-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_sync_grammar.py
413 lines (351 loc) · 15.7 KB
/
extract_sync_grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from __future__ import unicode_literals
import traceback
from io import open
import pickle
from collections import Counter
import gzip
import os
from itertools import zip_longest
from multiprocessing import Pool
import re
from random import Random
import six
from delphin.mrs import eds, simplemrs
from derivation_analysis import SampleCounter
from hrgguru.const_tree import ConstTree, Lexicon
from hrgguru.hrg import CFGRule, HRGDerivation
from hrgguru.hyper_graph import HyperGraph, HyperEdge, GraphNode, strip_category
deepbank_export_path = "../large-data/hrg/deepbank_export_1.1/"
main_dir_base = "../large-data/hrg/"
DONT_STRIP = 0
STRIP_ALL_LABELS = 1
STRIP_TO_UNLABEL = 2
FUZZY_TREE = 3
STRIP_INTERNAL_LABELS = 5
def fix_punct_hyphen(tree):
span = tree.span
words = list(tree.generate_words())
if all(i.span == span or i.span[1] - i.span[0] == 0
for i in words) and sum(1 for i in words if i.span == span) >= 2:
lexicon = Lexicon("".join(i.string for i in words))
lexicon.span = span
tree.child = [lexicon]
elif isinstance(tree.child[0], ConstTree):
for i in tree.child:
assert isinstance(i, ConstTree)
fix_punct_hyphen(i)
def strip_label(tree):
if isinstance(tree, ConstTree):
tree.tag = tree.tag.split("_")[0]
for i in tree.child:
strip_label(i)
def strip_label_internal(tree):
if isinstance(tree, ConstTree) and isinstance(tree.child[0], ConstTree):
tree.tag = tree.tag.split("_")[0]
for i in tree.child:
strip_label_internal(i)
def strip_unary(node):
while len(node.child) == 1 and \
isinstance(node.child[0], ConstTree) and node.tag == node.child[0].tag:
node.child = node.child[0].child
for sub_tree in node.child:
if isinstance(sub_tree, ConstTree):
strip_unary(sub_tree)
def strip_to_unlabel(node):
while len(node.child) == 1 and isinstance(node.child[0], ConstTree):
node.child = node.child[0].child
node.tag = "X"
for sub_tree in node.child:
if isinstance(sub_tree, ConstTree):
strip_to_unlabel(sub_tree)
def extract_features(hg, # type: HyperGraph
cfg, # type: ConstTree
log_func=print
):
delphin_span_to_word_span = {}
for idx, node in enumerate(cfg.generate_words()):
node.word_span = delphin_span_to_word_span[node.span] = (idx, idx + 1)
for idx, node in enumerate(cfg.generate_rules()):
node.word_span = delphin_span_to_word_span[node.span] = (
node.child[0].word_span[0], node.child[-1].word_span[1])
node_mapping = {} # node -> pred edge
real_edges = []
for edge in hg.edges: # type: HyperEdge
if len(edge.nodes) == 1:
main_node = edge.nodes[0] # type: GraphNode
if node_mapping.get(main_node) is not None:
log_func("Dumplicate node name {} and {}!".format(
node_mapping[main_node],
edge.label
))
continue
if not edge.is_terminal:
log_func("non-terminal edge {} found.".format(edge.label))
node_mapping[main_node] = edge
elif len(edge.nodes) == 2:
real_edges.append(edge)
else:
log_func("Invalid hyperedge with node count {}".format(len(edge.nodes)))
names = []
args = []
for node, pred_edge in node_mapping.items():
assert pred_edge.span is not None
names.append((delphin_span_to_word_span[pred_edge.span], strip_category(pred_edge.label)))
for edge in real_edges:
pred_edges = [node_mapping.get(i) for i in edge.nodes]
if any(i is None for i in pred_edges):
log_func("No span for edge {}, nodes {}!".format(edge, pred_edges))
continue
args.append((delphin_span_to_word_span[pred_edges[0].span], strip_category(pred_edges[0].label),
delphin_span_to_word_span[pred_edges[1].span], strip_category(pred_edges[1].label),
edge.label))
return set(names), set(args)
def span_overlap(a, b):
return a != b and a[0] >= b[0] and a[1] <= b[1]
def fuzzy_cfg(cfg, names):
random_obj = Random(45)
spans = {i[0] for i in names}
words = list(cfg.generate_words())
def wrap_word(span):
ret = ConstTree("X")
ret.word_span = span
ret.child.append(words[span[0]])
return ret
def make_sub_tree(span):
ret = ConstTree("X")
ret.word_span = span
if span[1] - span[0] == 1:
return wrap_word(span)
else:
return ret
sub_trees = [make_sub_tree(i) for i in spans]
sub_trees.sort(key=lambda x: x.word_span[1] - x.word_span[0], reverse=True)
top_trees = []
while len(sub_trees) > 1:
this_tree = sub_trees[-1]
parent_tree = None
for other_tree in sub_trees[:-1]:
if span_overlap(this_tree.word_span, other_tree.word_span):
if parent_tree is None or span_overlap(other_tree.word_span, parent_tree.word_span):
parent_tree = other_tree
if parent_tree is None:
top_trees.append(this_tree)
else:
parent_tree.child.append(this_tree)
sub_trees.pop()
if len(sub_trees) == 0:
root = sub_trees[0]
if root.word_span[1] - root.word_span[0] != len(words):
new_root = ConstTree("X")
new_root.child.append(root)
root = new_root
else:
root = ConstTree("X")
root.word_span = (0, len(words))
root.child = sub_trees
def sort_and_fill_blank(node):
if not node.child:
node.child = [wrap_word((i, i + 1)) for i in range(*node.word_span)]
elif isinstance(node.child[0], ConstTree):
node.child.sort(key=lambda x: x.word_span)
new_child_list = []
for i in range(node.word_span[0], node.child[0].word_span[0]):
new_child_list.append(wrap_word((i, i + 1)))
for child_node, next_child_node in zip_longest(node.child, node.child[1:]):
new_child_list.append(child_node)
end = next_child_node.word_span[0] if next_child_node is not None else node.word_span[1]
for i in range(child_node.word_span[1], end):
new_child_list.append(wrap_word((i, i + 1)))
origin_children = node.child
node.child = new_child_list
for child in origin_children:
sort_and_fill_blank(child)
sort_and_fill_blank(root)
def random_merge(node):
children = node.child
for child_node in children:
if isinstance(child_node, ConstTree):
random_merge(child_node)
else:
assert len(children) == 1
while len(children) > 2:
idx = random_obj.randint(0, len(children) - 2)
tree_a = children[idx]
tree_b = children[idx + 1]
new_tree = ConstTree("X")
new_tree.word_span = (tree_a.word_span[0], tree_b.word_span[1])
new_tree.child = [tree_a, tree_b]
children[idx] = new_tree
children.pop(idx + 1)
random_merge(root)
root.populate_spans_internal()
return root
def mapper(options):
main_dir, bank, strip_tree, is_train, graph_type, detect_func_name = options
detect_func = {"small": HRGDerivation.detect_small,
"large": HRGDerivation.detect_large,
"lexicalized": HRGDerivation.detect_lexicalized}[detect_func_name]
result = []
with open(main_dir + bank, encoding="utf-8") as f:
if bank.startswith("."):
return
while True:
sent_id = f.readline().strip()
if not sent_id:
break
assert sent_id.startswith("#")
sent_id = sent_id[1:]
tree_literal = f.readline().strip()
try:
with gzip.open(deepbank_export_path + bank + "/" + sent_id + ".gz",
"rb") as f_gz:
contents = f_gz.read().decode("utf-8")
cfg = ConstTree.from_java_code_deepbank_1_1(tree_literal, contents)
# strip labels
if strip_tree == STRIP_ALL_LABELS or strip_tree == STRIP_INTERNAL_LABELS:
if strip_tree == STRIP_ALL_LABELS:
strip_label(cfg)
elif strip_tree == STRIP_INTERNAL_LABELS:
strip_label_internal(cfg)
strip_unary(cfg)
elif strip_tree == STRIP_TO_UNLABEL or strip_tree == FUZZY_TREE:
strip_to_unlabel(cfg)
cfg = cfg.condensed_unary_chain()
cfg.populate_spans_internal()
fix_punct_hyphen(cfg)
fields = contents.strip().split("\n\n")
if graph_type == "eds":
eds_literal = fields[-2]
eds_literal = re.sub("\{.*\}", "", eds_literal)
e = eds.loads_one(eds_literal)
hg = HyperGraph.from_eds(e)
elif graph_type == "dmrs":
mrs_literal = fields[-3]
mrs_obj = simplemrs.loads_one(mrs_literal)
hg = HyperGraph.from_mrs(mrs_obj)
else:
raise Exception("Invalid graph type!")
names, args = extract_features(hg, cfg)
if strip_tree == 3:
cfg = fuzzy_cfg(cfg, names)
derivations = CFGRule.extract(hg, cfg,
# draw=True,
sent_id=sent_id,
detect_func=detect_func)
sent_id_info = "# ID: " + sent_id + "\n"
span_info = "# DelphinSpans: " + repr(
[i.span for i in cfg.generate_words()]) + "\n"
args_info = "# Args: " + repr(list(args)) + "\n"
names_info = "# Names: " + repr(list(names)) + "\n"
header = sent_id_info + span_info + args_info + names_info
original_cfg = cfg.to_string(with_comma=False).replace("+++", "+!+")
rules = list(cfg.generate_rules())
assert len(derivations) == len(rules)
for syn_rule, cfg_rule in zip(derivations, rules):
assert cfg_rule.tag == syn_rule.lhs
new_name = "{}#{}".format(cfg_rule.tag,
len(syn_rule.hrg.lhs.nodes) \
if syn_rule.hrg is not None else 0)
cfg_rule.tag = new_name
additional_cfg = cfg.to_string(with_comma=False).replace("+++", "+!+")
if any(rule
for rule in cfg.generate_rules() if len(rule.child) > 2):
if is_train:
print("{} Not binary tree!".format(sent_id))
else:
raise Exception("Not binary tree!")
