-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_config_rl.py
350 lines (256 loc) · 11.4 KB
/
tf_config_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# 30/4/23 DH: Refactor TFConfig class
from tf_config import *
# 30/4/23 DH: Refactor of GSpreadErrors class
from gspread_rl import *
from gspread_rl_parts import *
# 7/5/23 DH:
import signal
import sys
class TFConfigRL(TFConfig):
def __init__(self, tfConfigTrain, integer=False) -> None:
# Get access to parent attributes via 'super()'
super().__init__(integer=integer)
# 30/4/23 DH: Refactor GSpreadErrors class
self.gspreadRL = GSpreadRL(spreadsheet="Addresses",sheet="mnist-rl")
self.gspreadRLparts = GSpreadRLparts(spreadsheet="Addresses",sheet="mnist-rl-parts")
self.tfConfigTrain = tfConfigTrain
# 7/5/23 DH:
signal.signal(signal.SIGINT, self.signal_handler)
# 28/4/23 DH:
def checkBreakout(self):
# 27/4/23 DH: Get an updated 'softmax2DList' after a specified '% increase' in accuracy
if hasattr(self, 'accuracyPercent'):
# 28/4/23 DH:
if float(self.lowestPercent) > float(self.accuracyPercent):
self.lowestPercent = self.accuracyPercent
partDict = self.runPartNumbers[self.runPartNum]
if float(partDict['lowestPercent']) > float(self.accuracyPercent):
partDict['lowestPercent'] = self.accuracyPercent
if float(partDict['highestPercent']) < float(self.accuracyPercent):
partDict['highestPercent'] = self.accuracyPercent
# 28/4/23 DH:
if float(self.accuracyPercent) > float(self.startPercent) + self.desiredIncrease:
partDict['endPercent'] = self.accuracyPercent
return True
# END: ------------- 'if hasattr(self, 'accuracyPercent')' ---------------
return False
# 10/5/23 DH:
def retrainToBreakout(self,elem):
"""
# 7/5/23 DH: TFConfig.bitwiseAND() shows that self checking via bitwise-AND with example image
is only 25% accurate (7428/10000 errors).
Demonstrates efficacy of TF
1) 'y_test[elem]' not available for operational system, so need to try intermittent retrain
with random small training sets (like agent CPD...)
2) Selective retrain EVERY FAILURE after batch training to 50% accurate
"""
# 22/4/23 DH: Send 'x_test[elem]' to 'bitwiseAndDefinitive()' to get self checking update
# (...which in this case is a little REDUNDANT since 'y_test[elem]' is the answer we need...!)
# 26/4/23 DH: Adding 'class weights' didn't help (prob due to overriding TF algorithms)
classWeightDict = {0:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1}
classWeightDict[ self.y_test[elem] ] = 2
x_test_elemArray = np.array([self.x_test[elem]])
y_test_elemArray = np.array([self.y_test[elem]])
# 26/4/23 DH: 'train_on_batch' resulted in "tensor 'Placeholder/_1' value" error
#
# 10/5/23 DH: TRAIN ON EVERY FAILURE
self.tfModel.model.fit(x=x_test_elemArray, y=y_test_elemArray)
self.recordAccuracy()
if self.checkBreakout():
return True
return False # ie no breakout...
