-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGlobal_Ratio.py
336 lines (289 loc) · 11.9 KB
/
Global_Ratio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#import h5py
import optparse as op
import math
import cmath
import sys
import numpy as np
#import scipy
from scipy import interpolate
import matplotlib.pyplot as plt
from fieldsWrapper import *
from parIOWrapper import init_read_parameters_file
from finite_differences import *
from fieldlib import *
from max_stat_tool import *
from momlib import *
import sys
from nrgWrapper import *
from momentsWrapper_max import *
from read_write_geometry import *
from read_pfile import *
from SI_Gauss_GENE_unit import *
from fieldHelper import *
from max_profile_reader import *
import csv
#Developed by Max Curie on 06/30/2020
#testing path: /global/cscratch1/sd/maxcurie/global_scan/n0_10
#short-cut: RIP_global
#short-cut for testing: RIP_global_test
#This is the V3 that area weighted
#********************************************************************
#*****************Block for the user*********************************
run_mode==2 #run mode = 1 for outboard mid-plane
#run mode = 2 for the scan throught ballooning angle
#run mode = 3 for the scan throught height
Outboard_mid_plane=True #change to True if one wants to only want to look at outboard mid-plane
Delta_Z=0.07 #7cm as bin for Z
scan_all_Z=False #Change to True if one want to scan across the whole height
max_Z0=0.035
min_Z0=-0.035
#***************End of Block for the user****************************
#********************************************************************
def get_suffix():
parser=op.OptionParser(description='Some infrastructure for reading in, manipulating, and plotting nonlinear field data.')
#parser.add_option('--plot_theta','-g',action='store_const',const=False,help = 'Plot global mode structures decomposed in poloidal m number.',default=True)
options,args=parser.parse_args()
print("options",options)
print("args",args)
if len(args)!=1:
exit("""
Please include run number as argument (e.g., 0001)."
\n""")
suffix = args[0]
if suffix in ['dat','.dat']:
suffix = '.dat'
else:
suffix = '_'+suffix
return suffix
def Read_parameter(suffix,plot=False):
#Initiate the momlib and fieldlib
pars = init_read_parameters_file(suffix)
field = fieldfile('field'+suffix,pars)
moms = momfile('mom_e'+suffix,pars)
#getting B field using read_write_geometry.py
gpars,geometry = read_geometry_global(pars['magn_geometry'][1:-1]+suffix)
#Get geom_coeff from geomWrapper.py
geom_type, geom_pars, geom_coeff = init_global_geometry(suffix, pars)
real_R=geometry['geo_R'] #it is major radius in meter
real_Z=geometry['geo_Z'] #it is height in meter, midland is 0, down is negative ,up is positive
J=geometry['jacobian'] #Jacobian
gxx=geometry['gxx']
gxy=geometry['gxy']
gxz=geometry['gxz']
gyy=geometry['gyy']
gyz=geometry['gyz']
gzz=geometry['gzz']
#from max_profile_reader.py
x_a,x_rho_ref,T,n0,omt,omn = profile_e_info(suffix)
#From plot mode structures
#Setup the field file
#************************Setting up the time*****************
time0=float(options.time0)
time = np.array(field.tfld)
timemom = np.array(moms.tmom)
if time0 == -1:
itime = -1
itime0 = len(time)-1
else:
itime = np.argmin(abs(time - time0))
itime0 = itime
print(("Looking at the RIP at time:",time[itime]))
#field.set_time(time[itime],itime0)
field.set_time(time[itime])
moms.set_time(timemom[itime])
upar,deln,deln_global= LILO_moments_from_mom_file(pars,suffix,False,setTime=-1)
