-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathaudfprint_match.py
490 lines (448 loc) · 20.8 KB
/
audfprint_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# coding=utf-8
"""
audfprint_match.py
Fingerprint matching code for audfprint
2014-05-26 Dan Ellis [email protected]
"""
from __future__ import division, print_function
import os
import time
import psutil
import numpy as np
import scipy.signal
# Don't sweat failure to import graphics support.
try:
import matplotlib.pyplot as plt
import librosa.display
except:
pass
import audfprint_analyze
import audio_read
import stft
def process_info():
rss = usrtime = 0
p = psutil.Process(os.getpid())
if os.name == 'nt':
rss = p.memory_info()[0]
usrtime = p.cpu_times()[0]
else:
rss = p.get_memory_info()[0]
usrtime = p.get_cpu_times()[0]
return rss, usrtime
def log(message):
""" log info with stats """
print('%s physmem=%s utime=%s %s' % (time.ctime(), process_info()))
def encpowerof2(val):
""" Return N s.t. 2^N >= val """
return int(np.ceil(np.log(max(1, val)) / np.log(2)))
def locmax(vec, indices=False):
""" Return a boolean vector of which points in vec are local maxima.
End points are peaks if larger than single neighbors.
if indices=True, return the indices of the True values instead
of the boolean vector. (originally from audfprint.py)
"""
# x[-1]-1 means last value can be a peak
# nbr = np.greater_equal(np.r_[x, x[-1]-1], np.r_[x[0], x])
# the np.r_ was killing us, so try an optimization...
nbr = np.zeros(len(vec) + 1, dtype=bool)
nbr[0] = True
nbr[1:-1] = np.greater_equal(vec[1:], vec[:-1])
maxmask = (nbr[:-1] & ~nbr[1:])
if indices:
return np.nonzero(maxmask)[0]
else:
return maxmask
def keep_local_maxes(vec):
""" Zero out values unless they are local maxima."""
local_maxes = np.zeros(vec.shape)
locmaxindices = locmax(vec, indices=True)
local_maxes[locmaxindices] = vec[locmaxindices]
return local_maxes
def find_modes(data, threshold=5, window=0):
""" Find multiple modes in data, Report a list of (mode, count)
pairs for every mode greater than or equal to threshold.
Only local maxima in counts are returned.
"""
# TODO: Ignores window at present
datamin = np.amin(data)
fullvector = np.bincount(data - datamin)
# Find local maxima
localmaxes = np.nonzero(np.logical_and(locmax(fullvector),
np.greater_equal(fullvector,
threshold)))[0]
return localmaxes + datamin, fullvector[localmaxes]
class Matcher(object):
"""Provide matching for audfprint fingerprint queries to hash table"""
def __init__(self):
"""Set up default object values"""
# Tolerance window for time differences
self.window = 1
# Absolute minimum number of matching hashes to count as a match
self.threshcount = 5
# How many hits to return?
self.max_returns = 1
# How deep to search in return list?
self.search_depth = 100
# Sort those returns by time (instead of counts)?
self.sort_by_time = False
# Verbose reporting?
self.verbose = False
# Do illustration?
self.illustrate = False
# Careful counts?
self.exact_count = False
# Search for time range?
self.find_time_range = False
# Quantile of time range to report.
self.time_quantile = 0.02
# Display pre-emphasized spectrogram in illustrate_match?
self.illustrate_hpf = False
# If there are a lot of matches within a single track at different
# alignments, stop looking after a while.
self.max_alignments_per_id = 100
def _best_count_ids(self, hits, ht):
""" Return the indexes for the ids with the best counts.
hits is a matrix as returned by hash_table.get_hits()
with rows of consisting of [id dtime hash otime] """
allids = hits[:, 0]
ids = np.unique(allids)
# rawcounts = np.sum(np.equal.outer(ids, allids), axis=1)
# much faster, and doesn't explode memory
rawcounts = np.bincount(allids)[ids]
# Divide the raw counts by the total number of hashes stored
# for the ref track, to downweight large numbers of chance
# matches against longer reference tracks.
wtdcounts = rawcounts / (ht.hashesperid[ids].astype(float))
# Find all the actual hits for a the most popular ids
bestcountsixs = np.argsort(wtdcounts)[::-1]
# We will examine however many hits have rawcounts above threshold
# up to a maximum of search_depth.
maxdepth = np.minimum(np.count_nonzero(np.greater(rawcounts,
self.threshcount)),
self.search_depth)
# Return the ids to check
bestcountsixs = bestcountsixs[:maxdepth]
return ids[bestcountsixs], rawcounts[bestcountsixs]
def _unique_match_hashes(self, id, hits, mode):
""" Return the list of unique matching hashes. Split out so
we can recover the actual matching hashes for the best
match if required. """
allids = hits[:, 0]
alltimes = hits[:, 1]
allhashes = hits[:, 2].astype(np.int64)
allotimes = hits[:, 3]
timebits = max(1, encpowerof2(np.amax(allotimes)))