# 10/5/23 DH:
def recordAccuracy(self):
self.accuracyPercent = self.modelEval()
if not 'startPercent' in self.runPartNumbers[self.runPartNum]:
print("Adding startPercent ", self.accuracyPercent,"to part",self.runPartNum,"\n")
self.runPartNumbers[self.runPartNum]['startPercent'] = self.accuracyPercent
self.runPartNumbers[self.runPartNum]['lowestPercent'] = self.accuracyPercent
self.runPartNumbers[self.runPartNum]['highestPercent'] = self.accuracyPercent
# 27/4/23 DH:
def rlRunPart(self, rl):
# 23/4/23 DH: Get trained NN (wrapped with softmax layer)
self.probability_model = self.tfModel.getProbabilityModel(self.model)
softmax2DList = self.probability_model(self.x_test).numpy()
self.runPartNum += 1
"""
# 28/4/23 DH: Now each part is a dictionary (within the 'runPartNumbers' dictionary):
startPercent (DONE)
endPercent (DONE)
lowestPercent (DONE)
highestPercent (DONE)
partStartCnt (DONE)
"""
self.runPartNumbers[self.runPartNum] = {'partStartCnt': self.iCnt}
self.imgNum = self.x_test.shape[0]
print("*************************************************************************")
print(self.runPartNum,") Looping through",self.imgNum,"images from x_test")
print("*************************************************************************\n")
if rl == False:
self.recordAccuracy()
for elem in range(self.imgNum):
predictedVal = np.argmax(softmax2DList[elem])
if self.y_test[elem] != predictedVal:
self.iCnt += 1
#print("Predicted value:",predictedVal,", Expected value:",self.y_test[elem])
if rl == True:
if self.retrainToBreakout(elem) == True:
break
# END: ------------- 'if y_test[elem] != predictedVal' --------------
if self.errorNum != self.iCnt and self.iCnt % 100 == 0:
print("####################################################################")
print(self.iCnt, "errors at element",elem)
print("####################################################################")
print()
# "%100" error gets printed out ONLY ONCE (not until "%100 + 1" error)
self.errorNum = self.iCnt
# END: ------------- 'for elem in range(self.imgNum)' -------------
# 24/4/23 DH:
def rlRun(self, paramDictList, rl=True):
for paramDict in paramDictList:
self.build(paramDict)
self.trgTotal = paramDict['trainingNum']
self.iCnt = 0
self.errorNum = 0
self.runPartNum = 0
# 28/4/23 DH: Now a dictionary of dictionaries
self.runPartNumbers = {}
# 10/5/23 DH: Running the 'rl' command (and not 'cpd')
if rl == True:
self.desiredIncrease = 0.05
self.rlRunPart(rl)
while float(self.accuracyPercent) < 0.90:
self.desiredIncrease += 0.05
self.rlRunPart(rl)
self.printStats()
# 29/4/23 DH:
self.populateGSheetRL()
# 10/5/23 DH: Running the 'cpd' command
else:
self.rlRunPart(rl)
# 'accuracyPercent' rounded to 2 decimal places in 'TFConfig.modelEval()' so can reach 1.0, ie 100%
# (Needs < 51 errors of 10,000 in 'self.rlRunPart()' for 2dp to round to 100%)
while float(self.accuracyPercent) < 1.0:
self.tfModel.model.fit(x=self.x_test, y=self.y_test)
x_testNum = self.x_test.shape[0]
self.trgTotal += x_testNum
# Now also train with non tested images
"""
10,10 = 50/50
20,10 = 66/33
30,10 = 75/25
40,10 = 80/20
Result = 760700 for 50/50 images cf 260700 to reach 2dp rounded 100%
Result = 1950700 for 66/33 images
Result = 2040700 for 75/25 images
Result = 4750700 for 80/20 images
"""
ratio = 0
if ratio > 0:
self.tfModel.model.fit(x=self.x_train[:(x_testNum * ratio)], y=self.y_train[:(x_testNum * ratio)])
self.trgTotal += (x_testNum * ratio)
self.rlRunPart(rl)
self.printStats()
# 7/5/23 DH: Handling interrupt when RL does not run to completion (due to Spaceport exception handling)
# ...get the stats gained before stopping to coach a debrief.
def signal_handler(self, sig, frame):
print('\nYou pressed Ctrl+C so saving stats (to coach a debrief)...')
