-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
145 lines (116 loc) · 5.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch import nn
from torch import optim
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import argparse
import time
import os
from models import load_model, MAELoss
from dataloader import load_dataset
from utils import *
def get_args_parser():
parser = argparse.ArgumentParser(add_help=False)
# GPU
parser.add_argument("--use-cuda", action='store_true')
# Model
parser.add_argument("--model", default='LSTM-AE')
# Dataset
parser.add_argument("--dataset", default="ECG5000")
parser.add_argument("--data-root-dir", default="data/ECG5000")
parser.add_argument("--freq", type=int, default=500)
parser.add_argument("--seconds", type=int, default=2)
# Hyperparameters
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--weight-decay", type=float, default=1e-4)
parser.add_argument("--batch-size", type=int, default=8)
# Save Paths
parser.add_argument("--save-weights-dir", default="saved/weights")
parser.add_argument("--save-losses-dir", default="saved/losses")
return parser
def print_setup(device, args):
print("=======================[Settings]========================")
print(f"\n [GPU]")
print(f" |-[device]: {device}")
print(f"\n [MODEL]")
print(f" |-[model]: {args.model}")
print(f"\n [DATA]")
print(f" |-[dataset(ALL)]: {args.dataset}")
print(f" |-[data-root-dir(ALL)]: {args.data_root_dir}")
print(f" |-[freq(PTB-XL)]: {args.freq}")
print(f" |-[seconds(PTB-XL)]: {args.seconds}")
print(f"\n [HYPERPARAMETERS]")
print(f" |-[epochs]: {args.epochs}")
print(f" |-[lr]: {args.lr}")
print(f" |-[weight decay]: {args.weight_decay}")
print(f" |-[batch size]: {args.batch_size}")
print(f"\n [SAVE PATHS]")
print(f" |-[SAVE WEIGHTS DIR]: {args.save_weights_dir}")
print(f" |-[SAVE LOSSES DIR]: {args.save_losses_dir}")
print("\n=======================================================")
def main(args):
device = 'cpu'
if args.use_cuda and torch.cuda.is_available():
device = 'cuda'
print_setup(device, args)
# Load Model
model = load_model(model_name=args.model).to(device)
# Load Dataset
train_ds = load_dataset(dataset=args.dataset,
data_dir=args.data_root_dir,
metadata_path=os.path.join(args.data_root_dir, "ptbxl_database.csv"),
mode='train',
freq=args.freq,
seconds=args.seconds)
print(f"train samples: {len(train_ds)}")
train_dl = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size)
val_ds = load_dataset(dataset=args.dataset,
data_dir=args.data_root_dir,
metadata_path=os.path.join(args.data_root_dir, "ptbxl_database.csv"),
mode='val',
freq=args.freq,
seconds=args.seconds)
print(f"validation samples: {len(val_ds)}")
val_dl = DataLoader(val_ds, shuffle=False, batch_size=args.batch_size)
# Loss Function (Reconstruction Loss: MAE Loss)
loss_fn = MAELoss().to(device)
# Optimizer
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# Scheduler
scheduler = ReduceLROnPlateau(optimizer,
mode='min',
factor=0.5,
patience=5,
min_lr=1e-7)
total_train_loss = []
total_val_loss = []
min_val_loss = 10000.
for current_epoch in range(0, args.epochs):
current_epoch += 1
print("======================================================")
print(f"Epoch: [{current_epoch:03d}/{args.epochs:03d}]")
print()
# Training One Epoch
start_time = int(time.time())
train_loss = train_one_epoch(args.model, current_epoch, model, train_dl, optimizer, loss_fn, scheduler, device)
train_time = int(time.time() - start_time)
print(f"Training Time: {train_time//60:02d}m {train_time%60:02d}s")
print()
# Validation
start_time = int(time.time())
val_loss, _, _ = validate(model, val_dl, loss_fn, scheduler, device) # loss의 mean, std 값, threshold 리턴
val_time = int(time.time()) - start_time
print(f"Validation Reconstruction Loss: {val_loss:.6f}")
print(f"Validation Time: {val_time//60:02d}m {val_time%60:02d}s")
print()
if val_loss < min_val_loss:
min_val_loss = val_loss
save_model_ckpt(model, args.model, current_epoch, args.save_weights_dir)
total_train_loss.append(train_loss)
total_val_loss.append(val_loss)
save_loss_ckpt(args.model, current_epoch, total_train_loss, total_val_loss, args.save_losses_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser('ECG Anomaly Detection Train', parents=[get_args_parser()])
args = parser.parse_args()
main(args)