-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsft.py
243 lines (197 loc) · 6.14 KB
/
sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# %%
import time
import numpy as np
import pandas as pd
import torch
from transformers import Trainer, TrainerCallback, TrainingArguments
import os
from datasets import load_dataset
from qwen.modeling_qwen import QWenLMHeadModel
from qwen.tokenization_qwen import QWenTokenizer
import wandb
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
os.environ["WANDB_MODE"] = "online" #online offline
# set the wandb project where this run will be logged
os.environ["WANDB_PROJECT"]="sft"
# save your trained model checkpoint to wandb
os.environ["WANDB_ENTITY"]="296834189-guangdong-huarun-paints-co-"
os.environ["WANDB_WATCH"]="false"
# turn off watch to log faster
os.environ["WANDB_API_KEY"]="78b6a1d47413854a43a66cce02c839f62e998fed"
wandb.init(project="sft")
# %% [markdown]
# # 1. 定义训练数据,tokenizer,预训练模型的路径及最大长度
# %%
SFT_FILES = [
"./datasets/aplca1.parquet",
"./datasets/bell3.parquet",
"./datasets/aplca3.parquet",
]
tokenizer_dir = "./model_save/pre/checkpoint-42450"
sft_from_checkpoint_file = "./model_save/pre/checkpoint-42450"
model_save_dir = "./model_save/sft/"
max_seq_len = 512
# %% [markdown]
# # 2. 加载训练数据集
PROMPT_DICT = {
"prompt_input": ("你是一个助手 " "用户: {instruction} {input} 回答: "),
"prompt_no_input": ("你是一个助手 " "用户: {instruction} 回答: "),
}
# %%
dataset = load_dataset(
path="parquet", data_files=SFT_FILES, split="train", keep_in_memory=False
)
print(dataset)
# %%
# samples = dataset[0:2]
# print(samples)
# %%
tokenizer = QWenTokenizer.from_pretrained(tokenizer_dir)
print(f"vicab size: {len(tokenizer)}")
tokenizer.pad_token_id = tokenizer.im_end_id
map_dtype = np.uint16 if len(tokenizer) < 65535 else np.uint32
def format_example(example):
prompt_input, prompt_no_input = (
PROMPT_DICT["prompt_input"],
PROMPT_DICT["prompt_no_input"],
)
if example.get("input"):
target = example["output"] + "<|im_end|>"
context = prompt_input.format_map(
dict(instruction=example["instruction"], input=example["input"])
)
example["context"] = context
example["target"] = target
else:
target = example["output"] + "<|im_end|>"
context = prompt_no_input.format_map(dict(instruction=example["instruction"]))
example["context"] = context
example["target"] = target
return example
def preprocess(example):
prompt = example["context"]
target = example["target"]
input_ids = tokenizer(
prompt + target,
return_tensors="pt",
padding="longest",
max_length=512,
truncation=True,
)
seq_ids = tokenizer(
prompt,
return_tensors="pt",
padding="longest",
max_length=512,
truncation=True,
)
input_ids_len = seq_ids.input_ids.ne(tokenizer.pad_token_id).sum().item()
return {"input_ids": input_ids.input_ids[0], "seq_len": input_ids_len}
# print(batched_formatting_prompts_func(samples))
# %%
tokenized_datasets = dataset.map(
function=format_example, num_proc=32, keep_in_memory=False
)
print("1")
print(tokenized_datasets)
tokenized_datasets = tokenized_datasets.map(
function=preprocess, num_proc=32, keep_in_memory=False
).shuffle(23333)
print("2")
print(tokenized_datasets)
# %% [markdown]
# ## 2.2 定义data_collator
# %%
# mlm=False表示训练的是CLM模型
def data_collator(fetures):
len_ids = [len(feture["input_ids"]) for feture in fetures]
longest = max(len_ids) + 1
input_ids = []
attention_mask_list = []
postion_ids_list = []
labels_list = []
for ids_l, feture in sorted(zip(len_ids, fetures), key=lambda x: -x[0]):
ids = feture["input_ids"]
seq_len = feture["seq_len"]
labels = [-100] * seq_len + ids[seq_len:] + [-100] * (longest - ids_l)
ids = ids + [tokenizer.im_end_id] * (longest - ids_l)
_ids = torch.LongTensor(ids)
labels_list.append(torch.LongTensor(labels))
input_ids.append(_ids)
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {"input_ids": input_ids, "labels": labels}
# %% [markdown]
# # 4. 加载预训练模型
# %%
model = QWenLMHeadModel.from_pretrained(sft_from_checkpoint_file)
model_size = sum(t.numel() for t in model.parameters())
print(f"Qwen size: {model_size / 1000**2:.2f}M parameters")
# %% [markdown]
# ## 定义训练过程中的回调函数
# N次log之后情况cuda缓存,能有效缓解低显存机器显存缓慢增长的问题
# %%
class EmptyCudaCacheCallback(TrainerCallback):
log_cnt = 0
def on_log(self, args, state, control, logs=None, **kwargs):
self.log_cnt += 1
if self.log_cnt % 2 == 0:
torch.cuda.empty_cache()
empty_cuda_cahce = EmptyCudaCacheCallback()
# %%
my_datasets = tokenized_datasets.train_test_split(test_size=4096)
print("m")
print(my_datasets)
# %% [markdown]
# # 5. 定义训练参数
# %%
args = TrainingArguments(
output_dir=model_save_dir,
per_device_train_batch_size=4,
gradient_accumulation_steps=1,
num_train_epochs=1,
weight_decay=0.1,
warmup_steps=0,
learning_rate=6e-5,
ddp_find_unused_parameters=False,
evaluation_strategy="steps",
eval_steps=600,
save_steps=600,
save_total_limit=3,
report_to="wandb",
optim="adamw_torch",
remove_unused_columns=False,
lr_scheduler_type="cosine",
bf16=True,
logging_steps=10,
log_level="info",
logging_first_step=True,
# group_by_length=True,
)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=args,
data_collator=data_collator,
train_dataset=my_datasets["train"],
eval_dataset=my_datasets["test"],
callbacks=[empty_cuda_cahce],
)
# %% [markdown]
# # 6. 开始训练
# %%
trainer.train(
# resume_from_checkpoint=True
)
# %% [markdown]
# 计算困惑度Perplexity
# %%
eval_results = trainer.evaluate()
print(f"Perplexity: {np.exp(eval_results['eval_loss']):.2f}")
# %% [markdown]
# # 7. 保存日志和模型
# %%
loss_log = pd.DataFrame(trainer.state.log_history)
# loss_log.to_csv(f"./logs/sft_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
trainer.save_model(model_save_dir)
wandb.finish()