self.printStats()
print("\nTFConfigRL.signal_handler()")
print(" #self.populateGSheetRL()")
#self.populateGSheetRL()
sys.exit(0)
# ========================= Display stats + populate Google Sheets =====================
# 29/4/23 DH:
def getPartCnt(self):
# 28/4/23 DH: Print part count (counts recorded at start for each part, not num in part)
partCnt = 0
currentPart = self.runPartNumbers[self.key]
if self.key + 1 in self.runPartNumbers:
nextPart = self.runPartNumbers[self.key + 1]
self.subCnt = nextPart['partStartCnt']
partCnt = nextPart['partStartCnt'] - currentPart['partStartCnt']
else:
self.subCnt = self.iCnt - self.subCnt
partCnt = self.subCnt
return partCnt
# 28/4/23 DH:
def printPartStats(self):
# 28/4/23 DH: Added in for stats debug
for key in self.runPartNumbers.keys():
print(key,":",self.runPartNumbers[key])
print()
self.subCnt = 0
for self.key in self.runPartNumbers.keys():
partCnt = self.getPartCnt()
print(self.key,":",partCnt)
# 28/4/23 DH: Other metrics for part
currentPart = self.runPartNumbers[self.key]
if 'startPercent' in currentPart:
start = currentPart['startPercent']
else:
start = "XXX"
# 7/5/23 DH: Needed for Ctrl-C interrupt handling
if 'endPercent' in currentPart:
end = currentPart['endPercent']
else:
end = "XXX"
if 'lowestPercent' in currentPart:
low = currentPart['lowestPercent']
else:
low = "XXX"
if 'highestPercent' in currentPart:
high = currentPart['highestPercent']
else:
high = "XXX"
print(" : (start:",start,", end:",end,", lowest:",low,", highest:",high,")")
# END: ------- 'for key in self.runPartNumbers.keys()' -------
# 29/4/23 DH:
def printStats(self):
print("-----------")
print("Training total:",self.trgTotal)
print("Total errors:",self.iCnt)
print("Run parts:",self.runPartNum)
print("Accuracy start :",self.startPercent)
print("Accuracy end :",self.accuracyPercent)
print("Lowest accuracy:",self.lowestPercent)
print()
self.printPartStats()
print()
print(self.accuracies)
def populateGSheetRLparts(self):
sheet = self.gspreadRLparts.sheet
self.subCnt = 0
for self.key in self.runPartNumbers.keys():
partCnt = self.getPartCnt()
# 28/4/23 DH: Other metrics for part
currentPart = self.runPartNumbers[self.key]
partStart = currentPart['startPercent']
# 7/5/23 DH: Needed for Ctrl-C interrupt handling
if 'endPercent' in currentPart:
partEnd = currentPart['endPercent']
else:
partEnd = "XXX"
partLow = currentPart['lowestPercent']
partHigh = currentPart['highestPercent']
# Date,Test number,Part number,Count,Start,End,Lowest,Highest
dateOfEntry = self.gspreadRL.dateOfEntry
testnum = self.gspreadRL.testnum
self.gspreadRLparts.addRowRLparts(sheet, entry_date=dateOfEntry, test_num=testnum, part_num=self.key,
count=partCnt, start=partStart, end=partEnd, lowest=partLow, highest=partHigh)
# END: ------- 'for key in self.runPartNumbers.keys()' -------
# 29/4/23 DH:
def populateGSheetRL(self):
self.tfConfigTrain.gspreadErrors.updateSheet(self.tfConfigTrain.gspreadErrors.sheet,
2, 10, "ooh yea...")
sheet = self.gspreadRL.sheet
self.gspreadRL.addRowRL(sheet, dense=self.dense1, dropout=self.dropout1,
training_num=self.trainingNum, retrain_num=self.iCnt, run_parts=self.runPartNum,
accuracy_start=self.startPercent, accuracy_end=self.accuracyPercent, lowest_accuracy=self.lowestPercent)
self.populateGSheetRLparts()
# 1/5/23 DH: Overriden parent class 'getGSheetsData()' in 'GSpreadRL'
#self.gspreadRL.getGSheetsData(sheet)
# 1/5/23 DH: Access parent class 'getGSheetsData()'
#super(type(self.gspreadRL), self.gspreadRL).getGSheetsData(sheet)
print()
self.gspreadRL.getGSheetsDataRL(sheet, self.gspreadRLparts)