# matchhashes may include repeats because multiple
# ref hashes may match a single query hash under window.
# Uniqify:
# matchhashes = sorted(list(set(matchhashes)))
# much, much faster:
matchix = np.nonzero(
np.logical_and(allids == id, np.less_equal(np.abs(alltimes - mode),
self.window)))[0]
matchhasheshash = np.unique(allotimes[matchix]
+ (allhashes[matchix] << timebits))
timemask = (1 << timebits) - 1
matchhashes = np.c_[matchhasheshash & timemask,
matchhasheshash >> timebits]
return matchhashes
def _calculate_time_ranges(self, hits, id, mode):
"""Given the id and mode, return the actual time support.
hits is an np.array of id, skew_time, hash, orig_time
which must be sorted in orig_time order."""
minoffset = mode - self.window
maxoffset = mode + self.window
# match_times = sorted(hits[row, 3]
# for row in np.nonzero(hits[:, 0]==id)[0]
# if mode - self.window <= hits[row, 1]
# and hits[row, 1] <= mode + self.window)
match_times = hits[np.logical_and.reduce([
hits[:, 1] >= minoffset,
hits[:, 1] <= maxoffset,
hits[:, 0] == id
]), 3]
min_time = match_times[int(len(match_times) * self.time_quantile)]
max_time = match_times[int(len(match_times) * (1.0 - self.time_quantile)) - 1]
# log("_calc_time_ranges: len(hits)={:d} id={:d} mode={:d} matches={:d} min={:d} max={:d}".format(
# len(hits), id, mode, np.sum(np.logical_and(hits[:, 1] >= minoffset,
# hits[:, 1] <= maxoffset)),
# min_time, max_time))
return min_time, max_time
def _exact_match_counts(self, hits, ids, rawcounts, hashesfor=None):
"""Find the number of "filtered" (time-consistent) matching hashes
for each of the promising ids in <ids>. Return an
np.array whose rows are [id, filtered_count,
modal_time_skew, unfiltered_count, original_rank,
min_time, max_time]. Results are sorted by original rank
(but will not in general include all the the original
IDs). There can be multiple rows for a single ID, if
there are several distinct time_skews giving good
matches.
"""
# Sort hits into time_in_original order - needed for _calc_time_range
sorted_hits = hits[hits[:, 3].argsort()]
# Slower, old process for exact match counts
allids = sorted_hits[:, 0]
alltimes = sorted_hits[:, 1]
allhashes = sorted_hits[:, 2]
# allotimes = sorted_hits[:, 3]
# Allocate enough space initially for 4 modes per hit
maxnresults = len(ids) * 4
results = np.zeros((maxnresults, 7), np.int32)
nresults = 0
min_time = 0
max_time = 0
for urank, (id, rawcount) in enumerate(zip(ids, rawcounts)):
modes, counts = find_modes(alltimes[np.nonzero(allids == id)[0]],
window=self.window,
threshold=self.threshcount)
for mode in modes:
matchhashes = self._unique_match_hashes(id, sorted_hits, mode)
# Now we get the exact count
filtcount = len(matchhashes)
if filtcount >= self.threshcount:
if nresults == maxnresults:
# Extend array
maxnresults *= 2
results.resize((maxnresults, results.shape[1]))
if self.find_time_range:
min_time, max_time = self._calculate_time_ranges(
sorted_hits, id, mode)
results[nresults, :] = [id, filtcount, mode, rawcount,
urank, min_time, max_time]
nresults += 1
return results[:nresults, :]
def _approx_match_counts(self, hits, ids, rawcounts):
""" Quick and slightly inaccurate routine to count time-aligned hits.
Only considers largest mode for reference ID match.
Args:
hits: np.array of hash matches, each row consists of
<track_id, skew_time, hash, orig_time>.
ids: list of the IDs to check, based on raw match count.
rawcounts: list giving the actual raw counts for each id to try.
Returns:
Rows of [id, filt_count, time_skew, raw_count, orig_rank,
min_time, max_time].
Ids occur in the same order as the input list, but ordering
of (potentially multiple) hits within each track may not be
sorted (they are sorted by the largest single count value, not
the total count integrated over -window:+window bins).
