-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlgbm_train.py
52 lines (44 loc) · 1.74 KB
/
lgbm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from sklearn.model_selection import KFold
import lightgbm
import numpy as np
import pandas as pd
# root mean squared percentage error
def rmspe(y_true, y_pred):
return np.sqrt(np.mean(np.square((y_true - y_pred) / y_true)))
def feval_rmspe(y_pred, lgb_train):
y_true = lgb_train.get_label()
# eval_name, eval_result, is_higher_better
return "RMSPE", rmspe(y_true, y_pred), False
def train(train_features, train_y_true, k, lgbm_params={}):
kf = KFold(n_splits=k, random_state=2021, shuffle=True)
models = []
for train_index, test_index in kf.split(train_features):
X_train, X_test = (
train_features.loc[train_index],
train_features.loc[test_index],
)
y_train, y_test = train_y_true.loc[train_index], train_y_true.loc[test_index]
train_dataset = lightgbm.Dataset(
X_train, y_train, weight=1 / np.square(y_train)
)
validation_dataset = lightgbm.Dataset(
X_test, y_test, weight=1 / np.square(y_test)
)
model = lightgbm.train(
params=lgbm_params,
train_set=train_dataset,
valid_sets=[train_dataset, validation_dataset],
feval=feval_rmspe,
num_boost_round=1000,
callbacks=[lightgbm.early_stopping(100), lightgbm.log_evaluation(50)],
)
# get prediction score
y_pred = model.predict(X_test)
print("RMSPE = ", rmspe(y_test, y_pred))
lightgbm.plot_importance(model, max_num_features=20)
models.append(model)
return models
def get_feature_importance(model):
return pd.DataFrame(
{"feature": model.feature_name(), "importance": model.feature_importance()}
).sort_values(by="importance", ascending=False)