-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathETG_quasilinear.py
executable file
·205 lines (186 loc) · 6.9 KB
/
ETG_quasilinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import numpy
import matplotlib.pyplot as plt
import re
import optparse as op
from ParIO import *
from interp import *
parser=op.OptionParser(description='Plots quasilinear estimates of heat flux and compares with nonlinear fluxes.')
parser.add_option('--include_qn2','-q', action='store_true',dest = 'include_qn2', help = 'Includes the weight factor Q/n^2', default=False)
parser.add_option('--sat_rule','-s', action='store',type = int,dest = 'sat_rule', help = 'Selects saturation rule: 1=gamma/kperp2, 2=gamma/(kx^2+ky^2).', default=1)
parser.add_option('--add_all','-a', action='store_true',dest = 'add_all', help = 'Add all contributions for each ky (kx_center scan or EV run).', default=False)
parser.add_option('--noplot','-n', action='store_true',dest = 'noplot', help = 'No plot.', default=False)
parser.add_option('--most_unstable','-m', action='store_true',dest = 'most_unstable', help = 'Takes contribution only from the most unstable mode.', default=False)
#parser.add_option('--width_factor','-w', action='store_true',dest = 'width_factor', help = 'Includes the width factor in the calculation.', default=False)
options,args=parser.parse_args()
if len(args)!=2:
exit("""
Please include run number as argument (e.g., 0001) and scanfiles suffix as second argument."
\n""")
suffix = args[0]
sfsuffix = args[1]
include_qn2 = options.include_qn2
add_all = options.add_all
sat_rule = options.sat_rule
#width_factor = options.width_factor
noplot = options.noplot
most_unstable = options.most_unstable
print ("include_qn2",include_qn2)
print ("add_all",add_all)
print ("sat_rule",sat_rule)
print ("most_unstable",most_unstable)
if 'dat' in suffix:
suffix = '.dat'
elif '_' not in suffix:
suffix = '_' + suffix
par = Parameters()
par.Read_Pars('parameters'+suffix)
pars = par.pardict
#print pars
if pars['n_spec'] == 1:
omt = pars['omt1']
elif pars['n_spec'] == 2:
print ("Warning: Not ready for multiple species!")
omt = pars['omt2']
N=int(np.floor(pars['nx0']/2))+1
pwd=sys.path[0]
f=numpy.loadtxt('fluxspectrae'+suffix+'.dat')
ky1=[]
Qes=[]
for i in range(N,len(f)):
ky1.append(f[i][0])
Qes.append(f[i][2])
ldata = np.genfromtxt('scanfiles'+sfsuffix+'/mode_info_all')
wf = ldata[:,11] #width
wf = wf/np.max(wf)
parlin = Parameters()
parlin.Read_Pars('scanfiles'+sfsuffix+'/parameters')
parslin = parlin.pardict
IVEV = parslin['comp_type']
print ("IVEV",IVEV)
if sat_rule == 1: #Conventional gamma / kperp2
Qql0 = ldata[:,6]*omt
elif sat_rule == 2: #Using kx**2 + ky**2 instead of kperp2
Qql0 = ldata[:,4]*omt/(ldata[:,0]**2+ldata[:,10]**2)
elif sat_rule == 3: #Maximum of kx*ky vs ky**2
Qql0 = np.empty(len(ldata[:,0]))
for i in range(len(ldata[:,0])):
denom = max(ldata[i,0]*ldata[i,10],ldata[i,0]**2)
Qql0[i] = ldata[i,4]*omt/denom
elif sat_rule == 4: #Standard rule except gamma / ky**2 if kperp < 0.5 ky
Qql0 = ldata[:,6]*omt
for i in range(len(ldata[:,0])):
#if ldata[i,10] < 0.5*ldata[i,0]:
if ldata[i,2] < 0.5*ldata[i,0]:
#Qql0[i] = ldata[i,4]/(ldata[i,0]*ldata[i,2])*omt
Qql0[i] = ldata[i,4]/(ldata[i,0]**2)*omt
elif sat_rule == 5: #gamma / ky*kperp
Qql0 = np.empty(len(ldata[:,0]))
for i in range(len(ldata[:,0])):
denom = ldata[i,0]*ldata[i,2]
Qql0[i] = ldata[i,4]/denom*omt
elif sat_rule == 6: #gamma / 2(ky**2+kperp**2)