"""
# In fact, the counts should be the same as exact_match_counts
# *but* some matches may be pruned because we don't bother to
# apply the window (allowable drift in time alignment) unless
# there are more than threshcount matches at the single best time skew.
# Note: now we allow multiple matches per ID, this may need to grow
# so it can grow inside the loop.
results = np.zeros((len(ids), 7), np.int32)
if not hits.size:
# No hits found, return empty results
return results
# Sort hits into time_in_original order - needed for _calc_time_range
sorted_hits = hits[hits[:, 3].argsort()]
allids = sorted_hits[:, 0].astype(int)
alltimes = sorted_hits[:, 1].astype(int)
# Make sure every value in alltimes is >=0 for bincount
mintime = np.amin(alltimes)
alltimes -= mintime
nresults = 0
min_time = 0
max_time = 0
for urank, (id, rawcount) in enumerate(zip(ids, rawcounts)):
# Make sure id is an int64 before shifting it up.
id = int(id)
# Select the subrange of bincounts corresponding to this id
bincounts = np.bincount(alltimes[allids == id])
still_looking = True
# Only consider legit local maxima in bincounts.
filtered_bincounts = keep_local_maxes(bincounts)
found_this_id = 0
while still_looking:
mode = np.argmax(filtered_bincounts)
if filtered_bincounts[mode] <= self.threshcount:
# Too few - skip to the next id
still_looking = False
continue
count = np.sum(bincounts[max(0, mode - self.window):
(mode + self.window + 1)])
if self.find_time_range:
min_time, max_time = self._calculate_time_ranges(
sorted_hits, id, mode + mintime)
results[nresults, :] = [id, count, mode + mintime, rawcount,
urank, min_time, max_time]
nresults += 1
if nresults >= results.shape[0]:
results = np.vstack([results, np.zeros(results.shape,
np.int32)])
# Clear this hit to find next largest.
filtered_bincounts[max(0, mode - self.window):
(mode + self.window + 1)] = 0
found_this_id += 1
if found_this_id > self.max_alignments_per_id:
still_looking = False
return results[:nresults, :]
def match_hashes(self, ht, hashes, hashesfor=None):
""" Match audio against fingerprint hash table.
Return top N matches as (id, filteredmatches, timoffs, rawmatches,
origrank, mintime, maxtime)
If hashesfor specified, return the actual matching hashes for that
hit (0=top hit).
"""
# find the implicated id, time pairs from hash table
# log("nhashes=%d" % np.shape(hashes)[0])
hits = ht.get_hits(hashes)
bestids, rawcounts = self._best_count_ids(hits, ht)
# log("len(rawcounts)=%d max(rawcounts)=%d" %
# (len(rawcounts), max(rawcounts)))
if not self.exact_count:
results = self._approx_match_counts(hits, bestids, rawcounts)
else:
results = self._exact_match_counts(hits, bestids, rawcounts,
hashesfor)
# Sort results by filtered count, descending
results = results[(-results[:, 1]).argsort(),]
# Where was our best hit in the unfiltered count ranking?
# (4th column is rank in original list; look at top hit)
# if np.shape(results)[0] > 0:
# bestpos = results[0, 4]
# print "bestpos =", bestpos
# Could use to collect stats on best search-depth to use...
# Now strip the final column (original raw-count-based rank)
# results = results[:, :4]
if hashesfor is None:
return results
else:
id = results[hashesfor, 0]
mode = results[hashesfor, 2]
hashesforhashes = self._unique_match_hashes(id, hits, mode)
return results, hashesforhashes
def match_file(self, analyzer, ht, filename, number=None):
""" Read in an audio file, calculate its landmarks, query against
hash table. Return top N matches as (id, filterdmatchcount,
timeoffs, rawmatchcount), also length of input file in sec,
and count of raw query hashes extracted
"""
q_hashes = analyzer.wavfile2hashes(filename)
# Fake durations as largest hash time
if len(q_hashes) == 0:
durd = 0.0
else:
durd = analyzer.n_hop * q_hashes[-1][0] / analyzer.target_sr
if self.verbose:
if number is not None:
numberstring = "#%d" % number
else:
numberstring = ""
print(time.ctime(), "Analyzed", numberstring, filename, "of",