#********************************************
dz = 2.0/field.nz
zgrid = np.arange(field.nz)/float(field.nz-1)*(2.0-dz)-1.0
zgrid_ext = np.arange(field.nz+4)/float(field.nz+4-1)*(2.0+3*dz)-(1.0+2.0*dz)
#print zgrid
#print zgrid_ext
if 'lx_a' in pars:
xgrid = np.arange(field.nx)/float(field.nx-1)*pars['lx_a']+pars['x0']-pars['lx_a']/2.0
else:
xgrid = np.arange(field.nx)/float(field.nx-1)*pars['lx'] - pars['lx']/2.0
nx=len(xgrid) #number of grid in x axis
nz=len(zgrid) #number of grid in z axis
if nx < 10 or nz < 10:
print("Please increase the resolution")
return 0
#density
n0_GENE = np.tile(n0, (nz, 1))
#print(n0_GENE)
#B field
B0_GENE=geometry['Bfield']
#delta density, check on page 57
upar,deln,deln_global= LILO_moments_from_mom_file(pars,suffix,False,setTime=-1)
n1_GENE=abs(deln_global[:,0,:])
#print geometry['geo_R']
#print np.shape(geometry['geo_R'])
#getting phi averaged apar and delta n
(i1,i2,i3)=np.shape(field.apar())
#print((np.shape(deln_global)))
#print(np.shape(field.apar()))
#Apar_GENE = np.zeros((i1,i3))
#for i in range(i1):
#Apar_GENE = Apar_GENE + field.apar()[i,0,:]
#n1_GENE = n1_GENE + deln_global[]
#Apar_GENE=Apar_GENE/(i2+1)
Apar_GENE = abs(field.apar()[:,0,:])
#*****************************************************************
#************Normalized the density and magnetic field************
B0=np.zeros((nz,nx))
B1=np.zeros((nz,nx))
n0=np.zeros((nz,nx))
n1=np.zeros((nz,nx))
#ky_GENE=np.zeros(np.shape(deln_global))
B_gauss=10.**4 #1T=10^4Gauss
qref = 1.6E-19 #in C
c = 1. #in 3*10^8m/s
m_kg = 1.673E-27 #in kg
Bref = pars['Bref'] #in Tesla
Tref = pars['Tref'] #in keV
nref = pars['nref'] #in 10^(19) /m^3
Lref = pars['Lref'] #in m
mref = pars['mref'] #in proton mass(kg)
nref = nref * 1.E19 #in the unit of /m^3
Tref = Tref * qref * 1000. #in the unit of J
mref = mref * m_kg #in the unit of kg
pref = nref * Tref #in Pa*kB
cref = np.sqrt(Tref / mref) #Speed of sound in the unit of m/s
Omegaref = qref * Bref / (mref * c) #Gyrofrequency in rad/s
rhoref = cref / Omegaref #gyroradius in m
rhorefStar = rhoref / Lref #gyroradius/minor radius in Unitless
for x in range(0,nx):
#ky_global comes from geomWrapper.py
ky_GENE_temp=ky_global(pars, geom_coeff, x)
#print("calc Br")
#print(x)
for z in range(0,nz):
B0[z,x]=abs(B0_GENE[z,x]*Bref*B_gauss)
B1[z,x]=abs(Apar_GENE[z,x]*ky_GENE_temp[z]*Bref*B_gauss*rhorefStar)
n0[z,x]=abs(n0_GENE[z,x]*nref)
n1[z,x]=abs(n1_GENE[z,x]*(n0_GENE[z,x]*rhorefStar)*nref)
#print("rhoi="+str(rhoref)+"m")
#print("Bref="+str(Bref))
#print("B_gauss="+str(B_gauss))
#print("Factor="+str(Bref*B_gauss*rhorefStar))
#************End of Normalized the density and magnetic field************
if plot==True:
plt.clf()
plt.ylabel(r'$Height(m)$',fontsize=10)
plt.xlabel(r'$Major\ raduis(m)$',fontsize=10)
plt.figure(
figsize=(4*(np.max(real_R)-np.min(real_R)), 4*(np.max(real_Z)-np.min(real_Z))),
dpi=96)
plt.contourf(real_R,real_Z,B0)
plt.title('B0 in real space',fontsize=10)
plt.savefig('B0.png')
plt.clf()
plt.ylabel(r'$Height(m)$',fontsize=10)
plt.xlabel(r'$Major\ raduis(m)$',fontsize=10)
plt.figure(
figsize=(4*(np.max(real_R)-np.min(real_R)), 4*(np.max(real_Z)-np.min(real_Z))),
dpi=96)
plt.contourf(real_R,real_Z,B1)
plt.title('B1 in real space',fontsize=10)
plt.savefig('B1.png')
plt.clf()
plt.ylabel(r'$Height(m)$',fontsize=10)
plt.xlabel(r'$Major\ raduis(m)$',fontsize=10)
plt.figure(
figsize=(4*(np.max(real_R)-np.min(real_R)), 4*(np.max(real_Z)-np.min(real_Z))),
dpi=96)
plt.contourf(real_R,real_Z,n0)
plt.title('n0 in real space',fontsize=10)
