-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
362 lines (296 loc) · 12.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from dataset_video import return_dataset
from models import VideoModel
import torchvision
import torch
from dataset import VideoDataset
import argparse
from opts import parser
import os
import sys
import time
import torch.backends.cudnn as cudnn
from transforms import *
from torch.nn.utils import clip_grad_norm_
from tensorboardX import SummaryWriter
import shutil
import CosineAnnealingLR
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
best_prec1 = 0
def main():
global args
global best_prec1
args = parser.parse_args()
check_rootfolders()
if args.dataset == 'something-v1':
num_class = 174
rgb_prefix = ''
rgb_read_format = "{:05d}.jpg"
elif args.dataset == 'diving48':
num_class = 48
rgb_prefix = 'frames'
rgb_read_format = "{:05d}.jpg"
else:
ValueError("Unknown dataset"+args.dataset)
model_dir = os.path.join('experiments', args.dataset, args.arch, args.consensus_type+'-'+args.modality, f"{args.run_iter}")
if not args.resume:
if os.path.exists(model_dir):
print(f"Dir {model_dir} already exists!")
else:
os.makedirs(model_dir)
os.makedirs(os.path.join(model_dir, args.root_log))
writer = SummaryWriter(model_dir)
#print("Adding stuff to", model_dir)
#.add_scalar("LOSS", 2, 10)
writer.flush()
#sys.exit(1)
train_videofolder, val_videofolder, args.root_path, _ = return_dataset(args.dataset)
model = VideoModel(num_class=num_class, modality=args.modality,
num_segments=args.num_segments, base_model=args.arch, consensus_type=args.consensus_type,
dropout=args.dropout, partial_bn=not args.no_partialbn, gsm=args.gsm, target_transform=None)
print("parameters", sum(p.numel() for p in model.parameters()))
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
train_augmentation = model.get_augmentation()
policies = model.get_optim_policies()
model = torch.nn.DataParallel(model).cuda()
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'], strict=False)
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
cudnn.benchmark = True
normalize = GroupNormalize(input_mean, input_std)
train_loader = torch.utils.data.DataLoader(
VideoDataset(args.root_path, train_videofolder, num_segments=8,
new_length=1,
modality="RGB",
image_tmpl=rgb_prefix+rgb_read_format,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize
])),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
VideoDataset(args.root_path, val_videofolder, num_segments=8,
new_length=1,
modality="RGB",
image_tmpl=rgb_prefix+rgb_read_format,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3']))
])),
batch_size=16, shuffle=True,
num_workers=4, pin_memory=True)
criterion = torch.nn.CrossEntropyLoss().cuda()
#for group in policies:
# print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
# group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler_clr = CosineAnnealingLR.WarmupCosineLR(optimizer=optimizer,
milestones=[args.warmup, args.epochs],
warmup_iters=args.warmup,
min_ratio=1e-7)
if args.resume:
for epoch in range(0, args.start_epoch):
lr_scheduler_clr.step()
if args.evaluate:
validate(val_loader, model, criterion, 0)
return
log_training = open(os.path.join(model_dir, args.root_log, '%s.csv' % args.store_name), 'a')
for epoch in range(args.start_epoch, args.epochs):
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch + 1)
writer.flush()
train_prec1 = train(train_loader, model, criterion, optimizer, epoch, log_training, writer=writer)
lr_scheduler_clr.step()
# evaluate on validation set
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
prec1 = validate(val_loader, model, criterion, (epoch + 1) * len(train_loader), log_training,
writer=writer, epoch=epoch)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'current_prec1': prec1,
'lr': optimizer.param_groups[-1]['lr'],
}, is_best, model_dir)
else:
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'current_prec1': train_prec1,
'lr': optimizer.param_groups[-1]['lr'],
}, False, model_dir)
def train(train_loader, model, criterion, optimizer, epoch, log, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
if args.no_partialbn:
model.module.partialBN(False)
else:
model.module.partialBN(True)
# switch to train mode
model.train()
loss_summ = 0
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var) / args.iter_size
loss_summ += loss
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1,5))
losses.update(loss_summ.data, input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
# compute gradient and do SGD step
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
if (i+1) % args.iter_size == 0:
# scale down gradients when iter size is functioning
optimizer.step()
optimizer.zero_grad()
loss_summ = 0
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr']))
print(output)
#print("Adding scalar", losses.avg)
writer.add_scalar('train/batch_loss', losses.avg, epoch * len(train_loader) + i)
writer.add_scalar('train/batch_top1Accuracy', top1.avg, epoch * len(train_loader) + i)
writer.flush()
log.write(output + '\n')
log.flush()
writer.add_scalar('train/loss', losses.avg, epoch + 1)
writer.add_scalar('train/top1Accuracy', top1.avg, epoch + 1)
writer.add_scalar('train/top5Accuracy', top5.avg, epoch + 1)
writer.flush()
return top1.avg
def validate(val_loader, model, criterion, iter, log, epoch, writer):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1,5))
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(output)
log.write(output + '\n')
log.flush()
output = ('Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, top5=top5, loss=losses))
print(output)
output_best = '\nBest Prec@1: %.3f'%(best_prec1)
print(output_best)
writer.add_scalar('test/loss', losses.avg, epoch + 1)
writer.add_scalar('test/top1Accuracy', top1.avg, epoch + 1)
writer.add_scalar('test/top5Accuracy', top5.avg, epoch + 1)
writer.flush()
log.write(output + ' ' + output_best + '\n')
log.flush()
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, is_best, model_dir):
#print(f"Saving checkpoint: {state} to {model_dir}")
torch.save(state, '%s/%s_checkpoint.pth.tar' % (model_dir, args.store_name))
if is_best:
shutil.copyfile('%s/%s_checkpoint.pth.tar' % (model_dir, args.store_name),
'%s/%s_best.pth.tar' % (model_dir, args.store_name))
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def check_rootfolders():
"""Create log and model folder"""
folders_util = [args.root_log, args.root_model, args.root_output]
for folder in folders_util:
if not os.path.exists(folder):
print('creating folder ' + folder)
os.mkdir(folder)
if __name__ == "__main__":
main()