Qql0 = ldata[:,4]/(0.5*ldata[:,0]**2+0.5*ldata[:,2]**2)*omt
elif sat_rule == 7:
Qql0 = ldata[:,6]*omt*abs(ldata[:,5])/ldata[:,4]
elif sat_rule == 8: #Standard with width factor
Qql0 = ldata[:,6]*omt*wf[:]
if include_qn2:
Qql0 = ldata[:,7]*Qql0
Qql = np.empty(0)
ky2 = np.empty(0)
nky = 0
for i in range(len(ldata[:,0])):
if not ldata[i,0] in ky2 and ldata[i,9] == 0.0:
ky2 = np.append(ky2,ldata[i,0])
Qql = np.append(Qql,Qql0[i])
nky += 1
print("wf[i]",wf[i])
print("ky[i]",ldata[i,0])
else:
if add_all and Qql0[i] > 0 and not most_unstable:
Qql[nky-1] += Qql0[i] #Summing at each ky for all positive values
elif Qql0[i] > Qql[nky-1] and not most_unstable:
Qql[nky-1] = Qql0[i] #Taking maximum over ballooning angle / eigenvalue
#gkp = np.genfromtxt('scanfiles'+sfsuffix+'/gamma_kperp2_ratio_kxcenter0')
#kperp2 = gkp[:,2]
#Test kperp^3
#Qql2 = Qql*kperp2/kperp2**1.5
#if include_qn2:
# Qql = Qql*Qn2
kygrid = np.linspace(pars['kymin'],(pars['nky0']-1)*pars['kymin'],num = pars['nky0']-1)
#print "kygrid",kygrid
#print "ky1",ky1
#Cubic spline interpolation
Qql_interp1 = interp(ky2,Qql,kygrid)
#Linear interpolation
Qql_interp2 = np.interp(kygrid,ky2,Qql)
#Qql2_interp2 = np.interp(kygrid,ky2,Qql2)
Qql_tot1 = np.sum(Qql_interp1)
Qql_tot2 = np.sum(Qql_interp2)
Qnl_tot = np.sum(Qes)
#Qql2_tot = np.sum(Qql2_interp2)
print ("Sum Qql interp1:",np.sum(Qql_interp1))
print ("Sum Qql linear interp:",np.sum(Qql_interp2))
#print "Sum Qql (kp3) linear interp:",np.sum(Qql2_interp2)
print ("Sum Qnl:",np.sum(Qes))
C0 = np.sum(Qes)/np.sum(Qql_interp2)
print ("C0:",C0)
ikpeak = np.argmax(Qql_interp2)
print ("Qql peak ky",kygrid[ikpeak])
C0peak = np.sum(Qes)/np.sum(Qql_interp2[ikpeak])
print ("C0peak",C0peak)
#c3 = Qql_tot2/Qql2_tot
outfile = 'QL_summary'+suffix+'_'+sfsuffix+'_iqn2'+str(include_qn2)[0]+'_sat'+str(sat_rule)+'_add'+str(add_all)[0]+'_mu'+str(most_unstable)[0]
fig,ax1=plt.subplots()
ax1.plot(ky1,Qes,c='blue',label='Q_es')
plt.legend(loc=2)
ax2=ax1.twinx()
ax2.plot(ky2,Qql,c='red',label='Q_ql, tot: '+str(Qnl_tot)[0:4])
#ax2.plot(kygrid,Qql_interp1,'--',c='black',label='interp Qql: '+str(Qql_tot1)[0:4])
ax2.plot(kygrid,Qql_interp2,'--',c='green',label='interp Qql lin: '+str(Qql_tot2)[0:4])
#ax2.plot(kygrid,c3*Qql2_interp2,'--',c='purple',label=str(c3)+' x '+'+Qql kp3: '+str(Qql2_tot)[0:4])
#plt.title('C0 = '+str(Qql_tot2/Qnl_tot)[0:4]+' c3 = '+str(c3))
#plt.title('C0 = '+str(Qql_tot2/Qnl_tot)[0:4])
plt.xlabel('ky')
plt.legend(loc=1)
plt.gcf().autofmt_xdate()
plt.title(outfile + ', C0 = '+str(Qnl_tot/Qql_tot2)[0:6])
if not noplot:
plt.show()
else:
plt.savefig(outfile+'.ps',format='ps')
f=open(outfile,'w')
f.write('#comp_type: '+IVEV+'\n')
f.write('#suffix: '+str(suffix)+'\n')
f.write('#sfsuffix: '+str(sfsuffix)+'\n')
f.write('#include_qn2: '+str(include_qn2)+'\n')
f.write('#sat_rule: '+str(sat_rule)+'\n')
f.write('#add_all: '+str(add_all)+'\n')
f.write('#most_unstable: '+str(most_unstable)+'\n')
f.write('#C0 = '+str(C0)[0:6]+'\n')
f.write('#C0peak = '+str(C0peak)[0:6]+'\n')
f.write('#1.ky 2.Qnl 3.Qql_interp\n')
np.savetxt(f,np.column_stack((kygrid,Qes[1:],Qql_interp2)))
f.close()
#plt.plot(ldata[:,0],ldata[:,4],'x')
#plt.xlabel('kymin')
#plt.ylabel('gamma')
#plt.show()
#
#plt.plot(ldata[:,0],ldata[:,2],'x')
#plt.xlabel('kymin')
#plt.ylabel('kperp')
#plt.show()
#
#plt.plot(ldata[:,0],ldata[:,6],'x')
#plt.xlabel('kymin')
#plt.ylabel('gamma/kperp2')
#plt.show()
#
#plt.plot(ldata[:,0],ldata[:,7],'x')
#plt.xlabel('kymin')
#plt.ylabel('Q/n^2')
#plt.show()