width
placeholders = {'im0':tf.placeholder(tf.float32,[None, None, None, 3], name='im0')}
with tf.variable_scope("model") as scope:
model = pydnet(placeholders)
init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
loader = tf.train.Saver()
saver = tf.train.Saver()
cam = cv2.VideoCapture(0)
with tf.Session() as sess:
sess.run(init)
loader.restore(sess, args.checkpoint_dir)
while True:
for i in range(4):
cam.grab()
ret_val, img = cam.read()
img = cv2.resize(img, (width, height)).astype(np.float32) / 255.
img = np.expand_dims(img, 0)
start = time.time()
disp = sess.run(model.results[args.resolution-1], feed_dict={placeholders['im0']: img})
end = time.time()
disp_color = applyColorMap(disp[0,:,:,0]*20, 'plasma')
toShow = (np.concatenate((img[0], disp_color), 0)*255.).astype(np.uint8)
toShow = cv2.resize(toShow, (width/2, height))
cv2.imshow('pydnet', toShow)
k = cv2.waitKey(1)
if k == 1048603 or k == 27:
break # esc to quit
if k == 1048688:
cv2.waitKey(0) # 'p' to pause
print("Time: " + str(end - start))
del img
del disp
del toShow
cam.release()
if __name__ == '__main__':
tf.app.run()