plt.savefig('n0.png')
plt.clf()
plt.ylabel(r'$Height(m)$',fontsize=10)
plt.xlabel(r'$Major\ raduis(m)$',fontsize=10)
plt.figure(
figsize=(4*(np.max(real_R)-np.min(real_R)), 4*(np.max(real_Z)-np.min(real_Z))),
dpi=96)
plt.contourf(real_R,real_Z,n1)
plt.title('n1 in real space',fontsize=10)
plt.savefig('n1.png')
return J,real_R,real_Z,xgrid,zgrid,B0,B1,n0,n1,gxx,gxy,gyy,gyz,gzz
def Ratio_calc(J,real_R,real_Z,min_Z0,max_Z0,B0,B1,n0,n1,run_mode=1):
(nz,nx)=np.shape(J)
if run_mode==1:
n1_mean=np.mean( (n1*J)[int(nz/2),:] )/np.mean(J[int(nz/2),:])
n0_mean=np.mean( (n0*J)[int(nz/2),:] )/np.mean(J[int(nz/2),:])
B1_mean=np.mean( (B1*J)[int(nz/2),:] )/np.mean(J[int(nz/2),:])
B0_mean=np.mean( (B0*J)[int(nz/2),:] )/np.mean(J[int(nz/2),:])
BES_highlight_Z=real_Z[int(nz/2),:]
BES_highlight_R=real_R[int(nz/2),:]
elif run_mode==2:
n1_mean=np.mean( (n1*J), axis=1 )/np.mean(J, axis=1)
n0_mean=np.mean( (n0*J), axis=1 )/np.mean(J, axis=1)
B1_mean=np.mean( (B1*J), axis=1 )/np.mean(J, axis=1)
B0_mean=np.mean( (B0*J), axis=1 )/np.mean(J, axis=1)
BES_highlight_Z=real_Z
BES_highlight_R=real_R
else:
n1_list=[]
n0_list=[]
B1_list=[]
B0_list=[]
J_list=[]
for i in range(nz):
for j in range(nx):
if real_Z[n,m]>=RIP_Z_location-0.5*beam_width and real_Z[n,m]<=RIP_Z_location+0.5*beam_width:
#area=real_R[i,j]
n1_list.append(n1[i,j]*J[i,j])
n0_list.append(n0[i,j]*J[i,j])
B1_list.append(B1[i,j]*J[i,j])
B0_list.append(B0[i,j]*J[i,j])
J_list.append(J[i,j])
n1_mean=np.mean(n1_list)/np.mean(J_list)
n0_mean=np.mean(n0_list)/np.mean(J_list)
B1_mean=np.mean(B1_list)/np.mean(J_list)
B0_mean=np.mean(B0_list)/np.mean(J_list)
return n1_mean,n0_mean,B1_mean,B0_mean
suffix=get_suffix()
J,real_R,real_Z,xgrid,zgrid,B0,B1,n0,n1,gxx,gxy,gyy,gyz,gzz=\
Read_parameter(suffix)
if scan_all_Z==True:
min_Z0=min(real_Z)
max_Z0=max(real_Z)
max_Z=max_Z0*1.00001 #Add a small number so it is even
min_Z=min_Z0
Z_grid=np.arange(min_Z,max_Z,Delta_Z)
Z_list = Z_grid[:-1]+Delta_Z/2.
print("Z_list: "+str(Z_list))
with open('Ratio'+suffix+'.csv', 'w') as csvfile: #clear all and then write a row
data = csv.writer(csvfile, delimiter=',')
data.writerow(['Height(m)','n1','n0','B1','B0','(B1/B0)/(n1/n0)'])
csvfile.close()
if run_mode==1:
Outboard_mid_plane==True:
n1,n0,B1,B0 =\
Ratio_calc(J,real_R,real_Z,min_Z0,max_Z0,B0,B1,n0,n1,run_mode)
with open('Ratio'+suffix+'.csv', 'w') as csvfile: #clear all and then write a row
data = csv.writer(csvfile, delimiter=',')
data.writerow(['mid_plane',n1,n0,B1,B0,(B1/B0)/(n1/n0)])
csvfile.close()
elif run_mode==2:
n1,n0,B1,B0 =\
Ratio_calc(J,real_R,real_Z,min_Z0,max_Z0,B0,B1,n0,n1,run_mode)
d = {'Index':range(len(n1)),'n1':n1,'n0':n0,'B1':B1,'B0':B0,'(B1/B0)/(n1/n0)':(B1/B0)/(n1/n0)}
df=pd.DataFrame(d, columns=['Index','n1','n0','B1','B0','(B1/B0)/(n1/n0)']) #construct the panda dataframe
df.to_csv('Ratio'+suffix+'.csv',index=False)
index_max=np.argmax(B1)
print('Max B1 is at nz='+str(index_max))
print('n1'+str(n1[index_max])+', n0'+str(n0[index_max])+\
', B1'+str(B1[index_max])+', B0'+str(B0[index_max])+\
', (B1/B0)/(n1/n0)'+str( ( (B1/B0)/(n1/n0) ) [index_max] ) \
)
else:
for i_Z_list in range(len(Z_list)):
max_Z0=Z_list[i_Z_list]+Delta_Z/2. #in the unit of meter
min_Z0=Z_list[i_Z_list]-Delta_Z/2. #in the unit of meter
n1,n0,B1,B0 =\
Ratio_calc(J,real_R,real_Z,min_Z0,max_Z0,B0,B1,n0,n1,run_mode)
with open('Ratio'+suffix+'.csv', 'a') as csvfile: #clear all and then write a row
data = csv.writer(csvfile, delimiter=',')
data.writerow([Z_list[i_Z_list],n1,n0,B1,B0,(B1/B0)/(n1/n0)])
csvfile.close()