('%.3f' % durd), "s "
"to", len(q_hashes), "hashes")
# Run query
rslts = self.match_hashes(ht, q_hashes)
# Post filtering
if self.sort_by_time:
rslts = rslts[(-rslts[:, 2]).argsort(), :]
return rslts[:self.max_returns, :], durd, len(q_hashes)
def file_match_to_msgs(self, analyzer, ht, qry, number=None):
""" Perform a match on a single input file, return list
of message strings """
rslts, dur, nhash = self.match_file(analyzer, ht, qry, number)
t_hop = analyzer.n_hop / analyzer.target_sr
if self.verbose:
qrymsg = qry + (' %.1f ' % dur) + "sec " + str(nhash) + " raw hashes"
else:
qrymsg = qry
msgrslt = []
if len(rslts) == 0:
# No matches returned at all
nhashaligned = 0
if self.verbose:
msgrslt.append("NOMATCH " + qrymsg)
else:
msgrslt.append(qrymsg + "\t")
else:
for (tophitid, nhashaligned, aligntime, nhashraw, rank,
min_time, max_time) in rslts:
# figure the number of raw and aligned matches for top hit
if self.verbose:
if self.find_time_range:
msg = ("Matched {:6.1f} s starting at {:6.1f} s in {:s}"
" to time {:6.1f} s in {:s}").format(
(max_time - min_time) * t_hop, min_time * t_hop, qry,
(min_time + aligntime) * t_hop, ht.names[tophitid])
else:
msg = "Matched {:s} as {:s} at {:6.1f} s".format(
qrymsg, ht.names[tophitid], aligntime * t_hop)
msg += (" with {:5d} of {:5d} common hashes"
" at rank {:2d}").format(
nhashaligned, nhashraw, rank)
msgrslt.append(msg)
else:
msgrslt.append(qrymsg + "\t" + ht.names[tophitid])
if self.illustrate:
self.illustrate_match(analyzer, ht, qry)
return msgrslt
def illustrate_match(self, analyzer, ht, filename):
""" Show the query fingerprints and the matching ones
plotted over a spectrogram """
# Make the spectrogram
# d, sr = librosa.load(filename, sr=analyzer.target_sr)
d, sr = audio_read.audio_read(filename, sr=analyzer.target_sr, channels=1)
sgram = np.abs(stft.stft(d, n_fft=analyzer.n_fft,
hop_length=analyzer.n_hop,
window=np.hanning(analyzer.n_fft + 2)[1:-1]))
sgram = 20.0 * np.log10(np.maximum(sgram, np.max(sgram) / 1e6))
sgram = sgram - np.mean(sgram)
# High-pass filter onset emphasis
# [:-1,] discards top bin (nyquist) of sgram so bins fit in 8 bits
# spectrogram enhancement
if self.illustrate_hpf:
HPF_POLE = 0.98
sgram = np.array([scipy.signal.lfilter([1, -1],
[1, -HPF_POLE], s_row)
for s_row in sgram])[:-1, ]
sgram = sgram - np.max(sgram)
librosa.display.specshow(sgram, sr=sr, hop_length=analyzer.n_hop,
y_axis='linear', x_axis='time',
cmap='gray_r', vmin=-80.0, vmax=0)
# Do the match?
q_hashes = analyzer.wavfile2hashes(filename)
# Run query, get back the hashes for match zero
results, matchhashes = self.match_hashes(ht, q_hashes, hashesfor=0)
if self.sort_by_time:
results = sorted(results, key=lambda x: -x[2])
# Convert the hashes to landmarks
lms = audfprint_analyze.hashes2landmarks(q_hashes)
mlms = audfprint_analyze.hashes2landmarks(matchhashes)
# Overplot on the spectrogram
time_scale = analyzer.n_hop / float(sr)
freq_scale = float(sr)/analyzer.n_fft
plt.plot(time_scale * np.array([[x[0], x[0] + x[3]] for x in lms]).T,
freq_scale * np.array([[x[1], x[2]] for x in lms]).T,
'.-g')
plt.plot(time_scale * np.array([[x[0], x[0] + x[3]] for x in mlms]).T,
freq_scale * np.array([[x[1], x[2]] for x in mlms]).T,
'.-r')
# Add title
plt.title(filename + " : Matched as " + ht.names[results[0][0]]
+ (" with %d of %d hashes" % (len(matchhashes),
len(q_hashes))))
# Display
plt.show()
# Return
return results
def localtest():
"""Function to provide quick test"""
pat = '/Users/dpwe/projects/shazam/Nine_Lives/*mp3'
qry = 'query.mp3'
hash_tab = audfprint_analyze.glob2hashtable(pat)
matcher = Matcher()
rslts, dur, nhash = matcher.match_file(audfprint_analyze.g2h_analyzer,
hash_tab, qry)
t_hop = 0.02322
print("Matched", qry, "(", dur, "s,", nhash, "hashes)",
"as", hash_tab.names[rslts[0][0]],
"at", t_hop * float(rslts[0][2]), "with", rslts[0][1],
"of", rslts[0][3], "hashes")
# Run the main function if called from the command line
if __name__ == "__main__":
localtest()