result.append((sent_id, derivations, header + original_cfg,
header + additional_cfg))
except Exception as e:
print(sent_id)
print(e.__class__.__name__)
result.append((sent_id, None, None, None))
traceback.print_exc()
return bank, result
def extract_sync_grammer(java_out_dir, output_file, output_fulllabel_file,
name, strip_tree=DONT_STRIP, limit=None,
graph_type="eds",
detect_func="small"):
derivations = {}
banks = sorted(os.listdir(java_out_dir))
if limit is not None:
banks = banks[:limit]
pool = Pool(processes=8)
all_rules = {}
def convert_derivation(derivation):
""" convert multiple object of the same rule into one object"""
for rule in derivation:
standard_rule = all_rules.get(rule)
if standard_rule is None:
standard_rule = all_rules[rule] = rule
yield standard_rule
is_train = "train" in java_out_dir
all_options = [(java_out_dir, i, strip_tree, is_train,
graph_type, detect_func) for i in banks]
results_list = list(pool.imap_unordered(mapper, all_options))
pool.terminate()
results_list.sort(key=lambda x: x[0])
with open(output_file, "w") as f_1, \
open(output_fulllabel_file, "w") as f_2:
for bank, results in results_list:
print("Processing " + bank)
for result in results:
sent_id, derivation, original_cfg, additional_cfg = result
if derivation is not None:
derivations[sent_id] = list(convert_derivation(derivation))
f_1.write(original_cfg + "\n")
f_2.write(additional_cfg + "\n")
if not is_train:
return
# write derivations
with open("deepbank-preprocessed/derivations-{}.pickle".format(name), "wb") as f:
pickle.dump(derivations, f)
# write count
rule_count = SampleCounter()
for file_name, steps in derivations.items():
for step, rule in enumerate(steps):
rule_count.add(rule, (file_name, step))
with open("deepbank-preprocessed/count-{}.pickle".format(name), "wb") as f:
pickle.dump(rule_count, f)
# write SHRG
from collections import defaultdict
counter = defaultdict(Counter)
for rule, (count, example) in rule_count.items():
# if all(i.is_terminal for i in rule.hrg.rhs.edges):
# continue
if rule.rhs is None:
continue
def format_tag_and_edge(tag, edge):
if isinstance(tag, Lexicon):
return tag
assert isinstance(tag, six.string_types)
return "{}#{}".format(tag.replace("+++", "+!+"),
0 if edge is None else len(edge.nodes))
external_point_count = len(rule.hrg.lhs.nodes) if rule.hrg is not None else 0
cfg = ("{}#{}".format(rule.lhs.replace("+++", "+!+"), external_point_count),
tuple(format_tag_and_edge(tag, edge) for tag, edge in rule.rhs))
counter[cfg][rule] = count
with open("deepbank-preprocessed/cfg_hrg_mapping-{}.pickle".format(name), "wb") as f:
pickle.dump(counter, f)
sorted_counter = sorted(((k, len(v)) for k, v in counter.items()), key=lambda x: x[1])
X = []
Y = []
for idx, (hrg, count) in enumerate(reversed(sorted_counter)):
X.append(idx)
Y.append(count)
def extract_banks(prefix, strip_tree=DONT_STRIP, graph_type="eds",
limit=None, detect_func="small"):
for mode in ("train", "dev", "test"):
main_dir = main_dir_base + "/java_out_" + mode + "/"
output_file = "./deepbank-preprocessed/" + prefix + "." + mode
output_fulllabel_file = "./deepbank-preprocessed/" + prefix + ".fulllabel." + mode
extract_sync_grammer(main_dir, output_file, output_fulllabel_file,
prefix, strip_tree=strip_tree, graph_type=graph_type,
limit=limit, detect_func=detect_func)
if __name__ == '__main__':
extract_banks("deepbank1.1-lite-test", STRIP_ALL_LABELS)
# extract_banks("deepbank1.1-lite-all-lexicalizedg-fix", STRIP_ALL_LABELS, detect_func="lexicalized")
#extract_banks("deepbank1.1-lite-internal", STRIP_INTERNAL_LABELS)
# extract_banks("deepbank1.1-dmrs-unlabeled", 2, graph_type="dmrs")
# extract_banks("deepbank1.1-unlabeled", 2, graph_type="eds")
# extract_banks("deepbank1.1-fuzzy-3", FUZZY_TREE, graph_type="eds")